1 /*-------------------------------------------------------------------------
2  *
3  * checkpointer.c
4  *
5  * The checkpointer is new as of Postgres 9.2.  It handles all checkpoints.
6  * Checkpoints are automatically dispatched after a certain amount of time has
7  * elapsed since the last one, and it can be signaled to perform requested
8  * checkpoints as well.  (The GUC parameter that mandates a checkpoint every
9  * so many WAL segments is implemented by having backends signal when they
10  * fill WAL segments; the checkpointer itself doesn't watch for the
11  * condition.)
12  *
13  * The checkpointer is started by the postmaster as soon as the startup
14  * subprocess finishes, or as soon as recovery begins if we are doing archive
15  * recovery.  It remains alive until the postmaster commands it to terminate.
16  * Normal termination is by SIGUSR2, which instructs the checkpointer to
17  * execute a shutdown checkpoint and then exit(0).  (All backends must be
18  * stopped before SIGUSR2 is issued!)  Emergency termination is by SIGQUIT;
19  * like any backend, the checkpointer will simply abort and exit on SIGQUIT.
20  *
21  * If the checkpointer exits unexpectedly, the postmaster treats that the same
22  * as a backend crash: shared memory may be corrupted, so remaining backends
23  * should be killed by SIGQUIT and then a recovery cycle started.  (Even if
24  * shared memory isn't corrupted, we have lost information about which
25  * files need to be fsync'd for the next checkpoint, and so a system
26  * restart needs to be forced.)
27  *
28  *
29  * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
30  *
31  *
32  * IDENTIFICATION
33  *	  src/backend/postmaster/checkpointer.c
34  *
35  *-------------------------------------------------------------------------
36  */
37 #include "postgres.h"
38 
39 #include <signal.h>
40 #include <sys/time.h>
41 #include <time.h>
42 #include <unistd.h>
43 
44 #include "access/xlog.h"
45 #include "access/xlog_internal.h"
46 #include "libpq/pqsignal.h"
47 #include "miscadmin.h"
48 #include "pgstat.h"
49 #include "postmaster/bgwriter.h"
50 #include "replication/syncrep.h"
51 #include "storage/bufmgr.h"
52 #include "storage/fd.h"
53 #include "storage/ipc.h"
54 #include "storage/lwlock.h"
55 #include "storage/proc.h"
56 #include "storage/shmem.h"
57 #include "storage/smgr.h"
58 #include "storage/spin.h"
59 #include "utils/guc.h"
60 #include "utils/memutils.h"
61 #include "utils/resowner.h"
62 
63 
64 /*----------
65  * Shared memory area for communication between checkpointer and backends
66  *
67  * The ckpt counters allow backends to watch for completion of a checkpoint
68  * request they send.  Here's how it works:
69  *	* At start of a checkpoint, checkpointer reads (and clears) the request
70  *	  flags and increments ckpt_started, while holding ckpt_lck.
71  *	* On completion of a checkpoint, checkpointer sets ckpt_done to
72  *	  equal ckpt_started.
73  *	* On failure of a checkpoint, checkpointer increments ckpt_failed
74  *	  and sets ckpt_done to equal ckpt_started.
75  *
76  * The algorithm for backends is:
77  *	1. Record current values of ckpt_failed and ckpt_started, and
78  *	   set request flags, while holding ckpt_lck.
79  *	2. Send signal to request checkpoint.
80  *	3. Sleep until ckpt_started changes.  Now you know a checkpoint has
81  *	   begun since you started this algorithm (although *not* that it was
82  *	   specifically initiated by your signal), and that it is using your flags.
83  *	4. Record new value of ckpt_started.
84  *	5. Sleep until ckpt_done >= saved value of ckpt_started.  (Use modulo
85  *	   arithmetic here in case counters wrap around.)  Now you know a
86  *	   checkpoint has started and completed, but not whether it was
87  *	   successful.
88  *	6. If ckpt_failed is different from the originally saved value,
89  *	   assume request failed; otherwise it was definitely successful.
90  *
91  * ckpt_flags holds the OR of the checkpoint request flags sent by all
92  * requesting backends since the last checkpoint start.  The flags are
93  * chosen so that OR'ing is the correct way to combine multiple requests.
94  *
95  * num_backend_writes is used to count the number of buffer writes performed
96  * by user backend processes.  This counter should be wide enough that it
97  * can't overflow during a single processing cycle.  num_backend_fsync
98  * counts the subset of those writes that also had to do their own fsync,
99  * because the checkpointer failed to absorb their request.
100  *
101  * The requests array holds fsync requests sent by backends and not yet
102  * absorbed by the checkpointer.
103  *
104  * Unlike the checkpoint fields, num_backend_writes, num_backend_fsync, and
105  * the requests fields are protected by CheckpointerCommLock.
106  *----------
107  */
108 typedef struct
109 {
110 	RelFileNode rnode;
111 	ForkNumber	forknum;
112 	BlockNumber segno;			/* see md.c for special values */
113 	/* might add a real request-type field later; not needed yet */
114 } CheckpointerRequest;
115 
116 typedef struct
117 {
118 	pid_t		checkpointer_pid;		/* PID (0 if not started) */
119 
120 	slock_t		ckpt_lck;		/* protects all the ckpt_* fields */
121 
122 	int			ckpt_started;	/* advances when checkpoint starts */
123 	int			ckpt_done;		/* advances when checkpoint done */
124 	int			ckpt_failed;	/* advances when checkpoint fails */
125 
126 	int			ckpt_flags;		/* checkpoint flags, as defined in xlog.h */
127 
128 	uint32		num_backend_writes;		/* counts user backend buffer writes */
129 	uint32		num_backend_fsync;		/* counts user backend fsync calls */
130 
131 	int			num_requests;	/* current # of requests */
132 	int			max_requests;	/* allocated array size */
133 	CheckpointerRequest requests[FLEXIBLE_ARRAY_MEMBER];
134 } CheckpointerShmemStruct;
135 
136 static CheckpointerShmemStruct *CheckpointerShmem;
137 
138 /* interval for calling AbsorbFsyncRequests in CheckpointWriteDelay */
139 #define WRITES_PER_ABSORB		1000
140 
141 /*
142  * GUC parameters
143  */
144 int			CheckPointTimeout = 300;
145 int			CheckPointWarning = 30;
146 double		CheckPointCompletionTarget = 0.5;
147 
148 /*
149  * Flags set by interrupt handlers for later service in the main loop.
150  */
151 static volatile sig_atomic_t got_SIGHUP = false;
152 static volatile sig_atomic_t shutdown_requested = false;
153 
154 /*
155  * Private state
156  */
157 static bool ckpt_active = false;
158 
159 /* these values are valid when ckpt_active is true: */
160 static pg_time_t ckpt_start_time;
161 static XLogRecPtr ckpt_start_recptr;
162 static double ckpt_cached_elapsed;
163 
164 static pg_time_t last_checkpoint_time;
165 static pg_time_t last_xlog_switch_time;
166 
167 /* Prototypes for private functions */
168 
169 static void CheckArchiveTimeout(void);
170 static bool IsCheckpointOnSchedule(double progress);
171 static bool ImmediateCheckpointRequested(void);
172 static bool CompactCheckpointerRequestQueue(void);
173 static void UpdateSharedMemoryConfig(void);
174 
175 /* Signal handlers */
176 
177 static void chkpt_quickdie(SIGNAL_ARGS);
178 static void ChkptSigHupHandler(SIGNAL_ARGS);
179 static void ReqCheckpointHandler(SIGNAL_ARGS);
180 static void chkpt_sigusr1_handler(SIGNAL_ARGS);
181 static void ReqShutdownHandler(SIGNAL_ARGS);
182 
183 
184 /*
185  * Main entry point for checkpointer process
186  *
187  * This is invoked from AuxiliaryProcessMain, which has already created the
188  * basic execution environment, but not enabled signals yet.
189  */
190 void
CheckpointerMain(void)191 CheckpointerMain(void)
192 {
193 	sigjmp_buf	local_sigjmp_buf;
194 	MemoryContext checkpointer_context;
195 
196 	CheckpointerShmem->checkpointer_pid = MyProcPid;
197 
198 	/*
199 	 * Properly accept or ignore signals the postmaster might send us
200 	 *
201 	 * Note: we deliberately ignore SIGTERM, because during a standard Unix
202 	 * system shutdown cycle, init will SIGTERM all processes at once.  We
203 	 * want to wait for the backends to exit, whereupon the postmaster will
204 	 * tell us it's okay to shut down (via SIGUSR2).
205 	 */
206 	pqsignal(SIGHUP, ChkptSigHupHandler);		/* set flag to read config
207 												 * file */
208 	pqsignal(SIGINT, ReqCheckpointHandler);		/* request checkpoint */
209 	pqsignal(SIGTERM, SIG_IGN); /* ignore SIGTERM */
210 	pqsignal(SIGQUIT, chkpt_quickdie);	/* hard crash time */
211 	pqsignal(SIGALRM, SIG_IGN);
212 	pqsignal(SIGPIPE, SIG_IGN);
213 	pqsignal(SIGUSR1, chkpt_sigusr1_handler);
214 	pqsignal(SIGUSR2, ReqShutdownHandler);		/* request shutdown */
215 
216 	/*
217 	 * Reset some signals that are accepted by postmaster but not here
218 	 */
219 	pqsignal(SIGCHLD, SIG_DFL);
220 	pqsignal(SIGTTIN, SIG_DFL);
221 	pqsignal(SIGTTOU, SIG_DFL);
222 	pqsignal(SIGCONT, SIG_DFL);
223 	pqsignal(SIGWINCH, SIG_DFL);
224 
225 	/* We allow SIGQUIT (quickdie) at all times */
226 	sigdelset(&BlockSig, SIGQUIT);
227 
228 	/*
229 	 * Initialize so that first time-driven event happens at the correct time.
230 	 */
231 	last_checkpoint_time = last_xlog_switch_time = (pg_time_t) time(NULL);
232 
233 	/*
234 	 * Create a resource owner to keep track of our resources (currently only
235 	 * buffer pins).
236 	 */
237 	CurrentResourceOwner = ResourceOwnerCreate(NULL, "Checkpointer");
238 
239 	/*
240 	 * Create a memory context that we will do all our work in.  We do this so
241 	 * that we can reset the context during error recovery and thereby avoid
242 	 * possible memory leaks.  Formerly this code just ran in
243 	 * TopMemoryContext, but resetting that would be a really bad idea.
244 	 */
245 	checkpointer_context = AllocSetContextCreate(TopMemoryContext,
246 												 "Checkpointer",
247 												 ALLOCSET_DEFAULT_SIZES);
248 	MemoryContextSwitchTo(checkpointer_context);
249 
250 	/*
251 	 * If an exception is encountered, processing resumes here.
252 	 *
253 	 * See notes in postgres.c about the design of this coding.
254 	 */
255 	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
256 	{
257 		/* Since not using PG_TRY, must reset error stack by hand */
258 		error_context_stack = NULL;
259 
260 		/* Prevent interrupts while cleaning up */
261 		HOLD_INTERRUPTS();
262 
263 		/* Report the error to the server log */
264 		EmitErrorReport();
265 
266 		/*
267 		 * These operations are really just a minimal subset of
268 		 * AbortTransaction().  We don't have very many resources to worry
269 		 * about in checkpointer, but we do have LWLocks, buffers, and temp
270 		 * files.
271 		 */
272 		LWLockReleaseAll();
273 		pgstat_report_wait_end();
274 		AbortBufferIO();
275 		UnlockBuffers();
276 		/* buffer pins are released here: */
277 		ResourceOwnerRelease(CurrentResourceOwner,
278 							 RESOURCE_RELEASE_BEFORE_LOCKS,
279 							 false, true);
280 		/* we needn't bother with the other ResourceOwnerRelease phases */
281 		AtEOXact_Buffers(false);
282 		AtEOXact_SMgr();
283 		AtEOXact_Files();
284 		AtEOXact_HashTables(false);
285 
286 		/* Warn any waiting backends that the checkpoint failed. */
287 		if (ckpt_active)
288 		{
289 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
290 			CheckpointerShmem->ckpt_failed++;
291 			CheckpointerShmem->ckpt_done = CheckpointerShmem->ckpt_started;
292 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
293 
294 			ckpt_active = false;
295 		}
296 
297 		/*
298 		 * Now return to normal top-level context and clear ErrorContext for
299 		 * next time.
300 		 */
301 		MemoryContextSwitchTo(checkpointer_context);
302 		FlushErrorState();
303 
304 		/* Flush any leaked data in the top-level context */
305 		MemoryContextResetAndDeleteChildren(checkpointer_context);
306 
307 		/* Now we can allow interrupts again */
308 		RESUME_INTERRUPTS();
309 
310 		/*
311 		 * Sleep at least 1 second after any error.  A write error is likely
312 		 * to be repeated, and we don't want to be filling the error logs as
313 		 * fast as we can.
314 		 */
315 		pg_usleep(1000000L);
316 
317 		/*
318 		 * Close all open files after any error.  This is helpful on Windows,
319 		 * where holding deleted files open causes various strange errors.
320 		 * It's not clear we need it elsewhere, but shouldn't hurt.
321 		 */
322 		smgrcloseall();
323 	}
324 
325 	/* We can now handle ereport(ERROR) */
326 	PG_exception_stack = &local_sigjmp_buf;
327 
328 	/*
329 	 * Unblock signals (they were blocked when the postmaster forked us)
330 	 */
331 	PG_SETMASK(&UnBlockSig);
332 
333 	/*
334 	 * Ensure all shared memory values are set correctly for the config. Doing
335 	 * this here ensures no race conditions from other concurrent updaters.
336 	 */
337 	UpdateSharedMemoryConfig();
338 
339 	/*
340 	 * Advertise our latch that backends can use to wake us up while we're
341 	 * sleeping.
342 	 */
343 	ProcGlobal->checkpointerLatch = &MyProc->procLatch;
344 
345 	/*
346 	 * Loop forever
347 	 */
348 	for (;;)
349 	{
350 		bool		do_checkpoint = false;
351 		int			flags = 0;
352 		pg_time_t	now;
353 		int			elapsed_secs;
354 		int			cur_timeout;
355 		int			rc;
356 
357 		/* Clear any already-pending wakeups */
358 		ResetLatch(MyLatch);
359 
360 		/*
361 		 * Process any requests or signals received recently.
362 		 */
363 		AbsorbFsyncRequests();
364 
365 		if (got_SIGHUP)
366 		{
367 			got_SIGHUP = false;
368 			ProcessConfigFile(PGC_SIGHUP);
369 
370 			/*
371 			 * Checkpointer is the last process to shut down, so we ask it to
372 			 * hold the keys for a range of other tasks required most of which
373 			 * have nothing to do with checkpointing at all.
374 			 *
375 			 * For various reasons, some config values can change dynamically
376 			 * so the primary copy of them is held in shared memory to make
377 			 * sure all backends see the same value.  We make Checkpointer
378 			 * responsible for updating the shared memory copy if the
379 			 * parameter setting changes because of SIGHUP.
380 			 */
381 			UpdateSharedMemoryConfig();
382 		}
383 		if (shutdown_requested)
384 		{
385 			/*
386 			 * From here on, elog(ERROR) should end with exit(1), not send
387 			 * control back to the sigsetjmp block above
388 			 */
389 			ExitOnAnyError = true;
390 			/* Close down the database */
391 			ShutdownXLOG(0, 0);
392 			/* Normal exit from the checkpointer is here */
393 			proc_exit(0);		/* done */
394 		}
395 
396 		/*
397 		 * Detect a pending checkpoint request by checking whether the flags
398 		 * word in shared memory is nonzero.  We shouldn't need to acquire the
399 		 * ckpt_lck for this.
400 		 */
401 		if (((volatile CheckpointerShmemStruct *) CheckpointerShmem)->ckpt_flags)
402 		{
403 			do_checkpoint = true;
404 			BgWriterStats.m_requested_checkpoints++;
405 		}
406 
407 		/*
408 		 * Force a checkpoint if too much time has elapsed since the last one.
409 		 * Note that we count a timed checkpoint in stats only when this
410 		 * occurs without an external request, but we set the CAUSE_TIME flag
411 		 * bit even if there is also an external request.
412 		 */
413 		now = (pg_time_t) time(NULL);
414 		elapsed_secs = now - last_checkpoint_time;
415 		if (elapsed_secs >= CheckPointTimeout)
416 		{
417 			if (!do_checkpoint)
418 				BgWriterStats.m_timed_checkpoints++;
419 			do_checkpoint = true;
420 			flags |= CHECKPOINT_CAUSE_TIME;
421 		}
422 
423 		/*
424 		 * Do a checkpoint if requested.
425 		 */
426 		if (do_checkpoint)
427 		{
428 			bool		ckpt_performed = false;
429 			bool		do_restartpoint;
430 
431 			/*
432 			 * Check if we should perform a checkpoint or a restartpoint. As a
433 			 * side-effect, RecoveryInProgress() initializes TimeLineID if
434 			 * it's not set yet.
435 			 */
436 			do_restartpoint = RecoveryInProgress();
437 
438 			/*
439 			 * Atomically fetch the request flags to figure out what kind of a
440 			 * checkpoint we should perform, and increase the started-counter
441 			 * to acknowledge that we've started a new checkpoint.
442 			 */
443 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
444 			flags |= CheckpointerShmem->ckpt_flags;
445 			CheckpointerShmem->ckpt_flags = 0;
446 			CheckpointerShmem->ckpt_started++;
447 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
448 
449 			/*
450 			 * The end-of-recovery checkpoint is a real checkpoint that's
451 			 * performed while we're still in recovery.
452 			 */
453 			if (flags & CHECKPOINT_END_OF_RECOVERY)
454 				do_restartpoint = false;
455 
456 			/*
457 			 * We will warn if (a) too soon since last checkpoint (whatever
458 			 * caused it) and (b) somebody set the CHECKPOINT_CAUSE_XLOG flag
459 			 * since the last checkpoint start.  Note in particular that this
460 			 * implementation will not generate warnings caused by
461 			 * CheckPointTimeout < CheckPointWarning.
462 			 */
463 			if (!do_restartpoint &&
464 				(flags & CHECKPOINT_CAUSE_XLOG) &&
465 				elapsed_secs < CheckPointWarning)
466 				ereport(LOG,
467 						(errmsg_plural("checkpoints are occurring too frequently (%d second apart)",
468 				"checkpoints are occurring too frequently (%d seconds apart)",
469 									   elapsed_secs,
470 									   elapsed_secs),
471 						 errhint("Consider increasing the configuration parameter \"max_wal_size\".")));
472 
473 			/*
474 			 * Initialize checkpointer-private variables used during
475 			 * checkpoint.
476 			 */
477 			ckpt_active = true;
478 			if (do_restartpoint)
479 				ckpt_start_recptr = GetXLogReplayRecPtr(NULL);
480 			else
481 				ckpt_start_recptr = GetInsertRecPtr();
482 			ckpt_start_time = now;
483 			ckpt_cached_elapsed = 0;
484 
485 			/*
486 			 * Do the checkpoint.
487 			 */
488 			if (!do_restartpoint)
489 			{
490 				CreateCheckPoint(flags);
491 				ckpt_performed = true;
492 			}
493 			else
494 				ckpt_performed = CreateRestartPoint(flags);
495 
496 			/*
497 			 * After any checkpoint, close all smgr files.  This is so we
498 			 * won't hang onto smgr references to deleted files indefinitely.
499 			 */
500 			smgrcloseall();
501 
502 			/*
503 			 * Indicate checkpoint completion to any waiting backends.
504 			 */
505 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
506 			CheckpointerShmem->ckpt_done = CheckpointerShmem->ckpt_started;
507 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
508 
509 			if (ckpt_performed)
510 			{
511 				/*
512 				 * Note we record the checkpoint start time not end time as
513 				 * last_checkpoint_time.  This is so that time-driven
514 				 * checkpoints happen at a predictable spacing.
515 				 */
516 				last_checkpoint_time = now;
517 			}
518 			else
519 			{
520 				/*
521 				 * We were not able to perform the restartpoint (checkpoints
522 				 * throw an ERROR in case of error).  Most likely because we
523 				 * have not received any new checkpoint WAL records since the
524 				 * last restartpoint. Try again in 15 s.
525 				 */
526 				last_checkpoint_time = now - CheckPointTimeout + 15;
527 			}
528 
529 			ckpt_active = false;
530 		}
531 
532 		/* Check for archive_timeout and switch xlog files if necessary. */
533 		CheckArchiveTimeout();
534 
535 		/*
536 		 * Send off activity statistics to the stats collector.  (The reason
537 		 * why we re-use bgwriter-related code for this is that the bgwriter
538 		 * and checkpointer used to be just one process.  It's probably not
539 		 * worth the trouble to split the stats support into two independent
540 		 * stats message types.)
541 		 */
542 		pgstat_send_bgwriter();
543 
544 		/*
545 		 * Sleep until we are signaled or it's time for another checkpoint or
546 		 * xlog file switch.
547 		 */
548 		now = (pg_time_t) time(NULL);
549 		elapsed_secs = now - last_checkpoint_time;
550 		if (elapsed_secs >= CheckPointTimeout)
551 			continue;			/* no sleep for us ... */
552 		cur_timeout = CheckPointTimeout - elapsed_secs;
553 		if (XLogArchiveTimeout > 0 && !RecoveryInProgress())
554 		{
555 			elapsed_secs = now - last_xlog_switch_time;
556 			if (elapsed_secs >= XLogArchiveTimeout)
557 				continue;		/* no sleep for us ... */
558 			cur_timeout = Min(cur_timeout, XLogArchiveTimeout - elapsed_secs);
559 		}
560 
561 		rc = WaitLatch(MyLatch,
562 					   WL_LATCH_SET | WL_TIMEOUT | WL_POSTMASTER_DEATH,
563 					   cur_timeout * 1000L /* convert to ms */ );
564 
565 		/*
566 		 * Emergency bailout if postmaster has died.  This is to avoid the
567 		 * necessity for manual cleanup of all postmaster children.
568 		 */
569 		if (rc & WL_POSTMASTER_DEATH)
570 			exit(1);
571 	}
572 }
573 
574 /*
575  * CheckArchiveTimeout -- check for archive_timeout and switch xlog files
576  *
577  * This will switch to a new WAL file and force an archive file write
578  * if any activity is recorded in the current WAL file, including just
579  * a single checkpoint record.
580  */
581 static void
CheckArchiveTimeout(void)582 CheckArchiveTimeout(void)
583 {
584 	pg_time_t	now;
585 	pg_time_t	last_time;
586 
587 	if (XLogArchiveTimeout <= 0 || RecoveryInProgress())
588 		return;
589 
590 	now = (pg_time_t) time(NULL);
591 
592 	/* First we do a quick check using possibly-stale local state. */
593 	if ((int) (now - last_xlog_switch_time) < XLogArchiveTimeout)
594 		return;
595 
596 	/*
597 	 * Update local state ... note that last_xlog_switch_time is the last time
598 	 * a switch was performed *or requested*.
599 	 */
600 	last_time = GetLastSegSwitchTime();
601 
602 	last_xlog_switch_time = Max(last_xlog_switch_time, last_time);
603 
604 	/* Now we can do the real check */
605 	if ((int) (now - last_xlog_switch_time) >= XLogArchiveTimeout)
606 	{
607 		XLogRecPtr	switchpoint;
608 
609 		/* OK, it's time to switch */
610 		switchpoint = RequestXLogSwitch();
611 
612 		/*
613 		 * If the returned pointer points exactly to a segment boundary,
614 		 * assume nothing happened.
615 		 */
616 		if ((switchpoint % XLogSegSize) != 0)
617 			ereport(DEBUG1,
618 				(errmsg("transaction log switch forced (archive_timeout=%d)",
619 						XLogArchiveTimeout)));
620 
621 		/*
622 		 * Update state in any case, so we don't retry constantly when the
623 		 * system is idle.
624 		 */
625 		last_xlog_switch_time = now;
626 	}
627 }
628 
629 /*
630  * Returns true if an immediate checkpoint request is pending.  (Note that
631  * this does not check the *current* checkpoint's IMMEDIATE flag, but whether
632  * there is one pending behind it.)
633  */
634 static bool
ImmediateCheckpointRequested(void)635 ImmediateCheckpointRequested(void)
636 {
637 	volatile CheckpointerShmemStruct *cps = CheckpointerShmem;
638 
639 	/*
640 	 * We don't need to acquire the ckpt_lck in this case because we're only
641 	 * looking at a single flag bit.
642 	 */
643 	if (cps->ckpt_flags & CHECKPOINT_IMMEDIATE)
644 		return true;
645 	return false;
646 }
647 
648 /*
649  * CheckpointWriteDelay -- control rate of checkpoint
650  *
651  * This function is called after each page write performed by BufferSync().
652  * It is responsible for throttling BufferSync()'s write rate to hit
653  * checkpoint_completion_target.
654  *
655  * The checkpoint request flags should be passed in; currently the only one
656  * examined is CHECKPOINT_IMMEDIATE, which disables delays between writes.
657  *
658  * 'progress' is an estimate of how much of the work has been done, as a
659  * fraction between 0.0 meaning none, and 1.0 meaning all done.
660  */
661 void
CheckpointWriteDelay(int flags,double progress)662 CheckpointWriteDelay(int flags, double progress)
663 {
664 	static int	absorb_counter = WRITES_PER_ABSORB;
665 
666 	/* Do nothing if checkpoint is being executed by non-checkpointer process */
667 	if (!AmCheckpointerProcess())
668 		return;
669 
670 	/*
671 	 * Perform the usual duties and take a nap, unless we're behind schedule,
672 	 * in which case we just try to catch up as quickly as possible.
673 	 */
674 	if (!(flags & CHECKPOINT_IMMEDIATE) &&
675 		!shutdown_requested &&
676 		!ImmediateCheckpointRequested() &&
677 		IsCheckpointOnSchedule(progress))
678 	{
679 		if (got_SIGHUP)
680 		{
681 			got_SIGHUP = false;
682 			ProcessConfigFile(PGC_SIGHUP);
683 			/* update shmem copies of config variables */
684 			UpdateSharedMemoryConfig();
685 		}
686 
687 		AbsorbFsyncRequests();
688 		absorb_counter = WRITES_PER_ABSORB;
689 
690 		CheckArchiveTimeout();
691 
692 		/*
693 		 * Report interim activity statistics to the stats collector.
694 		 */
695 		pgstat_send_bgwriter();
696 
697 		/*
698 		 * This sleep used to be connected to bgwriter_delay, typically 200ms.
699 		 * That resulted in more frequent wakeups if not much work to do.
700 		 * Checkpointer and bgwriter are no longer related so take the Big
701 		 * Sleep.
702 		 */
703 		pg_usleep(100000L);
704 	}
705 	else if (--absorb_counter <= 0)
706 	{
707 		/*
708 		 * Absorb pending fsync requests after each WRITES_PER_ABSORB write
709 		 * operations even when we don't sleep, to prevent overflow of the
710 		 * fsync request queue.
711 		 */
712 		AbsorbFsyncRequests();
713 		absorb_counter = WRITES_PER_ABSORB;
714 	}
715 }
716 
717 /*
718  * IsCheckpointOnSchedule -- are we on schedule to finish this checkpoint
719  *		 (or restartpoint) in time?
720  *
721  * Compares the current progress against the time/segments elapsed since last
722  * checkpoint, and returns true if the progress we've made this far is greater
723  * than the elapsed time/segments.
724  */
725 static bool
IsCheckpointOnSchedule(double progress)726 IsCheckpointOnSchedule(double progress)
727 {
728 	XLogRecPtr	recptr;
729 	struct timeval now;
730 	double		elapsed_xlogs,
731 				elapsed_time;
732 
733 	Assert(ckpt_active);
734 
735 	/* Scale progress according to checkpoint_completion_target. */
736 	progress *= CheckPointCompletionTarget;
737 
738 	/*
739 	 * Check against the cached value first. Only do the more expensive
740 	 * calculations once we reach the target previously calculated. Since
741 	 * neither time or WAL insert pointer moves backwards, a freshly
742 	 * calculated value can only be greater than or equal to the cached value.
743 	 */
744 	if (progress < ckpt_cached_elapsed)
745 		return false;
746 
747 	/*
748 	 * Check progress against WAL segments written and CheckPointSegments.
749 	 *
750 	 * We compare the current WAL insert location against the location
751 	 * computed before calling CreateCheckPoint. The code in XLogInsert that
752 	 * actually triggers a checkpoint when CheckPointSegments is exceeded
753 	 * compares against RedoRecptr, so this is not completely accurate.
754 	 * However, it's good enough for our purposes, we're only calculating an
755 	 * estimate anyway.
756 	 *
757 	 * During recovery, we compare last replayed WAL record's location with
758 	 * the location computed before calling CreateRestartPoint. That maintains
759 	 * the same pacing as we have during checkpoints in normal operation, but
760 	 * we might exceed max_wal_size by a fair amount. That's because there can
761 	 * be a large gap between a checkpoint's redo-pointer and the checkpoint
762 	 * record itself, and we only start the restartpoint after we've seen the
763 	 * checkpoint record. (The gap is typically up to CheckPointSegments *
764 	 * checkpoint_completion_target where checkpoint_completion_target is the
765 	 * value that was in effect when the WAL was generated).
766 	 */
767 	if (RecoveryInProgress())
768 		recptr = GetXLogReplayRecPtr(NULL);
769 	else
770 		recptr = GetInsertRecPtr();
771 	elapsed_xlogs = (((double) (recptr - ckpt_start_recptr)) / XLogSegSize) / CheckPointSegments;
772 
773 	if (progress < elapsed_xlogs)
774 	{
775 		ckpt_cached_elapsed = elapsed_xlogs;
776 		return false;
777 	}
778 
779 	/*
780 	 * Check progress against time elapsed and checkpoint_timeout.
781 	 */
782 	gettimeofday(&now, NULL);
783 	elapsed_time = ((double) ((pg_time_t) now.tv_sec - ckpt_start_time) +
784 					now.tv_usec / 1000000.0) / CheckPointTimeout;
785 
786 	if (progress < elapsed_time)
787 	{
788 		ckpt_cached_elapsed = elapsed_time;
789 		return false;
790 	}
791 
792 	/* It looks like we're on schedule. */
793 	return true;
794 }
795 
796 
797 /* --------------------------------
798  *		signal handler routines
799  * --------------------------------
800  */
801 
802 /*
803  * chkpt_quickdie() occurs when signalled SIGQUIT by the postmaster.
804  *
805  * Some backend has bought the farm,
806  * so we need to stop what we're doing and exit.
807  */
808 static void
chkpt_quickdie(SIGNAL_ARGS)809 chkpt_quickdie(SIGNAL_ARGS)
810 {
811 	/*
812 	 * We DO NOT want to run proc_exit() or atexit() callbacks -- we're here
813 	 * because shared memory may be corrupted, so we don't want to try to
814 	 * clean up our transaction.  Just nail the windows shut and get out of
815 	 * town.  The callbacks wouldn't be safe to run from a signal handler,
816 	 * anyway.
817 	 *
818 	 * Note we do _exit(2) not _exit(0).  This is to force the postmaster into
819 	 * a system reset cycle if someone sends a manual SIGQUIT to a random
820 	 * backend.  This is necessary precisely because we don't clean up our
821 	 * shared memory state.  (The "dead man switch" mechanism in pmsignal.c
822 	 * should ensure the postmaster sees this as a crash, too, but no harm in
823 	 * being doubly sure.)
824 	 */
825 	_exit(2);
826 }
827 
828 /* SIGHUP: set flag to re-read config file at next convenient time */
829 static void
ChkptSigHupHandler(SIGNAL_ARGS)830 ChkptSigHupHandler(SIGNAL_ARGS)
831 {
832 	int			save_errno = errno;
833 
834 	got_SIGHUP = true;
835 	SetLatch(MyLatch);
836 
837 	errno = save_errno;
838 }
839 
840 /* SIGINT: set flag to run a normal checkpoint right away */
841 static void
ReqCheckpointHandler(SIGNAL_ARGS)842 ReqCheckpointHandler(SIGNAL_ARGS)
843 {
844 	int			save_errno = errno;
845 
846 	/*
847 	 * The signalling process should have set ckpt_flags nonzero, so all we
848 	 * need do is ensure that our main loop gets kicked out of any wait.
849 	 */
850 	SetLatch(MyLatch);
851 
852 	errno = save_errno;
853 }
854 
855 /* SIGUSR1: used for latch wakeups */
856 static void
chkpt_sigusr1_handler(SIGNAL_ARGS)857 chkpt_sigusr1_handler(SIGNAL_ARGS)
858 {
859 	int			save_errno = errno;
860 
861 	latch_sigusr1_handler();
862 
863 	errno = save_errno;
864 }
865 
866 /* SIGUSR2: set flag to run a shutdown checkpoint and exit */
867 static void
ReqShutdownHandler(SIGNAL_ARGS)868 ReqShutdownHandler(SIGNAL_ARGS)
869 {
870 	int			save_errno = errno;
871 
872 	shutdown_requested = true;
873 	SetLatch(MyLatch);
874 
875 	errno = save_errno;
876 }
877 
878 
879 /* --------------------------------
880  *		communication with backends
881  * --------------------------------
882  */
883 
884 /*
885  * CheckpointerShmemSize
886  *		Compute space needed for checkpointer-related shared memory
887  */
888 Size
CheckpointerShmemSize(void)889 CheckpointerShmemSize(void)
890 {
891 	Size		size;
892 
893 	/*
894 	 * Currently, the size of the requests[] array is arbitrarily set equal to
895 	 * NBuffers.  This may prove too large or small ...
896 	 */
897 	size = offsetof(CheckpointerShmemStruct, requests);
898 	size = add_size(size, mul_size(NBuffers, sizeof(CheckpointerRequest)));
899 
900 	return size;
901 }
902 
903 /*
904  * CheckpointerShmemInit
905  *		Allocate and initialize checkpointer-related shared memory
906  */
907 void
CheckpointerShmemInit(void)908 CheckpointerShmemInit(void)
909 {
910 	Size		size = CheckpointerShmemSize();
911 	bool		found;
912 
913 	CheckpointerShmem = (CheckpointerShmemStruct *)
914 		ShmemInitStruct("Checkpointer Data",
915 						size,
916 						&found);
917 
918 	if (!found)
919 	{
920 		/*
921 		 * First time through, so initialize.  Note that we zero the whole
922 		 * requests array; this is so that CompactCheckpointerRequestQueue can
923 		 * assume that any pad bytes in the request structs are zeroes.
924 		 */
925 		MemSet(CheckpointerShmem, 0, size);
926 		SpinLockInit(&CheckpointerShmem->ckpt_lck);
927 		CheckpointerShmem->max_requests = NBuffers;
928 	}
929 }
930 
931 /*
932  * RequestCheckpoint
933  *		Called in backend processes to request a checkpoint
934  *
935  * flags is a bitwise OR of the following:
936  *	CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown.
937  *	CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery.
938  *	CHECKPOINT_IMMEDIATE: finish the checkpoint ASAP,
939  *		ignoring checkpoint_completion_target parameter.
940  *	CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occurred
941  *		since the last one (implied by CHECKPOINT_IS_SHUTDOWN or
942  *		CHECKPOINT_END_OF_RECOVERY).
943  *	CHECKPOINT_WAIT: wait for completion before returning (otherwise,
944  *		just signal checkpointer to do it, and return).
945  *	CHECKPOINT_CAUSE_XLOG: checkpoint is requested due to xlog filling.
946  *		(This affects logging, and in particular enables CheckPointWarning.)
947  */
948 void
RequestCheckpoint(int flags)949 RequestCheckpoint(int flags)
950 {
951 	int			ntries;
952 	int			old_failed,
953 				old_started;
954 
955 	/*
956 	 * If in a standalone backend, just do it ourselves.
957 	 */
958 	if (!IsPostmasterEnvironment)
959 	{
960 		/*
961 		 * There's no point in doing slow checkpoints in a standalone backend,
962 		 * because there's no other backends the checkpoint could disrupt.
963 		 */
964 		CreateCheckPoint(flags | CHECKPOINT_IMMEDIATE);
965 
966 		/*
967 		 * After any checkpoint, close all smgr files.  This is so we won't
968 		 * hang onto smgr references to deleted files indefinitely.
969 		 */
970 		smgrcloseall();
971 
972 		return;
973 	}
974 
975 	/*
976 	 * Atomically set the request flags, and take a snapshot of the counters.
977 	 * When we see ckpt_started > old_started, we know the flags we set here
978 	 * have been seen by checkpointer.
979 	 *
980 	 * Note that we OR the flags with any existing flags, to avoid overriding
981 	 * a "stronger" request by another backend.  The flag senses must be
982 	 * chosen to make this work!
983 	 */
984 	SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
985 
986 	old_failed = CheckpointerShmem->ckpt_failed;
987 	old_started = CheckpointerShmem->ckpt_started;
988 	CheckpointerShmem->ckpt_flags |= (flags | CHECKPOINT_REQUESTED);
989 
990 	SpinLockRelease(&CheckpointerShmem->ckpt_lck);
991 
992 	/*
993 	 * Send signal to request checkpoint.  It's possible that the checkpointer
994 	 * hasn't started yet, or is in process of restarting, so we will retry a
995 	 * few times if needed.  (Actually, more than a few times, since on slow
996 	 * or overloaded buildfarm machines, it's been observed that the
997 	 * checkpointer can take several seconds to start.)  However, if not told
998 	 * to wait for the checkpoint to occur, we consider failure to send the
999 	 * signal to be nonfatal and merely LOG it.  The checkpointer should see
1000 	 * the request when it does start, with or without getting a signal.
1001 	 */
1002 #define MAX_SIGNAL_TRIES 600	/* max wait 60.0 sec */
1003 	for (ntries = 0;; ntries++)
1004 	{
1005 		if (CheckpointerShmem->checkpointer_pid == 0)
1006 		{
1007 			if (ntries >= MAX_SIGNAL_TRIES || !(flags & CHECKPOINT_WAIT))
1008 			{
1009 				elog((flags & CHECKPOINT_WAIT) ? ERROR : LOG,
1010 					 "could not signal for checkpoint: checkpointer is not running");
1011 				break;
1012 			}
1013 		}
1014 		else if (kill(CheckpointerShmem->checkpointer_pid, SIGINT) != 0)
1015 		{
1016 			if (ntries >= MAX_SIGNAL_TRIES || !(flags & CHECKPOINT_WAIT))
1017 			{
1018 				elog((flags & CHECKPOINT_WAIT) ? ERROR : LOG,
1019 					 "could not signal for checkpoint: %m");
1020 				break;
1021 			}
1022 		}
1023 		else
1024 			break;				/* signal sent successfully */
1025 
1026 		CHECK_FOR_INTERRUPTS();
1027 		pg_usleep(100000L);		/* wait 0.1 sec, then retry */
1028 	}
1029 
1030 	/*
1031 	 * If requested, wait for completion.  We detect completion according to
1032 	 * the algorithm given above.
1033 	 */
1034 	if (flags & CHECKPOINT_WAIT)
1035 	{
1036 		int			new_started,
1037 					new_failed;
1038 
1039 		/* Wait for a new checkpoint to start. */
1040 		for (;;)
1041 		{
1042 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
1043 			new_started = CheckpointerShmem->ckpt_started;
1044 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
1045 
1046 			if (new_started != old_started)
1047 				break;
1048 
1049 			CHECK_FOR_INTERRUPTS();
1050 			pg_usleep(100000L);
1051 		}
1052 
1053 		/*
1054 		 * We are waiting for ckpt_done >= new_started, in a modulo sense.
1055 		 */
1056 		for (;;)
1057 		{
1058 			int			new_done;
1059 
1060 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
1061 			new_done = CheckpointerShmem->ckpt_done;
1062 			new_failed = CheckpointerShmem->ckpt_failed;
1063 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
1064 
1065 			if (new_done - new_started >= 0)
1066 				break;
1067 
1068 			CHECK_FOR_INTERRUPTS();
1069 			pg_usleep(100000L);
1070 		}
1071 
1072 		if (new_failed != old_failed)
1073 			ereport(ERROR,
1074 					(errmsg("checkpoint request failed"),
1075 					 errhint("Consult recent messages in the server log for details.")));
1076 	}
1077 }
1078 
1079 /*
1080  * ForwardFsyncRequest
1081  *		Forward a file-fsync request from a backend to the checkpointer
1082  *
1083  * Whenever a backend is compelled to write directly to a relation
1084  * (which should be seldom, if the background writer is getting its job done),
1085  * the backend calls this routine to pass over knowledge that the relation
1086  * is dirty and must be fsync'd before next checkpoint.  We also use this
1087  * opportunity to count such writes for statistical purposes.
1088  *
1089  * This functionality is only supported for regular (not backend-local)
1090  * relations, so the rnode argument is intentionally RelFileNode not
1091  * RelFileNodeBackend.
1092  *
1093  * segno specifies which segment (not block!) of the relation needs to be
1094  * fsync'd.  (Since the valid range is much less than BlockNumber, we can
1095  * use high values for special flags; that's all internal to md.c, which
1096  * see for details.)
1097  *
1098  * To avoid holding the lock for longer than necessary, we normally write
1099  * to the requests[] queue without checking for duplicates.  The checkpointer
1100  * will have to eliminate dups internally anyway.  However, if we discover
1101  * that the queue is full, we make a pass over the entire queue to compact
1102  * it.  This is somewhat expensive, but the alternative is for the backend
1103  * to perform its own fsync, which is far more expensive in practice.  It
1104  * is theoretically possible a backend fsync might still be necessary, if
1105  * the queue is full and contains no duplicate entries.  In that case, we
1106  * let the backend know by returning false.
1107  */
1108 bool
ForwardFsyncRequest(RelFileNode rnode,ForkNumber forknum,BlockNumber segno)1109 ForwardFsyncRequest(RelFileNode rnode, ForkNumber forknum, BlockNumber segno)
1110 {
1111 	CheckpointerRequest *request;
1112 	bool		too_full;
1113 
1114 	if (!IsUnderPostmaster)
1115 		return false;			/* probably shouldn't even get here */
1116 
1117 	if (AmCheckpointerProcess())
1118 		elog(ERROR, "ForwardFsyncRequest must not be called in checkpointer");
1119 
1120 	LWLockAcquire(CheckpointerCommLock, LW_EXCLUSIVE);
1121 
1122 	/* Count all backend writes regardless of if they fit in the queue */
1123 	if (!AmBackgroundWriterProcess())
1124 		CheckpointerShmem->num_backend_writes++;
1125 
1126 	/*
1127 	 * If the checkpointer isn't running or the request queue is full, the
1128 	 * backend will have to perform its own fsync request.  But before forcing
1129 	 * that to happen, we can try to compact the request queue.
1130 	 */
1131 	if (CheckpointerShmem->checkpointer_pid == 0 ||
1132 		(CheckpointerShmem->num_requests >= CheckpointerShmem->max_requests &&
1133 		 !CompactCheckpointerRequestQueue()))
1134 	{
1135 		/*
1136 		 * Count the subset of writes where backends have to do their own
1137 		 * fsync
1138 		 */
1139 		if (!AmBackgroundWriterProcess())
1140 			CheckpointerShmem->num_backend_fsync++;
1141 		LWLockRelease(CheckpointerCommLock);
1142 		return false;
1143 	}
1144 
1145 	/* OK, insert request */
1146 	request = &CheckpointerShmem->requests[CheckpointerShmem->num_requests++];
1147 	request->rnode = rnode;
1148 	request->forknum = forknum;
1149 	request->segno = segno;
1150 
1151 	/* If queue is more than half full, nudge the checkpointer to empty it */
1152 	too_full = (CheckpointerShmem->num_requests >=
1153 				CheckpointerShmem->max_requests / 2);
1154 
1155 	LWLockRelease(CheckpointerCommLock);
1156 
1157 	/* ... but not till after we release the lock */
1158 	if (too_full && ProcGlobal->checkpointerLatch)
1159 		SetLatch(ProcGlobal->checkpointerLatch);
1160 
1161 	return true;
1162 }
1163 
1164 /*
1165  * CompactCheckpointerRequestQueue
1166  *		Remove duplicates from the request queue to avoid backend fsyncs.
1167  *		Returns "true" if any entries were removed.
1168  *
1169  * Although a full fsync request queue is not common, it can lead to severe
1170  * performance problems when it does happen.  So far, this situation has
1171  * only been observed to occur when the system is under heavy write load,
1172  * and especially during the "sync" phase of a checkpoint.  Without this
1173  * logic, each backend begins doing an fsync for every block written, which
1174  * gets very expensive and can slow down the whole system.
1175  *
1176  * Trying to do this every time the queue is full could lose if there
1177  * aren't any removable entries.  But that should be vanishingly rare in
1178  * practice: there's one queue entry per shared buffer.
1179  */
1180 static bool
CompactCheckpointerRequestQueue(void)1181 CompactCheckpointerRequestQueue(void)
1182 {
1183 	struct CheckpointerSlotMapping
1184 	{
1185 		CheckpointerRequest request;
1186 		int			slot;
1187 	};
1188 
1189 	int			n,
1190 				preserve_count;
1191 	int			num_skipped = 0;
1192 	HASHCTL		ctl;
1193 	HTAB	   *htab;
1194 	bool	   *skip_slot;
1195 
1196 	/* must hold CheckpointerCommLock in exclusive mode */
1197 	Assert(LWLockHeldByMe(CheckpointerCommLock));
1198 
1199 	/* Initialize skip_slot array */
1200 	skip_slot = palloc0(sizeof(bool) * CheckpointerShmem->num_requests);
1201 
1202 	/* Initialize temporary hash table */
1203 	MemSet(&ctl, 0, sizeof(ctl));
1204 	ctl.keysize = sizeof(CheckpointerRequest);
1205 	ctl.entrysize = sizeof(struct CheckpointerSlotMapping);
1206 	ctl.hcxt = CurrentMemoryContext;
1207 
1208 	htab = hash_create("CompactCheckpointerRequestQueue",
1209 					   CheckpointerShmem->num_requests,
1210 					   &ctl,
1211 					   HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
1212 
1213 	/*
1214 	 * The basic idea here is that a request can be skipped if it's followed
1215 	 * by a later, identical request.  It might seem more sensible to work
1216 	 * backwards from the end of the queue and check whether a request is
1217 	 * *preceded* by an earlier, identical request, in the hopes of doing less
1218 	 * copying.  But that might change the semantics, if there's an
1219 	 * intervening FORGET_RELATION_FSYNC or FORGET_DATABASE_FSYNC request, so
1220 	 * we do it this way.  It would be possible to be even smarter if we made
1221 	 * the code below understand the specific semantics of such requests (it
1222 	 * could blow away preceding entries that would end up being canceled
1223 	 * anyhow), but it's not clear that the extra complexity would buy us
1224 	 * anything.
1225 	 */
1226 	for (n = 0; n < CheckpointerShmem->num_requests; n++)
1227 	{
1228 		CheckpointerRequest *request;
1229 		struct CheckpointerSlotMapping *slotmap;
1230 		bool		found;
1231 
1232 		/*
1233 		 * We use the request struct directly as a hashtable key.  This
1234 		 * assumes that any padding bytes in the structs are consistently the
1235 		 * same, which should be okay because we zeroed them in
1236 		 * CheckpointerShmemInit.  Note also that RelFileNode had better
1237 		 * contain no pad bytes.
1238 		 */
1239 		request = &CheckpointerShmem->requests[n];
1240 		slotmap = hash_search(htab, request, HASH_ENTER, &found);
1241 		if (found)
1242 		{
1243 			/* Duplicate, so mark the previous occurrence as skippable */
1244 			skip_slot[slotmap->slot] = true;
1245 			num_skipped++;
1246 		}
1247 		/* Remember slot containing latest occurrence of this request value */
1248 		slotmap->slot = n;
1249 	}
1250 
1251 	/* Done with the hash table. */
1252 	hash_destroy(htab);
1253 
1254 	/* If no duplicates, we're out of luck. */
1255 	if (!num_skipped)
1256 	{
1257 		pfree(skip_slot);
1258 		return false;
1259 	}
1260 
1261 	/* We found some duplicates; remove them. */
1262 	preserve_count = 0;
1263 	for (n = 0; n < CheckpointerShmem->num_requests; n++)
1264 	{
1265 		if (skip_slot[n])
1266 			continue;
1267 		CheckpointerShmem->requests[preserve_count++] = CheckpointerShmem->requests[n];
1268 	}
1269 	ereport(DEBUG1,
1270 	   (errmsg("compacted fsync request queue from %d entries to %d entries",
1271 			   CheckpointerShmem->num_requests, preserve_count)));
1272 	CheckpointerShmem->num_requests = preserve_count;
1273 
1274 	/* Cleanup. */
1275 	pfree(skip_slot);
1276 	return true;
1277 }
1278 
1279 /*
1280  * AbsorbFsyncRequests
1281  *		Retrieve queued fsync requests and pass them to local smgr.
1282  *
1283  * This is exported because it must be called during CreateCheckPoint;
1284  * we have to be sure we have accepted all pending requests just before
1285  * we start fsync'ing.  Since CreateCheckPoint sometimes runs in
1286  * non-checkpointer processes, do nothing if not checkpointer.
1287  */
1288 void
AbsorbFsyncRequests(void)1289 AbsorbFsyncRequests(void)
1290 {
1291 	CheckpointerRequest *requests = NULL;
1292 	CheckpointerRequest *request;
1293 	int			n;
1294 
1295 	if (!AmCheckpointerProcess())
1296 		return;
1297 
1298 	LWLockAcquire(CheckpointerCommLock, LW_EXCLUSIVE);
1299 
1300 	/* Transfer stats counts into pending pgstats message */
1301 	BgWriterStats.m_buf_written_backend += CheckpointerShmem->num_backend_writes;
1302 	BgWriterStats.m_buf_fsync_backend += CheckpointerShmem->num_backend_fsync;
1303 
1304 	CheckpointerShmem->num_backend_writes = 0;
1305 	CheckpointerShmem->num_backend_fsync = 0;
1306 
1307 	/*
1308 	 * We try to avoid holding the lock for a long time by copying the request
1309 	 * array, and processing the requests after releasing the lock.
1310 	 *
1311 	 * Once we have cleared the requests from shared memory, we have to PANIC
1312 	 * if we then fail to absorb them (eg, because our hashtable runs out of
1313 	 * memory).  This is because the system cannot run safely if we are unable
1314 	 * to fsync what we have been told to fsync.  Fortunately, the hashtable
1315 	 * is so small that the problem is quite unlikely to arise in practice.
1316 	 */
1317 	n = CheckpointerShmem->num_requests;
1318 	if (n > 0)
1319 	{
1320 		requests = (CheckpointerRequest *) palloc(n * sizeof(CheckpointerRequest));
1321 		memcpy(requests, CheckpointerShmem->requests, n * sizeof(CheckpointerRequest));
1322 	}
1323 
1324 	START_CRIT_SECTION();
1325 
1326 	CheckpointerShmem->num_requests = 0;
1327 
1328 	LWLockRelease(CheckpointerCommLock);
1329 
1330 	for (request = requests; n > 0; request++, n--)
1331 		RememberFsyncRequest(request->rnode, request->forknum, request->segno);
1332 
1333 	END_CRIT_SECTION();
1334 
1335 	if (requests)
1336 		pfree(requests);
1337 }
1338 
1339 /*
1340  * Update any shared memory configurations based on config parameters
1341  */
1342 static void
UpdateSharedMemoryConfig(void)1343 UpdateSharedMemoryConfig(void)
1344 {
1345 	/* update global shmem state for sync rep */
1346 	SyncRepUpdateSyncStandbysDefined();
1347 
1348 	/*
1349 	 * If full_page_writes has been changed by SIGHUP, we update it in shared
1350 	 * memory and write an XLOG_FPW_CHANGE record.
1351 	 */
1352 	UpdateFullPageWrites();
1353 
1354 	elog(DEBUG2, "checkpointer updated shared memory configuration values");
1355 }
1356 
1357 /*
1358  * FirstCallSinceLastCheckpoint allows a process to take an action once
1359  * per checkpoint cycle by asynchronously checking for checkpoint completion.
1360  */
1361 bool
FirstCallSinceLastCheckpoint(void)1362 FirstCallSinceLastCheckpoint(void)
1363 {
1364 	static int	ckpt_done = 0;
1365 	int			new_done;
1366 	bool		FirstCall = false;
1367 
1368 	SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
1369 	new_done = CheckpointerShmem->ckpt_done;
1370 	SpinLockRelease(&CheckpointerShmem->ckpt_lck);
1371 
1372 	if (new_done != ckpt_done)
1373 		FirstCall = true;
1374 
1375 	ckpt_done = new_done;
1376 
1377 	return FirstCall;
1378 }
1379