1 /*---------------------------------------------------------------------------
2  *
3  * Ryu floating-point output for double precision.
4  *
5  * Portions Copyright (c) 2018-2020, PostgreSQL Global Development Group
6  *
7  * IDENTIFICATION
8  *	  src/common/d2s.c
9  *
10  * This is a modification of code taken from github.com/ulfjack/ryu under the
11  * terms of the Boost license (not the Apache license). The original copyright
12  * notice follows:
13  *
14  * Copyright 2018 Ulf Adams
15  *
16  * The contents of this file may be used under the terms of the Apache
17  * License, Version 2.0.
18  *
19  *     (See accompanying file LICENSE-Apache or copy at
20  *      http://www.apache.org/licenses/LICENSE-2.0)
21  *
22  * Alternatively, the contents of this file may be used under the terms of the
23  * Boost Software License, Version 1.0.
24  *
25  *     (See accompanying file LICENSE-Boost or copy at
26  *      https://www.boost.org/LICENSE_1_0.txt)
27  *
28  * Unless required by applicable law or agreed to in writing, this software is
29  * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
30  * KIND, either express or implied.
31  *
32  *---------------------------------------------------------------------------
33  */
34 
35 /*
36  *  Runtime compiler options:
37  *
38  *  -DRYU_ONLY_64_BIT_OPS Avoid using uint128 or 64-bit intrinsics. Slower,
39  *      depending on your compiler.
40  */
41 
42 #ifndef FRONTEND
43 #include "postgres.h"
44 #else
45 #include "postgres_fe.h"
46 #endif
47 
48 #include "common/shortest_dec.h"
49 
50 /*
51  * For consistency, we use 128-bit types if and only if the rest of PG also
52  * does, even though we could use them here without worrying about the
53  * alignment concerns that apply elsewhere.
54  */
55 #if !defined(HAVE_INT128) && defined(_MSC_VER) \
56 	&& !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
57 #define HAS_64_BIT_INTRINSICS
58 #endif
59 
60 #include "ryu_common.h"
61 #include "digit_table.h"
62 #include "d2s_full_table.h"
63 #include "d2s_intrinsics.h"
64 
65 #define DOUBLE_MANTISSA_BITS 52
66 #define DOUBLE_EXPONENT_BITS 11
67 #define DOUBLE_BIAS 1023
68 
69 #define DOUBLE_POW5_INV_BITCOUNT 122
70 #define DOUBLE_POW5_BITCOUNT 121
71 
72 
73 static inline uint32
pow5Factor(uint64 value)74 pow5Factor(uint64 value)
75 {
76 	uint32		count = 0;
77 
78 	for (;;)
79 	{
80 		Assert(value != 0);
81 		const uint64 q = div5(value);
82 		const uint32 r = (uint32) (value - 5 * q);
83 
84 		if (r != 0)
85 			break;
86 
87 		value = q;
88 		++count;
89 	}
90 	return count;
91 }
92 
93 /*  Returns true if value is divisible by 5^p. */
94 static inline bool
multipleOfPowerOf5(const uint64 value,const uint32 p)95 multipleOfPowerOf5(const uint64 value, const uint32 p)
96 {
97 	/*
98 	 * I tried a case distinction on p, but there was no performance
99 	 * difference.
100 	 */
101 	return pow5Factor(value) >= p;
102 }
103 
104 /*  Returns true if value is divisible by 2^p. */
105 static inline bool
multipleOfPowerOf2(const uint64 value,const uint32 p)106 multipleOfPowerOf2(const uint64 value, const uint32 p)
107 {
108 	/* return __builtin_ctzll(value) >= p; */
109 	return (value & ((UINT64CONST(1) << p) - 1)) == 0;
110 }
111 
112 /*
113  * We need a 64x128-bit multiplication and a subsequent 128-bit shift.
114  *
115  * Multiplication:
116  *
117  *    The 64-bit factor is variable and passed in, the 128-bit factor comes
118  *    from a lookup table. We know that the 64-bit factor only has 55
119  *    significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
120  *    factor only has 124 significant bits (i.e., the 4 topmost bits are
121  *    zeros).
122  *
123  * Shift:
124  *
125  *    In principle, the multiplication result requires 55 + 124 = 179 bits to
126  *    represent. However, we then shift this value to the right by j, which is
127  *    at least j >= 115, so the result is guaranteed to fit into 179 - 115 =
128  *    64 bits. This means that we only need the topmost 64 significant bits of
129  *    the 64x128-bit multiplication.
130  *
131  * There are several ways to do this:
132  *
133  *  1. Best case: the compiler exposes a 128-bit type.
134  *     We perform two 64x64-bit multiplications, add the higher 64 bits of the
135  *     lower result to the higher result, and shift by j - 64 bits.
136  *
137  *     We explicitly cast from 64-bit to 128-bit, so the compiler can tell
138  *     that these are only 64-bit inputs, and can map these to the best
139  *     possible sequence of assembly instructions. x86-64 machines happen to
140  *     have matching assembly instructions for 64x64-bit multiplications and
141  *     128-bit shifts.
142  *
143  *  2. Second best case: the compiler exposes intrinsics for the x86-64
144  *     assembly instructions mentioned in 1.
145  *
146  *  3. We only have 64x64 bit instructions that return the lower 64 bits of
147  *     the result, i.e., we have to use plain C.
148  *
149  *     Our inputs are less than the full width, so we have three options:
150  *     a. Ignore this fact and just implement the intrinsics manually.
151  *     b. Split both into 31-bit pieces, which guarantees no internal
152  *        overflow, but requires extra work upfront (unless we change the
153  *        lookup table).
154  *     c. Split only the first factor into 31-bit pieces, which also
155  *        guarantees no internal overflow, but requires extra work since the
156  *        intermediate results are not perfectly aligned.
157  */
158 #if defined(HAVE_INT128)
159 
160 /*  Best case: use 128-bit type. */
161 static inline uint64
mulShift(const uint64 m,const uint64 * const mul,const int32 j)162 mulShift(const uint64 m, const uint64 *const mul, const int32 j)
163 {
164 	const uint128 b0 = ((uint128) m) * mul[0];
165 	const uint128 b2 = ((uint128) m) * mul[1];
166 
167 	return (uint64) (((b0 >> 64) + b2) >> (j - 64));
168 }
169 
170 static inline uint64
mulShiftAll(const uint64 m,const uint64 * const mul,const int32 j,uint64 * const vp,uint64 * const vm,const uint32 mmShift)171 mulShiftAll(const uint64 m, const uint64 *const mul, const int32 j,
172 			uint64 *const vp, uint64 *const vm, const uint32 mmShift)
173 {
174 	*vp = mulShift(4 * m + 2, mul, j);
175 	*vm = mulShift(4 * m - 1 - mmShift, mul, j);
176 	return mulShift(4 * m, mul, j);
177 }
178 
179 #elif defined(HAS_64_BIT_INTRINSICS)
180 
181 static inline uint64
mulShift(const uint64 m,const uint64 * const mul,const int32 j)182 mulShift(const uint64 m, const uint64 *const mul, const int32 j)
183 {
184 	/* m is maximum 55 bits */
185 	uint64		high1;
186 
187 	/* 128 */
188 	const uint64 low1 = umul128(m, mul[1], &high1);
189 
190 	/* 64 */
191 	uint64		high0;
192 	uint64		sum;
193 
194 	/* 64 */
195 	umul128(m, mul[0], &high0);
196 	/* 0 */
197 	sum = high0 + low1;
198 
199 	if (sum < high0)
200 	{
201 		++high1;
202 		/* overflow into high1 */
203 	}
204 	return shiftright128(sum, high1, j - 64);
205 }
206 
207 static inline uint64
mulShiftAll(const uint64 m,const uint64 * const mul,const int32 j,uint64 * const vp,uint64 * const vm,const uint32 mmShift)208 mulShiftAll(const uint64 m, const uint64 *const mul, const int32 j,
209 			uint64 *const vp, uint64 *const vm, const uint32 mmShift)
210 {
211 	*vp = mulShift(4 * m + 2, mul, j);
212 	*vm = mulShift(4 * m - 1 - mmShift, mul, j);
213 	return mulShift(4 * m, mul, j);
214 }
215 
216 #else							/* // !defined(HAVE_INT128) &&
217 								 * !defined(HAS_64_BIT_INTRINSICS) */
218 
219 static inline uint64
mulShiftAll(uint64 m,const uint64 * const mul,const int32 j,uint64 * const vp,uint64 * const vm,const uint32 mmShift)220 mulShiftAll(uint64 m, const uint64 *const mul, const int32 j,
221 			uint64 *const vp, uint64 *const vm, const uint32 mmShift)
222 {
223 	m <<= 1;					/* m is maximum 55 bits */
224 
225 	uint64		tmp;
226 	const uint64 lo = umul128(m, mul[0], &tmp);
227 	uint64		hi;
228 	const uint64 mid = tmp + umul128(m, mul[1], &hi);
229 
230 	hi += mid < tmp;			/* overflow into hi */
231 
232 	const uint64 lo2 = lo + mul[0];
233 	const uint64 mid2 = mid + mul[1] + (lo2 < lo);
234 	const uint64 hi2 = hi + (mid2 < mid);
235 
236 	*vp = shiftright128(mid2, hi2, j - 64 - 1);
237 
238 	if (mmShift == 1)
239 	{
240 		const uint64 lo3 = lo - mul[0];
241 		const uint64 mid3 = mid - mul[1] - (lo3 > lo);
242 		const uint64 hi3 = hi - (mid3 > mid);
243 
244 		*vm = shiftright128(mid3, hi3, j - 64 - 1);
245 	}
246 	else
247 	{
248 		const uint64 lo3 = lo + lo;
249 		const uint64 mid3 = mid + mid + (lo3 < lo);
250 		const uint64 hi3 = hi + hi + (mid3 < mid);
251 		const uint64 lo4 = lo3 - mul[0];
252 		const uint64 mid4 = mid3 - mul[1] - (lo4 > lo3);
253 		const uint64 hi4 = hi3 - (mid4 > mid3);
254 
255 		*vm = shiftright128(mid4, hi4, j - 64);
256 	}
257 
258 	return shiftright128(mid, hi, j - 64 - 1);
259 }
260 
261 #endif							/* // HAS_64_BIT_INTRINSICS */
262 
263 static inline uint32
decimalLength(const uint64 v)264 decimalLength(const uint64 v)
265 {
266 	/* This is slightly faster than a loop. */
267 	/* The average output length is 16.38 digits, so we check high-to-low. */
268 	/* Function precondition: v is not an 18, 19, or 20-digit number. */
269 	/* (17 digits are sufficient for round-tripping.) */
270 	Assert(v < 100000000000000000L);
271 	if (v >= 10000000000000000L)
272 	{
273 		return 17;
274 	}
275 	if (v >= 1000000000000000L)
276 	{
277 		return 16;
278 	}
279 	if (v >= 100000000000000L)
280 	{
281 		return 15;
282 	}
283 	if (v >= 10000000000000L)
284 	{
285 		return 14;
286 	}
287 	if (v >= 1000000000000L)
288 	{
289 		return 13;
290 	}
291 	if (v >= 100000000000L)
292 	{
293 		return 12;
294 	}
295 	if (v >= 10000000000L)
296 	{
297 		return 11;
298 	}
299 	if (v >= 1000000000L)
300 	{
301 		return 10;
302 	}
303 	if (v >= 100000000L)
304 	{
305 		return 9;
306 	}
307 	if (v >= 10000000L)
308 	{
309 		return 8;
310 	}
311 	if (v >= 1000000L)
312 	{
313 		return 7;
314 	}
315 	if (v >= 100000L)
316 	{
317 		return 6;
318 	}
319 	if (v >= 10000L)
320 	{
321 		return 5;
322 	}
323 	if (v >= 1000L)
324 	{
325 		return 4;
326 	}
327 	if (v >= 100L)
328 	{
329 		return 3;
330 	}
331 	if (v >= 10L)
332 	{
333 		return 2;
334 	}
335 	return 1;
336 }
337 
338 /*  A floating decimal representing m * 10^e. */
339 typedef struct floating_decimal_64
340 {
341 	uint64		mantissa;
342 	int32		exponent;
343 } floating_decimal_64;
344 
345 static inline floating_decimal_64
d2d(const uint64 ieeeMantissa,const uint32 ieeeExponent)346 d2d(const uint64 ieeeMantissa, const uint32 ieeeExponent)
347 {
348 	int32		e2;
349 	uint64		m2;
350 
351 	if (ieeeExponent == 0)
352 	{
353 		/* We subtract 2 so that the bounds computation has 2 additional bits. */
354 		e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
355 		m2 = ieeeMantissa;
356 	}
357 	else
358 	{
359 		e2 = ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
360 		m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
361 	}
362 
363 #if STRICTLY_SHORTEST
364 	const bool	even = (m2 & 1) == 0;
365 	const bool	acceptBounds = even;
366 #else
367 	const bool	acceptBounds = false;
368 #endif
369 
370 	/* Step 2: Determine the interval of legal decimal representations. */
371 	const uint64 mv = 4 * m2;
372 
373 	/* Implicit bool -> int conversion. True is 1, false is 0. */
374 	const uint32 mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
375 
376 	/* We would compute mp and mm like this: */
377 	/* uint64 mp = 4 * m2 + 2; */
378 	/* uint64 mm = mv - 1 - mmShift; */
379 
380 	/* Step 3: Convert to a decimal power base using 128-bit arithmetic. */
381 	uint64		vr,
382 				vp,
383 				vm;
384 	int32		e10;
385 	bool		vmIsTrailingZeros = false;
386 	bool		vrIsTrailingZeros = false;
387 
388 	if (e2 >= 0)
389 	{
390 		/*
391 		 * I tried special-casing q == 0, but there was no effect on
392 		 * performance.
393 		 *
394 		 * This expr is slightly faster than max(0, log10Pow2(e2) - 1).
395 		 */
396 		const uint32 q = log10Pow2(e2) - (e2 > 3);
397 		const int32 k = DOUBLE_POW5_INV_BITCOUNT + pow5bits(q) - 1;
398 		const int32 i = -e2 + q + k;
399 
400 		e10 = q;
401 
402 		vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift);
403 
404 		if (q <= 21)
405 		{
406 			/*
407 			 * This should use q <= 22, but I think 21 is also safe. Smaller
408 			 * values may still be safe, but it's more difficult to reason
409 			 * about them.
410 			 *
411 			 * Only one of mp, mv, and mm can be a multiple of 5, if any.
412 			 */
413 			const uint32 mvMod5 = (uint32) (mv - 5 * div5(mv));
414 
415 			if (mvMod5 == 0)
416 			{
417 				vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
418 			}
419 			else if (acceptBounds)
420 			{
421 				/*----
422 				 * Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
423 				 * <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
424 				 * <=> true && pow5Factor(mm) >= q, since e2 >= q.
425 				 *----
426 				 */
427 				vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
428 			}
429 			else
430 			{
431 				/* Same as min(e2 + 1, pow5Factor(mp)) >= q. */
432 				vp -= multipleOfPowerOf5(mv + 2, q);
433 			}
434 		}
435 	}
436 	else
437 	{
438 		/*
439 		 * This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
440 		 */
441 		const uint32 q = log10Pow5(-e2) - (-e2 > 1);
442 		const int32 i = -e2 - q;
443 		const int32 k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
444 		const int32 j = q - k;
445 
446 		e10 = q + e2;
447 
448 		vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift);
449 
450 		if (q <= 1)
451 		{
452 			/*
453 			 * {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q
454 			 * trailing 0 bits.
455 			 */
456 			/* mv = 4 * m2, so it always has at least two trailing 0 bits. */
457 			vrIsTrailingZeros = true;
458 			if (acceptBounds)
459 			{
460 				/*
461 				 * mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff
462 				 * mmShift == 1.
463 				 */
464 				vmIsTrailingZeros = mmShift == 1;
465 			}
466 			else
467 			{
468 				/*
469 				 * mp = mv + 2, so it always has at least one trailing 0 bit.
470 				 */
471 				--vp;
472 			}
473 		}
474 		else if (q < 63)
475 		{
476 			/* TODO(ulfjack):Use a tighter bound here. */
477 			/*
478 			 * We need to compute min(ntz(mv), pow5Factor(mv) - e2) >= q - 1
479 			 */
480 			/* <=> ntz(mv) >= q - 1 && pow5Factor(mv) - e2 >= q - 1 */
481 			/* <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q) */
482 			/* <=> (mv & ((1 << (q - 1)) - 1)) == 0 */
483 
484 			/*
485 			 * We also need to make sure that the left shift does not
486 			 * overflow.
487 			 */
488 			vrIsTrailingZeros = multipleOfPowerOf2(mv, q - 1);
489 		}
490 	}
491 
492 	/*
493 	 * Step 4: Find the shortest decimal representation in the interval of
494 	 * legal representations.
495 	 */
496 	uint32		removed = 0;
497 	uint8		lastRemovedDigit = 0;
498 	uint64		output;
499 
500 	/* On average, we remove ~2 digits. */
501 	if (vmIsTrailingZeros || vrIsTrailingZeros)
502 	{
503 		/* General case, which happens rarely (~0.7%). */
504 		for (;;)
505 		{
506 			const uint64 vpDiv10 = div10(vp);
507 			const uint64 vmDiv10 = div10(vm);
508 
509 			if (vpDiv10 <= vmDiv10)
510 				break;
511 
512 			const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10);
513 			const uint64 vrDiv10 = div10(vr);
514 			const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
515 
516 			vmIsTrailingZeros &= vmMod10 == 0;
517 			vrIsTrailingZeros &= lastRemovedDigit == 0;
518 			lastRemovedDigit = (uint8) vrMod10;
519 			vr = vrDiv10;
520 			vp = vpDiv10;
521 			vm = vmDiv10;
522 			++removed;
523 		}
524 
525 		if (vmIsTrailingZeros)
526 		{
527 			for (;;)
528 			{
529 				const uint64 vmDiv10 = div10(vm);
530 				const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10);
531 
532 				if (vmMod10 != 0)
533 					break;
534 
535 				const uint64 vpDiv10 = div10(vp);
536 				const uint64 vrDiv10 = div10(vr);
537 				const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
538 
539 				vrIsTrailingZeros &= lastRemovedDigit == 0;
540 				lastRemovedDigit = (uint8) vrMod10;
541 				vr = vrDiv10;
542 				vp = vpDiv10;
543 				vm = vmDiv10;
544 				++removed;
545 			}
546 		}
547 
548 		if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0)
549 		{
550 			/* Round even if the exact number is .....50..0. */
551 			lastRemovedDigit = 4;
552 		}
553 
554 		/*
555 		 * We need to take vr + 1 if vr is outside bounds or we need to round
556 		 * up.
557 		 */
558 		output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
559 	}
560 	else
561 	{
562 		/*
563 		 * Specialized for the common case (~99.3%). Percentages below are
564 		 * relative to this.
565 		 */
566 		bool		roundUp = false;
567 		const uint64 vpDiv100 = div100(vp);
568 		const uint64 vmDiv100 = div100(vm);
569 
570 		if (vpDiv100 > vmDiv100)
571 		{
572 			/* Optimization:remove two digits at a time(~86.2 %). */
573 			const uint64 vrDiv100 = div100(vr);
574 			const uint32 vrMod100 = (uint32) (vr - 100 * vrDiv100);
575 
576 			roundUp = vrMod100 >= 50;
577 			vr = vrDiv100;
578 			vp = vpDiv100;
579 			vm = vmDiv100;
580 			removed += 2;
581 		}
582 
583 		/*----
584 		 * Loop iterations below (approximately), without optimization
585 		 * above:
586 		 *
587 		 * 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%,
588 		 * 6+: 0.02%
589 		 *
590 		 * Loop iterations below (approximately), with optimization
591 		 * above:
592 		 *
593 		 * 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
594 		 *----
595 		 */
596 		for (;;)
597 		{
598 			const uint64 vpDiv10 = div10(vp);
599 			const uint64 vmDiv10 = div10(vm);
600 
601 			if (vpDiv10 <= vmDiv10)
602 				break;
603 
604 			const uint64 vrDiv10 = div10(vr);
605 			const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
606 
607 			roundUp = vrMod10 >= 5;
608 			vr = vrDiv10;
609 			vp = vpDiv10;
610 			vm = vmDiv10;
611 			++removed;
612 		}
613 
614 		/*
615 		 * We need to take vr + 1 if vr is outside bounds or we need to round
616 		 * up.
617 		 */
618 		output = vr + (vr == vm || roundUp);
619 	}
620 
621 	const int32 exp = e10 + removed;
622 
623 	floating_decimal_64 fd;
624 
625 	fd.exponent = exp;
626 	fd.mantissa = output;
627 	return fd;
628 }
629 
630 static inline int
to_chars_df(const floating_decimal_64 v,const uint32 olength,char * const result)631 to_chars_df(const floating_decimal_64 v, const uint32 olength, char *const result)
632 {
633 	/* Step 5: Print the decimal representation. */
634 	int			index = 0;
635 
636 	uint64		output = v.mantissa;
637 	int32		exp = v.exponent;
638 
639 	/*----
640 	 * On entry, mantissa * 10^exp is the result to be output.
641 	 * Caller has already done the - sign if needed.
642 	 *
643 	 * We want to insert the point somewhere depending on the output length
644 	 * and exponent, which might mean adding zeros:
645 	 *
646 	 *            exp  | format
647 	 *            1+   |  ddddddddd000000
648 	 *            0    |  ddddddddd
649 	 *  -1 .. -len+1   |  dddddddd.d to d.ddddddddd
650 	 *  -len ...       |  0.ddddddddd to 0.000dddddd
651 	 */
652 	uint32		i = 0;
653 	int32		nexp = exp + olength;
654 
655 	if (nexp <= 0)
656 	{
657 		/* -nexp is number of 0s to add after '.' */
658 		Assert(nexp >= -3);
659 		/* 0.000ddddd */
660 		index = 2 - nexp;
661 		/* won't need more than this many 0s */
662 		memcpy(result, "0.000000", 8);
663 	}
664 	else if (exp < 0)
665 	{
666 		/*
667 		 * dddd.dddd; leave space at the start and move the '.' in after
668 		 */
669 		index = 1;
670 	}
671 	else
672 	{
673 		/*
674 		 * We can save some code later by pre-filling with zeros. We know that
675 		 * there can be no more than 16 output digits in this form, otherwise
676 		 * we would not choose fixed-point output.
677 		 */
678 		Assert(exp < 16 && exp + olength <= 16);
679 		memset(result, '0', 16);
680 	}
681 
682 	/*
683 	 * We prefer 32-bit operations, even on 64-bit platforms. We have at most
684 	 * 17 digits, and uint32 can store 9 digits. If output doesn't fit into
685 	 * uint32, we cut off 8 digits, so the rest will fit into uint32.
686 	 */
687 	if ((output >> 32) != 0)
688 	{
689 		/* Expensive 64-bit division. */
690 		const uint64 q = div1e8(output);
691 		uint32		output2 = (uint32) (output - 100000000 * q);
692 		const uint32 c = output2 % 10000;
693 
694 		output = q;
695 		output2 /= 10000;
696 
697 		const uint32 d = output2 % 10000;
698 		const uint32 c0 = (c % 100) << 1;
699 		const uint32 c1 = (c / 100) << 1;
700 		const uint32 d0 = (d % 100) << 1;
701 		const uint32 d1 = (d / 100) << 1;
702 
703 		memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2);
704 		memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2);
705 		memcpy(result + index + olength - i - 6, DIGIT_TABLE + d0, 2);
706 		memcpy(result + index + olength - i - 8, DIGIT_TABLE + d1, 2);
707 		i += 8;
708 	}
709 
710 	uint32		output2 = (uint32) output;
711 
712 	while (output2 >= 10000)
713 	{
714 		const uint32 c = output2 - 10000 * (output2 / 10000);
715 		const uint32 c0 = (c % 100) << 1;
716 		const uint32 c1 = (c / 100) << 1;
717 
718 		output2 /= 10000;
719 		memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2);
720 		memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2);
721 		i += 4;
722 	}
723 	if (output2 >= 100)
724 	{
725 		const uint32 c = (output2 % 100) << 1;
726 
727 		output2 /= 100;
728 		memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
729 		i += 2;
730 	}
731 	if (output2 >= 10)
732 	{
733 		const uint32 c = output2 << 1;
734 
735 		memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
736 	}
737 	else
738 	{
739 		result[index] = (char) ('0' + output2);
740 	}
741 
742 	if (index == 1)
743 	{
744 		/*
745 		 * nexp is 1..15 here, representing the number of digits before the
746 		 * point. A value of 16 is not possible because we switch to
747 		 * scientific notation when the display exponent reaches 15.
748 		 */
749 		Assert(nexp < 16);
750 		/* gcc only seems to want to optimize memmove for small 2^n */
751 		if (nexp & 8)
752 		{
753 			memmove(result + index - 1, result + index, 8);
754 			index += 8;
755 		}
756 		if (nexp & 4)
757 		{
758 			memmove(result + index - 1, result + index, 4);
759 			index += 4;
760 		}
761 		if (nexp & 2)
762 		{
763 			memmove(result + index - 1, result + index, 2);
764 			index += 2;
765 		}
766 		if (nexp & 1)
767 		{
768 			result[index - 1] = result[index];
769 		}
770 		result[nexp] = '.';
771 		index = olength + 1;
772 	}
773 	else if (exp >= 0)
774 	{
775 		/* we supplied the trailing zeros earlier, now just set the length. */
776 		index = olength + exp;
777 	}
778 	else
779 	{
780 		index = olength + (2 - nexp);
781 	}
782 
783 	return index;
784 }
785 
786 static inline int
to_chars(floating_decimal_64 v,const bool sign,char * const result)787 to_chars(floating_decimal_64 v, const bool sign, char *const result)
788 {
789 	/* Step 5: Print the decimal representation. */
790 	int			index = 0;
791 
792 	uint64		output = v.mantissa;
793 	uint32		olength = decimalLength(output);
794 	int32		exp = v.exponent + olength - 1;
795 
796 	if (sign)
797 	{
798 		result[index++] = '-';
799 	}
800 
801 	/*
802 	 * The thresholds for fixed-point output are chosen to match printf
803 	 * defaults. Beware that both the code of to_chars_df and the value of
804 	 * DOUBLE_SHORTEST_DECIMAL_LEN are sensitive to these thresholds.
805 	 */
806 	if (exp >= -4 && exp < 15)
807 		return to_chars_df(v, olength, result + index) + sign;
808 
809 	/*
810 	 * If v.exponent is exactly 0, we might have reached here via the small
811 	 * integer fast path, in which case v.mantissa might contain trailing
812 	 * (decimal) zeros. For scientific notation we need to move these zeros
813 	 * into the exponent. (For fixed point this doesn't matter, which is why
814 	 * we do this here rather than above.)
815 	 *
816 	 * Since we already calculated the display exponent (exp) above based on
817 	 * the old decimal length, that value does not change here. Instead, we
818 	 * just reduce the display length for each digit removed.
819 	 *
820 	 * If we didn't get here via the fast path, the raw exponent will not
821 	 * usually be 0, and there will be no trailing zeros, so we pay no more
822 	 * than one div10/multiply extra cost. We claw back half of that by
823 	 * checking for divisibility by 2 before dividing by 10.
824 	 */
825 	if (v.exponent == 0)
826 	{
827 		while ((output & 1) == 0)
828 		{
829 			const uint64 q = div10(output);
830 			const uint32 r = (uint32) (output - 10 * q);
831 
832 			if (r != 0)
833 				break;
834 			output = q;
835 			--olength;
836 		}
837 	}
838 
839 	/*----
840 	 * Print the decimal digits.
841 	 *
842 	 * The following code is equivalent to:
843 	 *
844 	 * for (uint32 i = 0; i < olength - 1; ++i) {
845 	 *   const uint32 c = output % 10; output /= 10;
846 	 *   result[index + olength - i] = (char) ('0' + c);
847 	 * }
848 	 * result[index] = '0' + output % 10;
849 	 *----
850 	 */
851 
852 	uint32		i = 0;
853 
854 	/*
855 	 * We prefer 32-bit operations, even on 64-bit platforms. We have at most
856 	 * 17 digits, and uint32 can store 9 digits. If output doesn't fit into
857 	 * uint32, we cut off 8 digits, so the rest will fit into uint32.
858 	 */
859 	if ((output >> 32) != 0)
860 	{
861 		/* Expensive 64-bit division. */
862 		const uint64 q = div1e8(output);
863 		uint32		output2 = (uint32) (output - 100000000 * q);
864 
865 		output = q;
866 
867 		const uint32 c = output2 % 10000;
868 
869 		output2 /= 10000;
870 
871 		const uint32 d = output2 % 10000;
872 		const uint32 c0 = (c % 100) << 1;
873 		const uint32 c1 = (c / 100) << 1;
874 		const uint32 d0 = (d % 100) << 1;
875 		const uint32 d1 = (d / 100) << 1;
876 
877 		memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
878 		memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
879 		memcpy(result + index + olength - i - 5, DIGIT_TABLE + d0, 2);
880 		memcpy(result + index + olength - i - 7, DIGIT_TABLE + d1, 2);
881 		i += 8;
882 	}
883 
884 	uint32		output2 = (uint32) output;
885 
886 	while (output2 >= 10000)
887 	{
888 		const uint32 c = output2 - 10000 * (output2 / 10000);
889 
890 		output2 /= 10000;
891 
892 		const uint32 c0 = (c % 100) << 1;
893 		const uint32 c1 = (c / 100) << 1;
894 
895 		memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
896 		memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
897 		i += 4;
898 	}
899 	if (output2 >= 100)
900 	{
901 		const uint32 c = (output2 % 100) << 1;
902 
903 		output2 /= 100;
904 		memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
905 		i += 2;
906 	}
907 	if (output2 >= 10)
908 	{
909 		const uint32 c = output2 << 1;
910 
911 		/*
912 		 * We can't use memcpy here: the decimal dot goes between these two
913 		 * digits.
914 		 */
915 		result[index + olength - i] = DIGIT_TABLE[c + 1];
916 		result[index] = DIGIT_TABLE[c];
917 	}
918 	else
919 	{
920 		result[index] = (char) ('0' + output2);
921 	}
922 
923 	/* Print decimal point if needed. */
924 	if (olength > 1)
925 	{
926 		result[index + 1] = '.';
927 		index += olength + 1;
928 	}
929 	else
930 	{
931 		++index;
932 	}
933 
934 	/* Print the exponent. */
935 	result[index++] = 'e';
936 	if (exp < 0)
937 	{
938 		result[index++] = '-';
939 		exp = -exp;
940 	}
941 	else
942 		result[index++] = '+';
943 
944 	if (exp >= 100)
945 	{
946 		const int32 c = exp % 10;
947 
948 		memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2);
949 		result[index + 2] = (char) ('0' + c);
950 		index += 3;
951 	}
952 	else
953 	{
954 		memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
955 		index += 2;
956 	}
957 
958 	return index;
959 }
960 
961 static inline bool
d2d_small_int(const uint64 ieeeMantissa,const uint32 ieeeExponent,floating_decimal_64 * v)962 d2d_small_int(const uint64 ieeeMantissa,
963 			  const uint32 ieeeExponent,
964 			  floating_decimal_64 *v)
965 {
966 	const int32 e2 = (int32) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
967 
968 	/*
969 	 * Avoid using multiple "return false;" here since it tends to provoke the
970 	 * compiler into inlining multiple copies of d2d, which is undesirable.
971 	 */
972 
973 	if (e2 >= -DOUBLE_MANTISSA_BITS && e2 <= 0)
974 	{
975 		/*----
976 		 * Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52:
977 		 *   1 <= f = m2 / 2^-e2 < 2^53.
978 		 *
979 		 * Test if the lower -e2 bits of the significand are 0, i.e. whether
980 		 * the fraction is 0. We can use ieeeMantissa here, since the implied
981 		 * 1 bit can never be tested by this; the implied 1 can only be part
982 		 * of a fraction if e2 < -DOUBLE_MANTISSA_BITS which we already
983 		 * checked. (e.g. 0.5 gives ieeeMantissa == 0 and e2 == -53)
984 		 */
985 		const uint64 mask = (UINT64CONST(1) << -e2) - 1;
986 		const uint64 fraction = ieeeMantissa & mask;
987 
988 		if (fraction == 0)
989 		{
990 			/*----
991 			 * f is an integer in the range [1, 2^53).
992 			 * Note: mantissa might contain trailing (decimal) 0's.
993 			 * Note: since 2^53 < 10^16, there is no need to adjust
994 			 * decimalLength().
995 			 */
996 			const uint64 m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
997 
998 			v->mantissa = m2 >> -e2;
999 			v->exponent = 0;
1000 			return true;
1001 		}
1002 	}
1003 
1004 	return false;
1005 }
1006 
1007 /*
1008  * Store the shortest decimal representation of the given double as an
1009  * UNTERMINATED string in the caller's supplied buffer (which must be at least
1010  * DOUBLE_SHORTEST_DECIMAL_LEN-1 bytes long).
1011  *
1012  * Returns the number of bytes stored.
1013  */
1014 int
double_to_shortest_decimal_bufn(double f,char * result)1015 double_to_shortest_decimal_bufn(double f, char *result)
1016 {
1017 	/*
1018 	 * Step 1: Decode the floating-point number, and unify normalized and
1019 	 * subnormal cases.
1020 	 */
1021 	const uint64 bits = double_to_bits(f);
1022 
1023 	/* Decode bits into sign, mantissa, and exponent. */
1024 	const bool	ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
1025 	const uint64 ieeeMantissa = bits & ((UINT64CONST(1) << DOUBLE_MANTISSA_BITS) - 1);
1026 	const uint32 ieeeExponent = (uint32) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
1027 
1028 	/* Case distinction; exit early for the easy cases. */
1029 	if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0))
1030 	{
1031 		return copy_special_str(result, ieeeSign, (ieeeExponent != 0), (ieeeMantissa != 0));
1032 	}
1033 
1034 	floating_decimal_64 v;
1035 	const bool	isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
1036 
1037 	if (!isSmallInt)
1038 	{
1039 		v = d2d(ieeeMantissa, ieeeExponent);
1040 	}
1041 
1042 	return to_chars(v, ieeeSign, result);
1043 }
1044 
1045 /*
1046  * Store the shortest decimal representation of the given double as a
1047  * null-terminated string in the caller's supplied buffer (which must be at
1048  * least DOUBLE_SHORTEST_DECIMAL_LEN bytes long).
1049  *
1050  * Returns the string length.
1051  */
1052 int
double_to_shortest_decimal_buf(double f,char * result)1053 double_to_shortest_decimal_buf(double f, char *result)
1054 {
1055 	const int	index = double_to_shortest_decimal_bufn(f, result);
1056 
1057 	/* Terminate the string. */
1058 	Assert(index < DOUBLE_SHORTEST_DECIMAL_LEN);
1059 	result[index] = '\0';
1060 	return index;
1061 }
1062 
1063 /*
1064  * Return the shortest decimal representation as a null-terminated palloc'd
1065  * string (outside the backend, uses malloc() instead).
1066  *
1067  * Caller is responsible for freeing the result.
1068  */
1069 char *
double_to_shortest_decimal(double f)1070 double_to_shortest_decimal(double f)
1071 {
1072 	char	   *const result = (char *) palloc(DOUBLE_SHORTEST_DECIMAL_LEN);
1073 
1074 	double_to_shortest_decimal_buf(f, result);
1075 	return result;
1076 }
1077