1 /*---------------------------------------------------------------------------
2  *
3  * Ryu floating-point output for single precision.
4  *
5  * Portions Copyright (c) 2018-2020, PostgreSQL Global Development Group
6  *
7  * IDENTIFICATION
8  *	  src/common/f2s.c
9  *
10  * This is a modification of code taken from github.com/ulfjack/ryu under the
11  * terms of the Boost license (not the Apache license). The original copyright
12  * notice follows:
13  *
14  * Copyright 2018 Ulf Adams
15  *
16  * The contents of this file may be used under the terms of the Apache
17  * License, Version 2.0.
18  *
19  *     (See accompanying file LICENSE-Apache or copy at
20  *      http://www.apache.org/licenses/LICENSE-2.0)
21  *
22  * Alternatively, the contents of this file may be used under the terms of the
23  * Boost Software License, Version 1.0.
24  *
25  *     (See accompanying file LICENSE-Boost or copy at
26  *      https://www.boost.org/LICENSE_1_0.txt)
27  *
28  * Unless required by applicable law or agreed to in writing, this software is
29  * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
30  * KIND, either express or implied.
31  *
32  *---------------------------------------------------------------------------
33  */
34 
35 #ifndef FRONTEND
36 #include "postgres.h"
37 #else
38 #include "postgres_fe.h"
39 #endif
40 
41 #include "common/shortest_dec.h"
42 #include "digit_table.h"
43 #include "ryu_common.h"
44 
45 #define FLOAT_MANTISSA_BITS 23
46 #define FLOAT_EXPONENT_BITS 8
47 #define FLOAT_BIAS 127
48 
49 /*
50  * This table is generated (by the upstream) by PrintFloatLookupTable,
51  * and modified (by us) to add UINT64CONST.
52  */
53 #define FLOAT_POW5_INV_BITCOUNT 59
54 static const uint64 FLOAT_POW5_INV_SPLIT[31] = {
55 	UINT64CONST(576460752303423489), UINT64CONST(461168601842738791), UINT64CONST(368934881474191033), UINT64CONST(295147905179352826),
56 	UINT64CONST(472236648286964522), UINT64CONST(377789318629571618), UINT64CONST(302231454903657294), UINT64CONST(483570327845851670),
57 	UINT64CONST(386856262276681336), UINT64CONST(309485009821345069), UINT64CONST(495176015714152110), UINT64CONST(396140812571321688),
58 	UINT64CONST(316912650057057351), UINT64CONST(507060240091291761), UINT64CONST(405648192073033409), UINT64CONST(324518553658426727),
59 	UINT64CONST(519229685853482763), UINT64CONST(415383748682786211), UINT64CONST(332306998946228969), UINT64CONST(531691198313966350),
60 	UINT64CONST(425352958651173080), UINT64CONST(340282366920938464), UINT64CONST(544451787073501542), UINT64CONST(435561429658801234),
61 	UINT64CONST(348449143727040987), UINT64CONST(557518629963265579), UINT64CONST(446014903970612463), UINT64CONST(356811923176489971),
62 	UINT64CONST(570899077082383953), UINT64CONST(456719261665907162), UINT64CONST(365375409332725730)
63 };
64 #define FLOAT_POW5_BITCOUNT 61
65 static const uint64 FLOAT_POW5_SPLIT[47] = {
66 	UINT64CONST(1152921504606846976), UINT64CONST(1441151880758558720), UINT64CONST(1801439850948198400), UINT64CONST(2251799813685248000),
67 	UINT64CONST(1407374883553280000), UINT64CONST(1759218604441600000), UINT64CONST(2199023255552000000), UINT64CONST(1374389534720000000),
68 	UINT64CONST(1717986918400000000), UINT64CONST(2147483648000000000), UINT64CONST(1342177280000000000), UINT64CONST(1677721600000000000),
69 	UINT64CONST(2097152000000000000), UINT64CONST(1310720000000000000), UINT64CONST(1638400000000000000), UINT64CONST(2048000000000000000),
70 	UINT64CONST(1280000000000000000), UINT64CONST(1600000000000000000), UINT64CONST(2000000000000000000), UINT64CONST(1250000000000000000),
71 	UINT64CONST(1562500000000000000), UINT64CONST(1953125000000000000), UINT64CONST(1220703125000000000), UINT64CONST(1525878906250000000),
72 	UINT64CONST(1907348632812500000), UINT64CONST(1192092895507812500), UINT64CONST(1490116119384765625), UINT64CONST(1862645149230957031),
73 	UINT64CONST(1164153218269348144), UINT64CONST(1455191522836685180), UINT64CONST(1818989403545856475), UINT64CONST(2273736754432320594),
74 	UINT64CONST(1421085471520200371), UINT64CONST(1776356839400250464), UINT64CONST(2220446049250313080), UINT64CONST(1387778780781445675),
75 	UINT64CONST(1734723475976807094), UINT64CONST(2168404344971008868), UINT64CONST(1355252715606880542), UINT64CONST(1694065894508600678),
76 	UINT64CONST(2117582368135750847), UINT64CONST(1323488980084844279), UINT64CONST(1654361225106055349), UINT64CONST(2067951531382569187),
77 	UINT64CONST(1292469707114105741), UINT64CONST(1615587133892632177), UINT64CONST(2019483917365790221)
78 };
79 
80 static inline uint32
81 pow5Factor(uint32 value)
82 {
83 	uint32		count = 0;
84 
85 	for (;;)
86 	{
87 		Assert(value != 0);
88 		const uint32 q = value / 5;
89 		const uint32 r = value % 5;
90 
91 		if (r != 0)
92 			break;
93 
94 		value = q;
95 		++count;
96 	}
97 	return count;
98 }
99 
100 /*  Returns true if value is divisible by 5^p. */
101 static inline bool
102 multipleOfPowerOf5(const uint32 value, const uint32 p)
103 {
104 	return pow5Factor(value) >= p;
105 }
106 
107 /*  Returns true if value is divisible by 2^p. */
108 static inline bool
109 multipleOfPowerOf2(const uint32 value, const uint32 p)
110 {
111 	/* return __builtin_ctz(value) >= p; */
112 	return (value & ((1u << p) - 1)) == 0;
113 }
114 
115 /*
116  * It seems to be slightly faster to avoid uint128_t here, although the
117  * generated code for uint128_t looks slightly nicer.
118  */
119 static inline uint32
120 mulShift(const uint32 m, const uint64 factor, const int32 shift)
121 {
122 	/*
123 	 * The casts here help MSVC to avoid calls to the __allmul library
124 	 * function.
125 	 */
126 	const uint32 factorLo = (uint32) (factor);
127 	const uint32 factorHi = (uint32) (factor >> 32);
128 	const uint64 bits0 = (uint64) m * factorLo;
129 	const uint64 bits1 = (uint64) m * factorHi;
130 
131 	Assert(shift > 32);
132 
133 #ifdef RYU_32_BIT_PLATFORM
134 
135 	/*
136 	 * On 32-bit platforms we can avoid a 64-bit shift-right since we only
137 	 * need the upper 32 bits of the result and the shift value is > 32.
138 	 */
139 	const uint32 bits0Hi = (uint32) (bits0 >> 32);
140 	uint32		bits1Lo = (uint32) (bits1);
141 	uint32		bits1Hi = (uint32) (bits1 >> 32);
142 
143 	bits1Lo += bits0Hi;
144 	bits1Hi += (bits1Lo < bits0Hi);
145 
146 	const int32 s = shift - 32;
147 
148 	return (bits1Hi << (32 - s)) | (bits1Lo >> s);
149 
150 #else							/* RYU_32_BIT_PLATFORM */
151 
152 	const uint64 sum = (bits0 >> 32) + bits1;
153 	const uint64 shiftedSum = sum >> (shift - 32);
154 
155 	Assert(shiftedSum <= PG_UINT32_MAX);
156 	return (uint32) shiftedSum;
157 
158 #endif							/* RYU_32_BIT_PLATFORM */
159 }
160 
161 static inline uint32
162 mulPow5InvDivPow2(const uint32 m, const uint32 q, const int32 j)
163 {
164 	return mulShift(m, FLOAT_POW5_INV_SPLIT[q], j);
165 }
166 
167 static inline uint32
168 mulPow5divPow2(const uint32 m, const uint32 i, const int32 j)
169 {
170 	return mulShift(m, FLOAT_POW5_SPLIT[i], j);
171 }
172 
173 static inline uint32
174 decimalLength(const uint32 v)
175 {
176 	/* Function precondition: v is not a 10-digit number. */
177 	/* (9 digits are sufficient for round-tripping.) */
178 	Assert(v < 1000000000);
179 	if (v >= 100000000)
180 	{
181 		return 9;
182 	}
183 	if (v >= 10000000)
184 	{
185 		return 8;
186 	}
187 	if (v >= 1000000)
188 	{
189 		return 7;
190 	}
191 	if (v >= 100000)
192 	{
193 		return 6;
194 	}
195 	if (v >= 10000)
196 	{
197 		return 5;
198 	}
199 	if (v >= 1000)
200 	{
201 		return 4;
202 	}
203 	if (v >= 100)
204 	{
205 		return 3;
206 	}
207 	if (v >= 10)
208 	{
209 		return 2;
210 	}
211 	return 1;
212 }
213 
214 /*  A floating decimal representing m * 10^e. */
215 typedef struct floating_decimal_32
216 {
217 	uint32		mantissa;
218 	int32		exponent;
219 } floating_decimal_32;
220 
221 static inline floating_decimal_32
222 f2d(const uint32 ieeeMantissa, const uint32 ieeeExponent)
223 {
224 	int32		e2;
225 	uint32		m2;
226 
227 	if (ieeeExponent == 0)
228 	{
229 		/* We subtract 2 so that the bounds computation has 2 additional bits. */
230 		e2 = 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
231 		m2 = ieeeMantissa;
232 	}
233 	else
234 	{
235 		e2 = ieeeExponent - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
236 		m2 = (1u << FLOAT_MANTISSA_BITS) | ieeeMantissa;
237 	}
238 
239 #if STRICTLY_SHORTEST
240 	const bool	even = (m2 & 1) == 0;
241 	const bool	acceptBounds = even;
242 #else
243 	const bool	acceptBounds = false;
244 #endif
245 
246 	/* Step 2: Determine the interval of legal decimal representations. */
247 	const uint32 mv = 4 * m2;
248 	const uint32 mp = 4 * m2 + 2;
249 
250 	/* Implicit bool -> int conversion. True is 1, false is 0. */
251 	const uint32 mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
252 	const uint32 mm = 4 * m2 - 1 - mmShift;
253 
254 	/* Step 3: Convert to a decimal power base using 64-bit arithmetic. */
255 	uint32		vr,
256 				vp,
257 				vm;
258 	int32		e10;
259 	bool		vmIsTrailingZeros = false;
260 	bool		vrIsTrailingZeros = false;
261 	uint8		lastRemovedDigit = 0;
262 
263 	if (e2 >= 0)
264 	{
265 		const uint32 q = log10Pow2(e2);
266 
267 		e10 = q;
268 
269 		const int32 k = FLOAT_POW5_INV_BITCOUNT + pow5bits(q) - 1;
270 		const int32 i = -e2 + q + k;
271 
272 		vr = mulPow5InvDivPow2(mv, q, i);
273 		vp = mulPow5InvDivPow2(mp, q, i);
274 		vm = mulPow5InvDivPow2(mm, q, i);
275 
276 		if (q != 0 && (vp - 1) / 10 <= vm / 10)
277 		{
278 			/*
279 			 * We need to know one removed digit even if we are not going to
280 			 * loop below. We could use q = X - 1 above, except that would
281 			 * require 33 bits for the result, and we've found that 32-bit
282 			 * arithmetic is faster even on 64-bit machines.
283 			 */
284 			const int32 l = FLOAT_POW5_INV_BITCOUNT + pow5bits(q - 1) - 1;
285 
286 			lastRemovedDigit = (uint8) (mulPow5InvDivPow2(mv, q - 1, -e2 + q - 1 + l) % 10);
287 		}
288 		if (q <= 9)
289 		{
290 			/*
291 			 * The largest power of 5 that fits in 24 bits is 5^10, but q <= 9
292 			 * seems to be safe as well.
293 			 *
294 			 * Only one of mp, mv, and mm can be a multiple of 5, if any.
295 			 */
296 			if (mv % 5 == 0)
297 			{
298 				vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
299 			}
300 			else if (acceptBounds)
301 			{
302 				vmIsTrailingZeros = multipleOfPowerOf5(mm, q);
303 			}
304 			else
305 			{
306 				vp -= multipleOfPowerOf5(mp, q);
307 			}
308 		}
309 	}
310 	else
311 	{
312 		const uint32 q = log10Pow5(-e2);
313 
314 		e10 = q + e2;
315 
316 		const int32 i = -e2 - q;
317 		const int32 k = pow5bits(i) - FLOAT_POW5_BITCOUNT;
318 		int32		j = q - k;
319 
320 		vr = mulPow5divPow2(mv, i, j);
321 		vp = mulPow5divPow2(mp, i, j);
322 		vm = mulPow5divPow2(mm, i, j);
323 
324 		if (q != 0 && (vp - 1) / 10 <= vm / 10)
325 		{
326 			j = q - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT);
327 			lastRemovedDigit = (uint8) (mulPow5divPow2(mv, i + 1, j) % 10);
328 		}
329 		if (q <= 1)
330 		{
331 			/*
332 			 * {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q
333 			 * trailing 0 bits.
334 			 */
335 			/* mv = 4 * m2, so it always has at least two trailing 0 bits. */
336 			vrIsTrailingZeros = true;
337 			if (acceptBounds)
338 			{
339 				/*
340 				 * mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff
341 				 * mmShift == 1.
342 				 */
343 				vmIsTrailingZeros = mmShift == 1;
344 			}
345 			else
346 			{
347 				/*
348 				 * mp = mv + 2, so it always has at least one trailing 0 bit.
349 				 */
350 				--vp;
351 			}
352 		}
353 		else if (q < 31)
354 		{
355 			/* TODO(ulfjack):Use a tighter bound here. */
356 			vrIsTrailingZeros = multipleOfPowerOf2(mv, q - 1);
357 		}
358 	}
359 
360 	/*
361 	 * Step 4: Find the shortest decimal representation in the interval of
362 	 * legal representations.
363 	 */
364 	uint32		removed = 0;
365 	uint32		output;
366 
367 	if (vmIsTrailingZeros || vrIsTrailingZeros)
368 	{
369 		/* General case, which happens rarely (~4.0%). */
370 		while (vp / 10 > vm / 10)
371 		{
372 			vmIsTrailingZeros &= vm - (vm / 10) * 10 == 0;
373 			vrIsTrailingZeros &= lastRemovedDigit == 0;
374 			lastRemovedDigit = (uint8) (vr % 10);
375 			vr /= 10;
376 			vp /= 10;
377 			vm /= 10;
378 			++removed;
379 		}
380 		if (vmIsTrailingZeros)
381 		{
382 			while (vm % 10 == 0)
383 			{
384 				vrIsTrailingZeros &= lastRemovedDigit == 0;
385 				lastRemovedDigit = (uint8) (vr % 10);
386 				vr /= 10;
387 				vp /= 10;
388 				vm /= 10;
389 				++removed;
390 			}
391 		}
392 
393 		if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0)
394 		{
395 			/* Round even if the exact number is .....50..0. */
396 			lastRemovedDigit = 4;
397 		}
398 
399 		/*
400 		 * We need to take vr + 1 if vr is outside bounds or we need to round
401 		 * up.
402 		 */
403 		output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
404 	}
405 	else
406 	{
407 		/*
408 		 * Specialized for the common case (~96.0%). Percentages below are
409 		 * relative to this.
410 		 *
411 		 * Loop iterations below (approximately): 0: 13.6%, 1: 70.7%, 2:
412 		 * 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
413 		 */
414 		while (vp / 10 > vm / 10)
415 		{
416 			lastRemovedDigit = (uint8) (vr % 10);
417 			vr /= 10;
418 			vp /= 10;
419 			vm /= 10;
420 			++removed;
421 		}
422 
423 		/*
424 		 * We need to take vr + 1 if vr is outside bounds or we need to round
425 		 * up.
426 		 */
427 		output = vr + (vr == vm || lastRemovedDigit >= 5);
428 	}
429 
430 	const int32 exp = e10 + removed;
431 
432 	floating_decimal_32 fd;
433 
434 	fd.exponent = exp;
435 	fd.mantissa = output;
436 	return fd;
437 }
438 
439 static inline int
440 to_chars_f(const floating_decimal_32 v, const uint32 olength, char *const result)
441 {
442 	/* Step 5: Print the decimal representation. */
443 	int			index = 0;
444 
445 	uint32		output = v.mantissa;
446 	int32		exp = v.exponent;
447 
448 	/*----
449 	 * On entry, mantissa * 10^exp is the result to be output.
450 	 * Caller has already done the - sign if needed.
451 	 *
452 	 * We want to insert the point somewhere depending on the output length
453 	 * and exponent, which might mean adding zeros:
454 	 *
455 	 *            exp  | format
456 	 *            1+   |  ddddddddd000000
457 	 *            0    |  ddddddddd
458 	 *  -1 .. -len+1   |  dddddddd.d to d.ddddddddd
459 	 *  -len ...       |  0.ddddddddd to 0.000dddddd
460 	 */
461 	uint32		i = 0;
462 	int32		nexp = exp + olength;
463 
464 	if (nexp <= 0)
465 	{
466 		/* -nexp is number of 0s to add after '.' */
467 		Assert(nexp >= -3);
468 		/* 0.000ddddd */
469 		index = 2 - nexp;
470 		/* copy 8 bytes rather than 5 to let compiler optimize */
471 		memcpy(result, "0.000000", 8);
472 	}
473 	else if (exp < 0)
474 	{
475 		/*
476 		 * dddd.dddd; leave space at the start and move the '.' in after
477 		 */
478 		index = 1;
479 	}
480 	else
481 	{
482 		/*
483 		 * We can save some code later by pre-filling with zeros. We know that
484 		 * there can be no more than 6 output digits in this form, otherwise
485 		 * we would not choose fixed-point output. memset 8 rather than 6
486 		 * bytes to let the compiler optimize it.
487 		 */
488 		Assert(exp < 6 && exp + olength <= 6);
489 		memset(result, '0', 8);
490 	}
491 
492 	while (output >= 10000)
493 	{
494 		const uint32 c = output - 10000 * (output / 10000);
495 		const uint32 c0 = (c % 100) << 1;
496 		const uint32 c1 = (c / 100) << 1;
497 
498 		output /= 10000;
499 
500 		memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2);
501 		memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2);
502 		i += 4;
503 	}
504 	if (output >= 100)
505 	{
506 		const uint32 c = (output % 100) << 1;
507 
508 		output /= 100;
509 		memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
510 		i += 2;
511 	}
512 	if (output >= 10)
513 	{
514 		const uint32 c = output << 1;
515 
516 		memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
517 	}
518 	else
519 	{
520 		result[index] = (char) ('0' + output);
521 	}
522 
523 	if (index == 1)
524 	{
525 		/*
526 		 * nexp is 1..6 here, representing the number of digits before the
527 		 * point. A value of 7+ is not possible because we switch to
528 		 * scientific notation when the display exponent reaches 6.
529 		 */
530 		Assert(nexp < 7);
531 		/* gcc only seems to want to optimize memmove for small 2^n */
532 		if (nexp & 4)
533 		{
534 			memmove(result + index - 1, result + index, 4);
535 			index += 4;
536 		}
537 		if (nexp & 2)
538 		{
539 			memmove(result + index - 1, result + index, 2);
540 			index += 2;
541 		}
542 		if (nexp & 1)
543 		{
544 			result[index - 1] = result[index];
545 		}
546 		result[nexp] = '.';
547 		index = olength + 1;
548 	}
549 	else if (exp >= 0)
550 	{
551 		/* we supplied the trailing zeros earlier, now just set the length. */
552 		index = olength + exp;
553 	}
554 	else
555 	{
556 		index = olength + (2 - nexp);
557 	}
558 
559 	return index;
560 }
561 
562 static inline int
563 to_chars(const floating_decimal_32 v, const bool sign, char *const result)
564 {
565 	/* Step 5: Print the decimal representation. */
566 	int			index = 0;
567 
568 	uint32		output = v.mantissa;
569 	uint32		olength = decimalLength(output);
570 	int32		exp = v.exponent + olength - 1;
571 
572 	if (sign)
573 		result[index++] = '-';
574 
575 	/*
576 	 * The thresholds for fixed-point output are chosen to match printf
577 	 * defaults. Beware that both the code of to_chars_f and the value of
578 	 * FLOAT_SHORTEST_DECIMAL_LEN are sensitive to these thresholds.
579 	 */
580 	if (exp >= -4 && exp < 6)
581 		return to_chars_f(v, olength, result + index) + sign;
582 
583 	/*
584 	 * If v.exponent is exactly 0, we might have reached here via the small
585 	 * integer fast path, in which case v.mantissa might contain trailing
586 	 * (decimal) zeros. For scientific notation we need to move these zeros
587 	 * into the exponent. (For fixed point this doesn't matter, which is why
588 	 * we do this here rather than above.)
589 	 *
590 	 * Since we already calculated the display exponent (exp) above based on
591 	 * the old decimal length, that value does not change here. Instead, we
592 	 * just reduce the display length for each digit removed.
593 	 *
594 	 * If we didn't get here via the fast path, the raw exponent will not
595 	 * usually be 0, and there will be no trailing zeros, so we pay no more
596 	 * than one div10/multiply extra cost. We claw back half of that by
597 	 * checking for divisibility by 2 before dividing by 10.
598 	 */
599 	if (v.exponent == 0)
600 	{
601 		while ((output & 1) == 0)
602 		{
603 			const uint32 q = output / 10;
604 			const uint32 r = output - 10 * q;
605 
606 			if (r != 0)
607 				break;
608 			output = q;
609 			--olength;
610 		}
611 	}
612 
613 	/*----
614 	 * Print the decimal digits.
615 	 * The following code is equivalent to:
616 	 *
617 	 * for (uint32 i = 0; i < olength - 1; ++i) {
618 	 *   const uint32 c = output % 10; output /= 10;
619 	 *   result[index + olength - i] = (char) ('0' + c);
620 	 * }
621 	 * result[index] = '0' + output % 10;
622 	 */
623 	uint32		i = 0;
624 
625 	while (output >= 10000)
626 	{
627 		const uint32 c = output - 10000 * (output / 10000);
628 		const uint32 c0 = (c % 100) << 1;
629 		const uint32 c1 = (c / 100) << 1;
630 
631 		output /= 10000;
632 
633 		memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
634 		memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
635 		i += 4;
636 	}
637 	if (output >= 100)
638 	{
639 		const uint32 c = (output % 100) << 1;
640 
641 		output /= 100;
642 		memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
643 		i += 2;
644 	}
645 	if (output >= 10)
646 	{
647 		const uint32 c = output << 1;
648 
649 		/*
650 		 * We can't use memcpy here: the decimal dot goes between these two
651 		 * digits.
652 		 */
653 		result[index + olength - i] = DIGIT_TABLE[c + 1];
654 		result[index] = DIGIT_TABLE[c];
655 	}
656 	else
657 	{
658 		result[index] = (char) ('0' + output);
659 	}
660 
661 	/* Print decimal point if needed. */
662 	if (olength > 1)
663 	{
664 		result[index + 1] = '.';
665 		index += olength + 1;
666 	}
667 	else
668 	{
669 		++index;
670 	}
671 
672 	/* Print the exponent. */
673 	result[index++] = 'e';
674 	if (exp < 0)
675 	{
676 		result[index++] = '-';
677 		exp = -exp;
678 	}
679 	else
680 		result[index++] = '+';
681 
682 	memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
683 	index += 2;
684 
685 	return index;
686 }
687 
688 static inline bool
689 f2d_small_int(const uint32 ieeeMantissa,
690 			  const uint32 ieeeExponent,
691 			  floating_decimal_32 *v)
692 {
693 	const int32 e2 = (int32) ieeeExponent - FLOAT_BIAS - FLOAT_MANTISSA_BITS;
694 
695 	/*
696 	 * Avoid using multiple "return false;" here since it tends to provoke the
697 	 * compiler into inlining multiple copies of f2d, which is undesirable.
698 	 */
699 
700 	if (e2 >= -FLOAT_MANTISSA_BITS && e2 <= 0)
701 	{
702 		/*----
703 		 * Since 2^23 <= m2 < 2^24 and 0 <= -e2 <= 23:
704 		 *   1 <= f = m2 / 2^-e2 < 2^24.
705 		 *
706 		 * Test if the lower -e2 bits of the significand are 0, i.e. whether
707 		 * the fraction is 0. We can use ieeeMantissa here, since the implied
708 		 * 1 bit can never be tested by this; the implied 1 can only be part
709 		 * of a fraction if e2 < -FLOAT_MANTISSA_BITS which we already
710 		 * checked. (e.g. 0.5 gives ieeeMantissa == 0 and e2 == -24)
711 		 */
712 		const uint32 mask = (1U << -e2) - 1;
713 		const uint32 fraction = ieeeMantissa & mask;
714 
715 		if (fraction == 0)
716 		{
717 			/*----
718 			 * f is an integer in the range [1, 2^24).
719 			 * Note: mantissa might contain trailing (decimal) 0's.
720 			 * Note: since 2^24 < 10^9, there is no need to adjust
721 			 * decimalLength().
722 			 */
723 			const uint32 m2 = (1U << FLOAT_MANTISSA_BITS) | ieeeMantissa;
724 
725 			v->mantissa = m2 >> -e2;
726 			v->exponent = 0;
727 			return true;
728 		}
729 	}
730 
731 	return false;
732 }
733 
734 /*
735  * Store the shortest decimal representation of the given float as an
736  * UNTERMINATED string in the caller's supplied buffer (which must be at least
737  * FLOAT_SHORTEST_DECIMAL_LEN-1 bytes long).
738  *
739  * Returns the number of bytes stored.
740  */
741 int
742 float_to_shortest_decimal_bufn(float f, char *result)
743 {
744 	/*
745 	 * Step 1: Decode the floating-point number, and unify normalized and
746 	 * subnormal cases.
747 	 */
748 	const uint32 bits = float_to_bits(f);
749 
750 	/* Decode bits into sign, mantissa, and exponent. */
751 	const bool	ieeeSign = ((bits >> (FLOAT_MANTISSA_BITS + FLOAT_EXPONENT_BITS)) & 1) != 0;
752 	const uint32 ieeeMantissa = bits & ((1u << FLOAT_MANTISSA_BITS) - 1);
753 	const uint32 ieeeExponent = (bits >> FLOAT_MANTISSA_BITS) & ((1u << FLOAT_EXPONENT_BITS) - 1);
754 
755 	/* Case distinction; exit early for the easy cases. */
756 	if (ieeeExponent == ((1u << FLOAT_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0))
757 	{
758 		return copy_special_str(result, ieeeSign, (ieeeExponent != 0), (ieeeMantissa != 0));
759 	}
760 
761 	floating_decimal_32 v;
762 	const bool	isSmallInt = f2d_small_int(ieeeMantissa, ieeeExponent, &v);
763 
764 	if (!isSmallInt)
765 	{
766 		v = f2d(ieeeMantissa, ieeeExponent);
767 	}
768 
769 	return to_chars(v, ieeeSign, result);
770 }
771 
772 /*
773  * Store the shortest decimal representation of the given float as a
774  * null-terminated string in the caller's supplied buffer (which must be at
775  * least FLOAT_SHORTEST_DECIMAL_LEN bytes long).
776  *
777  * Returns the string length.
778  */
779 int
780 float_to_shortest_decimal_buf(float f, char *result)
781 {
782 	const int	index = float_to_shortest_decimal_bufn(f, result);
783 
784 	/* Terminate the string. */
785 	Assert(index < FLOAT_SHORTEST_DECIMAL_LEN);
786 	result[index] = '\0';
787 	return index;
788 }
789 
790 /*
791  * Return the shortest decimal representation as a null-terminated palloc'd
792  * string (outside the backend, uses malloc() instead).
793  *
794  * Caller is responsible for freeing the result.
795  */
796 char *
797 float_to_shortest_decimal(float f)
798 {
799 	char	   *const result = (char *) palloc(FLOAT_SHORTEST_DECIMAL_LEN);
800 
801 	float_to_shortest_decimal_buf(f, result);
802 	return result;
803 }
804