1 /*-------------------------------------------------------------------------
2  *
3  * parse_clause.c
4  *	  handle clauses in parser
5  *
6  * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *	  src/backend/parser/parse_clause.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 
16 #include "postgres.h"
17 
18 #include "miscadmin.h"
19 
20 #include "access/heapam.h"
21 #include "access/tsmapi.h"
22 #include "catalog/catalog.h"
23 #include "catalog/heap.h"
24 #include "catalog/pg_am.h"
25 #include "catalog/pg_constraint_fn.h"
26 #include "catalog/pg_type.h"
27 #include "commands/defrem.h"
28 #include "nodes/makefuncs.h"
29 #include "nodes/nodeFuncs.h"
30 #include "optimizer/tlist.h"
31 #include "optimizer/var.h"
32 #include "parser/analyze.h"
33 #include "parser/parsetree.h"
34 #include "parser/parser.h"
35 #include "parser/parse_clause.h"
36 #include "parser/parse_coerce.h"
37 #include "parser/parse_collate.h"
38 #include "parser/parse_expr.h"
39 #include "parser/parse_func.h"
40 #include "parser/parse_oper.h"
41 #include "parser/parse_relation.h"
42 #include "parser/parse_target.h"
43 #include "parser/parse_type.h"
44 #include "rewrite/rewriteManip.h"
45 #include "utils/guc.h"
46 #include "utils/lsyscache.h"
47 #include "utils/rel.h"
48 
49 
50 /* Convenience macro for the most common makeNamespaceItem() case */
51 #define makeDefaultNSItem(rte)	makeNamespaceItem(rte, true, true, false, true)
52 
53 static void extractRemainingColumns(List *common_colnames,
54 						List *src_colnames, List *src_colvars,
55 						List **res_colnames, List **res_colvars);
56 static Node *transformJoinUsingClause(ParseState *pstate,
57 						 RangeTblEntry *leftRTE, RangeTblEntry *rightRTE,
58 						 List *leftVars, List *rightVars);
59 static Node *transformJoinOnClause(ParseState *pstate, JoinExpr *j,
60 					  List *namespace);
61 static RangeTblEntry *transformTableEntry(ParseState *pstate, RangeVar *r);
62 static RangeTblEntry *transformCTEReference(ParseState *pstate, RangeVar *r,
63 					  CommonTableExpr *cte, Index levelsup);
64 static RangeTblEntry *transformRangeSubselect(ParseState *pstate,
65 						RangeSubselect *r);
66 static RangeTblEntry *transformRangeFunction(ParseState *pstate,
67 					   RangeFunction *r);
68 static TableSampleClause *transformRangeTableSample(ParseState *pstate,
69 						  RangeTableSample *rts);
70 static Node *transformFromClauseItem(ParseState *pstate, Node *n,
71 						RangeTblEntry **top_rte, int *top_rti,
72 						List **namespace);
73 static Node *buildMergedJoinVar(ParseState *pstate, JoinType jointype,
74 				   Var *l_colvar, Var *r_colvar);
75 static ParseNamespaceItem *makeNamespaceItem(RangeTblEntry *rte,
76 				  bool rel_visible, bool cols_visible,
77 				  bool lateral_only, bool lateral_ok);
78 static void setNamespaceColumnVisibility(List *namespace, bool cols_visible);
79 static void setNamespaceLateralState(List *namespace,
80 						 bool lateral_only, bool lateral_ok);
81 static void checkExprIsVarFree(ParseState *pstate, Node *n,
82 				   const char *constructName);
83 static TargetEntry *findTargetlistEntrySQL92(ParseState *pstate, Node *node,
84 						 List **tlist, ParseExprKind exprKind);
85 static TargetEntry *findTargetlistEntrySQL99(ParseState *pstate, Node *node,
86 						 List **tlist, ParseExprKind exprKind);
87 static int get_matching_location(int sortgroupref,
88 					  List *sortgrouprefs, List *exprs);
89 static List *resolve_unique_index_expr(ParseState *pstate, InferClause *infer,
90 						  Relation heapRel);
91 static List *addTargetToGroupList(ParseState *pstate, TargetEntry *tle,
92 					 List *grouplist, List *targetlist, int location,
93 					 bool resolveUnknown);
94 static WindowClause *findWindowClause(List *wclist, const char *name);
95 static Node *transformFrameOffset(ParseState *pstate, int frameOptions,
96 					 Node *clause);
97 
98 
99 /*
100  * transformFromClause -
101  *	  Process the FROM clause and add items to the query's range table,
102  *	  joinlist, and namespace.
103  *
104  * Note: we assume that the pstate's p_rtable, p_joinlist, and p_namespace
105  * lists were initialized to NIL when the pstate was created.
106  * We will add onto any entries already present --- this is needed for rule
107  * processing, as well as for UPDATE and DELETE.
108  */
109 void
transformFromClause(ParseState * pstate,List * frmList)110 transformFromClause(ParseState *pstate, List *frmList)
111 {
112 	ListCell   *fl;
113 
114 	/*
115 	 * The grammar will have produced a list of RangeVars, RangeSubselects,
116 	 * RangeFunctions, and/or JoinExprs. Transform each one (possibly adding
117 	 * entries to the rtable), check for duplicate refnames, and then add it
118 	 * to the joinlist and namespace.
119 	 *
120 	 * Note we must process the items left-to-right for proper handling of
121 	 * LATERAL references.
122 	 */
123 	foreach(fl, frmList)
124 	{
125 		Node	   *n = lfirst(fl);
126 		RangeTblEntry *rte;
127 		int			rtindex;
128 		List	   *namespace;
129 
130 		n = transformFromClauseItem(pstate, n,
131 									&rte,
132 									&rtindex,
133 									&namespace);
134 
135 		checkNameSpaceConflicts(pstate, pstate->p_namespace, namespace);
136 
137 		/* Mark the new namespace items as visible only to LATERAL */
138 		setNamespaceLateralState(namespace, true, true);
139 
140 		pstate->p_joinlist = lappend(pstate->p_joinlist, n);
141 		pstate->p_namespace = list_concat(pstate->p_namespace, namespace);
142 	}
143 
144 	/*
145 	 * We're done parsing the FROM list, so make all namespace items
146 	 * unconditionally visible.  Note that this will also reset lateral_only
147 	 * for any namespace items that were already present when we were called;
148 	 * but those should have been that way already.
149 	 */
150 	setNamespaceLateralState(pstate->p_namespace, false, true);
151 }
152 
153 /*
154  * setTargetTable
155  *	  Add the target relation of INSERT/UPDATE/DELETE to the range table,
156  *	  and make the special links to it in the ParseState.
157  *
158  *	  We also open the target relation and acquire a write lock on it.
159  *	  This must be done before processing the FROM list, in case the target
160  *	  is also mentioned as a source relation --- we want to be sure to grab
161  *	  the write lock before any read lock.
162  *
163  *	  If alsoSource is true, add the target to the query's joinlist and
164  *	  namespace.  For INSERT, we don't want the target to be joined to;
165  *	  it's a destination of tuples, not a source.   For UPDATE/DELETE,
166  *	  we do need to scan or join the target.  (NOTE: we do not bother
167  *	  to check for namespace conflict; we assume that the namespace was
168  *	  initially empty in these cases.)
169  *
170  *	  Finally, we mark the relation as requiring the permissions specified
171  *	  by requiredPerms.
172  *
173  *	  Returns the rangetable index of the target relation.
174  */
175 int
setTargetTable(ParseState * pstate,RangeVar * relation,bool inh,bool alsoSource,AclMode requiredPerms)176 setTargetTable(ParseState *pstate, RangeVar *relation,
177 			   bool inh, bool alsoSource, AclMode requiredPerms)
178 {
179 	RangeTblEntry *rte;
180 	int			rtindex;
181 
182 	/* Close old target; this could only happen for multi-action rules */
183 	if (pstate->p_target_relation != NULL)
184 		heap_close(pstate->p_target_relation, NoLock);
185 
186 	/*
187 	 * Open target rel and grab suitable lock (which we will hold till end of
188 	 * transaction).
189 	 *
190 	 * free_parsestate() will eventually do the corresponding heap_close(),
191 	 * but *not* release the lock.
192 	 */
193 	pstate->p_target_relation = parserOpenTable(pstate, relation,
194 												RowExclusiveLock);
195 
196 	/*
197 	 * Now build an RTE.
198 	 */
199 	rte = addRangeTableEntryForRelation(pstate, pstate->p_target_relation,
200 										relation->alias, inh, false);
201 	pstate->p_target_rangetblentry = rte;
202 
203 	/* assume new rte is at end */
204 	rtindex = list_length(pstate->p_rtable);
205 	Assert(rte == rt_fetch(rtindex, pstate->p_rtable));
206 
207 	/*
208 	 * Override addRangeTableEntry's default ACL_SELECT permissions check, and
209 	 * instead mark target table as requiring exactly the specified
210 	 * permissions.
211 	 *
212 	 * If we find an explicit reference to the rel later during parse
213 	 * analysis, we will add the ACL_SELECT bit back again; see
214 	 * markVarForSelectPriv and its callers.
215 	 */
216 	rte->requiredPerms = requiredPerms;
217 
218 	/*
219 	 * If UPDATE/DELETE, add table to joinlist and namespace.
220 	 *
221 	 * Note: some callers know that they can find the new ParseNamespaceItem
222 	 * at the end of the pstate->p_namespace list.  This is a bit ugly but not
223 	 * worth complicating this function's signature for.
224 	 */
225 	if (alsoSource)
226 		addRTEtoQuery(pstate, rte, true, true, true);
227 
228 	return rtindex;
229 }
230 
231 /*
232  * Simplify InhOption (yes/no/default) into boolean yes/no.
233  *
234  * The reason we do things this way is that we don't want to examine the
235  * SQL_inheritance option flag until parse_analyze() is run.    Otherwise,
236  * we'd do the wrong thing with query strings that intermix SET commands
237  * with queries.
238  */
239 bool
interpretInhOption(InhOption inhOpt)240 interpretInhOption(InhOption inhOpt)
241 {
242 	switch (inhOpt)
243 	{
244 		case INH_NO:
245 			return false;
246 		case INH_YES:
247 			return true;
248 		case INH_DEFAULT:
249 			return SQL_inheritance;
250 	}
251 	elog(ERROR, "bogus InhOption value: %d", inhOpt);
252 	return false;				/* keep compiler quiet */
253 }
254 
255 /*
256  * Given a relation-options list (of DefElems), return true iff the specified
257  * table/result set should be created with OIDs. This needs to be done after
258  * parsing the query string because the return value can depend upon the
259  * default_with_oids GUC var.
260  *
261  * In some situations, we want to reject an OIDS option even if it's present.
262  * That's (rather messily) handled here rather than reloptions.c, because that
263  * code explicitly punts checking for oids to here.
264  */
265 bool
interpretOidsOption(List * defList,bool allowOids)266 interpretOidsOption(List *defList, bool allowOids)
267 {
268 	ListCell   *cell;
269 
270 	/* Scan list to see if OIDS was included */
271 	foreach(cell, defList)
272 	{
273 		DefElem    *def = (DefElem *) lfirst(cell);
274 
275 		if (def->defnamespace == NULL &&
276 			pg_strcasecmp(def->defname, "oids") == 0)
277 		{
278 			if (!allowOids)
279 				ereport(ERROR,
280 						(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
281 						 errmsg("unrecognized parameter \"%s\"",
282 								def->defname)));
283 			return defGetBoolean(def);
284 		}
285 	}
286 
287 	/* Force no-OIDS result if caller disallows OIDS. */
288 	if (!allowOids)
289 		return false;
290 
291 	/* OIDS option was not specified, so use default. */
292 	return default_with_oids;
293 }
294 
295 /*
296  * Extract all not-in-common columns from column lists of a source table
297  */
298 static void
extractRemainingColumns(List * common_colnames,List * src_colnames,List * src_colvars,List ** res_colnames,List ** res_colvars)299 extractRemainingColumns(List *common_colnames,
300 						List *src_colnames, List *src_colvars,
301 						List **res_colnames, List **res_colvars)
302 {
303 	List	   *new_colnames = NIL;
304 	List	   *new_colvars = NIL;
305 	ListCell   *lnames,
306 			   *lvars;
307 
308 	Assert(list_length(src_colnames) == list_length(src_colvars));
309 
310 	forboth(lnames, src_colnames, lvars, src_colvars)
311 	{
312 		char	   *colname = strVal(lfirst(lnames));
313 		bool		match = false;
314 		ListCell   *cnames;
315 
316 		foreach(cnames, common_colnames)
317 		{
318 			char	   *ccolname = strVal(lfirst(cnames));
319 
320 			if (strcmp(colname, ccolname) == 0)
321 			{
322 				match = true;
323 				break;
324 			}
325 		}
326 
327 		if (!match)
328 		{
329 			new_colnames = lappend(new_colnames, lfirst(lnames));
330 			new_colvars = lappend(new_colvars, lfirst(lvars));
331 		}
332 	}
333 
334 	*res_colnames = new_colnames;
335 	*res_colvars = new_colvars;
336 }
337 
338 /* transformJoinUsingClause()
339  *	  Build a complete ON clause from a partially-transformed USING list.
340  *	  We are given lists of nodes representing left and right match columns.
341  *	  Result is a transformed qualification expression.
342  */
343 static Node *
transformJoinUsingClause(ParseState * pstate,RangeTblEntry * leftRTE,RangeTblEntry * rightRTE,List * leftVars,List * rightVars)344 transformJoinUsingClause(ParseState *pstate,
345 						 RangeTblEntry *leftRTE, RangeTblEntry *rightRTE,
346 						 List *leftVars, List *rightVars)
347 {
348 	Node	   *result;
349 	List	   *andargs = NIL;
350 	ListCell   *lvars,
351 			   *rvars;
352 
353 	/*
354 	 * We cheat a little bit here by building an untransformed operator tree
355 	 * whose leaves are the already-transformed Vars.  This requires collusion
356 	 * from transformExpr(), which normally could be expected to complain
357 	 * about already-transformed subnodes.  However, this does mean that we
358 	 * have to mark the columns as requiring SELECT privilege for ourselves;
359 	 * transformExpr() won't do it.
360 	 */
361 	forboth(lvars, leftVars, rvars, rightVars)
362 	{
363 		Var		   *lvar = (Var *) lfirst(lvars);
364 		Var		   *rvar = (Var *) lfirst(rvars);
365 		A_Expr	   *e;
366 
367 		/* Require read access to the join variables */
368 		markVarForSelectPriv(pstate, lvar, leftRTE);
369 		markVarForSelectPriv(pstate, rvar, rightRTE);
370 
371 		/* Now create the lvar = rvar join condition */
372 		e = makeSimpleA_Expr(AEXPR_OP, "=",
373 							 copyObject(lvar), copyObject(rvar),
374 							 -1);
375 
376 		/* Prepare to combine into an AND clause, if multiple join columns */
377 		andargs = lappend(andargs, e);
378 	}
379 
380 	/* Only need an AND if there's more than one join column */
381 	if (list_length(andargs) == 1)
382 		result = (Node *) linitial(andargs);
383 	else
384 		result = (Node *) makeBoolExpr(AND_EXPR, andargs, -1);
385 
386 	/*
387 	 * Since the references are already Vars, and are certainly from the input
388 	 * relations, we don't have to go through the same pushups that
389 	 * transformJoinOnClause() does.  Just invoke transformExpr() to fix up
390 	 * the operators, and we're done.
391 	 */
392 	result = transformExpr(pstate, result, EXPR_KIND_JOIN_USING);
393 
394 	result = coerce_to_boolean(pstate, result, "JOIN/USING");
395 
396 	return result;
397 }
398 
399 /* transformJoinOnClause()
400  *	  Transform the qual conditions for JOIN/ON.
401  *	  Result is a transformed qualification expression.
402  */
403 static Node *
transformJoinOnClause(ParseState * pstate,JoinExpr * j,List * namespace)404 transformJoinOnClause(ParseState *pstate, JoinExpr *j, List *namespace)
405 {
406 	Node	   *result;
407 	List	   *save_namespace;
408 
409 	/*
410 	 * The namespace that the join expression should see is just the two
411 	 * subtrees of the JOIN plus any outer references from upper pstate
412 	 * levels.  Temporarily set this pstate's namespace accordingly.  (We need
413 	 * not check for refname conflicts, because transformFromClauseItem()
414 	 * already did.)  All namespace items are marked visible regardless of
415 	 * LATERAL state.
416 	 */
417 	setNamespaceLateralState(namespace, false, true);
418 
419 	save_namespace = pstate->p_namespace;
420 	pstate->p_namespace = namespace;
421 
422 	result = transformWhereClause(pstate, j->quals,
423 								  EXPR_KIND_JOIN_ON, "JOIN/ON");
424 
425 	pstate->p_namespace = save_namespace;
426 
427 	return result;
428 }
429 
430 /*
431  * transformTableEntry --- transform a RangeVar (simple relation reference)
432  */
433 static RangeTblEntry *
transformTableEntry(ParseState * pstate,RangeVar * r)434 transformTableEntry(ParseState *pstate, RangeVar *r)
435 {
436 	RangeTblEntry *rte;
437 
438 	/* We need only build a range table entry */
439 	rte = addRangeTableEntry(pstate, r, r->alias,
440 							 interpretInhOption(r->inhOpt), true);
441 
442 	return rte;
443 }
444 
445 /*
446  * transformCTEReference --- transform a RangeVar that references a common
447  * table expression (ie, a sub-SELECT defined in a WITH clause)
448  */
449 static RangeTblEntry *
transformCTEReference(ParseState * pstate,RangeVar * r,CommonTableExpr * cte,Index levelsup)450 transformCTEReference(ParseState *pstate, RangeVar *r,
451 					  CommonTableExpr *cte, Index levelsup)
452 {
453 	RangeTblEntry *rte;
454 
455 	rte = addRangeTableEntryForCTE(pstate, cte, levelsup, r, true);
456 
457 	return rte;
458 }
459 
460 /*
461  * transformRangeSubselect --- transform a sub-SELECT appearing in FROM
462  */
463 static RangeTblEntry *
transformRangeSubselect(ParseState * pstate,RangeSubselect * r)464 transformRangeSubselect(ParseState *pstate, RangeSubselect *r)
465 {
466 	Query	   *query;
467 	RangeTblEntry *rte;
468 
469 	/*
470 	 * We require user to supply an alias for a subselect, per SQL92. To relax
471 	 * this, we'd have to be prepared to gin up a unique alias for an
472 	 * unlabeled subselect.  (This is just elog, not ereport, because the
473 	 * grammar should have enforced it already.  It'd probably be better to
474 	 * report the error here, but we don't have a good error location here.)
475 	 */
476 	if (r->alias == NULL)
477 		elog(ERROR, "subquery in FROM must have an alias");
478 
479 	/*
480 	 * Set p_expr_kind to show this parse level is recursing to a subselect.
481 	 * We can't be nested within any expression, so don't need save-restore
482 	 * logic here.
483 	 */
484 	Assert(pstate->p_expr_kind == EXPR_KIND_NONE);
485 	pstate->p_expr_kind = EXPR_KIND_FROM_SUBSELECT;
486 
487 	/*
488 	 * If the subselect is LATERAL, make lateral_only names of this level
489 	 * visible to it.  (LATERAL can't nest within a single pstate level, so we
490 	 * don't need save/restore logic here.)
491 	 */
492 	Assert(!pstate->p_lateral_active);
493 	pstate->p_lateral_active = r->lateral;
494 
495 	/*
496 	 * Analyze and transform the subquery.
497 	 */
498 	query = parse_sub_analyze(r->subquery, pstate, NULL,
499 							  isLockedRefname(pstate, r->alias->aliasname));
500 
501 	/* Restore state */
502 	pstate->p_lateral_active = false;
503 	pstate->p_expr_kind = EXPR_KIND_NONE;
504 
505 	/*
506 	 * Check that we got something reasonable.  Many of these conditions are
507 	 * impossible given restrictions of the grammar, but check 'em anyway.
508 	 */
509 	if (!IsA(query, Query) ||
510 		query->commandType != CMD_SELECT ||
511 		query->utilityStmt != NULL)
512 		elog(ERROR, "unexpected non-SELECT command in subquery in FROM");
513 
514 	/*
515 	 * OK, build an RTE for the subquery.
516 	 */
517 	rte = addRangeTableEntryForSubquery(pstate,
518 										query,
519 										r->alias,
520 										r->lateral,
521 										true);
522 
523 	return rte;
524 }
525 
526 
527 /*
528  * transformRangeFunction --- transform a function call appearing in FROM
529  */
530 static RangeTblEntry *
transformRangeFunction(ParseState * pstate,RangeFunction * r)531 transformRangeFunction(ParseState *pstate, RangeFunction *r)
532 {
533 	List	   *funcexprs = NIL;
534 	List	   *funcnames = NIL;
535 	List	   *coldeflists = NIL;
536 	bool		is_lateral;
537 	RangeTblEntry *rte;
538 	ListCell   *lc;
539 
540 	/*
541 	 * We make lateral_only names of this level visible, whether or not the
542 	 * RangeFunction is explicitly marked LATERAL.  This is needed for SQL
543 	 * spec compliance in the case of UNNEST(), and seems useful on
544 	 * convenience grounds for all functions in FROM.
545 	 *
546 	 * (LATERAL can't nest within a single pstate level, so we don't need
547 	 * save/restore logic here.)
548 	 */
549 	Assert(!pstate->p_lateral_active);
550 	pstate->p_lateral_active = true;
551 
552 	/*
553 	 * Transform the raw expressions.
554 	 *
555 	 * While transforming, also save function names for possible use as alias
556 	 * and column names.  We use the same transformation rules as for a SELECT
557 	 * output expression.  For a FuncCall node, the result will be the
558 	 * function name, but it is possible for the grammar to hand back other
559 	 * node types.
560 	 *
561 	 * We have to get this info now, because FigureColname only works on raw
562 	 * parsetrees.  Actually deciding what to do with the names is left up to
563 	 * addRangeTableEntryForFunction.
564 	 *
565 	 * Likewise, collect column definition lists if there were any.  But
566 	 * complain if we find one here and the RangeFunction has one too.
567 	 */
568 	foreach(lc, r->functions)
569 	{
570 		List	   *pair = (List *) lfirst(lc);
571 		Node	   *fexpr;
572 		List	   *coldeflist;
573 
574 		/* Disassemble the function-call/column-def-list pairs */
575 		Assert(list_length(pair) == 2);
576 		fexpr = (Node *) linitial(pair);
577 		coldeflist = (List *) lsecond(pair);
578 
579 		/*
580 		 * If we find a function call unnest() with more than one argument and
581 		 * no special decoration, transform it into separate unnest() calls on
582 		 * each argument.  This is a kluge, for sure, but it's less nasty than
583 		 * other ways of implementing the SQL-standard UNNEST() syntax.
584 		 *
585 		 * If there is any decoration (including a coldeflist), we don't
586 		 * transform, which probably means a no-such-function error later.  We
587 		 * could alternatively throw an error right now, but that doesn't seem
588 		 * tremendously helpful.  If someone is using any such decoration,
589 		 * then they're not using the SQL-standard syntax, and they're more
590 		 * likely expecting an un-tweaked function call.
591 		 *
592 		 * Note: the transformation changes a non-schema-qualified unnest()
593 		 * function name into schema-qualified pg_catalog.unnest().  This
594 		 * choice is also a bit debatable, but it seems reasonable to force
595 		 * use of built-in unnest() when we make this transformation.
596 		 */
597 		if (IsA(fexpr, FuncCall))
598 		{
599 			FuncCall   *fc = (FuncCall *) fexpr;
600 
601 			if (list_length(fc->funcname) == 1 &&
602 				strcmp(strVal(linitial(fc->funcname)), "unnest") == 0 &&
603 				list_length(fc->args) > 1 &&
604 				fc->agg_order == NIL &&
605 				fc->agg_filter == NULL &&
606 				!fc->agg_star &&
607 				!fc->agg_distinct &&
608 				!fc->func_variadic &&
609 				fc->over == NULL &&
610 				coldeflist == NIL)
611 			{
612 				ListCell   *lc;
613 
614 				foreach(lc, fc->args)
615 				{
616 					Node	   *arg = (Node *) lfirst(lc);
617 					FuncCall   *newfc;
618 
619 					newfc = makeFuncCall(SystemFuncName("unnest"),
620 										 list_make1(arg),
621 										 fc->location);
622 
623 					funcexprs = lappend(funcexprs,
624 										transformExpr(pstate, (Node *) newfc,
625 												   EXPR_KIND_FROM_FUNCTION));
626 
627 					funcnames = lappend(funcnames,
628 										FigureColname((Node *) newfc));
629 
630 					/* coldeflist is empty, so no error is possible */
631 
632 					coldeflists = lappend(coldeflists, coldeflist);
633 				}
634 				continue;		/* done with this function item */
635 			}
636 		}
637 
638 		/* normal case ... */
639 		funcexprs = lappend(funcexprs,
640 							transformExpr(pstate, fexpr,
641 										  EXPR_KIND_FROM_FUNCTION));
642 
643 		funcnames = lappend(funcnames,
644 							FigureColname(fexpr));
645 
646 		if (coldeflist && r->coldeflist)
647 			ereport(ERROR,
648 					(errcode(ERRCODE_SYNTAX_ERROR),
649 					 errmsg("multiple column definition lists are not allowed for the same function"),
650 					 parser_errposition(pstate,
651 									 exprLocation((Node *) r->coldeflist))));
652 
653 		coldeflists = lappend(coldeflists, coldeflist);
654 	}
655 
656 	pstate->p_lateral_active = false;
657 
658 	/*
659 	 * We must assign collations now so that the RTE exposes correct collation
660 	 * info for Vars created from it.
661 	 */
662 	assign_list_collations(pstate, funcexprs);
663 
664 	/*
665 	 * Install the top-level coldeflist if there was one (we already checked
666 	 * that there was no conflicting per-function coldeflist).
667 	 *
668 	 * We only allow this when there's a single function (even after UNNEST
669 	 * expansion) and no WITH ORDINALITY.  The reason for the latter
670 	 * restriction is that it's not real clear whether the ordinality column
671 	 * should be in the coldeflist, and users are too likely to make mistakes
672 	 * in one direction or the other.  Putting the coldeflist inside ROWS
673 	 * FROM() is much clearer in this case.
674 	 */
675 	if (r->coldeflist)
676 	{
677 		if (list_length(funcexprs) != 1)
678 		{
679 			if (r->is_rowsfrom)
680 				ereport(ERROR,
681 						(errcode(ERRCODE_SYNTAX_ERROR),
682 						 errmsg("ROWS FROM() with multiple functions cannot have a column definition list"),
683 						 errhint("Put a separate column definition list for each function inside ROWS FROM()."),
684 						 parser_errposition(pstate,
685 									 exprLocation((Node *) r->coldeflist))));
686 			else
687 				ereport(ERROR,
688 						(errcode(ERRCODE_SYNTAX_ERROR),
689 						 errmsg("UNNEST() with multiple arguments cannot have a column definition list"),
690 						 errhint("Use separate UNNEST() calls inside ROWS FROM(), and attach a column definition list to each one."),
691 						 parser_errposition(pstate,
692 									 exprLocation((Node *) r->coldeflist))));
693 		}
694 		if (r->ordinality)
695 			ereport(ERROR,
696 					(errcode(ERRCODE_SYNTAX_ERROR),
697 					 errmsg("WITH ORDINALITY cannot be used with a column definition list"),
698 			   errhint("Put the column definition list inside ROWS FROM()."),
699 					 parser_errposition(pstate,
700 									 exprLocation((Node *) r->coldeflist))));
701 
702 		coldeflists = list_make1(r->coldeflist);
703 	}
704 
705 	/*
706 	 * Mark the RTE as LATERAL if the user said LATERAL explicitly, or if
707 	 * there are any lateral cross-references in it.
708 	 */
709 	is_lateral = r->lateral || contain_vars_of_level((Node *) funcexprs, 0);
710 
711 	/*
712 	 * OK, build an RTE for the function.
713 	 */
714 	rte = addRangeTableEntryForFunction(pstate,
715 										funcnames, funcexprs, coldeflists,
716 										r, is_lateral, true);
717 
718 	return rte;
719 }
720 
721 /*
722  * transformRangeTableSample --- transform a TABLESAMPLE clause
723  *
724  * Caller has already transformed rts->relation, we just have to validate
725  * the remaining fields and create a TableSampleClause node.
726  */
727 static TableSampleClause *
transformRangeTableSample(ParseState * pstate,RangeTableSample * rts)728 transformRangeTableSample(ParseState *pstate, RangeTableSample *rts)
729 {
730 	TableSampleClause *tablesample;
731 	Oid			handlerOid;
732 	Oid			funcargtypes[1];
733 	TsmRoutine *tsm;
734 	List	   *fargs;
735 	ListCell   *larg,
736 			   *ltyp;
737 
738 	/*
739 	 * To validate the sample method name, look up the handler function, which
740 	 * has the same name, one dummy INTERNAL argument, and a result type of
741 	 * tsm_handler.  (Note: tablesample method names are not schema-qualified
742 	 * in the SQL standard; but since they are just functions to us, we allow
743 	 * schema qualification to resolve any potential ambiguity.)
744 	 */
745 	funcargtypes[0] = INTERNALOID;
746 
747 	handlerOid = LookupFuncName(rts->method, 1, funcargtypes, true);
748 
749 	/* we want error to complain about no-such-method, not no-such-function */
750 	if (!OidIsValid(handlerOid))
751 		ereport(ERROR,
752 				(errcode(ERRCODE_UNDEFINED_OBJECT),
753 				 errmsg("tablesample method %s does not exist",
754 						NameListToString(rts->method)),
755 				 parser_errposition(pstate, rts->location)));
756 
757 	/* check that handler has correct return type */
758 	if (get_func_rettype(handlerOid) != TSM_HANDLEROID)
759 		ereport(ERROR,
760 				(errcode(ERRCODE_WRONG_OBJECT_TYPE),
761 				 errmsg("function %s must return type %s",
762 						NameListToString(rts->method), "tsm_handler"),
763 				 parser_errposition(pstate, rts->location)));
764 
765 	/* OK, run the handler to get TsmRoutine, for argument type info */
766 	tsm = GetTsmRoutine(handlerOid);
767 
768 	tablesample = makeNode(TableSampleClause);
769 	tablesample->tsmhandler = handlerOid;
770 
771 	/* check user provided the expected number of arguments */
772 	if (list_length(rts->args) != list_length(tsm->parameterTypes))
773 		ereport(ERROR,
774 				(errcode(ERRCODE_INVALID_TABLESAMPLE_ARGUMENT),
775 		  errmsg_plural("tablesample method %s requires %d argument, not %d",
776 						"tablesample method %s requires %d arguments, not %d",
777 						list_length(tsm->parameterTypes),
778 						NameListToString(rts->method),
779 						list_length(tsm->parameterTypes),
780 						list_length(rts->args)),
781 				 parser_errposition(pstate, rts->location)));
782 
783 	/*
784 	 * Transform the arguments, typecasting them as needed.  Note we must also
785 	 * assign collations now, because assign_query_collations() doesn't
786 	 * examine any substructure of RTEs.
787 	 */
788 	fargs = NIL;
789 	forboth(larg, rts->args, ltyp, tsm->parameterTypes)
790 	{
791 		Node	   *arg = (Node *) lfirst(larg);
792 		Oid			argtype = lfirst_oid(ltyp);
793 
794 		arg = transformExpr(pstate, arg, EXPR_KIND_FROM_FUNCTION);
795 		arg = coerce_to_specific_type(pstate, arg, argtype, "TABLESAMPLE");
796 		assign_expr_collations(pstate, arg);
797 		fargs = lappend(fargs, arg);
798 	}
799 	tablesample->args = fargs;
800 
801 	/* Process REPEATABLE (seed) */
802 	if (rts->repeatable != NULL)
803 	{
804 		Node	   *arg;
805 
806 		if (!tsm->repeatable_across_queries)
807 			ereport(ERROR,
808 					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
809 				  errmsg("tablesample method %s does not support REPEATABLE",
810 						 NameListToString(rts->method)),
811 					 parser_errposition(pstate, rts->location)));
812 
813 		arg = transformExpr(pstate, rts->repeatable, EXPR_KIND_FROM_FUNCTION);
814 		arg = coerce_to_specific_type(pstate, arg, FLOAT8OID, "REPEATABLE");
815 		assign_expr_collations(pstate, arg);
816 		tablesample->repeatable = (Expr *) arg;
817 	}
818 	else
819 		tablesample->repeatable = NULL;
820 
821 	return tablesample;
822 }
823 
824 
825 /*
826  * transformFromClauseItem -
827  *	  Transform a FROM-clause item, adding any required entries to the
828  *	  range table list being built in the ParseState, and return the
829  *	  transformed item ready to include in the joinlist.  Also build a
830  *	  ParseNamespaceItem list describing the names exposed by this item.
831  *	  This routine can recurse to handle SQL92 JOIN expressions.
832  *
833  * The function return value is the node to add to the jointree (a
834  * RangeTblRef or JoinExpr).  Additional output parameters are:
835  *
836  * *top_rte: receives the RTE corresponding to the jointree item.
837  * (We could extract this from the function return node, but it saves cycles
838  * to pass it back separately.)
839  *
840  * *top_rti: receives the rangetable index of top_rte.  (Ditto.)
841  *
842  * *namespace: receives a List of ParseNamespaceItems for the RTEs exposed
843  * as table/column names by this item.  (The lateral_only flags in these items
844  * are indeterminate and should be explicitly set by the caller before use.)
845  */
846 static Node *
transformFromClauseItem(ParseState * pstate,Node * n,RangeTblEntry ** top_rte,int * top_rti,List ** namespace)847 transformFromClauseItem(ParseState *pstate, Node *n,
848 						RangeTblEntry **top_rte, int *top_rti,
849 						List **namespace)
850 {
851 	if (IsA(n, RangeVar))
852 	{
853 		/* Plain relation reference, or perhaps a CTE reference */
854 		RangeVar   *rv = (RangeVar *) n;
855 		RangeTblRef *rtr;
856 		RangeTblEntry *rte = NULL;
857 		int			rtindex;
858 
859 		/* if it is an unqualified name, it might be a CTE reference */
860 		if (!rv->schemaname)
861 		{
862 			CommonTableExpr *cte;
863 			Index		levelsup;
864 
865 			cte = scanNameSpaceForCTE(pstate, rv->relname, &levelsup);
866 			if (cte)
867 				rte = transformCTEReference(pstate, rv, cte, levelsup);
868 		}
869 
870 		/* if not found as a CTE, must be a table reference */
871 		if (!rte)
872 			rte = transformTableEntry(pstate, rv);
873 
874 		/* assume new rte is at end */
875 		rtindex = list_length(pstate->p_rtable);
876 		Assert(rte == rt_fetch(rtindex, pstate->p_rtable));
877 		*top_rte = rte;
878 		*top_rti = rtindex;
879 		*namespace = list_make1(makeDefaultNSItem(rte));
880 		rtr = makeNode(RangeTblRef);
881 		rtr->rtindex = rtindex;
882 		return (Node *) rtr;
883 	}
884 	else if (IsA(n, RangeSubselect))
885 	{
886 		/* sub-SELECT is like a plain relation */
887 		RangeTblRef *rtr;
888 		RangeTblEntry *rte;
889 		int			rtindex;
890 
891 		rte = transformRangeSubselect(pstate, (RangeSubselect *) n);
892 		/* assume new rte is at end */
893 		rtindex = list_length(pstate->p_rtable);
894 		Assert(rte == rt_fetch(rtindex, pstate->p_rtable));
895 		*top_rte = rte;
896 		*top_rti = rtindex;
897 		*namespace = list_make1(makeDefaultNSItem(rte));
898 		rtr = makeNode(RangeTblRef);
899 		rtr->rtindex = rtindex;
900 		return (Node *) rtr;
901 	}
902 	else if (IsA(n, RangeFunction))
903 	{
904 		/* function is like a plain relation */
905 		RangeTblRef *rtr;
906 		RangeTblEntry *rte;
907 		int			rtindex;
908 
909 		rte = transformRangeFunction(pstate, (RangeFunction *) n);
910 		/* assume new rte is at end */
911 		rtindex = list_length(pstate->p_rtable);
912 		Assert(rte == rt_fetch(rtindex, pstate->p_rtable));
913 		*top_rte = rte;
914 		*top_rti = rtindex;
915 		*namespace = list_make1(makeDefaultNSItem(rte));
916 		rtr = makeNode(RangeTblRef);
917 		rtr->rtindex = rtindex;
918 		return (Node *) rtr;
919 	}
920 	else if (IsA(n, RangeTableSample))
921 	{
922 		/* TABLESAMPLE clause (wrapping some other valid FROM node) */
923 		RangeTableSample *rts = (RangeTableSample *) n;
924 		Node	   *rel;
925 		RangeTblRef *rtr;
926 		RangeTblEntry *rte;
927 
928 		/* Recursively transform the contained relation */
929 		rel = transformFromClauseItem(pstate, rts->relation,
930 									  top_rte, top_rti, namespace);
931 		/* Currently, grammar could only return a RangeVar as contained rel */
932 		Assert(IsA(rel, RangeTblRef));
933 		rtr = (RangeTblRef *) rel;
934 		rte = rt_fetch(rtr->rtindex, pstate->p_rtable);
935 		/* We only support this on plain relations and matviews */
936 		if (rte->relkind != RELKIND_RELATION &&
937 			rte->relkind != RELKIND_MATVIEW)
938 			ereport(ERROR,
939 					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
940 					 errmsg("TABLESAMPLE clause can only be applied to tables and materialized views"),
941 				   parser_errposition(pstate, exprLocation(rts->relation))));
942 
943 		/* Transform TABLESAMPLE details and attach to the RTE */
944 		rte->tablesample = transformRangeTableSample(pstate, rts);
945 		return (Node *) rtr;
946 	}
947 	else if (IsA(n, JoinExpr))
948 	{
949 		/* A newfangled join expression */
950 		JoinExpr   *j = (JoinExpr *) n;
951 		RangeTblEntry *l_rte;
952 		RangeTblEntry *r_rte;
953 		int			l_rtindex;
954 		int			r_rtindex;
955 		List	   *l_namespace,
956 				   *r_namespace,
957 				   *my_namespace,
958 				   *l_colnames,
959 				   *r_colnames,
960 				   *res_colnames,
961 				   *l_colvars,
962 				   *r_colvars,
963 				   *res_colvars;
964 		bool		lateral_ok;
965 		int			sv_namespace_length;
966 		RangeTblEntry *rte;
967 		int			k;
968 
969 		/*
970 		 * Recursively process the left subtree, then the right.  We must do
971 		 * it in this order for correct visibility of LATERAL references.
972 		 */
973 		j->larg = transformFromClauseItem(pstate, j->larg,
974 										  &l_rte,
975 										  &l_rtindex,
976 										  &l_namespace);
977 
978 		/*
979 		 * Make the left-side RTEs available for LATERAL access within the
980 		 * right side, by temporarily adding them to the pstate's namespace
981 		 * list.  Per SQL:2008, if the join type is not INNER or LEFT then the
982 		 * left-side names must still be exposed, but it's an error to
983 		 * reference them.  (Stupid design, but that's what it says.)  Hence,
984 		 * we always push them into the namespace, but mark them as not
985 		 * lateral_ok if the jointype is wrong.
986 		 *
987 		 * Notice that we don't require the merged namespace list to be
988 		 * conflict-free.  See the comments for scanNameSpaceForRefname().
989 		 *
990 		 * NB: this coding relies on the fact that list_concat is not
991 		 * destructive to its second argument.
992 		 */
993 		lateral_ok = (j->jointype == JOIN_INNER || j->jointype == JOIN_LEFT);
994 		setNamespaceLateralState(l_namespace, true, lateral_ok);
995 
996 		sv_namespace_length = list_length(pstate->p_namespace);
997 		pstate->p_namespace = list_concat(pstate->p_namespace, l_namespace);
998 
999 		/* And now we can process the RHS */
1000 		j->rarg = transformFromClauseItem(pstate, j->rarg,
1001 										  &r_rte,
1002 										  &r_rtindex,
1003 										  &r_namespace);
1004 
1005 		/* Remove the left-side RTEs from the namespace list again */
1006 		pstate->p_namespace = list_truncate(pstate->p_namespace,
1007 											sv_namespace_length);
1008 
1009 		/*
1010 		 * Check for conflicting refnames in left and right subtrees. Must do
1011 		 * this because higher levels will assume I hand back a self-
1012 		 * consistent namespace list.
1013 		 */
1014 		checkNameSpaceConflicts(pstate, l_namespace, r_namespace);
1015 
1016 		/*
1017 		 * Generate combined namespace info for possible use below.
1018 		 */
1019 		my_namespace = list_concat(l_namespace, r_namespace);
1020 
1021 		/*
1022 		 * Extract column name and var lists from both subtrees
1023 		 *
1024 		 * Note: expandRTE returns new lists, safe for me to modify
1025 		 */
1026 		expandRTE(l_rte, l_rtindex, 0, -1, false,
1027 				  &l_colnames, &l_colvars);
1028 		expandRTE(r_rte, r_rtindex, 0, -1, false,
1029 				  &r_colnames, &r_colvars);
1030 
1031 		/*
1032 		 * Natural join does not explicitly specify columns; must generate
1033 		 * columns to join. Need to run through the list of columns from each
1034 		 * table or join result and match up the column names. Use the first
1035 		 * table, and check every column in the second table for a match.
1036 		 * (We'll check that the matches were unique later on.) The result of
1037 		 * this step is a list of column names just like an explicitly-written
1038 		 * USING list.
1039 		 */
1040 		if (j->isNatural)
1041 		{
1042 			List	   *rlist = NIL;
1043 			ListCell   *lx,
1044 					   *rx;
1045 
1046 			Assert(j->usingClause == NIL);		/* shouldn't have USING() too */
1047 
1048 			foreach(lx, l_colnames)
1049 			{
1050 				char	   *l_colname = strVal(lfirst(lx));
1051 				Value	   *m_name = NULL;
1052 
1053 				foreach(rx, r_colnames)
1054 				{
1055 					char	   *r_colname = strVal(lfirst(rx));
1056 
1057 					if (strcmp(l_colname, r_colname) == 0)
1058 					{
1059 						m_name = makeString(l_colname);
1060 						break;
1061 					}
1062 				}
1063 
1064 				/* matched a right column? then keep as join column... */
1065 				if (m_name != NULL)
1066 					rlist = lappend(rlist, m_name);
1067 			}
1068 
1069 			j->usingClause = rlist;
1070 		}
1071 
1072 		/*
1073 		 * Now transform the join qualifications, if any.
1074 		 */
1075 		res_colnames = NIL;
1076 		res_colvars = NIL;
1077 
1078 		if (j->usingClause)
1079 		{
1080 			/*
1081 			 * JOIN/USING (or NATURAL JOIN, as transformed above). Transform
1082 			 * the list into an explicit ON-condition, and generate a list of
1083 			 * merged result columns.
1084 			 */
1085 			List	   *ucols = j->usingClause;
1086 			List	   *l_usingvars = NIL;
1087 			List	   *r_usingvars = NIL;
1088 			ListCell   *ucol;
1089 
1090 			Assert(j->quals == NULL);	/* shouldn't have ON() too */
1091 
1092 			foreach(ucol, ucols)
1093 			{
1094 				char	   *u_colname = strVal(lfirst(ucol));
1095 				ListCell   *col;
1096 				int			ndx;
1097 				int			l_index = -1;
1098 				int			r_index = -1;
1099 				Var		   *l_colvar,
1100 						   *r_colvar;
1101 
1102 				/* Check for USING(foo,foo) */
1103 				foreach(col, res_colnames)
1104 				{
1105 					char	   *res_colname = strVal(lfirst(col));
1106 
1107 					if (strcmp(res_colname, u_colname) == 0)
1108 						ereport(ERROR,
1109 								(errcode(ERRCODE_DUPLICATE_COLUMN),
1110 								 errmsg("column name \"%s\" appears more than once in USING clause",
1111 										u_colname)));
1112 				}
1113 
1114 				/* Find it in left input */
1115 				ndx = 0;
1116 				foreach(col, l_colnames)
1117 				{
1118 					char	   *l_colname = strVal(lfirst(col));
1119 
1120 					if (strcmp(l_colname, u_colname) == 0)
1121 					{
1122 						if (l_index >= 0)
1123 							ereport(ERROR,
1124 									(errcode(ERRCODE_AMBIGUOUS_COLUMN),
1125 									 errmsg("common column name \"%s\" appears more than once in left table",
1126 											u_colname)));
1127 						l_index = ndx;
1128 					}
1129 					ndx++;
1130 				}
1131 				if (l_index < 0)
1132 					ereport(ERROR,
1133 							(errcode(ERRCODE_UNDEFINED_COLUMN),
1134 							 errmsg("column \"%s\" specified in USING clause does not exist in left table",
1135 									u_colname)));
1136 
1137 				/* Find it in right input */
1138 				ndx = 0;
1139 				foreach(col, r_colnames)
1140 				{
1141 					char	   *r_colname = strVal(lfirst(col));
1142 
1143 					if (strcmp(r_colname, u_colname) == 0)
1144 					{
1145 						if (r_index >= 0)
1146 							ereport(ERROR,
1147 									(errcode(ERRCODE_AMBIGUOUS_COLUMN),
1148 									 errmsg("common column name \"%s\" appears more than once in right table",
1149 											u_colname)));
1150 						r_index = ndx;
1151 					}
1152 					ndx++;
1153 				}
1154 				if (r_index < 0)
1155 					ereport(ERROR,
1156 							(errcode(ERRCODE_UNDEFINED_COLUMN),
1157 							 errmsg("column \"%s\" specified in USING clause does not exist in right table",
1158 									u_colname)));
1159 
1160 				l_colvar = list_nth(l_colvars, l_index);
1161 				l_usingvars = lappend(l_usingvars, l_colvar);
1162 				r_colvar = list_nth(r_colvars, r_index);
1163 				r_usingvars = lappend(r_usingvars, r_colvar);
1164 
1165 				res_colnames = lappend(res_colnames, lfirst(ucol));
1166 				res_colvars = lappend(res_colvars,
1167 									  buildMergedJoinVar(pstate,
1168 														 j->jointype,
1169 														 l_colvar,
1170 														 r_colvar));
1171 			}
1172 
1173 			j->quals = transformJoinUsingClause(pstate,
1174 												l_rte,
1175 												r_rte,
1176 												l_usingvars,
1177 												r_usingvars);
1178 		}
1179 		else if (j->quals)
1180 		{
1181 			/* User-written ON-condition; transform it */
1182 			j->quals = transformJoinOnClause(pstate, j, my_namespace);
1183 		}
1184 		else
1185 		{
1186 			/* CROSS JOIN: no quals */
1187 		}
1188 
1189 		/* Add remaining columns from each side to the output columns */
1190 		extractRemainingColumns(res_colnames,
1191 								l_colnames, l_colvars,
1192 								&l_colnames, &l_colvars);
1193 		extractRemainingColumns(res_colnames,
1194 								r_colnames, r_colvars,
1195 								&r_colnames, &r_colvars);
1196 		res_colnames = list_concat(res_colnames, l_colnames);
1197 		res_colvars = list_concat(res_colvars, l_colvars);
1198 		res_colnames = list_concat(res_colnames, r_colnames);
1199 		res_colvars = list_concat(res_colvars, r_colvars);
1200 
1201 		/*
1202 		 * Check alias (AS clause), if any.
1203 		 */
1204 		if (j->alias)
1205 		{
1206 			if (j->alias->colnames != NIL)
1207 			{
1208 				if (list_length(j->alias->colnames) > list_length(res_colnames))
1209 					ereport(ERROR,
1210 							(errcode(ERRCODE_SYNTAX_ERROR),
1211 							 errmsg("column alias list for \"%s\" has too many entries",
1212 									j->alias->aliasname)));
1213 			}
1214 		}
1215 
1216 		/*
1217 		 * Now build an RTE for the result of the join
1218 		 */
1219 		rte = addRangeTableEntryForJoin(pstate,
1220 										res_colnames,
1221 										j->jointype,
1222 										res_colvars,
1223 										j->alias,
1224 										true);
1225 
1226 		/* assume new rte is at end */
1227 		j->rtindex = list_length(pstate->p_rtable);
1228 		Assert(rte == rt_fetch(j->rtindex, pstate->p_rtable));
1229 
1230 		*top_rte = rte;
1231 		*top_rti = j->rtindex;
1232 
1233 		/* make a matching link to the JoinExpr for later use */
1234 		for (k = list_length(pstate->p_joinexprs) + 1; k < j->rtindex; k++)
1235 			pstate->p_joinexprs = lappend(pstate->p_joinexprs, NULL);
1236 		pstate->p_joinexprs = lappend(pstate->p_joinexprs, j);
1237 		Assert(list_length(pstate->p_joinexprs) == j->rtindex);
1238 
1239 		/*
1240 		 * Prepare returned namespace list.  If the JOIN has an alias then it
1241 		 * hides the contained RTEs completely; otherwise, the contained RTEs
1242 		 * are still visible as table names, but are not visible for
1243 		 * unqualified column-name access.
1244 		 *
1245 		 * Note: if there are nested alias-less JOINs, the lower-level ones
1246 		 * will remain in the list although they have neither p_rel_visible
1247 		 * nor p_cols_visible set.  We could delete such list items, but it's
1248 		 * unclear that it's worth expending cycles to do so.
1249 		 */
1250 		if (j->alias != NULL)
1251 			my_namespace = NIL;
1252 		else
1253 			setNamespaceColumnVisibility(my_namespace, false);
1254 
1255 		/*
1256 		 * The join RTE itself is always made visible for unqualified column
1257 		 * names.  It's visible as a relation name only if it has an alias.
1258 		 */
1259 		*namespace = lappend(my_namespace,
1260 							 makeNamespaceItem(rte,
1261 											   (j->alias != NULL),
1262 											   true,
1263 											   false,
1264 											   true));
1265 
1266 		return (Node *) j;
1267 	}
1268 	else
1269 		elog(ERROR, "unrecognized node type: %d", (int) nodeTag(n));
1270 	return NULL;				/* can't get here, keep compiler quiet */
1271 }
1272 
1273 /*
1274  * buildMergedJoinVar -
1275  *	  generate a suitable replacement expression for a merged join column
1276  */
1277 static Node *
buildMergedJoinVar(ParseState * pstate,JoinType jointype,Var * l_colvar,Var * r_colvar)1278 buildMergedJoinVar(ParseState *pstate, JoinType jointype,
1279 				   Var *l_colvar, Var *r_colvar)
1280 {
1281 	Oid			outcoltype;
1282 	int32		outcoltypmod;
1283 	Node	   *l_node,
1284 			   *r_node,
1285 			   *res_node;
1286 
1287 	/*
1288 	 * Choose output type if input types are dissimilar.
1289 	 */
1290 	outcoltype = l_colvar->vartype;
1291 	outcoltypmod = l_colvar->vartypmod;
1292 	if (outcoltype != r_colvar->vartype)
1293 	{
1294 		outcoltype = select_common_type(pstate,
1295 										list_make2(l_colvar, r_colvar),
1296 										"JOIN/USING",
1297 										NULL);
1298 		outcoltypmod = -1;		/* ie, unknown */
1299 	}
1300 	else if (outcoltypmod != r_colvar->vartypmod)
1301 	{
1302 		/* same type, but not same typmod */
1303 		outcoltypmod = -1;		/* ie, unknown */
1304 	}
1305 
1306 	/*
1307 	 * Insert coercion functions if needed.  Note that a difference in typmod
1308 	 * can only happen if input has typmod but outcoltypmod is -1. In that
1309 	 * case we insert a RelabelType to clearly mark that result's typmod is
1310 	 * not same as input.  We never need coerce_type_typmod.
1311 	 */
1312 	if (l_colvar->vartype != outcoltype)
1313 		l_node = coerce_type(pstate, (Node *) l_colvar, l_colvar->vartype,
1314 							 outcoltype, outcoltypmod,
1315 							 COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
1316 	else if (l_colvar->vartypmod != outcoltypmod)
1317 		l_node = (Node *) makeRelabelType((Expr *) l_colvar,
1318 										  outcoltype, outcoltypmod,
1319 										  InvalidOid,	/* fixed below */
1320 										  COERCE_IMPLICIT_CAST);
1321 	else
1322 		l_node = (Node *) l_colvar;
1323 
1324 	if (r_colvar->vartype != outcoltype)
1325 		r_node = coerce_type(pstate, (Node *) r_colvar, r_colvar->vartype,
1326 							 outcoltype, outcoltypmod,
1327 							 COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
1328 	else if (r_colvar->vartypmod != outcoltypmod)
1329 		r_node = (Node *) makeRelabelType((Expr *) r_colvar,
1330 										  outcoltype, outcoltypmod,
1331 										  InvalidOid,	/* fixed below */
1332 										  COERCE_IMPLICIT_CAST);
1333 	else
1334 		r_node = (Node *) r_colvar;
1335 
1336 	/*
1337 	 * Choose what to emit
1338 	 */
1339 	switch (jointype)
1340 	{
1341 		case JOIN_INNER:
1342 
1343 			/*
1344 			 * We can use either var; prefer non-coerced one if available.
1345 			 */
1346 			if (IsA(l_node, Var))
1347 				res_node = l_node;
1348 			else if (IsA(r_node, Var))
1349 				res_node = r_node;
1350 			else
1351 				res_node = l_node;
1352 			break;
1353 		case JOIN_LEFT:
1354 			/* Always use left var */
1355 			res_node = l_node;
1356 			break;
1357 		case JOIN_RIGHT:
1358 			/* Always use right var */
1359 			res_node = r_node;
1360 			break;
1361 		case JOIN_FULL:
1362 			{
1363 				/*
1364 				 * Here we must build a COALESCE expression to ensure that the
1365 				 * join output is non-null if either input is.
1366 				 */
1367 				CoalesceExpr *c = makeNode(CoalesceExpr);
1368 
1369 				c->coalescetype = outcoltype;
1370 				/* coalescecollid will get set below */
1371 				c->args = list_make2(l_node, r_node);
1372 				c->location = -1;
1373 				res_node = (Node *) c;
1374 				break;
1375 			}
1376 		default:
1377 			elog(ERROR, "unrecognized join type: %d", (int) jointype);
1378 			res_node = NULL;	/* keep compiler quiet */
1379 			break;
1380 	}
1381 
1382 	/*
1383 	 * Apply assign_expr_collations to fix up the collation info in the
1384 	 * coercion and CoalesceExpr nodes, if we made any.  This must be done now
1385 	 * so that the join node's alias vars show correct collation info.
1386 	 */
1387 	assign_expr_collations(pstate, res_node);
1388 
1389 	return res_node;
1390 }
1391 
1392 /*
1393  * makeNamespaceItem -
1394  *	  Convenience subroutine to construct a ParseNamespaceItem.
1395  */
1396 static ParseNamespaceItem *
makeNamespaceItem(RangeTblEntry * rte,bool rel_visible,bool cols_visible,bool lateral_only,bool lateral_ok)1397 makeNamespaceItem(RangeTblEntry *rte, bool rel_visible, bool cols_visible,
1398 				  bool lateral_only, bool lateral_ok)
1399 {
1400 	ParseNamespaceItem *nsitem;
1401 
1402 	nsitem = (ParseNamespaceItem *) palloc(sizeof(ParseNamespaceItem));
1403 	nsitem->p_rte = rte;
1404 	nsitem->p_rel_visible = rel_visible;
1405 	nsitem->p_cols_visible = cols_visible;
1406 	nsitem->p_lateral_only = lateral_only;
1407 	nsitem->p_lateral_ok = lateral_ok;
1408 	return nsitem;
1409 }
1410 
1411 /*
1412  * setNamespaceColumnVisibility -
1413  *	  Convenience subroutine to update cols_visible flags in a namespace list.
1414  */
1415 static void
setNamespaceColumnVisibility(List * namespace,bool cols_visible)1416 setNamespaceColumnVisibility(List *namespace, bool cols_visible)
1417 {
1418 	ListCell   *lc;
1419 
1420 	foreach(lc, namespace)
1421 	{
1422 		ParseNamespaceItem *nsitem = (ParseNamespaceItem *) lfirst(lc);
1423 
1424 		nsitem->p_cols_visible = cols_visible;
1425 	}
1426 }
1427 
1428 /*
1429  * setNamespaceLateralState -
1430  *	  Convenience subroutine to update LATERAL flags in a namespace list.
1431  */
1432 static void
setNamespaceLateralState(List * namespace,bool lateral_only,bool lateral_ok)1433 setNamespaceLateralState(List *namespace, bool lateral_only, bool lateral_ok)
1434 {
1435 	ListCell   *lc;
1436 
1437 	foreach(lc, namespace)
1438 	{
1439 		ParseNamespaceItem *nsitem = (ParseNamespaceItem *) lfirst(lc);
1440 
1441 		nsitem->p_lateral_only = lateral_only;
1442 		nsitem->p_lateral_ok = lateral_ok;
1443 	}
1444 }
1445 
1446 
1447 /*
1448  * transformWhereClause -
1449  *	  Transform the qualification and make sure it is of type boolean.
1450  *	  Used for WHERE and allied clauses.
1451  *
1452  * constructName does not affect the semantics, but is used in error messages
1453  */
1454 Node *
transformWhereClause(ParseState * pstate,Node * clause,ParseExprKind exprKind,const char * constructName)1455 transformWhereClause(ParseState *pstate, Node *clause,
1456 					 ParseExprKind exprKind, const char *constructName)
1457 {
1458 	Node	   *qual;
1459 
1460 	if (clause == NULL)
1461 		return NULL;
1462 
1463 	qual = transformExpr(pstate, clause, exprKind);
1464 
1465 	qual = coerce_to_boolean(pstate, qual, constructName);
1466 
1467 	return qual;
1468 }
1469 
1470 
1471 /*
1472  * transformLimitClause -
1473  *	  Transform the expression and make sure it is of type bigint.
1474  *	  Used for LIMIT and allied clauses.
1475  *
1476  * Note: as of Postgres 8.2, LIMIT expressions are expected to yield int8,
1477  * rather than int4 as before.
1478  *
1479  * constructName does not affect the semantics, but is used in error messages
1480  */
1481 Node *
transformLimitClause(ParseState * pstate,Node * clause,ParseExprKind exprKind,const char * constructName)1482 transformLimitClause(ParseState *pstate, Node *clause,
1483 					 ParseExprKind exprKind, const char *constructName)
1484 {
1485 	Node	   *qual;
1486 
1487 	if (clause == NULL)
1488 		return NULL;
1489 
1490 	qual = transformExpr(pstate, clause, exprKind);
1491 
1492 	qual = coerce_to_specific_type(pstate, qual, INT8OID, constructName);
1493 
1494 	/* LIMIT can't refer to any variables of the current query */
1495 	checkExprIsVarFree(pstate, qual, constructName);
1496 
1497 	return qual;
1498 }
1499 
1500 /*
1501  * checkExprIsVarFree
1502  *		Check that given expr has no Vars of the current query level
1503  *		(aggregates and window functions should have been rejected already).
1504  *
1505  * This is used to check expressions that have to have a consistent value
1506  * across all rows of the query, such as a LIMIT.  Arguably it should reject
1507  * volatile functions, too, but we don't do that --- whatever value the
1508  * function gives on first execution is what you get.
1509  *
1510  * constructName does not affect the semantics, but is used in error messages
1511  */
1512 static void
checkExprIsVarFree(ParseState * pstate,Node * n,const char * constructName)1513 checkExprIsVarFree(ParseState *pstate, Node *n, const char *constructName)
1514 {
1515 	if (contain_vars_of_level(n, 0))
1516 	{
1517 		ereport(ERROR,
1518 				(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
1519 		/* translator: %s is name of a SQL construct, eg LIMIT */
1520 				 errmsg("argument of %s must not contain variables",
1521 						constructName),
1522 				 parser_errposition(pstate,
1523 									locate_var_of_level(n, 0))));
1524 	}
1525 }
1526 
1527 
1528 /*
1529  * checkTargetlistEntrySQL92 -
1530  *	  Validate a targetlist entry found by findTargetlistEntrySQL92
1531  *
1532  * When we select a pre-existing tlist entry as a result of syntax such
1533  * as "GROUP BY 1", we have to make sure it is acceptable for use in the
1534  * indicated clause type; transformExpr() will have treated it as a regular
1535  * targetlist item.
1536  */
1537 static void
checkTargetlistEntrySQL92(ParseState * pstate,TargetEntry * tle,ParseExprKind exprKind)1538 checkTargetlistEntrySQL92(ParseState *pstate, TargetEntry *tle,
1539 						  ParseExprKind exprKind)
1540 {
1541 	switch (exprKind)
1542 	{
1543 		case EXPR_KIND_GROUP_BY:
1544 			/* reject aggregates and window functions */
1545 			if (pstate->p_hasAggs &&
1546 				contain_aggs_of_level((Node *) tle->expr, 0))
1547 				ereport(ERROR,
1548 						(errcode(ERRCODE_GROUPING_ERROR),
1549 				/* translator: %s is name of a SQL construct, eg GROUP BY */
1550 						 errmsg("aggregate functions are not allowed in %s",
1551 								ParseExprKindName(exprKind)),
1552 						 parser_errposition(pstate,
1553 							   locate_agg_of_level((Node *) tle->expr, 0))));
1554 			if (pstate->p_hasWindowFuncs &&
1555 				contain_windowfuncs((Node *) tle->expr))
1556 				ereport(ERROR,
1557 						(errcode(ERRCODE_WINDOWING_ERROR),
1558 				/* translator: %s is name of a SQL construct, eg GROUP BY */
1559 						 errmsg("window functions are not allowed in %s",
1560 								ParseExprKindName(exprKind)),
1561 						 parser_errposition(pstate,
1562 									locate_windowfunc((Node *) tle->expr))));
1563 			break;
1564 		case EXPR_KIND_ORDER_BY:
1565 			/* no extra checks needed */
1566 			break;
1567 		case EXPR_KIND_DISTINCT_ON:
1568 			/* no extra checks needed */
1569 			break;
1570 		default:
1571 			elog(ERROR, "unexpected exprKind in checkTargetlistEntrySQL92");
1572 			break;
1573 	}
1574 }
1575 
1576 /*
1577  *	findTargetlistEntrySQL92 -
1578  *	  Returns the targetlist entry matching the given (untransformed) node.
1579  *	  If no matching entry exists, one is created and appended to the target
1580  *	  list as a "resjunk" node.
1581  *
1582  * This function supports the old SQL92 ORDER BY interpretation, where the
1583  * expression is an output column name or number.  If we fail to find a
1584  * match of that sort, we fall through to the SQL99 rules.  For historical
1585  * reasons, Postgres also allows this interpretation for GROUP BY, though
1586  * the standard never did.  However, for GROUP BY we prefer a SQL99 match.
1587  * This function is *not* used for WINDOW definitions.
1588  *
1589  * node		the ORDER BY, GROUP BY, or DISTINCT ON expression to be matched
1590  * tlist	the target list (passed by reference so we can append to it)
1591  * exprKind identifies clause type being processed
1592  */
1593 static TargetEntry *
findTargetlistEntrySQL92(ParseState * pstate,Node * node,List ** tlist,ParseExprKind exprKind)1594 findTargetlistEntrySQL92(ParseState *pstate, Node *node, List **tlist,
1595 						 ParseExprKind exprKind)
1596 {
1597 	ListCell   *tl;
1598 
1599 	/*----------
1600 	 * Handle two special cases as mandated by the SQL92 spec:
1601 	 *
1602 	 * 1. Bare ColumnName (no qualifier or subscripts)
1603 	 *	  For a bare identifier, we search for a matching column name
1604 	 *	  in the existing target list.  Multiple matches are an error
1605 	 *	  unless they refer to identical values; for example,
1606 	 *	  we allow	SELECT a, a FROM table ORDER BY a
1607 	 *	  but not	SELECT a AS b, b FROM table ORDER BY b
1608 	 *	  If no match is found, we fall through and treat the identifier
1609 	 *	  as an expression.
1610 	 *	  For GROUP BY, it is incorrect to match the grouping item against
1611 	 *	  targetlist entries: according to SQL92, an identifier in GROUP BY
1612 	 *	  is a reference to a column name exposed by FROM, not to a target
1613 	 *	  list column.  However, many implementations (including pre-7.0
1614 	 *	  PostgreSQL) accept this anyway.  So for GROUP BY, we look first
1615 	 *	  to see if the identifier matches any FROM column name, and only
1616 	 *	  try for a targetlist name if it doesn't.  This ensures that we
1617 	 *	  adhere to the spec in the case where the name could be both.
1618 	 *	  DISTINCT ON isn't in the standard, so we can do what we like there;
1619 	 *	  we choose to make it work like ORDER BY, on the rather flimsy
1620 	 *	  grounds that ordinary DISTINCT works on targetlist entries.
1621 	 *
1622 	 * 2. IntegerConstant
1623 	 *	  This means to use the n'th item in the existing target list.
1624 	 *	  Note that it would make no sense to order/group/distinct by an
1625 	 *	  actual constant, so this does not create a conflict with SQL99.
1626 	 *	  GROUP BY column-number is not allowed by SQL92, but since
1627 	 *	  the standard has no other behavior defined for this syntax,
1628 	 *	  we may as well accept this common extension.
1629 	 *
1630 	 * Note that pre-existing resjunk targets must not be used in either case,
1631 	 * since the user didn't write them in his SELECT list.
1632 	 *
1633 	 * If neither special case applies, fall through to treat the item as
1634 	 * an expression per SQL99.
1635 	 *----------
1636 	 */
1637 	if (IsA(node, ColumnRef) &&
1638 		list_length(((ColumnRef *) node)->fields) == 1 &&
1639 		IsA(linitial(((ColumnRef *) node)->fields), String))
1640 	{
1641 		char	   *name = strVal(linitial(((ColumnRef *) node)->fields));
1642 		int			location = ((ColumnRef *) node)->location;
1643 
1644 		if (exprKind == EXPR_KIND_GROUP_BY)
1645 		{
1646 			/*
1647 			 * In GROUP BY, we must prefer a match against a FROM-clause
1648 			 * column to one against the targetlist.  Look to see if there is
1649 			 * a matching column.  If so, fall through to use SQL99 rules.
1650 			 * NOTE: if name could refer ambiguously to more than one column
1651 			 * name exposed by FROM, colNameToVar will ereport(ERROR). That's
1652 			 * just what we want here.
1653 			 *
1654 			 * Small tweak for 7.4.3: ignore matches in upper query levels.
1655 			 * This effectively changes the search order for bare names to (1)
1656 			 * local FROM variables, (2) local targetlist aliases, (3) outer
1657 			 * FROM variables, whereas before it was (1) (3) (2). SQL92 and
1658 			 * SQL99 do not allow GROUPing BY an outer reference, so this
1659 			 * breaks no cases that are legal per spec, and it seems a more
1660 			 * self-consistent behavior.
1661 			 */
1662 			if (colNameToVar(pstate, name, true, location) != NULL)
1663 				name = NULL;
1664 		}
1665 
1666 		if (name != NULL)
1667 		{
1668 			TargetEntry *target_result = NULL;
1669 
1670 			foreach(tl, *tlist)
1671 			{
1672 				TargetEntry *tle = (TargetEntry *) lfirst(tl);
1673 
1674 				if (!tle->resjunk &&
1675 					strcmp(tle->resname, name) == 0)
1676 				{
1677 					if (target_result != NULL)
1678 					{
1679 						if (!equal(target_result->expr, tle->expr))
1680 							ereport(ERROR,
1681 									(errcode(ERRCODE_AMBIGUOUS_COLUMN),
1682 
1683 							/*------
1684 							  translator: first %s is name of a SQL construct, eg ORDER BY */
1685 									 errmsg("%s \"%s\" is ambiguous",
1686 											ParseExprKindName(exprKind),
1687 											name),
1688 									 parser_errposition(pstate, location)));
1689 					}
1690 					else
1691 						target_result = tle;
1692 					/* Stay in loop to check for ambiguity */
1693 				}
1694 			}
1695 			if (target_result != NULL)
1696 			{
1697 				/* return the first match, after suitable validation */
1698 				checkTargetlistEntrySQL92(pstate, target_result, exprKind);
1699 				return target_result;
1700 			}
1701 		}
1702 	}
1703 	if (IsA(node, A_Const))
1704 	{
1705 		Value	   *val = &((A_Const *) node)->val;
1706 		int			location = ((A_Const *) node)->location;
1707 		int			targetlist_pos = 0;
1708 		int			target_pos;
1709 
1710 		if (!IsA(val, Integer))
1711 			ereport(ERROR,
1712 					(errcode(ERRCODE_SYNTAX_ERROR),
1713 			/* translator: %s is name of a SQL construct, eg ORDER BY */
1714 					 errmsg("non-integer constant in %s",
1715 							ParseExprKindName(exprKind)),
1716 					 parser_errposition(pstate, location)));
1717 
1718 		target_pos = intVal(val);
1719 		foreach(tl, *tlist)
1720 		{
1721 			TargetEntry *tle = (TargetEntry *) lfirst(tl);
1722 
1723 			if (!tle->resjunk)
1724 			{
1725 				if (++targetlist_pos == target_pos)
1726 				{
1727 					/* return the unique match, after suitable validation */
1728 					checkTargetlistEntrySQL92(pstate, tle, exprKind);
1729 					return tle;
1730 				}
1731 			}
1732 		}
1733 		ereport(ERROR,
1734 				(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
1735 		/* translator: %s is name of a SQL construct, eg ORDER BY */
1736 				 errmsg("%s position %d is not in select list",
1737 						ParseExprKindName(exprKind), target_pos),
1738 				 parser_errposition(pstate, location)));
1739 	}
1740 
1741 	/*
1742 	 * Otherwise, we have an expression, so process it per SQL99 rules.
1743 	 */
1744 	return findTargetlistEntrySQL99(pstate, node, tlist, exprKind);
1745 }
1746 
1747 /*
1748  *	findTargetlistEntrySQL99 -
1749  *	  Returns the targetlist entry matching the given (untransformed) node.
1750  *	  If no matching entry exists, one is created and appended to the target
1751  *	  list as a "resjunk" node.
1752  *
1753  * This function supports the SQL99 interpretation, wherein the expression
1754  * is just an ordinary expression referencing input column names.
1755  *
1756  * node		the ORDER BY, GROUP BY, etc expression to be matched
1757  * tlist	the target list (passed by reference so we can append to it)
1758  * exprKind identifies clause type being processed
1759  */
1760 static TargetEntry *
findTargetlistEntrySQL99(ParseState * pstate,Node * node,List ** tlist,ParseExprKind exprKind)1761 findTargetlistEntrySQL99(ParseState *pstate, Node *node, List **tlist,
1762 						 ParseExprKind exprKind)
1763 {
1764 	TargetEntry *target_result;
1765 	ListCell   *tl;
1766 	Node	   *expr;
1767 
1768 	/*
1769 	 * Convert the untransformed node to a transformed expression, and search
1770 	 * for a match in the tlist.  NOTE: it doesn't really matter whether there
1771 	 * is more than one match.  Also, we are willing to match an existing
1772 	 * resjunk target here, though the SQL92 cases above must ignore resjunk
1773 	 * targets.
1774 	 */
1775 	expr = transformExpr(pstate, node, exprKind);
1776 
1777 	foreach(tl, *tlist)
1778 	{
1779 		TargetEntry *tle = (TargetEntry *) lfirst(tl);
1780 		Node	   *texpr;
1781 
1782 		/*
1783 		 * Ignore any implicit cast on the existing tlist expression.
1784 		 *
1785 		 * This essentially allows the ORDER/GROUP/etc item to adopt the same
1786 		 * datatype previously selected for a textually-equivalent tlist item.
1787 		 * There can't be any implicit cast at top level in an ordinary SELECT
1788 		 * tlist at this stage, but the case does arise with ORDER BY in an
1789 		 * aggregate function.
1790 		 */
1791 		texpr = strip_implicit_coercions((Node *) tle->expr);
1792 
1793 		if (equal(expr, texpr))
1794 			return tle;
1795 	}
1796 
1797 	/*
1798 	 * If no matches, construct a new target entry which is appended to the
1799 	 * end of the target list.  This target is given resjunk = TRUE so that it
1800 	 * will not be projected into the final tuple.
1801 	 */
1802 	target_result = transformTargetEntry(pstate, node, expr, exprKind,
1803 										 NULL, true);
1804 
1805 	*tlist = lappend(*tlist, target_result);
1806 
1807 	return target_result;
1808 }
1809 
1810 /*-------------------------------------------------------------------------
1811  * Flatten out parenthesized sublists in grouping lists, and some cases
1812  * of nested grouping sets.
1813  *
1814  * Inside a grouping set (ROLLUP, CUBE, or GROUPING SETS), we expect the
1815  * content to be nested no more than 2 deep: i.e. ROLLUP((a,b),(c,d)) is
1816  * ok, but ROLLUP((a,(b,c)),d) is flattened to ((a,b,c),d), which we then
1817  * (later) normalize to ((a,b,c),(d)).
1818  *
1819  * CUBE or ROLLUP can be nested inside GROUPING SETS (but not the reverse),
1820  * and we leave that alone if we find it. But if we see GROUPING SETS inside
1821  * GROUPING SETS, we can flatten and normalize as follows:
1822  *	 GROUPING SETS (a, (b,c), GROUPING SETS ((c,d),(e)), (f,g))
1823  * becomes
1824  *	 GROUPING SETS ((a), (b,c), (c,d), (e), (f,g))
1825  *
1826  * This is per the spec's syntax transformations, but these are the only such
1827  * transformations we do in parse analysis, so that queries retain the
1828  * originally specified grouping set syntax for CUBE and ROLLUP as much as
1829  * possible when deparsed. (Full expansion of the result into a list of
1830  * grouping sets is left to the planner.)
1831  *
1832  * When we're done, the resulting list should contain only these possible
1833  * elements:
1834  *	 - an expression
1835  *	 - a CUBE or ROLLUP with a list of expressions nested 2 deep
1836  *	 - a GROUPING SET containing any of:
1837  *		- expression lists
1838  *		- empty grouping sets
1839  *		- CUBE or ROLLUP nodes with lists nested 2 deep
1840  * The return is a new list, but doesn't deep-copy the old nodes except for
1841  * GroupingSet nodes.
1842  *
1843  * As a side effect, flag whether the list has any GroupingSet nodes.
1844  *-------------------------------------------------------------------------
1845  */
1846 static Node *
flatten_grouping_sets(Node * expr,bool toplevel,bool * hasGroupingSets)1847 flatten_grouping_sets(Node *expr, bool toplevel, bool *hasGroupingSets)
1848 {
1849 	/* just in case of pathological input */
1850 	check_stack_depth();
1851 
1852 	if (expr == (Node *) NIL)
1853 		return (Node *) NIL;
1854 
1855 	switch (expr->type)
1856 	{
1857 		case T_RowExpr:
1858 			{
1859 				RowExpr    *r = (RowExpr *) expr;
1860 
1861 				if (r->row_format == COERCE_IMPLICIT_CAST)
1862 					return flatten_grouping_sets((Node *) r->args,
1863 												 false, NULL);
1864 			}
1865 			break;
1866 		case T_GroupingSet:
1867 			{
1868 				GroupingSet *gset = (GroupingSet *) expr;
1869 				ListCell   *l2;
1870 				List	   *result_set = NIL;
1871 
1872 				if (hasGroupingSets)
1873 					*hasGroupingSets = true;
1874 
1875 				/*
1876 				 * at the top level, we skip over all empty grouping sets; the
1877 				 * caller can supply the canonical GROUP BY () if nothing is
1878 				 * left.
1879 				 */
1880 
1881 				if (toplevel && gset->kind == GROUPING_SET_EMPTY)
1882 					return (Node *) NIL;
1883 
1884 				foreach(l2, gset->content)
1885 				{
1886 					Node	   *n1 = lfirst(l2);
1887 					Node	   *n2 = flatten_grouping_sets(n1, false, NULL);
1888 
1889 					if (IsA(n1, GroupingSet) &&
1890 						((GroupingSet *) n1)->kind == GROUPING_SET_SETS)
1891 					{
1892 						result_set = list_concat(result_set, (List *) n2);
1893 					}
1894 					else
1895 						result_set = lappend(result_set, n2);
1896 				}
1897 
1898 				/*
1899 				 * At top level, keep the grouping set node; but if we're in a
1900 				 * nested grouping set, then we need to concat the flattened
1901 				 * result into the outer list if it's simply nested.
1902 				 */
1903 
1904 				if (toplevel || (gset->kind != GROUPING_SET_SETS))
1905 				{
1906 					return (Node *) makeGroupingSet(gset->kind, result_set, gset->location);
1907 				}
1908 				else
1909 					return (Node *) result_set;
1910 			}
1911 		case T_List:
1912 			{
1913 				List	   *result = NIL;
1914 				ListCell   *l;
1915 
1916 				foreach(l, (List *) expr)
1917 				{
1918 					Node	   *n = flatten_grouping_sets(lfirst(l), toplevel, hasGroupingSets);
1919 
1920 					if (n != (Node *) NIL)
1921 					{
1922 						if (IsA(n, List))
1923 							result = list_concat(result, (List *) n);
1924 						else
1925 							result = lappend(result, n);
1926 					}
1927 				}
1928 
1929 				return (Node *) result;
1930 			}
1931 		default:
1932 			break;
1933 	}
1934 
1935 	return expr;
1936 }
1937 
1938 /*
1939  * Transform a single expression within a GROUP BY clause or grouping set.
1940  *
1941  * The expression is added to the targetlist if not already present, and to the
1942  * flatresult list (which will become the groupClause) if not already present
1943  * there.  The sortClause is consulted for operator and sort order hints.
1944  *
1945  * Returns the ressortgroupref of the expression.
1946  *
1947  * flatresult	reference to flat list of SortGroupClause nodes
1948  * seen_local	bitmapset of sortgrouprefs already seen at the local level
1949  * pstate		ParseState
1950  * gexpr		node to transform
1951  * targetlist	reference to TargetEntry list
1952  * sortClause	ORDER BY clause (SortGroupClause nodes)
1953  * exprKind		expression kind
1954  * useSQL99		SQL99 rather than SQL92 syntax
1955  * toplevel		false if within any grouping set
1956  */
1957 static Index
transformGroupClauseExpr(List ** flatresult,Bitmapset * seen_local,ParseState * pstate,Node * gexpr,List ** targetlist,List * sortClause,ParseExprKind exprKind,bool useSQL99,bool toplevel)1958 transformGroupClauseExpr(List **flatresult, Bitmapset *seen_local,
1959 						 ParseState *pstate, Node *gexpr,
1960 						 List **targetlist, List *sortClause,
1961 						 ParseExprKind exprKind, bool useSQL99, bool toplevel)
1962 {
1963 	TargetEntry *tle;
1964 	bool		found = false;
1965 
1966 	if (useSQL99)
1967 		tle = findTargetlistEntrySQL99(pstate, gexpr,
1968 									   targetlist, exprKind);
1969 	else
1970 		tle = findTargetlistEntrySQL92(pstate, gexpr,
1971 									   targetlist, exprKind);
1972 
1973 	if (tle->ressortgroupref > 0)
1974 	{
1975 		ListCell   *sl;
1976 
1977 		/*
1978 		 * Eliminate duplicates (GROUP BY x, x) but only at local level.
1979 		 * (Duplicates in grouping sets can affect the number of returned
1980 		 * rows, so can't be dropped indiscriminately.)
1981 		 *
1982 		 * Since we don't care about anything except the sortgroupref, we can
1983 		 * use a bitmapset rather than scanning lists.
1984 		 */
1985 		if (bms_is_member(tle->ressortgroupref, seen_local))
1986 			return 0;
1987 
1988 		/*
1989 		 * If we're already in the flat clause list, we don't need to consider
1990 		 * adding ourselves again.
1991 		 */
1992 		found = targetIsInSortList(tle, InvalidOid, *flatresult);
1993 		if (found)
1994 			return tle->ressortgroupref;
1995 
1996 		/*
1997 		 * If the GROUP BY tlist entry also appears in ORDER BY, copy operator
1998 		 * info from the (first) matching ORDER BY item.  This means that if
1999 		 * you write something like "GROUP BY foo ORDER BY foo USING <<<", the
2000 		 * GROUP BY operation silently takes on the equality semantics implied
2001 		 * by the ORDER BY.  There are two reasons to do this: it improves the
2002 		 * odds that we can implement both GROUP BY and ORDER BY with a single
2003 		 * sort step, and it allows the user to choose the equality semantics
2004 		 * used by GROUP BY, should she be working with a datatype that has
2005 		 * more than one equality operator.
2006 		 *
2007 		 * If we're in a grouping set, though, we force our requested ordering
2008 		 * to be NULLS LAST, because if we have any hope of using a sorted agg
2009 		 * for the job, we're going to be tacking on generated NULL values
2010 		 * after the corresponding groups. If the user demands nulls first,
2011 		 * another sort step is going to be inevitable, but that's the
2012 		 * planner's problem.
2013 		 */
2014 
2015 		foreach(sl, sortClause)
2016 		{
2017 			SortGroupClause *sc = (SortGroupClause *) lfirst(sl);
2018 
2019 			if (sc->tleSortGroupRef == tle->ressortgroupref)
2020 			{
2021 				SortGroupClause *grpc = copyObject(sc);
2022 
2023 				if (!toplevel)
2024 					grpc->nulls_first = false;
2025 				*flatresult = lappend(*flatresult, grpc);
2026 				found = true;
2027 				break;
2028 			}
2029 		}
2030 	}
2031 
2032 	/*
2033 	 * If no match in ORDER BY, just add it to the result using default
2034 	 * sort/group semantics.
2035 	 */
2036 	if (!found)
2037 		*flatresult = addTargetToGroupList(pstate, tle,
2038 										   *flatresult, *targetlist,
2039 										   exprLocation(gexpr),
2040 										   true);
2041 
2042 	/*
2043 	 * _something_ must have assigned us a sortgroupref by now...
2044 	 */
2045 
2046 	return tle->ressortgroupref;
2047 }
2048 
2049 /*
2050  * Transform a list of expressions within a GROUP BY clause or grouping set.
2051  *
2052  * The list of expressions belongs to a single clause within which duplicates
2053  * can be safely eliminated.
2054  *
2055  * Returns an integer list of ressortgroupref values.
2056  *
2057  * flatresult	reference to flat list of SortGroupClause nodes
2058  * pstate		ParseState
2059  * list			nodes to transform
2060  * targetlist	reference to TargetEntry list
2061  * sortClause	ORDER BY clause (SortGroupClause nodes)
2062  * exprKind		expression kind
2063  * useSQL99		SQL99 rather than SQL92 syntax
2064  * toplevel		false if within any grouping set
2065  */
2066 static List *
transformGroupClauseList(List ** flatresult,ParseState * pstate,List * list,List ** targetlist,List * sortClause,ParseExprKind exprKind,bool useSQL99,bool toplevel)2067 transformGroupClauseList(List **flatresult,
2068 						 ParseState *pstate, List *list,
2069 						 List **targetlist, List *sortClause,
2070 						 ParseExprKind exprKind, bool useSQL99, bool toplevel)
2071 {
2072 	Bitmapset  *seen_local = NULL;
2073 	List	   *result = NIL;
2074 	ListCell   *gl;
2075 
2076 	foreach(gl, list)
2077 	{
2078 		Node	   *gexpr = (Node *) lfirst(gl);
2079 
2080 		Index		ref = transformGroupClauseExpr(flatresult,
2081 												   seen_local,
2082 												   pstate,
2083 												   gexpr,
2084 												   targetlist,
2085 												   sortClause,
2086 												   exprKind,
2087 												   useSQL99,
2088 												   toplevel);
2089 
2090 		if (ref > 0)
2091 		{
2092 			seen_local = bms_add_member(seen_local, ref);
2093 			result = lappend_int(result, ref);
2094 		}
2095 	}
2096 
2097 	return result;
2098 }
2099 
2100 /*
2101  * Transform a grouping set and (recursively) its content.
2102  *
2103  * The grouping set might be a GROUPING SETS node with other grouping sets
2104  * inside it, but SETS within SETS have already been flattened out before
2105  * reaching here.
2106  *
2107  * Returns the transformed node, which now contains SIMPLE nodes with lists
2108  * of ressortgrouprefs rather than expressions.
2109  *
2110  * flatresult	reference to flat list of SortGroupClause nodes
2111  * pstate		ParseState
2112  * gset			grouping set to transform
2113  * targetlist	reference to TargetEntry list
2114  * sortClause	ORDER BY clause (SortGroupClause nodes)
2115  * exprKind		expression kind
2116  * useSQL99		SQL99 rather than SQL92 syntax
2117  * toplevel		false if within any grouping set
2118  */
2119 static Node *
transformGroupingSet(List ** flatresult,ParseState * pstate,GroupingSet * gset,List ** targetlist,List * sortClause,ParseExprKind exprKind,bool useSQL99,bool toplevel)2120 transformGroupingSet(List **flatresult,
2121 					 ParseState *pstate, GroupingSet *gset,
2122 					 List **targetlist, List *sortClause,
2123 					 ParseExprKind exprKind, bool useSQL99, bool toplevel)
2124 {
2125 	ListCell   *gl;
2126 	List	   *content = NIL;
2127 
2128 	Assert(toplevel || gset->kind != GROUPING_SET_SETS);
2129 
2130 	foreach(gl, gset->content)
2131 	{
2132 		Node	   *n = lfirst(gl);
2133 
2134 		if (IsA(n, List))
2135 		{
2136 			List	   *l = transformGroupClauseList(flatresult,
2137 													 pstate, (List *) n,
2138 													 targetlist, sortClause,
2139 												  exprKind, useSQL99, false);
2140 
2141 			content = lappend(content, makeGroupingSet(GROUPING_SET_SIMPLE,
2142 													   l,
2143 													   exprLocation(n)));
2144 		}
2145 		else if (IsA(n, GroupingSet))
2146 		{
2147 			GroupingSet *gset2 = (GroupingSet *) lfirst(gl);
2148 
2149 			content = lappend(content, transformGroupingSet(flatresult,
2150 															pstate, gset2,
2151 													  targetlist, sortClause,
2152 												 exprKind, useSQL99, false));
2153 		}
2154 		else
2155 		{
2156 			Index		ref = transformGroupClauseExpr(flatresult,
2157 													   NULL,
2158 													   pstate,
2159 													   n,
2160 													   targetlist,
2161 													   sortClause,
2162 													   exprKind,
2163 													   useSQL99,
2164 													   false);
2165 
2166 			content = lappend(content, makeGroupingSet(GROUPING_SET_SIMPLE,
2167 													   list_make1_int(ref),
2168 													   exprLocation(n)));
2169 		}
2170 	}
2171 
2172 	/* Arbitrarily cap the size of CUBE, which has exponential growth */
2173 	if (gset->kind == GROUPING_SET_CUBE)
2174 	{
2175 		if (list_length(content) > 12)
2176 			ereport(ERROR,
2177 					(errcode(ERRCODE_TOO_MANY_COLUMNS),
2178 					 errmsg("CUBE is limited to 12 elements"),
2179 					 parser_errposition(pstate, gset->location)));
2180 	}
2181 
2182 	return (Node *) makeGroupingSet(gset->kind, content, gset->location);
2183 }
2184 
2185 
2186 /*
2187  * transformGroupClause -
2188  *	  transform a GROUP BY clause
2189  *
2190  * GROUP BY items will be added to the targetlist (as resjunk columns)
2191  * if not already present, so the targetlist must be passed by reference.
2192  *
2193  * This is also used for window PARTITION BY clauses (which act almost the
2194  * same, but are always interpreted per SQL99 rules).
2195  *
2196  * Grouping sets make this a lot more complex than it was. Our goal here is
2197  * twofold: we make a flat list of SortGroupClause nodes referencing each
2198  * distinct expression used for grouping, with those expressions added to the
2199  * targetlist if needed. At the same time, we build the groupingSets tree,
2200  * which stores only ressortgrouprefs as integer lists inside GroupingSet nodes
2201  * (possibly nested, but limited in depth: a GROUPING_SET_SETS node can contain
2202  * nested SIMPLE, CUBE or ROLLUP nodes, but not more sets - we flatten that
2203  * out; while CUBE and ROLLUP can contain only SIMPLE nodes).
2204  *
2205  * We skip much of the hard work if there are no grouping sets.
2206  *
2207  * One subtlety is that the groupClause list can end up empty while the
2208  * groupingSets list is not; this happens if there are only empty grouping
2209  * sets, or an explicit GROUP BY (). This has the same effect as specifying
2210  * aggregates or a HAVING clause with no GROUP BY; the output is one row per
2211  * grouping set even if the input is empty.
2212  *
2213  * Returns the transformed (flat) groupClause.
2214  *
2215  * pstate		ParseState
2216  * grouplist	clause to transform
2217  * groupingSets reference to list to contain the grouping set tree
2218  * targetlist	reference to TargetEntry list
2219  * sortClause	ORDER BY clause (SortGroupClause nodes)
2220  * exprKind		expression kind
2221  * useSQL99		SQL99 rather than SQL92 syntax
2222  */
2223 List *
transformGroupClause(ParseState * pstate,List * grouplist,List ** groupingSets,List ** targetlist,List * sortClause,ParseExprKind exprKind,bool useSQL99)2224 transformGroupClause(ParseState *pstate, List *grouplist, List **groupingSets,
2225 					 List **targetlist, List *sortClause,
2226 					 ParseExprKind exprKind, bool useSQL99)
2227 {
2228 	List	   *result = NIL;
2229 	List	   *flat_grouplist;
2230 	List	   *gsets = NIL;
2231 	ListCell   *gl;
2232 	bool		hasGroupingSets = false;
2233 	Bitmapset  *seen_local = NULL;
2234 
2235 	/*
2236 	 * Recursively flatten implicit RowExprs. (Technically this is only needed
2237 	 * for GROUP BY, per the syntax rules for grouping sets, but we do it
2238 	 * anyway.)
2239 	 */
2240 	flat_grouplist = (List *) flatten_grouping_sets((Node *) grouplist,
2241 													true,
2242 													&hasGroupingSets);
2243 
2244 	/*
2245 	 * If the list is now empty, but hasGroupingSets is true, it's because we
2246 	 * elided redundant empty grouping sets. Restore a single empty grouping
2247 	 * set to leave a canonical form: GROUP BY ()
2248 	 */
2249 
2250 	if (flat_grouplist == NIL && hasGroupingSets)
2251 	{
2252 		flat_grouplist = list_make1(makeGroupingSet(GROUPING_SET_EMPTY,
2253 													NIL,
2254 										  exprLocation((Node *) grouplist)));
2255 	}
2256 
2257 	foreach(gl, flat_grouplist)
2258 	{
2259 		Node	   *gexpr = (Node *) lfirst(gl);
2260 
2261 		if (IsA(gexpr, GroupingSet))
2262 		{
2263 			GroupingSet *gset = (GroupingSet *) gexpr;
2264 
2265 			switch (gset->kind)
2266 			{
2267 				case GROUPING_SET_EMPTY:
2268 					gsets = lappend(gsets, gset);
2269 					break;
2270 				case GROUPING_SET_SIMPLE:
2271 					/* can't happen */
2272 					Assert(false);
2273 					break;
2274 				case GROUPING_SET_SETS:
2275 				case GROUPING_SET_CUBE:
2276 				case GROUPING_SET_ROLLUP:
2277 					gsets = lappend(gsets,
2278 									transformGroupingSet(&result,
2279 														 pstate, gset,
2280 													  targetlist, sortClause,
2281 												  exprKind, useSQL99, true));
2282 					break;
2283 			}
2284 		}
2285 		else
2286 		{
2287 			Index		ref = transformGroupClauseExpr(&result, seen_local,
2288 													   pstate, gexpr,
2289 													   targetlist, sortClause,
2290 												   exprKind, useSQL99, true);
2291 
2292 			if (ref > 0)
2293 			{
2294 				seen_local = bms_add_member(seen_local, ref);
2295 				if (hasGroupingSets)
2296 					gsets = lappend(gsets,
2297 									makeGroupingSet(GROUPING_SET_SIMPLE,
2298 													list_make1_int(ref),
2299 													exprLocation(gexpr)));
2300 			}
2301 		}
2302 	}
2303 
2304 	/* parser should prevent this */
2305 	Assert(gsets == NIL || groupingSets != NULL);
2306 
2307 	if (groupingSets)
2308 		*groupingSets = gsets;
2309 
2310 	return result;
2311 }
2312 
2313 /*
2314  * transformSortClause -
2315  *	  transform an ORDER BY clause
2316  *
2317  * ORDER BY items will be added to the targetlist (as resjunk columns)
2318  * if not already present, so the targetlist must be passed by reference.
2319  *
2320  * This is also used for window and aggregate ORDER BY clauses (which act
2321  * almost the same, but are always interpreted per SQL99 rules).
2322  */
2323 List *
transformSortClause(ParseState * pstate,List * orderlist,List ** targetlist,ParseExprKind exprKind,bool resolveUnknown,bool useSQL99)2324 transformSortClause(ParseState *pstate,
2325 					List *orderlist,
2326 					List **targetlist,
2327 					ParseExprKind exprKind,
2328 					bool resolveUnknown,
2329 					bool useSQL99)
2330 {
2331 	List	   *sortlist = NIL;
2332 	ListCell   *olitem;
2333 
2334 	foreach(olitem, orderlist)
2335 	{
2336 		SortBy	   *sortby = (SortBy *) lfirst(olitem);
2337 		TargetEntry *tle;
2338 
2339 		if (useSQL99)
2340 			tle = findTargetlistEntrySQL99(pstate, sortby->node,
2341 										   targetlist, exprKind);
2342 		else
2343 			tle = findTargetlistEntrySQL92(pstate, sortby->node,
2344 										   targetlist, exprKind);
2345 
2346 		sortlist = addTargetToSortList(pstate, tle,
2347 									   sortlist, *targetlist, sortby,
2348 									   resolveUnknown);
2349 	}
2350 
2351 	return sortlist;
2352 }
2353 
2354 /*
2355  * transformWindowDefinitions -
2356  *		transform window definitions (WindowDef to WindowClause)
2357  */
2358 List *
transformWindowDefinitions(ParseState * pstate,List * windowdefs,List ** targetlist)2359 transformWindowDefinitions(ParseState *pstate,
2360 						   List *windowdefs,
2361 						   List **targetlist)
2362 {
2363 	List	   *result = NIL;
2364 	Index		winref = 0;
2365 	ListCell   *lc;
2366 
2367 	foreach(lc, windowdefs)
2368 	{
2369 		WindowDef  *windef = (WindowDef *) lfirst(lc);
2370 		WindowClause *refwc = NULL;
2371 		List	   *partitionClause;
2372 		List	   *orderClause;
2373 		WindowClause *wc;
2374 
2375 		winref++;
2376 
2377 		/*
2378 		 * Check for duplicate window names.
2379 		 */
2380 		if (windef->name &&
2381 			findWindowClause(result, windef->name) != NULL)
2382 			ereport(ERROR,
2383 					(errcode(ERRCODE_WINDOWING_ERROR),
2384 					 errmsg("window \"%s\" is already defined", windef->name),
2385 					 parser_errposition(pstate, windef->location)));
2386 
2387 		/*
2388 		 * If it references a previous window, look that up.
2389 		 */
2390 		if (windef->refname)
2391 		{
2392 			refwc = findWindowClause(result, windef->refname);
2393 			if (refwc == NULL)
2394 				ereport(ERROR,
2395 						(errcode(ERRCODE_UNDEFINED_OBJECT),
2396 						 errmsg("window \"%s\" does not exist",
2397 								windef->refname),
2398 						 parser_errposition(pstate, windef->location)));
2399 		}
2400 
2401 		/*
2402 		 * Transform PARTITION and ORDER specs, if any.  These are treated
2403 		 * almost exactly like top-level GROUP BY and ORDER BY clauses,
2404 		 * including the special handling of nondefault operator semantics.
2405 		 */
2406 		orderClause = transformSortClause(pstate,
2407 										  windef->orderClause,
2408 										  targetlist,
2409 										  EXPR_KIND_WINDOW_ORDER,
2410 										  true /* fix unknowns */ ,
2411 										  true /* force SQL99 rules */ );
2412 		partitionClause = transformGroupClause(pstate,
2413 											   windef->partitionClause,
2414 											   NULL,
2415 											   targetlist,
2416 											   orderClause,
2417 											   EXPR_KIND_WINDOW_PARTITION,
2418 											   true /* force SQL99 rules */ );
2419 
2420 		/*
2421 		 * And prepare the new WindowClause.
2422 		 */
2423 		wc = makeNode(WindowClause);
2424 		wc->name = windef->name;
2425 		wc->refname = windef->refname;
2426 
2427 		/*
2428 		 * Per spec, a windowdef that references a previous one copies the
2429 		 * previous partition clause (and mustn't specify its own).  It can
2430 		 * specify its own ordering clause, but only if the previous one had
2431 		 * none.  It always specifies its own frame clause, and the previous
2432 		 * one must not have a frame clause.  Yeah, it's bizarre that each of
2433 		 * these cases works differently, but SQL:2008 says so; see 7.11
2434 		 * <window clause> syntax rule 10 and general rule 1.  The frame
2435 		 * clause rule is especially bizarre because it makes "OVER foo"
2436 		 * different from "OVER (foo)", and requires the latter to throw an
2437 		 * error if foo has a nondefault frame clause.  Well, ours not to
2438 		 * reason why, but we do go out of our way to throw a useful error
2439 		 * message for such cases.
2440 		 */
2441 		if (refwc)
2442 		{
2443 			if (partitionClause)
2444 				ereport(ERROR,
2445 						(errcode(ERRCODE_WINDOWING_ERROR),
2446 				errmsg("cannot override PARTITION BY clause of window \"%s\"",
2447 					   windef->refname),
2448 						 parser_errposition(pstate, windef->location)));
2449 			wc->partitionClause = copyObject(refwc->partitionClause);
2450 		}
2451 		else
2452 			wc->partitionClause = partitionClause;
2453 		if (refwc)
2454 		{
2455 			if (orderClause && refwc->orderClause)
2456 				ereport(ERROR,
2457 						(errcode(ERRCODE_WINDOWING_ERROR),
2458 				   errmsg("cannot override ORDER BY clause of window \"%s\"",
2459 						  windef->refname),
2460 						 parser_errposition(pstate, windef->location)));
2461 			if (orderClause)
2462 			{
2463 				wc->orderClause = orderClause;
2464 				wc->copiedOrder = false;
2465 			}
2466 			else
2467 			{
2468 				wc->orderClause = copyObject(refwc->orderClause);
2469 				wc->copiedOrder = true;
2470 			}
2471 		}
2472 		else
2473 		{
2474 			wc->orderClause = orderClause;
2475 			wc->copiedOrder = false;
2476 		}
2477 		if (refwc && refwc->frameOptions != FRAMEOPTION_DEFAULTS)
2478 		{
2479 			/*
2480 			 * Use this message if this is a WINDOW clause, or if it's an OVER
2481 			 * clause that includes ORDER BY or framing clauses.  (We already
2482 			 * rejected PARTITION BY above, so no need to check that.)
2483 			 */
2484 			if (windef->name ||
2485 				orderClause || windef->frameOptions != FRAMEOPTION_DEFAULTS)
2486 				ereport(ERROR,
2487 						(errcode(ERRCODE_WINDOWING_ERROR),
2488 						 errmsg("cannot copy window \"%s\" because it has a frame clause",
2489 								windef->refname),
2490 						 parser_errposition(pstate, windef->location)));
2491 			/* Else this clause is just OVER (foo), so say this: */
2492 			ereport(ERROR,
2493 					(errcode(ERRCODE_WINDOWING_ERROR),
2494 			errmsg("cannot copy window \"%s\" because it has a frame clause",
2495 				   windef->refname),
2496 					 errhint("Omit the parentheses in this OVER clause."),
2497 					 parser_errposition(pstate, windef->location)));
2498 		}
2499 		wc->frameOptions = windef->frameOptions;
2500 		/* Process frame offset expressions */
2501 		wc->startOffset = transformFrameOffset(pstate, wc->frameOptions,
2502 											   windef->startOffset);
2503 		wc->endOffset = transformFrameOffset(pstate, wc->frameOptions,
2504 											 windef->endOffset);
2505 		wc->winref = winref;
2506 
2507 		result = lappend(result, wc);
2508 	}
2509 
2510 	return result;
2511 }
2512 
2513 /*
2514  * transformDistinctClause -
2515  *	  transform a DISTINCT clause
2516  *
2517  * Since we may need to add items to the query's targetlist, that list
2518  * is passed by reference.
2519  *
2520  * As with GROUP BY, we absorb the sorting semantics of ORDER BY as much as
2521  * possible into the distinctClause.  This avoids a possible need to re-sort,
2522  * and allows the user to choose the equality semantics used by DISTINCT,
2523  * should she be working with a datatype that has more than one equality
2524  * operator.
2525  *
2526  * is_agg is true if we are transforming an aggregate(DISTINCT ...)
2527  * function call.  This does not affect any behavior, only the phrasing
2528  * of error messages.
2529  */
2530 List *
transformDistinctClause(ParseState * pstate,List ** targetlist,List * sortClause,bool is_agg)2531 transformDistinctClause(ParseState *pstate,
2532 						List **targetlist, List *sortClause, bool is_agg)
2533 {
2534 	List	   *result = NIL;
2535 	ListCell   *slitem;
2536 	ListCell   *tlitem;
2537 
2538 	/*
2539 	 * The distinctClause should consist of all ORDER BY items followed by all
2540 	 * other non-resjunk targetlist items.  There must not be any resjunk
2541 	 * ORDER BY items --- that would imply that we are sorting by a value that
2542 	 * isn't necessarily unique within a DISTINCT group, so the results
2543 	 * wouldn't be well-defined.  This construction ensures we follow the rule
2544 	 * that sortClause and distinctClause match; in fact the sortClause will
2545 	 * always be a prefix of distinctClause.
2546 	 *
2547 	 * Note a corner case: the same TLE could be in the ORDER BY list multiple
2548 	 * times with different sortops.  We have to include it in the
2549 	 * distinctClause the same way to preserve the prefix property. The net
2550 	 * effect will be that the TLE value will be made unique according to both
2551 	 * sortops.
2552 	 */
2553 	foreach(slitem, sortClause)
2554 	{
2555 		SortGroupClause *scl = (SortGroupClause *) lfirst(slitem);
2556 		TargetEntry *tle = get_sortgroupclause_tle(scl, *targetlist);
2557 
2558 		if (tle->resjunk)
2559 			ereport(ERROR,
2560 					(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
2561 					 is_agg ?
2562 					 errmsg("in an aggregate with DISTINCT, ORDER BY expressions must appear in argument list") :
2563 					 errmsg("for SELECT DISTINCT, ORDER BY expressions must appear in select list"),
2564 					 parser_errposition(pstate,
2565 										exprLocation((Node *) tle->expr))));
2566 		result = lappend(result, copyObject(scl));
2567 	}
2568 
2569 	/*
2570 	 * Now add any remaining non-resjunk tlist items, using default sort/group
2571 	 * semantics for their data types.
2572 	 */
2573 	foreach(tlitem, *targetlist)
2574 	{
2575 		TargetEntry *tle = (TargetEntry *) lfirst(tlitem);
2576 
2577 		if (tle->resjunk)
2578 			continue;			/* ignore junk */
2579 		result = addTargetToGroupList(pstate, tle,
2580 									  result, *targetlist,
2581 									  exprLocation((Node *) tle->expr),
2582 									  true);
2583 	}
2584 
2585 	/*
2586 	 * Complain if we found nothing to make DISTINCT.  Returning an empty list
2587 	 * would cause the parsed Query to look like it didn't have DISTINCT, with
2588 	 * results that would probably surprise the user.  Note: this case is
2589 	 * presently impossible for aggregates because of grammar restrictions,
2590 	 * but we check anyway.
2591 	 */
2592 	if (result == NIL)
2593 		ereport(ERROR,
2594 				(errcode(ERRCODE_SYNTAX_ERROR),
2595 				 is_agg ?
2596 		errmsg("an aggregate with DISTINCT must have at least one argument") :
2597 				 errmsg("SELECT DISTINCT must have at least one column")));
2598 
2599 	return result;
2600 }
2601 
2602 /*
2603  * transformDistinctOnClause -
2604  *	  transform a DISTINCT ON clause
2605  *
2606  * Since we may need to add items to the query's targetlist, that list
2607  * is passed by reference.
2608  *
2609  * As with GROUP BY, we absorb the sorting semantics of ORDER BY as much as
2610  * possible into the distinctClause.  This avoids a possible need to re-sort,
2611  * and allows the user to choose the equality semantics used by DISTINCT,
2612  * should she be working with a datatype that has more than one equality
2613  * operator.
2614  */
2615 List *
transformDistinctOnClause(ParseState * pstate,List * distinctlist,List ** targetlist,List * sortClause)2616 transformDistinctOnClause(ParseState *pstate, List *distinctlist,
2617 						  List **targetlist, List *sortClause)
2618 {
2619 	List	   *result = NIL;
2620 	List	   *sortgrouprefs = NIL;
2621 	bool		skipped_sortitem;
2622 	ListCell   *lc;
2623 	ListCell   *lc2;
2624 
2625 	/*
2626 	 * Add all the DISTINCT ON expressions to the tlist (if not already
2627 	 * present, they are added as resjunk items).  Assign sortgroupref numbers
2628 	 * to them, and make a list of these numbers.  (NB: we rely below on the
2629 	 * sortgrouprefs list being one-for-one with the original distinctlist.
2630 	 * Also notice that we could have duplicate DISTINCT ON expressions and
2631 	 * hence duplicate entries in sortgrouprefs.)
2632 	 */
2633 	foreach(lc, distinctlist)
2634 	{
2635 		Node	   *dexpr = (Node *) lfirst(lc);
2636 		int			sortgroupref;
2637 		TargetEntry *tle;
2638 
2639 		tle = findTargetlistEntrySQL92(pstate, dexpr, targetlist,
2640 									   EXPR_KIND_DISTINCT_ON);
2641 		sortgroupref = assignSortGroupRef(tle, *targetlist);
2642 		sortgrouprefs = lappend_int(sortgrouprefs, sortgroupref);
2643 	}
2644 
2645 	/*
2646 	 * If the user writes both DISTINCT ON and ORDER BY, adopt the sorting
2647 	 * semantics from ORDER BY items that match DISTINCT ON items, and also
2648 	 * adopt their column sort order.  We insist that the distinctClause and
2649 	 * sortClause match, so throw error if we find the need to add any more
2650 	 * distinctClause items after we've skipped an ORDER BY item that wasn't
2651 	 * in DISTINCT ON.
2652 	 */
2653 	skipped_sortitem = false;
2654 	foreach(lc, sortClause)
2655 	{
2656 		SortGroupClause *scl = (SortGroupClause *) lfirst(lc);
2657 
2658 		if (list_member_int(sortgrouprefs, scl->tleSortGroupRef))
2659 		{
2660 			if (skipped_sortitem)
2661 				ereport(ERROR,
2662 						(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
2663 						 errmsg("SELECT DISTINCT ON expressions must match initial ORDER BY expressions"),
2664 						 parser_errposition(pstate,
2665 								  get_matching_location(scl->tleSortGroupRef,
2666 														sortgrouprefs,
2667 														distinctlist))));
2668 			else
2669 				result = lappend(result, copyObject(scl));
2670 		}
2671 		else
2672 			skipped_sortitem = true;
2673 	}
2674 
2675 	/*
2676 	 * Now add any remaining DISTINCT ON items, using default sort/group
2677 	 * semantics for their data types.  (Note: this is pretty questionable; if
2678 	 * the ORDER BY list doesn't include all the DISTINCT ON items and more
2679 	 * besides, you certainly aren't using DISTINCT ON in the intended way,
2680 	 * and you probably aren't going to get consistent results.  It might be
2681 	 * better to throw an error or warning here.  But historically we've
2682 	 * allowed it, so keep doing so.)
2683 	 */
2684 	forboth(lc, distinctlist, lc2, sortgrouprefs)
2685 	{
2686 		Node	   *dexpr = (Node *) lfirst(lc);
2687 		int			sortgroupref = lfirst_int(lc2);
2688 		TargetEntry *tle = get_sortgroupref_tle(sortgroupref, *targetlist);
2689 
2690 		if (targetIsInSortList(tle, InvalidOid, result))
2691 			continue;			/* already in list (with some semantics) */
2692 		if (skipped_sortitem)
2693 			ereport(ERROR,
2694 					(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
2695 					 errmsg("SELECT DISTINCT ON expressions must match initial ORDER BY expressions"),
2696 					 parser_errposition(pstate, exprLocation(dexpr))));
2697 		result = addTargetToGroupList(pstate, tle,
2698 									  result, *targetlist,
2699 									  exprLocation(dexpr),
2700 									  true);
2701 	}
2702 
2703 	/*
2704 	 * An empty result list is impossible here because of grammar
2705 	 * restrictions.
2706 	 */
2707 	Assert(result != NIL);
2708 
2709 	return result;
2710 }
2711 
2712 /*
2713  * get_matching_location
2714  *		Get the exprLocation of the exprs member corresponding to the
2715  *		(first) member of sortgrouprefs that equals sortgroupref.
2716  *
2717  * This is used so that we can point at a troublesome DISTINCT ON entry.
2718  * (Note that we need to use the original untransformed DISTINCT ON list
2719  * item, as whatever TLE it corresponds to will very possibly have a
2720  * parse location pointing to some matching entry in the SELECT list
2721  * or ORDER BY list.)
2722  */
2723 static int
get_matching_location(int sortgroupref,List * sortgrouprefs,List * exprs)2724 get_matching_location(int sortgroupref, List *sortgrouprefs, List *exprs)
2725 {
2726 	ListCell   *lcs;
2727 	ListCell   *lce;
2728 
2729 	forboth(lcs, sortgrouprefs, lce, exprs)
2730 	{
2731 		if (lfirst_int(lcs) == sortgroupref)
2732 			return exprLocation((Node *) lfirst(lce));
2733 	}
2734 	/* if no match, caller blew it */
2735 	elog(ERROR, "get_matching_location: no matching sortgroupref");
2736 	return -1;					/* keep compiler quiet */
2737 }
2738 
2739 /*
2740  * resolve_unique_index_expr
2741  *		Infer a unique index from a list of indexElems, for ON
2742  *		CONFLICT clause
2743  *
2744  * Perform parse analysis of expressions and columns appearing within ON
2745  * CONFLICT clause.  During planning, the returned list of expressions is used
2746  * to infer which unique index to use.
2747  */
2748 static List *
resolve_unique_index_expr(ParseState * pstate,InferClause * infer,Relation heapRel)2749 resolve_unique_index_expr(ParseState *pstate, InferClause *infer,
2750 						  Relation heapRel)
2751 {
2752 	List	   *result = NIL;
2753 	ListCell   *l;
2754 
2755 	foreach(l, infer->indexElems)
2756 	{
2757 		IndexElem  *ielem = (IndexElem *) lfirst(l);
2758 		InferenceElem *pInfer = makeNode(InferenceElem);
2759 		Node	   *parse;
2760 
2761 		/*
2762 		 * Raw grammar re-uses CREATE INDEX infrastructure for unique index
2763 		 * inference clause, and so will accept opclasses by name and so on.
2764 		 *
2765 		 * Make no attempt to match ASC or DESC ordering or NULLS FIRST/NULLS
2766 		 * LAST ordering, since those are not significant for inference
2767 		 * purposes (any unique index matching the inference specification in
2768 		 * other regards is accepted indifferently).  Actively reject this as
2769 		 * wrong-headed.
2770 		 */
2771 		if (ielem->ordering != SORTBY_DEFAULT)
2772 			ereport(ERROR,
2773 					(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
2774 					 errmsg("ASC/DESC is not allowed in ON CONFLICT clause"),
2775 					 parser_errposition(pstate,
2776 										exprLocation((Node *) infer))));
2777 		if (ielem->nulls_ordering != SORTBY_NULLS_DEFAULT)
2778 			ereport(ERROR,
2779 					(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
2780 			 errmsg("NULLS FIRST/LAST is not allowed in ON CONFLICT clause"),
2781 					 parser_errposition(pstate,
2782 										exprLocation((Node *) infer))));
2783 
2784 		if (!ielem->expr)
2785 		{
2786 			/* Simple index attribute */
2787 			ColumnRef  *n;
2788 
2789 			/*
2790 			 * Grammar won't have built raw expression for us in event of
2791 			 * plain column reference.  Create one directly, and perform
2792 			 * expression transformation.  Planner expects this, and performs
2793 			 * its own normalization for the purposes of matching against
2794 			 * pg_index.
2795 			 */
2796 			n = makeNode(ColumnRef);
2797 			n->fields = list_make1(makeString(ielem->name));
2798 			/* Location is approximately that of inference specification */
2799 			n->location = infer->location;
2800 			parse = (Node *) n;
2801 		}
2802 		else
2803 		{
2804 			/* Do parse transformation of the raw expression */
2805 			parse = (Node *) ielem->expr;
2806 		}
2807 
2808 		/*
2809 		 * transformExpr() should have already rejected subqueries,
2810 		 * aggregates, and window functions, based on the EXPR_KIND_ for an
2811 		 * index expression.  Expressions returning sets won't have been
2812 		 * rejected, but don't bother doing so here; there should be no
2813 		 * available expression unique index to match any such expression
2814 		 * against anyway.
2815 		 */
2816 		pInfer->expr = transformExpr(pstate, parse, EXPR_KIND_INDEX_EXPRESSION);
2817 
2818 		/* Perform lookup of collation and operator class as required */
2819 		if (!ielem->collation)
2820 			pInfer->infercollid = InvalidOid;
2821 		else
2822 			pInfer->infercollid = LookupCollation(pstate, ielem->collation,
2823 												  exprLocation(pInfer->expr));
2824 
2825 		if (!ielem->opclass)
2826 			pInfer->inferopclass = InvalidOid;
2827 		else
2828 			pInfer->inferopclass = get_opclass_oid(BTREE_AM_OID,
2829 												   ielem->opclass, false);
2830 
2831 		result = lappend(result, pInfer);
2832 	}
2833 
2834 	return result;
2835 }
2836 
2837 /*
2838  * transformOnConflictArbiter -
2839  *		transform arbiter expressions in an ON CONFLICT clause.
2840  *
2841  * Transformed expressions used to infer one unique index relation to serve as
2842  * an ON CONFLICT arbiter.  Partial unique indexes may be inferred using WHERE
2843  * clause from inference specification clause.
2844  */
2845 void
transformOnConflictArbiter(ParseState * pstate,OnConflictClause * onConflictClause,List ** arbiterExpr,Node ** arbiterWhere,Oid * constraint)2846 transformOnConflictArbiter(ParseState *pstate,
2847 						   OnConflictClause *onConflictClause,
2848 						   List **arbiterExpr, Node **arbiterWhere,
2849 						   Oid *constraint)
2850 {
2851 	InferClause *infer = onConflictClause->infer;
2852 
2853 	*arbiterExpr = NIL;
2854 	*arbiterWhere = NULL;
2855 	*constraint = InvalidOid;
2856 
2857 	if (onConflictClause->action == ONCONFLICT_UPDATE && !infer)
2858 		ereport(ERROR,
2859 				(errcode(ERRCODE_SYNTAX_ERROR),
2860 				 errmsg("ON CONFLICT DO UPDATE requires inference specification or constraint name"),
2861 				 errhint("For example, ON CONFLICT (column_name)."),
2862 				 parser_errposition(pstate,
2863 								  exprLocation((Node *) onConflictClause))));
2864 
2865 	/*
2866 	 * To simplify certain aspects of its design, speculative insertion into
2867 	 * system catalogs is disallowed
2868 	 */
2869 	if (IsCatalogRelation(pstate->p_target_relation))
2870 		ereport(ERROR,
2871 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2872 		   errmsg("ON CONFLICT is not supported with system catalog tables"),
2873 				 parser_errposition(pstate,
2874 								  exprLocation((Node *) onConflictClause))));
2875 
2876 	/* Same applies to table used by logical decoding as catalog table */
2877 	if (RelationIsUsedAsCatalogTable(pstate->p_target_relation))
2878 		ereport(ERROR,
2879 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2880 				 errmsg("ON CONFLICT is not supported on table \"%s\" used as a catalog table",
2881 						RelationGetRelationName(pstate->p_target_relation)),
2882 				 parser_errposition(pstate,
2883 								  exprLocation((Node *) onConflictClause))));
2884 
2885 	/* ON CONFLICT DO NOTHING does not require an inference clause */
2886 	if (infer)
2887 	{
2888 		List	   *save_namespace;
2889 
2890 		/*
2891 		 * While we process the arbiter expressions, accept only non-qualified
2892 		 * references to the target table. Hide any other relations.
2893 		 */
2894 		save_namespace = pstate->p_namespace;
2895 		pstate->p_namespace = NIL;
2896 		addRTEtoQuery(pstate, pstate->p_target_rangetblentry,
2897 					  false, false, true);
2898 
2899 		if (infer->indexElems)
2900 			*arbiterExpr = resolve_unique_index_expr(pstate, infer,
2901 												  pstate->p_target_relation);
2902 
2903 		/*
2904 		 * Handling inference WHERE clause (for partial unique index
2905 		 * inference)
2906 		 */
2907 		if (infer->whereClause)
2908 			*arbiterWhere = transformExpr(pstate, infer->whereClause,
2909 										  EXPR_KIND_INDEX_PREDICATE);
2910 
2911 		pstate->p_namespace = save_namespace;
2912 
2913 		/*
2914 		 * If the arbiter is specified by constraint name, get the constraint
2915 		 * OID and mark the constrained columns as requiring SELECT privilege,
2916 		 * in the same way as would have happened if the arbiter had been
2917 		 * specified by explicit reference to the constraint's index columns.
2918 		 */
2919 		if (infer->conname)
2920 		{
2921 			Oid			relid = RelationGetRelid(pstate->p_target_relation);
2922 			RangeTblEntry *rte = pstate->p_target_rangetblentry;
2923 			Bitmapset  *conattnos;
2924 
2925 			conattnos = get_relation_constraint_attnos(relid, infer->conname,
2926 													   false, constraint);
2927 
2928 			/* Make sure the rel as a whole is marked for SELECT access */
2929 			rte->requiredPerms |= ACL_SELECT;
2930 			/* Mark the constrained columns as requiring SELECT access */
2931 			rte->selectedCols = bms_add_members(rte->selectedCols, conattnos);
2932 		}
2933 	}
2934 
2935 	/*
2936 	 * It's convenient to form a list of expressions based on the
2937 	 * representation used by CREATE INDEX, since the same restrictions are
2938 	 * appropriate (e.g. on subqueries).  However, from here on, a dedicated
2939 	 * primnode representation is used for inference elements, and so
2940 	 * assign_query_collations() can be trusted to do the right thing with the
2941 	 * post parse analysis query tree inference clause representation.
2942 	 */
2943 }
2944 
2945 /*
2946  * addTargetToSortList
2947  *		If the given targetlist entry isn't already in the SortGroupClause
2948  *		list, add it to the end of the list, using the given sort ordering
2949  *		info.
2950  *
2951  * If resolveUnknown is TRUE, convert TLEs of type UNKNOWN to TEXT.  If not,
2952  * do nothing (which implies the search for a sort operator will fail).
2953  * pstate should be provided if resolveUnknown is TRUE, but can be NULL
2954  * otherwise.
2955  *
2956  * Returns the updated SortGroupClause list.
2957  */
2958 List *
addTargetToSortList(ParseState * pstate,TargetEntry * tle,List * sortlist,List * targetlist,SortBy * sortby,bool resolveUnknown)2959 addTargetToSortList(ParseState *pstate, TargetEntry *tle,
2960 					List *sortlist, List *targetlist, SortBy *sortby,
2961 					bool resolveUnknown)
2962 {
2963 	Oid			restype = exprType((Node *) tle->expr);
2964 	Oid			sortop;
2965 	Oid			eqop;
2966 	bool		hashable;
2967 	bool		reverse;
2968 	int			location;
2969 	ParseCallbackState pcbstate;
2970 
2971 	/* if tlist item is an UNKNOWN literal, change it to TEXT */
2972 	if (restype == UNKNOWNOID && resolveUnknown)
2973 	{
2974 		tle->expr = (Expr *) coerce_type(pstate, (Node *) tle->expr,
2975 										 restype, TEXTOID, -1,
2976 										 COERCION_IMPLICIT,
2977 										 COERCE_IMPLICIT_CAST,
2978 										 -1);
2979 		restype = TEXTOID;
2980 	}
2981 
2982 	/*
2983 	 * Rather than clutter the API of get_sort_group_operators and the other
2984 	 * functions we're about to use, make use of error context callback to
2985 	 * mark any error reports with a parse position.  We point to the operator
2986 	 * location if present, else to the expression being sorted.  (NB: use the
2987 	 * original untransformed expression here; the TLE entry might well point
2988 	 * at a duplicate expression in the regular SELECT list.)
2989 	 */
2990 	location = sortby->location;
2991 	if (location < 0)
2992 		location = exprLocation(sortby->node);
2993 	setup_parser_errposition_callback(&pcbstate, pstate, location);
2994 
2995 	/* determine the sortop, eqop, and directionality */
2996 	switch (sortby->sortby_dir)
2997 	{
2998 		case SORTBY_DEFAULT:
2999 		case SORTBY_ASC:
3000 			get_sort_group_operators(restype,
3001 									 true, true, false,
3002 									 &sortop, &eqop, NULL,
3003 									 &hashable);
3004 			reverse = false;
3005 			break;
3006 		case SORTBY_DESC:
3007 			get_sort_group_operators(restype,
3008 									 false, true, true,
3009 									 NULL, &eqop, &sortop,
3010 									 &hashable);
3011 			reverse = true;
3012 			break;
3013 		case SORTBY_USING:
3014 			Assert(sortby->useOp != NIL);
3015 			sortop = compatible_oper_opid(sortby->useOp,
3016 										  restype,
3017 										  restype,
3018 										  false);
3019 
3020 			/*
3021 			 * Verify it's a valid ordering operator, fetch the corresponding
3022 			 * equality operator, and determine whether to consider it like
3023 			 * ASC or DESC.
3024 			 */
3025 			eqop = get_equality_op_for_ordering_op(sortop, &reverse);
3026 			if (!OidIsValid(eqop))
3027 				ereport(ERROR,
3028 						(errcode(ERRCODE_WRONG_OBJECT_TYPE),
3029 					   errmsg("operator %s is not a valid ordering operator",
3030 							  strVal(llast(sortby->useOp))),
3031 						 errhint("Ordering operators must be \"<\" or \">\" members of btree operator families.")));
3032 
3033 			/*
3034 			 * Also see if the equality operator is hashable.
3035 			 */
3036 			hashable = op_hashjoinable(eqop, restype);
3037 			break;
3038 		default:
3039 			elog(ERROR, "unrecognized sortby_dir: %d", sortby->sortby_dir);
3040 			sortop = InvalidOid;	/* keep compiler quiet */
3041 			eqop = InvalidOid;
3042 			hashable = false;
3043 			reverse = false;
3044 			break;
3045 	}
3046 
3047 	cancel_parser_errposition_callback(&pcbstate);
3048 
3049 	/* avoid making duplicate sortlist entries */
3050 	if (!targetIsInSortList(tle, sortop, sortlist))
3051 	{
3052 		SortGroupClause *sortcl = makeNode(SortGroupClause);
3053 
3054 		sortcl->tleSortGroupRef = assignSortGroupRef(tle, targetlist);
3055 
3056 		sortcl->eqop = eqop;
3057 		sortcl->sortop = sortop;
3058 		sortcl->hashable = hashable;
3059 
3060 		switch (sortby->sortby_nulls)
3061 		{
3062 			case SORTBY_NULLS_DEFAULT:
3063 				/* NULLS FIRST is default for DESC; other way for ASC */
3064 				sortcl->nulls_first = reverse;
3065 				break;
3066 			case SORTBY_NULLS_FIRST:
3067 				sortcl->nulls_first = true;
3068 				break;
3069 			case SORTBY_NULLS_LAST:
3070 				sortcl->nulls_first = false;
3071 				break;
3072 			default:
3073 				elog(ERROR, "unrecognized sortby_nulls: %d",
3074 					 sortby->sortby_nulls);
3075 				break;
3076 		}
3077 
3078 		sortlist = lappend(sortlist, sortcl);
3079 	}
3080 
3081 	return sortlist;
3082 }
3083 
3084 /*
3085  * addTargetToGroupList
3086  *		If the given targetlist entry isn't already in the SortGroupClause
3087  *		list, add it to the end of the list, using default sort/group
3088  *		semantics.
3089  *
3090  * This is very similar to addTargetToSortList, except that we allow the
3091  * case where only a grouping (equality) operator can be found, and that
3092  * the TLE is considered "already in the list" if it appears there with any
3093  * sorting semantics.
3094  *
3095  * location is the parse location to be fingered in event of trouble.  Note
3096  * that we can't rely on exprLocation(tle->expr), because that might point
3097  * to a SELECT item that matches the GROUP BY item; it'd be pretty confusing
3098  * to report such a location.
3099  *
3100  * If resolveUnknown is TRUE, convert TLEs of type UNKNOWN to TEXT.  If not,
3101  * do nothing (which implies the search for an equality operator will fail).
3102  * pstate should be provided if resolveUnknown is TRUE, but can be NULL
3103  * otherwise.
3104  *
3105  * Returns the updated SortGroupClause list.
3106  */
3107 static List *
addTargetToGroupList(ParseState * pstate,TargetEntry * tle,List * grouplist,List * targetlist,int location,bool resolveUnknown)3108 addTargetToGroupList(ParseState *pstate, TargetEntry *tle,
3109 					 List *grouplist, List *targetlist, int location,
3110 					 bool resolveUnknown)
3111 {
3112 	Oid			restype = exprType((Node *) tle->expr);
3113 
3114 	/* if tlist item is an UNKNOWN literal, change it to TEXT */
3115 	if (restype == UNKNOWNOID && resolveUnknown)
3116 	{
3117 		tle->expr = (Expr *) coerce_type(pstate, (Node *) tle->expr,
3118 										 restype, TEXTOID, -1,
3119 										 COERCION_IMPLICIT,
3120 										 COERCE_IMPLICIT_CAST,
3121 										 -1);
3122 		restype = TEXTOID;
3123 	}
3124 
3125 	/* avoid making duplicate grouplist entries */
3126 	if (!targetIsInSortList(tle, InvalidOid, grouplist))
3127 	{
3128 		SortGroupClause *grpcl = makeNode(SortGroupClause);
3129 		Oid			sortop;
3130 		Oid			eqop;
3131 		bool		hashable;
3132 		ParseCallbackState pcbstate;
3133 
3134 		setup_parser_errposition_callback(&pcbstate, pstate, location);
3135 
3136 		/* determine the eqop and optional sortop */
3137 		get_sort_group_operators(restype,
3138 								 false, true, false,
3139 								 &sortop, &eqop, NULL,
3140 								 &hashable);
3141 
3142 		cancel_parser_errposition_callback(&pcbstate);
3143 
3144 		grpcl->tleSortGroupRef = assignSortGroupRef(tle, targetlist);
3145 		grpcl->eqop = eqop;
3146 		grpcl->sortop = sortop;
3147 		grpcl->nulls_first = false;		/* OK with or without sortop */
3148 		grpcl->hashable = hashable;
3149 
3150 		grouplist = lappend(grouplist, grpcl);
3151 	}
3152 
3153 	return grouplist;
3154 }
3155 
3156 /*
3157  * assignSortGroupRef
3158  *	  Assign the targetentry an unused ressortgroupref, if it doesn't
3159  *	  already have one.  Return the assigned or pre-existing refnumber.
3160  *
3161  * 'tlist' is the targetlist containing (or to contain) the given targetentry.
3162  */
3163 Index
assignSortGroupRef(TargetEntry * tle,List * tlist)3164 assignSortGroupRef(TargetEntry *tle, List *tlist)
3165 {
3166 	Index		maxRef;
3167 	ListCell   *l;
3168 
3169 	if (tle->ressortgroupref)	/* already has one? */
3170 		return tle->ressortgroupref;
3171 
3172 	/* easiest way to pick an unused refnumber: max used + 1 */
3173 	maxRef = 0;
3174 	foreach(l, tlist)
3175 	{
3176 		Index		ref = ((TargetEntry *) lfirst(l))->ressortgroupref;
3177 
3178 		if (ref > maxRef)
3179 			maxRef = ref;
3180 	}
3181 	tle->ressortgroupref = maxRef + 1;
3182 	return tle->ressortgroupref;
3183 }
3184 
3185 /*
3186  * targetIsInSortList
3187  *		Is the given target item already in the sortlist?
3188  *		If sortop is not InvalidOid, also test for a match to the sortop.
3189  *
3190  * It is not an oversight that this function ignores the nulls_first flag.
3191  * We check sortop when determining if an ORDER BY item is redundant with
3192  * earlier ORDER BY items, because it's conceivable that "ORDER BY
3193  * foo USING <, foo USING <<<" is not redundant, if <<< distinguishes
3194  * values that < considers equal.  We need not check nulls_first
3195  * however, because a lower-order column with the same sortop but
3196  * opposite nulls direction is redundant.  Also, we can consider
3197  * ORDER BY foo ASC, foo DESC redundant, so check for a commutator match.
3198  *
3199  * Works for both ordering and grouping lists (sortop would normally be
3200  * InvalidOid when considering grouping).  Note that the main reason we need
3201  * this routine (and not just a quick test for nonzeroness of ressortgroupref)
3202  * is that a TLE might be in only one of the lists.
3203  */
3204 bool
targetIsInSortList(TargetEntry * tle,Oid sortop,List * sortList)3205 targetIsInSortList(TargetEntry *tle, Oid sortop, List *sortList)
3206 {
3207 	Index		ref = tle->ressortgroupref;
3208 	ListCell   *l;
3209 
3210 	/* no need to scan list if tle has no marker */
3211 	if (ref == 0)
3212 		return false;
3213 
3214 	foreach(l, sortList)
3215 	{
3216 		SortGroupClause *scl = (SortGroupClause *) lfirst(l);
3217 
3218 		if (scl->tleSortGroupRef == ref &&
3219 			(sortop == InvalidOid ||
3220 			 sortop == scl->sortop ||
3221 			 sortop == get_commutator(scl->sortop)))
3222 			return true;
3223 	}
3224 	return false;
3225 }
3226 
3227 /*
3228  * findWindowClause
3229  *		Find the named WindowClause in the list, or return NULL if not there
3230  */
3231 static WindowClause *
findWindowClause(List * wclist,const char * name)3232 findWindowClause(List *wclist, const char *name)
3233 {
3234 	ListCell   *l;
3235 
3236 	foreach(l, wclist)
3237 	{
3238 		WindowClause *wc = (WindowClause *) lfirst(l);
3239 
3240 		if (wc->name && strcmp(wc->name, name) == 0)
3241 			return wc;
3242 	}
3243 
3244 	return NULL;
3245 }
3246 
3247 /*
3248  * transformFrameOffset
3249  *		Process a window frame offset expression
3250  */
3251 static Node *
transformFrameOffset(ParseState * pstate,int frameOptions,Node * clause)3252 transformFrameOffset(ParseState *pstate, int frameOptions, Node *clause)
3253 {
3254 	const char *constructName = NULL;
3255 	Node	   *node;
3256 
3257 	/* Quick exit if no offset expression */
3258 	if (clause == NULL)
3259 		return NULL;
3260 
3261 	if (frameOptions & FRAMEOPTION_ROWS)
3262 	{
3263 		/* Transform the raw expression tree */
3264 		node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_ROWS);
3265 
3266 		/*
3267 		 * Like LIMIT clause, simply coerce to int8
3268 		 */
3269 		constructName = "ROWS";
3270 		node = coerce_to_specific_type(pstate, node, INT8OID, constructName);
3271 	}
3272 	else if (frameOptions & FRAMEOPTION_RANGE)
3273 	{
3274 		/* Transform the raw expression tree */
3275 		node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_RANGE);
3276 
3277 		/*
3278 		 * this needs a lot of thought to decide how to support in the context
3279 		 * of Postgres' extensible datatype framework
3280 		 */
3281 		constructName = "RANGE";
3282 		/* error was already thrown by gram.y, this is just a backstop */
3283 		elog(ERROR, "window frame with value offset is not implemented");
3284 	}
3285 	else
3286 	{
3287 		Assert(false);
3288 		node = NULL;
3289 	}
3290 
3291 	/* Disallow variables in frame offsets */
3292 	checkExprIsVarFree(pstate, node, constructName);
3293 
3294 	return node;
3295 }
3296