1 /*-------------------------------------------------------------------------
2  *
3  * fd.c
4  *	  Virtual file descriptor code.
5  *
6  * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  * IDENTIFICATION
10  *	  src/backend/storage/file/fd.c
11  *
12  * NOTES:
13  *
14  * This code manages a cache of 'virtual' file descriptors (VFDs).
15  * The server opens many file descriptors for a variety of reasons,
16  * including base tables, scratch files (e.g., sort and hash spool
17  * files), and random calls to C library routines like system(3); it
18  * is quite easy to exceed system limits on the number of open files a
19  * single process can have.  (This is around 256 on many modern
20  * operating systems, but can be as low as 32 on others.)
21  *
22  * VFDs are managed as an LRU pool, with actual OS file descriptors
23  * being opened and closed as needed.  Obviously, if a routine is
24  * opened using these interfaces, all subsequent operations must also
25  * be through these interfaces (the File type is not a real file
26  * descriptor).
27  *
28  * For this scheme to work, most (if not all) routines throughout the
29  * server should use these interfaces instead of calling the C library
30  * routines (e.g., open(2) and fopen(3)) themselves.  Otherwise, we
31  * may find ourselves short of real file descriptors anyway.
32  *
33  * INTERFACE ROUTINES
34  *
35  * PathNameOpenFile and OpenTemporaryFile are used to open virtual files.
36  * A File opened with OpenTemporaryFile is automatically deleted when the
37  * File is closed, either explicitly or implicitly at end of transaction or
38  * process exit. PathNameOpenFile is intended for files that are held open
39  * for a long time, like relation files. It is the caller's responsibility
40  * to close them, there is no automatic mechanism in fd.c for that.
41  *
42  * AllocateFile, AllocateDir, OpenPipeStream and OpenTransientFile are
43  * wrappers around fopen(3), opendir(3), popen(3) and open(2), respectively.
44  * They behave like the corresponding native functions, except that the handle
45  * is registered with the current subtransaction, and will be automatically
46  * closed at abort. These are intended mainly for short operations like
47  * reading a configuration file; there is a limit on the number of files that
48  * can be opened using these functions at any one time.
49  *
50  * Finally, BasicOpenFile is just a thin wrapper around open() that can
51  * release file descriptors in use by the virtual file descriptors if
52  * necessary. There is no automatic cleanup of file descriptors returned by
53  * BasicOpenFile, it is solely the caller's responsibility to close the file
54  * descriptor by calling close(2).
55  *
56  *-------------------------------------------------------------------------
57  */
58 
59 #include "postgres.h"
60 
61 #include <sys/file.h>
62 #include <sys/param.h>
63 #include <sys/stat.h>
64 #ifndef WIN32
65 #include <sys/mman.h>
66 #endif
67 #include <limits.h>
68 #include <unistd.h>
69 #include <fcntl.h>
70 #ifdef HAVE_SYS_RESOURCE_H
71 #include <sys/resource.h>		/* for getrlimit */
72 #endif
73 
74 #include "miscadmin.h"
75 #include "access/xact.h"
76 #include "access/xlog.h"
77 #include "catalog/catalog.h"
78 #include "catalog/pg_tablespace.h"
79 #include "pgstat.h"
80 #include "portability/mem.h"
81 #include "storage/fd.h"
82 #include "storage/ipc.h"
83 #include "utils/guc.h"
84 #include "utils/resowner_private.h"
85 
86 
87 /* Define PG_FLUSH_DATA_WORKS if we have an implementation for pg_flush_data */
88 #if defined(HAVE_SYNC_FILE_RANGE)
89 #define PG_FLUSH_DATA_WORKS 1
90 #elif !defined(WIN32) && defined(MS_ASYNC)
91 #define PG_FLUSH_DATA_WORKS 1
92 #elif defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_DONTNEED)
93 #define PG_FLUSH_DATA_WORKS 1
94 #endif
95 
96 /*
97  * We must leave some file descriptors free for system(), the dynamic loader,
98  * and other code that tries to open files without consulting fd.c.  This
99  * is the number left free.  (While we can be pretty sure we won't get
100  * EMFILE, there's never any guarantee that we won't get ENFILE due to
101  * other processes chewing up FDs.  So it's a bad idea to try to open files
102  * without consulting fd.c.  Nonetheless we cannot control all code.)
103  *
104  * Because this is just a fixed setting, we are effectively assuming that
105  * no such code will leave FDs open over the long term; otherwise the slop
106  * is likely to be insufficient.  Note in particular that we expect that
107  * loading a shared library does not result in any permanent increase in
108  * the number of open files.  (This appears to be true on most if not
109  * all platforms as of Feb 2004.)
110  */
111 #define NUM_RESERVED_FDS		10
112 
113 /*
114  * If we have fewer than this many usable FDs after allowing for the reserved
115  * ones, choke.
116  */
117 #define FD_MINFREE				10
118 
119 
120 /*
121  * A number of platforms allow individual processes to open many more files
122  * than they can really support when *many* processes do the same thing.
123  * This GUC parameter lets the DBA limit max_safe_fds to something less than
124  * what the postmaster's initial probe suggests will work.
125  */
126 int			max_files_per_process = 1000;
127 
128 /*
129  * Maximum number of file descriptors to open for either VFD entries or
130  * AllocateFile/AllocateDir/OpenTransientFile operations.  This is initialized
131  * to a conservative value, and remains that way indefinitely in bootstrap or
132  * standalone-backend cases.  In normal postmaster operation, the postmaster
133  * calls set_max_safe_fds() late in initialization to update the value, and
134  * that value is then inherited by forked subprocesses.
135  *
136  * Note: the value of max_files_per_process is taken into account while
137  * setting this variable, and so need not be tested separately.
138  */
139 int			max_safe_fds = 32;	/* default if not changed */
140 
141 /* Whether it is safe to continue running after fsync() fails. */
142 bool		data_sync_retry = false;
143 
144 /* Debugging.... */
145 
146 #ifdef FDDEBUG
147 #define DO_DB(A) \
148 	do { \
149 		int			_do_db_save_errno = errno; \
150 		A; \
151 		errno = _do_db_save_errno; \
152 	} while (0)
153 #else
154 #define DO_DB(A) \
155 	((void) 0)
156 #endif
157 
158 #define VFD_CLOSED (-1)
159 
160 #define FileIsValid(file) \
161 	((file) > 0 && (file) < (int) SizeVfdCache && VfdCache[file].fileName != NULL)
162 
163 #define FileIsNotOpen(file) (VfdCache[file].fd == VFD_CLOSED)
164 
165 /*
166  * Note: a VFD's seekPos is normally always valid, but if for some reason
167  * an lseek() fails, it might become set to FileUnknownPos.  We can struggle
168  * along without knowing the seek position in many cases, but in some places
169  * we have to fail if we don't have it.
170  */
171 #define FileUnknownPos ((off_t) -1)
172 #define FilePosIsUnknown(pos) ((pos) < 0)
173 
174 /* these are the assigned bits in fdstate below: */
175 #define FD_TEMPORARY		(1 << 0)	/* T = delete when closed */
176 #define FD_XACT_TEMPORARY	(1 << 1)	/* T = delete at eoXact */
177 
178 typedef struct vfd
179 {
180 	int			fd;				/* current FD, or VFD_CLOSED if none */
181 	unsigned short fdstate;		/* bitflags for VFD's state */
182 	ResourceOwner resowner;		/* owner, for automatic cleanup */
183 	File		nextFree;		/* link to next free VFD, if in freelist */
184 	File		lruMoreRecently;	/* doubly linked recency-of-use list */
185 	File		lruLessRecently;
186 	off_t		seekPos;		/* current logical file position, or -1 */
187 	off_t		fileSize;		/* current size of file (0 if not temporary) */
188 	char	   *fileName;		/* name of file, or NULL for unused VFD */
189 	/* NB: fileName is malloc'd, and must be free'd when closing the VFD */
190 	int			fileFlags;		/* open(2) flags for (re)opening the file */
191 	int			fileMode;		/* mode to pass to open(2) */
192 } Vfd;
193 
194 /*
195  * Virtual File Descriptor array pointer and size.  This grows as
196  * needed.  'File' values are indexes into this array.
197  * Note that VfdCache[0] is not a usable VFD, just a list header.
198  */
199 static Vfd *VfdCache;
200 static Size SizeVfdCache = 0;
201 
202 /*
203  * Number of file descriptors known to be in use by VFD entries.
204  */
205 static int	nfile = 0;
206 
207 /*
208  * Flag to tell whether it's worth scanning VfdCache looking for temp files
209  * to close
210  */
211 static bool have_xact_temporary_files = false;
212 
213 /*
214  * Tracks the total size of all temporary files.  Note: when temp_file_limit
215  * is being enforced, this cannot overflow since the limit cannot be more
216  * than INT_MAX kilobytes.  When not enforcing, it could theoretically
217  * overflow, but we don't care.
218  */
219 static uint64 temporary_files_size = 0;
220 
221 /*
222  * List of OS handles opened with AllocateFile, AllocateDir and
223  * OpenTransientFile.
224  */
225 typedef enum
226 {
227 	AllocateDescFile,
228 	AllocateDescPipe,
229 	AllocateDescDir,
230 	AllocateDescRawFD
231 } AllocateDescKind;
232 
233 typedef struct
234 {
235 	AllocateDescKind kind;
236 	SubTransactionId create_subid;
237 	union
238 	{
239 		FILE	   *file;
240 		DIR		   *dir;
241 		int			fd;
242 	}			desc;
243 } AllocateDesc;
244 
245 static int	numAllocatedDescs = 0;
246 static int	maxAllocatedDescs = 0;
247 static AllocateDesc *allocatedDescs = NULL;
248 
249 /*
250  * Number of temporary files opened during the current session;
251  * this is used in generation of tempfile names.
252  */
253 static long tempFileCounter = 0;
254 
255 /*
256  * Array of OIDs of temp tablespaces.  (Some entries may be InvalidOid,
257  * indicating that the current database's default tablespace should be used.)
258  * When numTempTableSpaces is -1, this has not been set in the current
259  * transaction.
260  */
261 static Oid *tempTableSpaces = NULL;
262 static int	numTempTableSpaces = -1;
263 static int	nextTempTableSpace = 0;
264 
265 
266 /*--------------------
267  *
268  * Private Routines
269  *
270  * Delete		   - delete a file from the Lru ring
271  * LruDelete	   - remove a file from the Lru ring and close its FD
272  * Insert		   - put a file at the front of the Lru ring
273  * LruInsert	   - put a file at the front of the Lru ring and open it
274  * ReleaseLruFile  - Release an fd by closing the last entry in the Lru ring
275  * ReleaseLruFiles - Release fd(s) until we're under the max_safe_fds limit
276  * AllocateVfd	   - grab a free (or new) file record (from VfdArray)
277  * FreeVfd		   - free a file record
278  *
279  * The Least Recently Used ring is a doubly linked list that begins and
280  * ends on element zero.  Element zero is special -- it doesn't represent
281  * a file and its "fd" field always == VFD_CLOSED.  Element zero is just an
282  * anchor that shows us the beginning/end of the ring.
283  * Only VFD elements that are currently really open (have an FD assigned) are
284  * in the Lru ring.  Elements that are "virtually" open can be recognized
285  * by having a non-null fileName field.
286  *
287  * example:
288  *
289  *	   /--less----\				   /---------\
290  *	   v		   \			  v			  \
291  *	 #0 --more---> LeastRecentlyUsed --more-\ \
292  *	  ^\									| |
293  *	   \\less--> MostRecentlyUsedFile	<---/ |
294  *		\more---/					 \--less--/
295  *
296  *--------------------
297  */
298 static void Delete(File file);
299 static void LruDelete(File file);
300 static void Insert(File file);
301 static int	LruInsert(File file);
302 static bool ReleaseLruFile(void);
303 static void ReleaseLruFiles(void);
304 static File AllocateVfd(void);
305 static void FreeVfd(File file);
306 
307 static int	FileAccess(File file);
308 static File OpenTemporaryFileInTablespace(Oid tblspcOid, bool rejectError);
309 static bool reserveAllocatedDesc(void);
310 static int	FreeDesc(AllocateDesc *desc);
311 
312 static void AtProcExit_Files(int code, Datum arg);
313 static void CleanupTempFiles(bool isProcExit);
314 static void RemovePgTempFilesInDir(const char *tmpdirname);
315 static void RemovePgTempRelationFiles(const char *tsdirname);
316 static void RemovePgTempRelationFilesInDbspace(const char *dbspacedirname);
317 static bool looks_like_temp_rel_name(const char *name);
318 
319 static void walkdir(const char *path,
320 		void (*action) (const char *fname, bool isdir, int elevel),
321 		bool process_symlinks,
322 		int elevel);
323 #ifdef PG_FLUSH_DATA_WORKS
324 static void pre_sync_fname(const char *fname, bool isdir, int elevel);
325 #endif
326 static void datadir_fsync_fname(const char *fname, bool isdir, int elevel);
327 
328 static int	fsync_fname_ext(const char *fname, bool isdir, bool ignore_perm, int elevel);
329 static int	fsync_parent_path(const char *fname, int elevel);
330 
331 
332 /*
333  * pg_fsync --- do fsync with or without writethrough
334  */
335 int
pg_fsync(int fd)336 pg_fsync(int fd)
337 {
338 	/* #if is to skip the sync_method test if there's no need for it */
339 #if defined(HAVE_FSYNC_WRITETHROUGH) && !defined(FSYNC_WRITETHROUGH_IS_FSYNC)
340 	if (sync_method == SYNC_METHOD_FSYNC_WRITETHROUGH)
341 		return pg_fsync_writethrough(fd);
342 	else
343 #endif
344 		return pg_fsync_no_writethrough(fd);
345 }
346 
347 
348 /*
349  * pg_fsync_no_writethrough --- same as fsync except does nothing if
350  *	enableFsync is off
351  */
352 int
pg_fsync_no_writethrough(int fd)353 pg_fsync_no_writethrough(int fd)
354 {
355 	if (enableFsync)
356 		return fsync(fd);
357 	else
358 		return 0;
359 }
360 
361 /*
362  * pg_fsync_writethrough
363  */
364 int
pg_fsync_writethrough(int fd)365 pg_fsync_writethrough(int fd)
366 {
367 	if (enableFsync)
368 	{
369 #ifdef WIN32
370 		return _commit(fd);
371 #elif defined(F_FULLFSYNC)
372 		return (fcntl(fd, F_FULLFSYNC, 0) == -1) ? -1 : 0;
373 #else
374 		errno = ENOSYS;
375 		return -1;
376 #endif
377 	}
378 	else
379 		return 0;
380 }
381 
382 /*
383  * pg_fdatasync --- same as fdatasync except does nothing if enableFsync is off
384  *
385  * Not all platforms have fdatasync; treat as fsync if not available.
386  */
387 int
pg_fdatasync(int fd)388 pg_fdatasync(int fd)
389 {
390 	if (enableFsync)
391 	{
392 #ifdef HAVE_FDATASYNC
393 		return fdatasync(fd);
394 #else
395 		return fsync(fd);
396 #endif
397 	}
398 	else
399 		return 0;
400 }
401 
402 /*
403  * pg_flush_data --- advise OS that the described dirty data should be flushed
404  *
405  * offset of 0 with nbytes 0 means that the entire file should be flushed;
406  * in this case, this function may have side-effects on the file's
407  * seek position!
408  */
409 void
pg_flush_data(int fd,off_t offset,off_t nbytes)410 pg_flush_data(int fd, off_t offset, off_t nbytes)
411 {
412 	/*
413 	 * Right now file flushing is primarily used to avoid making later
414 	 * fsync()/fdatasync() calls have less impact. Thus don't trigger flushes
415 	 * if fsyncs are disabled - that's a decision we might want to make
416 	 * configurable at some point.
417 	 */
418 	if (!enableFsync)
419 		return;
420 
421 	/*
422 	 * We compile all alternatives that are supported on the current platform,
423 	 * to find portability problems more easily.
424 	 */
425 #if defined(HAVE_SYNC_FILE_RANGE)
426 	{
427 		int			rc;
428 		static bool not_implemented_by_kernel = false;
429 
430 		if (not_implemented_by_kernel)
431 			return;
432 
433 		/*
434 		 * sync_file_range(SYNC_FILE_RANGE_WRITE), currently linux specific,
435 		 * tells the OS that writeback for the specified blocks should be
436 		 * started, but that we don't want to wait for completion.  Note that
437 		 * this call might block if too much dirty data exists in the range.
438 		 * This is the preferable method on OSs supporting it, as it works
439 		 * reliably when available (contrast to msync()) and doesn't flush out
440 		 * clean data (like FADV_DONTNEED).
441 		 */
442 		rc = sync_file_range(fd, offset, nbytes,
443 							 SYNC_FILE_RANGE_WRITE);
444 		if (rc != 0)
445 		{
446 			int			elevel;
447 
448 			/*
449 			 * For systems that don't have an implementation of
450 			 * sync_file_range() such as Windows WSL, generate only one
451 			 * warning and then suppress all further attempts by this process.
452 			 */
453 			if (errno == ENOSYS)
454 			{
455 				elevel = WARNING;
456 				not_implemented_by_kernel = true;
457 			}
458 			else
459 				elevel = data_sync_elevel(WARNING);
460 
461 			ereport(elevel,
462 					(errcode_for_file_access(),
463 					 errmsg("could not flush dirty data: %m")));
464 		}
465 
466 		return;
467 	}
468 #endif
469 #if !defined(WIN32) && defined(MS_ASYNC)
470 	{
471 		void	   *p;
472 		static int	pagesize = 0;
473 
474 		/*
475 		 * On several OSs msync(MS_ASYNC) on a mmap'ed file triggers
476 		 * writeback. On linux it only does so if MS_SYNC is specified, but
477 		 * then it does the writeback synchronously. Luckily all common linux
478 		 * systems have sync_file_range().  This is preferable over
479 		 * FADV_DONTNEED because it doesn't flush out clean data.
480 		 *
481 		 * We map the file (mmap()), tell the kernel to sync back the contents
482 		 * (msync()), and then remove the mapping again (munmap()).
483 		 */
484 
485 		/* mmap() needs actual length if we want to map whole file */
486 		if (offset == 0 && nbytes == 0)
487 		{
488 			nbytes = lseek(fd, 0, SEEK_END);
489 			if (nbytes < 0)
490 			{
491 				ereport(WARNING,
492 						(errcode_for_file_access(),
493 						 errmsg("could not determine dirty data size: %m")));
494 				return;
495 			}
496 		}
497 
498 		/*
499 		 * Some platforms reject partial-page mmap() attempts.  To deal with
500 		 * that, just truncate the request to a page boundary.  If any extra
501 		 * bytes don't get flushed, well, it's only a hint anyway.
502 		 */
503 
504 		/* fetch pagesize only once */
505 		if (pagesize == 0)
506 			pagesize = sysconf(_SC_PAGESIZE);
507 
508 		/* align length to pagesize, dropping any fractional page */
509 		if (pagesize > 0)
510 			nbytes = (nbytes / pagesize) * pagesize;
511 
512 		/* fractional-page request is a no-op */
513 		if (nbytes <= 0)
514 			return;
515 
516 		/*
517 		 * mmap could well fail, particularly on 32-bit platforms where there
518 		 * may simply not be enough address space.  If so, silently fall
519 		 * through to the next implementation.
520 		 */
521 		if (nbytes <= (off_t) SSIZE_MAX)
522 			p = mmap(NULL, nbytes, PROT_READ, MAP_SHARED, fd, offset);
523 		else
524 			p = MAP_FAILED;
525 
526 		if (p != MAP_FAILED)
527 		{
528 			int			rc;
529 
530 			rc = msync(p, (size_t) nbytes, MS_ASYNC);
531 			if (rc != 0)
532 			{
533 				ereport(data_sync_elevel(WARNING),
534 						(errcode_for_file_access(),
535 						 errmsg("could not flush dirty data: %m")));
536 				/* NB: need to fall through to munmap()! */
537 			}
538 
539 			rc = munmap(p, (size_t) nbytes);
540 			if (rc != 0)
541 			{
542 				/* FATAL error because mapping would remain */
543 				ereport(FATAL,
544 						(errcode_for_file_access(),
545 					  errmsg("could not munmap() while flushing data: %m")));
546 			}
547 
548 			return;
549 		}
550 	}
551 #endif
552 #if defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_DONTNEED)
553 	{
554 		int			rc;
555 
556 		/*
557 		 * Signal the kernel that the passed in range should not be cached
558 		 * anymore. This has the, desired, side effect of writing out dirty
559 		 * data, and the, undesired, side effect of likely discarding useful
560 		 * clean cached blocks.  For the latter reason this is the least
561 		 * preferable method.
562 		 */
563 
564 		rc = posix_fadvise(fd, offset, nbytes, POSIX_FADV_DONTNEED);
565 
566 		if (rc != 0)
567 		{
568 			/* don't error out, this is just a performance optimization */
569 			ereport(WARNING,
570 					(errcode_for_file_access(),
571 					 errmsg("could not flush dirty data: %m")));
572 		}
573 
574 		return;
575 	}
576 #endif
577 }
578 
579 
580 /*
581  * fsync_fname -- fsync a file or directory, handling errors properly
582  *
583  * Try to fsync a file or directory. When doing the latter, ignore errors that
584  * indicate the OS just doesn't allow/require fsyncing directories.
585  */
586 void
fsync_fname(const char * fname,bool isdir)587 fsync_fname(const char *fname, bool isdir)
588 {
589 	fsync_fname_ext(fname, isdir, false, data_sync_elevel(ERROR));
590 }
591 
592 /*
593  * durable_rename -- rename(2) wrapper, issuing fsyncs required for durability
594  *
595  * This routine ensures that, after returning, the effect of renaming file
596  * persists in case of a crash. A crash while this routine is running will
597  * leave you with either the pre-existing or the moved file in place of the
598  * new file; no mixed state or truncated files are possible.
599  *
600  * It does so by using fsync on the old filename and the possibly existing
601  * target filename before the rename, and the target file and directory after.
602  *
603  * Note that rename() cannot be used across arbitrary directories, as they
604  * might not be on the same filesystem. Therefore this routine does not
605  * support renaming across directories.
606  *
607  * Log errors with the caller specified severity.
608  *
609  * Returns 0 if the operation succeeded, -1 otherwise. Note that errno is not
610  * valid upon return.
611  */
612 int
durable_rename(const char * oldfile,const char * newfile,int elevel)613 durable_rename(const char *oldfile, const char *newfile, int elevel)
614 {
615 	int			fd;
616 
617 	/*
618 	 * First fsync the old and target path (if it exists), to ensure that they
619 	 * are properly persistent on disk. Syncing the target file is not
620 	 * strictly necessary, but it makes it easier to reason about crashes;
621 	 * because it's then guaranteed that either source or target file exists
622 	 * after a crash.
623 	 */
624 	if (fsync_fname_ext(oldfile, false, false, elevel) != 0)
625 		return -1;
626 
627 	fd = OpenTransientFile((char *) newfile, PG_BINARY | O_RDWR, 0);
628 	if (fd < 0)
629 	{
630 		if (errno != ENOENT)
631 		{
632 			ereport(elevel,
633 					(errcode_for_file_access(),
634 					 errmsg("could not open file \"%s\": %m", newfile)));
635 			return -1;
636 		}
637 	}
638 	else
639 	{
640 		if (pg_fsync(fd) != 0)
641 		{
642 			int			save_errno;
643 
644 			/* close file upon error, might not be in transaction context */
645 			save_errno = errno;
646 			CloseTransientFile(fd);
647 			errno = save_errno;
648 
649 			ereport(elevel,
650 					(errcode_for_file_access(),
651 					 errmsg("could not fsync file \"%s\": %m", newfile)));
652 			return -1;
653 		}
654 		CloseTransientFile(fd);
655 	}
656 
657 	/* Time to do the real deal... */
658 	if (rename(oldfile, newfile) < 0)
659 	{
660 		ereport(elevel,
661 				(errcode_for_file_access(),
662 				 errmsg("could not rename file \"%s\" to \"%s\": %m",
663 						oldfile, newfile)));
664 		return -1;
665 	}
666 
667 	/*
668 	 * To guarantee renaming the file is persistent, fsync the file with its
669 	 * new name, and its containing directory.
670 	 */
671 	if (fsync_fname_ext(newfile, false, false, elevel) != 0)
672 		return -1;
673 
674 	if (fsync_parent_path(newfile, elevel) != 0)
675 		return -1;
676 
677 	return 0;
678 }
679 
680 /*
681  * durable_link_or_rename -- rename a file in a durable manner.
682  *
683  * Similar to durable_rename(), except that this routine tries (but does not
684  * guarantee) not to overwrite the target file.
685  *
686  * Note that a crash in an unfortunate moment can leave you with two links to
687  * the target file.
688  *
689  * Log errors with the caller specified severity.
690  *
691  * Returns 0 if the operation succeeded, -1 otherwise. Note that errno is not
692  * valid upon return.
693  */
694 int
durable_link_or_rename(const char * oldfile,const char * newfile,int elevel)695 durable_link_or_rename(const char *oldfile, const char *newfile, int elevel)
696 {
697 	/*
698 	 * Ensure that, if we crash directly after the rename/link, a file with
699 	 * valid contents is moved into place.
700 	 */
701 	if (fsync_fname_ext(oldfile, false, false, elevel) != 0)
702 		return -1;
703 
704 #if HAVE_WORKING_LINK
705 	if (link(oldfile, newfile) < 0)
706 	{
707 		ereport(elevel,
708 				(errcode_for_file_access(),
709 				 errmsg("could not link file \"%s\" to \"%s\": %m",
710 						oldfile, newfile)));
711 		return -1;
712 	}
713 	unlink(oldfile);
714 #else
715 	/* XXX: Add racy file existence check? */
716 	if (rename(oldfile, newfile) < 0)
717 	{
718 		ereport(elevel,
719 				(errcode_for_file_access(),
720 				 errmsg("could not rename file \"%s\" to \"%s\": %m",
721 						oldfile, newfile)));
722 		return -1;
723 	}
724 #endif
725 
726 	/*
727 	 * Make change persistent in case of an OS crash, both the new entry and
728 	 * its parent directory need to be flushed.
729 	 */
730 	if (fsync_fname_ext(newfile, false, false, elevel) != 0)
731 		return -1;
732 
733 	/* Same for parent directory */
734 	if (fsync_parent_path(newfile, elevel) != 0)
735 		return -1;
736 
737 	return 0;
738 }
739 
740 /*
741  * InitFileAccess --- initialize this module during backend startup
742  *
743  * This is called during either normal or standalone backend start.
744  * It is *not* called in the postmaster.
745  */
746 void
InitFileAccess(void)747 InitFileAccess(void)
748 {
749 	Assert(SizeVfdCache == 0);	/* call me only once */
750 
751 	/* initialize cache header entry */
752 	VfdCache = (Vfd *) malloc(sizeof(Vfd));
753 	if (VfdCache == NULL)
754 		ereport(FATAL,
755 				(errcode(ERRCODE_OUT_OF_MEMORY),
756 				 errmsg("out of memory")));
757 
758 	MemSet((char *) &(VfdCache[0]), 0, sizeof(Vfd));
759 	VfdCache->fd = VFD_CLOSED;
760 
761 	SizeVfdCache = 1;
762 
763 	/* register proc-exit hook to ensure temp files are dropped at exit */
764 	on_proc_exit(AtProcExit_Files, 0);
765 }
766 
767 /*
768  * count_usable_fds --- count how many FDs the system will let us open,
769  *		and estimate how many are already open.
770  *
771  * We stop counting if usable_fds reaches max_to_probe.  Note: a small
772  * value of max_to_probe might result in an underestimate of already_open;
773  * we must fill in any "gaps" in the set of used FDs before the calculation
774  * of already_open will give the right answer.  In practice, max_to_probe
775  * of a couple of dozen should be enough to ensure good results.
776  *
777  * We assume stdin (FD 0) is available for dup'ing
778  */
779 static void
count_usable_fds(int max_to_probe,int * usable_fds,int * already_open)780 count_usable_fds(int max_to_probe, int *usable_fds, int *already_open)
781 {
782 	int		   *fd;
783 	int			size;
784 	int			used = 0;
785 	int			highestfd = 0;
786 	int			j;
787 
788 #ifdef HAVE_GETRLIMIT
789 	struct rlimit rlim;
790 	int			getrlimit_status;
791 #endif
792 
793 	size = 1024;
794 	fd = (int *) palloc(size * sizeof(int));
795 
796 #ifdef HAVE_GETRLIMIT
797 #ifdef RLIMIT_NOFILE			/* most platforms use RLIMIT_NOFILE */
798 	getrlimit_status = getrlimit(RLIMIT_NOFILE, &rlim);
799 #else							/* but BSD doesn't ... */
800 	getrlimit_status = getrlimit(RLIMIT_OFILE, &rlim);
801 #endif   /* RLIMIT_NOFILE */
802 	if (getrlimit_status != 0)
803 		ereport(WARNING, (errmsg("getrlimit failed: %m")));
804 #endif   /* HAVE_GETRLIMIT */
805 
806 	/* dup until failure or probe limit reached */
807 	for (;;)
808 	{
809 		int			thisfd;
810 
811 #ifdef HAVE_GETRLIMIT
812 
813 		/*
814 		 * don't go beyond RLIMIT_NOFILE; causes irritating kernel logs on
815 		 * some platforms
816 		 */
817 		if (getrlimit_status == 0 && highestfd >= rlim.rlim_cur - 1)
818 			break;
819 #endif
820 
821 		thisfd = dup(0);
822 		if (thisfd < 0)
823 		{
824 			/* Expect EMFILE or ENFILE, else it's fishy */
825 			if (errno != EMFILE && errno != ENFILE)
826 				elog(WARNING, "dup(0) failed after %d successes: %m", used);
827 			break;
828 		}
829 
830 		if (used >= size)
831 		{
832 			size *= 2;
833 			fd = (int *) repalloc(fd, size * sizeof(int));
834 		}
835 		fd[used++] = thisfd;
836 
837 		if (highestfd < thisfd)
838 			highestfd = thisfd;
839 
840 		if (used >= max_to_probe)
841 			break;
842 	}
843 
844 	/* release the files we opened */
845 	for (j = 0; j < used; j++)
846 		close(fd[j]);
847 
848 	pfree(fd);
849 
850 	/*
851 	 * Return results.  usable_fds is just the number of successful dups. We
852 	 * assume that the system limit is highestfd+1 (remember 0 is a legal FD
853 	 * number) and so already_open is highestfd+1 - usable_fds.
854 	 */
855 	*usable_fds = used;
856 	*already_open = highestfd + 1 - used;
857 }
858 
859 /*
860  * set_max_safe_fds
861  *		Determine number of filedescriptors that fd.c is allowed to use
862  */
863 void
set_max_safe_fds(void)864 set_max_safe_fds(void)
865 {
866 	int			usable_fds;
867 	int			already_open;
868 
869 	/*----------
870 	 * We want to set max_safe_fds to
871 	 *			MIN(usable_fds, max_files_per_process - already_open)
872 	 * less the slop factor for files that are opened without consulting
873 	 * fd.c.  This ensures that we won't exceed either max_files_per_process
874 	 * or the experimentally-determined EMFILE limit.
875 	 *----------
876 	 */
877 	count_usable_fds(max_files_per_process,
878 					 &usable_fds, &already_open);
879 
880 	max_safe_fds = Min(usable_fds, max_files_per_process - already_open);
881 
882 	/*
883 	 * Take off the FDs reserved for system() etc.
884 	 */
885 	max_safe_fds -= NUM_RESERVED_FDS;
886 
887 	/*
888 	 * Make sure we still have enough to get by.
889 	 */
890 	if (max_safe_fds < FD_MINFREE)
891 		ereport(FATAL,
892 				(errcode(ERRCODE_INSUFFICIENT_RESOURCES),
893 				 errmsg("insufficient file descriptors available to start server process"),
894 				 errdetail("System allows %d, we need at least %d.",
895 						   max_safe_fds + NUM_RESERVED_FDS,
896 						   FD_MINFREE + NUM_RESERVED_FDS)));
897 
898 	elog(DEBUG2, "max_safe_fds = %d, usable_fds = %d, already_open = %d",
899 		 max_safe_fds, usable_fds, already_open);
900 }
901 
902 /*
903  * BasicOpenFile --- same as open(2) except can free other FDs if needed
904  *
905  * This is exported for use by places that really want a plain kernel FD,
906  * but need to be proof against running out of FDs.  Once an FD has been
907  * successfully returned, it is the caller's responsibility to ensure that
908  * it will not be leaked on ereport()!	Most users should *not* call this
909  * routine directly, but instead use the VFD abstraction level, which
910  * provides protection against descriptor leaks as well as management of
911  * files that need to be open for more than a short period of time.
912  *
913  * Ideally this should be the *only* direct call of open() in the backend.
914  * In practice, the postmaster calls open() directly, and there are some
915  * direct open() calls done early in backend startup.  Those are OK since
916  * this module wouldn't have any open files to close at that point anyway.
917  */
918 int
BasicOpenFile(FileName fileName,int fileFlags,int fileMode)919 BasicOpenFile(FileName fileName, int fileFlags, int fileMode)
920 {
921 	int			fd;
922 
923 tryAgain:
924 	fd = open(fileName, fileFlags, fileMode);
925 
926 	if (fd >= 0)
927 		return fd;				/* success! */
928 
929 	if (errno == EMFILE || errno == ENFILE)
930 	{
931 		int			save_errno = errno;
932 
933 		ereport(LOG,
934 				(errcode(ERRCODE_INSUFFICIENT_RESOURCES),
935 				 errmsg("out of file descriptors: %m; release and retry")));
936 		errno = 0;
937 		if (ReleaseLruFile())
938 			goto tryAgain;
939 		errno = save_errno;
940 	}
941 
942 	return -1;					/* failure */
943 }
944 
945 #if defined(FDDEBUG)
946 
947 static void
_dump_lru(void)948 _dump_lru(void)
949 {
950 	int			mru = VfdCache[0].lruLessRecently;
951 	Vfd		   *vfdP = &VfdCache[mru];
952 	char		buf[2048];
953 
954 	snprintf(buf, sizeof(buf), "LRU: MOST %d ", mru);
955 	while (mru != 0)
956 	{
957 		mru = vfdP->lruLessRecently;
958 		vfdP = &VfdCache[mru];
959 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "%d ", mru);
960 	}
961 	snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "LEAST");
962 	elog(LOG, "%s", buf);
963 }
964 #endif   /* FDDEBUG */
965 
966 static void
Delete(File file)967 Delete(File file)
968 {
969 	Vfd		   *vfdP;
970 
971 	Assert(file != 0);
972 
973 	DO_DB(elog(LOG, "Delete %d (%s)",
974 			   file, VfdCache[file].fileName));
975 	DO_DB(_dump_lru());
976 
977 	vfdP = &VfdCache[file];
978 
979 	VfdCache[vfdP->lruLessRecently].lruMoreRecently = vfdP->lruMoreRecently;
980 	VfdCache[vfdP->lruMoreRecently].lruLessRecently = vfdP->lruLessRecently;
981 
982 	DO_DB(_dump_lru());
983 }
984 
985 static void
LruDelete(File file)986 LruDelete(File file)
987 {
988 	Vfd		   *vfdP;
989 
990 	Assert(file != 0);
991 
992 	DO_DB(elog(LOG, "LruDelete %d (%s)",
993 			   file, VfdCache[file].fileName));
994 
995 	vfdP = &VfdCache[file];
996 
997 	/*
998 	 * Normally we should know the seek position, but if for some reason we
999 	 * have lost track of it, try again to get it.  If we still can't get it,
1000 	 * we have a problem: we will be unable to restore the file seek position
1001 	 * when and if the file is re-opened.  But we can't really throw an error
1002 	 * and refuse to close the file, or activities such as transaction cleanup
1003 	 * will be broken.
1004 	 */
1005 	if (FilePosIsUnknown(vfdP->seekPos))
1006 	{
1007 		vfdP->seekPos = lseek(vfdP->fd, (off_t) 0, SEEK_CUR);
1008 		if (FilePosIsUnknown(vfdP->seekPos))
1009 			elog(LOG, "could not seek file \"%s\" before closing: %m",
1010 				 vfdP->fileName);
1011 	}
1012 
1013 	/*
1014 	 * Close the file.  We aren't expecting this to fail; if it does, better
1015 	 * to leak the FD than to mess up our internal state.
1016 	 */
1017 	if (close(vfdP->fd))
1018 		elog(vfdP->fdstate & FD_TEMPORARY ? LOG : data_sync_elevel(LOG),
1019 			 "could not close file \"%s\": %m", vfdP->fileName);
1020 	vfdP->fd = VFD_CLOSED;
1021 	--nfile;
1022 
1023 	/* delete the vfd record from the LRU ring */
1024 	Delete(file);
1025 }
1026 
1027 static void
Insert(File file)1028 Insert(File file)
1029 {
1030 	Vfd		   *vfdP;
1031 
1032 	Assert(file != 0);
1033 
1034 	DO_DB(elog(LOG, "Insert %d (%s)",
1035 			   file, VfdCache[file].fileName));
1036 	DO_DB(_dump_lru());
1037 
1038 	vfdP = &VfdCache[file];
1039 
1040 	vfdP->lruMoreRecently = 0;
1041 	vfdP->lruLessRecently = VfdCache[0].lruLessRecently;
1042 	VfdCache[0].lruLessRecently = file;
1043 	VfdCache[vfdP->lruLessRecently].lruMoreRecently = file;
1044 
1045 	DO_DB(_dump_lru());
1046 }
1047 
1048 /* returns 0 on success, -1 on re-open failure (with errno set) */
1049 static int
LruInsert(File file)1050 LruInsert(File file)
1051 {
1052 	Vfd		   *vfdP;
1053 
1054 	Assert(file != 0);
1055 
1056 	DO_DB(elog(LOG, "LruInsert %d (%s)",
1057 			   file, VfdCache[file].fileName));
1058 
1059 	vfdP = &VfdCache[file];
1060 
1061 	if (FileIsNotOpen(file))
1062 	{
1063 		/* Close excess kernel FDs. */
1064 		ReleaseLruFiles();
1065 
1066 		/*
1067 		 * The open could still fail for lack of file descriptors, eg due to
1068 		 * overall system file table being full.  So, be prepared to release
1069 		 * another FD if necessary...
1070 		 */
1071 		vfdP->fd = BasicOpenFile(vfdP->fileName, vfdP->fileFlags,
1072 								 vfdP->fileMode);
1073 		if (vfdP->fd < 0)
1074 		{
1075 			DO_DB(elog(LOG, "re-open failed: %m"));
1076 			return -1;
1077 		}
1078 		else
1079 		{
1080 			++nfile;
1081 		}
1082 
1083 		/*
1084 		 * Seek to the right position.  We need no special case for seekPos
1085 		 * equal to FileUnknownPos, as lseek() will certainly reject that
1086 		 * (thus completing the logic noted in LruDelete() that we will fail
1087 		 * to re-open a file if we couldn't get its seek position before
1088 		 * closing).
1089 		 */
1090 		if (vfdP->seekPos != (off_t) 0)
1091 		{
1092 			if (lseek(vfdP->fd, vfdP->seekPos, SEEK_SET) < 0)
1093 			{
1094 				/*
1095 				 * If we fail to restore the seek position, treat it like an
1096 				 * open() failure.
1097 				 */
1098 				int			save_errno = errno;
1099 
1100 				elog(LOG, "could not seek file \"%s\" after re-opening: %m",
1101 					 vfdP->fileName);
1102 				(void) close(vfdP->fd);
1103 				vfdP->fd = VFD_CLOSED;
1104 				--nfile;
1105 				errno = save_errno;
1106 				return -1;
1107 			}
1108 		}
1109 	}
1110 
1111 	/*
1112 	 * put it at the head of the Lru ring
1113 	 */
1114 
1115 	Insert(file);
1116 
1117 	return 0;
1118 }
1119 
1120 /*
1121  * Release one kernel FD by closing the least-recently-used VFD.
1122  */
1123 static bool
ReleaseLruFile(void)1124 ReleaseLruFile(void)
1125 {
1126 	DO_DB(elog(LOG, "ReleaseLruFile. Opened %d", nfile));
1127 
1128 	if (nfile > 0)
1129 	{
1130 		/*
1131 		 * There are opened files and so there should be at least one used vfd
1132 		 * in the ring.
1133 		 */
1134 		Assert(VfdCache[0].lruMoreRecently != 0);
1135 		LruDelete(VfdCache[0].lruMoreRecently);
1136 		return true;			/* freed a file */
1137 	}
1138 	return false;				/* no files available to free */
1139 }
1140 
1141 /*
1142  * Release kernel FDs as needed to get under the max_safe_fds limit.
1143  * After calling this, it's OK to try to open another file.
1144  */
1145 static void
ReleaseLruFiles(void)1146 ReleaseLruFiles(void)
1147 {
1148 	while (nfile + numAllocatedDescs >= max_safe_fds)
1149 	{
1150 		if (!ReleaseLruFile())
1151 			break;
1152 	}
1153 }
1154 
1155 static File
AllocateVfd(void)1156 AllocateVfd(void)
1157 {
1158 	Index		i;
1159 	File		file;
1160 
1161 	DO_DB(elog(LOG, "AllocateVfd. Size %zu", SizeVfdCache));
1162 
1163 	Assert(SizeVfdCache > 0);	/* InitFileAccess not called? */
1164 
1165 	if (VfdCache[0].nextFree == 0)
1166 	{
1167 		/*
1168 		 * The free list is empty so it is time to increase the size of the
1169 		 * array.  We choose to double it each time this happens. However,
1170 		 * there's not much point in starting *real* small.
1171 		 */
1172 		Size		newCacheSize = SizeVfdCache * 2;
1173 		Vfd		   *newVfdCache;
1174 
1175 		if (newCacheSize < 32)
1176 			newCacheSize = 32;
1177 
1178 		/*
1179 		 * Be careful not to clobber VfdCache ptr if realloc fails.
1180 		 */
1181 		newVfdCache = (Vfd *) realloc(VfdCache, sizeof(Vfd) * newCacheSize);
1182 		if (newVfdCache == NULL)
1183 			ereport(ERROR,
1184 					(errcode(ERRCODE_OUT_OF_MEMORY),
1185 					 errmsg("out of memory")));
1186 		VfdCache = newVfdCache;
1187 
1188 		/*
1189 		 * Initialize the new entries and link them into the free list.
1190 		 */
1191 		for (i = SizeVfdCache; i < newCacheSize; i++)
1192 		{
1193 			MemSet((char *) &(VfdCache[i]), 0, sizeof(Vfd));
1194 			VfdCache[i].nextFree = i + 1;
1195 			VfdCache[i].fd = VFD_CLOSED;
1196 		}
1197 		VfdCache[newCacheSize - 1].nextFree = 0;
1198 		VfdCache[0].nextFree = SizeVfdCache;
1199 
1200 		/*
1201 		 * Record the new size
1202 		 */
1203 		SizeVfdCache = newCacheSize;
1204 	}
1205 
1206 	file = VfdCache[0].nextFree;
1207 
1208 	VfdCache[0].nextFree = VfdCache[file].nextFree;
1209 
1210 	return file;
1211 }
1212 
1213 static void
FreeVfd(File file)1214 FreeVfd(File file)
1215 {
1216 	Vfd		   *vfdP = &VfdCache[file];
1217 
1218 	DO_DB(elog(LOG, "FreeVfd: %d (%s)",
1219 			   file, vfdP->fileName ? vfdP->fileName : ""));
1220 
1221 	if (vfdP->fileName != NULL)
1222 	{
1223 		free(vfdP->fileName);
1224 		vfdP->fileName = NULL;
1225 	}
1226 	vfdP->fdstate = 0x0;
1227 
1228 	vfdP->nextFree = VfdCache[0].nextFree;
1229 	VfdCache[0].nextFree = file;
1230 }
1231 
1232 /* returns 0 on success, -1 on re-open failure (with errno set) */
1233 static int
FileAccess(File file)1234 FileAccess(File file)
1235 {
1236 	int			returnValue;
1237 
1238 	DO_DB(elog(LOG, "FileAccess %d (%s)",
1239 			   file, VfdCache[file].fileName));
1240 
1241 	/*
1242 	 * Is the file open?  If not, open it and put it at the head of the LRU
1243 	 * ring (possibly closing the least recently used file to get an FD).
1244 	 */
1245 
1246 	if (FileIsNotOpen(file))
1247 	{
1248 		returnValue = LruInsert(file);
1249 		if (returnValue != 0)
1250 			return returnValue;
1251 	}
1252 	else if (VfdCache[0].lruLessRecently != file)
1253 	{
1254 		/*
1255 		 * We now know that the file is open and that it is not the last one
1256 		 * accessed, so we need to move it to the head of the Lru ring.
1257 		 */
1258 
1259 		Delete(file);
1260 		Insert(file);
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 /*
1267  *	Called when we get a shared invalidation message on some relation.
1268  */
1269 #ifdef NOT_USED
1270 void
FileInvalidate(File file)1271 FileInvalidate(File file)
1272 {
1273 	Assert(FileIsValid(file));
1274 	if (!FileIsNotOpen(file))
1275 		LruDelete(file);
1276 }
1277 #endif
1278 
1279 /*
1280  * open a file in an arbitrary directory
1281  *
1282  * NB: if the passed pathname is relative (which it usually is),
1283  * it will be interpreted relative to the process' working directory
1284  * (which should always be $PGDATA when this code is running).
1285  */
1286 File
PathNameOpenFile(FileName fileName,int fileFlags,int fileMode)1287 PathNameOpenFile(FileName fileName, int fileFlags, int fileMode)
1288 {
1289 	char	   *fnamecopy;
1290 	File		file;
1291 	Vfd		   *vfdP;
1292 
1293 	DO_DB(elog(LOG, "PathNameOpenFile: %s %x %o",
1294 			   fileName, fileFlags, fileMode));
1295 
1296 	/*
1297 	 * We need a malloc'd copy of the file name; fail cleanly if no room.
1298 	 */
1299 	fnamecopy = strdup(fileName);
1300 	if (fnamecopy == NULL)
1301 		ereport(ERROR,
1302 				(errcode(ERRCODE_OUT_OF_MEMORY),
1303 				 errmsg("out of memory")));
1304 
1305 	file = AllocateVfd();
1306 	vfdP = &VfdCache[file];
1307 
1308 	/* Close excess kernel FDs. */
1309 	ReleaseLruFiles();
1310 
1311 	vfdP->fd = BasicOpenFile(fileName, fileFlags, fileMode);
1312 
1313 	if (vfdP->fd < 0)
1314 	{
1315 		int			save_errno = errno;
1316 
1317 		FreeVfd(file);
1318 		free(fnamecopy);
1319 		errno = save_errno;
1320 		return -1;
1321 	}
1322 	++nfile;
1323 	DO_DB(elog(LOG, "PathNameOpenFile: success %d",
1324 			   vfdP->fd));
1325 
1326 	vfdP->fileName = fnamecopy;
1327 	/* Saved flags are adjusted to be OK for re-opening file */
1328 	vfdP->fileFlags = fileFlags & ~(O_CREAT | O_TRUNC | O_EXCL);
1329 	vfdP->fileMode = fileMode;
1330 	vfdP->seekPos = 0;
1331 	vfdP->fileSize = 0;
1332 	vfdP->fdstate = 0x0;
1333 	vfdP->resowner = NULL;
1334 
1335 	Insert(file);
1336 
1337 	return file;
1338 }
1339 
1340 /*
1341  * Open a temporary file that will disappear when we close it.
1342  *
1343  * This routine takes care of generating an appropriate tempfile name.
1344  * There's no need to pass in fileFlags or fileMode either, since only
1345  * one setting makes any sense for a temp file.
1346  *
1347  * Unless interXact is true, the file is remembered by CurrentResourceOwner
1348  * to ensure it's closed and deleted when it's no longer needed, typically at
1349  * the end-of-transaction. In most cases, you don't want temporary files to
1350  * outlive the transaction that created them, so this should be false -- but
1351  * if you need "somewhat" temporary storage, this might be useful. In either
1352  * case, the file is removed when the File is explicitly closed.
1353  */
1354 File
OpenTemporaryFile(bool interXact)1355 OpenTemporaryFile(bool interXact)
1356 {
1357 	File		file = 0;
1358 
1359 	/*
1360 	 * Make sure the current resource owner has space for this File before we
1361 	 * open it, if we'll be registering it below.
1362 	 */
1363 	if (!interXact)
1364 		ResourceOwnerEnlargeFiles(CurrentResourceOwner);
1365 
1366 	/*
1367 	 * If some temp tablespace(s) have been given to us, try to use the next
1368 	 * one.  If a given tablespace can't be found, we silently fall back to
1369 	 * the database's default tablespace.
1370 	 *
1371 	 * BUT: if the temp file is slated to outlive the current transaction,
1372 	 * force it into the database's default tablespace, so that it will not
1373 	 * pose a threat to possible tablespace drop attempts.
1374 	 */
1375 	if (numTempTableSpaces > 0 && !interXact)
1376 	{
1377 		Oid			tblspcOid = GetNextTempTableSpace();
1378 
1379 		if (OidIsValid(tblspcOid))
1380 			file = OpenTemporaryFileInTablespace(tblspcOid, false);
1381 	}
1382 
1383 	/*
1384 	 * If not, or if tablespace is bad, create in database's default
1385 	 * tablespace.  MyDatabaseTableSpace should normally be set before we get
1386 	 * here, but just in case it isn't, fall back to pg_default tablespace.
1387 	 */
1388 	if (file <= 0)
1389 		file = OpenTemporaryFileInTablespace(MyDatabaseTableSpace ?
1390 											 MyDatabaseTableSpace :
1391 											 DEFAULTTABLESPACE_OID,
1392 											 true);
1393 
1394 	/* Mark it for deletion at close */
1395 	VfdCache[file].fdstate |= FD_TEMPORARY;
1396 
1397 	/* Register it with the current resource owner */
1398 	if (!interXact)
1399 	{
1400 		VfdCache[file].fdstate |= FD_XACT_TEMPORARY;
1401 
1402 		VfdCache[file].resowner = CurrentResourceOwner;
1403 		ResourceOwnerRememberFile(CurrentResourceOwner, file);
1404 
1405 		/* ensure cleanup happens at eoxact */
1406 		have_xact_temporary_files = true;
1407 	}
1408 
1409 	return file;
1410 }
1411 
1412 /*
1413  * Open a temporary file in a specific tablespace.
1414  * Subroutine for OpenTemporaryFile, which see for details.
1415  */
1416 static File
OpenTemporaryFileInTablespace(Oid tblspcOid,bool rejectError)1417 OpenTemporaryFileInTablespace(Oid tblspcOid, bool rejectError)
1418 {
1419 	char		tempdirpath[MAXPGPATH];
1420 	char		tempfilepath[MAXPGPATH];
1421 	File		file;
1422 
1423 	/*
1424 	 * Identify the tempfile directory for this tablespace.
1425 	 *
1426 	 * If someone tries to specify pg_global, use pg_default instead.
1427 	 */
1428 	if (tblspcOid == DEFAULTTABLESPACE_OID ||
1429 		tblspcOid == GLOBALTABLESPACE_OID)
1430 	{
1431 		/* The default tablespace is {datadir}/base */
1432 		snprintf(tempdirpath, sizeof(tempdirpath), "base/%s",
1433 				 PG_TEMP_FILES_DIR);
1434 	}
1435 	else
1436 	{
1437 		/* All other tablespaces are accessed via symlinks */
1438 		snprintf(tempdirpath, sizeof(tempdirpath), "pg_tblspc/%u/%s/%s",
1439 				 tblspcOid, TABLESPACE_VERSION_DIRECTORY, PG_TEMP_FILES_DIR);
1440 	}
1441 
1442 	/*
1443 	 * Generate a tempfile name that should be unique within the current
1444 	 * database instance.
1445 	 */
1446 	snprintf(tempfilepath, sizeof(tempfilepath), "%s/%s%d.%ld",
1447 			 tempdirpath, PG_TEMP_FILE_PREFIX, MyProcPid, tempFileCounter++);
1448 
1449 	/*
1450 	 * Open the file.  Note: we don't use O_EXCL, in case there is an orphaned
1451 	 * temp file that can be reused.
1452 	 */
1453 	file = PathNameOpenFile(tempfilepath,
1454 							O_RDWR | O_CREAT | O_TRUNC | PG_BINARY,
1455 							0600);
1456 	if (file <= 0)
1457 	{
1458 		/*
1459 		 * We might need to create the tablespace's tempfile directory, if no
1460 		 * one has yet done so.
1461 		 *
1462 		 * Don't check for error from mkdir; it could fail if someone else
1463 		 * just did the same thing.  If it doesn't work then we'll bomb out on
1464 		 * the second create attempt, instead.
1465 		 */
1466 		mkdir(tempdirpath, S_IRWXU);
1467 
1468 		file = PathNameOpenFile(tempfilepath,
1469 								O_RDWR | O_CREAT | O_TRUNC | PG_BINARY,
1470 								0600);
1471 		if (file <= 0 && rejectError)
1472 			elog(ERROR, "could not create temporary file \"%s\": %m",
1473 				 tempfilepath);
1474 	}
1475 
1476 	return file;
1477 }
1478 
1479 /*
1480  * close a file when done with it
1481  */
1482 void
FileClose(File file)1483 FileClose(File file)
1484 {
1485 	Vfd		   *vfdP;
1486 
1487 	Assert(FileIsValid(file));
1488 
1489 	DO_DB(elog(LOG, "FileClose: %d (%s)",
1490 			   file, VfdCache[file].fileName));
1491 
1492 	vfdP = &VfdCache[file];
1493 
1494 	if (!FileIsNotOpen(file))
1495 	{
1496 		/* close the file */
1497 		if (close(vfdP->fd))
1498 		{
1499 			/*
1500 			 * We may need to panic on failure to close non-temporary files;
1501 			 * see LruDelete.
1502 			 */
1503 			elog(vfdP->fdstate & FD_TEMPORARY ? LOG : data_sync_elevel(LOG),
1504 				"could not close file \"%s\": %m", vfdP->fileName);
1505 		}
1506 
1507 		--nfile;
1508 		vfdP->fd = VFD_CLOSED;
1509 
1510 		/* remove the file from the lru ring */
1511 		Delete(file);
1512 	}
1513 
1514 	/*
1515 	 * Delete the file if it was temporary, and make a log entry if wanted
1516 	 */
1517 	if (vfdP->fdstate & FD_TEMPORARY)
1518 	{
1519 		struct stat filestats;
1520 		int			stat_errno;
1521 
1522 		/*
1523 		 * If we get an error, as could happen within the ereport/elog calls,
1524 		 * we'll come right back here during transaction abort.  Reset the
1525 		 * flag to ensure that we can't get into an infinite loop.  This code
1526 		 * is arranged to ensure that the worst-case consequence is failing to
1527 		 * emit log message(s), not failing to attempt the unlink.
1528 		 */
1529 		vfdP->fdstate &= ~FD_TEMPORARY;
1530 
1531 		/* Subtract its size from current usage (do first in case of error) */
1532 		temporary_files_size -= vfdP->fileSize;
1533 		vfdP->fileSize = 0;
1534 
1535 		/* first try the stat() */
1536 		if (stat(vfdP->fileName, &filestats))
1537 			stat_errno = errno;
1538 		else
1539 			stat_errno = 0;
1540 
1541 		/* in any case do the unlink */
1542 		if (unlink(vfdP->fileName))
1543 			elog(LOG, "could not unlink file \"%s\": %m", vfdP->fileName);
1544 
1545 		/* and last report the stat results */
1546 		if (stat_errno == 0)
1547 		{
1548 			pgstat_report_tempfile(filestats.st_size);
1549 
1550 			if (log_temp_files >= 0)
1551 			{
1552 				if ((filestats.st_size / 1024) >= log_temp_files)
1553 					ereport(LOG,
1554 							(errmsg("temporary file: path \"%s\", size %lu",
1555 									vfdP->fileName,
1556 									(unsigned long) filestats.st_size)));
1557 			}
1558 		}
1559 		else
1560 		{
1561 			errno = stat_errno;
1562 			elog(LOG, "could not stat file \"%s\": %m", vfdP->fileName);
1563 		}
1564 	}
1565 
1566 	/* Unregister it from the resource owner */
1567 	if (vfdP->resowner)
1568 		ResourceOwnerForgetFile(vfdP->resowner, file);
1569 
1570 	/*
1571 	 * Return the Vfd slot to the free list
1572 	 */
1573 	FreeVfd(file);
1574 }
1575 
1576 /*
1577  * FilePrefetch - initiate asynchronous read of a given range of the file.
1578  * The logical seek position is unaffected.
1579  *
1580  * Currently the only implementation of this function is using posix_fadvise
1581  * which is the simplest standardized interface that accomplishes this.
1582  * We could add an implementation using libaio in the future; but note that
1583  * this API is inappropriate for libaio, which wants to have a buffer provided
1584  * to read into.
1585  */
1586 int
FilePrefetch(File file,off_t offset,int amount)1587 FilePrefetch(File file, off_t offset, int amount)
1588 {
1589 #if defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_WILLNEED)
1590 	int			returnCode;
1591 
1592 	Assert(FileIsValid(file));
1593 
1594 	DO_DB(elog(LOG, "FilePrefetch: %d (%s) " INT64_FORMAT " %d",
1595 			   file, VfdCache[file].fileName,
1596 			   (int64) offset, amount));
1597 
1598 	returnCode = FileAccess(file);
1599 	if (returnCode < 0)
1600 		return returnCode;
1601 
1602 	returnCode = posix_fadvise(VfdCache[file].fd, offset, amount,
1603 							   POSIX_FADV_WILLNEED);
1604 
1605 	return returnCode;
1606 #else
1607 	Assert(FileIsValid(file));
1608 	return 0;
1609 #endif
1610 }
1611 
1612 void
FileWriteback(File file,off_t offset,off_t nbytes)1613 FileWriteback(File file, off_t offset, off_t nbytes)
1614 {
1615 	int			returnCode;
1616 
1617 	Assert(FileIsValid(file));
1618 
1619 	DO_DB(elog(LOG, "FileWriteback: %d (%s) " INT64_FORMAT " " INT64_FORMAT,
1620 			   file, VfdCache[file].fileName,
1621 			   (int64) offset, (int64) nbytes));
1622 
1623 	/*
1624 	 * Caution: do not call pg_flush_data with nbytes = 0, it could trash the
1625 	 * file's seek position.  We prefer to define that as a no-op here.
1626 	 */
1627 	if (nbytes <= 0)
1628 		return;
1629 
1630 	returnCode = FileAccess(file);
1631 	if (returnCode < 0)
1632 		return;
1633 
1634 	pg_flush_data(VfdCache[file].fd, offset, nbytes);
1635 }
1636 
1637 int
FileRead(File file,char * buffer,int amount)1638 FileRead(File file, char *buffer, int amount)
1639 {
1640 	int			returnCode;
1641 	Vfd		   *vfdP;
1642 
1643 	Assert(FileIsValid(file));
1644 
1645 	DO_DB(elog(LOG, "FileRead: %d (%s) " INT64_FORMAT " %d %p",
1646 			   file, VfdCache[file].fileName,
1647 			   (int64) VfdCache[file].seekPos,
1648 			   amount, buffer));
1649 
1650 	returnCode = FileAccess(file);
1651 	if (returnCode < 0)
1652 		return returnCode;
1653 
1654 	vfdP = &VfdCache[file];
1655 
1656 retry:
1657 	returnCode = read(vfdP->fd, buffer, amount);
1658 
1659 	if (returnCode >= 0)
1660 	{
1661 		/* if seekPos is unknown, leave it that way */
1662 		if (!FilePosIsUnknown(vfdP->seekPos))
1663 			vfdP->seekPos += returnCode;
1664 	}
1665 	else
1666 	{
1667 		/*
1668 		 * Windows may run out of kernel buffers and return "Insufficient
1669 		 * system resources" error.  Wait a bit and retry to solve it.
1670 		 *
1671 		 * It is rumored that EINTR is also possible on some Unix filesystems,
1672 		 * in which case immediate retry is indicated.
1673 		 */
1674 #ifdef WIN32
1675 		DWORD		error = GetLastError();
1676 
1677 		switch (error)
1678 		{
1679 			case ERROR_NO_SYSTEM_RESOURCES:
1680 				pg_usleep(1000L);
1681 				errno = EINTR;
1682 				break;
1683 			default:
1684 				_dosmaperr(error);
1685 				break;
1686 		}
1687 #endif
1688 		/* OK to retry if interrupted */
1689 		if (errno == EINTR)
1690 			goto retry;
1691 
1692 		/* Trouble, so assume we don't know the file position anymore */
1693 		vfdP->seekPos = FileUnknownPos;
1694 	}
1695 
1696 	return returnCode;
1697 }
1698 
1699 int
FileWrite(File file,char * buffer,int amount)1700 FileWrite(File file, char *buffer, int amount)
1701 {
1702 	int			returnCode;
1703 	Vfd		   *vfdP;
1704 
1705 	Assert(FileIsValid(file));
1706 
1707 	DO_DB(elog(LOG, "FileWrite: %d (%s) " INT64_FORMAT " %d %p",
1708 			   file, VfdCache[file].fileName,
1709 			   (int64) VfdCache[file].seekPos,
1710 			   amount, buffer));
1711 
1712 	returnCode = FileAccess(file);
1713 	if (returnCode < 0)
1714 		return returnCode;
1715 
1716 	vfdP = &VfdCache[file];
1717 
1718 	/*
1719 	 * If enforcing temp_file_limit and it's a temp file, check to see if the
1720 	 * write would overrun temp_file_limit, and throw error if so.  Note: it's
1721 	 * really a modularity violation to throw error here; we should set errno
1722 	 * and return -1.  However, there's no way to report a suitable error
1723 	 * message if we do that.  All current callers would just throw error
1724 	 * immediately anyway, so this is safe at present.
1725 	 */
1726 	if (temp_file_limit >= 0 && (vfdP->fdstate & FD_TEMPORARY))
1727 	{
1728 		off_t		newPos;
1729 
1730 		/*
1731 		 * Normally we should know the seek position, but if for some reason
1732 		 * we have lost track of it, try again to get it.  Here, it's fine to
1733 		 * throw an error if we still can't get it.
1734 		 */
1735 		if (FilePosIsUnknown(vfdP->seekPos))
1736 		{
1737 			vfdP->seekPos = lseek(vfdP->fd, (off_t) 0, SEEK_CUR);
1738 			if (FilePosIsUnknown(vfdP->seekPos))
1739 				elog(ERROR, "could not seek file \"%s\": %m", vfdP->fileName);
1740 		}
1741 
1742 		newPos = vfdP->seekPos + amount;
1743 		if (newPos > vfdP->fileSize)
1744 		{
1745 			uint64		newTotal = temporary_files_size;
1746 
1747 			newTotal += newPos - vfdP->fileSize;
1748 			if (newTotal > (uint64) temp_file_limit * (uint64) 1024)
1749 				ereport(ERROR,
1750 						(errcode(ERRCODE_CONFIGURATION_LIMIT_EXCEEDED),
1751 				 errmsg("temporary file size exceeds temp_file_limit (%dkB)",
1752 						temp_file_limit)));
1753 		}
1754 	}
1755 
1756 retry:
1757 	errno = 0;
1758 	returnCode = write(vfdP->fd, buffer, amount);
1759 
1760 	/* if write didn't set errno, assume problem is no disk space */
1761 	if (returnCode != amount && errno == 0)
1762 		errno = ENOSPC;
1763 
1764 	if (returnCode >= 0)
1765 	{
1766 		/* if seekPos is unknown, leave it that way */
1767 		if (!FilePosIsUnknown(vfdP->seekPos))
1768 			vfdP->seekPos += returnCode;
1769 
1770 		/*
1771 		 * Maintain fileSize and temporary_files_size if it's a temp file.
1772 		 *
1773 		 * If seekPos is -1 (unknown), this will do nothing; but we could only
1774 		 * get here in that state if we're not enforcing temporary_files_size,
1775 		 * so we don't care.
1776 		 */
1777 		if (vfdP->fdstate & FD_TEMPORARY)
1778 		{
1779 			off_t		newPos = vfdP->seekPos;
1780 
1781 			if (newPos > vfdP->fileSize)
1782 			{
1783 				temporary_files_size += newPos - vfdP->fileSize;
1784 				vfdP->fileSize = newPos;
1785 			}
1786 		}
1787 	}
1788 	else
1789 	{
1790 		/*
1791 		 * See comments in FileRead()
1792 		 */
1793 #ifdef WIN32
1794 		DWORD		error = GetLastError();
1795 
1796 		switch (error)
1797 		{
1798 			case ERROR_NO_SYSTEM_RESOURCES:
1799 				pg_usleep(1000L);
1800 				errno = EINTR;
1801 				break;
1802 			default:
1803 				_dosmaperr(error);
1804 				break;
1805 		}
1806 #endif
1807 		/* OK to retry if interrupted */
1808 		if (errno == EINTR)
1809 			goto retry;
1810 
1811 		/* Trouble, so assume we don't know the file position anymore */
1812 		vfdP->seekPos = FileUnknownPos;
1813 	}
1814 
1815 	return returnCode;
1816 }
1817 
1818 int
FileSync(File file)1819 FileSync(File file)
1820 {
1821 	int			returnCode;
1822 
1823 	Assert(FileIsValid(file));
1824 
1825 	DO_DB(elog(LOG, "FileSync: %d (%s)",
1826 			   file, VfdCache[file].fileName));
1827 
1828 	returnCode = FileAccess(file);
1829 	if (returnCode < 0)
1830 		return returnCode;
1831 
1832 	return pg_fsync(VfdCache[file].fd);
1833 }
1834 
1835 off_t
FileSeek(File file,off_t offset,int whence)1836 FileSeek(File file, off_t offset, int whence)
1837 {
1838 	Vfd		   *vfdP;
1839 
1840 	Assert(FileIsValid(file));
1841 
1842 	DO_DB(elog(LOG, "FileSeek: %d (%s) " INT64_FORMAT " " INT64_FORMAT " %d",
1843 			   file, VfdCache[file].fileName,
1844 			   (int64) VfdCache[file].seekPos,
1845 			   (int64) offset, whence));
1846 
1847 	vfdP = &VfdCache[file];
1848 
1849 	if (FileIsNotOpen(file))
1850 	{
1851 		switch (whence)
1852 		{
1853 			case SEEK_SET:
1854 				if (offset < 0)
1855 				{
1856 					errno = EINVAL;
1857 					return (off_t) -1;
1858 				}
1859 				vfdP->seekPos = offset;
1860 				break;
1861 			case SEEK_CUR:
1862 				if (FilePosIsUnknown(vfdP->seekPos) ||
1863 					vfdP->seekPos + offset < 0)
1864 				{
1865 					errno = EINVAL;
1866 					return (off_t) -1;
1867 				}
1868 				vfdP->seekPos += offset;
1869 				break;
1870 			case SEEK_END:
1871 				if (FileAccess(file) < 0)
1872 					return (off_t) -1;
1873 				vfdP->seekPos = lseek(vfdP->fd, offset, whence);
1874 				break;
1875 			default:
1876 				elog(ERROR, "invalid whence: %d", whence);
1877 				break;
1878 		}
1879 	}
1880 	else
1881 	{
1882 		switch (whence)
1883 		{
1884 			case SEEK_SET:
1885 				if (offset < 0)
1886 				{
1887 					errno = EINVAL;
1888 					return (off_t) -1;
1889 				}
1890 				if (vfdP->seekPos != offset)
1891 					vfdP->seekPos = lseek(vfdP->fd, offset, whence);
1892 				break;
1893 			case SEEK_CUR:
1894 				if (offset != 0 || FilePosIsUnknown(vfdP->seekPos))
1895 					vfdP->seekPos = lseek(vfdP->fd, offset, whence);
1896 				break;
1897 			case SEEK_END:
1898 				vfdP->seekPos = lseek(vfdP->fd, offset, whence);
1899 				break;
1900 			default:
1901 				elog(ERROR, "invalid whence: %d", whence);
1902 				break;
1903 		}
1904 	}
1905 
1906 	return vfdP->seekPos;
1907 }
1908 
1909 /*
1910  * XXX not actually used but here for completeness
1911  */
1912 #ifdef NOT_USED
1913 off_t
FileTell(File file)1914 FileTell(File file)
1915 {
1916 	Assert(FileIsValid(file));
1917 	DO_DB(elog(LOG, "FileTell %d (%s)",
1918 			   file, VfdCache[file].fileName));
1919 	return VfdCache[file].seekPos;
1920 }
1921 #endif
1922 
1923 int
FileTruncate(File file,off_t offset)1924 FileTruncate(File file, off_t offset)
1925 {
1926 	int			returnCode;
1927 
1928 	Assert(FileIsValid(file));
1929 
1930 	DO_DB(elog(LOG, "FileTruncate %d (%s)",
1931 			   file, VfdCache[file].fileName));
1932 
1933 	returnCode = FileAccess(file);
1934 	if (returnCode < 0)
1935 		return returnCode;
1936 
1937 	returnCode = ftruncate(VfdCache[file].fd, offset);
1938 
1939 	if (returnCode == 0 && VfdCache[file].fileSize > offset)
1940 	{
1941 		/* adjust our state for truncation of a temp file */
1942 		Assert(VfdCache[file].fdstate & FD_TEMPORARY);
1943 		temporary_files_size -= VfdCache[file].fileSize - offset;
1944 		VfdCache[file].fileSize = offset;
1945 	}
1946 
1947 	return returnCode;
1948 }
1949 
1950 /*
1951  * Return the pathname associated with an open file.
1952  *
1953  * The returned string points to an internal buffer, which is valid until
1954  * the file is closed.
1955  */
1956 char *
FilePathName(File file)1957 FilePathName(File file)
1958 {
1959 	Assert(FileIsValid(file));
1960 
1961 	return VfdCache[file].fileName;
1962 }
1963 
1964 /*
1965  * Return the raw file descriptor of an opened file.
1966  *
1967  * The returned file descriptor will be valid until the file is closed, but
1968  * there are a lot of things that can make that happen.  So the caller should
1969  * be careful not to do much of anything else before it finishes using the
1970  * returned file descriptor.
1971  */
1972 int
FileGetRawDesc(File file)1973 FileGetRawDesc(File file)
1974 {
1975 	Assert(FileIsValid(file));
1976 	return VfdCache[file].fd;
1977 }
1978 
1979 /*
1980  * FileGetRawFlags - returns the file flags on open(2)
1981  */
1982 int
FileGetRawFlags(File file)1983 FileGetRawFlags(File file)
1984 {
1985 	Assert(FileIsValid(file));
1986 	return VfdCache[file].fileFlags;
1987 }
1988 
1989 /*
1990  * FileGetRawMode - returns the mode bitmask passed to open(2)
1991  */
1992 int
FileGetRawMode(File file)1993 FileGetRawMode(File file)
1994 {
1995 	Assert(FileIsValid(file));
1996 	return VfdCache[file].fileMode;
1997 }
1998 
1999 /*
2000  * Make room for another allocatedDescs[] array entry if needed and possible.
2001  * Returns true if an array element is available.
2002  */
2003 static bool
reserveAllocatedDesc(void)2004 reserveAllocatedDesc(void)
2005 {
2006 	AllocateDesc *newDescs;
2007 	int			newMax;
2008 
2009 	/* Quick out if array already has a free slot. */
2010 	if (numAllocatedDescs < maxAllocatedDescs)
2011 		return true;
2012 
2013 	/*
2014 	 * If the array hasn't yet been created in the current process, initialize
2015 	 * it with FD_MINFREE / 2 elements.  In many scenarios this is as many as
2016 	 * we will ever need, anyway.  We don't want to look at max_safe_fds
2017 	 * immediately because set_max_safe_fds() may not have run yet.
2018 	 */
2019 	if (allocatedDescs == NULL)
2020 	{
2021 		newMax = FD_MINFREE / 2;
2022 		newDescs = (AllocateDesc *) malloc(newMax * sizeof(AllocateDesc));
2023 		/* Out of memory already?  Treat as fatal error. */
2024 		if (newDescs == NULL)
2025 			ereport(ERROR,
2026 					(errcode(ERRCODE_OUT_OF_MEMORY),
2027 					 errmsg("out of memory")));
2028 		allocatedDescs = newDescs;
2029 		maxAllocatedDescs = newMax;
2030 		return true;
2031 	}
2032 
2033 	/*
2034 	 * Consider enlarging the array beyond the initial allocation used above.
2035 	 * By the time this happens, max_safe_fds should be known accurately.
2036 	 *
2037 	 * We mustn't let allocated descriptors hog all the available FDs, and in
2038 	 * practice we'd better leave a reasonable number of FDs for VFD use.  So
2039 	 * set the maximum to max_safe_fds / 2.  (This should certainly be at
2040 	 * least as large as the initial size, FD_MINFREE / 2.)
2041 	 */
2042 	newMax = max_safe_fds / 2;
2043 	if (newMax > maxAllocatedDescs)
2044 	{
2045 		newDescs = (AllocateDesc *) realloc(allocatedDescs,
2046 											newMax * sizeof(AllocateDesc));
2047 		/* Treat out-of-memory as a non-fatal error. */
2048 		if (newDescs == NULL)
2049 			return false;
2050 		allocatedDescs = newDescs;
2051 		maxAllocatedDescs = newMax;
2052 		return true;
2053 	}
2054 
2055 	/* Can't enlarge allocatedDescs[] any more. */
2056 	return false;
2057 }
2058 
2059 /*
2060  * Routines that want to use stdio (ie, FILE*) should use AllocateFile
2061  * rather than plain fopen().  This lets fd.c deal with freeing FDs if
2062  * necessary to open the file.  When done, call FreeFile rather than fclose.
2063  *
2064  * Note that files that will be open for any significant length of time
2065  * should NOT be handled this way, since they cannot share kernel file
2066  * descriptors with other files; there is grave risk of running out of FDs
2067  * if anyone locks down too many FDs.  Most callers of this routine are
2068  * simply reading a config file that they will read and close immediately.
2069  *
2070  * fd.c will automatically close all files opened with AllocateFile at
2071  * transaction commit or abort; this prevents FD leakage if a routine
2072  * that calls AllocateFile is terminated prematurely by ereport(ERROR).
2073  *
2074  * Ideally this should be the *only* direct call of fopen() in the backend.
2075  */
2076 FILE *
AllocateFile(const char * name,const char * mode)2077 AllocateFile(const char *name, const char *mode)
2078 {
2079 	FILE	   *file;
2080 
2081 	DO_DB(elog(LOG, "AllocateFile: Allocated %d (%s)",
2082 			   numAllocatedDescs, name));
2083 
2084 	/* Can we allocate another non-virtual FD? */
2085 	if (!reserveAllocatedDesc())
2086 		ereport(ERROR,
2087 				(errcode(ERRCODE_INSUFFICIENT_RESOURCES),
2088 				 errmsg("exceeded maxAllocatedDescs (%d) while trying to open file \"%s\"",
2089 						maxAllocatedDescs, name)));
2090 
2091 	/* Close excess kernel FDs. */
2092 	ReleaseLruFiles();
2093 
2094 TryAgain:
2095 	if ((file = fopen(name, mode)) != NULL)
2096 	{
2097 		AllocateDesc *desc = &allocatedDescs[numAllocatedDescs];
2098 
2099 		desc->kind = AllocateDescFile;
2100 		desc->desc.file = file;
2101 		desc->create_subid = GetCurrentSubTransactionId();
2102 		numAllocatedDescs++;
2103 		return desc->desc.file;
2104 	}
2105 
2106 	if (errno == EMFILE || errno == ENFILE)
2107 	{
2108 		int			save_errno = errno;
2109 
2110 		ereport(LOG,
2111 				(errcode(ERRCODE_INSUFFICIENT_RESOURCES),
2112 				 errmsg("out of file descriptors: %m; release and retry")));
2113 		errno = 0;
2114 		if (ReleaseLruFile())
2115 			goto TryAgain;
2116 		errno = save_errno;
2117 	}
2118 
2119 	return NULL;
2120 }
2121 
2122 
2123 /*
2124  * Like AllocateFile, but returns an unbuffered fd like open(2)
2125  */
2126 int
OpenTransientFile(FileName fileName,int fileFlags,int fileMode)2127 OpenTransientFile(FileName fileName, int fileFlags, int fileMode)
2128 {
2129 	int			fd;
2130 
2131 	DO_DB(elog(LOG, "OpenTransientFile: Allocated %d (%s)",
2132 			   numAllocatedDescs, fileName));
2133 
2134 	/* Can we allocate another non-virtual FD? */
2135 	if (!reserveAllocatedDesc())
2136 		ereport(ERROR,
2137 				(errcode(ERRCODE_INSUFFICIENT_RESOURCES),
2138 				 errmsg("exceeded maxAllocatedDescs (%d) while trying to open file \"%s\"",
2139 						maxAllocatedDescs, fileName)));
2140 
2141 	/* Close excess kernel FDs. */
2142 	ReleaseLruFiles();
2143 
2144 	fd = BasicOpenFile(fileName, fileFlags, fileMode);
2145 
2146 	if (fd >= 0)
2147 	{
2148 		AllocateDesc *desc = &allocatedDescs[numAllocatedDescs];
2149 
2150 		desc->kind = AllocateDescRawFD;
2151 		desc->desc.fd = fd;
2152 		desc->create_subid = GetCurrentSubTransactionId();
2153 		numAllocatedDescs++;
2154 
2155 		return fd;
2156 	}
2157 
2158 	return -1;					/* failure */
2159 }
2160 
2161 /*
2162  * Routines that want to initiate a pipe stream should use OpenPipeStream
2163  * rather than plain popen().  This lets fd.c deal with freeing FDs if
2164  * necessary.  When done, call ClosePipeStream rather than pclose.
2165  */
2166 FILE *
OpenPipeStream(const char * command,const char * mode)2167 OpenPipeStream(const char *command, const char *mode)
2168 {
2169 	FILE	   *file;
2170 
2171 	DO_DB(elog(LOG, "OpenPipeStream: Allocated %d (%s)",
2172 			   numAllocatedDescs, command));
2173 
2174 	/* Can we allocate another non-virtual FD? */
2175 	if (!reserveAllocatedDesc())
2176 		ereport(ERROR,
2177 				(errcode(ERRCODE_INSUFFICIENT_RESOURCES),
2178 				 errmsg("exceeded maxAllocatedDescs (%d) while trying to execute command \"%s\"",
2179 						maxAllocatedDescs, command)));
2180 
2181 	/* Close excess kernel FDs. */
2182 	ReleaseLruFiles();
2183 
2184 TryAgain:
2185 	fflush(stdout);
2186 	fflush(stderr);
2187 	errno = 0;
2188 	if ((file = popen(command, mode)) != NULL)
2189 	{
2190 		AllocateDesc *desc = &allocatedDescs[numAllocatedDescs];
2191 
2192 		desc->kind = AllocateDescPipe;
2193 		desc->desc.file = file;
2194 		desc->create_subid = GetCurrentSubTransactionId();
2195 		numAllocatedDescs++;
2196 		return desc->desc.file;
2197 	}
2198 
2199 	if (errno == EMFILE || errno == ENFILE)
2200 	{
2201 		int			save_errno = errno;
2202 
2203 		ereport(LOG,
2204 				(errcode(ERRCODE_INSUFFICIENT_RESOURCES),
2205 				 errmsg("out of file descriptors: %m; release and retry")));
2206 		errno = 0;
2207 		if (ReleaseLruFile())
2208 			goto TryAgain;
2209 		errno = save_errno;
2210 	}
2211 
2212 	return NULL;
2213 }
2214 
2215 /*
2216  * Free an AllocateDesc of any type.
2217  *
2218  * The argument *must* point into the allocatedDescs[] array.
2219  */
2220 static int
FreeDesc(AllocateDesc * desc)2221 FreeDesc(AllocateDesc *desc)
2222 {
2223 	int			result;
2224 
2225 	/* Close the underlying object */
2226 	switch (desc->kind)
2227 	{
2228 		case AllocateDescFile:
2229 			result = fclose(desc->desc.file);
2230 			break;
2231 		case AllocateDescPipe:
2232 			result = pclose(desc->desc.file);
2233 			break;
2234 		case AllocateDescDir:
2235 			result = closedir(desc->desc.dir);
2236 			break;
2237 		case AllocateDescRawFD:
2238 			result = close(desc->desc.fd);
2239 			break;
2240 		default:
2241 			elog(ERROR, "AllocateDesc kind not recognized");
2242 			result = 0;			/* keep compiler quiet */
2243 			break;
2244 	}
2245 
2246 	/* Compact storage in the allocatedDescs array */
2247 	numAllocatedDescs--;
2248 	*desc = allocatedDescs[numAllocatedDescs];
2249 
2250 	return result;
2251 }
2252 
2253 /*
2254  * Close a file returned by AllocateFile.
2255  *
2256  * Note we do not check fclose's return value --- it is up to the caller
2257  * to handle close errors.
2258  */
2259 int
FreeFile(FILE * file)2260 FreeFile(FILE *file)
2261 {
2262 	int			i;
2263 
2264 	DO_DB(elog(LOG, "FreeFile: Allocated %d", numAllocatedDescs));
2265 
2266 	/* Remove file from list of allocated files, if it's present */
2267 	for (i = numAllocatedDescs; --i >= 0;)
2268 	{
2269 		AllocateDesc *desc = &allocatedDescs[i];
2270 
2271 		if (desc->kind == AllocateDescFile && desc->desc.file == file)
2272 			return FreeDesc(desc);
2273 	}
2274 
2275 	/* Only get here if someone passes us a file not in allocatedDescs */
2276 	elog(WARNING, "file passed to FreeFile was not obtained from AllocateFile");
2277 
2278 	return fclose(file);
2279 }
2280 
2281 /*
2282  * Close a file returned by OpenTransientFile.
2283  *
2284  * Note we do not check close's return value --- it is up to the caller
2285  * to handle close errors.
2286  */
2287 int
CloseTransientFile(int fd)2288 CloseTransientFile(int fd)
2289 {
2290 	int			i;
2291 
2292 	DO_DB(elog(LOG, "CloseTransientFile: Allocated %d", numAllocatedDescs));
2293 
2294 	/* Remove fd from list of allocated files, if it's present */
2295 	for (i = numAllocatedDescs; --i >= 0;)
2296 	{
2297 		AllocateDesc *desc = &allocatedDescs[i];
2298 
2299 		if (desc->kind == AllocateDescRawFD && desc->desc.fd == fd)
2300 			return FreeDesc(desc);
2301 	}
2302 
2303 	/* Only get here if someone passes us a file not in allocatedDescs */
2304 	elog(WARNING, "fd passed to CloseTransientFile was not obtained from OpenTransientFile");
2305 
2306 	return close(fd);
2307 }
2308 
2309 /*
2310  * Routines that want to use <dirent.h> (ie, DIR*) should use AllocateDir
2311  * rather than plain opendir().  This lets fd.c deal with freeing FDs if
2312  * necessary to open the directory, and with closing it after an elog.
2313  * When done, call FreeDir rather than closedir.
2314  *
2315  * Returns NULL, with errno set, on failure.  Note that failure detection
2316  * is commonly left to the following call of ReadDir or ReadDirExtended;
2317  * see the comments for ReadDir.
2318  *
2319  * Ideally this should be the *only* direct call of opendir() in the backend.
2320  */
2321 DIR *
AllocateDir(const char * dirname)2322 AllocateDir(const char *dirname)
2323 {
2324 	DIR		   *dir;
2325 
2326 	DO_DB(elog(LOG, "AllocateDir: Allocated %d (%s)",
2327 			   numAllocatedDescs, dirname));
2328 
2329 	/* Can we allocate another non-virtual FD? */
2330 	if (!reserveAllocatedDesc())
2331 		ereport(ERROR,
2332 				(errcode(ERRCODE_INSUFFICIENT_RESOURCES),
2333 				 errmsg("exceeded maxAllocatedDescs (%d) while trying to open directory \"%s\"",
2334 						maxAllocatedDescs, dirname)));
2335 
2336 	/* Close excess kernel FDs. */
2337 	ReleaseLruFiles();
2338 
2339 TryAgain:
2340 	if ((dir = opendir(dirname)) != NULL)
2341 	{
2342 		AllocateDesc *desc = &allocatedDescs[numAllocatedDescs];
2343 
2344 		desc->kind = AllocateDescDir;
2345 		desc->desc.dir = dir;
2346 		desc->create_subid = GetCurrentSubTransactionId();
2347 		numAllocatedDescs++;
2348 		return desc->desc.dir;
2349 	}
2350 
2351 	if (errno == EMFILE || errno == ENFILE)
2352 	{
2353 		int			save_errno = errno;
2354 
2355 		ereport(LOG,
2356 				(errcode(ERRCODE_INSUFFICIENT_RESOURCES),
2357 				 errmsg("out of file descriptors: %m; release and retry")));
2358 		errno = 0;
2359 		if (ReleaseLruFile())
2360 			goto TryAgain;
2361 		errno = save_errno;
2362 	}
2363 
2364 	return NULL;
2365 }
2366 
2367 /*
2368  * Read a directory opened with AllocateDir, ereport'ing any error.
2369  *
2370  * This is easier to use than raw readdir() since it takes care of some
2371  * otherwise rather tedious and error-prone manipulation of errno.  Also,
2372  * if you are happy with a generic error message for AllocateDir failure,
2373  * you can just do
2374  *
2375  *		dir = AllocateDir(path);
2376  *		while ((dirent = ReadDir(dir, path)) != NULL)
2377  *			process dirent;
2378  *		FreeDir(dir);
2379  *
2380  * since a NULL dir parameter is taken as indicating AllocateDir failed.
2381  * (Make sure errno isn't changed between AllocateDir and ReadDir if you
2382  * use this shortcut.)
2383  *
2384  * The pathname passed to AllocateDir must be passed to this routine too,
2385  * but it is only used for error reporting.
2386  */
2387 struct dirent *
ReadDir(DIR * dir,const char * dirname)2388 ReadDir(DIR *dir, const char *dirname)
2389 {
2390 	return ReadDirExtended(dir, dirname, ERROR);
2391 }
2392 
2393 /*
2394  * Alternate version of ReadDir that allows caller to specify the elevel
2395  * for any error report (whether it's reporting an initial failure of
2396  * AllocateDir or a subsequent directory read failure).
2397  *
2398  * If elevel < ERROR, returns NULL after any error.  With the normal coding
2399  * pattern, this will result in falling out of the loop immediately as
2400  * though the directory contained no (more) entries.
2401  */
2402 struct dirent *
ReadDirExtended(DIR * dir,const char * dirname,int elevel)2403 ReadDirExtended(DIR *dir, const char *dirname, int elevel)
2404 {
2405 	struct dirent *dent;
2406 
2407 	/* Give a generic message for AllocateDir failure, if caller didn't */
2408 	if (dir == NULL)
2409 	{
2410 		ereport(elevel,
2411 				(errcode_for_file_access(),
2412 				 errmsg("could not open directory \"%s\": %m",
2413 						dirname)));
2414 		return NULL;
2415 	}
2416 
2417 	errno = 0;
2418 	if ((dent = readdir(dir)) != NULL)
2419 		return dent;
2420 
2421 	if (errno)
2422 		ereport(elevel,
2423 				(errcode_for_file_access(),
2424 				 errmsg("could not read directory \"%s\": %m",
2425 						dirname)));
2426 	return NULL;
2427 }
2428 
2429 /*
2430  * Close a directory opened with AllocateDir.
2431  *
2432  * Returns closedir's return value (with errno set if it's not 0).
2433  * Note we do not check the return value --- it is up to the caller
2434  * to handle close errors if wanted.
2435  *
2436  * Does nothing if dir == NULL; we assume that directory open failure was
2437  * already reported if desired.
2438  */
2439 int
FreeDir(DIR * dir)2440 FreeDir(DIR *dir)
2441 {
2442 	int			i;
2443 
2444 	/* Nothing to do if AllocateDir failed */
2445 	if (dir == NULL)
2446 		return 0;
2447 
2448 	DO_DB(elog(LOG, "FreeDir: Allocated %d", numAllocatedDescs));
2449 
2450 	/* Remove dir from list of allocated dirs, if it's present */
2451 	for (i = numAllocatedDescs; --i >= 0;)
2452 	{
2453 		AllocateDesc *desc = &allocatedDescs[i];
2454 
2455 		if (desc->kind == AllocateDescDir && desc->desc.dir == dir)
2456 			return FreeDesc(desc);
2457 	}
2458 
2459 	/* Only get here if someone passes us a dir not in allocatedDescs */
2460 	elog(WARNING, "dir passed to FreeDir was not obtained from AllocateDir");
2461 
2462 	return closedir(dir);
2463 }
2464 
2465 
2466 /*
2467  * Close a pipe stream returned by OpenPipeStream.
2468  */
2469 int
ClosePipeStream(FILE * file)2470 ClosePipeStream(FILE *file)
2471 {
2472 	int			i;
2473 
2474 	DO_DB(elog(LOG, "ClosePipeStream: Allocated %d", numAllocatedDescs));
2475 
2476 	/* Remove file from list of allocated files, if it's present */
2477 	for (i = numAllocatedDescs; --i >= 0;)
2478 	{
2479 		AllocateDesc *desc = &allocatedDescs[i];
2480 
2481 		if (desc->kind == AllocateDescPipe && desc->desc.file == file)
2482 			return FreeDesc(desc);
2483 	}
2484 
2485 	/* Only get here if someone passes us a file not in allocatedDescs */
2486 	elog(WARNING, "file passed to ClosePipeStream was not obtained from OpenPipeStream");
2487 
2488 	return pclose(file);
2489 }
2490 
2491 /*
2492  * closeAllVfds
2493  *
2494  * Force all VFDs into the physically-closed state, so that the fewest
2495  * possible number of kernel file descriptors are in use.  There is no
2496  * change in the logical state of the VFDs.
2497  */
2498 void
closeAllVfds(void)2499 closeAllVfds(void)
2500 {
2501 	Index		i;
2502 
2503 	if (SizeVfdCache > 0)
2504 	{
2505 		Assert(FileIsNotOpen(0));		/* Make sure ring not corrupted */
2506 		for (i = 1; i < SizeVfdCache; i++)
2507 		{
2508 			if (!FileIsNotOpen(i))
2509 				LruDelete(i);
2510 		}
2511 	}
2512 }
2513 
2514 
2515 /*
2516  * SetTempTablespaces
2517  *
2518  * Define a list (actually an array) of OIDs of tablespaces to use for
2519  * temporary files.  This list will be used until end of transaction,
2520  * unless this function is called again before then.  It is caller's
2521  * responsibility that the passed-in array has adequate lifespan (typically
2522  * it'd be allocated in TopTransactionContext).
2523  *
2524  * Some entries of the array may be InvalidOid, indicating that the current
2525  * database's default tablespace should be used.
2526  */
2527 void
SetTempTablespaces(Oid * tableSpaces,int numSpaces)2528 SetTempTablespaces(Oid *tableSpaces, int numSpaces)
2529 {
2530 	Assert(numSpaces >= 0);
2531 	tempTableSpaces = tableSpaces;
2532 	numTempTableSpaces = numSpaces;
2533 
2534 	/*
2535 	 * Select a random starting point in the list.  This is to minimize
2536 	 * conflicts between backends that are most likely sharing the same list
2537 	 * of temp tablespaces.  Note that if we create multiple temp files in the
2538 	 * same transaction, we'll advance circularly through the list --- this
2539 	 * ensures that large temporary sort files are nicely spread across all
2540 	 * available tablespaces.
2541 	 */
2542 	if (numSpaces > 1)
2543 		nextTempTableSpace = random() % numSpaces;
2544 	else
2545 		nextTempTableSpace = 0;
2546 }
2547 
2548 /*
2549  * TempTablespacesAreSet
2550  *
2551  * Returns TRUE if SetTempTablespaces has been called in current transaction.
2552  * (This is just so that tablespaces.c doesn't need its own per-transaction
2553  * state.)
2554  */
2555 bool
TempTablespacesAreSet(void)2556 TempTablespacesAreSet(void)
2557 {
2558 	return (numTempTableSpaces >= 0);
2559 }
2560 
2561 /*
2562  * GetNextTempTableSpace
2563  *
2564  * Select the next temp tablespace to use.  A result of InvalidOid means
2565  * to use the current database's default tablespace.
2566  */
2567 Oid
GetNextTempTableSpace(void)2568 GetNextTempTableSpace(void)
2569 {
2570 	if (numTempTableSpaces > 0)
2571 	{
2572 		/* Advance nextTempTableSpace counter with wraparound */
2573 		if (++nextTempTableSpace >= numTempTableSpaces)
2574 			nextTempTableSpace = 0;
2575 		return tempTableSpaces[nextTempTableSpace];
2576 	}
2577 	return InvalidOid;
2578 }
2579 
2580 
2581 /*
2582  * AtEOSubXact_Files
2583  *
2584  * Take care of subtransaction commit/abort.  At abort, we close temp files
2585  * that the subtransaction may have opened.  At commit, we reassign the
2586  * files that were opened to the parent subtransaction.
2587  */
2588 void
AtEOSubXact_Files(bool isCommit,SubTransactionId mySubid,SubTransactionId parentSubid)2589 AtEOSubXact_Files(bool isCommit, SubTransactionId mySubid,
2590 				  SubTransactionId parentSubid)
2591 {
2592 	Index		i;
2593 
2594 	for (i = 0; i < numAllocatedDescs; i++)
2595 	{
2596 		if (allocatedDescs[i].create_subid == mySubid)
2597 		{
2598 			if (isCommit)
2599 				allocatedDescs[i].create_subid = parentSubid;
2600 			else
2601 			{
2602 				/* have to recheck the item after FreeDesc (ugly) */
2603 				FreeDesc(&allocatedDescs[i--]);
2604 			}
2605 		}
2606 	}
2607 }
2608 
2609 /*
2610  * AtEOXact_Files
2611  *
2612  * This routine is called during transaction commit or abort (it doesn't
2613  * particularly care which).  All still-open per-transaction temporary file
2614  * VFDs are closed, which also causes the underlying files to be deleted
2615  * (although they should've been closed already by the ResourceOwner
2616  * cleanup). Furthermore, all "allocated" stdio files are closed. We also
2617  * forget any transaction-local temp tablespace list.
2618  */
2619 void
AtEOXact_Files(void)2620 AtEOXact_Files(void)
2621 {
2622 	CleanupTempFiles(false);
2623 	tempTableSpaces = NULL;
2624 	numTempTableSpaces = -1;
2625 }
2626 
2627 /*
2628  * AtProcExit_Files
2629  *
2630  * on_proc_exit hook to clean up temp files during backend shutdown.
2631  * Here, we want to clean up *all* temp files including interXact ones.
2632  */
2633 static void
AtProcExit_Files(int code,Datum arg)2634 AtProcExit_Files(int code, Datum arg)
2635 {
2636 	CleanupTempFiles(true);
2637 }
2638 
2639 /*
2640  * Close temporary files and delete their underlying files.
2641  *
2642  * isProcExit: if true, this is being called as the backend process is
2643  * exiting. If that's the case, we should remove all temporary files; if
2644  * that's not the case, we are being called for transaction commit/abort
2645  * and should only remove transaction-local temp files.  In either case,
2646  * also clean up "allocated" stdio files, dirs and fds.
2647  */
2648 static void
CleanupTempFiles(bool isProcExit)2649 CleanupTempFiles(bool isProcExit)
2650 {
2651 	Index		i;
2652 
2653 	/*
2654 	 * Careful here: at proc_exit we need extra cleanup, not just
2655 	 * xact_temporary files.
2656 	 */
2657 	if (isProcExit || have_xact_temporary_files)
2658 	{
2659 		Assert(FileIsNotOpen(0));		/* Make sure ring not corrupted */
2660 		for (i = 1; i < SizeVfdCache; i++)
2661 		{
2662 			unsigned short fdstate = VfdCache[i].fdstate;
2663 
2664 			if ((fdstate & FD_TEMPORARY) && VfdCache[i].fileName != NULL)
2665 			{
2666 				/*
2667 				 * If we're in the process of exiting a backend process, close
2668 				 * all temporary files. Otherwise, only close temporary files
2669 				 * local to the current transaction. They should be closed by
2670 				 * the ResourceOwner mechanism already, so this is just a
2671 				 * debugging cross-check.
2672 				 */
2673 				if (isProcExit)
2674 					FileClose(i);
2675 				else if (fdstate & FD_XACT_TEMPORARY)
2676 				{
2677 					elog(WARNING,
2678 						 "temporary file %s not closed at end-of-transaction",
2679 						 VfdCache[i].fileName);
2680 					FileClose(i);
2681 				}
2682 			}
2683 		}
2684 
2685 		have_xact_temporary_files = false;
2686 	}
2687 
2688 	/* Clean up "allocated" stdio files, dirs and fds. */
2689 	while (numAllocatedDescs > 0)
2690 		FreeDesc(&allocatedDescs[0]);
2691 }
2692 
2693 
2694 /*
2695  * Remove temporary and temporary relation files left over from a prior
2696  * postmaster session
2697  *
2698  * This should be called during postmaster startup.  It will forcibly
2699  * remove any leftover files created by OpenTemporaryFile and any leftover
2700  * temporary relation files created by mdcreate.
2701  *
2702  * NOTE: we could, but don't, call this during a post-backend-crash restart
2703  * cycle.  The argument for not doing it is that someone might want to examine
2704  * the temp files for debugging purposes.  This does however mean that
2705  * OpenTemporaryFile had better allow for collision with an existing temp
2706  * file name.
2707  */
2708 void
RemovePgTempFiles(void)2709 RemovePgTempFiles(void)
2710 {
2711 	char		temp_path[MAXPGPATH + 10 + sizeof(TABLESPACE_VERSION_DIRECTORY) + sizeof(PG_TEMP_FILES_DIR)];
2712 	DIR		   *spc_dir;
2713 	struct dirent *spc_de;
2714 
2715 	/*
2716 	 * First process temp files in pg_default ($PGDATA/base)
2717 	 */
2718 	snprintf(temp_path, sizeof(temp_path), "base/%s", PG_TEMP_FILES_DIR);
2719 	RemovePgTempFilesInDir(temp_path);
2720 	RemovePgTempRelationFiles("base");
2721 
2722 	/*
2723 	 * Cycle through temp directories for all non-default tablespaces.
2724 	 */
2725 	spc_dir = AllocateDir("pg_tblspc");
2726 
2727 	while ((spc_de = ReadDir(spc_dir, "pg_tblspc")) != NULL)
2728 	{
2729 		if (strcmp(spc_de->d_name, ".") == 0 ||
2730 			strcmp(spc_de->d_name, "..") == 0)
2731 			continue;
2732 
2733 		snprintf(temp_path, sizeof(temp_path), "pg_tblspc/%s/%s/%s",
2734 			spc_de->d_name, TABLESPACE_VERSION_DIRECTORY, PG_TEMP_FILES_DIR);
2735 		RemovePgTempFilesInDir(temp_path);
2736 
2737 		snprintf(temp_path, sizeof(temp_path), "pg_tblspc/%s/%s",
2738 				 spc_de->d_name, TABLESPACE_VERSION_DIRECTORY);
2739 		RemovePgTempRelationFiles(temp_path);
2740 	}
2741 
2742 	FreeDir(spc_dir);
2743 
2744 	/*
2745 	 * In EXEC_BACKEND case there is a pgsql_tmp directory at the top level of
2746 	 * DataDir as well.
2747 	 */
2748 #ifdef EXEC_BACKEND
2749 	RemovePgTempFilesInDir(PG_TEMP_FILES_DIR);
2750 #endif
2751 }
2752 
2753 /* Process one pgsql_tmp directory for RemovePgTempFiles */
2754 static void
RemovePgTempFilesInDir(const char * tmpdirname)2755 RemovePgTempFilesInDir(const char *tmpdirname)
2756 {
2757 	DIR		   *temp_dir;
2758 	struct dirent *temp_de;
2759 	char		rm_path[MAXPGPATH * 2];
2760 
2761 	temp_dir = AllocateDir(tmpdirname);
2762 	if (temp_dir == NULL)
2763 	{
2764 		/* anything except ENOENT is fishy */
2765 		if (errno != ENOENT)
2766 			elog(LOG,
2767 				 "could not open temporary-files directory \"%s\": %m",
2768 				 tmpdirname);
2769 		return;
2770 	}
2771 
2772 	while ((temp_de = ReadDir(temp_dir, tmpdirname)) != NULL)
2773 	{
2774 		if (strcmp(temp_de->d_name, ".") == 0 ||
2775 			strcmp(temp_de->d_name, "..") == 0)
2776 			continue;
2777 
2778 		snprintf(rm_path, sizeof(rm_path), "%s/%s",
2779 				 tmpdirname, temp_de->d_name);
2780 
2781 		if (strncmp(temp_de->d_name,
2782 					PG_TEMP_FILE_PREFIX,
2783 					strlen(PG_TEMP_FILE_PREFIX)) == 0)
2784 			unlink(rm_path);	/* note we ignore any error */
2785 		else
2786 			elog(LOG,
2787 				 "unexpected file found in temporary-files directory: \"%s\"",
2788 				 rm_path);
2789 	}
2790 
2791 	FreeDir(temp_dir);
2792 }
2793 
2794 /* Process one tablespace directory, look for per-DB subdirectories */
2795 static void
RemovePgTempRelationFiles(const char * tsdirname)2796 RemovePgTempRelationFiles(const char *tsdirname)
2797 {
2798 	DIR		   *ts_dir;
2799 	struct dirent *de;
2800 	char		dbspace_path[MAXPGPATH * 2];
2801 
2802 	ts_dir = AllocateDir(tsdirname);
2803 	if (ts_dir == NULL)
2804 	{
2805 		/* anything except ENOENT is fishy */
2806 		if (errno != ENOENT)
2807 			elog(LOG,
2808 				 "could not open tablespace directory \"%s\": %m",
2809 				 tsdirname);
2810 		return;
2811 	}
2812 
2813 	while ((de = ReadDir(ts_dir, tsdirname)) != NULL)
2814 	{
2815 		int			i = 0;
2816 
2817 		/*
2818 		 * We're only interested in the per-database directories, which have
2819 		 * numeric names.  Note that this code will also (properly) ignore "."
2820 		 * and "..".
2821 		 */
2822 		while (isdigit((unsigned char) de->d_name[i]))
2823 			++i;
2824 		if (de->d_name[i] != '\0' || i == 0)
2825 			continue;
2826 
2827 		snprintf(dbspace_path, sizeof(dbspace_path), "%s/%s",
2828 				 tsdirname, de->d_name);
2829 		RemovePgTempRelationFilesInDbspace(dbspace_path);
2830 	}
2831 
2832 	FreeDir(ts_dir);
2833 }
2834 
2835 /* Process one per-dbspace directory for RemovePgTempRelationFiles */
2836 static void
RemovePgTempRelationFilesInDbspace(const char * dbspacedirname)2837 RemovePgTempRelationFilesInDbspace(const char *dbspacedirname)
2838 {
2839 	DIR		   *dbspace_dir;
2840 	struct dirent *de;
2841 	char		rm_path[MAXPGPATH * 2];
2842 
2843 	dbspace_dir = AllocateDir(dbspacedirname);
2844 	if (dbspace_dir == NULL)
2845 	{
2846 		/* we just saw this directory, so it really ought to be there */
2847 		elog(LOG,
2848 			 "could not open dbspace directory \"%s\": %m",
2849 			 dbspacedirname);
2850 		return;
2851 	}
2852 
2853 	while ((de = ReadDir(dbspace_dir, dbspacedirname)) != NULL)
2854 	{
2855 		if (!looks_like_temp_rel_name(de->d_name))
2856 			continue;
2857 
2858 		snprintf(rm_path, sizeof(rm_path), "%s/%s",
2859 				 dbspacedirname, de->d_name);
2860 
2861 		unlink(rm_path);		/* note we ignore any error */
2862 	}
2863 
2864 	FreeDir(dbspace_dir);
2865 }
2866 
2867 /* t<digits>_<digits>, or t<digits>_<digits>_<forkname> */
2868 static bool
looks_like_temp_rel_name(const char * name)2869 looks_like_temp_rel_name(const char *name)
2870 {
2871 	int			pos;
2872 	int			savepos;
2873 
2874 	/* Must start with "t". */
2875 	if (name[0] != 't')
2876 		return false;
2877 
2878 	/* Followed by a non-empty string of digits and then an underscore. */
2879 	for (pos = 1; isdigit((unsigned char) name[pos]); ++pos)
2880 		;
2881 	if (pos == 1 || name[pos] != '_')
2882 		return false;
2883 
2884 	/* Followed by another nonempty string of digits. */
2885 	for (savepos = ++pos; isdigit((unsigned char) name[pos]); ++pos)
2886 		;
2887 	if (savepos == pos)
2888 		return false;
2889 
2890 	/* We might have _forkname or .segment or both. */
2891 	if (name[pos] == '_')
2892 	{
2893 		int			forkchar = forkname_chars(&name[pos + 1], NULL);
2894 
2895 		if (forkchar <= 0)
2896 			return false;
2897 		pos += forkchar + 1;
2898 	}
2899 	if (name[pos] == '.')
2900 	{
2901 		int			segchar;
2902 
2903 		for (segchar = 1; isdigit((unsigned char) name[pos + segchar]); ++segchar)
2904 			;
2905 		if (segchar <= 1)
2906 			return false;
2907 		pos += segchar;
2908 	}
2909 
2910 	/* Now we should be at the end. */
2911 	if (name[pos] != '\0')
2912 		return false;
2913 	return true;
2914 }
2915 
2916 
2917 /*
2918  * Issue fsync recursively on PGDATA and all its contents.
2919  *
2920  * We fsync regular files and directories wherever they are, but we
2921  * follow symlinks only for pg_xlog and immediately under pg_tblspc.
2922  * Other symlinks are presumed to point at files we're not responsible
2923  * for fsyncing, and might not have privileges to write at all.
2924  *
2925  * Errors are logged but not considered fatal; that's because this is used
2926  * only during database startup, to deal with the possibility that there are
2927  * issued-but-unsynced writes pending against the data directory.  We want to
2928  * ensure that such writes reach disk before anything that's done in the new
2929  * run.  However, aborting on error would result in failure to start for
2930  * harmless cases such as read-only files in the data directory, and that's
2931  * not good either.
2932  *
2933  * Note that if we previously crashed due to a PANIC on fsync(), we'll be
2934  * rewriting all changes again during recovery.
2935  *
2936  * Note we assume we're chdir'd into PGDATA to begin with.
2937  */
2938 void
SyncDataDirectory(void)2939 SyncDataDirectory(void)
2940 {
2941 	bool		xlog_is_symlink;
2942 
2943 	/* We can skip this whole thing if fsync is disabled. */
2944 	if (!enableFsync)
2945 		return;
2946 
2947 	/*
2948 	 * If pg_xlog is a symlink, we'll need to recurse into it separately,
2949 	 * because the first walkdir below will ignore it.
2950 	 */
2951 	xlog_is_symlink = false;
2952 
2953 #ifndef WIN32
2954 	{
2955 		struct stat st;
2956 
2957 		if (lstat("pg_xlog", &st) < 0)
2958 			ereport(LOG,
2959 					(errcode_for_file_access(),
2960 					 errmsg("could not stat file \"%s\": %m",
2961 							"pg_xlog")));
2962 		else if (S_ISLNK(st.st_mode))
2963 			xlog_is_symlink = true;
2964 	}
2965 #else
2966 	if (pgwin32_is_junction("pg_xlog"))
2967 		xlog_is_symlink = true;
2968 #endif
2969 
2970 	/*
2971 	 * If possible, hint to the kernel that we're soon going to fsync the data
2972 	 * directory and its contents.  Errors in this step are even less
2973 	 * interesting than normal, so log them only at DEBUG1.
2974 	 */
2975 #ifdef PG_FLUSH_DATA_WORKS
2976 	walkdir(".", pre_sync_fname, false, DEBUG1);
2977 	if (xlog_is_symlink)
2978 		walkdir("pg_xlog", pre_sync_fname, false, DEBUG1);
2979 	walkdir("pg_tblspc", pre_sync_fname, true, DEBUG1);
2980 #endif
2981 
2982 	/*
2983 	 * Now we do the fsync()s in the same order.
2984 	 *
2985 	 * The main call ignores symlinks, so in addition to specially processing
2986 	 * pg_xlog if it's a symlink, pg_tblspc has to be visited separately with
2987 	 * process_symlinks = true.  Note that if there are any plain directories
2988 	 * in pg_tblspc, they'll get fsync'd twice.  That's not an expected case
2989 	 * so we don't worry about optimizing it.
2990 	 */
2991 	walkdir(".", datadir_fsync_fname, false, LOG);
2992 	if (xlog_is_symlink)
2993 		walkdir("pg_xlog", datadir_fsync_fname, false, LOG);
2994 	walkdir("pg_tblspc", datadir_fsync_fname, true, LOG);
2995 }
2996 
2997 /*
2998  * walkdir: recursively walk a directory, applying the action to each
2999  * regular file and directory (including the named directory itself).
3000  *
3001  * If process_symlinks is true, the action and recursion are also applied
3002  * to regular files and directories that are pointed to by symlinks in the
3003  * given directory; otherwise symlinks are ignored.  Symlinks are always
3004  * ignored in subdirectories, ie we intentionally don't pass down the
3005  * process_symlinks flag to recursive calls.
3006  *
3007  * Errors are reported at level elevel, which might be ERROR or less.
3008  *
3009  * See also walkdir in initdb.c, which is a frontend version of this logic.
3010  */
3011 static void
walkdir(const char * path,void (* action)(const char * fname,bool isdir,int elevel),bool process_symlinks,int elevel)3012 walkdir(const char *path,
3013 		void (*action) (const char *fname, bool isdir, int elevel),
3014 		bool process_symlinks,
3015 		int elevel)
3016 {
3017 	DIR		   *dir;
3018 	struct dirent *de;
3019 
3020 	dir = AllocateDir(path);
3021 	if (dir == NULL)
3022 	{
3023 		ereport(elevel,
3024 				(errcode_for_file_access(),
3025 				 errmsg("could not open directory \"%s\": %m", path)));
3026 		return;
3027 	}
3028 
3029 	while ((de = ReadDirExtended(dir, path, elevel)) != NULL)
3030 	{
3031 		char		subpath[MAXPGPATH * 2];
3032 		struct stat fst;
3033 		int			sret;
3034 
3035 		CHECK_FOR_INTERRUPTS();
3036 
3037 		if (strcmp(de->d_name, ".") == 0 ||
3038 			strcmp(de->d_name, "..") == 0)
3039 			continue;
3040 
3041 		snprintf(subpath, sizeof(subpath), "%s/%s", path, de->d_name);
3042 
3043 		if (process_symlinks)
3044 			sret = stat(subpath, &fst);
3045 		else
3046 			sret = lstat(subpath, &fst);
3047 
3048 		if (sret < 0)
3049 		{
3050 			ereport(elevel,
3051 					(errcode_for_file_access(),
3052 					 errmsg("could not stat file \"%s\": %m", subpath)));
3053 			continue;
3054 		}
3055 
3056 		if (S_ISREG(fst.st_mode))
3057 			(*action) (subpath, false, elevel);
3058 		else if (S_ISDIR(fst.st_mode))
3059 			walkdir(subpath, action, false, elevel);
3060 	}
3061 
3062 	FreeDir(dir);				/* we ignore any error here */
3063 
3064 	/*
3065 	 * It's important to fsync the destination directory itself as individual
3066 	 * file fsyncs don't guarantee that the directory entry for the file is
3067 	 * synced.
3068 	 */
3069 	(*action) (path, true, elevel);
3070 }
3071 
3072 
3073 /*
3074  * Hint to the OS that it should get ready to fsync() this file.
3075  *
3076  * Ignores errors trying to open unreadable files, and logs other errors at a
3077  * caller-specified level.
3078  */
3079 #ifdef PG_FLUSH_DATA_WORKS
3080 
3081 static void
pre_sync_fname(const char * fname,bool isdir,int elevel)3082 pre_sync_fname(const char *fname, bool isdir, int elevel)
3083 {
3084 	int			fd;
3085 
3086 	/* Don't try to flush directories, it'll likely just fail */
3087 	if (isdir)
3088 		return;
3089 
3090 	fd = OpenTransientFile((char *) fname, O_RDONLY | PG_BINARY, 0);
3091 
3092 	if (fd < 0)
3093 	{
3094 		if (errno == EACCES)
3095 			return;
3096 		ereport(elevel,
3097 				(errcode_for_file_access(),
3098 				 errmsg("could not open file \"%s\": %m", fname)));
3099 		return;
3100 	}
3101 
3102 	/*
3103 	 * pg_flush_data() ignores errors, which is ok because this is only a
3104 	 * hint.
3105 	 */
3106 	pg_flush_data(fd, 0, 0);
3107 
3108 	(void) CloseTransientFile(fd);
3109 }
3110 
3111 #endif   /* PG_FLUSH_DATA_WORKS */
3112 
3113 static void
datadir_fsync_fname(const char * fname,bool isdir,int elevel)3114 datadir_fsync_fname(const char *fname, bool isdir, int elevel)
3115 {
3116 	/*
3117 	 * We want to silently ignoring errors about unreadable files.  Pass that
3118 	 * desire on to fsync_fname_ext().
3119 	 */
3120 	fsync_fname_ext(fname, isdir, true, elevel);
3121 }
3122 
3123 /*
3124  * fsync_fname_ext -- Try to fsync a file or directory
3125  *
3126  * If ignore_perm is true, ignore errors upon trying to open unreadable
3127  * files. Logs other errors at a caller-specified level.
3128  *
3129  * Returns 0 if the operation succeeded, -1 otherwise.
3130  */
3131 static int
fsync_fname_ext(const char * fname,bool isdir,bool ignore_perm,int elevel)3132 fsync_fname_ext(const char *fname, bool isdir, bool ignore_perm, int elevel)
3133 {
3134 	int			fd;
3135 	int			flags;
3136 	int			returncode;
3137 
3138 	/*
3139 	 * Some OSs require directories to be opened read-only whereas other
3140 	 * systems don't allow us to fsync files opened read-only; so we need both
3141 	 * cases here.  Using O_RDWR will cause us to fail to fsync files that are
3142 	 * not writable by our userid, but we assume that's OK.
3143 	 */
3144 	flags = PG_BINARY;
3145 	if (!isdir)
3146 		flags |= O_RDWR;
3147 	else
3148 		flags |= O_RDONLY;
3149 
3150 	fd = OpenTransientFile((char *) fname, flags, 0);
3151 
3152 	/*
3153 	 * Some OSs don't allow us to open directories at all (Windows returns
3154 	 * EACCES), just ignore the error in that case.  If desired also silently
3155 	 * ignoring errors about unreadable files. Log others.
3156 	 */
3157 	if (fd < 0 && isdir && (errno == EISDIR || errno == EACCES))
3158 		return 0;
3159 	else if (fd < 0 && ignore_perm && errno == EACCES)
3160 		return 0;
3161 	else if (fd < 0)
3162 	{
3163 		ereport(elevel,
3164 				(errcode_for_file_access(),
3165 				 errmsg("could not open file \"%s\": %m", fname)));
3166 		return -1;
3167 	}
3168 
3169 	returncode = pg_fsync(fd);
3170 
3171 	/*
3172 	 * Some OSes don't allow us to fsync directories at all, so we can ignore
3173 	 * those errors. Anything else needs to be logged.
3174 	 */
3175 	if (returncode != 0 && !(isdir && (errno == EBADF || errno == EINVAL)))
3176 	{
3177 		int			save_errno;
3178 
3179 		/* close file upon error, might not be in transaction context */
3180 		save_errno = errno;
3181 		(void) CloseTransientFile(fd);
3182 		errno = save_errno;
3183 
3184 		ereport(elevel,
3185 				(errcode_for_file_access(),
3186 				 errmsg("could not fsync file \"%s\": %m", fname)));
3187 		return -1;
3188 	}
3189 
3190 	(void) CloseTransientFile(fd);
3191 
3192 	return 0;
3193 }
3194 
3195 /*
3196  * fsync_parent_path -- fsync the parent path of a file or directory
3197  *
3198  * This is aimed at making file operations persistent on disk in case of
3199  * an OS crash or power failure.
3200  */
3201 static int
fsync_parent_path(const char * fname,int elevel)3202 fsync_parent_path(const char *fname, int elevel)
3203 {
3204 	char		parentpath[MAXPGPATH];
3205 
3206 	strlcpy(parentpath, fname, MAXPGPATH);
3207 	get_parent_directory(parentpath);
3208 
3209 	/*
3210 	 * get_parent_directory() returns an empty string if the input argument is
3211 	 * just a file name (see comments in path.c), so handle that as being the
3212 	 * current directory.
3213 	 */
3214 	if (strlen(parentpath) == 0)
3215 		strlcpy(parentpath, ".", MAXPGPATH);
3216 
3217 	if (fsync_fname_ext(parentpath, true, false, elevel) != 0)
3218 		return -1;
3219 
3220 	return 0;
3221 }
3222 
3223 /*
3224  * Return the passed-in error level, or PANIC if data_sync_retry is off.
3225  *
3226  * Failure to fsync any data file is cause for immediate panic, unless
3227  * data_sync_retry is enabled.  Data may have been written to the operating
3228  * system and removed from our buffer pool already, and if we are running on
3229  * an operating system that forgets dirty data on write-back failure, there
3230  * may be only one copy of the data remaining: in the WAL.  A later attempt to
3231  * fsync again might falsely report success.  Therefore we must not allow any
3232  * further checkpoints to be attempted.  data_sync_retry can in theory be
3233  * enabled on systems known not to drop dirty buffered data on write-back
3234  * failure (with the likely outcome that checkpoints will continue to fail
3235  * until the underlying problem is fixed).
3236  *
3237  * Any code that reports a failure from fsync() or related functions should
3238  * filter the error level with this function.
3239  */
3240 int
data_sync_elevel(int elevel)3241 data_sync_elevel(int elevel)
3242 {
3243 	return data_sync_retry ? elevel : PANIC;
3244 }
3245