1 /*-------------------------------------------------------------------------
2  *
3  * proc.c
4  *	  routines to manage per-process shared memory data structure
5  *
6  * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *	  src/backend/storage/lmgr/proc.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 /*
16  * Interface (a):
17  *		ProcSleep(), ProcWakeup(),
18  *		ProcQueueAlloc() -- create a shm queue for sleeping processes
19  *		ProcQueueInit() -- create a queue without allocing memory
20  *
21  * Waiting for a lock causes the backend to be put to sleep.  Whoever releases
22  * the lock wakes the process up again (and gives it an error code so it knows
23  * whether it was awoken on an error condition).
24  *
25  * Interface (b):
26  *
27  * ProcReleaseLocks -- frees the locks associated with current transaction
28  *
29  * ProcKill -- destroys the shared memory state (and locks)
30  * associated with the process.
31  */
32 #include "postgres.h"
33 
34 #include <signal.h>
35 #include <unistd.h>
36 #include <sys/time.h>
37 
38 #include "access/transam.h"
39 #include "access/twophase.h"
40 #include "access/xact.h"
41 #include "miscadmin.h"
42 #include "postmaster/autovacuum.h"
43 #include "replication/slot.h"
44 #include "replication/syncrep.h"
45 #include "storage/standby.h"
46 #include "storage/ipc.h"
47 #include "storage/lmgr.h"
48 #include "storage/pmsignal.h"
49 #include "storage/proc.h"
50 #include "storage/procarray.h"
51 #include "storage/procsignal.h"
52 #include "storage/spin.h"
53 #include "utils/timeout.h"
54 #include "utils/timestamp.h"
55 
56 
57 /* GUC variables */
58 int			DeadlockTimeout = 1000;
59 int			StatementTimeout = 0;
60 int			LockTimeout = 0;
61 int			IdleInTransactionSessionTimeout = 0;
62 bool		log_lock_waits = false;
63 
64 /* Pointer to this process's PGPROC and PGXACT structs, if any */
65 PGPROC	   *MyProc = NULL;
66 PGXACT	   *MyPgXact = NULL;
67 
68 /*
69  * This spinlock protects the freelist of recycled PGPROC structures.
70  * We cannot use an LWLock because the LWLock manager depends on already
71  * having a PGPROC and a wait semaphore!  But these structures are touched
72  * relatively infrequently (only at backend startup or shutdown) and not for
73  * very long, so a spinlock is okay.
74  */
75 NON_EXEC_STATIC slock_t *ProcStructLock = NULL;
76 
77 /* Pointers to shared-memory structures */
78 PROC_HDR   *ProcGlobal = NULL;
79 NON_EXEC_STATIC PGPROC *AuxiliaryProcs = NULL;
80 PGPROC	   *PreparedXactProcs = NULL;
81 
82 /* If we are waiting for a lock, this points to the associated LOCALLOCK */
83 static LOCALLOCK *lockAwaited = NULL;
84 
85 static DeadLockState deadlock_state = DS_NOT_YET_CHECKED;
86 
87 /* Is a deadlock check pending? */
88 static volatile sig_atomic_t got_deadlock_timeout;
89 
90 static void RemoveProcFromArray(int code, Datum arg);
91 static void ProcKill(int code, Datum arg);
92 static void AuxiliaryProcKill(int code, Datum arg);
93 static void CheckDeadLock(void);
94 
95 
96 /*
97  * Report shared-memory space needed by InitProcGlobal.
98  */
99 Size
ProcGlobalShmemSize(void)100 ProcGlobalShmemSize(void)
101 {
102 	Size		size = 0;
103 
104 	/* ProcGlobal */
105 	size = add_size(size, sizeof(PROC_HDR));
106 	/* MyProcs, including autovacuum workers and launcher */
107 	size = add_size(size, mul_size(MaxBackends, sizeof(PGPROC)));
108 	/* AuxiliaryProcs */
109 	size = add_size(size, mul_size(NUM_AUXILIARY_PROCS, sizeof(PGPROC)));
110 	/* Prepared xacts */
111 	size = add_size(size, mul_size(max_prepared_xacts, sizeof(PGPROC)));
112 	/* ProcStructLock */
113 	size = add_size(size, sizeof(slock_t));
114 
115 	size = add_size(size, mul_size(MaxBackends, sizeof(PGXACT)));
116 	size = add_size(size, mul_size(NUM_AUXILIARY_PROCS, sizeof(PGXACT)));
117 	size = add_size(size, mul_size(max_prepared_xacts, sizeof(PGXACT)));
118 
119 	return size;
120 }
121 
122 /*
123  * Report number of semaphores needed by InitProcGlobal.
124  */
125 int
ProcGlobalSemas(void)126 ProcGlobalSemas(void)
127 {
128 	/*
129 	 * We need a sema per backend (including autovacuum), plus one for each
130 	 * auxiliary process.
131 	 */
132 	return MaxBackends + NUM_AUXILIARY_PROCS;
133 }
134 
135 /*
136  * InitProcGlobal -
137  *	  Initialize the global process table during postmaster or standalone
138  *	  backend startup.
139  *
140  *	  We also create all the per-process semaphores we will need to support
141  *	  the requested number of backends.  We used to allocate semaphores
142  *	  only when backends were actually started up, but that is bad because
143  *	  it lets Postgres fail under load --- a lot of Unix systems are
144  *	  (mis)configured with small limits on the number of semaphores, and
145  *	  running out when trying to start another backend is a common failure.
146  *	  So, now we grab enough semaphores to support the desired max number
147  *	  of backends immediately at initialization --- if the sysadmin has set
148  *	  MaxConnections, max_worker_processes, or autovacuum_max_workers higher
149  *	  than his kernel will support, he'll find out sooner rather than later.
150  *
151  *	  Another reason for creating semaphores here is that the semaphore
152  *	  implementation typically requires us to create semaphores in the
153  *	  postmaster, not in backends.
154  *
155  * Note: this is NOT called by individual backends under a postmaster,
156  * not even in the EXEC_BACKEND case.  The ProcGlobal and AuxiliaryProcs
157  * pointers must be propagated specially for EXEC_BACKEND operation.
158  */
159 void
InitProcGlobal(void)160 InitProcGlobal(void)
161 {
162 	PGPROC	   *procs;
163 	PGXACT	   *pgxacts;
164 	int			i,
165 				j;
166 	bool		found;
167 	uint32		TotalProcs = MaxBackends + NUM_AUXILIARY_PROCS + max_prepared_xacts;
168 
169 	/* Create the ProcGlobal shared structure */
170 	ProcGlobal = (PROC_HDR *)
171 		ShmemInitStruct("Proc Header", sizeof(PROC_HDR), &found);
172 	Assert(!found);
173 
174 	/*
175 	 * Initialize the data structures.
176 	 */
177 	ProcGlobal->spins_per_delay = DEFAULT_SPINS_PER_DELAY;
178 	ProcGlobal->freeProcs = NULL;
179 	ProcGlobal->autovacFreeProcs = NULL;
180 	ProcGlobal->bgworkerFreeProcs = NULL;
181 	ProcGlobal->startupProc = NULL;
182 	ProcGlobal->startupProcPid = 0;
183 	ProcGlobal->startupBufferPinWaitBufId = -1;
184 	ProcGlobal->walwriterLatch = NULL;
185 	ProcGlobal->checkpointerLatch = NULL;
186 	pg_atomic_init_u32(&ProcGlobal->procArrayGroupFirst, INVALID_PGPROCNO);
187 
188 	/*
189 	 * Create and initialize all the PGPROC structures we'll need.  There are
190 	 * five separate consumers: (1) normal backends, (2) autovacuum workers
191 	 * and the autovacuum launcher, (3) background workers, (4) auxiliary
192 	 * processes, and (5) prepared transactions.  Each PGPROC structure is
193 	 * dedicated to exactly one of these purposes, and they do not move
194 	 * between groups.
195 	 */
196 	procs = (PGPROC *) ShmemAlloc(TotalProcs * sizeof(PGPROC));
197 	ProcGlobal->allProcs = procs;
198 	/* XXX allProcCount isn't really all of them; it excludes prepared xacts */
199 	ProcGlobal->allProcCount = MaxBackends + NUM_AUXILIARY_PROCS;
200 	if (!procs)
201 		ereport(FATAL,
202 				(errcode(ERRCODE_OUT_OF_MEMORY),
203 				 errmsg("out of shared memory")));
204 	MemSet(procs, 0, TotalProcs * sizeof(PGPROC));
205 
206 	/*
207 	 * Also allocate a separate array of PGXACT structures.  This is separate
208 	 * from the main PGPROC array so that the most heavily accessed data is
209 	 * stored contiguously in memory in as few cache lines as possible. This
210 	 * provides significant performance benefits, especially on a
211 	 * multiprocessor system.  There is one PGXACT structure for every PGPROC
212 	 * structure.
213 	 */
214 	pgxacts = (PGXACT *) ShmemAlloc(TotalProcs * sizeof(PGXACT));
215 	MemSet(pgxacts, 0, TotalProcs * sizeof(PGXACT));
216 	ProcGlobal->allPgXact = pgxacts;
217 
218 	for (i = 0; i < TotalProcs; i++)
219 	{
220 		/* Common initialization for all PGPROCs, regardless of type. */
221 
222 		/*
223 		 * Set up per-PGPROC semaphore, latch, and backendLock. Prepared xact
224 		 * dummy PGPROCs don't need these though - they're never associated
225 		 * with a real process
226 		 */
227 		if (i < MaxBackends + NUM_AUXILIARY_PROCS)
228 		{
229 			PGSemaphoreCreate(&(procs[i].sem));
230 			InitSharedLatch(&(procs[i].procLatch));
231 			LWLockInitialize(&(procs[i].backendLock), LWTRANCHE_PROC);
232 		}
233 		procs[i].pgprocno = i;
234 
235 		/*
236 		 * Newly created PGPROCs for normal backends, autovacuum and bgworkers
237 		 * must be queued up on the appropriate free list.  Because there can
238 		 * only ever be a small, fixed number of auxiliary processes, no free
239 		 * list is used in that case; InitAuxiliaryProcess() instead uses a
240 		 * linear search.   PGPROCs for prepared transactions are added to a
241 		 * free list by TwoPhaseShmemInit().
242 		 */
243 		if (i < MaxConnections)
244 		{
245 			/* PGPROC for normal backend, add to freeProcs list */
246 			procs[i].links.next = (SHM_QUEUE *) ProcGlobal->freeProcs;
247 			ProcGlobal->freeProcs = &procs[i];
248 			procs[i].procgloballist = &ProcGlobal->freeProcs;
249 		}
250 		else if (i < MaxConnections + autovacuum_max_workers + 1)
251 		{
252 			/* PGPROC for AV launcher/worker, add to autovacFreeProcs list */
253 			procs[i].links.next = (SHM_QUEUE *) ProcGlobal->autovacFreeProcs;
254 			ProcGlobal->autovacFreeProcs = &procs[i];
255 			procs[i].procgloballist = &ProcGlobal->autovacFreeProcs;
256 		}
257 		else if (i < MaxBackends)
258 		{
259 			/* PGPROC for bgworker, add to bgworkerFreeProcs list */
260 			procs[i].links.next = (SHM_QUEUE *) ProcGlobal->bgworkerFreeProcs;
261 			ProcGlobal->bgworkerFreeProcs = &procs[i];
262 			procs[i].procgloballist = &ProcGlobal->bgworkerFreeProcs;
263 		}
264 
265 		/* Initialize myProcLocks[] shared memory queues. */
266 		for (j = 0; j < NUM_LOCK_PARTITIONS; j++)
267 			SHMQueueInit(&(procs[i].myProcLocks[j]));
268 
269 		/* Initialize lockGroupMembers list. */
270 		dlist_init(&procs[i].lockGroupMembers);
271 
272 		/*
273 		 * Initialize the atomic variable, otherwise, it won't be safe to
274 		 * access it for backends that aren't currently in use.
275 		 */
276 		pg_atomic_init_u32(&(procs[i].procArrayGroupNext), INVALID_PGPROCNO);
277 	}
278 
279 	/*
280 	 * Save pointers to the blocks of PGPROC structures reserved for auxiliary
281 	 * processes and prepared transactions.
282 	 */
283 	AuxiliaryProcs = &procs[MaxBackends];
284 	PreparedXactProcs = &procs[MaxBackends + NUM_AUXILIARY_PROCS];
285 
286 	/* Create ProcStructLock spinlock, too */
287 	ProcStructLock = (slock_t *) ShmemAlloc(sizeof(slock_t));
288 	SpinLockInit(ProcStructLock);
289 }
290 
291 /*
292  * InitProcess -- initialize a per-process data structure for this backend
293  */
294 void
InitProcess(void)295 InitProcess(void)
296 {
297 	PGPROC	   *volatile * procgloballist;
298 
299 	/*
300 	 * ProcGlobal should be set up already (if we are a backend, we inherit
301 	 * this by fork() or EXEC_BACKEND mechanism from the postmaster).
302 	 */
303 	if (ProcGlobal == NULL)
304 		elog(PANIC, "proc header uninitialized");
305 
306 	if (MyProc != NULL)
307 		elog(ERROR, "you already exist");
308 
309 	/* Decide which list should supply our PGPROC. */
310 	if (IsAnyAutoVacuumProcess())
311 		procgloballist = &ProcGlobal->autovacFreeProcs;
312 	else if (IsBackgroundWorker)
313 		procgloballist = &ProcGlobal->bgworkerFreeProcs;
314 	else
315 		procgloballist = &ProcGlobal->freeProcs;
316 
317 	/*
318 	 * Try to get a proc struct from the appropriate free list.  If this
319 	 * fails, we must be out of PGPROC structures (not to mention semaphores).
320 	 *
321 	 * While we are holding the ProcStructLock, also copy the current shared
322 	 * estimate of spins_per_delay to local storage.
323 	 */
324 	SpinLockAcquire(ProcStructLock);
325 
326 	set_spins_per_delay(ProcGlobal->spins_per_delay);
327 
328 	MyProc = *procgloballist;
329 
330 	if (MyProc != NULL)
331 	{
332 		*procgloballist = (PGPROC *) MyProc->links.next;
333 		SpinLockRelease(ProcStructLock);
334 	}
335 	else
336 	{
337 		/*
338 		 * If we reach here, all the PGPROCs are in use.  This is one of the
339 		 * possible places to detect "too many backends", so give the standard
340 		 * error message.  XXX do we need to give a different failure message
341 		 * in the autovacuum case?
342 		 */
343 		SpinLockRelease(ProcStructLock);
344 		ereport(FATAL,
345 				(errcode(ERRCODE_TOO_MANY_CONNECTIONS),
346 				 errmsg("sorry, too many clients already")));
347 	}
348 	MyPgXact = &ProcGlobal->allPgXact[MyProc->pgprocno];
349 
350 	/*
351 	 * Cross-check that the PGPROC is of the type we expect; if this were not
352 	 * the case, it would get returned to the wrong list.
353 	 */
354 	Assert(MyProc->procgloballist == procgloballist);
355 
356 	/*
357 	 * Now that we have a PGPROC, mark ourselves as an active postmaster
358 	 * child; this is so that the postmaster can detect it if we exit without
359 	 * cleaning up.  (XXX autovac launcher currently doesn't participate in
360 	 * this; it probably should.)
361 	 */
362 	if (IsUnderPostmaster && !IsAutoVacuumLauncherProcess())
363 		MarkPostmasterChildActive();
364 
365 	/*
366 	 * Initialize all fields of MyProc, except for those previously
367 	 * initialized by InitProcGlobal.
368 	 */
369 	SHMQueueElemInit(&(MyProc->links));
370 	MyProc->waitStatus = STATUS_OK;
371 	MyProc->lxid = InvalidLocalTransactionId;
372 	MyProc->fpVXIDLock = false;
373 	MyProc->fpLocalTransactionId = InvalidLocalTransactionId;
374 	MyPgXact->xid = InvalidTransactionId;
375 	MyPgXact->xmin = InvalidTransactionId;
376 	MyProc->pid = MyProcPid;
377 	/* backendId, databaseId and roleId will be filled in later */
378 	MyProc->backendId = InvalidBackendId;
379 	MyProc->databaseId = InvalidOid;
380 	MyProc->roleId = InvalidOid;
381 	MyProc->isBackgroundWorker = IsBackgroundWorker;
382 	MyPgXact->delayChkpt = false;
383 	MyPgXact->vacuumFlags = 0;
384 	/* NB -- autovac launcher intentionally does not set IS_AUTOVACUUM */
385 	if (IsAutoVacuumWorkerProcess())
386 		MyPgXact->vacuumFlags |= PROC_IS_AUTOVACUUM;
387 	MyProc->lwWaiting = false;
388 	MyProc->lwWaitMode = 0;
389 	MyProc->waitLock = NULL;
390 	MyProc->waitProcLock = NULL;
391 #ifdef USE_ASSERT_CHECKING
392 	{
393 		int			i;
394 
395 		/* Last process should have released all locks. */
396 		for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
397 			Assert(SHMQueueEmpty(&(MyProc->myProcLocks[i])));
398 	}
399 #endif
400 	MyProc->recoveryConflictPending = false;
401 
402 	/* Initialize fields for sync rep */
403 	MyProc->waitLSN = 0;
404 	MyProc->syncRepState = SYNC_REP_NOT_WAITING;
405 	SHMQueueElemInit(&(MyProc->syncRepLinks));
406 
407 	/* Initialize fields for group XID clearing. */
408 	MyProc->procArrayGroupMember = false;
409 	MyProc->procArrayGroupMemberXid = InvalidTransactionId;
410 	Assert(pg_atomic_read_u32(&MyProc->procArrayGroupNext) == INVALID_PGPROCNO);
411 
412 	/* Check that group locking fields are in a proper initial state. */
413 	Assert(MyProc->lockGroupLeader == NULL);
414 	Assert(dlist_is_empty(&MyProc->lockGroupMembers));
415 
416 	/* Initialize wait event information. */
417 	MyProc->wait_event_info = 0;
418 
419 	/*
420 	 * Acquire ownership of the PGPROC's latch, so that we can use WaitLatch
421 	 * on it.  That allows us to repoint the process latch, which so far
422 	 * points to process local one, to the shared one.
423 	 */
424 	OwnLatch(&MyProc->procLatch);
425 	SwitchToSharedLatch();
426 
427 	/*
428 	 * We might be reusing a semaphore that belonged to a failed process. So
429 	 * be careful and reinitialize its value here.  (This is not strictly
430 	 * necessary anymore, but seems like a good idea for cleanliness.)
431 	 */
432 	PGSemaphoreReset(&MyProc->sem);
433 
434 	/*
435 	 * Arrange to clean up at backend exit.
436 	 */
437 	on_shmem_exit(ProcKill, 0);
438 
439 	/*
440 	 * Now that we have a PGPROC, we could try to acquire locks, so initialize
441 	 * local state needed for LWLocks, and the deadlock checker.
442 	 */
443 	InitLWLockAccess();
444 	InitDeadLockChecking();
445 }
446 
447 /*
448  * InitProcessPhase2 -- make MyProc visible in the shared ProcArray.
449  *
450  * This is separate from InitProcess because we can't acquire LWLocks until
451  * we've created a PGPROC, but in the EXEC_BACKEND case ProcArrayAdd won't
452  * work until after we've done CreateSharedMemoryAndSemaphores.
453  */
454 void
InitProcessPhase2(void)455 InitProcessPhase2(void)
456 {
457 	Assert(MyProc != NULL);
458 
459 	/*
460 	 * Add our PGPROC to the PGPROC array in shared memory.
461 	 */
462 	ProcArrayAdd(MyProc);
463 
464 	/*
465 	 * Arrange to clean that up at backend exit.
466 	 */
467 	on_shmem_exit(RemoveProcFromArray, 0);
468 }
469 
470 /*
471  * InitAuxiliaryProcess -- create a per-auxiliary-process data structure
472  *
473  * This is called by bgwriter and similar processes so that they will have a
474  * MyProc value that's real enough to let them wait for LWLocks.  The PGPROC
475  * and sema that are assigned are one of the extra ones created during
476  * InitProcGlobal.
477  *
478  * Auxiliary processes are presently not expected to wait for real (lockmgr)
479  * locks, so we need not set up the deadlock checker.  They are never added
480  * to the ProcArray or the sinval messaging mechanism, either.  They also
481  * don't get a VXID assigned, since this is only useful when we actually
482  * hold lockmgr locks.
483  *
484  * Startup process however uses locks but never waits for them in the
485  * normal backend sense. Startup process also takes part in sinval messaging
486  * as a sendOnly process, so never reads messages from sinval queue. So
487  * Startup process does have a VXID and does show up in pg_locks.
488  */
489 void
InitAuxiliaryProcess(void)490 InitAuxiliaryProcess(void)
491 {
492 	PGPROC	   *auxproc;
493 	int			proctype;
494 
495 	/*
496 	 * ProcGlobal should be set up already (if we are a backend, we inherit
497 	 * this by fork() or EXEC_BACKEND mechanism from the postmaster).
498 	 */
499 	if (ProcGlobal == NULL || AuxiliaryProcs == NULL)
500 		elog(PANIC, "proc header uninitialized");
501 
502 	if (MyProc != NULL)
503 		elog(ERROR, "you already exist");
504 
505 	/*
506 	 * We use the ProcStructLock to protect assignment and releasing of
507 	 * AuxiliaryProcs entries.
508 	 *
509 	 * While we are holding the ProcStructLock, also copy the current shared
510 	 * estimate of spins_per_delay to local storage.
511 	 */
512 	SpinLockAcquire(ProcStructLock);
513 
514 	set_spins_per_delay(ProcGlobal->spins_per_delay);
515 
516 	/*
517 	 * Find a free auxproc ... *big* trouble if there isn't one ...
518 	 */
519 	for (proctype = 0; proctype < NUM_AUXILIARY_PROCS; proctype++)
520 	{
521 		auxproc = &AuxiliaryProcs[proctype];
522 		if (auxproc->pid == 0)
523 			break;
524 	}
525 	if (proctype >= NUM_AUXILIARY_PROCS)
526 	{
527 		SpinLockRelease(ProcStructLock);
528 		elog(FATAL, "all AuxiliaryProcs are in use");
529 	}
530 
531 	/* Mark auxiliary proc as in use by me */
532 	/* use volatile pointer to prevent code rearrangement */
533 	((volatile PGPROC *) auxproc)->pid = MyProcPid;
534 
535 	MyProc = auxproc;
536 	MyPgXact = &ProcGlobal->allPgXact[auxproc->pgprocno];
537 
538 	SpinLockRelease(ProcStructLock);
539 
540 	/*
541 	 * Initialize all fields of MyProc, except for those previously
542 	 * initialized by InitProcGlobal.
543 	 */
544 	SHMQueueElemInit(&(MyProc->links));
545 	MyProc->waitStatus = STATUS_OK;
546 	MyProc->lxid = InvalidLocalTransactionId;
547 	MyProc->fpVXIDLock = false;
548 	MyProc->fpLocalTransactionId = InvalidLocalTransactionId;
549 	MyPgXact->xid = InvalidTransactionId;
550 	MyPgXact->xmin = InvalidTransactionId;
551 	MyProc->backendId = InvalidBackendId;
552 	MyProc->databaseId = InvalidOid;
553 	MyProc->roleId = InvalidOid;
554 	MyProc->isBackgroundWorker = IsBackgroundWorker;
555 	MyPgXact->delayChkpt = false;
556 	MyPgXact->vacuumFlags = 0;
557 	MyProc->lwWaiting = false;
558 	MyProc->lwWaitMode = 0;
559 	MyProc->waitLock = NULL;
560 	MyProc->waitProcLock = NULL;
561 #ifdef USE_ASSERT_CHECKING
562 	{
563 		int			i;
564 
565 		/* Last process should have released all locks. */
566 		for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
567 			Assert(SHMQueueEmpty(&(MyProc->myProcLocks[i])));
568 	}
569 #endif
570 
571 	/*
572 	 * Acquire ownership of the PGPROC's latch, so that we can use WaitLatch
573 	 * on it.  That allows us to repoint the process latch, which so far
574 	 * points to process local one, to the shared one.
575 	 */
576 	OwnLatch(&MyProc->procLatch);
577 	SwitchToSharedLatch();
578 
579 	/* Check that group locking fields are in a proper initial state. */
580 	Assert(MyProc->lockGroupLeader == NULL);
581 	Assert(dlist_is_empty(&MyProc->lockGroupMembers));
582 
583 	/*
584 	 * We might be reusing a semaphore that belonged to a failed process. So
585 	 * be careful and reinitialize its value here.  (This is not strictly
586 	 * necessary anymore, but seems like a good idea for cleanliness.)
587 	 */
588 	PGSemaphoreReset(&MyProc->sem);
589 
590 	/*
591 	 * Arrange to clean up at process exit.
592 	 */
593 	on_shmem_exit(AuxiliaryProcKill, Int32GetDatum(proctype));
594 }
595 
596 /*
597  * Record the PID and PGPROC structures for the Startup process, for use in
598  * ProcSendSignal().  See comments there for further explanation.
599  */
600 void
PublishStartupProcessInformation(void)601 PublishStartupProcessInformation(void)
602 {
603 	SpinLockAcquire(ProcStructLock);
604 
605 	ProcGlobal->startupProc = MyProc;
606 	ProcGlobal->startupProcPid = MyProcPid;
607 
608 	SpinLockRelease(ProcStructLock);
609 }
610 
611 /*
612  * Used from bufgr to share the value of the buffer that Startup waits on,
613  * or to reset the value to "not waiting" (-1). This allows processing
614  * of recovery conflicts for buffer pins. Set is made before backends look
615  * at this value, so locking not required, especially since the set is
616  * an atomic integer set operation.
617  */
618 void
SetStartupBufferPinWaitBufId(int bufid)619 SetStartupBufferPinWaitBufId(int bufid)
620 {
621 	/* use volatile pointer to prevent code rearrangement */
622 	volatile PROC_HDR *procglobal = ProcGlobal;
623 
624 	procglobal->startupBufferPinWaitBufId = bufid;
625 }
626 
627 /*
628  * Used by backends when they receive a request to check for buffer pin waits.
629  */
630 int
GetStartupBufferPinWaitBufId(void)631 GetStartupBufferPinWaitBufId(void)
632 {
633 	/* use volatile pointer to prevent code rearrangement */
634 	volatile PROC_HDR *procglobal = ProcGlobal;
635 
636 	return procglobal->startupBufferPinWaitBufId;
637 }
638 
639 /*
640  * Check whether there are at least N free PGPROC objects.
641  *
642  * Note: this is designed on the assumption that N will generally be small.
643  */
644 bool
HaveNFreeProcs(int n)645 HaveNFreeProcs(int n)
646 {
647 	PGPROC	   *proc;
648 
649 	SpinLockAcquire(ProcStructLock);
650 
651 	proc = ProcGlobal->freeProcs;
652 
653 	while (n > 0 && proc != NULL)
654 	{
655 		proc = (PGPROC *) proc->links.next;
656 		n--;
657 	}
658 
659 	SpinLockRelease(ProcStructLock);
660 
661 	return (n <= 0);
662 }
663 
664 /*
665  * Check if the current process is awaiting a lock.
666  */
667 bool
IsWaitingForLock(void)668 IsWaitingForLock(void)
669 {
670 	if (lockAwaited == NULL)
671 		return false;
672 
673 	return true;
674 }
675 
676 /*
677  * Cancel any pending wait for lock, when aborting a transaction, and revert
678  * any strong lock count acquisition for a lock being acquired.
679  *
680  * (Normally, this would only happen if we accept a cancel/die
681  * interrupt while waiting; but an ereport(ERROR) before or during the lock
682  * wait is within the realm of possibility, too.)
683  */
684 void
LockErrorCleanup(void)685 LockErrorCleanup(void)
686 {
687 	LWLock	   *partitionLock;
688 	DisableTimeoutParams timeouts[2];
689 
690 	HOLD_INTERRUPTS();
691 
692 	AbortStrongLockAcquire();
693 
694 	/* Nothing to do if we weren't waiting for a lock */
695 	if (lockAwaited == NULL)
696 	{
697 		RESUME_INTERRUPTS();
698 		return;
699 	}
700 
701 	/*
702 	 * Turn off the deadlock and lock timeout timers, if they are still
703 	 * running (see ProcSleep).  Note we must preserve the LOCK_TIMEOUT
704 	 * indicator flag, since this function is executed before
705 	 * ProcessInterrupts when responding to SIGINT; else we'd lose the
706 	 * knowledge that the SIGINT came from a lock timeout and not an external
707 	 * source.
708 	 */
709 	timeouts[0].id = DEADLOCK_TIMEOUT;
710 	timeouts[0].keep_indicator = false;
711 	timeouts[1].id = LOCK_TIMEOUT;
712 	timeouts[1].keep_indicator = true;
713 	disable_timeouts(timeouts, 2);
714 
715 	/* Unlink myself from the wait queue, if on it (might not be anymore!) */
716 	partitionLock = LockHashPartitionLock(lockAwaited->hashcode);
717 	LWLockAcquire(partitionLock, LW_EXCLUSIVE);
718 
719 	if (MyProc->links.next != NULL)
720 	{
721 		/* We could not have been granted the lock yet */
722 		RemoveFromWaitQueue(MyProc, lockAwaited->hashcode);
723 	}
724 	else
725 	{
726 		/*
727 		 * Somebody kicked us off the lock queue already.  Perhaps they
728 		 * granted us the lock, or perhaps they detected a deadlock. If they
729 		 * did grant us the lock, we'd better remember it in our local lock
730 		 * table.
731 		 */
732 		if (MyProc->waitStatus == STATUS_OK)
733 			GrantAwaitedLock();
734 	}
735 
736 	lockAwaited = NULL;
737 
738 	LWLockRelease(partitionLock);
739 
740 	RESUME_INTERRUPTS();
741 }
742 
743 
744 /*
745  * ProcReleaseLocks() -- release locks associated with current transaction
746  *			at main transaction commit or abort
747  *
748  * At main transaction commit, we release standard locks except session locks.
749  * At main transaction abort, we release all locks including session locks.
750  *
751  * Advisory locks are released only if they are transaction-level;
752  * session-level holds remain, whether this is a commit or not.
753  *
754  * At subtransaction commit, we don't release any locks (so this func is not
755  * needed at all); we will defer the releasing to the parent transaction.
756  * At subtransaction abort, we release all locks held by the subtransaction;
757  * this is implemented by retail releasing of the locks under control of
758  * the ResourceOwner mechanism.
759  */
760 void
ProcReleaseLocks(bool isCommit)761 ProcReleaseLocks(bool isCommit)
762 {
763 	if (!MyProc)
764 		return;
765 	/* If waiting, get off wait queue (should only be needed after error) */
766 	LockErrorCleanup();
767 	/* Release standard locks, including session-level if aborting */
768 	LockReleaseAll(DEFAULT_LOCKMETHOD, !isCommit);
769 	/* Release transaction-level advisory locks */
770 	LockReleaseAll(USER_LOCKMETHOD, false);
771 }
772 
773 
774 /*
775  * RemoveProcFromArray() -- Remove this process from the shared ProcArray.
776  */
777 static void
RemoveProcFromArray(int code,Datum arg)778 RemoveProcFromArray(int code, Datum arg)
779 {
780 	Assert(MyProc != NULL);
781 	ProcArrayRemove(MyProc, InvalidTransactionId);
782 }
783 
784 /*
785  * ProcKill() -- Destroy the per-proc data structure for
786  *		this process. Release any of its held LW locks.
787  */
788 static void
ProcKill(int code,Datum arg)789 ProcKill(int code, Datum arg)
790 {
791 	PGPROC	   *proc;
792 	PGPROC	   *volatile * procgloballist;
793 
794 	Assert(MyProc != NULL);
795 
796 	/* Make sure we're out of the sync rep lists */
797 	SyncRepCleanupAtProcExit();
798 
799 #ifdef USE_ASSERT_CHECKING
800 	{
801 		int			i;
802 
803 		/* Last process should have released all locks. */
804 		for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
805 			Assert(SHMQueueEmpty(&(MyProc->myProcLocks[i])));
806 	}
807 #endif
808 
809 	/*
810 	 * Release any LW locks I am holding.  There really shouldn't be any, but
811 	 * it's cheap to check again before we cut the knees off the LWLock
812 	 * facility by releasing our PGPROC ...
813 	 */
814 	LWLockReleaseAll();
815 
816 	/* Make sure active replication slots are released */
817 	if (MyReplicationSlot != NULL)
818 		ReplicationSlotRelease();
819 
820 	/*
821 	 * Detach from any lock group of which we are a member.  If the leader
822 	 * exist before all other group members, it's PGPROC will remain allocated
823 	 * until the last group process exits; that process must return the
824 	 * leader's PGPROC to the appropriate list.
825 	 */
826 	if (MyProc->lockGroupLeader != NULL)
827 	{
828 		PGPROC	   *leader = MyProc->lockGroupLeader;
829 		LWLock	   *leader_lwlock = LockHashPartitionLockByProc(leader);
830 
831 		LWLockAcquire(leader_lwlock, LW_EXCLUSIVE);
832 		Assert(!dlist_is_empty(&leader->lockGroupMembers));
833 		dlist_delete(&MyProc->lockGroupLink);
834 		if (dlist_is_empty(&leader->lockGroupMembers))
835 		{
836 			leader->lockGroupLeader = NULL;
837 			if (leader != MyProc)
838 			{
839 				procgloballist = leader->procgloballist;
840 
841 				/* Leader exited first; return its PGPROC. */
842 				SpinLockAcquire(ProcStructLock);
843 				leader->links.next = (SHM_QUEUE *) *procgloballist;
844 				*procgloballist = leader;
845 				SpinLockRelease(ProcStructLock);
846 			}
847 		}
848 		else if (leader != MyProc)
849 			MyProc->lockGroupLeader = NULL;
850 		LWLockRelease(leader_lwlock);
851 	}
852 
853 	/*
854 	 * Reset MyLatch to the process local one.  This is so that signal
855 	 * handlers et al can continue using the latch after the shared latch
856 	 * isn't ours anymore. After that clear MyProc and disown the shared
857 	 * latch.
858 	 */
859 	SwitchBackToLocalLatch();
860 	proc = MyProc;
861 	MyProc = NULL;
862 	DisownLatch(&proc->procLatch);
863 
864 	procgloballist = proc->procgloballist;
865 	SpinLockAcquire(ProcStructLock);
866 
867 	/*
868 	 * If we're still a member of a locking group, that means we're a leader
869 	 * which has somehow exited before its children.  The last remaining child
870 	 * will release our PGPROC.  Otherwise, release it now.
871 	 */
872 	if (proc->lockGroupLeader == NULL)
873 	{
874 		/* Since lockGroupLeader is NULL, lockGroupMembers should be empty. */
875 		Assert(dlist_is_empty(&proc->lockGroupMembers));
876 
877 		/* Return PGPROC structure (and semaphore) to appropriate freelist */
878 		proc->links.next = (SHM_QUEUE *) *procgloballist;
879 		*procgloballist = proc;
880 	}
881 
882 	/* Update shared estimate of spins_per_delay */
883 	ProcGlobal->spins_per_delay = update_spins_per_delay(ProcGlobal->spins_per_delay);
884 
885 	SpinLockRelease(ProcStructLock);
886 
887 	/*
888 	 * This process is no longer present in shared memory in any meaningful
889 	 * way, so tell the postmaster we've cleaned up acceptably well. (XXX
890 	 * autovac launcher should be included here someday)
891 	 */
892 	if (IsUnderPostmaster && !IsAutoVacuumLauncherProcess())
893 		MarkPostmasterChildInactive();
894 
895 	/* wake autovac launcher if needed -- see comments in FreeWorkerInfo */
896 	if (AutovacuumLauncherPid != 0)
897 		kill(AutovacuumLauncherPid, SIGUSR2);
898 }
899 
900 /*
901  * AuxiliaryProcKill() -- Cut-down version of ProcKill for auxiliary
902  *		processes (bgwriter, etc).  The PGPROC and sema are not released, only
903  *		marked as not-in-use.
904  */
905 static void
AuxiliaryProcKill(int code,Datum arg)906 AuxiliaryProcKill(int code, Datum arg)
907 {
908 	int			proctype = DatumGetInt32(arg);
909 	PGPROC	   *auxproc PG_USED_FOR_ASSERTS_ONLY;
910 	PGPROC	   *proc;
911 
912 	Assert(proctype >= 0 && proctype < NUM_AUXILIARY_PROCS);
913 
914 	auxproc = &AuxiliaryProcs[proctype];
915 
916 	Assert(MyProc == auxproc);
917 
918 	/* Release any LW locks I am holding (see notes above) */
919 	LWLockReleaseAll();
920 
921 	/*
922 	 * Reset MyLatch to the process local one.  This is so that signal
923 	 * handlers et al can continue using the latch after the shared latch
924 	 * isn't ours anymore. After that clear MyProc and disown the shared
925 	 * latch.
926 	 */
927 	SwitchBackToLocalLatch();
928 	proc = MyProc;
929 	MyProc = NULL;
930 	DisownLatch(&proc->procLatch);
931 
932 	SpinLockAcquire(ProcStructLock);
933 
934 	/* Mark auxiliary proc no longer in use */
935 	proc->pid = 0;
936 
937 	/* Update shared estimate of spins_per_delay */
938 	ProcGlobal->spins_per_delay = update_spins_per_delay(ProcGlobal->spins_per_delay);
939 
940 	SpinLockRelease(ProcStructLock);
941 }
942 
943 
944 /*
945  * ProcQueue package: routines for putting processes to sleep
946  *		and  waking them up
947  */
948 
949 /*
950  * ProcQueueAlloc -- alloc/attach to a shared memory process queue
951  *
952  * Returns: a pointer to the queue
953  * Side Effects: Initializes the queue if it wasn't there before
954  */
955 #ifdef NOT_USED
956 PROC_QUEUE *
ProcQueueAlloc(const char * name)957 ProcQueueAlloc(const char *name)
958 {
959 	PROC_QUEUE *queue;
960 	bool		found;
961 
962 	queue = (PROC_QUEUE *)
963 		ShmemInitStruct(name, sizeof(PROC_QUEUE), &found);
964 
965 	if (!found)
966 		ProcQueueInit(queue);
967 
968 	return queue;
969 }
970 #endif
971 
972 /*
973  * ProcQueueInit -- initialize a shared memory process queue
974  */
975 void
ProcQueueInit(PROC_QUEUE * queue)976 ProcQueueInit(PROC_QUEUE *queue)
977 {
978 	SHMQueueInit(&(queue->links));
979 	queue->size = 0;
980 }
981 
982 
983 /*
984  * ProcSleep -- put a process to sleep on the specified lock
985  *
986  * Caller must have set MyProc->heldLocks to reflect locks already held
987  * on the lockable object by this process (under all XIDs).
988  *
989  * The lock table's partition lock must be held at entry, and will be held
990  * at exit.
991  *
992  * Result: STATUS_OK if we acquired the lock, STATUS_ERROR if not (deadlock).
993  *
994  * ASSUME: that no one will fiddle with the queue until after
995  *		we release the partition lock.
996  *
997  * NOTES: The process queue is now a priority queue for locking.
998  */
999 int
ProcSleep(LOCALLOCK * locallock,LockMethod lockMethodTable)1000 ProcSleep(LOCALLOCK *locallock, LockMethod lockMethodTable)
1001 {
1002 	LOCKMODE	lockmode = locallock->tag.mode;
1003 	LOCK	   *lock = locallock->lock;
1004 	PROCLOCK   *proclock = locallock->proclock;
1005 	uint32		hashcode = locallock->hashcode;
1006 	LWLock	   *partitionLock = LockHashPartitionLock(hashcode);
1007 	PROC_QUEUE *waitQueue = &(lock->waitProcs);
1008 	LOCKMASK	myHeldLocks = MyProc->heldLocks;
1009 	bool		early_deadlock = false;
1010 	bool		allow_autovacuum_cancel = true;
1011 	int			myWaitStatus;
1012 	PGPROC	   *proc;
1013 	PGPROC	   *leader = MyProc->lockGroupLeader;
1014 	int			i;
1015 
1016 	/*
1017 	 * If group locking is in use, locks held by members of my locking group
1018 	 * need to be included in myHeldLocks.
1019 	 */
1020 	if (leader != NULL)
1021 	{
1022 		SHM_QUEUE  *procLocks = &(lock->procLocks);
1023 		PROCLOCK   *otherproclock;
1024 
1025 		otherproclock = (PROCLOCK *)
1026 			SHMQueueNext(procLocks, procLocks, offsetof(PROCLOCK, lockLink));
1027 		while (otherproclock != NULL)
1028 		{
1029 			if (otherproclock->groupLeader == leader)
1030 				myHeldLocks |= otherproclock->holdMask;
1031 			otherproclock = (PROCLOCK *)
1032 				SHMQueueNext(procLocks, &otherproclock->lockLink,
1033 							 offsetof(PROCLOCK, lockLink));
1034 		}
1035 	}
1036 
1037 	/*
1038 	 * Determine where to add myself in the wait queue.
1039 	 *
1040 	 * Normally I should go at the end of the queue.  However, if I already
1041 	 * hold locks that conflict with the request of any previous waiter, put
1042 	 * myself in the queue just in front of the first such waiter. This is not
1043 	 * a necessary step, since deadlock detection would move me to before that
1044 	 * waiter anyway; but it's relatively cheap to detect such a conflict
1045 	 * immediately, and avoid delaying till deadlock timeout.
1046 	 *
1047 	 * Special case: if I find I should go in front of some waiter, check to
1048 	 * see if I conflict with already-held locks or the requests before that
1049 	 * waiter.  If not, then just grant myself the requested lock immediately.
1050 	 * This is the same as the test for immediate grant in LockAcquire, except
1051 	 * we are only considering the part of the wait queue before my insertion
1052 	 * point.
1053 	 */
1054 	if (myHeldLocks != 0)
1055 	{
1056 		LOCKMASK	aheadRequests = 0;
1057 
1058 		proc = (PGPROC *) waitQueue->links.next;
1059 		for (i = 0; i < waitQueue->size; i++)
1060 		{
1061 			/*
1062 			 * If we're part of the same locking group as this waiter, its
1063 			 * locks neither conflict with ours nor contribute to
1064 			 * aheadRequests.
1065 			 */
1066 			if (leader != NULL && leader == proc->lockGroupLeader)
1067 			{
1068 				proc = (PGPROC *) proc->links.next;
1069 				continue;
1070 			}
1071 			/* Must he wait for me? */
1072 			if (lockMethodTable->conflictTab[proc->waitLockMode] & myHeldLocks)
1073 			{
1074 				/* Must I wait for him ? */
1075 				if (lockMethodTable->conflictTab[lockmode] & proc->heldLocks)
1076 				{
1077 					/*
1078 					 * Yes, so we have a deadlock.  Easiest way to clean up
1079 					 * correctly is to call RemoveFromWaitQueue(), but we
1080 					 * can't do that until we are *on* the wait queue. So, set
1081 					 * a flag to check below, and break out of loop.  Also,
1082 					 * record deadlock info for later message.
1083 					 */
1084 					RememberSimpleDeadLock(MyProc, lockmode, lock, proc);
1085 					early_deadlock = true;
1086 					break;
1087 				}
1088 				/* I must go before this waiter.  Check special case. */
1089 				if ((lockMethodTable->conflictTab[lockmode] & aheadRequests) == 0 &&
1090 					LockCheckConflicts(lockMethodTable,
1091 									   lockmode,
1092 									   lock,
1093 									   proclock) == STATUS_OK)
1094 				{
1095 					/* Skip the wait and just grant myself the lock. */
1096 					GrantLock(lock, proclock, lockmode);
1097 					GrantAwaitedLock();
1098 					return STATUS_OK;
1099 				}
1100 				/* Break out of loop to put myself before him */
1101 				break;
1102 			}
1103 			/* Nope, so advance to next waiter */
1104 			aheadRequests |= LOCKBIT_ON(proc->waitLockMode);
1105 			proc = (PGPROC *) proc->links.next;
1106 		}
1107 
1108 		/*
1109 		 * If we fall out of loop normally, proc points to waitQueue head, so
1110 		 * we will insert at tail of queue as desired.
1111 		 */
1112 	}
1113 	else
1114 	{
1115 		/* I hold no locks, so I can't push in front of anyone. */
1116 		proc = (PGPROC *) &(waitQueue->links);
1117 	}
1118 
1119 	/*
1120 	 * Insert self into queue, ahead of the given proc (or at tail of queue).
1121 	 */
1122 	SHMQueueInsertBefore(&(proc->links), &(MyProc->links));
1123 	waitQueue->size++;
1124 
1125 	lock->waitMask |= LOCKBIT_ON(lockmode);
1126 
1127 	/* Set up wait information in PGPROC object, too */
1128 	MyProc->waitLock = lock;
1129 	MyProc->waitProcLock = proclock;
1130 	MyProc->waitLockMode = lockmode;
1131 
1132 	MyProc->waitStatus = STATUS_WAITING;
1133 
1134 	/*
1135 	 * If we detected deadlock, give up without waiting.  This must agree with
1136 	 * CheckDeadLock's recovery code.
1137 	 */
1138 	if (early_deadlock)
1139 	{
1140 		RemoveFromWaitQueue(MyProc, hashcode);
1141 		return STATUS_ERROR;
1142 	}
1143 
1144 	/* mark that we are waiting for a lock */
1145 	lockAwaited = locallock;
1146 
1147 	/*
1148 	 * Release the lock table's partition lock.
1149 	 *
1150 	 * NOTE: this may also cause us to exit critical-section state, possibly
1151 	 * allowing a cancel/die interrupt to be accepted. This is OK because we
1152 	 * have recorded the fact that we are waiting for a lock, and so
1153 	 * LockErrorCleanup will clean up if cancel/die happens.
1154 	 */
1155 	LWLockRelease(partitionLock);
1156 
1157 	/*
1158 	 * Also, now that we will successfully clean up after an ereport, it's
1159 	 * safe to check to see if there's a buffer pin deadlock against the
1160 	 * Startup process.  Of course, that's only necessary if we're doing Hot
1161 	 * Standby and are not the Startup process ourselves.
1162 	 */
1163 	if (RecoveryInProgress() && !InRecovery)
1164 		CheckRecoveryConflictDeadlock();
1165 
1166 	/* Reset deadlock_state before enabling the timeout handler */
1167 	deadlock_state = DS_NOT_YET_CHECKED;
1168 	got_deadlock_timeout = false;
1169 
1170 	/*
1171 	 * Set timer so we can wake up after awhile and check for a deadlock. If a
1172 	 * deadlock is detected, the handler sets MyProc->waitStatus =
1173 	 * STATUS_ERROR, allowing us to know that we must report failure rather
1174 	 * than success.
1175 	 *
1176 	 * By delaying the check until we've waited for a bit, we can avoid
1177 	 * running the rather expensive deadlock-check code in most cases.
1178 	 *
1179 	 * If LockTimeout is set, also enable the timeout for that.  We can save a
1180 	 * few cycles by enabling both timeout sources in one call.
1181 	 *
1182 	 * If InHotStandby we set lock waits slightly later for clarity with other
1183 	 * code.
1184 	 */
1185 	if (!InHotStandby)
1186 	{
1187 		if (LockTimeout > 0)
1188 		{
1189 			EnableTimeoutParams timeouts[2];
1190 
1191 			timeouts[0].id = DEADLOCK_TIMEOUT;
1192 			timeouts[0].type = TMPARAM_AFTER;
1193 			timeouts[0].delay_ms = DeadlockTimeout;
1194 			timeouts[1].id = LOCK_TIMEOUT;
1195 			timeouts[1].type = TMPARAM_AFTER;
1196 			timeouts[1].delay_ms = LockTimeout;
1197 			enable_timeouts(timeouts, 2);
1198 		}
1199 		else
1200 			enable_timeout_after(DEADLOCK_TIMEOUT, DeadlockTimeout);
1201 	}
1202 
1203 	/*
1204 	 * If somebody wakes us between LWLockRelease and WaitLatch, the latch
1205 	 * will not wait. But a set latch does not necessarily mean that the lock
1206 	 * is free now, as there are many other sources for latch sets than
1207 	 * somebody releasing the lock.
1208 	 *
1209 	 * We process interrupts whenever the latch has been set, so cancel/die
1210 	 * interrupts are processed quickly. This means we must not mind losing
1211 	 * control to a cancel/die interrupt here.  We don't, because we have no
1212 	 * shared-state-change work to do after being granted the lock (the
1213 	 * grantor did it all).  We do have to worry about canceling the deadlock
1214 	 * timeout and updating the locallock table, but if we lose control to an
1215 	 * error, LockErrorCleanup will fix that up.
1216 	 */
1217 	do
1218 	{
1219 		if (InHotStandby)
1220 		{
1221 			/* Set a timer and wait for that or for the Lock to be granted */
1222 			ResolveRecoveryConflictWithLock(locallock->tag.lock);
1223 		}
1224 		else
1225 		{
1226 			WaitLatch(MyLatch, WL_LATCH_SET, 0);
1227 			ResetLatch(MyLatch);
1228 			/* check for deadlocks first, as that's probably log-worthy */
1229 			if (got_deadlock_timeout)
1230 			{
1231 				CheckDeadLock();
1232 				got_deadlock_timeout = false;
1233 			}
1234 			CHECK_FOR_INTERRUPTS();
1235 		}
1236 
1237 		/*
1238 		 * waitStatus could change from STATUS_WAITING to something else
1239 		 * asynchronously.  Read it just once per loop to prevent surprising
1240 		 * behavior (such as missing log messages).
1241 		 */
1242 		myWaitStatus = *((volatile int *) &MyProc->waitStatus);
1243 
1244 		/*
1245 		 * If we are not deadlocked, but are waiting on an autovacuum-induced
1246 		 * task, send a signal to interrupt it.
1247 		 */
1248 		if (deadlock_state == DS_BLOCKED_BY_AUTOVACUUM && allow_autovacuum_cancel)
1249 		{
1250 			PGPROC	   *autovac = GetBlockingAutoVacuumPgproc();
1251 			PGXACT	   *autovac_pgxact = &ProcGlobal->allPgXact[autovac->pgprocno];
1252 
1253 			LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
1254 
1255 			/*
1256 			 * Only do it if the worker is not working to protect against Xid
1257 			 * wraparound.
1258 			 */
1259 			if ((autovac_pgxact->vacuumFlags & PROC_IS_AUTOVACUUM) &&
1260 				!(autovac_pgxact->vacuumFlags & PROC_VACUUM_FOR_WRAPAROUND))
1261 			{
1262 				int			pid = autovac->pid;
1263 				StringInfoData locktagbuf;
1264 				StringInfoData logbuf;	/* errdetail for server log */
1265 
1266 				initStringInfo(&locktagbuf);
1267 				initStringInfo(&logbuf);
1268 				DescribeLockTag(&locktagbuf, &lock->tag);
1269 				appendStringInfo(&logbuf,
1270 								 _("Process %d waits for %s on %s."),
1271 								 MyProcPid,
1272 							  GetLockmodeName(lock->tag.locktag_lockmethodid,
1273 											  lockmode),
1274 								 locktagbuf.data);
1275 
1276 				/* release lock as quickly as possible */
1277 				LWLockRelease(ProcArrayLock);
1278 
1279 				/* send the autovacuum worker Back to Old Kent Road */
1280 				ereport(DEBUG1,
1281 					  (errmsg("sending cancel to blocking autovacuum PID %d",
1282 							  pid),
1283 					   errdetail_log("%s", logbuf.data)));
1284 
1285 				if (kill(pid, SIGINT) < 0)
1286 				{
1287 					/*
1288 					 * There's a race condition here: once we release the
1289 					 * ProcArrayLock, it's possible for the autovac worker to
1290 					 * close up shop and exit before we can do the kill().
1291 					 * Therefore, we do not whinge about no-such-process.
1292 					 * Other errors such as EPERM could conceivably happen if
1293 					 * the kernel recycles the PID fast enough, but such cases
1294 					 * seem improbable enough that it's probably best to issue
1295 					 * a warning if we see some other errno.
1296 					 */
1297 					if (errno != ESRCH)
1298 						ereport(WARNING,
1299 						   (errmsg("could not send signal to process %d: %m",
1300 								   pid)));
1301 				}
1302 
1303 				pfree(logbuf.data);
1304 				pfree(locktagbuf.data);
1305 			}
1306 			else
1307 				LWLockRelease(ProcArrayLock);
1308 
1309 			/* prevent signal from being sent again more than once */
1310 			allow_autovacuum_cancel = false;
1311 		}
1312 
1313 		/*
1314 		 * If awoken after the deadlock check interrupt has run, and
1315 		 * log_lock_waits is on, then report about the wait.
1316 		 */
1317 		if (log_lock_waits && deadlock_state != DS_NOT_YET_CHECKED)
1318 		{
1319 			StringInfoData buf,
1320 						lock_waiters_sbuf,
1321 						lock_holders_sbuf;
1322 			const char *modename;
1323 			long		secs;
1324 			int			usecs;
1325 			long		msecs;
1326 			SHM_QUEUE  *procLocks;
1327 			PROCLOCK   *proclock;
1328 			bool		first_holder = true,
1329 						first_waiter = true;
1330 			int			lockHoldersNum = 0;
1331 
1332 			initStringInfo(&buf);
1333 			initStringInfo(&lock_waiters_sbuf);
1334 			initStringInfo(&lock_holders_sbuf);
1335 
1336 			DescribeLockTag(&buf, &locallock->tag.lock);
1337 			modename = GetLockmodeName(locallock->tag.lock.locktag_lockmethodid,
1338 									   lockmode);
1339 			TimestampDifference(get_timeout_start_time(DEADLOCK_TIMEOUT),
1340 								GetCurrentTimestamp(),
1341 								&secs, &usecs);
1342 			msecs = secs * 1000 + usecs / 1000;
1343 			usecs = usecs % 1000;
1344 
1345 			/*
1346 			 * we loop over the lock's procLocks to gather a list of all
1347 			 * holders and waiters. Thus we will be able to provide more
1348 			 * detailed information for lock debugging purposes.
1349 			 *
1350 			 * lock->procLocks contains all processes which hold or wait for
1351 			 * this lock.
1352 			 */
1353 
1354 			LWLockAcquire(partitionLock, LW_SHARED);
1355 
1356 			procLocks = &(lock->procLocks);
1357 			proclock = (PROCLOCK *) SHMQueueNext(procLocks, procLocks,
1358 											   offsetof(PROCLOCK, lockLink));
1359 
1360 			while (proclock)
1361 			{
1362 				/*
1363 				 * we are a waiter if myProc->waitProcLock == proclock; we are
1364 				 * a holder if it is NULL or something different
1365 				 */
1366 				if (proclock->tag.myProc->waitProcLock == proclock)
1367 				{
1368 					if (first_waiter)
1369 					{
1370 						appendStringInfo(&lock_waiters_sbuf, "%d",
1371 										 proclock->tag.myProc->pid);
1372 						first_waiter = false;
1373 					}
1374 					else
1375 						appendStringInfo(&lock_waiters_sbuf, ", %d",
1376 										 proclock->tag.myProc->pid);
1377 				}
1378 				else
1379 				{
1380 					if (first_holder)
1381 					{
1382 						appendStringInfo(&lock_holders_sbuf, "%d",
1383 										 proclock->tag.myProc->pid);
1384 						first_holder = false;
1385 					}
1386 					else
1387 						appendStringInfo(&lock_holders_sbuf, ", %d",
1388 										 proclock->tag.myProc->pid);
1389 
1390 					lockHoldersNum++;
1391 				}
1392 
1393 				proclock = (PROCLOCK *) SHMQueueNext(procLocks, &proclock->lockLink,
1394 											   offsetof(PROCLOCK, lockLink));
1395 			}
1396 
1397 			LWLockRelease(partitionLock);
1398 
1399 			if (deadlock_state == DS_SOFT_DEADLOCK)
1400 				ereport(LOG,
1401 						(errmsg("process %d avoided deadlock for %s on %s by rearranging queue order after %ld.%03d ms",
1402 								MyProcPid, modename, buf.data, msecs, usecs),
1403 						 (errdetail_log_plural("Process holding the lock: %s. Wait queue: %s.",
1404 						   "Processes holding the lock: %s. Wait queue: %s.",
1405 											   lockHoldersNum, lock_holders_sbuf.data, lock_waiters_sbuf.data))));
1406 			else if (deadlock_state == DS_HARD_DEADLOCK)
1407 			{
1408 				/*
1409 				 * This message is a bit redundant with the error that will be
1410 				 * reported subsequently, but in some cases the error report
1411 				 * might not make it to the log (eg, if it's caught by an
1412 				 * exception handler), and we want to ensure all long-wait
1413 				 * events get logged.
1414 				 */
1415 				ereport(LOG,
1416 						(errmsg("process %d detected deadlock while waiting for %s on %s after %ld.%03d ms",
1417 								MyProcPid, modename, buf.data, msecs, usecs),
1418 						 (errdetail_log_plural("Process holding the lock: %s. Wait queue: %s.",
1419 						   "Processes holding the lock: %s. Wait queue: %s.",
1420 											   lockHoldersNum, lock_holders_sbuf.data, lock_waiters_sbuf.data))));
1421 			}
1422 
1423 			if (myWaitStatus == STATUS_WAITING)
1424 				ereport(LOG,
1425 						(errmsg("process %d still waiting for %s on %s after %ld.%03d ms",
1426 								MyProcPid, modename, buf.data, msecs, usecs),
1427 						 (errdetail_log_plural("Process holding the lock: %s. Wait queue: %s.",
1428 						   "Processes holding the lock: %s. Wait queue: %s.",
1429 											   lockHoldersNum, lock_holders_sbuf.data, lock_waiters_sbuf.data))));
1430 			else if (myWaitStatus == STATUS_OK)
1431 				ereport(LOG,
1432 					(errmsg("process %d acquired %s on %s after %ld.%03d ms",
1433 							MyProcPid, modename, buf.data, msecs, usecs)));
1434 			else
1435 			{
1436 				Assert(myWaitStatus == STATUS_ERROR);
1437 
1438 				/*
1439 				 * Currently, the deadlock checker always kicks its own
1440 				 * process, which means that we'll only see STATUS_ERROR when
1441 				 * deadlock_state == DS_HARD_DEADLOCK, and there's no need to
1442 				 * print redundant messages.  But for completeness and
1443 				 * future-proofing, print a message if it looks like someone
1444 				 * else kicked us off the lock.
1445 				 */
1446 				if (deadlock_state != DS_HARD_DEADLOCK)
1447 					ereport(LOG,
1448 							(errmsg("process %d failed to acquire %s on %s after %ld.%03d ms",
1449 								MyProcPid, modename, buf.data, msecs, usecs),
1450 							 (errdetail_log_plural("Process holding the lock: %s. Wait queue: %s.",
1451 						   "Processes holding the lock: %s. Wait queue: %s.",
1452 												   lockHoldersNum, lock_holders_sbuf.data, lock_waiters_sbuf.data))));
1453 			}
1454 
1455 			/*
1456 			 * At this point we might still need to wait for the lock. Reset
1457 			 * state so we don't print the above messages again.
1458 			 */
1459 			deadlock_state = DS_NO_DEADLOCK;
1460 
1461 			pfree(buf.data);
1462 			pfree(lock_holders_sbuf.data);
1463 			pfree(lock_waiters_sbuf.data);
1464 		}
1465 	} while (myWaitStatus == STATUS_WAITING);
1466 
1467 	/*
1468 	 * Disable the timers, if they are still running.  As in LockErrorCleanup,
1469 	 * we must preserve the LOCK_TIMEOUT indicator flag: if a lock timeout has
1470 	 * already caused QueryCancelPending to become set, we want the cancel to
1471 	 * be reported as a lock timeout, not a user cancel.
1472 	 */
1473 	if (!InHotStandby)
1474 	{
1475 		if (LockTimeout > 0)
1476 		{
1477 			DisableTimeoutParams timeouts[2];
1478 
1479 			timeouts[0].id = DEADLOCK_TIMEOUT;
1480 			timeouts[0].keep_indicator = false;
1481 			timeouts[1].id = LOCK_TIMEOUT;
1482 			timeouts[1].keep_indicator = true;
1483 			disable_timeouts(timeouts, 2);
1484 		}
1485 		else
1486 			disable_timeout(DEADLOCK_TIMEOUT, false);
1487 	}
1488 
1489 	/*
1490 	 * Re-acquire the lock table's partition lock.  We have to do this to hold
1491 	 * off cancel/die interrupts before we can mess with lockAwaited (else we
1492 	 * might have a missed or duplicated locallock update).
1493 	 */
1494 	LWLockAcquire(partitionLock, LW_EXCLUSIVE);
1495 
1496 	/*
1497 	 * We no longer want LockErrorCleanup to do anything.
1498 	 */
1499 	lockAwaited = NULL;
1500 
1501 	/*
1502 	 * If we got the lock, be sure to remember it in the locallock table.
1503 	 */
1504 	if (MyProc->waitStatus == STATUS_OK)
1505 		GrantAwaitedLock();
1506 
1507 	/*
1508 	 * We don't have to do anything else, because the awaker did all the
1509 	 * necessary update of the lock table and MyProc.
1510 	 */
1511 	return MyProc->waitStatus;
1512 }
1513 
1514 
1515 /*
1516  * ProcWakeup -- wake up a process by setting its latch.
1517  *
1518  *	 Also remove the process from the wait queue and set its links invalid.
1519  *	 RETURN: the next process in the wait queue.
1520  *
1521  * The appropriate lock partition lock must be held by caller.
1522  *
1523  * XXX: presently, this code is only used for the "success" case, and only
1524  * works correctly for that case.  To clean up in failure case, would need
1525  * to twiddle the lock's request counts too --- see RemoveFromWaitQueue.
1526  * Hence, in practice the waitStatus parameter must be STATUS_OK.
1527  */
1528 PGPROC *
ProcWakeup(PGPROC * proc,int waitStatus)1529 ProcWakeup(PGPROC *proc, int waitStatus)
1530 {
1531 	PGPROC	   *retProc;
1532 
1533 	/* Proc should be sleeping ... */
1534 	if (proc->links.prev == NULL ||
1535 		proc->links.next == NULL)
1536 		return NULL;
1537 	Assert(proc->waitStatus == STATUS_WAITING);
1538 
1539 	/* Save next process before we zap the list link */
1540 	retProc = (PGPROC *) proc->links.next;
1541 
1542 	/* Remove process from wait queue */
1543 	SHMQueueDelete(&(proc->links));
1544 	(proc->waitLock->waitProcs.size)--;
1545 
1546 	/* Clean up process' state and pass it the ok/fail signal */
1547 	proc->waitLock = NULL;
1548 	proc->waitProcLock = NULL;
1549 	proc->waitStatus = waitStatus;
1550 
1551 	/* And awaken it */
1552 	SetLatch(&proc->procLatch);
1553 
1554 	return retProc;
1555 }
1556 
1557 /*
1558  * ProcLockWakeup -- routine for waking up processes when a lock is
1559  *		released (or a prior waiter is aborted).  Scan all waiters
1560  *		for lock, waken any that are no longer blocked.
1561  *
1562  * The appropriate lock partition lock must be held by caller.
1563  */
1564 void
ProcLockWakeup(LockMethod lockMethodTable,LOCK * lock)1565 ProcLockWakeup(LockMethod lockMethodTable, LOCK *lock)
1566 {
1567 	PROC_QUEUE *waitQueue = &(lock->waitProcs);
1568 	int			queue_size = waitQueue->size;
1569 	PGPROC	   *proc;
1570 	LOCKMASK	aheadRequests = 0;
1571 
1572 	Assert(queue_size >= 0);
1573 
1574 	if (queue_size == 0)
1575 		return;
1576 
1577 	proc = (PGPROC *) waitQueue->links.next;
1578 
1579 	while (queue_size-- > 0)
1580 	{
1581 		LOCKMODE	lockmode = proc->waitLockMode;
1582 
1583 		/*
1584 		 * Waken if (a) doesn't conflict with requests of earlier waiters, and
1585 		 * (b) doesn't conflict with already-held locks.
1586 		 */
1587 		if ((lockMethodTable->conflictTab[lockmode] & aheadRequests) == 0 &&
1588 			LockCheckConflicts(lockMethodTable,
1589 							   lockmode,
1590 							   lock,
1591 							   proc->waitProcLock) == STATUS_OK)
1592 		{
1593 			/* OK to waken */
1594 			GrantLock(lock, proc->waitProcLock, lockmode);
1595 			proc = ProcWakeup(proc, STATUS_OK);
1596 
1597 			/*
1598 			 * ProcWakeup removes proc from the lock's waiting process queue
1599 			 * and returns the next proc in chain; don't use proc's next-link,
1600 			 * because it's been cleared.
1601 			 */
1602 		}
1603 		else
1604 		{
1605 			/*
1606 			 * Cannot wake this guy. Remember his request for later checks.
1607 			 */
1608 			aheadRequests |= LOCKBIT_ON(lockmode);
1609 			proc = (PGPROC *) proc->links.next;
1610 		}
1611 	}
1612 
1613 	Assert(waitQueue->size >= 0);
1614 }
1615 
1616 /*
1617  * CheckDeadLock
1618  *
1619  * We only get to this routine, if DEADLOCK_TIMEOUT fired while waiting for a
1620  * lock to be released by some other process.  Check if there's a deadlock; if
1621  * not, just return.  (But signal ProcSleep to log a message, if
1622  * log_lock_waits is true.)  If we have a real deadlock, remove ourselves from
1623  * the lock's wait queue and signal an error to ProcSleep.
1624  */
1625 static void
CheckDeadLock(void)1626 CheckDeadLock(void)
1627 {
1628 	int			i;
1629 
1630 	/*
1631 	 * Acquire exclusive lock on the entire shared lock data structures. Must
1632 	 * grab LWLocks in partition-number order to avoid LWLock deadlock.
1633 	 *
1634 	 * Note that the deadlock check interrupt had better not be enabled
1635 	 * anywhere that this process itself holds lock partition locks, else this
1636 	 * will wait forever.  Also note that LWLockAcquire creates a critical
1637 	 * section, so that this routine cannot be interrupted by cancel/die
1638 	 * interrupts.
1639 	 */
1640 	for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
1641 		LWLockAcquire(LockHashPartitionLockByIndex(i), LW_EXCLUSIVE);
1642 
1643 	/*
1644 	 * Check to see if we've been awoken by anyone in the interim.
1645 	 *
1646 	 * If we have, we can return and resume our transaction -- happy day.
1647 	 * Before we are awoken the process releasing the lock grants it to us so
1648 	 * we know that we don't have to wait anymore.
1649 	 *
1650 	 * We check by looking to see if we've been unlinked from the wait queue.
1651 	 * This is safe because we hold the lock partition lock.
1652 	 */
1653 	if (MyProc->links.prev == NULL ||
1654 		MyProc->links.next == NULL)
1655 		goto check_done;
1656 
1657 #ifdef LOCK_DEBUG
1658 	if (Debug_deadlocks)
1659 		DumpAllLocks();
1660 #endif
1661 
1662 	/* Run the deadlock check, and set deadlock_state for use by ProcSleep */
1663 	deadlock_state = DeadLockCheck(MyProc);
1664 
1665 	if (deadlock_state == DS_HARD_DEADLOCK)
1666 	{
1667 		/*
1668 		 * Oops.  We have a deadlock.
1669 		 *
1670 		 * Get this process out of wait state. (Note: we could do this more
1671 		 * efficiently by relying on lockAwaited, but use this coding to
1672 		 * preserve the flexibility to kill some other transaction than the
1673 		 * one detecting the deadlock.)
1674 		 *
1675 		 * RemoveFromWaitQueue sets MyProc->waitStatus to STATUS_ERROR, so
1676 		 * ProcSleep will report an error after we return from the signal
1677 		 * handler.
1678 		 */
1679 		Assert(MyProc->waitLock != NULL);
1680 		RemoveFromWaitQueue(MyProc, LockTagHashCode(&(MyProc->waitLock->tag)));
1681 
1682 		/*
1683 		 * We're done here.  Transaction abort caused by the error that
1684 		 * ProcSleep will raise will cause any other locks we hold to be
1685 		 * released, thus allowing other processes to wake up; we don't need
1686 		 * to do that here.  NOTE: an exception is that releasing locks we
1687 		 * hold doesn't consider the possibility of waiters that were blocked
1688 		 * behind us on the lock we just failed to get, and might now be
1689 		 * wakable because we're not in front of them anymore.  However,
1690 		 * RemoveFromWaitQueue took care of waking up any such processes.
1691 		 */
1692 	}
1693 
1694 	/*
1695 	 * And release locks.  We do this in reverse order for two reasons: (1)
1696 	 * Anyone else who needs more than one of the locks will be trying to lock
1697 	 * them in increasing order; we don't want to release the other process
1698 	 * until it can get all the locks it needs. (2) This avoids O(N^2)
1699 	 * behavior inside LWLockRelease.
1700 	 */
1701 check_done:
1702 	for (i = NUM_LOCK_PARTITIONS; --i >= 0;)
1703 		LWLockRelease(LockHashPartitionLockByIndex(i));
1704 }
1705 
1706 /*
1707  * CheckDeadLockAlert - Handle the expiry of deadlock_timeout.
1708  *
1709  * NB: Runs inside a signal handler, be careful.
1710  */
1711 void
CheckDeadLockAlert(void)1712 CheckDeadLockAlert(void)
1713 {
1714 	int			save_errno = errno;
1715 
1716 	got_deadlock_timeout = true;
1717 
1718 	/*
1719 	 * Have to set the latch again, even if handle_sig_alarm already did. Back
1720 	 * then got_deadlock_timeout wasn't yet set... It's unlikely that this
1721 	 * ever would be a problem, but setting a set latch again is cheap.
1722 	 *
1723 	 * Note that, when this function runs inside procsignal_sigusr1_handler(),
1724 	 * the handler function sets the latch again after the latch is set here.
1725 	 */
1726 	SetLatch(MyLatch);
1727 	errno = save_errno;
1728 }
1729 
1730 /*
1731  * ProcWaitForSignal - wait for a signal from another backend.
1732  *
1733  * As this uses the generic process latch the caller has to be robust against
1734  * unrelated wakeups: Always check that the desired state has occurred, and
1735  * wait again if not.
1736  */
1737 void
ProcWaitForSignal(void)1738 ProcWaitForSignal(void)
1739 {
1740 	WaitLatch(MyLatch, WL_LATCH_SET, 0);
1741 	ResetLatch(MyLatch);
1742 	CHECK_FOR_INTERRUPTS();
1743 }
1744 
1745 /*
1746  * ProcSendSignal - send a signal to a backend identified by PID
1747  */
1748 void
ProcSendSignal(int pid)1749 ProcSendSignal(int pid)
1750 {
1751 	PGPROC	   *proc = NULL;
1752 
1753 	if (RecoveryInProgress())
1754 	{
1755 		SpinLockAcquire(ProcStructLock);
1756 
1757 		/*
1758 		 * Check to see whether it is the Startup process we wish to signal.
1759 		 * This call is made by the buffer manager when it wishes to wake up a
1760 		 * process that has been waiting for a pin in so it can obtain a
1761 		 * cleanup lock using LockBufferForCleanup(). Startup is not a normal
1762 		 * backend, so BackendPidGetProc() will not return any pid at all. So
1763 		 * we remember the information for this special case.
1764 		 */
1765 		if (pid == ProcGlobal->startupProcPid)
1766 			proc = ProcGlobal->startupProc;
1767 
1768 		SpinLockRelease(ProcStructLock);
1769 	}
1770 
1771 	if (proc == NULL)
1772 		proc = BackendPidGetProc(pid);
1773 
1774 	if (proc != NULL)
1775 	{
1776 		SetLatch(&proc->procLatch);
1777 	}
1778 }
1779 
1780 /*
1781  * BecomeLockGroupLeader - designate process as lock group leader
1782  *
1783  * Once this function has returned, other processes can join the lock group
1784  * by calling BecomeLockGroupMember.
1785  */
1786 void
BecomeLockGroupLeader(void)1787 BecomeLockGroupLeader(void)
1788 {
1789 	LWLock	   *leader_lwlock;
1790 
1791 	/* If we already did it, we don't need to do it again. */
1792 	if (MyProc->lockGroupLeader == MyProc)
1793 		return;
1794 
1795 	/* We had better not be a follower. */
1796 	Assert(MyProc->lockGroupLeader == NULL);
1797 
1798 	/* Create single-member group, containing only ourselves. */
1799 	leader_lwlock = LockHashPartitionLockByProc(MyProc);
1800 	LWLockAcquire(leader_lwlock, LW_EXCLUSIVE);
1801 	MyProc->lockGroupLeader = MyProc;
1802 	dlist_push_head(&MyProc->lockGroupMembers, &MyProc->lockGroupLink);
1803 	LWLockRelease(leader_lwlock);
1804 }
1805 
1806 /*
1807  * BecomeLockGroupMember - designate process as lock group member
1808  *
1809  * This is pretty straightforward except for the possibility that the leader
1810  * whose group we're trying to join might exit before we manage to do so;
1811  * and the PGPROC might get recycled for an unrelated process.  To avoid
1812  * that, we require the caller to pass the PID of the intended PGPROC as
1813  * an interlock.  Returns true if we successfully join the intended lock
1814  * group, and false if not.
1815  */
1816 bool
BecomeLockGroupMember(PGPROC * leader,int pid)1817 BecomeLockGroupMember(PGPROC *leader, int pid)
1818 {
1819 	LWLock	   *leader_lwlock;
1820 	bool		ok = false;
1821 
1822 	/* Group leader can't become member of group */
1823 	Assert(MyProc != leader);
1824 
1825 	/* Can't already be a member of a group */
1826 	Assert(MyProc->lockGroupLeader == NULL);
1827 
1828 	/* PID must be valid. */
1829 	Assert(pid != 0);
1830 
1831 	/*
1832 	 * Get lock protecting the group fields.  Note LockHashPartitionLockByProc
1833 	 * accesses leader->pgprocno in a PGPROC that might be free.  This is safe
1834 	 * because all PGPROCs' pgprocno fields are set during shared memory
1835 	 * initialization and never change thereafter; so we will acquire the
1836 	 * correct lock even if the leader PGPROC is in process of being recycled.
1837 	 */
1838 	leader_lwlock = LockHashPartitionLockByProc(leader);
1839 	LWLockAcquire(leader_lwlock, LW_EXCLUSIVE);
1840 
1841 	/* Is this the leader we're looking for? */
1842 	if (leader->pid == pid && leader->lockGroupLeader == leader)
1843 	{
1844 		/* OK, join the group */
1845 		ok = true;
1846 		MyProc->lockGroupLeader = leader;
1847 		dlist_push_tail(&leader->lockGroupMembers, &MyProc->lockGroupLink);
1848 	}
1849 	LWLockRelease(leader_lwlock);
1850 
1851 	return ok;
1852 }
1853