1 /*-------------------------------------------------------------------------
2  *
3  * checkpointer.c
4  *
5  * The checkpointer is new as of Postgres 9.2.  It handles all checkpoints.
6  * Checkpoints are automatically dispatched after a certain amount of time has
7  * elapsed since the last one, and it can be signaled to perform requested
8  * checkpoints as well.  (The GUC parameter that mandates a checkpoint every
9  * so many WAL segments is implemented by having backends signal when they
10  * fill WAL segments; the checkpointer itself doesn't watch for the
11  * condition.)
12  *
13  * The checkpointer is started by the postmaster as soon as the startup
14  * subprocess finishes, or as soon as recovery begins if we are doing archive
15  * recovery.  It remains alive until the postmaster commands it to terminate.
16  * Normal termination is by SIGUSR2, which instructs the checkpointer to
17  * execute a shutdown checkpoint and then exit(0).  (All backends must be
18  * stopped before SIGUSR2 is issued!)  Emergency termination is by SIGQUIT;
19  * like any backend, the checkpointer will simply abort and exit on SIGQUIT.
20  *
21  * If the checkpointer exits unexpectedly, the postmaster treats that the same
22  * as a backend crash: shared memory may be corrupted, so remaining backends
23  * should be killed by SIGQUIT and then a recovery cycle started.  (Even if
24  * shared memory isn't corrupted, we have lost information about which
25  * files need to be fsync'd for the next checkpoint, and so a system
26  * restart needs to be forced.)
27  *
28  *
29  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
30  *
31  *
32  * IDENTIFICATION
33  *	  src/backend/postmaster/checkpointer.c
34  *
35  *-------------------------------------------------------------------------
36  */
37 #include "postgres.h"
38 
39 #include <sys/time.h>
40 #include <time.h>
41 
42 #include "access/xlog.h"
43 #include "access/xlog_internal.h"
44 #include "libpq/pqsignal.h"
45 #include "miscadmin.h"
46 #include "pgstat.h"
47 #include "postmaster/bgwriter.h"
48 #include "postmaster/interrupt.h"
49 #include "replication/syncrep.h"
50 #include "storage/bufmgr.h"
51 #include "storage/condition_variable.h"
52 #include "storage/fd.h"
53 #include "storage/ipc.h"
54 #include "storage/lwlock.h"
55 #include "storage/proc.h"
56 #include "storage/procsignal.h"
57 #include "storage/shmem.h"
58 #include "storage/smgr.h"
59 #include "storage/spin.h"
60 #include "utils/guc.h"
61 #include "utils/memutils.h"
62 #include "utils/resowner.h"
63 
64 
65 /*----------
66  * Shared memory area for communication between checkpointer and backends
67  *
68  * The ckpt counters allow backends to watch for completion of a checkpoint
69  * request they send.  Here's how it works:
70  *	* At start of a checkpoint, checkpointer reads (and clears) the request
71  *	  flags and increments ckpt_started, while holding ckpt_lck.
72  *	* On completion of a checkpoint, checkpointer sets ckpt_done to
73  *	  equal ckpt_started.
74  *	* On failure of a checkpoint, checkpointer increments ckpt_failed
75  *	  and sets ckpt_done to equal ckpt_started.
76  *
77  * The algorithm for backends is:
78  *	1. Record current values of ckpt_failed and ckpt_started, and
79  *	   set request flags, while holding ckpt_lck.
80  *	2. Send signal to request checkpoint.
81  *	3. Sleep until ckpt_started changes.  Now you know a checkpoint has
82  *	   begun since you started this algorithm (although *not* that it was
83  *	   specifically initiated by your signal), and that it is using your flags.
84  *	4. Record new value of ckpt_started.
85  *	5. Sleep until ckpt_done >= saved value of ckpt_started.  (Use modulo
86  *	   arithmetic here in case counters wrap around.)  Now you know a
87  *	   checkpoint has started and completed, but not whether it was
88  *	   successful.
89  *	6. If ckpt_failed is different from the originally saved value,
90  *	   assume request failed; otherwise it was definitely successful.
91  *
92  * ckpt_flags holds the OR of the checkpoint request flags sent by all
93  * requesting backends since the last checkpoint start.  The flags are
94  * chosen so that OR'ing is the correct way to combine multiple requests.
95  *
96  * num_backend_writes is used to count the number of buffer writes performed
97  * by user backend processes.  This counter should be wide enough that it
98  * can't overflow during a single processing cycle.  num_backend_fsync
99  * counts the subset of those writes that also had to do their own fsync,
100  * because the checkpointer failed to absorb their request.
101  *
102  * The requests array holds fsync requests sent by backends and not yet
103  * absorbed by the checkpointer.
104  *
105  * Unlike the checkpoint fields, num_backend_writes, num_backend_fsync, and
106  * the requests fields are protected by CheckpointerCommLock.
107  *----------
108  */
109 typedef struct
110 {
111 	SyncRequestType type;		/* request type */
112 	FileTag		ftag;			/* file identifier */
113 } CheckpointerRequest;
114 
115 typedef struct
116 {
117 	pid_t		checkpointer_pid;	/* PID (0 if not started) */
118 
119 	slock_t		ckpt_lck;		/* protects all the ckpt_* fields */
120 
121 	int			ckpt_started;	/* advances when checkpoint starts */
122 	int			ckpt_done;		/* advances when checkpoint done */
123 	int			ckpt_failed;	/* advances when checkpoint fails */
124 
125 	int			ckpt_flags;		/* checkpoint flags, as defined in xlog.h */
126 
127 	ConditionVariable start_cv; /* signaled when ckpt_started advances */
128 	ConditionVariable done_cv;	/* signaled when ckpt_done advances */
129 
130 	uint32		num_backend_writes; /* counts user backend buffer writes */
131 	uint32		num_backend_fsync;	/* counts user backend fsync calls */
132 
133 	int			num_requests;	/* current # of requests */
134 	int			max_requests;	/* allocated array size */
135 	CheckpointerRequest requests[FLEXIBLE_ARRAY_MEMBER];
136 } CheckpointerShmemStruct;
137 
138 static CheckpointerShmemStruct *CheckpointerShmem;
139 
140 /* interval for calling AbsorbSyncRequests in CheckpointWriteDelay */
141 #define WRITES_PER_ABSORB		1000
142 
143 /*
144  * GUC parameters
145  */
146 int			CheckPointTimeout = 300;
147 int			CheckPointWarning = 30;
148 double		CheckPointCompletionTarget = 0.9;
149 
150 /*
151  * Private state
152  */
153 static bool ckpt_active = false;
154 
155 /* these values are valid when ckpt_active is true: */
156 static pg_time_t ckpt_start_time;
157 static XLogRecPtr ckpt_start_recptr;
158 static double ckpt_cached_elapsed;
159 
160 static pg_time_t last_checkpoint_time;
161 static pg_time_t last_xlog_switch_time;
162 
163 /* Prototypes for private functions */
164 
165 static void HandleCheckpointerInterrupts(void);
166 static void CheckArchiveTimeout(void);
167 static bool IsCheckpointOnSchedule(double progress);
168 static bool ImmediateCheckpointRequested(void);
169 static bool CompactCheckpointerRequestQueue(void);
170 static void UpdateSharedMemoryConfig(void);
171 
172 /* Signal handlers */
173 static void ReqCheckpointHandler(SIGNAL_ARGS);
174 
175 
176 /*
177  * Main entry point for checkpointer process
178  *
179  * This is invoked from AuxiliaryProcessMain, which has already created the
180  * basic execution environment, but not enabled signals yet.
181  */
182 void
CheckpointerMain(void)183 CheckpointerMain(void)
184 {
185 	sigjmp_buf	local_sigjmp_buf;
186 	MemoryContext checkpointer_context;
187 
188 	CheckpointerShmem->checkpointer_pid = MyProcPid;
189 
190 	/*
191 	 * Properly accept or ignore signals the postmaster might send us
192 	 *
193 	 * Note: we deliberately ignore SIGTERM, because during a standard Unix
194 	 * system shutdown cycle, init will SIGTERM all processes at once.  We
195 	 * want to wait for the backends to exit, whereupon the postmaster will
196 	 * tell us it's okay to shut down (via SIGUSR2).
197 	 */
198 	pqsignal(SIGHUP, SignalHandlerForConfigReload);
199 	pqsignal(SIGINT, ReqCheckpointHandler); /* request checkpoint */
200 	pqsignal(SIGTERM, SIG_IGN); /* ignore SIGTERM */
201 	/* SIGQUIT handler was already set up by InitPostmasterChild */
202 	pqsignal(SIGALRM, SIG_IGN);
203 	pqsignal(SIGPIPE, SIG_IGN);
204 	pqsignal(SIGUSR1, procsignal_sigusr1_handler);
205 	pqsignal(SIGUSR2, SignalHandlerForShutdownRequest);
206 
207 	/*
208 	 * Reset some signals that are accepted by postmaster but not here
209 	 */
210 	pqsignal(SIGCHLD, SIG_DFL);
211 
212 	/*
213 	 * Initialize so that first time-driven event happens at the correct time.
214 	 */
215 	last_checkpoint_time = last_xlog_switch_time = (pg_time_t) time(NULL);
216 
217 	/*
218 	 * Create a memory context that we will do all our work in.  We do this so
219 	 * that we can reset the context during error recovery and thereby avoid
220 	 * possible memory leaks.  Formerly this code just ran in
221 	 * TopMemoryContext, but resetting that would be a really bad idea.
222 	 */
223 	checkpointer_context = AllocSetContextCreate(TopMemoryContext,
224 												 "Checkpointer",
225 												 ALLOCSET_DEFAULT_SIZES);
226 	MemoryContextSwitchTo(checkpointer_context);
227 
228 	/*
229 	 * If an exception is encountered, processing resumes here.
230 	 *
231 	 * You might wonder why this isn't coded as an infinite loop around a
232 	 * PG_TRY construct.  The reason is that this is the bottom of the
233 	 * exception stack, and so with PG_TRY there would be no exception handler
234 	 * in force at all during the CATCH part.  By leaving the outermost setjmp
235 	 * always active, we have at least some chance of recovering from an error
236 	 * during error recovery.  (If we get into an infinite loop thereby, it
237 	 * will soon be stopped by overflow of elog.c's internal state stack.)
238 	 *
239 	 * Note that we use sigsetjmp(..., 1), so that the prevailing signal mask
240 	 * (to wit, BlockSig) will be restored when longjmp'ing to here.  Thus,
241 	 * signals other than SIGQUIT will be blocked until we complete error
242 	 * recovery.  It might seem that this policy makes the HOLD_INTERRUPTS()
243 	 * call redundant, but it is not since InterruptPending might be set
244 	 * already.
245 	 */
246 	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
247 	{
248 		/* Since not using PG_TRY, must reset error stack by hand */
249 		error_context_stack = NULL;
250 
251 		/* Prevent interrupts while cleaning up */
252 		HOLD_INTERRUPTS();
253 
254 		/* Report the error to the server log */
255 		EmitErrorReport();
256 
257 		/*
258 		 * These operations are really just a minimal subset of
259 		 * AbortTransaction().  We don't have very many resources to worry
260 		 * about in checkpointer, but we do have LWLocks, buffers, and temp
261 		 * files.
262 		 */
263 		LWLockReleaseAll();
264 		ConditionVariableCancelSleep();
265 		pgstat_report_wait_end();
266 		AbortBufferIO();
267 		UnlockBuffers();
268 		ReleaseAuxProcessResources(false);
269 		AtEOXact_Buffers(false);
270 		AtEOXact_SMgr();
271 		AtEOXact_Files(false);
272 		AtEOXact_HashTables(false);
273 
274 		/* Warn any waiting backends that the checkpoint failed. */
275 		if (ckpt_active)
276 		{
277 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
278 			CheckpointerShmem->ckpt_failed++;
279 			CheckpointerShmem->ckpt_done = CheckpointerShmem->ckpt_started;
280 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
281 
282 			ConditionVariableBroadcast(&CheckpointerShmem->done_cv);
283 
284 			ckpt_active = false;
285 		}
286 
287 		/*
288 		 * Now return to normal top-level context and clear ErrorContext for
289 		 * next time.
290 		 */
291 		MemoryContextSwitchTo(checkpointer_context);
292 		FlushErrorState();
293 
294 		/* Flush any leaked data in the top-level context */
295 		MemoryContextResetAndDeleteChildren(checkpointer_context);
296 
297 		/* Now we can allow interrupts again */
298 		RESUME_INTERRUPTS();
299 
300 		/*
301 		 * Sleep at least 1 second after any error.  A write error is likely
302 		 * to be repeated, and we don't want to be filling the error logs as
303 		 * fast as we can.
304 		 */
305 		pg_usleep(1000000L);
306 
307 		/*
308 		 * Close all open files after any error.  This is helpful on Windows,
309 		 * where holding deleted files open causes various strange errors.
310 		 * It's not clear we need it elsewhere, but shouldn't hurt.
311 		 */
312 		smgrcloseall();
313 	}
314 
315 	/* We can now handle ereport(ERROR) */
316 	PG_exception_stack = &local_sigjmp_buf;
317 
318 	/*
319 	 * Unblock signals (they were blocked when the postmaster forked us)
320 	 */
321 	PG_SETMASK(&UnBlockSig);
322 
323 	/*
324 	 * Ensure all shared memory values are set correctly for the config. Doing
325 	 * this here ensures no race conditions from other concurrent updaters.
326 	 */
327 	UpdateSharedMemoryConfig();
328 
329 	/*
330 	 * Advertise our latch that backends can use to wake us up while we're
331 	 * sleeping.
332 	 */
333 	ProcGlobal->checkpointerLatch = &MyProc->procLatch;
334 
335 	/*
336 	 * Loop forever
337 	 */
338 	for (;;)
339 	{
340 		bool		do_checkpoint = false;
341 		int			flags = 0;
342 		pg_time_t	now;
343 		int			elapsed_secs;
344 		int			cur_timeout;
345 
346 		/* Clear any already-pending wakeups */
347 		ResetLatch(MyLatch);
348 
349 		/*
350 		 * Process any requests or signals received recently.
351 		 */
352 		AbsorbSyncRequests();
353 		HandleCheckpointerInterrupts();
354 
355 		/*
356 		 * Detect a pending checkpoint request by checking whether the flags
357 		 * word in shared memory is nonzero.  We shouldn't need to acquire the
358 		 * ckpt_lck for this.
359 		 */
360 		if (((volatile CheckpointerShmemStruct *) CheckpointerShmem)->ckpt_flags)
361 		{
362 			do_checkpoint = true;
363 			BgWriterStats.m_requested_checkpoints++;
364 		}
365 
366 		/*
367 		 * Force a checkpoint if too much time has elapsed since the last one.
368 		 * Note that we count a timed checkpoint in stats only when this
369 		 * occurs without an external request, but we set the CAUSE_TIME flag
370 		 * bit even if there is also an external request.
371 		 */
372 		now = (pg_time_t) time(NULL);
373 		elapsed_secs = now - last_checkpoint_time;
374 		if (elapsed_secs >= CheckPointTimeout)
375 		{
376 			if (!do_checkpoint)
377 				BgWriterStats.m_timed_checkpoints++;
378 			do_checkpoint = true;
379 			flags |= CHECKPOINT_CAUSE_TIME;
380 		}
381 
382 		/*
383 		 * Do a checkpoint if requested.
384 		 */
385 		if (do_checkpoint)
386 		{
387 			bool		ckpt_performed = false;
388 			bool		do_restartpoint;
389 
390 			/*
391 			 * Check if we should perform a checkpoint or a restartpoint. As a
392 			 * side-effect, RecoveryInProgress() initializes TimeLineID if
393 			 * it's not set yet.
394 			 */
395 			do_restartpoint = RecoveryInProgress();
396 
397 			/*
398 			 * Atomically fetch the request flags to figure out what kind of a
399 			 * checkpoint we should perform, and increase the started-counter
400 			 * to acknowledge that we've started a new checkpoint.
401 			 */
402 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
403 			flags |= CheckpointerShmem->ckpt_flags;
404 			CheckpointerShmem->ckpt_flags = 0;
405 			CheckpointerShmem->ckpt_started++;
406 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
407 
408 			ConditionVariableBroadcast(&CheckpointerShmem->start_cv);
409 
410 			/*
411 			 * The end-of-recovery checkpoint is a real checkpoint that's
412 			 * performed while we're still in recovery.
413 			 */
414 			if (flags & CHECKPOINT_END_OF_RECOVERY)
415 				do_restartpoint = false;
416 
417 			/*
418 			 * We will warn if (a) too soon since last checkpoint (whatever
419 			 * caused it) and (b) somebody set the CHECKPOINT_CAUSE_XLOG flag
420 			 * since the last checkpoint start.  Note in particular that this
421 			 * implementation will not generate warnings caused by
422 			 * CheckPointTimeout < CheckPointWarning.
423 			 */
424 			if (!do_restartpoint &&
425 				(flags & CHECKPOINT_CAUSE_XLOG) &&
426 				elapsed_secs < CheckPointWarning)
427 				ereport(LOG,
428 						(errmsg_plural("checkpoints are occurring too frequently (%d second apart)",
429 									   "checkpoints are occurring too frequently (%d seconds apart)",
430 									   elapsed_secs,
431 									   elapsed_secs),
432 						 errhint("Consider increasing the configuration parameter \"max_wal_size\".")));
433 
434 			/*
435 			 * Initialize checkpointer-private variables used during
436 			 * checkpoint.
437 			 */
438 			ckpt_active = true;
439 			if (do_restartpoint)
440 				ckpt_start_recptr = GetXLogReplayRecPtr(NULL);
441 			else
442 				ckpt_start_recptr = GetInsertRecPtr();
443 			ckpt_start_time = now;
444 			ckpt_cached_elapsed = 0;
445 
446 			/*
447 			 * Do the checkpoint.
448 			 */
449 			if (!do_restartpoint)
450 			{
451 				CreateCheckPoint(flags);
452 				ckpt_performed = true;
453 			}
454 			else
455 				ckpt_performed = CreateRestartPoint(flags);
456 
457 			/*
458 			 * After any checkpoint, close all smgr files.  This is so we
459 			 * won't hang onto smgr references to deleted files indefinitely.
460 			 */
461 			smgrcloseall();
462 
463 			/*
464 			 * Indicate checkpoint completion to any waiting backends.
465 			 */
466 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
467 			CheckpointerShmem->ckpt_done = CheckpointerShmem->ckpt_started;
468 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
469 
470 			ConditionVariableBroadcast(&CheckpointerShmem->done_cv);
471 
472 			if (ckpt_performed)
473 			{
474 				/*
475 				 * Note we record the checkpoint start time not end time as
476 				 * last_checkpoint_time.  This is so that time-driven
477 				 * checkpoints happen at a predictable spacing.
478 				 */
479 				last_checkpoint_time = now;
480 			}
481 			else
482 			{
483 				/*
484 				 * We were not able to perform the restartpoint (checkpoints
485 				 * throw an ERROR in case of error).  Most likely because we
486 				 * have not received any new checkpoint WAL records since the
487 				 * last restartpoint. Try again in 15 s.
488 				 */
489 				last_checkpoint_time = now - CheckPointTimeout + 15;
490 			}
491 
492 			ckpt_active = false;
493 		}
494 
495 		/* Check for archive_timeout and switch xlog files if necessary. */
496 		CheckArchiveTimeout();
497 
498 		/*
499 		 * Send off activity statistics to the stats collector.  (The reason
500 		 * why we re-use bgwriter-related code for this is that the bgwriter
501 		 * and checkpointer used to be just one process.  It's probably not
502 		 * worth the trouble to split the stats support into two independent
503 		 * stats message types.)
504 		 */
505 		pgstat_send_bgwriter();
506 
507 		/* Send WAL statistics to the stats collector. */
508 		pgstat_send_wal(true);
509 
510 		/*
511 		 * If any checkpoint flags have been set, redo the loop to handle the
512 		 * checkpoint without sleeping.
513 		 */
514 		if (((volatile CheckpointerShmemStruct *) CheckpointerShmem)->ckpt_flags)
515 			continue;
516 
517 		/*
518 		 * Sleep until we are signaled or it's time for another checkpoint or
519 		 * xlog file switch.
520 		 */
521 		now = (pg_time_t) time(NULL);
522 		elapsed_secs = now - last_checkpoint_time;
523 		if (elapsed_secs >= CheckPointTimeout)
524 			continue;			/* no sleep for us ... */
525 		cur_timeout = CheckPointTimeout - elapsed_secs;
526 		if (XLogArchiveTimeout > 0 && !RecoveryInProgress())
527 		{
528 			elapsed_secs = now - last_xlog_switch_time;
529 			if (elapsed_secs >= XLogArchiveTimeout)
530 				continue;		/* no sleep for us ... */
531 			cur_timeout = Min(cur_timeout, XLogArchiveTimeout - elapsed_secs);
532 		}
533 
534 		(void) WaitLatch(MyLatch,
535 						 WL_LATCH_SET | WL_TIMEOUT | WL_EXIT_ON_PM_DEATH,
536 						 cur_timeout * 1000L /* convert to ms */ ,
537 						 WAIT_EVENT_CHECKPOINTER_MAIN);
538 	}
539 }
540 
541 /*
542  * Process any new interrupts.
543  */
544 static void
HandleCheckpointerInterrupts(void)545 HandleCheckpointerInterrupts(void)
546 {
547 	if (ProcSignalBarrierPending)
548 		ProcessProcSignalBarrier();
549 
550 	if (ConfigReloadPending)
551 	{
552 		ConfigReloadPending = false;
553 		ProcessConfigFile(PGC_SIGHUP);
554 
555 		/*
556 		 * Checkpointer is the last process to shut down, so we ask it to hold
557 		 * the keys for a range of other tasks required most of which have
558 		 * nothing to do with checkpointing at all.
559 		 *
560 		 * For various reasons, some config values can change dynamically so
561 		 * the primary copy of them is held in shared memory to make sure all
562 		 * backends see the same value.  We make Checkpointer responsible for
563 		 * updating the shared memory copy if the parameter setting changes
564 		 * because of SIGHUP.
565 		 */
566 		UpdateSharedMemoryConfig();
567 	}
568 	if (ShutdownRequestPending)
569 	{
570 		/*
571 		 * From here on, elog(ERROR) should end with exit(1), not send control
572 		 * back to the sigsetjmp block above
573 		 */
574 		ExitOnAnyError = true;
575 
576 		/*
577 		 * Close down the database.
578 		 *
579 		 * Since ShutdownXLOG() creates restartpoint or checkpoint, and
580 		 * updates the statistics, increment the checkpoint request and send
581 		 * the statistics to the stats collector.
582 		 */
583 		BgWriterStats.m_requested_checkpoints++;
584 		ShutdownXLOG(0, 0);
585 		pgstat_send_bgwriter();
586 		pgstat_send_wal(true);
587 
588 		/* Normal exit from the checkpointer is here */
589 		proc_exit(0);			/* done */
590 	}
591 }
592 
593 /*
594  * CheckArchiveTimeout -- check for archive_timeout and switch xlog files
595  *
596  * This will switch to a new WAL file and force an archive file write if
597  * meaningful activity is recorded in the current WAL file. This includes most
598  * writes, including just a single checkpoint record, but excludes WAL records
599  * that were inserted with the XLOG_MARK_UNIMPORTANT flag being set (like
600  * snapshots of running transactions).  Such records, depending on
601  * configuration, occur on regular intervals and don't contain important
602  * information.  This avoids generating archives with a few unimportant
603  * records.
604  */
605 static void
CheckArchiveTimeout(void)606 CheckArchiveTimeout(void)
607 {
608 	pg_time_t	now;
609 	pg_time_t	last_time;
610 	XLogRecPtr	last_switch_lsn;
611 
612 	if (XLogArchiveTimeout <= 0 || RecoveryInProgress())
613 		return;
614 
615 	now = (pg_time_t) time(NULL);
616 
617 	/* First we do a quick check using possibly-stale local state. */
618 	if ((int) (now - last_xlog_switch_time) < XLogArchiveTimeout)
619 		return;
620 
621 	/*
622 	 * Update local state ... note that last_xlog_switch_time is the last time
623 	 * a switch was performed *or requested*.
624 	 */
625 	last_time = GetLastSegSwitchData(&last_switch_lsn);
626 
627 	last_xlog_switch_time = Max(last_xlog_switch_time, last_time);
628 
629 	/* Now we can do the real checks */
630 	if ((int) (now - last_xlog_switch_time) >= XLogArchiveTimeout)
631 	{
632 		/*
633 		 * Switch segment only when "important" WAL has been logged since the
634 		 * last segment switch (last_switch_lsn points to end of segment
635 		 * switch occurred in).
636 		 */
637 		if (GetLastImportantRecPtr() > last_switch_lsn)
638 		{
639 			XLogRecPtr	switchpoint;
640 
641 			/* mark switch as unimportant, avoids triggering checkpoints */
642 			switchpoint = RequestXLogSwitch(true);
643 
644 			/*
645 			 * If the returned pointer points exactly to a segment boundary,
646 			 * assume nothing happened.
647 			 */
648 			if (XLogSegmentOffset(switchpoint, wal_segment_size) != 0)
649 				elog(DEBUG1, "write-ahead log switch forced (archive_timeout=%d)",
650 					 XLogArchiveTimeout);
651 		}
652 
653 		/*
654 		 * Update state in any case, so we don't retry constantly when the
655 		 * system is idle.
656 		 */
657 		last_xlog_switch_time = now;
658 	}
659 }
660 
661 /*
662  * Returns true if an immediate checkpoint request is pending.  (Note that
663  * this does not check the *current* checkpoint's IMMEDIATE flag, but whether
664  * there is one pending behind it.)
665  */
666 static bool
ImmediateCheckpointRequested(void)667 ImmediateCheckpointRequested(void)
668 {
669 	volatile CheckpointerShmemStruct *cps = CheckpointerShmem;
670 
671 	/*
672 	 * We don't need to acquire the ckpt_lck in this case because we're only
673 	 * looking at a single flag bit.
674 	 */
675 	if (cps->ckpt_flags & CHECKPOINT_IMMEDIATE)
676 		return true;
677 	return false;
678 }
679 
680 /*
681  * CheckpointWriteDelay -- control rate of checkpoint
682  *
683  * This function is called after each page write performed by BufferSync().
684  * It is responsible for throttling BufferSync()'s write rate to hit
685  * checkpoint_completion_target.
686  *
687  * The checkpoint request flags should be passed in; currently the only one
688  * examined is CHECKPOINT_IMMEDIATE, which disables delays between writes.
689  *
690  * 'progress' is an estimate of how much of the work has been done, as a
691  * fraction between 0.0 meaning none, and 1.0 meaning all done.
692  */
693 void
CheckpointWriteDelay(int flags,double progress)694 CheckpointWriteDelay(int flags, double progress)
695 {
696 	static int	absorb_counter = WRITES_PER_ABSORB;
697 
698 	/* Do nothing if checkpoint is being executed by non-checkpointer process */
699 	if (!AmCheckpointerProcess())
700 		return;
701 
702 	/*
703 	 * Perform the usual duties and take a nap, unless we're behind schedule,
704 	 * in which case we just try to catch up as quickly as possible.
705 	 */
706 	if (!(flags & CHECKPOINT_IMMEDIATE) &&
707 		!ShutdownRequestPending &&
708 		!ImmediateCheckpointRequested() &&
709 		IsCheckpointOnSchedule(progress))
710 	{
711 		if (ConfigReloadPending)
712 		{
713 			ConfigReloadPending = false;
714 			ProcessConfigFile(PGC_SIGHUP);
715 			/* update shmem copies of config variables */
716 			UpdateSharedMemoryConfig();
717 		}
718 
719 		AbsorbSyncRequests();
720 		absorb_counter = WRITES_PER_ABSORB;
721 
722 		CheckArchiveTimeout();
723 
724 		/*
725 		 * Report interim activity statistics to the stats collector.
726 		 */
727 		pgstat_send_bgwriter();
728 
729 		/*
730 		 * This sleep used to be connected to bgwriter_delay, typically 200ms.
731 		 * That resulted in more frequent wakeups if not much work to do.
732 		 * Checkpointer and bgwriter are no longer related so take the Big
733 		 * Sleep.
734 		 */
735 		pg_usleep(100000L);
736 	}
737 	else if (--absorb_counter <= 0)
738 	{
739 		/*
740 		 * Absorb pending fsync requests after each WRITES_PER_ABSORB write
741 		 * operations even when we don't sleep, to prevent overflow of the
742 		 * fsync request queue.
743 		 */
744 		AbsorbSyncRequests();
745 		absorb_counter = WRITES_PER_ABSORB;
746 	}
747 
748 	/* Check for barrier events. */
749 	if (ProcSignalBarrierPending)
750 		ProcessProcSignalBarrier();
751 }
752 
753 /*
754  * IsCheckpointOnSchedule -- are we on schedule to finish this checkpoint
755  *		 (or restartpoint) in time?
756  *
757  * Compares the current progress against the time/segments elapsed since last
758  * checkpoint, and returns true if the progress we've made this far is greater
759  * than the elapsed time/segments.
760  */
761 static bool
IsCheckpointOnSchedule(double progress)762 IsCheckpointOnSchedule(double progress)
763 {
764 	XLogRecPtr	recptr;
765 	struct timeval now;
766 	double		elapsed_xlogs,
767 				elapsed_time;
768 
769 	Assert(ckpt_active);
770 
771 	/* Scale progress according to checkpoint_completion_target. */
772 	progress *= CheckPointCompletionTarget;
773 
774 	/*
775 	 * Check against the cached value first. Only do the more expensive
776 	 * calculations once we reach the target previously calculated. Since
777 	 * neither time or WAL insert pointer moves backwards, a freshly
778 	 * calculated value can only be greater than or equal to the cached value.
779 	 */
780 	if (progress < ckpt_cached_elapsed)
781 		return false;
782 
783 	/*
784 	 * Check progress against WAL segments written and CheckPointSegments.
785 	 *
786 	 * We compare the current WAL insert location against the location
787 	 * computed before calling CreateCheckPoint. The code in XLogInsert that
788 	 * actually triggers a checkpoint when CheckPointSegments is exceeded
789 	 * compares against RedoRecPtr, so this is not completely accurate.
790 	 * However, it's good enough for our purposes, we're only calculating an
791 	 * estimate anyway.
792 	 *
793 	 * During recovery, we compare last replayed WAL record's location with
794 	 * the location computed before calling CreateRestartPoint. That maintains
795 	 * the same pacing as we have during checkpoints in normal operation, but
796 	 * we might exceed max_wal_size by a fair amount. That's because there can
797 	 * be a large gap between a checkpoint's redo-pointer and the checkpoint
798 	 * record itself, and we only start the restartpoint after we've seen the
799 	 * checkpoint record. (The gap is typically up to CheckPointSegments *
800 	 * checkpoint_completion_target where checkpoint_completion_target is the
801 	 * value that was in effect when the WAL was generated).
802 	 */
803 	if (RecoveryInProgress())
804 		recptr = GetXLogReplayRecPtr(NULL);
805 	else
806 		recptr = GetInsertRecPtr();
807 	elapsed_xlogs = (((double) (recptr - ckpt_start_recptr)) /
808 					 wal_segment_size) / CheckPointSegments;
809 
810 	if (progress < elapsed_xlogs)
811 	{
812 		ckpt_cached_elapsed = elapsed_xlogs;
813 		return false;
814 	}
815 
816 	/*
817 	 * Check progress against time elapsed and checkpoint_timeout.
818 	 */
819 	gettimeofday(&now, NULL);
820 	elapsed_time = ((double) ((pg_time_t) now.tv_sec - ckpt_start_time) +
821 					now.tv_usec / 1000000.0) / CheckPointTimeout;
822 
823 	if (progress < elapsed_time)
824 	{
825 		ckpt_cached_elapsed = elapsed_time;
826 		return false;
827 	}
828 
829 	/* It looks like we're on schedule. */
830 	return true;
831 }
832 
833 
834 /* --------------------------------
835  *		signal handler routines
836  * --------------------------------
837  */
838 
839 /* SIGINT: set flag to run a normal checkpoint right away */
840 static void
ReqCheckpointHandler(SIGNAL_ARGS)841 ReqCheckpointHandler(SIGNAL_ARGS)
842 {
843 	int			save_errno = errno;
844 
845 	/*
846 	 * The signaling process should have set ckpt_flags nonzero, so all we
847 	 * need do is ensure that our main loop gets kicked out of any wait.
848 	 */
849 	SetLatch(MyLatch);
850 
851 	errno = save_errno;
852 }
853 
854 
855 /* --------------------------------
856  *		communication with backends
857  * --------------------------------
858  */
859 
860 /*
861  * CheckpointerShmemSize
862  *		Compute space needed for checkpointer-related shared memory
863  */
864 Size
CheckpointerShmemSize(void)865 CheckpointerShmemSize(void)
866 {
867 	Size		size;
868 
869 	/*
870 	 * Currently, the size of the requests[] array is arbitrarily set equal to
871 	 * NBuffers.  This may prove too large or small ...
872 	 */
873 	size = offsetof(CheckpointerShmemStruct, requests);
874 	size = add_size(size, mul_size(NBuffers, sizeof(CheckpointerRequest)));
875 
876 	return size;
877 }
878 
879 /*
880  * CheckpointerShmemInit
881  *		Allocate and initialize checkpointer-related shared memory
882  */
883 void
CheckpointerShmemInit(void)884 CheckpointerShmemInit(void)
885 {
886 	Size		size = CheckpointerShmemSize();
887 	bool		found;
888 
889 	CheckpointerShmem = (CheckpointerShmemStruct *)
890 		ShmemInitStruct("Checkpointer Data",
891 						size,
892 						&found);
893 
894 	if (!found)
895 	{
896 		/*
897 		 * First time through, so initialize.  Note that we zero the whole
898 		 * requests array; this is so that CompactCheckpointerRequestQueue can
899 		 * assume that any pad bytes in the request structs are zeroes.
900 		 */
901 		MemSet(CheckpointerShmem, 0, size);
902 		SpinLockInit(&CheckpointerShmem->ckpt_lck);
903 		CheckpointerShmem->max_requests = NBuffers;
904 		ConditionVariableInit(&CheckpointerShmem->start_cv);
905 		ConditionVariableInit(&CheckpointerShmem->done_cv);
906 	}
907 }
908 
909 /*
910  * RequestCheckpoint
911  *		Called in backend processes to request a checkpoint
912  *
913  * flags is a bitwise OR of the following:
914  *	CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown.
915  *	CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery.
916  *	CHECKPOINT_IMMEDIATE: finish the checkpoint ASAP,
917  *		ignoring checkpoint_completion_target parameter.
918  *	CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occurred
919  *		since the last one (implied by CHECKPOINT_IS_SHUTDOWN or
920  *		CHECKPOINT_END_OF_RECOVERY).
921  *	CHECKPOINT_WAIT: wait for completion before returning (otherwise,
922  *		just signal checkpointer to do it, and return).
923  *	CHECKPOINT_CAUSE_XLOG: checkpoint is requested due to xlog filling.
924  *		(This affects logging, and in particular enables CheckPointWarning.)
925  */
926 void
RequestCheckpoint(int flags)927 RequestCheckpoint(int flags)
928 {
929 	int			ntries;
930 	int			old_failed,
931 				old_started;
932 
933 	/*
934 	 * If in a standalone backend, just do it ourselves.
935 	 */
936 	if (!IsPostmasterEnvironment)
937 	{
938 		/*
939 		 * There's no point in doing slow checkpoints in a standalone backend,
940 		 * because there's no other backends the checkpoint could disrupt.
941 		 */
942 		CreateCheckPoint(flags | CHECKPOINT_IMMEDIATE);
943 
944 		/*
945 		 * After any checkpoint, close all smgr files.  This is so we won't
946 		 * hang onto smgr references to deleted files indefinitely.
947 		 */
948 		smgrcloseall();
949 
950 		return;
951 	}
952 
953 	/*
954 	 * Atomically set the request flags, and take a snapshot of the counters.
955 	 * When we see ckpt_started > old_started, we know the flags we set here
956 	 * have been seen by checkpointer.
957 	 *
958 	 * Note that we OR the flags with any existing flags, to avoid overriding
959 	 * a "stronger" request by another backend.  The flag senses must be
960 	 * chosen to make this work!
961 	 */
962 	SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
963 
964 	old_failed = CheckpointerShmem->ckpt_failed;
965 	old_started = CheckpointerShmem->ckpt_started;
966 	CheckpointerShmem->ckpt_flags |= (flags | CHECKPOINT_REQUESTED);
967 
968 	SpinLockRelease(&CheckpointerShmem->ckpt_lck);
969 
970 	/*
971 	 * Send signal to request checkpoint.  It's possible that the checkpointer
972 	 * hasn't started yet, or is in process of restarting, so we will retry a
973 	 * few times if needed.  (Actually, more than a few times, since on slow
974 	 * or overloaded buildfarm machines, it's been observed that the
975 	 * checkpointer can take several seconds to start.)  However, if not told
976 	 * to wait for the checkpoint to occur, we consider failure to send the
977 	 * signal to be nonfatal and merely LOG it.  The checkpointer should see
978 	 * the request when it does start, with or without getting a signal.
979 	 */
980 #define MAX_SIGNAL_TRIES 600	/* max wait 60.0 sec */
981 	for (ntries = 0;; ntries++)
982 	{
983 		if (CheckpointerShmem->checkpointer_pid == 0)
984 		{
985 			if (ntries >= MAX_SIGNAL_TRIES || !(flags & CHECKPOINT_WAIT))
986 			{
987 				elog((flags & CHECKPOINT_WAIT) ? ERROR : LOG,
988 					 "could not signal for checkpoint: checkpointer is not running");
989 				break;
990 			}
991 		}
992 		else if (kill(CheckpointerShmem->checkpointer_pid, SIGINT) != 0)
993 		{
994 			if (ntries >= MAX_SIGNAL_TRIES || !(flags & CHECKPOINT_WAIT))
995 			{
996 				elog((flags & CHECKPOINT_WAIT) ? ERROR : LOG,
997 					 "could not signal for checkpoint: %m");
998 				break;
999 			}
1000 		}
1001 		else
1002 			break;				/* signal sent successfully */
1003 
1004 		CHECK_FOR_INTERRUPTS();
1005 		pg_usleep(100000L);		/* wait 0.1 sec, then retry */
1006 	}
1007 
1008 	/*
1009 	 * If requested, wait for completion.  We detect completion according to
1010 	 * the algorithm given above.
1011 	 */
1012 	if (flags & CHECKPOINT_WAIT)
1013 	{
1014 		int			new_started,
1015 					new_failed;
1016 
1017 		/* Wait for a new checkpoint to start. */
1018 		ConditionVariablePrepareToSleep(&CheckpointerShmem->start_cv);
1019 		for (;;)
1020 		{
1021 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
1022 			new_started = CheckpointerShmem->ckpt_started;
1023 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
1024 
1025 			if (new_started != old_started)
1026 				break;
1027 
1028 			ConditionVariableSleep(&CheckpointerShmem->start_cv,
1029 								   WAIT_EVENT_CHECKPOINT_START);
1030 		}
1031 		ConditionVariableCancelSleep();
1032 
1033 		/*
1034 		 * We are waiting for ckpt_done >= new_started, in a modulo sense.
1035 		 */
1036 		ConditionVariablePrepareToSleep(&CheckpointerShmem->done_cv);
1037 		for (;;)
1038 		{
1039 			int			new_done;
1040 
1041 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
1042 			new_done = CheckpointerShmem->ckpt_done;
1043 			new_failed = CheckpointerShmem->ckpt_failed;
1044 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
1045 
1046 			if (new_done - new_started >= 0)
1047 				break;
1048 
1049 			ConditionVariableSleep(&CheckpointerShmem->done_cv,
1050 								   WAIT_EVENT_CHECKPOINT_DONE);
1051 		}
1052 		ConditionVariableCancelSleep();
1053 
1054 		if (new_failed != old_failed)
1055 			ereport(ERROR,
1056 					(errmsg("checkpoint request failed"),
1057 					 errhint("Consult recent messages in the server log for details.")));
1058 	}
1059 }
1060 
1061 /*
1062  * ForwardSyncRequest
1063  *		Forward a file-fsync request from a backend to the checkpointer
1064  *
1065  * Whenever a backend is compelled to write directly to a relation
1066  * (which should be seldom, if the background writer is getting its job done),
1067  * the backend calls this routine to pass over knowledge that the relation
1068  * is dirty and must be fsync'd before next checkpoint.  We also use this
1069  * opportunity to count such writes for statistical purposes.
1070  *
1071  * To avoid holding the lock for longer than necessary, we normally write
1072  * to the requests[] queue without checking for duplicates.  The checkpointer
1073  * will have to eliminate dups internally anyway.  However, if we discover
1074  * that the queue is full, we make a pass over the entire queue to compact
1075  * it.  This is somewhat expensive, but the alternative is for the backend
1076  * to perform its own fsync, which is far more expensive in practice.  It
1077  * is theoretically possible a backend fsync might still be necessary, if
1078  * the queue is full and contains no duplicate entries.  In that case, we
1079  * let the backend know by returning false.
1080  */
1081 bool
ForwardSyncRequest(const FileTag * ftag,SyncRequestType type)1082 ForwardSyncRequest(const FileTag *ftag, SyncRequestType type)
1083 {
1084 	CheckpointerRequest *request;
1085 	bool		too_full;
1086 
1087 	if (!IsUnderPostmaster)
1088 		return false;			/* probably shouldn't even get here */
1089 
1090 	if (AmCheckpointerProcess())
1091 		elog(ERROR, "ForwardSyncRequest must not be called in checkpointer");
1092 
1093 	LWLockAcquire(CheckpointerCommLock, LW_EXCLUSIVE);
1094 
1095 	/* Count all backend writes regardless of if they fit in the queue */
1096 	if (!AmBackgroundWriterProcess())
1097 		CheckpointerShmem->num_backend_writes++;
1098 
1099 	/*
1100 	 * If the checkpointer isn't running or the request queue is full, the
1101 	 * backend will have to perform its own fsync request.  But before forcing
1102 	 * that to happen, we can try to compact the request queue.
1103 	 */
1104 	if (CheckpointerShmem->checkpointer_pid == 0 ||
1105 		(CheckpointerShmem->num_requests >= CheckpointerShmem->max_requests &&
1106 		 !CompactCheckpointerRequestQueue()))
1107 	{
1108 		/*
1109 		 * Count the subset of writes where backends have to do their own
1110 		 * fsync
1111 		 */
1112 		if (!AmBackgroundWriterProcess())
1113 			CheckpointerShmem->num_backend_fsync++;
1114 		LWLockRelease(CheckpointerCommLock);
1115 		return false;
1116 	}
1117 
1118 	/* OK, insert request */
1119 	request = &CheckpointerShmem->requests[CheckpointerShmem->num_requests++];
1120 	request->ftag = *ftag;
1121 	request->type = type;
1122 
1123 	/* If queue is more than half full, nudge the checkpointer to empty it */
1124 	too_full = (CheckpointerShmem->num_requests >=
1125 				CheckpointerShmem->max_requests / 2);
1126 
1127 	LWLockRelease(CheckpointerCommLock);
1128 
1129 	/* ... but not till after we release the lock */
1130 	if (too_full && ProcGlobal->checkpointerLatch)
1131 		SetLatch(ProcGlobal->checkpointerLatch);
1132 
1133 	return true;
1134 }
1135 
1136 /*
1137  * CompactCheckpointerRequestQueue
1138  *		Remove duplicates from the request queue to avoid backend fsyncs.
1139  *		Returns "true" if any entries were removed.
1140  *
1141  * Although a full fsync request queue is not common, it can lead to severe
1142  * performance problems when it does happen.  So far, this situation has
1143  * only been observed to occur when the system is under heavy write load,
1144  * and especially during the "sync" phase of a checkpoint.  Without this
1145  * logic, each backend begins doing an fsync for every block written, which
1146  * gets very expensive and can slow down the whole system.
1147  *
1148  * Trying to do this every time the queue is full could lose if there
1149  * aren't any removable entries.  But that should be vanishingly rare in
1150  * practice: there's one queue entry per shared buffer.
1151  */
1152 static bool
CompactCheckpointerRequestQueue(void)1153 CompactCheckpointerRequestQueue(void)
1154 {
1155 	struct CheckpointerSlotMapping
1156 	{
1157 		CheckpointerRequest request;
1158 		int			slot;
1159 	};
1160 
1161 	int			n,
1162 				preserve_count;
1163 	int			num_skipped = 0;
1164 	HASHCTL		ctl;
1165 	HTAB	   *htab;
1166 	bool	   *skip_slot;
1167 
1168 	/* must hold CheckpointerCommLock in exclusive mode */
1169 	Assert(LWLockHeldByMe(CheckpointerCommLock));
1170 
1171 	/* Initialize skip_slot array */
1172 	skip_slot = palloc0(sizeof(bool) * CheckpointerShmem->num_requests);
1173 
1174 	/* Initialize temporary hash table */
1175 	ctl.keysize = sizeof(CheckpointerRequest);
1176 	ctl.entrysize = sizeof(struct CheckpointerSlotMapping);
1177 	ctl.hcxt = CurrentMemoryContext;
1178 
1179 	htab = hash_create("CompactCheckpointerRequestQueue",
1180 					   CheckpointerShmem->num_requests,
1181 					   &ctl,
1182 					   HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
1183 
1184 	/*
1185 	 * The basic idea here is that a request can be skipped if it's followed
1186 	 * by a later, identical request.  It might seem more sensible to work
1187 	 * backwards from the end of the queue and check whether a request is
1188 	 * *preceded* by an earlier, identical request, in the hopes of doing less
1189 	 * copying.  But that might change the semantics, if there's an
1190 	 * intervening SYNC_FORGET_REQUEST or SYNC_FILTER_REQUEST, so we do it
1191 	 * this way.  It would be possible to be even smarter if we made the code
1192 	 * below understand the specific semantics of such requests (it could blow
1193 	 * away preceding entries that would end up being canceled anyhow), but
1194 	 * it's not clear that the extra complexity would buy us anything.
1195 	 */
1196 	for (n = 0; n < CheckpointerShmem->num_requests; n++)
1197 	{
1198 		CheckpointerRequest *request;
1199 		struct CheckpointerSlotMapping *slotmap;
1200 		bool		found;
1201 
1202 		/*
1203 		 * We use the request struct directly as a hashtable key.  This
1204 		 * assumes that any padding bytes in the structs are consistently the
1205 		 * same, which should be okay because we zeroed them in
1206 		 * CheckpointerShmemInit.  Note also that RelFileNode had better
1207 		 * contain no pad bytes.
1208 		 */
1209 		request = &CheckpointerShmem->requests[n];
1210 		slotmap = hash_search(htab, request, HASH_ENTER, &found);
1211 		if (found)
1212 		{
1213 			/* Duplicate, so mark the previous occurrence as skippable */
1214 			skip_slot[slotmap->slot] = true;
1215 			num_skipped++;
1216 		}
1217 		/* Remember slot containing latest occurrence of this request value */
1218 		slotmap->slot = n;
1219 	}
1220 
1221 	/* Done with the hash table. */
1222 	hash_destroy(htab);
1223 
1224 	/* If no duplicates, we're out of luck. */
1225 	if (!num_skipped)
1226 	{
1227 		pfree(skip_slot);
1228 		return false;
1229 	}
1230 
1231 	/* We found some duplicates; remove them. */
1232 	preserve_count = 0;
1233 	for (n = 0; n < CheckpointerShmem->num_requests; n++)
1234 	{
1235 		if (skip_slot[n])
1236 			continue;
1237 		CheckpointerShmem->requests[preserve_count++] = CheckpointerShmem->requests[n];
1238 	}
1239 	ereport(DEBUG1,
1240 			(errmsg_internal("compacted fsync request queue from %d entries to %d entries",
1241 							 CheckpointerShmem->num_requests, preserve_count)));
1242 	CheckpointerShmem->num_requests = preserve_count;
1243 
1244 	/* Cleanup. */
1245 	pfree(skip_slot);
1246 	return true;
1247 }
1248 
1249 /*
1250  * AbsorbSyncRequests
1251  *		Retrieve queued sync requests and pass them to sync mechanism.
1252  *
1253  * This is exported because it must be called during CreateCheckPoint;
1254  * we have to be sure we have accepted all pending requests just before
1255  * we start fsync'ing.  Since CreateCheckPoint sometimes runs in
1256  * non-checkpointer processes, do nothing if not checkpointer.
1257  */
1258 void
AbsorbSyncRequests(void)1259 AbsorbSyncRequests(void)
1260 {
1261 	CheckpointerRequest *requests = NULL;
1262 	CheckpointerRequest *request;
1263 	int			n;
1264 
1265 	if (!AmCheckpointerProcess())
1266 		return;
1267 
1268 	LWLockAcquire(CheckpointerCommLock, LW_EXCLUSIVE);
1269 
1270 	/* Transfer stats counts into pending pgstats message */
1271 	BgWriterStats.m_buf_written_backend += CheckpointerShmem->num_backend_writes;
1272 	BgWriterStats.m_buf_fsync_backend += CheckpointerShmem->num_backend_fsync;
1273 
1274 	CheckpointerShmem->num_backend_writes = 0;
1275 	CheckpointerShmem->num_backend_fsync = 0;
1276 
1277 	/*
1278 	 * We try to avoid holding the lock for a long time by copying the request
1279 	 * array, and processing the requests after releasing the lock.
1280 	 *
1281 	 * Once we have cleared the requests from shared memory, we have to PANIC
1282 	 * if we then fail to absorb them (eg, because our hashtable runs out of
1283 	 * memory).  This is because the system cannot run safely if we are unable
1284 	 * to fsync what we have been told to fsync.  Fortunately, the hashtable
1285 	 * is so small that the problem is quite unlikely to arise in practice.
1286 	 */
1287 	n = CheckpointerShmem->num_requests;
1288 	if (n > 0)
1289 	{
1290 		requests = (CheckpointerRequest *) palloc(n * sizeof(CheckpointerRequest));
1291 		memcpy(requests, CheckpointerShmem->requests, n * sizeof(CheckpointerRequest));
1292 	}
1293 
1294 	START_CRIT_SECTION();
1295 
1296 	CheckpointerShmem->num_requests = 0;
1297 
1298 	LWLockRelease(CheckpointerCommLock);
1299 
1300 	for (request = requests; n > 0; request++, n--)
1301 		RememberSyncRequest(&request->ftag, request->type);
1302 
1303 	END_CRIT_SECTION();
1304 
1305 	if (requests)
1306 		pfree(requests);
1307 }
1308 
1309 /*
1310  * Update any shared memory configurations based on config parameters
1311  */
1312 static void
UpdateSharedMemoryConfig(void)1313 UpdateSharedMemoryConfig(void)
1314 {
1315 	/* update global shmem state for sync rep */
1316 	SyncRepUpdateSyncStandbysDefined();
1317 
1318 	/*
1319 	 * If full_page_writes has been changed by SIGHUP, we update it in shared
1320 	 * memory and write an XLOG_FPW_CHANGE record.
1321 	 */
1322 	UpdateFullPageWrites();
1323 
1324 	elog(DEBUG2, "checkpointer updated shared memory configuration values");
1325 }
1326 
1327 /*
1328  * FirstCallSinceLastCheckpoint allows a process to take an action once
1329  * per checkpoint cycle by asynchronously checking for checkpoint completion.
1330  */
1331 bool
FirstCallSinceLastCheckpoint(void)1332 FirstCallSinceLastCheckpoint(void)
1333 {
1334 	static int	ckpt_done = 0;
1335 	int			new_done;
1336 	bool		FirstCall = false;
1337 
1338 	SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
1339 	new_done = CheckpointerShmem->ckpt_done;
1340 	SpinLockRelease(&CheckpointerShmem->ckpt_lck);
1341 
1342 	if (new_done != ckpt_done)
1343 		FirstCall = true;
1344 
1345 	ckpt_done = new_done;
1346 
1347 	return FirstCall;
1348 }
1349