1 /*-------------------------------------------------------------------------
2  *
3  * primnodes.h
4  *	  Definitions for "primitive" node types, those that are used in more
5  *	  than one of the parse/plan/execute stages of the query pipeline.
6  *	  Currently, these are mostly nodes for executable expressions
7  *	  and join trees.
8  *
9  *
10  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1994, Regents of the University of California
12  *
13  * src/include/nodes/primnodes.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef PRIMNODES_H
18 #define PRIMNODES_H
19 
20 #include "access/attnum.h"
21 #include "nodes/bitmapset.h"
22 #include "nodes/pg_list.h"
23 
24 
25 /* ----------------------------------------------------------------
26  *						node definitions
27  * ----------------------------------------------------------------
28  */
29 
30 /*
31  * Alias -
32  *	  specifies an alias for a range variable; the alias might also
33  *	  specify renaming of columns within the table.
34  *
35  * Note: colnames is a list of Value nodes (always strings).  In Alias structs
36  * associated with RTEs, there may be entries corresponding to dropped
37  * columns; these are normally empty strings ("").  See parsenodes.h for info.
38  */
39 typedef struct Alias
40 {
41 	NodeTag		type;
42 	char	   *aliasname;		/* aliased rel name (never qualified) */
43 	List	   *colnames;		/* optional list of column aliases */
44 } Alias;
45 
46 /* What to do at commit time for temporary relations */
47 typedef enum OnCommitAction
48 {
49 	ONCOMMIT_NOOP,				/* No ON COMMIT clause (do nothing) */
50 	ONCOMMIT_PRESERVE_ROWS,		/* ON COMMIT PRESERVE ROWS (do nothing) */
51 	ONCOMMIT_DELETE_ROWS,		/* ON COMMIT DELETE ROWS */
52 	ONCOMMIT_DROP				/* ON COMMIT DROP */
53 } OnCommitAction;
54 
55 /*
56  * RangeVar - range variable, used in FROM clauses
57  *
58  * Also used to represent table names in utility statements; there, the alias
59  * field is not used, and inh tells whether to apply the operation
60  * recursively to child tables.  In some contexts it is also useful to carry
61  * a TEMP table indication here.
62  */
63 typedef struct RangeVar
64 {
65 	NodeTag		type;
66 	char	   *catalogname;	/* the catalog (database) name, or NULL */
67 	char	   *schemaname;		/* the schema name, or NULL */
68 	char	   *relname;		/* the relation/sequence name */
69 	bool		inh;			/* expand rel by inheritance? recursively act
70 								 * on children? */
71 	char		relpersistence; /* see RELPERSISTENCE_* in pg_class.h */
72 	Alias	   *alias;			/* table alias & optional column aliases */
73 	int			location;		/* token location, or -1 if unknown */
74 } RangeVar;
75 
76 /*
77  * TableFunc - node for a table function, such as XMLTABLE.
78  *
79  * Entries in the ns_names list are either string Value nodes containing
80  * literal namespace names, or NULL pointers to represent DEFAULT.
81  */
82 typedef struct TableFunc
83 {
84 	NodeTag		type;
85 	List	   *ns_uris;		/* list of namespace URI expressions */
86 	List	   *ns_names;		/* list of namespace names or NULL */
87 	Node	   *docexpr;		/* input document expression */
88 	Node	   *rowexpr;		/* row filter expression */
89 	List	   *colnames;		/* column names (list of String) */
90 	List	   *coltypes;		/* OID list of column type OIDs */
91 	List	   *coltypmods;		/* integer list of column typmods */
92 	List	   *colcollations;	/* OID list of column collation OIDs */
93 	List	   *colexprs;		/* list of column filter expressions */
94 	List	   *coldefexprs;	/* list of column default expressions */
95 	Bitmapset  *notnulls;		/* nullability flag for each output column */
96 	int			ordinalitycol;	/* counts from 0; -1 if none specified */
97 	int			location;		/* token location, or -1 if unknown */
98 } TableFunc;
99 
100 /*
101  * IntoClause - target information for SELECT INTO, CREATE TABLE AS, and
102  * CREATE MATERIALIZED VIEW
103  *
104  * For CREATE MATERIALIZED VIEW, viewQuery is the parsed-but-not-rewritten
105  * SELECT Query for the view; otherwise it's NULL.  (Although it's actually
106  * Query*, we declare it as Node* to avoid a forward reference.)
107  */
108 typedef struct IntoClause
109 {
110 	NodeTag		type;
111 
112 	RangeVar   *rel;			/* target relation name */
113 	List	   *colNames;		/* column names to assign, or NIL */
114 	char	   *accessMethod;	/* table access method */
115 	List	   *options;		/* options from WITH clause */
116 	OnCommitAction onCommit;	/* what do we do at COMMIT? */
117 	char	   *tableSpaceName; /* table space to use, or NULL */
118 	Node	   *viewQuery;		/* materialized view's SELECT query */
119 	bool		skipData;		/* true for WITH NO DATA */
120 } IntoClause;
121 
122 
123 /* ----------------------------------------------------------------
124  *					node types for executable expressions
125  * ----------------------------------------------------------------
126  */
127 
128 /*
129  * Expr - generic superclass for executable-expression nodes
130  *
131  * All node types that are used in executable expression trees should derive
132  * from Expr (that is, have Expr as their first field).  Since Expr only
133  * contains NodeTag, this is a formality, but it is an easy form of
134  * documentation.  See also the ExprState node types in execnodes.h.
135  */
136 typedef struct Expr
137 {
138 	NodeTag		type;
139 } Expr;
140 
141 /*
142  * Var - expression node representing a variable (ie, a table column)
143  *
144  * In the parser and planner, varno and varattno identify the semantic
145  * referent, which is a base-relation column unless the reference is to a join
146  * USING column that isn't semantically equivalent to either join input column
147  * (because it is a FULL join or the input column requires a type coercion).
148  * In those cases varno and varattno refer to the JOIN RTE.  (Early in the
149  * planner, we replace such join references by the implied expression; but up
150  * till then we want join reference Vars to keep their original identity for
151  * query-printing purposes.)
152  *
153  * At the end of planning, Var nodes appearing in upper-level plan nodes are
154  * reassigned to point to the outputs of their subplans; for example, in a
155  * join node varno becomes INNER_VAR or OUTER_VAR and varattno becomes the
156  * index of the proper element of that subplan's target list.  Similarly,
157  * INDEX_VAR is used to identify Vars that reference an index column rather
158  * than a heap column.  (In ForeignScan and CustomScan plan nodes, INDEX_VAR
159  * is abused to signify references to columns of a custom scan tuple type.)
160  *
161  * ROWID_VAR is used in the planner to identify nonce variables that carry
162  * row identity information during UPDATE/DELETE.  This value should never
163  * be seen outside the planner.
164  *
165  * In the parser, varnosyn and varattnosyn are either identical to
166  * varno/varattno, or they specify the column's position in an aliased JOIN
167  * RTE that hides the semantic referent RTE's refname.  This is a syntactic
168  * identifier as opposed to the semantic identifier; it tells ruleutils.c
169  * how to print the Var properly.  varnosyn/varattnosyn retain their values
170  * throughout planning and execution, so they are particularly helpful to
171  * identify Vars when debugging.  Note, however, that a Var that is generated
172  * in the planner and doesn't correspond to any simple relation column may
173  * have varnosyn = varattnosyn = 0.
174  */
175 #define    INNER_VAR		65000	/* reference to inner subplan */
176 #define    OUTER_VAR		65001	/* reference to outer subplan */
177 #define    INDEX_VAR		65002	/* reference to index column */
178 #define    ROWID_VAR		65003	/* row identity column during planning */
179 
180 #define IS_SPECIAL_VARNO(varno)		((varno) >= INNER_VAR)
181 
182 /* Symbols for the indexes of the special RTE entries in rules */
183 #define    PRS2_OLD_VARNO			1
184 #define    PRS2_NEW_VARNO			2
185 
186 typedef struct Var
187 {
188 	Expr		xpr;
189 	Index		varno;			/* index of this var's relation in the range
190 								 * table, or INNER_VAR/OUTER_VAR/INDEX_VAR */
191 	AttrNumber	varattno;		/* attribute number of this var, or zero for
192 								 * all attrs ("whole-row Var") */
193 	Oid			vartype;		/* pg_type OID for the type of this var */
194 	int32		vartypmod;		/* pg_attribute typmod value */
195 	Oid			varcollid;		/* OID of collation, or InvalidOid if none */
196 	Index		varlevelsup;	/* for subquery variables referencing outer
197 								 * relations; 0 in a normal var, >0 means N
198 								 * levels up */
199 	Index		varnosyn;		/* syntactic relation index (0 if unknown) */
200 	AttrNumber	varattnosyn;	/* syntactic attribute number */
201 	int			location;		/* token location, or -1 if unknown */
202 } Var;
203 
204 /*
205  * Const
206  *
207  * Note: for varlena data types, we make a rule that a Const node's value
208  * must be in non-extended form (4-byte header, no compression or external
209  * references).  This ensures that the Const node is self-contained and makes
210  * it more likely that equal() will see logically identical values as equal.
211  */
212 typedef struct Const
213 {
214 	Expr		xpr;
215 	Oid			consttype;		/* pg_type OID of the constant's datatype */
216 	int32		consttypmod;	/* typmod value, if any */
217 	Oid			constcollid;	/* OID of collation, or InvalidOid if none */
218 	int			constlen;		/* typlen of the constant's datatype */
219 	Datum		constvalue;		/* the constant's value */
220 	bool		constisnull;	/* whether the constant is null (if true,
221 								 * constvalue is undefined) */
222 	bool		constbyval;		/* whether this datatype is passed by value.
223 								 * If true, then all the information is stored
224 								 * in the Datum. If false, then the Datum
225 								 * contains a pointer to the information. */
226 	int			location;		/* token location, or -1 if unknown */
227 } Const;
228 
229 /*
230  * Param
231  *
232  *		paramkind specifies the kind of parameter. The possible values
233  *		for this field are:
234  *
235  *		PARAM_EXTERN:  The parameter value is supplied from outside the plan.
236  *				Such parameters are numbered from 1 to n.
237  *
238  *		PARAM_EXEC:  The parameter is an internal executor parameter, used
239  *				for passing values into and out of sub-queries or from
240  *				nestloop joins to their inner scans.
241  *				For historical reasons, such parameters are numbered from 0.
242  *				These numbers are independent of PARAM_EXTERN numbers.
243  *
244  *		PARAM_SUBLINK:	The parameter represents an output column of a SubLink
245  *				node's sub-select.  The column number is contained in the
246  *				`paramid' field.  (This type of Param is converted to
247  *				PARAM_EXEC during planning.)
248  *
249  *		PARAM_MULTIEXPR:  Like PARAM_SUBLINK, the parameter represents an
250  *				output column of a SubLink node's sub-select, but here, the
251  *				SubLink is always a MULTIEXPR SubLink.  The high-order 16 bits
252  *				of the `paramid' field contain the SubLink's subLinkId, and
253  *				the low-order 16 bits contain the column number.  (This type
254  *				of Param is also converted to PARAM_EXEC during planning.)
255  */
256 typedef enum ParamKind
257 {
258 	PARAM_EXTERN,
259 	PARAM_EXEC,
260 	PARAM_SUBLINK,
261 	PARAM_MULTIEXPR
262 } ParamKind;
263 
264 typedef struct Param
265 {
266 	Expr		xpr;
267 	ParamKind	paramkind;		/* kind of parameter. See above */
268 	int			paramid;		/* numeric ID for parameter */
269 	Oid			paramtype;		/* pg_type OID of parameter's datatype */
270 	int32		paramtypmod;	/* typmod value, if known */
271 	Oid			paramcollid;	/* OID of collation, or InvalidOid if none */
272 	int			location;		/* token location, or -1 if unknown */
273 } Param;
274 
275 /*
276  * Aggref
277  *
278  * The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes.
279  *
280  * For a normal (non-ordered-set) aggregate, the non-resjunk TargetEntries
281  * represent the aggregate's regular arguments (if any) and resjunk TLEs can
282  * be added at the end to represent ORDER BY expressions that are not also
283  * arguments.  As in a top-level Query, the TLEs can be marked with
284  * ressortgroupref indexes to let them be referenced by SortGroupClause
285  * entries in the aggorder and/or aggdistinct lists.  This represents ORDER BY
286  * and DISTINCT operations to be applied to the aggregate input rows before
287  * they are passed to the transition function.  The grammar only allows a
288  * simple "DISTINCT" specifier for the arguments, but we use the full
289  * query-level representation to allow more code sharing.
290  *
291  * For an ordered-set aggregate, the args list represents the WITHIN GROUP
292  * (aggregated) arguments, all of which will be listed in the aggorder list.
293  * DISTINCT is not supported in this case, so aggdistinct will be NIL.
294  * The direct arguments appear in aggdirectargs (as a list of plain
295  * expressions, not TargetEntry nodes).
296  *
297  * aggtranstype is the data type of the state transition values for this
298  * aggregate (resolved to an actual type, if agg's transtype is polymorphic).
299  * This is determined during planning and is InvalidOid before that.
300  *
301  * aggargtypes is an OID list of the data types of the direct and regular
302  * arguments.  Normally it's redundant with the aggdirectargs and args lists,
303  * but in a combining aggregate, it's not because the args list has been
304  * replaced with a single argument representing the partial-aggregate
305  * transition values.
306  *
307  * aggsplit indicates the expected partial-aggregation mode for the Aggref's
308  * parent plan node.  It's always set to AGGSPLIT_SIMPLE in the parser, but
309  * the planner might change it to something else.  We use this mainly as
310  * a crosscheck that the Aggrefs match the plan; but note that when aggsplit
311  * indicates a non-final mode, aggtype reflects the transition data type
312  * not the SQL-level output type of the aggregate.
313  *
314  * aggno and aggtransno are -1 in the parse stage, and are set in planning.
315  * Aggregates with the same 'aggno' represent the same aggregate expression,
316  * and can share the result.  Aggregates with same 'transno' but different
317  * 'aggno' can share the same transition state, only the final function needs
318  * to be called separately.
319  */
320 typedef struct Aggref
321 {
322 	Expr		xpr;
323 	Oid			aggfnoid;		/* pg_proc Oid of the aggregate */
324 	Oid			aggtype;		/* type Oid of result of the aggregate */
325 	Oid			aggcollid;		/* OID of collation of result */
326 	Oid			inputcollid;	/* OID of collation that function should use */
327 	Oid			aggtranstype;	/* type Oid of aggregate's transition value */
328 	List	   *aggargtypes;	/* type Oids of direct and aggregated args */
329 	List	   *aggdirectargs;	/* direct arguments, if an ordered-set agg */
330 	List	   *args;			/* aggregated arguments and sort expressions */
331 	List	   *aggorder;		/* ORDER BY (list of SortGroupClause) */
332 	List	   *aggdistinct;	/* DISTINCT (list of SortGroupClause) */
333 	Expr	   *aggfilter;		/* FILTER expression, if any */
334 	bool		aggstar;		/* true if argument list was really '*' */
335 	bool		aggvariadic;	/* true if variadic arguments have been
336 								 * combined into an array last argument */
337 	char		aggkind;		/* aggregate kind (see pg_aggregate.h) */
338 	Index		agglevelsup;	/* > 0 if agg belongs to outer query */
339 	AggSplit	aggsplit;		/* expected agg-splitting mode of parent Agg */
340 	int			aggno;			/* unique ID within the Agg node */
341 	int			aggtransno;		/* unique ID of transition state in the Agg */
342 	int			location;		/* token location, or -1 if unknown */
343 } Aggref;
344 
345 /*
346  * GroupingFunc
347  *
348  * A GroupingFunc is a GROUPING(...) expression, which behaves in many ways
349  * like an aggregate function (e.g. it "belongs" to a specific query level,
350  * which might not be the one immediately containing it), but also differs in
351  * an important respect: it never evaluates its arguments, they merely
352  * designate expressions from the GROUP BY clause of the query level to which
353  * it belongs.
354  *
355  * The spec defines the evaluation of GROUPING() purely by syntactic
356  * replacement, but we make it a real expression for optimization purposes so
357  * that one Agg node can handle multiple grouping sets at once.  Evaluating the
358  * result only needs the column positions to check against the grouping set
359  * being projected.  However, for EXPLAIN to produce meaningful output, we have
360  * to keep the original expressions around, since expression deparse does not
361  * give us any feasible way to get at the GROUP BY clause.
362  *
363  * Also, we treat two GroupingFunc nodes as equal if they have equal arguments
364  * lists and agglevelsup, without comparing the refs and cols annotations.
365  *
366  * In raw parse output we have only the args list; parse analysis fills in the
367  * refs list, and the planner fills in the cols list.
368  */
369 typedef struct GroupingFunc
370 {
371 	Expr		xpr;
372 	List	   *args;			/* arguments, not evaluated but kept for
373 								 * benefit of EXPLAIN etc. */
374 	List	   *refs;			/* ressortgrouprefs of arguments */
375 	List	   *cols;			/* actual column positions set by planner */
376 	Index		agglevelsup;	/* same as Aggref.agglevelsup */
377 	int			location;		/* token location */
378 } GroupingFunc;
379 
380 /*
381  * WindowFunc
382  */
383 typedef struct WindowFunc
384 {
385 	Expr		xpr;
386 	Oid			winfnoid;		/* pg_proc Oid of the function */
387 	Oid			wintype;		/* type Oid of result of the window function */
388 	Oid			wincollid;		/* OID of collation of result */
389 	Oid			inputcollid;	/* OID of collation that function should use */
390 	List	   *args;			/* arguments to the window function */
391 	Expr	   *aggfilter;		/* FILTER expression, if any */
392 	Index		winref;			/* index of associated WindowClause */
393 	bool		winstar;		/* true if argument list was really '*' */
394 	bool		winagg;			/* is function a simple aggregate? */
395 	int			location;		/* token location, or -1 if unknown */
396 } WindowFunc;
397 
398 /*
399  * SubscriptingRef: describes a subscripting operation over a container
400  * (array, etc).
401  *
402  * A SubscriptingRef can describe fetching a single element from a container,
403  * fetching a part of a container (e.g. an array slice), storing a single
404  * element into a container, or storing a slice.  The "store" cases work with
405  * an initial container value and a source value that is inserted into the
406  * appropriate part of the container; the result of the operation is an
407  * entire new modified container value.
408  *
409  * If reflowerindexpr = NIL, then we are fetching or storing a single container
410  * element at the subscripts given by refupperindexpr. Otherwise we are
411  * fetching or storing a container slice, that is a rectangular subcontainer
412  * with lower and upper bounds given by the index expressions.
413  * reflowerindexpr must be the same length as refupperindexpr when it
414  * is not NIL.
415  *
416  * In the slice case, individual expressions in the subscript lists can be
417  * NULL, meaning "substitute the array's current lower or upper bound".
418  * (Non-array containers may or may not support this.)
419  *
420  * refcontainertype is the actual container type that determines the
421  * subscripting semantics.  (This will generally be either the exposed type of
422  * refexpr, or the base type if that is a domain.)  refelemtype is the type of
423  * the container's elements; this is saved for the use of the subscripting
424  * functions, but is not used by the core code.  refrestype, reftypmod, and
425  * refcollid describe the type of the SubscriptingRef's result.  In a store
426  * expression, refrestype will always match refcontainertype; in a fetch,
427  * it could be refelemtype for an element fetch, or refcontainertype for a
428  * slice fetch, or possibly something else as determined by type-specific
429  * subscripting logic.  Likewise, reftypmod and refcollid will match the
430  * container's properties in a store, but could be different in a fetch.
431  *
432  * Note: for the cases where a container is returned, if refexpr yields a R/W
433  * expanded container, then the implementation is allowed to modify that
434  * object in-place and return the same object.
435  */
436 typedef struct SubscriptingRef
437 {
438 	Expr		xpr;
439 	Oid			refcontainertype;	/* type of the container proper */
440 	Oid			refelemtype;	/* the container type's pg_type.typelem */
441 	Oid			refrestype;		/* type of the SubscriptingRef's result */
442 	int32		reftypmod;		/* typmod of the result */
443 	Oid			refcollid;		/* collation of result, or InvalidOid if none */
444 	List	   *refupperindexpr;	/* expressions that evaluate to upper
445 									 * container indexes */
446 	List	   *reflowerindexpr;	/* expressions that evaluate to lower
447 									 * container indexes, or NIL for single
448 									 * container element */
449 	Expr	   *refexpr;		/* the expression that evaluates to a
450 								 * container value */
451 	Expr	   *refassgnexpr;	/* expression for the source value, or NULL if
452 								 * fetch */
453 } SubscriptingRef;
454 
455 /*
456  * CoercionContext - distinguishes the allowed set of type casts
457  *
458  * NB: ordering of the alternatives is significant; later (larger) values
459  * allow more casts than earlier ones.
460  */
461 typedef enum CoercionContext
462 {
463 	COERCION_IMPLICIT,			/* coercion in context of expression */
464 	COERCION_ASSIGNMENT,		/* coercion in context of assignment */
465 	COERCION_PLPGSQL,			/* if no assignment cast, use CoerceViaIO */
466 	COERCION_EXPLICIT			/* explicit cast operation */
467 } CoercionContext;
468 
469 /*
470  * CoercionForm - how to display a FuncExpr or related node
471  *
472  * "Coercion" is a bit of a misnomer, since this value records other
473  * special syntaxes besides casts, but for now we'll keep this naming.
474  *
475  * NB: equal() ignores CoercionForm fields, therefore this *must* not carry
476  * any semantically significant information.  We need that behavior so that
477  * the planner will consider equivalent implicit and explicit casts to be
478  * equivalent.  In cases where those actually behave differently, the coercion
479  * function's arguments will be different.
480  */
481 typedef enum CoercionForm
482 {
483 	COERCE_EXPLICIT_CALL,		/* display as a function call */
484 	COERCE_EXPLICIT_CAST,		/* display as an explicit cast */
485 	COERCE_IMPLICIT_CAST,		/* implicit cast, so hide it */
486 	COERCE_SQL_SYNTAX			/* display with SQL-mandated special syntax */
487 } CoercionForm;
488 
489 /*
490  * FuncExpr - expression node for a function call
491  */
492 typedef struct FuncExpr
493 {
494 	Expr		xpr;
495 	Oid			funcid;			/* PG_PROC OID of the function */
496 	Oid			funcresulttype; /* PG_TYPE OID of result value */
497 	bool		funcretset;		/* true if function returns set */
498 	bool		funcvariadic;	/* true if variadic arguments have been
499 								 * combined into an array last argument */
500 	CoercionForm funcformat;	/* how to display this function call */
501 	Oid			funccollid;		/* OID of collation of result */
502 	Oid			inputcollid;	/* OID of collation that function should use */
503 	List	   *args;			/* arguments to the function */
504 	int			location;		/* token location, or -1 if unknown */
505 } FuncExpr;
506 
507 /*
508  * NamedArgExpr - a named argument of a function
509  *
510  * This node type can only appear in the args list of a FuncCall or FuncExpr
511  * node.  We support pure positional call notation (no named arguments),
512  * named notation (all arguments are named), and mixed notation (unnamed
513  * arguments followed by named ones).
514  *
515  * Parse analysis sets argnumber to the positional index of the argument,
516  * but doesn't rearrange the argument list.
517  *
518  * The planner will convert argument lists to pure positional notation
519  * during expression preprocessing, so execution never sees a NamedArgExpr.
520  */
521 typedef struct NamedArgExpr
522 {
523 	Expr		xpr;
524 	Expr	   *arg;			/* the argument expression */
525 	char	   *name;			/* the name */
526 	int			argnumber;		/* argument's number in positional notation */
527 	int			location;		/* argument name location, or -1 if unknown */
528 } NamedArgExpr;
529 
530 /*
531  * OpExpr - expression node for an operator invocation
532  *
533  * Semantically, this is essentially the same as a function call.
534  *
535  * Note that opfuncid is not necessarily filled in immediately on creation
536  * of the node.  The planner makes sure it is valid before passing the node
537  * tree to the executor, but during parsing/planning opfuncid can be 0.
538  */
539 typedef struct OpExpr
540 {
541 	Expr		xpr;
542 	Oid			opno;			/* PG_OPERATOR OID of the operator */
543 	Oid			opfuncid;		/* PG_PROC OID of underlying function */
544 	Oid			opresulttype;	/* PG_TYPE OID of result value */
545 	bool		opretset;		/* true if operator returns set */
546 	Oid			opcollid;		/* OID of collation of result */
547 	Oid			inputcollid;	/* OID of collation that operator should use */
548 	List	   *args;			/* arguments to the operator (1 or 2) */
549 	int			location;		/* token location, or -1 if unknown */
550 } OpExpr;
551 
552 /*
553  * DistinctExpr - expression node for "x IS DISTINCT FROM y"
554  *
555  * Except for the nodetag, this is represented identically to an OpExpr
556  * referencing the "=" operator for x and y.
557  * We use "=", not the more obvious "<>", because more datatypes have "="
558  * than "<>".  This means the executor must invert the operator result.
559  * Note that the operator function won't be called at all if either input
560  * is NULL, since then the result can be determined directly.
561  */
562 typedef OpExpr DistinctExpr;
563 
564 /*
565  * NullIfExpr - a NULLIF expression
566  *
567  * Like DistinctExpr, this is represented the same as an OpExpr referencing
568  * the "=" operator for x and y.
569  */
570 typedef OpExpr NullIfExpr;
571 
572 /*
573  * ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
574  *
575  * The operator must yield boolean.  It is applied to the left operand
576  * and each element of the righthand array, and the results are combined
577  * with OR or AND (for ANY or ALL respectively).  The node representation
578  * is almost the same as for the underlying operator, but we need a useOr
579  * flag to remember whether it's ANY or ALL, and we don't have to store
580  * the result type (or the collation) because it must be boolean.
581  *
582  * A ScalarArrayOpExpr with a valid hashfuncid is evaluated during execution
583  * by building a hash table containing the Const values from the rhs arg.
584  * This table is probed during expression evaluation.  Only useOr=true
585  * ScalarArrayOpExpr with Const arrays on the rhs can have the hashfuncid
586  * field set. See convert_saop_to_hashed_saop().
587  */
588 typedef struct ScalarArrayOpExpr
589 {
590 	Expr		xpr;
591 	Oid			opno;			/* PG_OPERATOR OID of the operator */
592 	Oid			opfuncid;		/* PG_PROC OID of comparison function */
593 	Oid			hashfuncid;		/* PG_PROC OID of hash func or InvalidOid */
594 	bool		useOr;			/* true for ANY, false for ALL */
595 	Oid			inputcollid;	/* OID of collation that operator should use */
596 	List	   *args;			/* the scalar and array operands */
597 	int			location;		/* token location, or -1 if unknown */
598 } ScalarArrayOpExpr;
599 
600 /*
601  * BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
602  *
603  * Notice the arguments are given as a List.  For NOT, of course the list
604  * must always have exactly one element.  For AND and OR, there can be two
605  * or more arguments.
606  */
607 typedef enum BoolExprType
608 {
609 	AND_EXPR, OR_EXPR, NOT_EXPR
610 } BoolExprType;
611 
612 typedef struct BoolExpr
613 {
614 	Expr		xpr;
615 	BoolExprType boolop;
616 	List	   *args;			/* arguments to this expression */
617 	int			location;		/* token location, or -1 if unknown */
618 } BoolExpr;
619 
620 /*
621  * SubLink
622  *
623  * A SubLink represents a subselect appearing in an expression, and in some
624  * cases also the combining operator(s) just above it.  The subLinkType
625  * indicates the form of the expression represented:
626  *	EXISTS_SUBLINK		EXISTS(SELECT ...)
627  *	ALL_SUBLINK			(lefthand) op ALL (SELECT ...)
628  *	ANY_SUBLINK			(lefthand) op ANY (SELECT ...)
629  *	ROWCOMPARE_SUBLINK	(lefthand) op (SELECT ...)
630  *	EXPR_SUBLINK		(SELECT with single targetlist item ...)
631  *	MULTIEXPR_SUBLINK	(SELECT with multiple targetlist items ...)
632  *	ARRAY_SUBLINK		ARRAY(SELECT with single targetlist item ...)
633  *	CTE_SUBLINK			WITH query (never actually part of an expression)
634  * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
635  * same length as the subselect's targetlist.  ROWCOMPARE will *always* have
636  * a list with more than one entry; if the subselect has just one target
637  * then the parser will create an EXPR_SUBLINK instead (and any operator
638  * above the subselect will be represented separately).
639  * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most
640  * one row (if it returns no rows, the result is NULL).
641  * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
642  * results.  ALL and ANY combine the per-row results using AND and OR
643  * semantics respectively.
644  * ARRAY requires just one target column, and creates an array of the target
645  * column's type using any number of rows resulting from the subselect.
646  *
647  * SubLink is classed as an Expr node, but it is not actually executable;
648  * it must be replaced in the expression tree by a SubPlan node during
649  * planning.
650  *
651  * NOTE: in the raw output of gram.y, testexpr contains just the raw form
652  * of the lefthand expression (if any), and operName is the String name of
653  * the combining operator.  Also, subselect is a raw parsetree.  During parse
654  * analysis, the parser transforms testexpr into a complete boolean expression
655  * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
656  * output columns of the subselect.  And subselect is transformed to a Query.
657  * This is the representation seen in saved rules and in the rewriter.
658  *
659  * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName
660  * are unused and are always null.
661  *
662  * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in
663  * other SubLinks.  This number identifies different multiple-assignment
664  * subqueries within an UPDATE statement's SET list.  It is unique only
665  * within a particular targetlist.  The output column(s) of the MULTIEXPR
666  * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist.
667  *
668  * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
669  * in SubPlans generated for WITH subqueries.
670  */
671 typedef enum SubLinkType
672 {
673 	EXISTS_SUBLINK,
674 	ALL_SUBLINK,
675 	ANY_SUBLINK,
676 	ROWCOMPARE_SUBLINK,
677 	EXPR_SUBLINK,
678 	MULTIEXPR_SUBLINK,
679 	ARRAY_SUBLINK,
680 	CTE_SUBLINK					/* for SubPlans only */
681 } SubLinkType;
682 
683 
684 typedef struct SubLink
685 {
686 	Expr		xpr;
687 	SubLinkType subLinkType;	/* see above */
688 	int			subLinkId;		/* ID (1..n); 0 if not MULTIEXPR */
689 	Node	   *testexpr;		/* outer-query test for ALL/ANY/ROWCOMPARE */
690 	List	   *operName;		/* originally specified operator name */
691 	Node	   *subselect;		/* subselect as Query* or raw parsetree */
692 	int			location;		/* token location, or -1 if unknown */
693 } SubLink;
694 
695 /*
696  * SubPlan - executable expression node for a subplan (sub-SELECT)
697  *
698  * The planner replaces SubLink nodes in expression trees with SubPlan
699  * nodes after it has finished planning the subquery.  SubPlan references
700  * a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
701  * (We avoid a direct link to make it easier to copy expression trees
702  * without causing multiple processing of the subplan.)
703  *
704  * In an ordinary subplan, testexpr points to an executable expression
705  * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
706  * operator(s); the left-hand arguments are the original lefthand expressions,
707  * and the right-hand arguments are PARAM_EXEC Param nodes representing the
708  * outputs of the sub-select.  (NOTE: runtime coercion functions may be
709  * inserted as well.)  This is just the same expression tree as testexpr in
710  * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
711  * suitably numbered PARAM_EXEC nodes.
712  *
713  * If the sub-select becomes an initplan rather than a subplan, the executable
714  * expression is part of the outer plan's expression tree (and the SubPlan
715  * node itself is not, but rather is found in the outer plan's initPlan
716  * list).  In this case testexpr is NULL to avoid duplication.
717  *
718  * The planner also derives lists of the values that need to be passed into
719  * and out of the subplan.  Input values are represented as a list "args" of
720  * expressions to be evaluated in the outer-query context (currently these
721  * args are always just Vars, but in principle they could be any expression).
722  * The values are assigned to the global PARAM_EXEC params indexed by parParam
723  * (the parParam and args lists must have the same ordering).  setParam is a
724  * list of the PARAM_EXEC params that are computed by the sub-select, if it
725  * is an initplan; they are listed in order by sub-select output column
726  * position.  (parParam and setParam are integer Lists, not Bitmapsets,
727  * because their ordering is significant.)
728  *
729  * Also, the planner computes startup and per-call costs for use of the
730  * SubPlan.  Note that these include the cost of the subquery proper,
731  * evaluation of the testexpr if any, and any hashtable management overhead.
732  */
733 typedef struct SubPlan
734 {
735 	Expr		xpr;
736 	/* Fields copied from original SubLink: */
737 	SubLinkType subLinkType;	/* see above */
738 	/* The combining operators, transformed to an executable expression: */
739 	Node	   *testexpr;		/* OpExpr or RowCompareExpr expression tree */
740 	List	   *paramIds;		/* IDs of Params embedded in the above */
741 	/* Identification of the Plan tree to use: */
742 	int			plan_id;		/* Index (from 1) in PlannedStmt.subplans */
743 	/* Identification of the SubPlan for EXPLAIN and debugging purposes: */
744 	char	   *plan_name;		/* A name assigned during planning */
745 	/* Extra data useful for determining subplan's output type: */
746 	Oid			firstColType;	/* Type of first column of subplan result */
747 	int32		firstColTypmod; /* Typmod of first column of subplan result */
748 	Oid			firstColCollation;	/* Collation of first column of subplan
749 									 * result */
750 	/* Information about execution strategy: */
751 	bool		useHashTable;	/* true to store subselect output in a hash
752 								 * table (implies we are doing "IN") */
753 	bool		unknownEqFalse; /* true if it's okay to return FALSE when the
754 								 * spec result is UNKNOWN; this allows much
755 								 * simpler handling of null values */
756 	bool		parallel_safe;	/* is the subplan parallel-safe? */
757 	/* Note: parallel_safe does not consider contents of testexpr or args */
758 	/* Information for passing params into and out of the subselect: */
759 	/* setParam and parParam are lists of integers (param IDs) */
760 	List	   *setParam;		/* initplan subqueries have to set these
761 								 * Params for parent plan */
762 	List	   *parParam;		/* indices of input Params from parent plan */
763 	List	   *args;			/* exprs to pass as parParam values */
764 	/* Estimated execution costs: */
765 	Cost		startup_cost;	/* one-time setup cost */
766 	Cost		per_call_cost;	/* cost for each subplan evaluation */
767 } SubPlan;
768 
769 /*
770  * AlternativeSubPlan - expression node for a choice among SubPlans
771  *
772  * This is used only transiently during planning: by the time the plan
773  * reaches the executor, all AlternativeSubPlan nodes have been removed.
774  *
775  * The subplans are given as a List so that the node definition need not
776  * change if there's ever more than two alternatives.  For the moment,
777  * though, there are always exactly two; and the first one is the fast-start
778  * plan.
779  */
780 typedef struct AlternativeSubPlan
781 {
782 	Expr		xpr;
783 	List	   *subplans;		/* SubPlan(s) with equivalent results */
784 } AlternativeSubPlan;
785 
786 /* ----------------
787  * FieldSelect
788  *
789  * FieldSelect represents the operation of extracting one field from a tuple
790  * value.  At runtime, the input expression is expected to yield a rowtype
791  * Datum.  The specified field number is extracted and returned as a Datum.
792  * ----------------
793  */
794 
795 typedef struct FieldSelect
796 {
797 	Expr		xpr;
798 	Expr	   *arg;			/* input expression */
799 	AttrNumber	fieldnum;		/* attribute number of field to extract */
800 	Oid			resulttype;		/* type of the field (result type of this
801 								 * node) */
802 	int32		resulttypmod;	/* output typmod (usually -1) */
803 	Oid			resultcollid;	/* OID of collation of the field */
804 } FieldSelect;
805 
806 /* ----------------
807  * FieldStore
808  *
809  * FieldStore represents the operation of modifying one field in a tuple
810  * value, yielding a new tuple value (the input is not touched!).  Like
811  * the assign case of SubscriptingRef, this is used to implement UPDATE of a
812  * portion of a column.
813  *
814  * resulttype is always a named composite type (not a domain).  To update
815  * a composite domain value, apply CoerceToDomain to the FieldStore.
816  *
817  * A single FieldStore can actually represent updates of several different
818  * fields.  The parser only generates FieldStores with single-element lists,
819  * but the planner will collapse multiple updates of the same base column
820  * into one FieldStore.
821  * ----------------
822  */
823 
824 typedef struct FieldStore
825 {
826 	Expr		xpr;
827 	Expr	   *arg;			/* input tuple value */
828 	List	   *newvals;		/* new value(s) for field(s) */
829 	List	   *fieldnums;		/* integer list of field attnums */
830 	Oid			resulttype;		/* type of result (same as type of arg) */
831 	/* Like RowExpr, we deliberately omit a typmod and collation here */
832 } FieldStore;
833 
834 /* ----------------
835  * RelabelType
836  *
837  * RelabelType represents a "dummy" type coercion between two binary-
838  * compatible datatypes, such as reinterpreting the result of an OID
839  * expression as an int4.  It is a no-op at runtime; we only need it
840  * to provide a place to store the correct type to be attributed to
841  * the expression result during type resolution.  (We can't get away
842  * with just overwriting the type field of the input expression node,
843  * so we need a separate node to show the coercion's result type.)
844  * ----------------
845  */
846 
847 typedef struct RelabelType
848 {
849 	Expr		xpr;
850 	Expr	   *arg;			/* input expression */
851 	Oid			resulttype;		/* output type of coercion expression */
852 	int32		resulttypmod;	/* output typmod (usually -1) */
853 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
854 	CoercionForm relabelformat; /* how to display this node */
855 	int			location;		/* token location, or -1 if unknown */
856 } RelabelType;
857 
858 /* ----------------
859  * CoerceViaIO
860  *
861  * CoerceViaIO represents a type coercion between two types whose textual
862  * representations are compatible, implemented by invoking the source type's
863  * typoutput function then the destination type's typinput function.
864  * ----------------
865  */
866 
867 typedef struct CoerceViaIO
868 {
869 	Expr		xpr;
870 	Expr	   *arg;			/* input expression */
871 	Oid			resulttype;		/* output type of coercion */
872 	/* output typmod is not stored, but is presumed -1 */
873 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
874 	CoercionForm coerceformat;	/* how to display this node */
875 	int			location;		/* token location, or -1 if unknown */
876 } CoerceViaIO;
877 
878 /* ----------------
879  * ArrayCoerceExpr
880  *
881  * ArrayCoerceExpr represents a type coercion from one array type to another,
882  * which is implemented by applying the per-element coercion expression
883  * "elemexpr" to each element of the source array.  Within elemexpr, the
884  * source element is represented by a CaseTestExpr node.  Note that even if
885  * elemexpr is a no-op (that is, just CaseTestExpr + RelabelType), the
886  * coercion still requires some effort: we have to fix the element type OID
887  * stored in the array header.
888  * ----------------
889  */
890 
891 typedef struct ArrayCoerceExpr
892 {
893 	Expr		xpr;
894 	Expr	   *arg;			/* input expression (yields an array) */
895 	Expr	   *elemexpr;		/* expression representing per-element work */
896 	Oid			resulttype;		/* output type of coercion (an array type) */
897 	int32		resulttypmod;	/* output typmod (also element typmod) */
898 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
899 	CoercionForm coerceformat;	/* how to display this node */
900 	int			location;		/* token location, or -1 if unknown */
901 } ArrayCoerceExpr;
902 
903 /* ----------------
904  * ConvertRowtypeExpr
905  *
906  * ConvertRowtypeExpr represents a type coercion from one composite type
907  * to another, where the source type is guaranteed to contain all the columns
908  * needed for the destination type plus possibly others; the columns need not
909  * be in the same positions, but are matched up by name.  This is primarily
910  * used to convert a whole-row value of an inheritance child table into a
911  * valid whole-row value of its parent table's rowtype.  Both resulttype
912  * and the exposed type of "arg" must be named composite types (not domains).
913  * ----------------
914  */
915 
916 typedef struct ConvertRowtypeExpr
917 {
918 	Expr		xpr;
919 	Expr	   *arg;			/* input expression */
920 	Oid			resulttype;		/* output type (always a composite type) */
921 	/* Like RowExpr, we deliberately omit a typmod and collation here */
922 	CoercionForm convertformat; /* how to display this node */
923 	int			location;		/* token location, or -1 if unknown */
924 } ConvertRowtypeExpr;
925 
926 /*----------
927  * CollateExpr - COLLATE
928  *
929  * The planner replaces CollateExpr with RelabelType during expression
930  * preprocessing, so execution never sees a CollateExpr.
931  *----------
932  */
933 typedef struct CollateExpr
934 {
935 	Expr		xpr;
936 	Expr	   *arg;			/* input expression */
937 	Oid			collOid;		/* collation's OID */
938 	int			location;		/* token location, or -1 if unknown */
939 } CollateExpr;
940 
941 /*----------
942  * CaseExpr - a CASE expression
943  *
944  * We support two distinct forms of CASE expression:
945  *		CASE WHEN boolexpr THEN expr [ WHEN boolexpr THEN expr ... ]
946  *		CASE testexpr WHEN compexpr THEN expr [ WHEN compexpr THEN expr ... ]
947  * These are distinguishable by the "arg" field being NULL in the first case
948  * and the testexpr in the second case.
949  *
950  * In the raw grammar output for the second form, the condition expressions
951  * of the WHEN clauses are just the comparison values.  Parse analysis
952  * converts these to valid boolean expressions of the form
953  *		CaseTestExpr '=' compexpr
954  * where the CaseTestExpr node is a placeholder that emits the correct
955  * value at runtime.  This structure is used so that the testexpr need be
956  * evaluated only once.  Note that after parse analysis, the condition
957  * expressions always yield boolean.
958  *
959  * Note: we can test whether a CaseExpr has been through parse analysis
960  * yet by checking whether casetype is InvalidOid or not.
961  *----------
962  */
963 typedef struct CaseExpr
964 {
965 	Expr		xpr;
966 	Oid			casetype;		/* type of expression result */
967 	Oid			casecollid;		/* OID of collation, or InvalidOid if none */
968 	Expr	   *arg;			/* implicit equality comparison argument */
969 	List	   *args;			/* the arguments (list of WHEN clauses) */
970 	Expr	   *defresult;		/* the default result (ELSE clause) */
971 	int			location;		/* token location, or -1 if unknown */
972 } CaseExpr;
973 
974 /*
975  * CaseWhen - one arm of a CASE expression
976  */
977 typedef struct CaseWhen
978 {
979 	Expr		xpr;
980 	Expr	   *expr;			/* condition expression */
981 	Expr	   *result;			/* substitution result */
982 	int			location;		/* token location, or -1 if unknown */
983 } CaseWhen;
984 
985 /*
986  * Placeholder node for the test value to be processed by a CASE expression.
987  * This is effectively like a Param, but can be implemented more simply
988  * since we need only one replacement value at a time.
989  *
990  * We also abuse this node type for some other purposes, including:
991  *	* Placeholder for the current array element value in ArrayCoerceExpr;
992  *	  see build_coercion_expression().
993  *	* Nested FieldStore/SubscriptingRef assignment expressions in INSERT/UPDATE;
994  *	  see transformAssignmentIndirection().
995  *
996  * The uses in CaseExpr and ArrayCoerceExpr are safe only to the extent that
997  * there is not any other CaseExpr or ArrayCoerceExpr between the value source
998  * node and its child CaseTestExpr(s).  This is true in the parse analysis
999  * output, but the planner's function-inlining logic has to be careful not to
1000  * break it.
1001  *
1002  * The nested-assignment-expression case is safe because the only node types
1003  * that can be above such CaseTestExprs are FieldStore and SubscriptingRef.
1004  */
1005 typedef struct CaseTestExpr
1006 {
1007 	Expr		xpr;
1008 	Oid			typeId;			/* type for substituted value */
1009 	int32		typeMod;		/* typemod for substituted value */
1010 	Oid			collation;		/* collation for the substituted value */
1011 } CaseTestExpr;
1012 
1013 /*
1014  * ArrayExpr - an ARRAY[] expression
1015  *
1016  * Note: if multidims is false, the constituent expressions all yield the
1017  * scalar type identified by element_typeid.  If multidims is true, the
1018  * constituent expressions all yield arrays of element_typeid (ie, the same
1019  * type as array_typeid); at runtime we must check for compatible subscripts.
1020  */
1021 typedef struct ArrayExpr
1022 {
1023 	Expr		xpr;
1024 	Oid			array_typeid;	/* type of expression result */
1025 	Oid			array_collid;	/* OID of collation, or InvalidOid if none */
1026 	Oid			element_typeid; /* common type of array elements */
1027 	List	   *elements;		/* the array elements or sub-arrays */
1028 	bool		multidims;		/* true if elements are sub-arrays */
1029 	int			location;		/* token location, or -1 if unknown */
1030 } ArrayExpr;
1031 
1032 /*
1033  * RowExpr - a ROW() expression
1034  *
1035  * Note: the list of fields must have a one-for-one correspondence with
1036  * physical fields of the associated rowtype, although it is okay for it
1037  * to be shorter than the rowtype.  That is, the N'th list element must
1038  * match up with the N'th physical field.  When the N'th physical field
1039  * is a dropped column (attisdropped) then the N'th list element can just
1040  * be a NULL constant.  (This case can only occur for named composite types,
1041  * not RECORD types, since those are built from the RowExpr itself rather
1042  * than vice versa.)  It is important not to assume that length(args) is
1043  * the same as the number of columns logically present in the rowtype.
1044  *
1045  * colnames provides field names in cases where the names can't easily be
1046  * obtained otherwise.  Names *must* be provided if row_typeid is RECORDOID.
1047  * If row_typeid identifies a known composite type, colnames can be NIL to
1048  * indicate the type's cataloged field names apply.  Note that colnames can
1049  * be non-NIL even for a composite type, and typically is when the RowExpr
1050  * was created by expanding a whole-row Var.  This is so that we can retain
1051  * the column alias names of the RTE that the Var referenced (which would
1052  * otherwise be very difficult to extract from the parsetree).  Like the
1053  * args list, colnames is one-for-one with physical fields of the rowtype.
1054  */
1055 typedef struct RowExpr
1056 {
1057 	Expr		xpr;
1058 	List	   *args;			/* the fields */
1059 	Oid			row_typeid;		/* RECORDOID or a composite type's ID */
1060 
1061 	/*
1062 	 * row_typeid cannot be a domain over composite, only plain composite.  To
1063 	 * create a composite domain value, apply CoerceToDomain to the RowExpr.
1064 	 *
1065 	 * Note: we deliberately do NOT store a typmod.  Although a typmod will be
1066 	 * associated with specific RECORD types at runtime, it will differ for
1067 	 * different backends, and so cannot safely be stored in stored
1068 	 * parsetrees.  We must assume typmod -1 for a RowExpr node.
1069 	 *
1070 	 * We don't need to store a collation either.  The result type is
1071 	 * necessarily composite, and composite types never have a collation.
1072 	 */
1073 	CoercionForm row_format;	/* how to display this node */
1074 	List	   *colnames;		/* list of String, or NIL */
1075 	int			location;		/* token location, or -1 if unknown */
1076 } RowExpr;
1077 
1078 /*
1079  * RowCompareExpr - row-wise comparison, such as (a, b) <= (1, 2)
1080  *
1081  * We support row comparison for any operator that can be determined to
1082  * act like =, <>, <, <=, >, or >= (we determine this by looking for the
1083  * operator in btree opfamilies).  Note that the same operator name might
1084  * map to a different operator for each pair of row elements, since the
1085  * element datatypes can vary.
1086  *
1087  * A RowCompareExpr node is only generated for the < <= > >= cases;
1088  * the = and <> cases are translated to simple AND or OR combinations
1089  * of the pairwise comparisons.  However, we include = and <> in the
1090  * RowCompareType enum for the convenience of parser logic.
1091  */
1092 typedef enum RowCompareType
1093 {
1094 	/* Values of this enum are chosen to match btree strategy numbers */
1095 	ROWCOMPARE_LT = 1,			/* BTLessStrategyNumber */
1096 	ROWCOMPARE_LE = 2,			/* BTLessEqualStrategyNumber */
1097 	ROWCOMPARE_EQ = 3,			/* BTEqualStrategyNumber */
1098 	ROWCOMPARE_GE = 4,			/* BTGreaterEqualStrategyNumber */
1099 	ROWCOMPARE_GT = 5,			/* BTGreaterStrategyNumber */
1100 	ROWCOMPARE_NE = 6			/* no such btree strategy */
1101 } RowCompareType;
1102 
1103 typedef struct RowCompareExpr
1104 {
1105 	Expr		xpr;
1106 	RowCompareType rctype;		/* LT LE GE or GT, never EQ or NE */
1107 	List	   *opnos;			/* OID list of pairwise comparison ops */
1108 	List	   *opfamilies;		/* OID list of containing operator families */
1109 	List	   *inputcollids;	/* OID list of collations for comparisons */
1110 	List	   *largs;			/* the left-hand input arguments */
1111 	List	   *rargs;			/* the right-hand input arguments */
1112 } RowCompareExpr;
1113 
1114 /*
1115  * CoalesceExpr - a COALESCE expression
1116  */
1117 typedef struct CoalesceExpr
1118 {
1119 	Expr		xpr;
1120 	Oid			coalescetype;	/* type of expression result */
1121 	Oid			coalescecollid; /* OID of collation, or InvalidOid if none */
1122 	List	   *args;			/* the arguments */
1123 	int			location;		/* token location, or -1 if unknown */
1124 } CoalesceExpr;
1125 
1126 /*
1127  * MinMaxExpr - a GREATEST or LEAST function
1128  */
1129 typedef enum MinMaxOp
1130 {
1131 	IS_GREATEST,
1132 	IS_LEAST
1133 } MinMaxOp;
1134 
1135 typedef struct MinMaxExpr
1136 {
1137 	Expr		xpr;
1138 	Oid			minmaxtype;		/* common type of arguments and result */
1139 	Oid			minmaxcollid;	/* OID of collation of result */
1140 	Oid			inputcollid;	/* OID of collation that function should use */
1141 	MinMaxOp	op;				/* function to execute */
1142 	List	   *args;			/* the arguments */
1143 	int			location;		/* token location, or -1 if unknown */
1144 } MinMaxExpr;
1145 
1146 /*
1147  * SQLValueFunction - parameterless functions with special grammar productions
1148  *
1149  * The SQL standard categorizes some of these as <datetime value function>
1150  * and others as <general value specification>.  We call 'em SQLValueFunctions
1151  * for lack of a better term.  We store type and typmod of the result so that
1152  * some code doesn't need to know each function individually, and because
1153  * we would need to store typmod anyway for some of the datetime functions.
1154  * Note that currently, all variants return non-collating datatypes, so we do
1155  * not need a collation field; also, all these functions are stable.
1156  */
1157 typedef enum SQLValueFunctionOp
1158 {
1159 	SVFOP_CURRENT_DATE,
1160 	SVFOP_CURRENT_TIME,
1161 	SVFOP_CURRENT_TIME_N,
1162 	SVFOP_CURRENT_TIMESTAMP,
1163 	SVFOP_CURRENT_TIMESTAMP_N,
1164 	SVFOP_LOCALTIME,
1165 	SVFOP_LOCALTIME_N,
1166 	SVFOP_LOCALTIMESTAMP,
1167 	SVFOP_LOCALTIMESTAMP_N,
1168 	SVFOP_CURRENT_ROLE,
1169 	SVFOP_CURRENT_USER,
1170 	SVFOP_USER,
1171 	SVFOP_SESSION_USER,
1172 	SVFOP_CURRENT_CATALOG,
1173 	SVFOP_CURRENT_SCHEMA
1174 } SQLValueFunctionOp;
1175 
1176 typedef struct SQLValueFunction
1177 {
1178 	Expr		xpr;
1179 	SQLValueFunctionOp op;		/* which function this is */
1180 	Oid			type;			/* result type/typmod */
1181 	int32		typmod;
1182 	int			location;		/* token location, or -1 if unknown */
1183 } SQLValueFunction;
1184 
1185 /*
1186  * XmlExpr - various SQL/XML functions requiring special grammar productions
1187  *
1188  * 'name' carries the "NAME foo" argument (already XML-escaped).
1189  * 'named_args' and 'arg_names' represent an xml_attribute list.
1190  * 'args' carries all other arguments.
1191  *
1192  * Note: result type/typmod/collation are not stored, but can be deduced
1193  * from the XmlExprOp.  The type/typmod fields are just used for display
1194  * purposes, and are NOT necessarily the true result type of the node.
1195  */
1196 typedef enum XmlExprOp
1197 {
1198 	IS_XMLCONCAT,				/* XMLCONCAT(args) */
1199 	IS_XMLELEMENT,				/* XMLELEMENT(name, xml_attributes, args) */
1200 	IS_XMLFOREST,				/* XMLFOREST(xml_attributes) */
1201 	IS_XMLPARSE,				/* XMLPARSE(text, is_doc, preserve_ws) */
1202 	IS_XMLPI,					/* XMLPI(name [, args]) */
1203 	IS_XMLROOT,					/* XMLROOT(xml, version, standalone) */
1204 	IS_XMLSERIALIZE,			/* XMLSERIALIZE(is_document, xmlval) */
1205 	IS_DOCUMENT					/* xmlval IS DOCUMENT */
1206 } XmlExprOp;
1207 
1208 typedef enum
1209 {
1210 	XMLOPTION_DOCUMENT,
1211 	XMLOPTION_CONTENT
1212 } XmlOptionType;
1213 
1214 typedef struct XmlExpr
1215 {
1216 	Expr		xpr;
1217 	XmlExprOp	op;				/* xml function ID */
1218 	char	   *name;			/* name in xml(NAME foo ...) syntaxes */
1219 	List	   *named_args;		/* non-XML expressions for xml_attributes */
1220 	List	   *arg_names;		/* parallel list of Value strings */
1221 	List	   *args;			/* list of expressions */
1222 	XmlOptionType xmloption;	/* DOCUMENT or CONTENT */
1223 	Oid			type;			/* target type/typmod for XMLSERIALIZE */
1224 	int32		typmod;
1225 	int			location;		/* token location, or -1 if unknown */
1226 } XmlExpr;
1227 
1228 /* ----------------
1229  * NullTest
1230  *
1231  * NullTest represents the operation of testing a value for NULLness.
1232  * The appropriate test is performed and returned as a boolean Datum.
1233  *
1234  * When argisrow is false, this simply represents a test for the null value.
1235  *
1236  * When argisrow is true, the input expression must yield a rowtype, and
1237  * the node implements "row IS [NOT] NULL" per the SQL standard.  This
1238  * includes checking individual fields for NULLness when the row datum
1239  * itself isn't NULL.
1240  *
1241  * NOTE: the combination of a rowtype input and argisrow==false does NOT
1242  * correspond to the SQL notation "row IS [NOT] NULL"; instead, this case
1243  * represents the SQL notation "row IS [NOT] DISTINCT FROM NULL".
1244  * ----------------
1245  */
1246 
1247 typedef enum NullTestType
1248 {
1249 	IS_NULL, IS_NOT_NULL
1250 } NullTestType;
1251 
1252 typedef struct NullTest
1253 {
1254 	Expr		xpr;
1255 	Expr	   *arg;			/* input expression */
1256 	NullTestType nulltesttype;	/* IS NULL, IS NOT NULL */
1257 	bool		argisrow;		/* T to perform field-by-field null checks */
1258 	int			location;		/* token location, or -1 if unknown */
1259 } NullTest;
1260 
1261 /*
1262  * BooleanTest
1263  *
1264  * BooleanTest represents the operation of determining whether a boolean
1265  * is TRUE, FALSE, or UNKNOWN (ie, NULL).  All six meaningful combinations
1266  * are supported.  Note that a NULL input does *not* cause a NULL result.
1267  * The appropriate test is performed and returned as a boolean Datum.
1268  */
1269 
1270 typedef enum BoolTestType
1271 {
1272 	IS_TRUE, IS_NOT_TRUE, IS_FALSE, IS_NOT_FALSE, IS_UNKNOWN, IS_NOT_UNKNOWN
1273 } BoolTestType;
1274 
1275 typedef struct BooleanTest
1276 {
1277 	Expr		xpr;
1278 	Expr	   *arg;			/* input expression */
1279 	BoolTestType booltesttype;	/* test type */
1280 	int			location;		/* token location, or -1 if unknown */
1281 } BooleanTest;
1282 
1283 /*
1284  * CoerceToDomain
1285  *
1286  * CoerceToDomain represents the operation of coercing a value to a domain
1287  * type.  At runtime (and not before) the precise set of constraints to be
1288  * checked will be determined.  If the value passes, it is returned as the
1289  * result; if not, an error is raised.  Note that this is equivalent to
1290  * RelabelType in the scenario where no constraints are applied.
1291  */
1292 typedef struct CoerceToDomain
1293 {
1294 	Expr		xpr;
1295 	Expr	   *arg;			/* input expression */
1296 	Oid			resulttype;		/* domain type ID (result type) */
1297 	int32		resulttypmod;	/* output typmod (currently always -1) */
1298 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
1299 	CoercionForm coercionformat;	/* how to display this node */
1300 	int			location;		/* token location, or -1 if unknown */
1301 } CoerceToDomain;
1302 
1303 /*
1304  * Placeholder node for the value to be processed by a domain's check
1305  * constraint.  This is effectively like a Param, but can be implemented more
1306  * simply since we need only one replacement value at a time.
1307  *
1308  * Note: the typeId/typeMod/collation will be set from the domain's base type,
1309  * not the domain itself.  This is because we shouldn't consider the value
1310  * to be a member of the domain if we haven't yet checked its constraints.
1311  */
1312 typedef struct CoerceToDomainValue
1313 {
1314 	Expr		xpr;
1315 	Oid			typeId;			/* type for substituted value */
1316 	int32		typeMod;		/* typemod for substituted value */
1317 	Oid			collation;		/* collation for the substituted value */
1318 	int			location;		/* token location, or -1 if unknown */
1319 } CoerceToDomainValue;
1320 
1321 /*
1322  * Placeholder node for a DEFAULT marker in an INSERT or UPDATE command.
1323  *
1324  * This is not an executable expression: it must be replaced by the actual
1325  * column default expression during rewriting.  But it is convenient to
1326  * treat it as an expression node during parsing and rewriting.
1327  */
1328 typedef struct SetToDefault
1329 {
1330 	Expr		xpr;
1331 	Oid			typeId;			/* type for substituted value */
1332 	int32		typeMod;		/* typemod for substituted value */
1333 	Oid			collation;		/* collation for the substituted value */
1334 	int			location;		/* token location, or -1 if unknown */
1335 } SetToDefault;
1336 
1337 /*
1338  * Node representing [WHERE] CURRENT OF cursor_name
1339  *
1340  * CURRENT OF is a bit like a Var, in that it carries the rangetable index
1341  * of the target relation being constrained; this aids placing the expression
1342  * correctly during planning.  We can assume however that its "levelsup" is
1343  * always zero, due to the syntactic constraints on where it can appear.
1344  *
1345  * The referenced cursor can be represented either as a hardwired string
1346  * or as a reference to a run-time parameter of type REFCURSOR.  The latter
1347  * case is for the convenience of plpgsql.
1348  */
1349 typedef struct CurrentOfExpr
1350 {
1351 	Expr		xpr;
1352 	Index		cvarno;			/* RT index of target relation */
1353 	char	   *cursor_name;	/* name of referenced cursor, or NULL */
1354 	int			cursor_param;	/* refcursor parameter number, or 0 */
1355 } CurrentOfExpr;
1356 
1357 /*
1358  * NextValueExpr - get next value from sequence
1359  *
1360  * This has the same effect as calling the nextval() function, but it does not
1361  * check permissions on the sequence.  This is used for identity columns,
1362  * where the sequence is an implicit dependency without its own permissions.
1363  */
1364 typedef struct NextValueExpr
1365 {
1366 	Expr		xpr;
1367 	Oid			seqid;
1368 	Oid			typeId;
1369 } NextValueExpr;
1370 
1371 /*
1372  * InferenceElem - an element of a unique index inference specification
1373  *
1374  * This mostly matches the structure of IndexElems, but having a dedicated
1375  * primnode allows for a clean separation between the use of index parameters
1376  * by utility commands, and this node.
1377  */
1378 typedef struct InferenceElem
1379 {
1380 	Expr		xpr;
1381 	Node	   *expr;			/* expression to infer from, or NULL */
1382 	Oid			infercollid;	/* OID of collation, or InvalidOid */
1383 	Oid			inferopclass;	/* OID of att opclass, or InvalidOid */
1384 } InferenceElem;
1385 
1386 /*--------------------
1387  * TargetEntry -
1388  *	   a target entry (used in query target lists)
1389  *
1390  * Strictly speaking, a TargetEntry isn't an expression node (since it can't
1391  * be evaluated by ExecEvalExpr).  But we treat it as one anyway, since in
1392  * very many places it's convenient to process a whole query targetlist as a
1393  * single expression tree.
1394  *
1395  * In a SELECT's targetlist, resno should always be equal to the item's
1396  * ordinal position (counting from 1).  However, in an INSERT or UPDATE
1397  * targetlist, resno represents the attribute number of the destination
1398  * column for the item; so there may be missing or out-of-order resnos.
1399  * It is even legal to have duplicated resnos; consider
1400  *		UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ...
1401  * In an INSERT, the rewriter and planner will normalize the tlist by
1402  * reordering it into physical column order and filling in default values
1403  * for any columns not assigned values by the original query.  In an UPDATE,
1404  * after the rewriter merges multiple assignments for the same column, the
1405  * planner extracts the target-column numbers into a separate "update_colnos"
1406  * list, and then renumbers the tlist elements serially.  Thus, tlist resnos
1407  * match ordinal position in all tlists seen by the executor; but it is wrong
1408  * to assume that before planning has happened.
1409  *
1410  * resname is required to represent the correct column name in non-resjunk
1411  * entries of top-level SELECT targetlists, since it will be used as the
1412  * column title sent to the frontend.  In most other contexts it is only
1413  * a debugging aid, and may be wrong or even NULL.  (In particular, it may
1414  * be wrong in a tlist from a stored rule, if the referenced column has been
1415  * renamed by ALTER TABLE since the rule was made.  Also, the planner tends
1416  * to store NULL rather than look up a valid name for tlist entries in
1417  * non-toplevel plan nodes.)  In resjunk entries, resname should be either
1418  * a specific system-generated name (such as "ctid") or NULL; anything else
1419  * risks confusing ExecGetJunkAttribute!
1420  *
1421  * ressortgroupref is used in the representation of ORDER BY, GROUP BY, and
1422  * DISTINCT items.  Targetlist entries with ressortgroupref=0 are not
1423  * sort/group items.  If ressortgroupref>0, then this item is an ORDER BY,
1424  * GROUP BY, and/or DISTINCT target value.  No two entries in a targetlist
1425  * may have the same nonzero ressortgroupref --- but there is no particular
1426  * meaning to the nonzero values, except as tags.  (For example, one must
1427  * not assume that lower ressortgroupref means a more significant sort key.)
1428  * The order of the associated SortGroupClause lists determine the semantics.
1429  *
1430  * resorigtbl/resorigcol identify the source of the column, if it is a
1431  * simple reference to a column of a base table (or view).  If it is not
1432  * a simple reference, these fields are zeroes.
1433  *
1434  * If resjunk is true then the column is a working column (such as a sort key)
1435  * that should be removed from the final output of the query.  Resjunk columns
1436  * must have resnos that cannot duplicate any regular column's resno.  Also
1437  * note that there are places that assume resjunk columns come after non-junk
1438  * columns.
1439  *--------------------
1440  */
1441 typedef struct TargetEntry
1442 {
1443 	Expr		xpr;
1444 	Expr	   *expr;			/* expression to evaluate */
1445 	AttrNumber	resno;			/* attribute number (see notes above) */
1446 	char	   *resname;		/* name of the column (could be NULL) */
1447 	Index		ressortgroupref;	/* nonzero if referenced by a sort/group
1448 									 * clause */
1449 	Oid			resorigtbl;		/* OID of column's source table */
1450 	AttrNumber	resorigcol;		/* column's number in source table */
1451 	bool		resjunk;		/* set to true to eliminate the attribute from
1452 								 * final target list */
1453 } TargetEntry;
1454 
1455 
1456 /* ----------------------------------------------------------------
1457  *					node types for join trees
1458  *
1459  * The leaves of a join tree structure are RangeTblRef nodes.  Above
1460  * these, JoinExpr nodes can appear to denote a specific kind of join
1461  * or qualified join.  Also, FromExpr nodes can appear to denote an
1462  * ordinary cross-product join ("FROM foo, bar, baz WHERE ...").
1463  * FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it
1464  * may have any number of child nodes, not just two.
1465  *
1466  * NOTE: the top level of a Query's jointree is always a FromExpr.
1467  * Even if the jointree contains no rels, there will be a FromExpr.
1468  *
1469  * NOTE: the qualification expressions present in JoinExpr nodes are
1470  * *in addition to* the query's main WHERE clause, which appears as the
1471  * qual of the top-level FromExpr.  The reason for associating quals with
1472  * specific nodes in the jointree is that the position of a qual is critical
1473  * when outer joins are present.  (If we enforce a qual too soon or too late,
1474  * that may cause the outer join to produce the wrong set of NULL-extended
1475  * rows.)  If all joins are inner joins then all the qual positions are
1476  * semantically interchangeable.
1477  *
1478  * NOTE: in the raw output of gram.y, a join tree contains RangeVar,
1479  * RangeSubselect, and RangeFunction nodes, which are all replaced by
1480  * RangeTblRef nodes during the parse analysis phase.  Also, the top-level
1481  * FromExpr is added during parse analysis; the grammar regards FROM and
1482  * WHERE as separate.
1483  * ----------------------------------------------------------------
1484  */
1485 
1486 /*
1487  * RangeTblRef - reference to an entry in the query's rangetable
1488  *
1489  * We could use direct pointers to the RT entries and skip having these
1490  * nodes, but multiple pointers to the same node in a querytree cause
1491  * lots of headaches, so it seems better to store an index into the RT.
1492  */
1493 typedef struct RangeTblRef
1494 {
1495 	NodeTag		type;
1496 	int			rtindex;
1497 } RangeTblRef;
1498 
1499 /*----------
1500  * JoinExpr - for SQL JOIN expressions
1501  *
1502  * isNatural, usingClause, and quals are interdependent.  The user can write
1503  * only one of NATURAL, USING(), or ON() (this is enforced by the grammar).
1504  * If he writes NATURAL then parse analysis generates the equivalent USING()
1505  * list, and from that fills in "quals" with the right equality comparisons.
1506  * If he writes USING() then "quals" is filled with equality comparisons.
1507  * If he writes ON() then only "quals" is set.  Note that NATURAL/USING
1508  * are not equivalent to ON() since they also affect the output column list.
1509  *
1510  * alias is an Alias node representing the AS alias-clause attached to the
1511  * join expression, or NULL if no clause.  NB: presence or absence of the
1512  * alias has a critical impact on semantics, because a join with an alias
1513  * restricts visibility of the tables/columns inside it.
1514  *
1515  * join_using_alias is an Alias node representing the join correlation
1516  * name that SQL:2016 and later allow to be attached to JOIN/USING.
1517  * Its column alias list includes only the common column names from USING,
1518  * and it does not restrict visibility of the join's input tables.
1519  *
1520  * During parse analysis, an RTE is created for the Join, and its index
1521  * is filled into rtindex.  This RTE is present mainly so that Vars can
1522  * be created that refer to the outputs of the join.  The planner sometimes
1523  * generates JoinExprs internally; these can have rtindex = 0 if there are
1524  * no join alias variables referencing such joins.
1525  *----------
1526  */
1527 typedef struct JoinExpr
1528 {
1529 	NodeTag		type;
1530 	JoinType	jointype;		/* type of join */
1531 	bool		isNatural;		/* Natural join? Will need to shape table */
1532 	Node	   *larg;			/* left subtree */
1533 	Node	   *rarg;			/* right subtree */
1534 	List	   *usingClause;	/* USING clause, if any (list of String) */
1535 	Alias	   *join_using_alias;	/* alias attached to USING clause, if any */
1536 	Node	   *quals;			/* qualifiers on join, if any */
1537 	Alias	   *alias;			/* user-written alias clause, if any */
1538 	int			rtindex;		/* RT index assigned for join, or 0 */
1539 } JoinExpr;
1540 
1541 /*----------
1542  * FromExpr - represents a FROM ... WHERE ... construct
1543  *
1544  * This is both more flexible than a JoinExpr (it can have any number of
1545  * children, including zero) and less so --- we don't need to deal with
1546  * aliases and so on.  The output column set is implicitly just the union
1547  * of the outputs of the children.
1548  *----------
1549  */
1550 typedef struct FromExpr
1551 {
1552 	NodeTag		type;
1553 	List	   *fromlist;		/* List of join subtrees */
1554 	Node	   *quals;			/* qualifiers on join, if any */
1555 } FromExpr;
1556 
1557 /*----------
1558  * OnConflictExpr - represents an ON CONFLICT DO ... expression
1559  *
1560  * The optimizer requires a list of inference elements, and optionally a WHERE
1561  * clause to infer a unique index.  The unique index (or, occasionally,
1562  * indexes) inferred are used to arbitrate whether or not the alternative ON
1563  * CONFLICT path is taken.
1564  *----------
1565  */
1566 typedef struct OnConflictExpr
1567 {
1568 	NodeTag		type;
1569 	OnConflictAction action;	/* DO NOTHING or UPDATE? */
1570 
1571 	/* Arbiter */
1572 	List	   *arbiterElems;	/* unique index arbiter list (of
1573 								 * InferenceElem's) */
1574 	Node	   *arbiterWhere;	/* unique index arbiter WHERE clause */
1575 	Oid			constraint;		/* pg_constraint OID for arbiter */
1576 
1577 	/* ON CONFLICT UPDATE */
1578 	List	   *onConflictSet;	/* List of ON CONFLICT SET TargetEntrys */
1579 	Node	   *onConflictWhere;	/* qualifiers to restrict UPDATE to */
1580 	int			exclRelIndex;	/* RT index of 'excluded' relation */
1581 	List	   *exclRelTlist;	/* tlist of the EXCLUDED pseudo relation */
1582 } OnConflictExpr;
1583 
1584 #endif							/* PRIMNODES_H */
1585