1 /*-------------------------------------------------------------------------
2  *
3  * proc.c
4  *	  routines to manage per-process shared memory data structure
5  *
6  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *	  src/backend/storage/lmgr/proc.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 /*
16  * Interface (a):
17  *		ProcSleep(), ProcWakeup(),
18  *		ProcQueueAlloc() -- create a shm queue for sleeping processes
19  *		ProcQueueInit() -- create a queue without allocing memory
20  *
21  * Waiting for a lock causes the backend to be put to sleep.  Whoever releases
22  * the lock wakes the process up again (and gives it an error code so it knows
23  * whether it was awoken on an error condition).
24  *
25  * Interface (b):
26  *
27  * ProcReleaseLocks -- frees the locks associated with current transaction
28  *
29  * ProcKill -- destroys the shared memory state (and locks)
30  * associated with the process.
31  */
32 #include "postgres.h"
33 
34 #include <signal.h>
35 #include <unistd.h>
36 #include <sys/time.h>
37 
38 #include "access/transam.h"
39 #include "access/twophase.h"
40 #include "access/xact.h"
41 #include "miscadmin.h"
42 #include "pgstat.h"
43 #include "postmaster/autovacuum.h"
44 #include "replication/slot.h"
45 #include "replication/syncrep.h"
46 #include "replication/walsender.h"
47 #include "storage/condition_variable.h"
48 #include "storage/ipc.h"
49 #include "storage/lmgr.h"
50 #include "storage/pmsignal.h"
51 #include "storage/proc.h"
52 #include "storage/procarray.h"
53 #include "storage/procsignal.h"
54 #include "storage/spin.h"
55 #include "storage/standby.h"
56 #include "utils/timeout.h"
57 #include "utils/timestamp.h"
58 
59 /* GUC variables */
60 int			DeadlockTimeout = 1000;
61 int			StatementTimeout = 0;
62 int			LockTimeout = 0;
63 int			IdleInTransactionSessionTimeout = 0;
64 bool		log_lock_waits = false;
65 
66 /* Pointer to this process's PGPROC and PGXACT structs, if any */
67 PGPROC	   *MyProc = NULL;
68 PGXACT	   *MyPgXact = NULL;
69 
70 /*
71  * This spinlock protects the freelist of recycled PGPROC structures.
72  * We cannot use an LWLock because the LWLock manager depends on already
73  * having a PGPROC and a wait semaphore!  But these structures are touched
74  * relatively infrequently (only at backend startup or shutdown) and not for
75  * very long, so a spinlock is okay.
76  */
77 NON_EXEC_STATIC slock_t *ProcStructLock = NULL;
78 
79 /* Pointers to shared-memory structures */
80 PROC_HDR   *ProcGlobal = NULL;
81 NON_EXEC_STATIC PGPROC *AuxiliaryProcs = NULL;
82 PGPROC	   *PreparedXactProcs = NULL;
83 
84 /* If we are waiting for a lock, this points to the associated LOCALLOCK */
85 static LOCALLOCK *lockAwaited = NULL;
86 
87 static DeadLockState deadlock_state = DS_NOT_YET_CHECKED;
88 
89 /* Is a deadlock check pending? */
90 static volatile sig_atomic_t got_deadlock_timeout;
91 
92 static void RemoveProcFromArray(int code, Datum arg);
93 static void ProcKill(int code, Datum arg);
94 static void AuxiliaryProcKill(int code, Datum arg);
95 static void CheckDeadLock(void);
96 
97 
98 /*
99  * Report shared-memory space needed by InitProcGlobal.
100  */
101 Size
ProcGlobalShmemSize(void)102 ProcGlobalShmemSize(void)
103 {
104 	Size		size = 0;
105 
106 	/* ProcGlobal */
107 	size = add_size(size, sizeof(PROC_HDR));
108 	/* MyProcs, including autovacuum workers and launcher */
109 	size = add_size(size, mul_size(MaxBackends, sizeof(PGPROC)));
110 	/* AuxiliaryProcs */
111 	size = add_size(size, mul_size(NUM_AUXILIARY_PROCS, sizeof(PGPROC)));
112 	/* Prepared xacts */
113 	size = add_size(size, mul_size(max_prepared_xacts, sizeof(PGPROC)));
114 	/* ProcStructLock */
115 	size = add_size(size, sizeof(slock_t));
116 
117 	size = add_size(size, mul_size(MaxBackends, sizeof(PGXACT)));
118 	size = add_size(size, mul_size(NUM_AUXILIARY_PROCS, sizeof(PGXACT)));
119 	size = add_size(size, mul_size(max_prepared_xacts, sizeof(PGXACT)));
120 
121 	return size;
122 }
123 
124 /*
125  * Report number of semaphores needed by InitProcGlobal.
126  */
127 int
ProcGlobalSemas(void)128 ProcGlobalSemas(void)
129 {
130 	/*
131 	 * We need a sema per backend (including autovacuum), plus one for each
132 	 * auxiliary process.
133 	 */
134 	return MaxBackends + NUM_AUXILIARY_PROCS;
135 }
136 
137 /*
138  * InitProcGlobal -
139  *	  Initialize the global process table during postmaster or standalone
140  *	  backend startup.
141  *
142  *	  We also create all the per-process semaphores we will need to support
143  *	  the requested number of backends.  We used to allocate semaphores
144  *	  only when backends were actually started up, but that is bad because
145  *	  it lets Postgres fail under load --- a lot of Unix systems are
146  *	  (mis)configured with small limits on the number of semaphores, and
147  *	  running out when trying to start another backend is a common failure.
148  *	  So, now we grab enough semaphores to support the desired max number
149  *	  of backends immediately at initialization --- if the sysadmin has set
150  *	  MaxConnections, max_worker_processes, max_wal_senders, or
151  *	  autovacuum_max_workers higher than his kernel will support, he'll
152  *	  find out sooner rather than later.
153  *
154  *	  Another reason for creating semaphores here is that the semaphore
155  *	  implementation typically requires us to create semaphores in the
156  *	  postmaster, not in backends.
157  *
158  * Note: this is NOT called by individual backends under a postmaster,
159  * not even in the EXEC_BACKEND case.  The ProcGlobal and AuxiliaryProcs
160  * pointers must be propagated specially for EXEC_BACKEND operation.
161  */
162 void
InitProcGlobal(void)163 InitProcGlobal(void)
164 {
165 	PGPROC	   *procs;
166 	PGXACT	   *pgxacts;
167 	int			i,
168 				j;
169 	bool		found;
170 	uint32		TotalProcs = MaxBackends + NUM_AUXILIARY_PROCS + max_prepared_xacts;
171 
172 	/* Create the ProcGlobal shared structure */
173 	ProcGlobal = (PROC_HDR *)
174 		ShmemInitStruct("Proc Header", sizeof(PROC_HDR), &found);
175 	Assert(!found);
176 
177 	/*
178 	 * Initialize the data structures.
179 	 */
180 	ProcGlobal->spins_per_delay = DEFAULT_SPINS_PER_DELAY;
181 	ProcGlobal->freeProcs = NULL;
182 	ProcGlobal->autovacFreeProcs = NULL;
183 	ProcGlobal->bgworkerFreeProcs = NULL;
184 	ProcGlobal->walsenderFreeProcs = NULL;
185 	ProcGlobal->startupProc = NULL;
186 	ProcGlobal->startupProcPid = 0;
187 	ProcGlobal->startupBufferPinWaitBufId = -1;
188 	ProcGlobal->walwriterLatch = NULL;
189 	ProcGlobal->checkpointerLatch = NULL;
190 	pg_atomic_init_u32(&ProcGlobal->procArrayGroupFirst, INVALID_PGPROCNO);
191 	pg_atomic_init_u32(&ProcGlobal->clogGroupFirst, INVALID_PGPROCNO);
192 
193 	/*
194 	 * Create and initialize all the PGPROC structures we'll need.  There are
195 	 * five separate consumers: (1) normal backends, (2) autovacuum workers
196 	 * and the autovacuum launcher, (3) background workers, (4) auxiliary
197 	 * processes, and (5) prepared transactions.  Each PGPROC structure is
198 	 * dedicated to exactly one of these purposes, and they do not move
199 	 * between groups.
200 	 */
201 	procs = (PGPROC *) ShmemAlloc(TotalProcs * sizeof(PGPROC));
202 	MemSet(procs, 0, TotalProcs * sizeof(PGPROC));
203 	ProcGlobal->allProcs = procs;
204 	/* XXX allProcCount isn't really all of them; it excludes prepared xacts */
205 	ProcGlobal->allProcCount = MaxBackends + NUM_AUXILIARY_PROCS;
206 
207 	/*
208 	 * Also allocate a separate array of PGXACT structures.  This is separate
209 	 * from the main PGPROC array so that the most heavily accessed data is
210 	 * stored contiguously in memory in as few cache lines as possible. This
211 	 * provides significant performance benefits, especially on a
212 	 * multiprocessor system.  There is one PGXACT structure for every PGPROC
213 	 * structure.
214 	 */
215 	pgxacts = (PGXACT *) ShmemAlloc(TotalProcs * sizeof(PGXACT));
216 	MemSet(pgxacts, 0, TotalProcs * sizeof(PGXACT));
217 	ProcGlobal->allPgXact = pgxacts;
218 
219 	for (i = 0; i < TotalProcs; i++)
220 	{
221 		/* Common initialization for all PGPROCs, regardless of type. */
222 
223 		/*
224 		 * Set up per-PGPROC semaphore, latch, and fpInfoLock.  Prepared xact
225 		 * dummy PGPROCs don't need these though - they're never associated
226 		 * with a real process
227 		 */
228 		if (i < MaxBackends + NUM_AUXILIARY_PROCS)
229 		{
230 			procs[i].sem = PGSemaphoreCreate();
231 			InitSharedLatch(&(procs[i].procLatch));
232 			LWLockInitialize(&(procs[i].fpInfoLock), LWTRANCHE_LOCK_FASTPATH);
233 		}
234 		procs[i].pgprocno = i;
235 
236 		/*
237 		 * Newly created PGPROCs for normal backends, autovacuum and bgworkers
238 		 * must be queued up on the appropriate free list.  Because there can
239 		 * only ever be a small, fixed number of auxiliary processes, no free
240 		 * list is used in that case; InitAuxiliaryProcess() instead uses a
241 		 * linear search.   PGPROCs for prepared transactions are added to a
242 		 * free list by TwoPhaseShmemInit().
243 		 */
244 		if (i < MaxConnections)
245 		{
246 			/* PGPROC for normal backend, add to freeProcs list */
247 			procs[i].links.next = (SHM_QUEUE *) ProcGlobal->freeProcs;
248 			ProcGlobal->freeProcs = &procs[i];
249 			procs[i].procgloballist = &ProcGlobal->freeProcs;
250 		}
251 		else if (i < MaxConnections + autovacuum_max_workers + 1)
252 		{
253 			/* PGPROC for AV launcher/worker, add to autovacFreeProcs list */
254 			procs[i].links.next = (SHM_QUEUE *) ProcGlobal->autovacFreeProcs;
255 			ProcGlobal->autovacFreeProcs = &procs[i];
256 			procs[i].procgloballist = &ProcGlobal->autovacFreeProcs;
257 		}
258 		else if (i < MaxConnections + autovacuum_max_workers + 1 + max_worker_processes)
259 		{
260 			/* PGPROC for bgworker, add to bgworkerFreeProcs list */
261 			procs[i].links.next = (SHM_QUEUE *) ProcGlobal->bgworkerFreeProcs;
262 			ProcGlobal->bgworkerFreeProcs = &procs[i];
263 			procs[i].procgloballist = &ProcGlobal->bgworkerFreeProcs;
264 		}
265 		else if (i < MaxBackends)
266 		{
267 			/* PGPROC for walsender, add to walsenderFreeProcs list */
268 			procs[i].links.next = (SHM_QUEUE *) ProcGlobal->walsenderFreeProcs;
269 			ProcGlobal->walsenderFreeProcs = &procs[i];
270 			procs[i].procgloballist = &ProcGlobal->walsenderFreeProcs;
271 		}
272 
273 		/* Initialize myProcLocks[] shared memory queues. */
274 		for (j = 0; j < NUM_LOCK_PARTITIONS; j++)
275 			SHMQueueInit(&(procs[i].myProcLocks[j]));
276 
277 		/* Initialize lockGroupMembers list. */
278 		dlist_init(&procs[i].lockGroupMembers);
279 
280 		/*
281 		 * Initialize the atomic variables, otherwise, it won't be safe to
282 		 * access them for backends that aren't currently in use.
283 		 */
284 		pg_atomic_init_u32(&(procs[i].procArrayGroupNext), INVALID_PGPROCNO);
285 		pg_atomic_init_u32(&(procs[i].clogGroupNext), INVALID_PGPROCNO);
286 	}
287 
288 	/*
289 	 * Save pointers to the blocks of PGPROC structures reserved for auxiliary
290 	 * processes and prepared transactions.
291 	 */
292 	AuxiliaryProcs = &procs[MaxBackends];
293 	PreparedXactProcs = &procs[MaxBackends + NUM_AUXILIARY_PROCS];
294 
295 	/* Create ProcStructLock spinlock, too */
296 	ProcStructLock = (slock_t *) ShmemAlloc(sizeof(slock_t));
297 	SpinLockInit(ProcStructLock);
298 }
299 
300 /*
301  * InitProcess -- initialize a per-process data structure for this backend
302  */
303 void
InitProcess(void)304 InitProcess(void)
305 {
306 	PGPROC	   *volatile *procgloballist;
307 
308 	/*
309 	 * ProcGlobal should be set up already (if we are a backend, we inherit
310 	 * this by fork() or EXEC_BACKEND mechanism from the postmaster).
311 	 */
312 	if (ProcGlobal == NULL)
313 		elog(PANIC, "proc header uninitialized");
314 
315 	if (MyProc != NULL)
316 		elog(ERROR, "you already exist");
317 
318 	/* Decide which list should supply our PGPROC. */
319 	if (IsAnyAutoVacuumProcess())
320 		procgloballist = &ProcGlobal->autovacFreeProcs;
321 	else if (IsBackgroundWorker)
322 		procgloballist = &ProcGlobal->bgworkerFreeProcs;
323 	else if (am_walsender)
324 		procgloballist = &ProcGlobal->walsenderFreeProcs;
325 	else
326 		procgloballist = &ProcGlobal->freeProcs;
327 
328 	/*
329 	 * Try to get a proc struct from the appropriate free list.  If this
330 	 * fails, we must be out of PGPROC structures (not to mention semaphores).
331 	 *
332 	 * While we are holding the ProcStructLock, also copy the current shared
333 	 * estimate of spins_per_delay to local storage.
334 	 */
335 	SpinLockAcquire(ProcStructLock);
336 
337 	set_spins_per_delay(ProcGlobal->spins_per_delay);
338 
339 	MyProc = *procgloballist;
340 
341 	if (MyProc != NULL)
342 	{
343 		*procgloballist = (PGPROC *) MyProc->links.next;
344 		SpinLockRelease(ProcStructLock);
345 	}
346 	else
347 	{
348 		/*
349 		 * If we reach here, all the PGPROCs are in use.  This is one of the
350 		 * possible places to detect "too many backends", so give the standard
351 		 * error message.  XXX do we need to give a different failure message
352 		 * in the autovacuum case?
353 		 */
354 		SpinLockRelease(ProcStructLock);
355 		if (am_walsender)
356 			ereport(FATAL,
357 					(errcode(ERRCODE_TOO_MANY_CONNECTIONS),
358 					 errmsg("number of requested standby connections exceeds max_wal_senders (currently %d)",
359 							max_wal_senders)));
360 		ereport(FATAL,
361 				(errcode(ERRCODE_TOO_MANY_CONNECTIONS),
362 				 errmsg("sorry, too many clients already")));
363 	}
364 	MyPgXact = &ProcGlobal->allPgXact[MyProc->pgprocno];
365 
366 	/*
367 	 * Cross-check that the PGPROC is of the type we expect; if this were not
368 	 * the case, it would get returned to the wrong list.
369 	 */
370 	Assert(MyProc->procgloballist == procgloballist);
371 
372 	/*
373 	 * Now that we have a PGPROC, mark ourselves as an active postmaster
374 	 * child; this is so that the postmaster can detect it if we exit without
375 	 * cleaning up.  (XXX autovac launcher currently doesn't participate in
376 	 * this; it probably should.)
377 	 */
378 	if (IsUnderPostmaster && !IsAutoVacuumLauncherProcess())
379 		MarkPostmasterChildActive();
380 
381 	/*
382 	 * Initialize all fields of MyProc, except for those previously
383 	 * initialized by InitProcGlobal.
384 	 */
385 	SHMQueueElemInit(&(MyProc->links));
386 	MyProc->waitStatus = STATUS_OK;
387 	MyProc->lxid = InvalidLocalTransactionId;
388 	MyProc->fpVXIDLock = false;
389 	MyProc->fpLocalTransactionId = InvalidLocalTransactionId;
390 	MyPgXact->xid = InvalidTransactionId;
391 	MyPgXact->xmin = InvalidTransactionId;
392 	MyProc->pid = MyProcPid;
393 	/* backendId, databaseId and roleId will be filled in later */
394 	MyProc->backendId = InvalidBackendId;
395 	MyProc->databaseId = InvalidOid;
396 	MyProc->roleId = InvalidOid;
397 	MyProc->tempNamespaceId = InvalidOid;
398 	MyProc->isBackgroundWorker = IsBackgroundWorker;
399 	MyProc->delayChkpt = false;
400 	MyPgXact->vacuumFlags = 0;
401 	/* NB -- autovac launcher intentionally does not set IS_AUTOVACUUM */
402 	if (IsAutoVacuumWorkerProcess())
403 		MyPgXact->vacuumFlags |= PROC_IS_AUTOVACUUM;
404 	MyProc->lwWaiting = false;
405 	MyProc->lwWaitMode = 0;
406 	MyProc->waitLock = NULL;
407 	MyProc->waitProcLock = NULL;
408 #ifdef USE_ASSERT_CHECKING
409 	{
410 		int			i;
411 
412 		/* Last process should have released all locks. */
413 		for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
414 			Assert(SHMQueueEmpty(&(MyProc->myProcLocks[i])));
415 	}
416 #endif
417 	MyProc->recoveryConflictPending = false;
418 
419 	/* Initialize fields for sync rep */
420 	MyProc->waitLSN = 0;
421 	MyProc->syncRepState = SYNC_REP_NOT_WAITING;
422 	SHMQueueElemInit(&(MyProc->syncRepLinks));
423 
424 	/* Initialize fields for group XID clearing. */
425 	MyProc->procArrayGroupMember = false;
426 	MyProc->procArrayGroupMemberXid = InvalidTransactionId;
427 	Assert(pg_atomic_read_u32(&MyProc->procArrayGroupNext) == INVALID_PGPROCNO);
428 
429 	/* Check that group locking fields are in a proper initial state. */
430 	Assert(MyProc->lockGroupLeader == NULL);
431 	Assert(dlist_is_empty(&MyProc->lockGroupMembers));
432 
433 	/* Initialize wait event information. */
434 	MyProc->wait_event_info = 0;
435 
436 	/* Initialize fields for group transaction status update. */
437 	MyProc->clogGroupMember = false;
438 	MyProc->clogGroupMemberXid = InvalidTransactionId;
439 	MyProc->clogGroupMemberXidStatus = TRANSACTION_STATUS_IN_PROGRESS;
440 	MyProc->clogGroupMemberPage = -1;
441 	MyProc->clogGroupMemberLsn = InvalidXLogRecPtr;
442 	Assert(pg_atomic_read_u32(&MyProc->clogGroupNext) == INVALID_PGPROCNO);
443 
444 	/*
445 	 * Acquire ownership of the PGPROC's latch, so that we can use WaitLatch
446 	 * on it.  That allows us to repoint the process latch, which so far
447 	 * points to process local one, to the shared one.
448 	 */
449 	OwnLatch(&MyProc->procLatch);
450 	SwitchToSharedLatch();
451 
452 	/*
453 	 * We might be reusing a semaphore that belonged to a failed process. So
454 	 * be careful and reinitialize its value here.  (This is not strictly
455 	 * necessary anymore, but seems like a good idea for cleanliness.)
456 	 */
457 	PGSemaphoreReset(MyProc->sem);
458 
459 	/*
460 	 * Arrange to clean up at backend exit.
461 	 */
462 	on_shmem_exit(ProcKill, 0);
463 
464 	/*
465 	 * Now that we have a PGPROC, we could try to acquire locks, so initialize
466 	 * local state needed for LWLocks, and the deadlock checker.
467 	 */
468 	InitLWLockAccess();
469 	InitDeadLockChecking();
470 }
471 
472 /*
473  * InitProcessPhase2 -- make MyProc visible in the shared ProcArray.
474  *
475  * This is separate from InitProcess because we can't acquire LWLocks until
476  * we've created a PGPROC, but in the EXEC_BACKEND case ProcArrayAdd won't
477  * work until after we've done CreateSharedMemoryAndSemaphores.
478  */
479 void
InitProcessPhase2(void)480 InitProcessPhase2(void)
481 {
482 	Assert(MyProc != NULL);
483 
484 	/*
485 	 * Add our PGPROC to the PGPROC array in shared memory.
486 	 */
487 	ProcArrayAdd(MyProc);
488 
489 	/*
490 	 * Arrange to clean that up at backend exit.
491 	 */
492 	on_shmem_exit(RemoveProcFromArray, 0);
493 }
494 
495 /*
496  * InitAuxiliaryProcess -- create a per-auxiliary-process data structure
497  *
498  * This is called by bgwriter and similar processes so that they will have a
499  * MyProc value that's real enough to let them wait for LWLocks.  The PGPROC
500  * and sema that are assigned are one of the extra ones created during
501  * InitProcGlobal.
502  *
503  * Auxiliary processes are presently not expected to wait for real (lockmgr)
504  * locks, so we need not set up the deadlock checker.  They are never added
505  * to the ProcArray or the sinval messaging mechanism, either.  They also
506  * don't get a VXID assigned, since this is only useful when we actually
507  * hold lockmgr locks.
508  *
509  * Startup process however uses locks but never waits for them in the
510  * normal backend sense. Startup process also takes part in sinval messaging
511  * as a sendOnly process, so never reads messages from sinval queue. So
512  * Startup process does have a VXID and does show up in pg_locks.
513  */
514 void
InitAuxiliaryProcess(void)515 InitAuxiliaryProcess(void)
516 {
517 	PGPROC	   *auxproc;
518 	int			proctype;
519 
520 	/*
521 	 * ProcGlobal should be set up already (if we are a backend, we inherit
522 	 * this by fork() or EXEC_BACKEND mechanism from the postmaster).
523 	 */
524 	if (ProcGlobal == NULL || AuxiliaryProcs == NULL)
525 		elog(PANIC, "proc header uninitialized");
526 
527 	if (MyProc != NULL)
528 		elog(ERROR, "you already exist");
529 
530 	/*
531 	 * We use the ProcStructLock to protect assignment and releasing of
532 	 * AuxiliaryProcs entries.
533 	 *
534 	 * While we are holding the ProcStructLock, also copy the current shared
535 	 * estimate of spins_per_delay to local storage.
536 	 */
537 	SpinLockAcquire(ProcStructLock);
538 
539 	set_spins_per_delay(ProcGlobal->spins_per_delay);
540 
541 	/*
542 	 * Find a free auxproc ... *big* trouble if there isn't one ...
543 	 */
544 	for (proctype = 0; proctype < NUM_AUXILIARY_PROCS; proctype++)
545 	{
546 		auxproc = &AuxiliaryProcs[proctype];
547 		if (auxproc->pid == 0)
548 			break;
549 	}
550 	if (proctype >= NUM_AUXILIARY_PROCS)
551 	{
552 		SpinLockRelease(ProcStructLock);
553 		elog(FATAL, "all AuxiliaryProcs are in use");
554 	}
555 
556 	/* Mark auxiliary proc as in use by me */
557 	/* use volatile pointer to prevent code rearrangement */
558 	((volatile PGPROC *) auxproc)->pid = MyProcPid;
559 
560 	MyProc = auxproc;
561 	MyPgXact = &ProcGlobal->allPgXact[auxproc->pgprocno];
562 
563 	SpinLockRelease(ProcStructLock);
564 
565 	/*
566 	 * Initialize all fields of MyProc, except for those previously
567 	 * initialized by InitProcGlobal.
568 	 */
569 	SHMQueueElemInit(&(MyProc->links));
570 	MyProc->waitStatus = STATUS_OK;
571 	MyProc->lxid = InvalidLocalTransactionId;
572 	MyProc->fpVXIDLock = false;
573 	MyProc->fpLocalTransactionId = InvalidLocalTransactionId;
574 	MyPgXact->xid = InvalidTransactionId;
575 	MyPgXact->xmin = InvalidTransactionId;
576 	MyProc->backendId = InvalidBackendId;
577 	MyProc->databaseId = InvalidOid;
578 	MyProc->roleId = InvalidOid;
579 	MyProc->tempNamespaceId = InvalidOid;
580 	MyProc->isBackgroundWorker = IsBackgroundWorker;
581 	MyProc->delayChkpt = false;
582 	MyPgXact->vacuumFlags = 0;
583 	MyProc->lwWaiting = false;
584 	MyProc->lwWaitMode = 0;
585 	MyProc->waitLock = NULL;
586 	MyProc->waitProcLock = NULL;
587 #ifdef USE_ASSERT_CHECKING
588 	{
589 		int			i;
590 
591 		/* Last process should have released all locks. */
592 		for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
593 			Assert(SHMQueueEmpty(&(MyProc->myProcLocks[i])));
594 	}
595 #endif
596 
597 	/*
598 	 * Acquire ownership of the PGPROC's latch, so that we can use WaitLatch
599 	 * on it.  That allows us to repoint the process latch, which so far
600 	 * points to process local one, to the shared one.
601 	 */
602 	OwnLatch(&MyProc->procLatch);
603 	SwitchToSharedLatch();
604 
605 	/* Check that group locking fields are in a proper initial state. */
606 	Assert(MyProc->lockGroupLeader == NULL);
607 	Assert(dlist_is_empty(&MyProc->lockGroupMembers));
608 
609 	/*
610 	 * We might be reusing a semaphore that belonged to a failed process. So
611 	 * be careful and reinitialize its value here.  (This is not strictly
612 	 * necessary anymore, but seems like a good idea for cleanliness.)
613 	 */
614 	PGSemaphoreReset(MyProc->sem);
615 
616 	/*
617 	 * Arrange to clean up at process exit.
618 	 */
619 	on_shmem_exit(AuxiliaryProcKill, Int32GetDatum(proctype));
620 }
621 
622 /*
623  * Record the PID and PGPROC structures for the Startup process, for use in
624  * ProcSendSignal().  See comments there for further explanation.
625  */
626 void
PublishStartupProcessInformation(void)627 PublishStartupProcessInformation(void)
628 {
629 	SpinLockAcquire(ProcStructLock);
630 
631 	ProcGlobal->startupProc = MyProc;
632 	ProcGlobal->startupProcPid = MyProcPid;
633 
634 	SpinLockRelease(ProcStructLock);
635 }
636 
637 /*
638  * Used from bufmgr to share the value of the buffer that Startup waits on,
639  * or to reset the value to "not waiting" (-1). This allows processing
640  * of recovery conflicts for buffer pins. Set is made before backends look
641  * at this value, so locking not required, especially since the set is
642  * an atomic integer set operation.
643  */
644 void
SetStartupBufferPinWaitBufId(int bufid)645 SetStartupBufferPinWaitBufId(int bufid)
646 {
647 	/* use volatile pointer to prevent code rearrangement */
648 	volatile PROC_HDR *procglobal = ProcGlobal;
649 
650 	procglobal->startupBufferPinWaitBufId = bufid;
651 }
652 
653 /*
654  * Used by backends when they receive a request to check for buffer pin waits.
655  */
656 int
GetStartupBufferPinWaitBufId(void)657 GetStartupBufferPinWaitBufId(void)
658 {
659 	/* use volatile pointer to prevent code rearrangement */
660 	volatile PROC_HDR *procglobal = ProcGlobal;
661 
662 	return procglobal->startupBufferPinWaitBufId;
663 }
664 
665 /*
666  * Check whether there are at least N free PGPROC objects.
667  *
668  * Note: this is designed on the assumption that N will generally be small.
669  */
670 bool
HaveNFreeProcs(int n)671 HaveNFreeProcs(int n)
672 {
673 	PGPROC	   *proc;
674 
675 	SpinLockAcquire(ProcStructLock);
676 
677 	proc = ProcGlobal->freeProcs;
678 
679 	while (n > 0 && proc != NULL)
680 	{
681 		proc = (PGPROC *) proc->links.next;
682 		n--;
683 	}
684 
685 	SpinLockRelease(ProcStructLock);
686 
687 	return (n <= 0);
688 }
689 
690 /*
691  * Check if the current process is awaiting a lock.
692  */
693 bool
IsWaitingForLock(void)694 IsWaitingForLock(void)
695 {
696 	if (lockAwaited == NULL)
697 		return false;
698 
699 	return true;
700 }
701 
702 /*
703  * Cancel any pending wait for lock, when aborting a transaction, and revert
704  * any strong lock count acquisition for a lock being acquired.
705  *
706  * (Normally, this would only happen if we accept a cancel/die
707  * interrupt while waiting; but an ereport(ERROR) before or during the lock
708  * wait is within the realm of possibility, too.)
709  */
710 void
LockErrorCleanup(void)711 LockErrorCleanup(void)
712 {
713 	LWLock	   *partitionLock;
714 	DisableTimeoutParams timeouts[2];
715 
716 	HOLD_INTERRUPTS();
717 
718 	AbortStrongLockAcquire();
719 
720 	/* Nothing to do if we weren't waiting for a lock */
721 	if (lockAwaited == NULL)
722 	{
723 		RESUME_INTERRUPTS();
724 		return;
725 	}
726 
727 	/*
728 	 * Turn off the deadlock and lock timeout timers, if they are still
729 	 * running (see ProcSleep).  Note we must preserve the LOCK_TIMEOUT
730 	 * indicator flag, since this function is executed before
731 	 * ProcessInterrupts when responding to SIGINT; else we'd lose the
732 	 * knowledge that the SIGINT came from a lock timeout and not an external
733 	 * source.
734 	 */
735 	timeouts[0].id = DEADLOCK_TIMEOUT;
736 	timeouts[0].keep_indicator = false;
737 	timeouts[1].id = LOCK_TIMEOUT;
738 	timeouts[1].keep_indicator = true;
739 	disable_timeouts(timeouts, 2);
740 
741 	/* Unlink myself from the wait queue, if on it (might not be anymore!) */
742 	partitionLock = LockHashPartitionLock(lockAwaited->hashcode);
743 	LWLockAcquire(partitionLock, LW_EXCLUSIVE);
744 
745 	if (MyProc->links.next != NULL)
746 	{
747 		/* We could not have been granted the lock yet */
748 		RemoveFromWaitQueue(MyProc, lockAwaited->hashcode);
749 	}
750 	else
751 	{
752 		/*
753 		 * Somebody kicked us off the lock queue already.  Perhaps they
754 		 * granted us the lock, or perhaps they detected a deadlock. If they
755 		 * did grant us the lock, we'd better remember it in our local lock
756 		 * table.
757 		 */
758 		if (MyProc->waitStatus == STATUS_OK)
759 			GrantAwaitedLock();
760 	}
761 
762 	lockAwaited = NULL;
763 
764 	LWLockRelease(partitionLock);
765 
766 	RESUME_INTERRUPTS();
767 }
768 
769 
770 /*
771  * ProcReleaseLocks() -- release locks associated with current transaction
772  *			at main transaction commit or abort
773  *
774  * At main transaction commit, we release standard locks except session locks.
775  * At main transaction abort, we release all locks including session locks.
776  *
777  * Advisory locks are released only if they are transaction-level;
778  * session-level holds remain, whether this is a commit or not.
779  *
780  * At subtransaction commit, we don't release any locks (so this func is not
781  * needed at all); we will defer the releasing to the parent transaction.
782  * At subtransaction abort, we release all locks held by the subtransaction;
783  * this is implemented by retail releasing of the locks under control of
784  * the ResourceOwner mechanism.
785  */
786 void
ProcReleaseLocks(bool isCommit)787 ProcReleaseLocks(bool isCommit)
788 {
789 	if (!MyProc)
790 		return;
791 	/* If waiting, get off wait queue (should only be needed after error) */
792 	LockErrorCleanup();
793 	/* Release standard locks, including session-level if aborting */
794 	LockReleaseAll(DEFAULT_LOCKMETHOD, !isCommit);
795 	/* Release transaction-level advisory locks */
796 	LockReleaseAll(USER_LOCKMETHOD, false);
797 }
798 
799 
800 /*
801  * RemoveProcFromArray() -- Remove this process from the shared ProcArray.
802  */
803 static void
RemoveProcFromArray(int code,Datum arg)804 RemoveProcFromArray(int code, Datum arg)
805 {
806 	Assert(MyProc != NULL);
807 	ProcArrayRemove(MyProc, InvalidTransactionId);
808 }
809 
810 /*
811  * ProcKill() -- Destroy the per-proc data structure for
812  *		this process. Release any of its held LW locks.
813  */
814 static void
ProcKill(int code,Datum arg)815 ProcKill(int code, Datum arg)
816 {
817 	PGPROC	   *proc;
818 	PGPROC	   *volatile *procgloballist;
819 
820 	Assert(MyProc != NULL);
821 
822 	/* Make sure we're out of the sync rep lists */
823 	SyncRepCleanupAtProcExit();
824 
825 #ifdef USE_ASSERT_CHECKING
826 	{
827 		int			i;
828 
829 		/* Last process should have released all locks. */
830 		for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
831 			Assert(SHMQueueEmpty(&(MyProc->myProcLocks[i])));
832 	}
833 #endif
834 
835 	/*
836 	 * Release any LW locks I am holding.  There really shouldn't be any, but
837 	 * it's cheap to check again before we cut the knees off the LWLock
838 	 * facility by releasing our PGPROC ...
839 	 */
840 	LWLockReleaseAll();
841 
842 	/* Cancel any pending condition variable sleep, too */
843 	ConditionVariableCancelSleep();
844 
845 	/* Make sure active replication slots are released */
846 	if (MyReplicationSlot != NULL)
847 		ReplicationSlotRelease();
848 
849 	/* Also cleanup all the temporary slots. */
850 	ReplicationSlotCleanup();
851 
852 	/*
853 	 * Detach from any lock group of which we are a member.  If the leader
854 	 * exist before all other group members, its PGPROC will remain allocated
855 	 * until the last group process exits; that process must return the
856 	 * leader's PGPROC to the appropriate list.
857 	 */
858 	if (MyProc->lockGroupLeader != NULL)
859 	{
860 		PGPROC	   *leader = MyProc->lockGroupLeader;
861 		LWLock	   *leader_lwlock = LockHashPartitionLockByProc(leader);
862 
863 		LWLockAcquire(leader_lwlock, LW_EXCLUSIVE);
864 		Assert(!dlist_is_empty(&leader->lockGroupMembers));
865 		dlist_delete(&MyProc->lockGroupLink);
866 		if (dlist_is_empty(&leader->lockGroupMembers))
867 		{
868 			leader->lockGroupLeader = NULL;
869 			if (leader != MyProc)
870 			{
871 				procgloballist = leader->procgloballist;
872 
873 				/* Leader exited first; return its PGPROC. */
874 				SpinLockAcquire(ProcStructLock);
875 				leader->links.next = (SHM_QUEUE *) *procgloballist;
876 				*procgloballist = leader;
877 				SpinLockRelease(ProcStructLock);
878 			}
879 		}
880 		else if (leader != MyProc)
881 			MyProc->lockGroupLeader = NULL;
882 		LWLockRelease(leader_lwlock);
883 	}
884 
885 	/*
886 	 * Reset MyLatch to the process local one.  This is so that signal
887 	 * handlers et al can continue using the latch after the shared latch
888 	 * isn't ours anymore. After that clear MyProc and disown the shared
889 	 * latch.
890 	 */
891 	SwitchBackToLocalLatch();
892 	proc = MyProc;
893 	MyProc = NULL;
894 	DisownLatch(&proc->procLatch);
895 
896 	procgloballist = proc->procgloballist;
897 	SpinLockAcquire(ProcStructLock);
898 
899 	/*
900 	 * If we're still a member of a locking group, that means we're a leader
901 	 * which has somehow exited before its children.  The last remaining child
902 	 * will release our PGPROC.  Otherwise, release it now.
903 	 */
904 	if (proc->lockGroupLeader == NULL)
905 	{
906 		/* Since lockGroupLeader is NULL, lockGroupMembers should be empty. */
907 		Assert(dlist_is_empty(&proc->lockGroupMembers));
908 
909 		/* Return PGPROC structure (and semaphore) to appropriate freelist */
910 		proc->links.next = (SHM_QUEUE *) *procgloballist;
911 		*procgloballist = proc;
912 	}
913 
914 	/* Update shared estimate of spins_per_delay */
915 	ProcGlobal->spins_per_delay = update_spins_per_delay(ProcGlobal->spins_per_delay);
916 
917 	SpinLockRelease(ProcStructLock);
918 
919 	/*
920 	 * This process is no longer present in shared memory in any meaningful
921 	 * way, so tell the postmaster we've cleaned up acceptably well. (XXX
922 	 * autovac launcher should be included here someday)
923 	 */
924 	if (IsUnderPostmaster && !IsAutoVacuumLauncherProcess())
925 		MarkPostmasterChildInactive();
926 
927 	/* wake autovac launcher if needed -- see comments in FreeWorkerInfo */
928 	if (AutovacuumLauncherPid != 0)
929 		kill(AutovacuumLauncherPid, SIGUSR2);
930 }
931 
932 /*
933  * AuxiliaryProcKill() -- Cut-down version of ProcKill for auxiliary
934  *		processes (bgwriter, etc).  The PGPROC and sema are not released, only
935  *		marked as not-in-use.
936  */
937 static void
AuxiliaryProcKill(int code,Datum arg)938 AuxiliaryProcKill(int code, Datum arg)
939 {
940 	int			proctype = DatumGetInt32(arg);
941 	PGPROC	   *auxproc PG_USED_FOR_ASSERTS_ONLY;
942 	PGPROC	   *proc;
943 
944 	Assert(proctype >= 0 && proctype < NUM_AUXILIARY_PROCS);
945 
946 	auxproc = &AuxiliaryProcs[proctype];
947 
948 	Assert(MyProc == auxproc);
949 
950 	/* Release any LW locks I am holding (see notes above) */
951 	LWLockReleaseAll();
952 
953 	/* Cancel any pending condition variable sleep, too */
954 	ConditionVariableCancelSleep();
955 
956 	/*
957 	 * Reset MyLatch to the process local one.  This is so that signal
958 	 * handlers et al can continue using the latch after the shared latch
959 	 * isn't ours anymore. After that clear MyProc and disown the shared
960 	 * latch.
961 	 */
962 	SwitchBackToLocalLatch();
963 	proc = MyProc;
964 	MyProc = NULL;
965 	DisownLatch(&proc->procLatch);
966 
967 	SpinLockAcquire(ProcStructLock);
968 
969 	/* Mark auxiliary proc no longer in use */
970 	proc->pid = 0;
971 
972 	/* Update shared estimate of spins_per_delay */
973 	ProcGlobal->spins_per_delay = update_spins_per_delay(ProcGlobal->spins_per_delay);
974 
975 	SpinLockRelease(ProcStructLock);
976 }
977 
978 /*
979  * AuxiliaryPidGetProc -- get PGPROC for an auxiliary process
980  * given its PID
981  *
982  * Returns NULL if not found.
983  */
984 PGPROC *
AuxiliaryPidGetProc(int pid)985 AuxiliaryPidGetProc(int pid)
986 {
987 	PGPROC	   *result = NULL;
988 	int			index;
989 
990 	if (pid == 0)				/* never match dummy PGPROCs */
991 		return NULL;
992 
993 	for (index = 0; index < NUM_AUXILIARY_PROCS; index++)
994 	{
995 		PGPROC	   *proc = &AuxiliaryProcs[index];
996 
997 		if (proc->pid == pid)
998 		{
999 			result = proc;
1000 			break;
1001 		}
1002 	}
1003 	return result;
1004 }
1005 
1006 /*
1007  * ProcQueue package: routines for putting processes to sleep
1008  *		and  waking them up
1009  */
1010 
1011 /*
1012  * ProcQueueAlloc -- alloc/attach to a shared memory process queue
1013  *
1014  * Returns: a pointer to the queue
1015  * Side Effects: Initializes the queue if it wasn't there before
1016  */
1017 #ifdef NOT_USED
1018 PROC_QUEUE *
ProcQueueAlloc(const char * name)1019 ProcQueueAlloc(const char *name)
1020 {
1021 	PROC_QUEUE *queue;
1022 	bool		found;
1023 
1024 	queue = (PROC_QUEUE *)
1025 		ShmemInitStruct(name, sizeof(PROC_QUEUE), &found);
1026 
1027 	if (!found)
1028 		ProcQueueInit(queue);
1029 
1030 	return queue;
1031 }
1032 #endif
1033 
1034 /*
1035  * ProcQueueInit -- initialize a shared memory process queue
1036  */
1037 void
ProcQueueInit(PROC_QUEUE * queue)1038 ProcQueueInit(PROC_QUEUE *queue)
1039 {
1040 	SHMQueueInit(&(queue->links));
1041 	queue->size = 0;
1042 }
1043 
1044 
1045 /*
1046  * ProcSleep -- put a process to sleep on the specified lock
1047  *
1048  * Caller must have set MyProc->heldLocks to reflect locks already held
1049  * on the lockable object by this process (under all XIDs).
1050  *
1051  * The lock table's partition lock must be held at entry, and will be held
1052  * at exit.
1053  *
1054  * Result: STATUS_OK if we acquired the lock, STATUS_ERROR if not (deadlock).
1055  *
1056  * ASSUME: that no one will fiddle with the queue until after
1057  *		we release the partition lock.
1058  *
1059  * NOTES: The process queue is now a priority queue for locking.
1060  */
1061 int
ProcSleep(LOCALLOCK * locallock,LockMethod lockMethodTable)1062 ProcSleep(LOCALLOCK *locallock, LockMethod lockMethodTable)
1063 {
1064 	LOCKMODE	lockmode = locallock->tag.mode;
1065 	LOCK	   *lock = locallock->lock;
1066 	PROCLOCK   *proclock = locallock->proclock;
1067 	uint32		hashcode = locallock->hashcode;
1068 	LWLock	   *partitionLock = LockHashPartitionLock(hashcode);
1069 	PROC_QUEUE *waitQueue = &(lock->waitProcs);
1070 	LOCKMASK	myHeldLocks = MyProc->heldLocks;
1071 	bool		early_deadlock = false;
1072 	bool		allow_autovacuum_cancel = true;
1073 	int			myWaitStatus;
1074 	PGPROC	   *proc;
1075 	PGPROC	   *leader = MyProc->lockGroupLeader;
1076 	int			i;
1077 
1078 	/*
1079 	 * If group locking is in use, locks held by members of my locking group
1080 	 * need to be included in myHeldLocks.  This is not required for relation
1081 	 * extension or page locks which conflict among group members. However,
1082 	 * including them in myHeldLocks will give group members the priority to
1083 	 * get those locks as compared to other backends which are also trying to
1084 	 * acquire those locks.  OTOH, we can avoid giving priority to group
1085 	 * members for that kind of locks, but there doesn't appear to be a clear
1086 	 * advantage of the same.
1087 	 */
1088 	if (leader != NULL)
1089 	{
1090 		SHM_QUEUE  *procLocks = &(lock->procLocks);
1091 		PROCLOCK   *otherproclock;
1092 
1093 		otherproclock = (PROCLOCK *)
1094 			SHMQueueNext(procLocks, procLocks, offsetof(PROCLOCK, lockLink));
1095 		while (otherproclock != NULL)
1096 		{
1097 			if (otherproclock->groupLeader == leader)
1098 				myHeldLocks |= otherproclock->holdMask;
1099 			otherproclock = (PROCLOCK *)
1100 				SHMQueueNext(procLocks, &otherproclock->lockLink,
1101 							 offsetof(PROCLOCK, lockLink));
1102 		}
1103 	}
1104 
1105 	/*
1106 	 * Determine where to add myself in the wait queue.
1107 	 *
1108 	 * Normally I should go at the end of the queue.  However, if I already
1109 	 * hold locks that conflict with the request of any previous waiter, put
1110 	 * myself in the queue just in front of the first such waiter. This is not
1111 	 * a necessary step, since deadlock detection would move me to before that
1112 	 * waiter anyway; but it's relatively cheap to detect such a conflict
1113 	 * immediately, and avoid delaying till deadlock timeout.
1114 	 *
1115 	 * Special case: if I find I should go in front of some waiter, check to
1116 	 * see if I conflict with already-held locks or the requests before that
1117 	 * waiter.  If not, then just grant myself the requested lock immediately.
1118 	 * This is the same as the test for immediate grant in LockAcquire, except
1119 	 * we are only considering the part of the wait queue before my insertion
1120 	 * point.
1121 	 */
1122 	if (myHeldLocks != 0)
1123 	{
1124 		LOCKMASK	aheadRequests = 0;
1125 
1126 		proc = (PGPROC *) waitQueue->links.next;
1127 		for (i = 0; i < waitQueue->size; i++)
1128 		{
1129 			/*
1130 			 * If we're part of the same locking group as this waiter, its
1131 			 * locks neither conflict with ours nor contribute to
1132 			 * aheadRequests.
1133 			 */
1134 			if (leader != NULL && leader == proc->lockGroupLeader)
1135 			{
1136 				proc = (PGPROC *) proc->links.next;
1137 				continue;
1138 			}
1139 			/* Must he wait for me? */
1140 			if (lockMethodTable->conflictTab[proc->waitLockMode] & myHeldLocks)
1141 			{
1142 				/* Must I wait for him ? */
1143 				if (lockMethodTable->conflictTab[lockmode] & proc->heldLocks)
1144 				{
1145 					/*
1146 					 * Yes, so we have a deadlock.  Easiest way to clean up
1147 					 * correctly is to call RemoveFromWaitQueue(), but we
1148 					 * can't do that until we are *on* the wait queue. So, set
1149 					 * a flag to check below, and break out of loop.  Also,
1150 					 * record deadlock info for later message.
1151 					 */
1152 					RememberSimpleDeadLock(MyProc, lockmode, lock, proc);
1153 					early_deadlock = true;
1154 					break;
1155 				}
1156 				/* I must go before this waiter.  Check special case. */
1157 				if ((lockMethodTable->conflictTab[lockmode] & aheadRequests) == 0 &&
1158 					!LockCheckConflicts(lockMethodTable, lockmode, lock,
1159 										proclock))
1160 				{
1161 					/* Skip the wait and just grant myself the lock. */
1162 					GrantLock(lock, proclock, lockmode);
1163 					GrantAwaitedLock();
1164 					return STATUS_OK;
1165 				}
1166 				/* Break out of loop to put myself before him */
1167 				break;
1168 			}
1169 			/* Nope, so advance to next waiter */
1170 			aheadRequests |= LOCKBIT_ON(proc->waitLockMode);
1171 			proc = (PGPROC *) proc->links.next;
1172 		}
1173 
1174 		/*
1175 		 * If we fall out of loop normally, proc points to waitQueue head, so
1176 		 * we will insert at tail of queue as desired.
1177 		 */
1178 	}
1179 	else
1180 	{
1181 		/* I hold no locks, so I can't push in front of anyone. */
1182 		proc = (PGPROC *) &(waitQueue->links);
1183 	}
1184 
1185 	/*
1186 	 * Insert self into queue, ahead of the given proc (or at tail of queue).
1187 	 */
1188 	SHMQueueInsertBefore(&(proc->links), &(MyProc->links));
1189 	waitQueue->size++;
1190 
1191 	lock->waitMask |= LOCKBIT_ON(lockmode);
1192 
1193 	/* Set up wait information in PGPROC object, too */
1194 	MyProc->waitLock = lock;
1195 	MyProc->waitProcLock = proclock;
1196 	MyProc->waitLockMode = lockmode;
1197 
1198 	MyProc->waitStatus = STATUS_WAITING;
1199 
1200 	/*
1201 	 * If we detected deadlock, give up without waiting.  This must agree with
1202 	 * CheckDeadLock's recovery code.
1203 	 */
1204 	if (early_deadlock)
1205 	{
1206 		RemoveFromWaitQueue(MyProc, hashcode);
1207 		return STATUS_ERROR;
1208 	}
1209 
1210 	/* mark that we are waiting for a lock */
1211 	lockAwaited = locallock;
1212 
1213 	/*
1214 	 * Release the lock table's partition lock.
1215 	 *
1216 	 * NOTE: this may also cause us to exit critical-section state, possibly
1217 	 * allowing a cancel/die interrupt to be accepted. This is OK because we
1218 	 * have recorded the fact that we are waiting for a lock, and so
1219 	 * LockErrorCleanup will clean up if cancel/die happens.
1220 	 */
1221 	LWLockRelease(partitionLock);
1222 
1223 	/*
1224 	 * Also, now that we will successfully clean up after an ereport, it's
1225 	 * safe to check to see if there's a buffer pin deadlock against the
1226 	 * Startup process.  Of course, that's only necessary if we're doing Hot
1227 	 * Standby and are not the Startup process ourselves.
1228 	 */
1229 	if (RecoveryInProgress() && !InRecovery)
1230 		CheckRecoveryConflictDeadlock();
1231 
1232 	/* Reset deadlock_state before enabling the timeout handler */
1233 	deadlock_state = DS_NOT_YET_CHECKED;
1234 	got_deadlock_timeout = false;
1235 
1236 	/*
1237 	 * Set timer so we can wake up after awhile and check for a deadlock. If a
1238 	 * deadlock is detected, the handler sets MyProc->waitStatus =
1239 	 * STATUS_ERROR, allowing us to know that we must report failure rather
1240 	 * than success.
1241 	 *
1242 	 * By delaying the check until we've waited for a bit, we can avoid
1243 	 * running the rather expensive deadlock-check code in most cases.
1244 	 *
1245 	 * If LockTimeout is set, also enable the timeout for that.  We can save a
1246 	 * few cycles by enabling both timeout sources in one call.
1247 	 *
1248 	 * If InHotStandby we set lock waits slightly later for clarity with other
1249 	 * code.
1250 	 */
1251 	if (!InHotStandby)
1252 	{
1253 		if (LockTimeout > 0)
1254 		{
1255 			EnableTimeoutParams timeouts[2];
1256 
1257 			timeouts[0].id = DEADLOCK_TIMEOUT;
1258 			timeouts[0].type = TMPARAM_AFTER;
1259 			timeouts[0].delay_ms = DeadlockTimeout;
1260 			timeouts[1].id = LOCK_TIMEOUT;
1261 			timeouts[1].type = TMPARAM_AFTER;
1262 			timeouts[1].delay_ms = LockTimeout;
1263 			enable_timeouts(timeouts, 2);
1264 		}
1265 		else
1266 			enable_timeout_after(DEADLOCK_TIMEOUT, DeadlockTimeout);
1267 	}
1268 
1269 	/*
1270 	 * If somebody wakes us between LWLockRelease and WaitLatch, the latch
1271 	 * will not wait. But a set latch does not necessarily mean that the lock
1272 	 * is free now, as there are many other sources for latch sets than
1273 	 * somebody releasing the lock.
1274 	 *
1275 	 * We process interrupts whenever the latch has been set, so cancel/die
1276 	 * interrupts are processed quickly. This means we must not mind losing
1277 	 * control to a cancel/die interrupt here.  We don't, because we have no
1278 	 * shared-state-change work to do after being granted the lock (the
1279 	 * grantor did it all).  We do have to worry about canceling the deadlock
1280 	 * timeout and updating the locallock table, but if we lose control to an
1281 	 * error, LockErrorCleanup will fix that up.
1282 	 */
1283 	do
1284 	{
1285 		if (InHotStandby)
1286 		{
1287 			/* Set a timer and wait for that or for the Lock to be granted */
1288 			ResolveRecoveryConflictWithLock(locallock->tag.lock);
1289 		}
1290 		else
1291 		{
1292 			(void) WaitLatch(MyLatch, WL_LATCH_SET | WL_EXIT_ON_PM_DEATH, 0,
1293 							 PG_WAIT_LOCK | locallock->tag.lock.locktag_type);
1294 			ResetLatch(MyLatch);
1295 			/* check for deadlocks first, as that's probably log-worthy */
1296 			if (got_deadlock_timeout)
1297 			{
1298 				CheckDeadLock();
1299 				got_deadlock_timeout = false;
1300 			}
1301 			CHECK_FOR_INTERRUPTS();
1302 		}
1303 
1304 		/*
1305 		 * waitStatus could change from STATUS_WAITING to something else
1306 		 * asynchronously.  Read it just once per loop to prevent surprising
1307 		 * behavior (such as missing log messages).
1308 		 */
1309 		myWaitStatus = *((volatile int *) &MyProc->waitStatus);
1310 
1311 		/*
1312 		 * If we are not deadlocked, but are waiting on an autovacuum-induced
1313 		 * task, send a signal to interrupt it.
1314 		 */
1315 		if (deadlock_state == DS_BLOCKED_BY_AUTOVACUUM && allow_autovacuum_cancel)
1316 		{
1317 			PGPROC	   *autovac = GetBlockingAutoVacuumPgproc();
1318 			PGXACT	   *autovac_pgxact = &ProcGlobal->allPgXact[autovac->pgprocno];
1319 
1320 			LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
1321 
1322 			/*
1323 			 * Only do it if the worker is not working to protect against Xid
1324 			 * wraparound.
1325 			 */
1326 			if ((autovac_pgxact->vacuumFlags & PROC_IS_AUTOVACUUM) &&
1327 				!(autovac_pgxact->vacuumFlags & PROC_VACUUM_FOR_WRAPAROUND))
1328 			{
1329 				int			pid = autovac->pid;
1330 				StringInfoData locktagbuf;
1331 				StringInfoData logbuf;	/* errdetail for server log */
1332 
1333 				initStringInfo(&locktagbuf);
1334 				initStringInfo(&logbuf);
1335 				DescribeLockTag(&locktagbuf, &lock->tag);
1336 				appendStringInfo(&logbuf,
1337 								 _("Process %d waits for %s on %s."),
1338 								 MyProcPid,
1339 								 GetLockmodeName(lock->tag.locktag_lockmethodid,
1340 												 lockmode),
1341 								 locktagbuf.data);
1342 
1343 				/* release lock as quickly as possible */
1344 				LWLockRelease(ProcArrayLock);
1345 
1346 				/* send the autovacuum worker Back to Old Kent Road */
1347 				ereport(DEBUG1,
1348 						(errmsg("sending cancel to blocking autovacuum PID %d",
1349 								pid),
1350 						 errdetail_log("%s", logbuf.data)));
1351 
1352 				if (kill(pid, SIGINT) < 0)
1353 				{
1354 					/*
1355 					 * There's a race condition here: once we release the
1356 					 * ProcArrayLock, it's possible for the autovac worker to
1357 					 * close up shop and exit before we can do the kill().
1358 					 * Therefore, we do not whinge about no-such-process.
1359 					 * Other errors such as EPERM could conceivably happen if
1360 					 * the kernel recycles the PID fast enough, but such cases
1361 					 * seem improbable enough that it's probably best to issue
1362 					 * a warning if we see some other errno.
1363 					 */
1364 					if (errno != ESRCH)
1365 						ereport(WARNING,
1366 								(errmsg("could not send signal to process %d: %m",
1367 										pid)));
1368 				}
1369 
1370 				pfree(logbuf.data);
1371 				pfree(locktagbuf.data);
1372 			}
1373 			else
1374 				LWLockRelease(ProcArrayLock);
1375 
1376 			/* prevent signal from being sent again more than once */
1377 			allow_autovacuum_cancel = false;
1378 		}
1379 
1380 		/*
1381 		 * If awoken after the deadlock check interrupt has run, and
1382 		 * log_lock_waits is on, then report about the wait.
1383 		 */
1384 		if (log_lock_waits && deadlock_state != DS_NOT_YET_CHECKED)
1385 		{
1386 			StringInfoData buf,
1387 						lock_waiters_sbuf,
1388 						lock_holders_sbuf;
1389 			const char *modename;
1390 			long		secs;
1391 			int			usecs;
1392 			long		msecs;
1393 			SHM_QUEUE  *procLocks;
1394 			PROCLOCK   *proclock;
1395 			bool		first_holder = true,
1396 						first_waiter = true;
1397 			int			lockHoldersNum = 0;
1398 
1399 			initStringInfo(&buf);
1400 			initStringInfo(&lock_waiters_sbuf);
1401 			initStringInfo(&lock_holders_sbuf);
1402 
1403 			DescribeLockTag(&buf, &locallock->tag.lock);
1404 			modename = GetLockmodeName(locallock->tag.lock.locktag_lockmethodid,
1405 									   lockmode);
1406 			TimestampDifference(get_timeout_start_time(DEADLOCK_TIMEOUT),
1407 								GetCurrentTimestamp(),
1408 								&secs, &usecs);
1409 			msecs = secs * 1000 + usecs / 1000;
1410 			usecs = usecs % 1000;
1411 
1412 			/*
1413 			 * we loop over the lock's procLocks to gather a list of all
1414 			 * holders and waiters. Thus we will be able to provide more
1415 			 * detailed information for lock debugging purposes.
1416 			 *
1417 			 * lock->procLocks contains all processes which hold or wait for
1418 			 * this lock.
1419 			 */
1420 
1421 			LWLockAcquire(partitionLock, LW_SHARED);
1422 
1423 			procLocks = &(lock->procLocks);
1424 			proclock = (PROCLOCK *) SHMQueueNext(procLocks, procLocks,
1425 												 offsetof(PROCLOCK, lockLink));
1426 
1427 			while (proclock)
1428 			{
1429 				/*
1430 				 * we are a waiter if myProc->waitProcLock == proclock; we are
1431 				 * a holder if it is NULL or something different
1432 				 */
1433 				if (proclock->tag.myProc->waitProcLock == proclock)
1434 				{
1435 					if (first_waiter)
1436 					{
1437 						appendStringInfo(&lock_waiters_sbuf, "%d",
1438 										 proclock->tag.myProc->pid);
1439 						first_waiter = false;
1440 					}
1441 					else
1442 						appendStringInfo(&lock_waiters_sbuf, ", %d",
1443 										 proclock->tag.myProc->pid);
1444 				}
1445 				else
1446 				{
1447 					if (first_holder)
1448 					{
1449 						appendStringInfo(&lock_holders_sbuf, "%d",
1450 										 proclock->tag.myProc->pid);
1451 						first_holder = false;
1452 					}
1453 					else
1454 						appendStringInfo(&lock_holders_sbuf, ", %d",
1455 										 proclock->tag.myProc->pid);
1456 
1457 					lockHoldersNum++;
1458 				}
1459 
1460 				proclock = (PROCLOCK *) SHMQueueNext(procLocks, &proclock->lockLink,
1461 													 offsetof(PROCLOCK, lockLink));
1462 			}
1463 
1464 			LWLockRelease(partitionLock);
1465 
1466 			if (deadlock_state == DS_SOFT_DEADLOCK)
1467 				ereport(LOG,
1468 						(errmsg("process %d avoided deadlock for %s on %s by rearranging queue order after %ld.%03d ms",
1469 								MyProcPid, modename, buf.data, msecs, usecs),
1470 						 (errdetail_log_plural("Process holding the lock: %s. Wait queue: %s.",
1471 											   "Processes holding the lock: %s. Wait queue: %s.",
1472 											   lockHoldersNum, lock_holders_sbuf.data, lock_waiters_sbuf.data))));
1473 			else if (deadlock_state == DS_HARD_DEADLOCK)
1474 			{
1475 				/*
1476 				 * This message is a bit redundant with the error that will be
1477 				 * reported subsequently, but in some cases the error report
1478 				 * might not make it to the log (eg, if it's caught by an
1479 				 * exception handler), and we want to ensure all long-wait
1480 				 * events get logged.
1481 				 */
1482 				ereport(LOG,
1483 						(errmsg("process %d detected deadlock while waiting for %s on %s after %ld.%03d ms",
1484 								MyProcPid, modename, buf.data, msecs, usecs),
1485 						 (errdetail_log_plural("Process holding the lock: %s. Wait queue: %s.",
1486 											   "Processes holding the lock: %s. Wait queue: %s.",
1487 											   lockHoldersNum, lock_holders_sbuf.data, lock_waiters_sbuf.data))));
1488 			}
1489 
1490 			if (myWaitStatus == STATUS_WAITING)
1491 				ereport(LOG,
1492 						(errmsg("process %d still waiting for %s on %s after %ld.%03d ms",
1493 								MyProcPid, modename, buf.data, msecs, usecs),
1494 						 (errdetail_log_plural("Process holding the lock: %s. Wait queue: %s.",
1495 											   "Processes holding the lock: %s. Wait queue: %s.",
1496 											   lockHoldersNum, lock_holders_sbuf.data, lock_waiters_sbuf.data))));
1497 			else if (myWaitStatus == STATUS_OK)
1498 				ereport(LOG,
1499 						(errmsg("process %d acquired %s on %s after %ld.%03d ms",
1500 								MyProcPid, modename, buf.data, msecs, usecs)));
1501 			else
1502 			{
1503 				Assert(myWaitStatus == STATUS_ERROR);
1504 
1505 				/*
1506 				 * Currently, the deadlock checker always kicks its own
1507 				 * process, which means that we'll only see STATUS_ERROR when
1508 				 * deadlock_state == DS_HARD_DEADLOCK, and there's no need to
1509 				 * print redundant messages.  But for completeness and
1510 				 * future-proofing, print a message if it looks like someone
1511 				 * else kicked us off the lock.
1512 				 */
1513 				if (deadlock_state != DS_HARD_DEADLOCK)
1514 					ereport(LOG,
1515 							(errmsg("process %d failed to acquire %s on %s after %ld.%03d ms",
1516 									MyProcPid, modename, buf.data, msecs, usecs),
1517 							 (errdetail_log_plural("Process holding the lock: %s. Wait queue: %s.",
1518 												   "Processes holding the lock: %s. Wait queue: %s.",
1519 												   lockHoldersNum, lock_holders_sbuf.data, lock_waiters_sbuf.data))));
1520 			}
1521 
1522 			/*
1523 			 * At this point we might still need to wait for the lock. Reset
1524 			 * state so we don't print the above messages again.
1525 			 */
1526 			deadlock_state = DS_NO_DEADLOCK;
1527 
1528 			pfree(buf.data);
1529 			pfree(lock_holders_sbuf.data);
1530 			pfree(lock_waiters_sbuf.data);
1531 		}
1532 	} while (myWaitStatus == STATUS_WAITING);
1533 
1534 	/*
1535 	 * Disable the timers, if they are still running.  As in LockErrorCleanup,
1536 	 * we must preserve the LOCK_TIMEOUT indicator flag: if a lock timeout has
1537 	 * already caused QueryCancelPending to become set, we want the cancel to
1538 	 * be reported as a lock timeout, not a user cancel.
1539 	 */
1540 	if (!InHotStandby)
1541 	{
1542 		if (LockTimeout > 0)
1543 		{
1544 			DisableTimeoutParams timeouts[2];
1545 
1546 			timeouts[0].id = DEADLOCK_TIMEOUT;
1547 			timeouts[0].keep_indicator = false;
1548 			timeouts[1].id = LOCK_TIMEOUT;
1549 			timeouts[1].keep_indicator = true;
1550 			disable_timeouts(timeouts, 2);
1551 		}
1552 		else
1553 			disable_timeout(DEADLOCK_TIMEOUT, false);
1554 	}
1555 
1556 	/*
1557 	 * Re-acquire the lock table's partition lock.  We have to do this to hold
1558 	 * off cancel/die interrupts before we can mess with lockAwaited (else we
1559 	 * might have a missed or duplicated locallock update).
1560 	 */
1561 	LWLockAcquire(partitionLock, LW_EXCLUSIVE);
1562 
1563 	/*
1564 	 * We no longer want LockErrorCleanup to do anything.
1565 	 */
1566 	lockAwaited = NULL;
1567 
1568 	/*
1569 	 * If we got the lock, be sure to remember it in the locallock table.
1570 	 */
1571 	if (MyProc->waitStatus == STATUS_OK)
1572 		GrantAwaitedLock();
1573 
1574 	/*
1575 	 * We don't have to do anything else, because the awaker did all the
1576 	 * necessary update of the lock table and MyProc.
1577 	 */
1578 	return MyProc->waitStatus;
1579 }
1580 
1581 
1582 /*
1583  * ProcWakeup -- wake up a process by setting its latch.
1584  *
1585  *	 Also remove the process from the wait queue and set its links invalid.
1586  *	 RETURN: the next process in the wait queue.
1587  *
1588  * The appropriate lock partition lock must be held by caller.
1589  *
1590  * XXX: presently, this code is only used for the "success" case, and only
1591  * works correctly for that case.  To clean up in failure case, would need
1592  * to twiddle the lock's request counts too --- see RemoveFromWaitQueue.
1593  * Hence, in practice the waitStatus parameter must be STATUS_OK.
1594  */
1595 PGPROC *
ProcWakeup(PGPROC * proc,int waitStatus)1596 ProcWakeup(PGPROC *proc, int waitStatus)
1597 {
1598 	PGPROC	   *retProc;
1599 
1600 	/* Proc should be sleeping ... */
1601 	if (proc->links.prev == NULL ||
1602 		proc->links.next == NULL)
1603 		return NULL;
1604 	Assert(proc->waitStatus == STATUS_WAITING);
1605 
1606 	/* Save next process before we zap the list link */
1607 	retProc = (PGPROC *) proc->links.next;
1608 
1609 	/* Remove process from wait queue */
1610 	SHMQueueDelete(&(proc->links));
1611 	(proc->waitLock->waitProcs.size)--;
1612 
1613 	/* Clean up process' state and pass it the ok/fail signal */
1614 	proc->waitLock = NULL;
1615 	proc->waitProcLock = NULL;
1616 	proc->waitStatus = waitStatus;
1617 
1618 	/* And awaken it */
1619 	SetLatch(&proc->procLatch);
1620 
1621 	return retProc;
1622 }
1623 
1624 /*
1625  * ProcLockWakeup -- routine for waking up processes when a lock is
1626  *		released (or a prior waiter is aborted).  Scan all waiters
1627  *		for lock, waken any that are no longer blocked.
1628  *
1629  * The appropriate lock partition lock must be held by caller.
1630  */
1631 void
ProcLockWakeup(LockMethod lockMethodTable,LOCK * lock)1632 ProcLockWakeup(LockMethod lockMethodTable, LOCK *lock)
1633 {
1634 	PROC_QUEUE *waitQueue = &(lock->waitProcs);
1635 	int			queue_size = waitQueue->size;
1636 	PGPROC	   *proc;
1637 	LOCKMASK	aheadRequests = 0;
1638 
1639 	Assert(queue_size >= 0);
1640 
1641 	if (queue_size == 0)
1642 		return;
1643 
1644 	proc = (PGPROC *) waitQueue->links.next;
1645 
1646 	while (queue_size-- > 0)
1647 	{
1648 		LOCKMODE	lockmode = proc->waitLockMode;
1649 
1650 		/*
1651 		 * Waken if (a) doesn't conflict with requests of earlier waiters, and
1652 		 * (b) doesn't conflict with already-held locks.
1653 		 */
1654 		if ((lockMethodTable->conflictTab[lockmode] & aheadRequests) == 0 &&
1655 			!LockCheckConflicts(lockMethodTable, lockmode, lock,
1656 								proc->waitProcLock))
1657 		{
1658 			/* OK to waken */
1659 			GrantLock(lock, proc->waitProcLock, lockmode);
1660 			proc = ProcWakeup(proc, STATUS_OK);
1661 
1662 			/*
1663 			 * ProcWakeup removes proc from the lock's waiting process queue
1664 			 * and returns the next proc in chain; don't use proc's next-link,
1665 			 * because it's been cleared.
1666 			 */
1667 		}
1668 		else
1669 		{
1670 			/*
1671 			 * Cannot wake this guy. Remember his request for later checks.
1672 			 */
1673 			aheadRequests |= LOCKBIT_ON(lockmode);
1674 			proc = (PGPROC *) proc->links.next;
1675 		}
1676 	}
1677 
1678 	Assert(waitQueue->size >= 0);
1679 }
1680 
1681 /*
1682  * CheckDeadLock
1683  *
1684  * We only get to this routine, if DEADLOCK_TIMEOUT fired while waiting for a
1685  * lock to be released by some other process.  Check if there's a deadlock; if
1686  * not, just return.  (But signal ProcSleep to log a message, if
1687  * log_lock_waits is true.)  If we have a real deadlock, remove ourselves from
1688  * the lock's wait queue and signal an error to ProcSleep.
1689  */
1690 static void
CheckDeadLock(void)1691 CheckDeadLock(void)
1692 {
1693 	int			i;
1694 
1695 	/*
1696 	 * Acquire exclusive lock on the entire shared lock data structures. Must
1697 	 * grab LWLocks in partition-number order to avoid LWLock deadlock.
1698 	 *
1699 	 * Note that the deadlock check interrupt had better not be enabled
1700 	 * anywhere that this process itself holds lock partition locks, else this
1701 	 * will wait forever.  Also note that LWLockAcquire creates a critical
1702 	 * section, so that this routine cannot be interrupted by cancel/die
1703 	 * interrupts.
1704 	 */
1705 	for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
1706 		LWLockAcquire(LockHashPartitionLockByIndex(i), LW_EXCLUSIVE);
1707 
1708 	/*
1709 	 * Check to see if we've been awoken by anyone in the interim.
1710 	 *
1711 	 * If we have, we can return and resume our transaction -- happy day.
1712 	 * Before we are awoken the process releasing the lock grants it to us so
1713 	 * we know that we don't have to wait anymore.
1714 	 *
1715 	 * We check by looking to see if we've been unlinked from the wait queue.
1716 	 * This is safe because we hold the lock partition lock.
1717 	 */
1718 	if (MyProc->links.prev == NULL ||
1719 		MyProc->links.next == NULL)
1720 		goto check_done;
1721 
1722 #ifdef LOCK_DEBUG
1723 	if (Debug_deadlocks)
1724 		DumpAllLocks();
1725 #endif
1726 
1727 	/* Run the deadlock check, and set deadlock_state for use by ProcSleep */
1728 	deadlock_state = DeadLockCheck(MyProc);
1729 
1730 	if (deadlock_state == DS_HARD_DEADLOCK)
1731 	{
1732 		/*
1733 		 * Oops.  We have a deadlock.
1734 		 *
1735 		 * Get this process out of wait state. (Note: we could do this more
1736 		 * efficiently by relying on lockAwaited, but use this coding to
1737 		 * preserve the flexibility to kill some other transaction than the
1738 		 * one detecting the deadlock.)
1739 		 *
1740 		 * RemoveFromWaitQueue sets MyProc->waitStatus to STATUS_ERROR, so
1741 		 * ProcSleep will report an error after we return from the signal
1742 		 * handler.
1743 		 */
1744 		Assert(MyProc->waitLock != NULL);
1745 		RemoveFromWaitQueue(MyProc, LockTagHashCode(&(MyProc->waitLock->tag)));
1746 
1747 		/*
1748 		 * We're done here.  Transaction abort caused by the error that
1749 		 * ProcSleep will raise will cause any other locks we hold to be
1750 		 * released, thus allowing other processes to wake up; we don't need
1751 		 * to do that here.  NOTE: an exception is that releasing locks we
1752 		 * hold doesn't consider the possibility of waiters that were blocked
1753 		 * behind us on the lock we just failed to get, and might now be
1754 		 * wakable because we're not in front of them anymore.  However,
1755 		 * RemoveFromWaitQueue took care of waking up any such processes.
1756 		 */
1757 	}
1758 
1759 	/*
1760 	 * And release locks.  We do this in reverse order for two reasons: (1)
1761 	 * Anyone else who needs more than one of the locks will be trying to lock
1762 	 * them in increasing order; we don't want to release the other process
1763 	 * until it can get all the locks it needs. (2) This avoids O(N^2)
1764 	 * behavior inside LWLockRelease.
1765 	 */
1766 check_done:
1767 	for (i = NUM_LOCK_PARTITIONS; --i >= 0;)
1768 		LWLockRelease(LockHashPartitionLockByIndex(i));
1769 }
1770 
1771 /*
1772  * CheckDeadLockAlert - Handle the expiry of deadlock_timeout.
1773  *
1774  * NB: Runs inside a signal handler, be careful.
1775  */
1776 void
CheckDeadLockAlert(void)1777 CheckDeadLockAlert(void)
1778 {
1779 	int			save_errno = errno;
1780 
1781 	got_deadlock_timeout = true;
1782 
1783 	/*
1784 	 * Have to set the latch again, even if handle_sig_alarm already did. Back
1785 	 * then got_deadlock_timeout wasn't yet set... It's unlikely that this
1786 	 * ever would be a problem, but setting a set latch again is cheap.
1787 	 *
1788 	 * Note that, when this function runs inside procsignal_sigusr1_handler(),
1789 	 * the handler function sets the latch again after the latch is set here.
1790 	 */
1791 	SetLatch(MyLatch);
1792 	errno = save_errno;
1793 }
1794 
1795 /*
1796  * ProcWaitForSignal - wait for a signal from another backend.
1797  *
1798  * As this uses the generic process latch the caller has to be robust against
1799  * unrelated wakeups: Always check that the desired state has occurred, and
1800  * wait again if not.
1801  */
1802 void
ProcWaitForSignal(uint32 wait_event_info)1803 ProcWaitForSignal(uint32 wait_event_info)
1804 {
1805 	(void) WaitLatch(MyLatch, WL_LATCH_SET | WL_EXIT_ON_PM_DEATH, 0,
1806 					 wait_event_info);
1807 	ResetLatch(MyLatch);
1808 	CHECK_FOR_INTERRUPTS();
1809 }
1810 
1811 /*
1812  * ProcSendSignal - send a signal to a backend identified by PID
1813  */
1814 void
ProcSendSignal(int pid)1815 ProcSendSignal(int pid)
1816 {
1817 	PGPROC	   *proc = NULL;
1818 
1819 	if (RecoveryInProgress())
1820 	{
1821 		SpinLockAcquire(ProcStructLock);
1822 
1823 		/*
1824 		 * Check to see whether it is the Startup process we wish to signal.
1825 		 * This call is made by the buffer manager when it wishes to wake up a
1826 		 * process that has been waiting for a pin in so it can obtain a
1827 		 * cleanup lock using LockBufferForCleanup(). Startup is not a normal
1828 		 * backend, so BackendPidGetProc() will not return any pid at all. So
1829 		 * we remember the information for this special case.
1830 		 */
1831 		if (pid == ProcGlobal->startupProcPid)
1832 			proc = ProcGlobal->startupProc;
1833 
1834 		SpinLockRelease(ProcStructLock);
1835 	}
1836 
1837 	if (proc == NULL)
1838 		proc = BackendPidGetProc(pid);
1839 
1840 	if (proc != NULL)
1841 	{
1842 		SetLatch(&proc->procLatch);
1843 	}
1844 }
1845 
1846 /*
1847  * BecomeLockGroupLeader - designate process as lock group leader
1848  *
1849  * Once this function has returned, other processes can join the lock group
1850  * by calling BecomeLockGroupMember.
1851  */
1852 void
BecomeLockGroupLeader(void)1853 BecomeLockGroupLeader(void)
1854 {
1855 	LWLock	   *leader_lwlock;
1856 
1857 	/* If we already did it, we don't need to do it again. */
1858 	if (MyProc->lockGroupLeader == MyProc)
1859 		return;
1860 
1861 	/* We had better not be a follower. */
1862 	Assert(MyProc->lockGroupLeader == NULL);
1863 
1864 	/* Create single-member group, containing only ourselves. */
1865 	leader_lwlock = LockHashPartitionLockByProc(MyProc);
1866 	LWLockAcquire(leader_lwlock, LW_EXCLUSIVE);
1867 	MyProc->lockGroupLeader = MyProc;
1868 	dlist_push_head(&MyProc->lockGroupMembers, &MyProc->lockGroupLink);
1869 	LWLockRelease(leader_lwlock);
1870 }
1871 
1872 /*
1873  * BecomeLockGroupMember - designate process as lock group member
1874  *
1875  * This is pretty straightforward except for the possibility that the leader
1876  * whose group we're trying to join might exit before we manage to do so;
1877  * and the PGPROC might get recycled for an unrelated process.  To avoid
1878  * that, we require the caller to pass the PID of the intended PGPROC as
1879  * an interlock.  Returns true if we successfully join the intended lock
1880  * group, and false if not.
1881  */
1882 bool
BecomeLockGroupMember(PGPROC * leader,int pid)1883 BecomeLockGroupMember(PGPROC *leader, int pid)
1884 {
1885 	LWLock	   *leader_lwlock;
1886 	bool		ok = false;
1887 
1888 	/* Group leader can't become member of group */
1889 	Assert(MyProc != leader);
1890 
1891 	/* Can't already be a member of a group */
1892 	Assert(MyProc->lockGroupLeader == NULL);
1893 
1894 	/* PID must be valid. */
1895 	Assert(pid != 0);
1896 
1897 	/*
1898 	 * Get lock protecting the group fields.  Note LockHashPartitionLockByProc
1899 	 * accesses leader->pgprocno in a PGPROC that might be free.  This is safe
1900 	 * because all PGPROCs' pgprocno fields are set during shared memory
1901 	 * initialization and never change thereafter; so we will acquire the
1902 	 * correct lock even if the leader PGPROC is in process of being recycled.
1903 	 */
1904 	leader_lwlock = LockHashPartitionLockByProc(leader);
1905 	LWLockAcquire(leader_lwlock, LW_EXCLUSIVE);
1906 
1907 	/* Is this the leader we're looking for? */
1908 	if (leader->pid == pid && leader->lockGroupLeader == leader)
1909 	{
1910 		/* OK, join the group */
1911 		ok = true;
1912 		MyProc->lockGroupLeader = leader;
1913 		dlist_push_tail(&leader->lockGroupMembers, &MyProc->lockGroupLink);
1914 	}
1915 	LWLockRelease(leader_lwlock);
1916 
1917 	return ok;
1918 }
1919