1 /* Rax -- A radix tree implementation.
2  *
3  * Copyright (c) 2017-2018, Salvatore Sanfilippo <antirez at gmail dot com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  *   * Redistributions of source code must retain the above copyright notice,
10  *     this list of conditions and the following disclaimer.
11  *   * Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *   * Neither the name of Redis nor the names of its contributors may be used
15  *     to endorse or promote products derived from this software without
16  *     specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <stdlib.h>
32 #include <string.h>
33 #include <assert.h>
34 #include <stdio.h>
35 #include <errno.h>
36 #include <math.h>
37 #include "rax.h"
38 
39 #ifndef RAX_MALLOC_INCLUDE
40 #define RAX_MALLOC_INCLUDE "rax_malloc.h"
41 #endif
42 
43 #include RAX_MALLOC_INCLUDE
44 
45 /* This is a special pointer that is guaranteed to never have the same value
46  * of a radix tree node. It's used in order to report "not found" error without
47  * requiring the function to have multiple return values. */
48 void *raxNotFound = (void*)"rax-not-found-pointer";
49 
50 /* -------------------------------- Debugging ------------------------------ */
51 
52 void raxDebugShowNode(const char *msg, raxNode *n);
53 
54 /* Turn debugging messages on/off by compiling with RAX_DEBUG_MSG macro on.
55  * When RAX_DEBUG_MSG is defined by default Rax operations will emit a lot
56  * of debugging info to the standard output, however you can still turn
57  * debugging on/off in order to enable it only when you suspect there is an
58  * operation causing a bug using the function raxSetDebugMsg(). */
59 #ifdef RAX_DEBUG_MSG
60 #define debugf(...)                                                            \
61     if (raxDebugMsg) {                                                         \
62         printf("%s:%s:%d:\t", __FILE__, __FUNCTION__, __LINE__);               \
63         printf(__VA_ARGS__);                                                   \
64         fflush(stdout);                                                        \
65     }
66 
67 #define debugnode(msg,n) raxDebugShowNode(msg,n)
68 #else
69 #define debugf(...)
70 #define debugnode(msg,n)
71 #endif
72 
73 /* By default log debug info if RAX_DEBUG_MSG is defined. */
74 static int raxDebugMsg = 1;
75 
76 /* When debug messages are enabled, turn them on/off dynamically. By
77  * default they are enabled. Set the state to 0 to disable, and 1 to
78  * re-enable. */
raxSetDebugMsg(int onoff)79 void raxSetDebugMsg(int onoff) {
80     raxDebugMsg = onoff;
81 }
82 
83 /* ------------------------- raxStack functions --------------------------
84  * The raxStack is a simple stack of pointers that is capable of switching
85  * from using a stack-allocated array to dynamic heap once a given number of
86  * items are reached. It is used in order to retain the list of parent nodes
87  * while walking the radix tree in order to implement certain operations that
88  * need to navigate the tree upward.
89  * ------------------------------------------------------------------------- */
90 
91 /* Initialize the stack. */
raxStackInit(raxStack * ts)92 static inline void raxStackInit(raxStack *ts) {
93     ts->stack = ts->static_items;
94     ts->items = 0;
95     ts->maxitems = RAX_STACK_STATIC_ITEMS;
96     ts->oom = 0;
97 }
98 
99 /* Push an item into the stack, returns 1 on success, 0 on out of memory. */
raxStackPush(raxStack * ts,void * ptr)100 static inline int raxStackPush(raxStack *ts, void *ptr) {
101     if (ts->items == ts->maxitems) {
102         if (ts->stack == ts->static_items) {
103             ts->stack = rax_malloc(sizeof(void*)*ts->maxitems*2);
104             if (ts->stack == NULL) {
105                 ts->stack = ts->static_items;
106                 ts->oom = 1;
107                 errno = ENOMEM;
108                 return 0;
109             }
110             memcpy(ts->stack,ts->static_items,sizeof(void*)*ts->maxitems);
111         } else {
112             void **newalloc = rax_realloc(ts->stack,sizeof(void*)*ts->maxitems*2);
113             if (newalloc == NULL) {
114                 ts->oom = 1;
115                 errno = ENOMEM;
116                 return 0;
117             }
118             ts->stack = newalloc;
119         }
120         ts->maxitems *= 2;
121     }
122     ts->stack[ts->items] = ptr;
123     ts->items++;
124     return 1;
125 }
126 
127 /* Pop an item from the stack, the function returns NULL if there are no
128  * items to pop. */
raxStackPop(raxStack * ts)129 static inline void *raxStackPop(raxStack *ts) {
130     if (ts->items == 0) return NULL;
131     ts->items--;
132     return ts->stack[ts->items];
133 }
134 
135 /* Return the stack item at the top of the stack without actually consuming
136  * it. */
raxStackPeek(raxStack * ts)137 static inline void *raxStackPeek(raxStack *ts) {
138     if (ts->items == 0) return NULL;
139     return ts->stack[ts->items-1];
140 }
141 
142 /* Free the stack in case we used heap allocation. */
raxStackFree(raxStack * ts)143 static inline void raxStackFree(raxStack *ts) {
144     if (ts->stack != ts->static_items) rax_free(ts->stack);
145 }
146 
147 /* ----------------------------------------------------------------------------
148  * Radix tree implementation
149  * --------------------------------------------------------------------------*/
150 
151 /* Return the padding needed in the characters section of a node having size
152  * 'nodesize'. The padding is needed to store the child pointers to aligned
153  * addresses. Note that we add 4 to the node size because the node has a four
154  * bytes header. */
155 #define raxPadding(nodesize) ((sizeof(void*)-((nodesize+4) % sizeof(void*))) & (sizeof(void*)-1))
156 
157 /* Return the pointer to the last child pointer in a node. For the compressed
158  * nodes this is the only child pointer. */
159 #define raxNodeLastChildPtr(n) ((raxNode**) ( \
160     ((char*)(n)) + \
161     raxNodeCurrentLength(n) - \
162     sizeof(raxNode*) - \
163     (((n)->iskey && !(n)->isnull) ? sizeof(void*) : 0) \
164 ))
165 
166 /* Return the pointer to the first child pointer. */
167 #define raxNodeFirstChildPtr(n) ((raxNode**) ( \
168     (n)->data + \
169     (n)->size + \
170     raxPadding((n)->size)))
171 
172 /* Return the current total size of the node. Note that the second line
173  * computes the padding after the string of characters, needed in order to
174  * save pointers to aligned addresses. */
175 #define raxNodeCurrentLength(n) ( \
176     sizeof(raxNode)+(n)->size+ \
177     raxPadding((n)->size)+ \
178     ((n)->iscompr ? sizeof(raxNode*) : sizeof(raxNode*)*(n)->size)+ \
179     (((n)->iskey && !(n)->isnull)*sizeof(void*)) \
180 )
181 
182 /* Allocate a new non compressed node with the specified number of children.
183  * If datafiled is true, the allocation is made large enough to hold the
184  * associated data pointer.
185  * Returns the new node pointer. On out of memory NULL is returned. */
raxNewNode(size_t children,int datafield)186 raxNode *raxNewNode(size_t children, int datafield) {
187     size_t nodesize = sizeof(raxNode)+children+raxPadding(children)+
188                       sizeof(raxNode*)*children;
189     if (datafield) nodesize += sizeof(void*);
190     raxNode *node = rax_malloc(nodesize);
191     if (node == NULL) return NULL;
192     node->iskey = 0;
193     node->isnull = 0;
194     node->iscompr = 0;
195     node->size = children;
196     return node;
197 }
198 
199 /* Allocate a new rax and return its pointer. On out of memory the function
200  * returns NULL. */
raxNew(void)201 rax *raxNew(void) {
202     rax *rax = rax_malloc(sizeof(*rax));
203     if (rax == NULL) return NULL;
204     rax->numele = 0;
205     rax->numnodes = 1;
206     rax->head = raxNewNode(0,0);
207     if (rax->head == NULL) {
208         rax_free(rax);
209         return NULL;
210     } else {
211         return rax;
212     }
213 }
214 
215 /* realloc the node to make room for auxiliary data in order
216  * to store an item in that node. On out of memory NULL is returned. */
raxReallocForData(raxNode * n,void * data)217 raxNode *raxReallocForData(raxNode *n, void *data) {
218     if (data == NULL) return n; /* No reallocation needed, setting isnull=1 */
219     size_t curlen = raxNodeCurrentLength(n);
220     return rax_realloc(n,curlen+sizeof(void*));
221 }
222 
223 /* Set the node auxiliary data to the specified pointer. */
raxSetData(raxNode * n,void * data)224 void raxSetData(raxNode *n, void *data) {
225     n->iskey = 1;
226     if (data != NULL) {
227         n->isnull = 0;
228         void **ndata = (void**)
229             ((char*)n+raxNodeCurrentLength(n)-sizeof(void*));
230         memcpy(ndata,&data,sizeof(data));
231     } else {
232         n->isnull = 1;
233     }
234 }
235 
236 /* Get the node auxiliary data. */
raxGetData(raxNode * n)237 void *raxGetData(raxNode *n) {
238     if (n->isnull) return NULL;
239     void **ndata =(void**)((char*)n+raxNodeCurrentLength(n)-sizeof(void*));
240     void *data;
241     memcpy(&data,ndata,sizeof(data));
242     return data;
243 }
244 
245 /* Add a new child to the node 'n' representing the character 'c' and return
246  * its new pointer, as well as the child pointer by reference. Additionally
247  * '***parentlink' is populated with the raxNode pointer-to-pointer of where
248  * the new child was stored, which is useful for the caller to replace the
249  * child pointer if it gets reallocated.
250  *
251  * On success the new parent node pointer is returned (it may change because
252  * of the realloc, so the caller should discard 'n' and use the new value).
253  * On out of memory NULL is returned, and the old node is still valid. */
raxAddChild(raxNode * n,unsigned char c,raxNode ** childptr,raxNode *** parentlink)254 raxNode *raxAddChild(raxNode *n, unsigned char c, raxNode **childptr, raxNode ***parentlink) {
255     assert(n->iscompr == 0);
256 
257     size_t curlen = raxNodeCurrentLength(n);
258     n->size++;
259     size_t newlen = raxNodeCurrentLength(n);
260     n->size--; /* For now restore the orignal size. We'll update it only on
261                   success at the end. */
262 
263     /* Alloc the new child we will link to 'n'. */
264     raxNode *child = raxNewNode(0,0);
265     if (child == NULL) return NULL;
266 
267     /* Make space in the original node. */
268     raxNode *newn = rax_realloc(n,newlen);
269     if (newn == NULL) {
270         rax_free(child);
271         return NULL;
272     }
273     n = newn;
274 
275     /* After the reallocation, we have up to 8/16 (depending on the system
276      * pointer size, and the required node padding) bytes at the end, that is,
277      * the additional char in the 'data' section, plus one pointer to the new
278      * child, plus the padding needed in order to store addresses into aligned
279      * locations.
280      *
281      * So if we start with the following node, having "abde" edges.
282      *
283      * Note:
284      * - We assume 4 bytes pointer for simplicity.
285      * - Each space below corresponds to one byte
286      *
287      * [HDR*][abde][Aptr][Bptr][Dptr][Eptr]|AUXP|
288      *
289      * After the reallocation we need: 1 byte for the new edge character
290      * plus 4 bytes for a new child pointer (assuming 32 bit machine).
291      * However after adding 1 byte to the edge char, the header + the edge
292      * characters are no longer aligned, so we also need 3 bytes of padding.
293      * In total the reallocation will add 1+4+3 bytes = 8 bytes:
294      *
295      * (Blank bytes are represented by ".")
296      *
297      * [HDR*][abde][Aptr][Bptr][Dptr][Eptr]|AUXP|[....][....]
298      *
299      * Let's find where to insert the new child in order to make sure
300      * it is inserted in-place lexicographically. Assuming we are adding
301      * a child "c" in our case pos will be = 2 after the end of the following
302      * loop. */
303     int pos;
304     for (pos = 0; pos < n->size; pos++) {
305         if (n->data[pos] > c) break;
306     }
307 
308     /* Now, if present, move auxiliary data pointer at the end
309      * so that we can mess with the other data without overwriting it.
310      * We will obtain something like that:
311      *
312      * [HDR*][abde][Aptr][Bptr][Dptr][Eptr][....][....]|AUXP|
313      */
314     unsigned char *src, *dst;
315     if (n->iskey && !n->isnull) {
316         src = ((unsigned char*)n+curlen-sizeof(void*));
317         dst = ((unsigned char*)n+newlen-sizeof(void*));
318         memmove(dst,src,sizeof(void*));
319     }
320 
321     /* Compute the "shift", that is, how many bytes we need to move the
322      * pointers section forward because of the addition of the new child
323      * byte in the string section. Note that if we had no padding, that
324      * would be always "1", since we are adding a single byte in the string
325      * section of the node (where now there is "abde" basically).
326      *
327      * However we have padding, so it could be zero, or up to 8.
328      *
329      * Another way to think at the shift is, how many bytes we need to
330      * move child pointers forward *other than* the obvious sizeof(void*)
331      * needed for the additional pointer itself. */
332     size_t shift = newlen - curlen - sizeof(void*);
333 
334     /* We said we are adding a node with edge 'c'. The insertion
335      * point is between 'b' and 'd', so the 'pos' variable value is
336      * the index of the first child pointer that we need to move forward
337      * to make space for our new pointer.
338      *
339      * To start, move all the child pointers after the insertion point
340      * of shift+sizeof(pointer) bytes on the right, to obtain:
341      *
342      * [HDR*][abde][Aptr][Bptr][....][....][Dptr][Eptr]|AUXP|
343      */
344     src = n->data+n->size+
345           raxPadding(n->size)+
346           sizeof(raxNode*)*pos;
347     memmove(src+shift+sizeof(raxNode*),src,sizeof(raxNode*)*(n->size-pos));
348 
349     /* Move the pointers to the left of the insertion position as well. Often
350      * we don't need to do anything if there was already some padding to use. In
351      * that case the final destination of the pointers will be the same, however
352      * in our example there was no pre-existing padding, so we added one byte
353      * plus thre bytes of padding. After the next memmove() things will look
354      * like thata:
355      *
356      * [HDR*][abde][....][Aptr][Bptr][....][Dptr][Eptr]|AUXP|
357      */
358     if (shift) {
359         src = (unsigned char*) raxNodeFirstChildPtr(n);
360         memmove(src+shift,src,sizeof(raxNode*)*pos);
361     }
362 
363     /* Now make the space for the additional char in the data section,
364      * but also move the pointers before the insertion point to the right
365      * by shift bytes, in order to obtain the following:
366      *
367      * [HDR*][ab.d][e...][Aptr][Bptr][....][Dptr][Eptr]|AUXP|
368      */
369     src = n->data+pos;
370     memmove(src+1,src,n->size-pos);
371 
372     /* We can now set the character and its child node pointer to get:
373      *
374      * [HDR*][abcd][e...][Aptr][Bptr][....][Dptr][Eptr]|AUXP|
375      * [HDR*][abcd][e...][Aptr][Bptr][Cptr][Dptr][Eptr]|AUXP|
376      */
377     n->data[pos] = c;
378     n->size++;
379     src = (unsigned char*) raxNodeFirstChildPtr(n);
380     raxNode **childfield = (raxNode**)(src+sizeof(raxNode*)*pos);
381     memcpy(childfield,&child,sizeof(child));
382     *childptr = child;
383     *parentlink = childfield;
384     return n;
385 }
386 
387 /* Turn the node 'n', that must be a node without any children, into a
388  * compressed node representing a set of nodes linked one after the other
389  * and having exactly one child each. The node can be a key or not: this
390  * property and the associated value if any will be preserved.
391  *
392  * The function also returns a child node, since the last node of the
393  * compressed chain cannot be part of the chain: it has zero children while
394  * we can only compress inner nodes with exactly one child each. */
raxCompressNode(raxNode * n,unsigned char * s,size_t len,raxNode ** child)395 raxNode *raxCompressNode(raxNode *n, unsigned char *s, size_t len, raxNode **child) {
396     assert(n->size == 0 && n->iscompr == 0);
397     void *data = NULL; /* Initialized only to avoid warnings. */
398     size_t newsize;
399 
400     debugf("Compress node: %.*s\n", (int)len,s);
401 
402     /* Allocate the child to link to this node. */
403     *child = raxNewNode(0,0);
404     if (*child == NULL) return NULL;
405 
406     /* Make space in the parent node. */
407     newsize = sizeof(raxNode)+len+raxPadding(len)+sizeof(raxNode*);
408     if (n->iskey) {
409         data = raxGetData(n); /* To restore it later. */
410         if (!n->isnull) newsize += sizeof(void*);
411     }
412     raxNode *newn = rax_realloc(n,newsize);
413     if (newn == NULL) {
414         rax_free(*child);
415         return NULL;
416     }
417     n = newn;
418 
419     n->iscompr = 1;
420     n->size = len;
421     memcpy(n->data,s,len);
422     if (n->iskey) raxSetData(n,data);
423     raxNode **childfield = raxNodeLastChildPtr(n);
424     memcpy(childfield,child,sizeof(*child));
425     return n;
426 }
427 
428 /* Low level function that walks the tree looking for the string
429  * 's' of 'len' bytes. The function returns the number of characters
430  * of the key that was possible to process: if the returned integer
431  * is the same as 'len', then it means that the node corresponding to the
432  * string was found (however it may not be a key in case the node->iskey is
433  * zero or if simply we stopped in the middle of a compressed node, so that
434  * 'splitpos' is non zero).
435  *
436  * Otherwise if the returned integer is not the same as 'len', there was an
437  * early stop during the tree walk because of a character mismatch.
438  *
439  * The node where the search ended (because the full string was processed
440  * or because there was an early stop) is returned by reference as
441  * '*stopnode' if the passed pointer is not NULL. This node link in the
442  * parent's node is returned as '*plink' if not NULL. Finally, if the
443  * search stopped in a compressed node, '*splitpos' returns the index
444  * inside the compressed node where the search ended. This is useful to
445  * know where to split the node for insertion.
446  *
447  * Note that when we stop in the middle of a compressed node with
448  * a perfect match, this function will return a length equal to the
449  * 'len' argument (all the key matched), and will return a *splitpos which is
450  * always positive (that will represent the index of the character immediately
451  * *after* the last match in the current compressed node).
452  *
453  * When instead we stop at a compressed node and *splitpos is zero, it
454  * means that the current node represents the key (that is, none of the
455  * compressed node characters are needed to represent the key, just all
456  * its parents nodes). */
raxLowWalk(rax * rax,unsigned char * s,size_t len,raxNode ** stopnode,raxNode *** plink,int * splitpos,raxStack * ts)457 static inline size_t raxLowWalk(rax *rax, unsigned char *s, size_t len, raxNode **stopnode, raxNode ***plink, int *splitpos, raxStack *ts) {
458     raxNode *h = rax->head;
459     raxNode **parentlink = &rax->head;
460 
461     size_t i = 0; /* Position in the string. */
462     size_t j = 0; /* Position in the node children (or bytes if compressed).*/
463     while(h->size && i < len) {
464         debugnode("Lookup current node",h);
465         unsigned char *v = h->data;
466 
467         if (h->iscompr) {
468             for (j = 0; j < h->size && i < len; j++, i++) {
469                 if (v[j] != s[i]) break;
470             }
471             if (j != h->size) break;
472         } else {
473             /* Even when h->size is large, linear scan provides good
474              * performances compared to other approaches that are in theory
475              * more sounding, like performing a binary search. */
476             for (j = 0; j < h->size; j++) {
477                 if (v[j] == s[i]) break;
478             }
479             if (j == h->size) break;
480             i++;
481         }
482 
483         if (ts) raxStackPush(ts,h); /* Save stack of parent nodes. */
484         raxNode **children = raxNodeFirstChildPtr(h);
485         if (h->iscompr) j = 0; /* Compressed node only child is at index 0. */
486         memcpy(&h,children+j,sizeof(h));
487         parentlink = children+j;
488         j = 0; /* If the new node is compressed and we do not
489                   iterate again (since i == l) set the split
490                   position to 0 to signal this node represents
491                   the searched key. */
492     }
493     debugnode("Lookup stop node is",h);
494     if (stopnode) *stopnode = h;
495     if (plink) *plink = parentlink;
496     if (splitpos && h->iscompr) *splitpos = j;
497     return i;
498 }
499 
500 /* Insert the element 's' of size 'len', setting as auxiliary data
501  * the pointer 'data'. If the element is already present, the associated
502  * data is updated (only if 'overwrite' is set to 1), and 0 is returned,
503  * otherwise the element is inserted and 1 is returned. On out of memory the
504  * function returns 0 as well but sets errno to ENOMEM, otherwise errno will
505  * be set to 0.
506  */
raxGenericInsert(rax * rax,unsigned char * s,size_t len,void * data,void ** old,int overwrite)507 int raxGenericInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old, int overwrite) {
508     size_t i;
509     int j = 0; /* Split position. If raxLowWalk() stops in a compressed
510                   node, the index 'j' represents the char we stopped within the
511                   compressed node, that is, the position where to split the
512                   node for insertion. */
513     raxNode *h, **parentlink;
514 
515     debugf("### Insert %.*s with value %p\n", (int)len, s, data);
516     i = raxLowWalk(rax,s,len,&h,&parentlink,&j,NULL);
517 
518     /* If i == len we walked following the whole string. If we are not
519      * in the middle of a compressed node, the string is either already
520      * inserted or this middle node is currently not a key, but can represent
521      * our key. We have just to reallocate the node and make space for the
522      * data pointer. */
523     if (i == len && (!h->iscompr || j == 0 /* not in the middle if j is 0 */)) {
524         debugf("### Insert: node representing key exists\n");
525         /* Make space for the value pointer if needed. */
526         if (!h->iskey || (h->isnull && overwrite)) {
527             h = raxReallocForData(h,data);
528             if (h) memcpy(parentlink,&h,sizeof(h));
529         }
530         if (h == NULL) {
531             errno = ENOMEM;
532             return 0;
533         }
534 
535         /* Update the existing key if there is already one. */
536         if (h->iskey) {
537             if (old) *old = raxGetData(h);
538             if (overwrite) raxSetData(h,data);
539             errno = 0;
540             return 0; /* Element already exists. */
541         }
542 
543         /* Otherwise set the node as a key. Note that raxSetData()
544          * will set h->iskey. */
545         raxSetData(h,data);
546         rax->numele++;
547         return 1; /* Element inserted. */
548     }
549 
550     /* If the node we stopped at is a compressed node, we need to
551      * split it before to continue.
552      *
553      * Splitting a compressed node have a few possible cases.
554      * Imagine that the node 'h' we are currently at is a compressed
555      * node contaning the string "ANNIBALE" (it means that it represents
556      * nodes A -> N -> N -> I -> B -> A -> L -> E with the only child
557      * pointer of this node pointing at the 'E' node, because remember that
558      * we have characters at the edges of the graph, not inside the nodes
559      * themselves.
560      *
561      * In order to show a real case imagine our node to also point to
562      * another compressed node, that finally points at the node without
563      * children, representing 'O':
564      *
565      *     "ANNIBALE" -> "SCO" -> []
566      *
567      * When inserting we may face the following cases. Note that all the cases
568      * require the insertion of a non compressed node with exactly two
569      * children, except for the last case which just requires splitting a
570      * compressed node.
571      *
572      * 1) Inserting "ANNIENTARE"
573      *
574      *               |B| -> "ALE" -> "SCO" -> []
575      *     "ANNI" -> |-|
576      *               |E| -> (... continue algo ...) "NTARE" -> []
577      *
578      * 2) Inserting "ANNIBALI"
579      *
580      *                  |E| -> "SCO" -> []
581      *     "ANNIBAL" -> |-|
582      *                  |I| -> (... continue algo ...) []
583      *
584      * 3) Inserting "AGO" (Like case 1, but set iscompr = 0 into original node)
585      *
586      *            |N| -> "NIBALE" -> "SCO" -> []
587      *     |A| -> |-|
588      *            |G| -> (... continue algo ...) |O| -> []
589      *
590      * 4) Inserting "CIAO"
591      *
592      *     |A| -> "NNIBALE" -> "SCO" -> []
593      *     |-|
594      *     |C| -> (... continue algo ...) "IAO" -> []
595      *
596      * 5) Inserting "ANNI"
597      *
598      *     "ANNI" -> "BALE" -> "SCO" -> []
599      *
600      * The final algorithm for insertion covering all the above cases is as
601      * follows.
602      *
603      * ============================= ALGO 1 =============================
604      *
605      * For the above cases 1 to 4, that is, all cases where we stopped in
606      * the middle of a compressed node for a character mismatch, do:
607      *
608      * Let $SPLITPOS be the zero-based index at which, in the
609      * compressed node array of characters, we found the mismatching
610      * character. For example if the node contains "ANNIBALE" and we add
611      * "ANNIENTARE" the $SPLITPOS is 4, that is, the index at which the
612      * mismatching character is found.
613      *
614      * 1. Save the current compressed node $NEXT pointer (the pointer to the
615      *    child element, that is always present in compressed nodes).
616      *
617      * 2. Create "split node" having as child the non common letter
618      *    at the compressed node. The other non common letter (at the key)
619      *    will be added later as we continue the normal insertion algorithm
620      *    at step "6".
621      *
622      * 3a. IF $SPLITPOS == 0:
623      *     Replace the old node with the split node, by copying the auxiliary
624      *     data if any. Fix parent's reference. Free old node eventually
625      *     (we still need its data for the next steps of the algorithm).
626      *
627      * 3b. IF $SPLITPOS != 0:
628      *     Trim the compressed node (reallocating it as well) in order to
629      *     contain $splitpos characters. Change chilid pointer in order to link
630      *     to the split node. If new compressed node len is just 1, set
631      *     iscompr to 0 (layout is the same). Fix parent's reference.
632      *
633      * 4a. IF the postfix len (the length of the remaining string of the
634      *     original compressed node after the split character) is non zero,
635      *     create a "postfix node". If the postfix node has just one character
636      *     set iscompr to 0, otherwise iscompr to 1. Set the postfix node
637      *     child pointer to $NEXT.
638      *
639      * 4b. IF the postfix len is zero, just use $NEXT as postfix pointer.
640      *
641      * 5. Set child[0] of split node to postfix node.
642      *
643      * 6. Set the split node as the current node, set current index at child[1]
644      *    and continue insertion algorithm as usually.
645      *
646      * ============================= ALGO 2 =============================
647      *
648      * For case 5, that is, if we stopped in the middle of a compressed
649      * node but no mismatch was found, do:
650      *
651      * Let $SPLITPOS be the zero-based index at which, in the
652      * compressed node array of characters, we stopped iterating because
653      * there were no more keys character to match. So in the example of
654      * the node "ANNIBALE", addig the string "ANNI", the $SPLITPOS is 4.
655      *
656      * 1. Save the current compressed node $NEXT pointer (the pointer to the
657      *    child element, that is always present in compressed nodes).
658      *
659      * 2. Create a "postfix node" containing all the characters from $SPLITPOS
660      *    to the end. Use $NEXT as the postfix node child pointer.
661      *    If the postfix node length is 1, set iscompr to 0.
662      *    Set the node as a key with the associated value of the new
663      *    inserted key.
664      *
665      * 3. Trim the current node to contain the first $SPLITPOS characters.
666      *    As usually if the new node length is just 1, set iscompr to 0.
667      *    Take the iskey / associated value as it was in the orignal node.
668      *    Fix the parent's reference.
669      *
670      * 4. Set the postfix node as the only child pointer of the trimmed
671      *    node created at step 1.
672      */
673 
674     /* ------------------------- ALGORITHM 1 --------------------------- */
675     if (h->iscompr && i != len) {
676         debugf("ALGO 1: Stopped at compressed node %.*s (%p)\n",
677             h->size, h->data, (void*)h);
678         debugf("Still to insert: %.*s\n", (int)(len-i), s+i);
679         debugf("Splitting at %d: '%c'\n", j, ((char*)h->data)[j]);
680         debugf("Other (key) letter is '%c'\n", s[i]);
681 
682         /* 1: Save next pointer. */
683         raxNode **childfield = raxNodeLastChildPtr(h);
684         raxNode *next;
685         memcpy(&next,childfield,sizeof(next));
686         debugf("Next is %p\n", (void*)next);
687         debugf("iskey %d\n", h->iskey);
688         if (h->iskey) {
689             debugf("key value is %p\n", raxGetData(h));
690         }
691 
692         /* Set the length of the additional nodes we will need. */
693         size_t trimmedlen = j;
694         size_t postfixlen = h->size - j - 1;
695         int split_node_is_key = !trimmedlen && h->iskey && !h->isnull;
696         size_t nodesize;
697 
698         /* 2: Create the split node. Also allocate the other nodes we'll need
699          *    ASAP, so that it will be simpler to handle OOM. */
700         raxNode *splitnode = raxNewNode(1, split_node_is_key);
701         raxNode *trimmed = NULL;
702         raxNode *postfix = NULL;
703 
704         if (trimmedlen) {
705             nodesize = sizeof(raxNode)+trimmedlen+raxPadding(trimmedlen)+
706                        sizeof(raxNode*);
707             if (h->iskey && !h->isnull) nodesize += sizeof(void*);
708             trimmed = rax_malloc(nodesize);
709         }
710 
711         if (postfixlen) {
712             nodesize = sizeof(raxNode)+postfixlen+raxPadding(postfixlen)+
713                        sizeof(raxNode*);
714             postfix = rax_malloc(nodesize);
715         }
716 
717         /* OOM? Abort now that the tree is untouched. */
718         if (splitnode == NULL ||
719             (trimmedlen && trimmed == NULL) ||
720             (postfixlen && postfix == NULL))
721         {
722             rax_free(splitnode);
723             rax_free(trimmed);
724             rax_free(postfix);
725             errno = ENOMEM;
726             return 0;
727         }
728         splitnode->data[0] = h->data[j];
729 
730         if (j == 0) {
731             /* 3a: Replace the old node with the split node. */
732             if (h->iskey) {
733                 void *ndata = raxGetData(h);
734                 raxSetData(splitnode,ndata);
735             }
736             memcpy(parentlink,&splitnode,sizeof(splitnode));
737         } else {
738             /* 3b: Trim the compressed node. */
739             trimmed->size = j;
740             memcpy(trimmed->data,h->data,j);
741             trimmed->iscompr = j > 1 ? 1 : 0;
742             trimmed->iskey = h->iskey;
743             trimmed->isnull = h->isnull;
744             if (h->iskey && !h->isnull) {
745                 void *ndata = raxGetData(h);
746                 raxSetData(trimmed,ndata);
747             }
748             raxNode **cp = raxNodeLastChildPtr(trimmed);
749             memcpy(cp,&splitnode,sizeof(splitnode));
750             memcpy(parentlink,&trimmed,sizeof(trimmed));
751             parentlink = cp; /* Set parentlink to splitnode parent. */
752             rax->numnodes++;
753         }
754 
755         /* 4: Create the postfix node: what remains of the original
756          * compressed node after the split. */
757         if (postfixlen) {
758             /* 4a: create a postfix node. */
759             postfix->iskey = 0;
760             postfix->isnull = 0;
761             postfix->size = postfixlen;
762             postfix->iscompr = postfixlen > 1;
763             memcpy(postfix->data,h->data+j+1,postfixlen);
764             raxNode **cp = raxNodeLastChildPtr(postfix);
765             memcpy(cp,&next,sizeof(next));
766             rax->numnodes++;
767         } else {
768             /* 4b: just use next as postfix node. */
769             postfix = next;
770         }
771 
772         /* 5: Set splitnode first child as the postfix node. */
773         raxNode **splitchild = raxNodeLastChildPtr(splitnode);
774         memcpy(splitchild,&postfix,sizeof(postfix));
775 
776         /* 6. Continue insertion: this will cause the splitnode to
777          * get a new child (the non common character at the currently
778          * inserted key). */
779         rax_free(h);
780         h = splitnode;
781     } else if (h->iscompr && i == len) {
782     /* ------------------------- ALGORITHM 2 --------------------------- */
783         debugf("ALGO 2: Stopped at compressed node %.*s (%p) j = %d\n",
784             h->size, h->data, (void*)h, j);
785 
786         /* Allocate postfix & trimmed nodes ASAP to fail for OOM gracefully. */
787         size_t postfixlen = h->size - j;
788         size_t nodesize = sizeof(raxNode)+postfixlen+raxPadding(postfixlen)+
789                           sizeof(raxNode*);
790         if (data != NULL) nodesize += sizeof(void*);
791         raxNode *postfix = rax_malloc(nodesize);
792 
793         nodesize = sizeof(raxNode)+j+raxPadding(j)+sizeof(raxNode*);
794         if (h->iskey && !h->isnull) nodesize += sizeof(void*);
795         raxNode *trimmed = rax_malloc(nodesize);
796 
797         if (postfix == NULL || trimmed == NULL) {
798             rax_free(postfix);
799             rax_free(trimmed);
800             errno = ENOMEM;
801             return 0;
802         }
803 
804         /* 1: Save next pointer. */
805         raxNode **childfield = raxNodeLastChildPtr(h);
806         raxNode *next;
807         memcpy(&next,childfield,sizeof(next));
808 
809         /* 2: Create the postfix node. */
810         postfix->size = postfixlen;
811         postfix->iscompr = postfixlen > 1;
812         postfix->iskey = 1;
813         postfix->isnull = 0;
814         memcpy(postfix->data,h->data+j,postfixlen);
815         raxSetData(postfix,data);
816         raxNode **cp = raxNodeLastChildPtr(postfix);
817         memcpy(cp,&next,sizeof(next));
818         rax->numnodes++;
819 
820         /* 3: Trim the compressed node. */
821         trimmed->size = j;
822         trimmed->iscompr = j > 1;
823         trimmed->iskey = 0;
824         trimmed->isnull = 0;
825         memcpy(trimmed->data,h->data,j);
826         memcpy(parentlink,&trimmed,sizeof(trimmed));
827         if (h->iskey) {
828             void *aux = raxGetData(h);
829             raxSetData(trimmed,aux);
830         }
831 
832         /* Fix the trimmed node child pointer to point to
833          * the postfix node. */
834         cp = raxNodeLastChildPtr(trimmed);
835         memcpy(cp,&postfix,sizeof(postfix));
836 
837         /* Finish! We don't need to continue with the insertion
838          * algorithm for ALGO 2. The key is already inserted. */
839         rax->numele++;
840         rax_free(h);
841         return 1; /* Key inserted. */
842     }
843 
844     /* We walked the radix tree as far as we could, but still there are left
845      * chars in our string. We need to insert the missing nodes. */
846     while(i < len) {
847         raxNode *child;
848 
849         /* If this node is going to have a single child, and there
850          * are other characters, so that that would result in a chain
851          * of single-childed nodes, turn it into a compressed node. */
852         if (h->size == 0 && len-i > 1) {
853             debugf("Inserting compressed node\n");
854             size_t comprsize = len-i;
855             if (comprsize > RAX_NODE_MAX_SIZE)
856                 comprsize = RAX_NODE_MAX_SIZE;
857             raxNode *newh = raxCompressNode(h,s+i,comprsize,&child);
858             if (newh == NULL) goto oom;
859             h = newh;
860             memcpy(parentlink,&h,sizeof(h));
861             parentlink = raxNodeLastChildPtr(h);
862             i += comprsize;
863         } else {
864             debugf("Inserting normal node\n");
865             raxNode **new_parentlink;
866             raxNode *newh = raxAddChild(h,s[i],&child,&new_parentlink);
867             if (newh == NULL) goto oom;
868             h = newh;
869             memcpy(parentlink,&h,sizeof(h));
870             parentlink = new_parentlink;
871             i++;
872         }
873         rax->numnodes++;
874         h = child;
875     }
876     raxNode *newh = raxReallocForData(h,data);
877     if (newh == NULL) goto oom;
878     h = newh;
879     if (!h->iskey) rax->numele++;
880     raxSetData(h,data);
881     memcpy(parentlink,&h,sizeof(h));
882     return 1; /* Element inserted. */
883 
884 oom:
885     /* This code path handles out of memory after part of the sub-tree was
886      * already modified. Set the node as a key, and then remove it. However we
887      * do that only if the node is a terminal node, otherwise if the OOM
888      * happened reallocating a node in the middle, we don't need to free
889      * anything. */
890     if (h->size == 0) {
891         h->isnull = 1;
892         h->iskey = 1;
893         rax->numele++; /* Compensate the next remove. */
894         assert(raxRemove(rax,s,i,NULL) != 0);
895     }
896     errno = ENOMEM;
897     return 0;
898 }
899 
900 /* Overwriting insert. Just a wrapper for raxGenericInsert() that will
901  * update the element if there is already one for the same key. */
raxInsert(rax * rax,unsigned char * s,size_t len,void * data,void ** old)902 int raxInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) {
903     return raxGenericInsert(rax,s,len,data,old,1);
904 }
905 
906 /* Non overwriting insert function: this if an element with the same key
907  * exists, the value is not updated and the function returns 0.
908  * This is a just a wrapper for raxGenericInsert(). */
raxTryInsert(rax * rax,unsigned char * s,size_t len,void * data,void ** old)909 int raxTryInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) {
910     return raxGenericInsert(rax,s,len,data,old,0);
911 }
912 
913 /* Find a key in the rax, returns raxNotFound special void pointer value
914  * if the item was not found, otherwise the value associated with the
915  * item is returned. */
raxFind(rax * rax,unsigned char * s,size_t len)916 void *raxFind(rax *rax, unsigned char *s, size_t len) {
917     raxNode *h;
918 
919     debugf("### Lookup: %.*s\n", (int)len, s);
920     int splitpos = 0;
921     size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,NULL);
922     if (i != len || (h->iscompr && splitpos != 0) || !h->iskey)
923         return raxNotFound;
924     return raxGetData(h);
925 }
926 
927 /* Return the memory address where the 'parent' node stores the specified
928  * 'child' pointer, so that the caller can update the pointer with another
929  * one if needed. The function assumes it will find a match, otherwise the
930  * operation is an undefined behavior (it will continue scanning the
931  * memory without any bound checking). */
raxFindParentLink(raxNode * parent,raxNode * child)932 raxNode **raxFindParentLink(raxNode *parent, raxNode *child) {
933     raxNode **cp = raxNodeFirstChildPtr(parent);
934     raxNode *c;
935     while(1) {
936         memcpy(&c,cp,sizeof(c));
937         if (c == child) break;
938         cp++;
939     }
940     return cp;
941 }
942 
943 /* Low level child removal from node. The new node pointer (after the child
944  * removal) is returned. Note that this function does not fix the pointer
945  * of the parent node in its parent, so this task is up to the caller.
946  * The function never fails for out of memory. */
raxRemoveChild(raxNode * parent,raxNode * child)947 raxNode *raxRemoveChild(raxNode *parent, raxNode *child) {
948     debugnode("raxRemoveChild before", parent);
949     /* If parent is a compressed node (having a single child, as for definition
950      * of the data structure), the removal of the child consists into turning
951      * it into a normal node without children. */
952     if (parent->iscompr) {
953         void *data = NULL;
954         if (parent->iskey) data = raxGetData(parent);
955         parent->isnull = 0;
956         parent->iscompr = 0;
957         parent->size = 0;
958         if (parent->iskey) raxSetData(parent,data);
959         debugnode("raxRemoveChild after", parent);
960         return parent;
961     }
962 
963     /* Otherwise we need to scan for the child pointer and memmove()
964      * accordingly.
965      *
966      * 1. To start we seek the first element in both the children
967      *    pointers and edge bytes in the node. */
968     raxNode **cp = raxNodeFirstChildPtr(parent);
969     raxNode **c = cp;
970     unsigned char *e = parent->data;
971 
972     /* 2. Search the child pointer to remove inside the array of children
973      *    pointers. */
974     while(1) {
975         raxNode *aux;
976         memcpy(&aux,c,sizeof(aux));
977         if (aux == child) break;
978         c++;
979         e++;
980     }
981 
982     /* 3. Remove the edge and the pointer by memmoving the remaining children
983      *    pointer and edge bytes one position before. */
984     int taillen = parent->size - (e - parent->data) - 1;
985     debugf("raxRemoveChild tail len: %d\n", taillen);
986     memmove(e,e+1,taillen);
987 
988     /* Compute the shift, that is the amount of bytes we should move our
989      * child pointers to the left, since the removal of one edge character
990      * and the corresponding padding change, may change the layout.
991      * We just check if in the old version of the node there was at the
992      * end just a single byte and all padding: in that case removing one char
993      * will remove a whole sizeof(void*) word. */
994     size_t shift = ((parent->size+4) % sizeof(void*)) == 1 ? sizeof(void*) : 0;
995 
996     /* Move the children pointers before the deletion point. */
997     if (shift)
998         memmove(((char*)cp)-shift,cp,(parent->size-taillen-1)*sizeof(raxNode**));
999 
1000     /* Move the remaining "tail" pointers at the right position as well. */
1001     size_t valuelen = (parent->iskey && !parent->isnull) ? sizeof(void*) : 0;
1002     memmove(((char*)c)-shift,c+1,taillen*sizeof(raxNode**)+valuelen);
1003 
1004     /* 4. Update size. */
1005     parent->size--;
1006 
1007     /* realloc the node according to the theoretical memory usage, to free
1008      * data if we are over-allocating right now. */
1009     raxNode *newnode = rax_realloc(parent,raxNodeCurrentLength(parent));
1010     if (newnode) {
1011         debugnode("raxRemoveChild after", newnode);
1012     }
1013     /* Note: if rax_realloc() fails we just return the old address, which
1014      * is valid. */
1015     return newnode ? newnode : parent;
1016 }
1017 
1018 /* Remove the specified item. Returns 1 if the item was found and
1019  * deleted, 0 otherwise. */
raxRemove(rax * rax,unsigned char * s,size_t len,void ** old)1020 int raxRemove(rax *rax, unsigned char *s, size_t len, void **old) {
1021     raxNode *h;
1022     raxStack ts;
1023 
1024     debugf("### Delete: %.*s\n", (int)len, s);
1025     raxStackInit(&ts);
1026     int splitpos = 0;
1027     size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,&ts);
1028     if (i != len || (h->iscompr && splitpos != 0) || !h->iskey) {
1029         raxStackFree(&ts);
1030         return 0;
1031     }
1032     if (old) *old = raxGetData(h);
1033     h->iskey = 0;
1034     rax->numele--;
1035 
1036     /* If this node has no children, the deletion needs to reclaim the
1037      * no longer used nodes. This is an iterative process that needs to
1038      * walk the three upward, deleting all the nodes with just one child
1039      * that are not keys, until the head of the rax is reached or the first
1040      * node with more than one child is found. */
1041 
1042     int trycompress = 0; /* Will be set to 1 if we should try to optimize the
1043                             tree resulting from the deletion. */
1044 
1045     if (h->size == 0) {
1046         debugf("Key deleted in node without children. Cleanup needed.\n");
1047         raxNode *child = NULL;
1048         while(h != rax->head) {
1049             child = h;
1050             debugf("Freeing child %p [%.*s] key:%d\n", (void*)child,
1051                 (int)child->size, (char*)child->data, child->iskey);
1052             rax_free(child);
1053             rax->numnodes--;
1054             h = raxStackPop(&ts);
1055              /* If this node has more then one child, or actually holds
1056               * a key, stop here. */
1057             if (h->iskey || (!h->iscompr && h->size != 1)) break;
1058         }
1059         if (child) {
1060             debugf("Unlinking child %p from parent %p\n",
1061                 (void*)child, (void*)h);
1062             raxNode *new = raxRemoveChild(h,child);
1063             if (new != h) {
1064                 raxNode *parent = raxStackPeek(&ts);
1065                 raxNode **parentlink;
1066                 if (parent == NULL) {
1067                     parentlink = &rax->head;
1068                 } else {
1069                     parentlink = raxFindParentLink(parent,h);
1070                 }
1071                 memcpy(parentlink,&new,sizeof(new));
1072             }
1073 
1074             /* If after the removal the node has just a single child
1075              * and is not a key, we need to try to compress it. */
1076             if (new->size == 1 && new->iskey == 0) {
1077                 trycompress = 1;
1078                 h = new;
1079             }
1080         }
1081     } else if (h->size == 1) {
1082         /* If the node had just one child, after the removal of the key
1083          * further compression with adjacent nodes is pontentially possible. */
1084         trycompress = 1;
1085     }
1086 
1087     /* Don't try node compression if our nodes pointers stack is not
1088      * complete because of OOM while executing raxLowWalk() */
1089     if (trycompress && ts.oom) trycompress = 0;
1090 
1091     /* Recompression: if trycompress is true, 'h' points to a radix tree node
1092      * that changed in a way that could allow to compress nodes in this
1093      * sub-branch. Compressed nodes represent chains of nodes that are not
1094      * keys and have a single child, so there are two deletion events that
1095      * may alter the tree so that further compression is needed:
1096      *
1097      * 1) A node with a single child was a key and now no longer is a key.
1098      * 2) A node with two children now has just one child.
1099      *
1100      * We try to navigate upward till there are other nodes that can be
1101      * compressed, when we reach the upper node which is not a key and has
1102      * a single child, we scan the chain of children to collect the
1103      * compressable part of the tree, and replace the current node with the
1104      * new one, fixing the child pointer to reference the first non
1105      * compressable node.
1106      *
1107      * Example of case "1". A tree stores the keys "FOO" = 1 and
1108      * "FOOBAR" = 2:
1109      *
1110      *
1111      * "FOO" -> "BAR" -> [] (2)
1112      *           (1)
1113      *
1114      * After the removal of "FOO" the tree can be compressed as:
1115      *
1116      * "FOOBAR" -> [] (2)
1117      *
1118      *
1119      * Example of case "2". A tree stores the keys "FOOBAR" = 1 and
1120      * "FOOTER" = 2:
1121      *
1122      *          |B| -> "AR" -> [] (1)
1123      * "FOO" -> |-|
1124      *          |T| -> "ER" -> [] (2)
1125      *
1126      * After the removal of "FOOTER" the resulting tree is:
1127      *
1128      * "FOO" -> |B| -> "AR" -> [] (1)
1129      *
1130      * That can be compressed into:
1131      *
1132      * "FOOBAR" -> [] (1)
1133      */
1134     if (trycompress) {
1135         debugf("After removing %.*s:\n", (int)len, s);
1136         debugnode("Compression may be needed",h);
1137         debugf("Seek start node\n");
1138 
1139         /* Try to reach the upper node that is compressible.
1140          * At the end of the loop 'h' will point to the first node we
1141          * can try to compress and 'parent' to its parent. */
1142         raxNode *parent;
1143         while(1) {
1144             parent = raxStackPop(&ts);
1145             if (!parent || parent->iskey ||
1146                 (!parent->iscompr && parent->size != 1)) break;
1147             h = parent;
1148             debugnode("Going up to",h);
1149         }
1150         raxNode *start = h; /* Compression starting node. */
1151 
1152         /* Scan chain of nodes we can compress. */
1153         size_t comprsize = h->size;
1154         int nodes = 1;
1155         while(h->size != 0) {
1156             raxNode **cp = raxNodeLastChildPtr(h);
1157             memcpy(&h,cp,sizeof(h));
1158             if (h->iskey || (!h->iscompr && h->size != 1)) break;
1159             /* Stop here if going to the next node would result into
1160              * a compressed node larger than h->size can hold. */
1161             if (comprsize + h->size > RAX_NODE_MAX_SIZE) break;
1162             nodes++;
1163             comprsize += h->size;
1164         }
1165         if (nodes > 1) {
1166             /* If we can compress, create the new node and populate it. */
1167             size_t nodesize =
1168                 sizeof(raxNode)+comprsize+raxPadding(comprsize)+sizeof(raxNode*);
1169             raxNode *new = rax_malloc(nodesize);
1170             /* An out of memory here just means we cannot optimize this
1171              * node, but the tree is left in a consistent state. */
1172             if (new == NULL) {
1173                 raxStackFree(&ts);
1174                 return 1;
1175             }
1176             new->iskey = 0;
1177             new->isnull = 0;
1178             new->iscompr = 1;
1179             new->size = comprsize;
1180             rax->numnodes++;
1181 
1182             /* Scan again, this time to populate the new node content and
1183              * to fix the new node child pointer. At the same time we free
1184              * all the nodes that we'll no longer use. */
1185             comprsize = 0;
1186             h = start;
1187             while(h->size != 0) {
1188                 memcpy(new->data+comprsize,h->data,h->size);
1189                 comprsize += h->size;
1190                 raxNode **cp = raxNodeLastChildPtr(h);
1191                 raxNode *tofree = h;
1192                 memcpy(&h,cp,sizeof(h));
1193                 rax_free(tofree); rax->numnodes--;
1194                 if (h->iskey || (!h->iscompr && h->size != 1)) break;
1195             }
1196             debugnode("New node",new);
1197 
1198             /* Now 'h' points to the first node that we still need to use,
1199              * so our new node child pointer will point to it. */
1200             raxNode **cp = raxNodeLastChildPtr(new);
1201             memcpy(cp,&h,sizeof(h));
1202 
1203             /* Fix parent link. */
1204             if (parent) {
1205                 raxNode **parentlink = raxFindParentLink(parent,start);
1206                 memcpy(parentlink,&new,sizeof(new));
1207             } else {
1208                 rax->head = new;
1209             }
1210 
1211             debugf("Compressed %d nodes, %d total bytes\n",
1212                 nodes, (int)comprsize);
1213         }
1214     }
1215     raxStackFree(&ts);
1216     return 1;
1217 }
1218 
1219 /* This is the core of raxFree(): performs a depth-first scan of the
1220  * tree and releases all the nodes found. */
raxRecursiveFree(rax * rax,raxNode * n,void (* free_callback)(void *))1221 void raxRecursiveFree(rax *rax, raxNode *n, void (*free_callback)(void*)) {
1222     debugnode("free traversing",n);
1223     int numchildren = n->iscompr ? 1 : n->size;
1224     raxNode **cp = raxNodeLastChildPtr(n);
1225     while(numchildren--) {
1226         raxNode *child;
1227         memcpy(&child,cp,sizeof(child));
1228         raxRecursiveFree(rax,child,free_callback);
1229         cp--;
1230     }
1231     debugnode("free depth-first",n);
1232     if (free_callback && n->iskey && !n->isnull)
1233         free_callback(raxGetData(n));
1234     rax_free(n);
1235     rax->numnodes--;
1236 }
1237 
1238 /* Free a whole radix tree, calling the specified callback in order to
1239  * free the auxiliary data. */
raxFreeWithCallback(rax * rax,void (* free_callback)(void *))1240 void raxFreeWithCallback(rax *rax, void (*free_callback)(void*)) {
1241     raxRecursiveFree(rax,rax->head,free_callback);
1242     assert(rax->numnodes == 0);
1243     rax_free(rax);
1244 }
1245 
1246 /* Free a whole radix tree. */
raxFree(rax * rax)1247 void raxFree(rax *rax) {
1248     raxFreeWithCallback(rax,NULL);
1249 }
1250 
1251 /* ------------------------------- Iterator --------------------------------- */
1252 
1253 /* Initialize a Rax iterator. This call should be performed a single time
1254  * to initialize the iterator, and must be followed by a raxSeek() call,
1255  * otherwise the raxPrev()/raxNext() functions will just return EOF. */
raxStart(raxIterator * it,rax * rt)1256 void raxStart(raxIterator *it, rax *rt) {
1257     it->flags = RAX_ITER_EOF; /* No crash if the iterator is not seeked. */
1258     it->rt = rt;
1259     it->key_len = 0;
1260     it->key = it->key_static_string;
1261     it->key_max = RAX_ITER_STATIC_LEN;
1262     it->data = NULL;
1263     it->node_cb = NULL;
1264     raxStackInit(&it->stack);
1265 }
1266 
1267 /* Append characters at the current key string of the iterator 'it'. This
1268  * is a low level function used to implement the iterator, not callable by
1269  * the user. Returns 0 on out of memory, otherwise 1 is returned. */
raxIteratorAddChars(raxIterator * it,unsigned char * s,size_t len)1270 int raxIteratorAddChars(raxIterator *it, unsigned char *s, size_t len) {
1271     if (it->key_max < it->key_len+len) {
1272         unsigned char *old = (it->key == it->key_static_string) ? NULL :
1273                                                                   it->key;
1274         size_t new_max = (it->key_len+len)*2;
1275         it->key = rax_realloc(old,new_max);
1276         if (it->key == NULL) {
1277             it->key = (!old) ? it->key_static_string : old;
1278             errno = ENOMEM;
1279             return 0;
1280         }
1281         if (old == NULL) memcpy(it->key,it->key_static_string,it->key_len);
1282         it->key_max = new_max;
1283     }
1284     /* Use memmove since there could be an overlap between 's' and
1285      * it->key when we use the current key in order to re-seek. */
1286     memmove(it->key+it->key_len,s,len);
1287     it->key_len += len;
1288     return 1;
1289 }
1290 
1291 /* Remove the specified number of chars from the right of the current
1292  * iterator key. */
raxIteratorDelChars(raxIterator * it,size_t count)1293 void raxIteratorDelChars(raxIterator *it, size_t count) {
1294     it->key_len -= count;
1295 }
1296 
1297 /* Do an iteration step towards the next element. At the end of the step the
1298  * iterator key will represent the (new) current key. If it is not possible
1299  * to step in the specified direction since there are no longer elements, the
1300  * iterator is flagged with RAX_ITER_EOF.
1301  *
1302  * If 'noup' is true the function starts directly scanning for the next
1303  * lexicographically smaller children, and the current node is already assumed
1304  * to be the parent of the last key node, so the first operation to go back to
1305  * the parent will be skipped. This option is used by raxSeek() when
1306  * implementing seeking a non existing element with the ">" or "<" options:
1307  * the starting node is not a key in that particular case, so we start the scan
1308  * from a node that does not represent the key set.
1309  *
1310  * The function returns 1 on success or 0 on out of memory. */
raxIteratorNextStep(raxIterator * it,int noup)1311 int raxIteratorNextStep(raxIterator *it, int noup) {
1312     if (it->flags & RAX_ITER_EOF) {
1313         return 1;
1314     } else if (it->flags & RAX_ITER_JUST_SEEKED) {
1315         it->flags &= ~RAX_ITER_JUST_SEEKED;
1316         return 1;
1317     }
1318 
1319     /* Save key len, stack items and the node where we are currently
1320      * so that on iterator EOF we can restore the current key and state. */
1321     size_t orig_key_len = it->key_len;
1322     size_t orig_stack_items = it->stack.items;
1323     raxNode *orig_node = it->node;
1324 
1325     while(1) {
1326         int children = it->node->iscompr ? 1 : it->node->size;
1327         if (!noup && children) {
1328             debugf("GO DEEPER\n");
1329             /* Seek the lexicographically smaller key in this subtree, which
1330              * is the first one found always going torwards the first child
1331              * of every successive node. */
1332             if (!raxStackPush(&it->stack,it->node)) return 0;
1333             raxNode **cp = raxNodeFirstChildPtr(it->node);
1334             if (!raxIteratorAddChars(it,it->node->data,
1335                 it->node->iscompr ? it->node->size : 1)) return 0;
1336             memcpy(&it->node,cp,sizeof(it->node));
1337             /* Call the node callback if any, and replace the node pointer
1338              * if the callback returns true. */
1339             if (it->node_cb && it->node_cb(&it->node))
1340                 memcpy(cp,&it->node,sizeof(it->node));
1341             /* For "next" step, stop every time we find a key along the
1342              * way, since the key is lexicograhically smaller compared to
1343              * what follows in the sub-children. */
1344             if (it->node->iskey) {
1345                 it->data = raxGetData(it->node);
1346                 return 1;
1347             }
1348         } else {
1349             /* If we finished exporing the previous sub-tree, switch to the
1350              * new one: go upper until a node is found where there are
1351              * children representing keys lexicographically greater than the
1352              * current key. */
1353             while(1) {
1354                 int old_noup = noup;
1355 
1356                 /* Already on head? Can't go up, iteration finished. */
1357                 if (!noup && it->node == it->rt->head) {
1358                     it->flags |= RAX_ITER_EOF;
1359                     it->stack.items = orig_stack_items;
1360                     it->key_len = orig_key_len;
1361                     it->node = orig_node;
1362                     return 1;
1363                 }
1364                 /* If there are no children at the current node, try parent's
1365                  * next child. */
1366                 unsigned char prevchild = it->key[it->key_len-1];
1367                 if (!noup) {
1368                     it->node = raxStackPop(&it->stack);
1369                 } else {
1370                     noup = 0;
1371                 }
1372                 /* Adjust the current key to represent the node we are
1373                  * at. */
1374                 int todel = it->node->iscompr ? it->node->size : 1;
1375                 raxIteratorDelChars(it,todel);
1376 
1377                 /* Try visiting the next child if there was at least one
1378                  * additional child. */
1379                 if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) {
1380                     raxNode **cp = raxNodeFirstChildPtr(it->node);
1381                     int i = 0;
1382                     while (i < it->node->size) {
1383                         debugf("SCAN NEXT %c\n", it->node->data[i]);
1384                         if (it->node->data[i] > prevchild) break;
1385                         i++;
1386                         cp++;
1387                     }
1388                     if (i != it->node->size) {
1389                         debugf("SCAN found a new node\n");
1390                         raxIteratorAddChars(it,it->node->data+i,1);
1391                         if (!raxStackPush(&it->stack,it->node)) return 0;
1392                         memcpy(&it->node,cp,sizeof(it->node));
1393                         /* Call the node callback if any, and replace the node
1394                          * pointer if the callback returns true. */
1395                         if (it->node_cb && it->node_cb(&it->node))
1396                             memcpy(cp,&it->node,sizeof(it->node));
1397                         if (it->node->iskey) {
1398                             it->data = raxGetData(it->node);
1399                             return 1;
1400                         }
1401                         break;
1402                     }
1403                 }
1404             }
1405         }
1406     }
1407 }
1408 
1409 /* Seek the grestest key in the subtree at the current node. Return 0 on
1410  * out of memory, otherwise 1. This is an helper function for different
1411  * iteration functions below. */
raxSeekGreatest(raxIterator * it)1412 int raxSeekGreatest(raxIterator *it) {
1413     while(it->node->size) {
1414         if (it->node->iscompr) {
1415             if (!raxIteratorAddChars(it,it->node->data,
1416                 it->node->size)) return 0;
1417         } else {
1418             if (!raxIteratorAddChars(it,it->node->data+it->node->size-1,1))
1419                 return 0;
1420         }
1421         raxNode **cp = raxNodeLastChildPtr(it->node);
1422         if (!raxStackPush(&it->stack,it->node)) return 0;
1423         memcpy(&it->node,cp,sizeof(it->node));
1424     }
1425     return 1;
1426 }
1427 
1428 /* Like raxIteratorNextStep() but implements an iteration step moving
1429  * to the lexicographically previous element. The 'noup' option has a similar
1430  * effect to the one of raxIteratorNextStep(). */
raxIteratorPrevStep(raxIterator * it,int noup)1431 int raxIteratorPrevStep(raxIterator *it, int noup) {
1432     if (it->flags & RAX_ITER_EOF) {
1433         return 1;
1434     } else if (it->flags & RAX_ITER_JUST_SEEKED) {
1435         it->flags &= ~RAX_ITER_JUST_SEEKED;
1436         return 1;
1437     }
1438 
1439     /* Save key len, stack items and the node where we are currently
1440      * so that on iterator EOF we can restore the current key and state. */
1441     size_t orig_key_len = it->key_len;
1442     size_t orig_stack_items = it->stack.items;
1443     raxNode *orig_node = it->node;
1444 
1445     while(1) {
1446         int old_noup = noup;
1447 
1448         /* Already on head? Can't go up, iteration finished. */
1449         if (!noup && it->node == it->rt->head) {
1450             it->flags |= RAX_ITER_EOF;
1451             it->stack.items = orig_stack_items;
1452             it->key_len = orig_key_len;
1453             it->node = orig_node;
1454             return 1;
1455         }
1456 
1457         unsigned char prevchild = it->key[it->key_len-1];
1458         if (!noup) {
1459             it->node = raxStackPop(&it->stack);
1460         } else {
1461             noup = 0;
1462         }
1463 
1464         /* Adjust the current key to represent the node we are
1465          * at. */
1466         int todel = it->node->iscompr ? it->node->size : 1;
1467         raxIteratorDelChars(it,todel);
1468 
1469         /* Try visiting the prev child if there is at least one
1470          * child. */
1471         if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) {
1472             raxNode **cp = raxNodeLastChildPtr(it->node);
1473             int i = it->node->size-1;
1474             while (i >= 0) {
1475                 debugf("SCAN PREV %c\n", it->node->data[i]);
1476                 if (it->node->data[i] < prevchild) break;
1477                 i--;
1478                 cp--;
1479             }
1480             /* If we found a new subtree to explore in this node,
1481              * go deeper following all the last children in order to
1482              * find the key lexicographically greater. */
1483             if (i != -1) {
1484                 debugf("SCAN found a new node\n");
1485                 /* Enter the node we just found. */
1486                 if (!raxIteratorAddChars(it,it->node->data+i,1)) return 0;
1487                 if (!raxStackPush(&it->stack,it->node)) return 0;
1488                 memcpy(&it->node,cp,sizeof(it->node));
1489                 /* Seek sub-tree max. */
1490                 if (!raxSeekGreatest(it)) return 0;
1491             }
1492         }
1493 
1494         /* Return the key: this could be the key we found scanning a new
1495          * subtree, or if we did not find a new subtree to explore here,
1496          * before giving up with this node, check if it's a key itself. */
1497         if (it->node->iskey) {
1498             it->data = raxGetData(it->node);
1499             return 1;
1500         }
1501     }
1502 }
1503 
1504 /* Seek an iterator at the specified element.
1505  * Return 0 if the seek failed for syntax error or out of memory. Otherwise
1506  * 1 is returned. When 0 is returned for out of memory, errno is set to
1507  * the ENOMEM value. */
raxSeek(raxIterator * it,const char * op,unsigned char * ele,size_t len)1508 int raxSeek(raxIterator *it, const char *op, unsigned char *ele, size_t len) {
1509     int eq = 0, lt = 0, gt = 0, first = 0, last = 0;
1510 
1511     it->stack.items = 0; /* Just resetting. Intialized by raxStart(). */
1512     it->flags |= RAX_ITER_JUST_SEEKED;
1513     it->flags &= ~RAX_ITER_EOF;
1514     it->key_len = 0;
1515     it->node = NULL;
1516 
1517     /* Set flags according to the operator used to perform the seek. */
1518     if (op[0] == '>') {
1519         gt = 1;
1520         if (op[1] == '=') eq = 1;
1521     } else if (op[0] == '<') {
1522         lt = 1;
1523         if (op[1] == '=') eq = 1;
1524     } else if (op[0] == '=') {
1525         eq = 1;
1526     } else if (op[0] == '^') {
1527         first = 1;
1528     } else if (op[0] == '$') {
1529         last = 1;
1530     } else {
1531         errno = 0;
1532         return 0; /* Error. */
1533     }
1534 
1535     /* If there are no elements, set the EOF condition immediately and
1536      * return. */
1537     if (it->rt->numele == 0) {
1538         it->flags |= RAX_ITER_EOF;
1539         return 1;
1540     }
1541 
1542     if (first) {
1543         /* Seeking the first key greater or equal to the empty string
1544          * is equivalent to seeking the smaller key available. */
1545         return raxSeek(it,">=",NULL,0);
1546     }
1547 
1548     if (last) {
1549         /* Find the greatest key taking always the last child till a
1550          * final node is found. */
1551         it->node = it->rt->head;
1552         if (!raxSeekGreatest(it)) return 0;
1553         assert(it->node->iskey);
1554         it->data = raxGetData(it->node);
1555         return 1;
1556     }
1557 
1558     /* We need to seek the specified key. What we do here is to actually
1559      * perform a lookup, and later invoke the prev/next key code that
1560      * we already use for iteration. */
1561     int splitpos = 0;
1562     size_t i = raxLowWalk(it->rt,ele,len,&it->node,NULL,&splitpos,&it->stack);
1563 
1564     /* Return OOM on incomplete stack info. */
1565     if (it->stack.oom) return 0;
1566 
1567     if (eq && i == len && (!it->node->iscompr || splitpos == 0) &&
1568         it->node->iskey)
1569     {
1570         /* We found our node, since the key matches and we have an
1571          * "equal" condition. */
1572         if (!raxIteratorAddChars(it,ele,len)) return 0; /* OOM. */
1573         it->data = raxGetData(it->node);
1574     } else if (lt || gt) {
1575         /* Exact key not found or eq flag not set. We have to set as current
1576          * key the one represented by the node we stopped at, and perform
1577          * a next/prev operation to seek. To reconstruct the key at this node
1578          * we start from the parent and go to the current node, accumulating
1579          * the characters found along the way. */
1580         if (!raxStackPush(&it->stack,it->node)) return 0;
1581         for (size_t j = 1; j < it->stack.items; j++) {
1582             raxNode *parent = it->stack.stack[j-1];
1583             raxNode *child = it->stack.stack[j];
1584             if (parent->iscompr) {
1585                 if (!raxIteratorAddChars(it,parent->data,parent->size))
1586                     return 0;
1587             } else {
1588                 raxNode **cp = raxNodeFirstChildPtr(parent);
1589                 unsigned char *p = parent->data;
1590                 while(1) {
1591                     raxNode *aux;
1592                     memcpy(&aux,cp,sizeof(aux));
1593                     if (aux == child) break;
1594                     cp++;
1595                     p++;
1596                 }
1597                 if (!raxIteratorAddChars(it,p,1)) return 0;
1598             }
1599         }
1600         raxStackPop(&it->stack);
1601 
1602         /* We need to set the iterator in the correct state to call next/prev
1603          * step in order to seek the desired element. */
1604         debugf("After initial seek: i=%d len=%d key=%.*s\n",
1605             (int)i, (int)len, (int)it->key_len, it->key);
1606         if (i != len && !it->node->iscompr) {
1607             /* If we stopped in the middle of a normal node because of a
1608              * mismatch, add the mismatching character to the current key
1609              * and call the iterator with the 'noup' flag so that it will try
1610              * to seek the next/prev child in the current node directly based
1611              * on the mismatching character. */
1612             if (!raxIteratorAddChars(it,ele+i,1)) return 0;
1613             debugf("Seek normal node on mismatch: %.*s\n",
1614                 (int)it->key_len, (char*)it->key);
1615 
1616             it->flags &= ~RAX_ITER_JUST_SEEKED;
1617             if (lt && !raxIteratorPrevStep(it,1)) return 0;
1618             if (gt && !raxIteratorNextStep(it,1)) return 0;
1619             it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
1620         } else if (i != len && it->node->iscompr) {
1621             debugf("Compressed mismatch: %.*s\n",
1622                 (int)it->key_len, (char*)it->key);
1623             /* In case of a mismatch within a compressed node. */
1624             int nodechar = it->node->data[splitpos];
1625             int keychar = ele[i];
1626             it->flags &= ~RAX_ITER_JUST_SEEKED;
1627             if (gt) {
1628                 /* If the key the compressed node represents is greater
1629                  * than our seek element, continue forward, otherwise set the
1630                  * state in order to go back to the next sub-tree. */
1631                 if (nodechar > keychar) {
1632                     if (!raxIteratorNextStep(it,0)) return 0;
1633                 } else {
1634                     if (!raxIteratorAddChars(it,it->node->data,it->node->size))
1635                         return 0;
1636                     if (!raxIteratorNextStep(it,1)) return 0;
1637                 }
1638             }
1639             if (lt) {
1640                 /* If the key the compressed node represents is smaller
1641                  * than our seek element, seek the greater key in this
1642                  * subtree, otherwise set the state in order to go back to
1643                  * the previous sub-tree. */
1644                 if (nodechar < keychar) {
1645                     if (!raxSeekGreatest(it)) return 0;
1646                     it->data = raxGetData(it->node);
1647                 } else {
1648                     if (!raxIteratorAddChars(it,it->node->data,it->node->size))
1649                         return 0;
1650                     if (!raxIteratorPrevStep(it,1)) return 0;
1651                 }
1652             }
1653             it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
1654         } else {
1655             debugf("No mismatch: %.*s\n",
1656                 (int)it->key_len, (char*)it->key);
1657             /* If there was no mismatch we are into a node representing the
1658              * key, (but which is not a key or the seek operator does not
1659              * include 'eq'), or we stopped in the middle of a compressed node
1660              * after processing all the key. Continue iterating as this was
1661              * a legitimate key we stopped at. */
1662             it->flags &= ~RAX_ITER_JUST_SEEKED;
1663             if (it->node->iscompr && it->node->iskey && splitpos && lt) {
1664                 /* If we stopped in the middle of a compressed node with
1665                  * perfect match, and the condition is to seek a key "<" than
1666                  * the specified one, then if this node is a key it already
1667                  * represents our match. For instance we may have nodes:
1668                  *
1669                  * "f" -> "oobar" = 1 -> "" = 2
1670                  *
1671                  * Representing keys "f" = 1, "foobar" = 2. A seek for
1672                  * the key < "foo" will stop in the middle of the "oobar"
1673                  * node, but will be our match, representing the key "f".
1674                  *
1675                  * So in that case, we don't seek backward. */
1676             } else {
1677                 if (gt && !raxIteratorNextStep(it,0)) return 0;
1678                 if (lt && !raxIteratorPrevStep(it,0)) return 0;
1679             }
1680             it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
1681         }
1682     } else {
1683         /* If we are here just eq was set but no match was found. */
1684         it->flags |= RAX_ITER_EOF;
1685         return 1;
1686     }
1687     return 1;
1688 }
1689 
1690 /* Go to the next element in the scope of the iterator 'it'.
1691  * If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is
1692  * returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */
raxNext(raxIterator * it)1693 int raxNext(raxIterator *it) {
1694     if (!raxIteratorNextStep(it,0)) {
1695         errno = ENOMEM;
1696         return 0;
1697     }
1698     if (it->flags & RAX_ITER_EOF) {
1699         errno = 0;
1700         return 0;
1701     }
1702     return 1;
1703 }
1704 
1705 /* Go to the previous element in the scope of the iterator 'it'.
1706  * If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is
1707  * returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */
raxPrev(raxIterator * it)1708 int raxPrev(raxIterator *it) {
1709     if (!raxIteratorPrevStep(it,0)) {
1710         errno = ENOMEM;
1711         return 0;
1712     }
1713     if (it->flags & RAX_ITER_EOF) {
1714         errno = 0;
1715         return 0;
1716     }
1717     return 1;
1718 }
1719 
1720 /* Perform a random walk starting in the current position of the iterator.
1721  * Return 0 if the tree is empty or on out of memory. Otherwise 1 is returned
1722  * and the iterator is set to the node reached after doing a random walk
1723  * of 'steps' steps. If the 'steps' argument is 0, the random walk is performed
1724  * using a random number of steps between 1 and two times the logarithm of
1725  * the number of elements.
1726  *
1727  * NOTE: if you use this function to generate random elements from the radix
1728  * tree, expect a disappointing distribution. A random walk produces good
1729  * random elements if the tree is not sparse, however in the case of a radix
1730  * tree certain keys will be reported much more often than others. At least
1731  * this function should be able to expore every possible element eventually. */
raxRandomWalk(raxIterator * it,size_t steps)1732 int raxRandomWalk(raxIterator *it, size_t steps) {
1733     if (it->rt->numele == 0) {
1734         it->flags |= RAX_ITER_EOF;
1735         return 0;
1736     }
1737 
1738     if (steps == 0) {
1739         size_t fle = floor(log(it->rt->numele));
1740         fle *= 2;
1741         steps = 1 + rand() % fle;
1742     }
1743 
1744     raxNode *n = it->node;
1745     while(steps > 0 || !n->iskey) {
1746         int numchildren = n->iscompr ? 1 : n->size;
1747         int r = rand() % (numchildren+(n != it->rt->head));
1748 
1749         if (r == numchildren) {
1750             /* Go up to parent. */
1751             n = raxStackPop(&it->stack);
1752             int todel = n->iscompr ? n->size : 1;
1753             raxIteratorDelChars(it,todel);
1754         } else {
1755             /* Select a random child. */
1756             if (n->iscompr) {
1757                 if (!raxIteratorAddChars(it,n->data,n->size)) return 0;
1758             } else {
1759                 if (!raxIteratorAddChars(it,n->data+r,1)) return 0;
1760             }
1761             raxNode **cp = raxNodeFirstChildPtr(n)+r;
1762             if (!raxStackPush(&it->stack,n)) return 0;
1763             memcpy(&n,cp,sizeof(n));
1764         }
1765         if (n->iskey) steps--;
1766     }
1767     it->node = n;
1768     return 1;
1769 }
1770 
1771 /* Compare the key currently pointed by the iterator to the specified
1772  * key according to the specified operator. Returns 1 if the comparison is
1773  * true, otherwise 0 is returned. */
raxCompare(raxIterator * iter,const char * op,unsigned char * key,size_t key_len)1774 int raxCompare(raxIterator *iter, const char *op, unsigned char *key, size_t key_len) {
1775     int eq = 0, lt = 0, gt = 0;
1776 
1777     if (op[0] == '=' || op[1] == '=') eq = 1;
1778     if (op[0] == '>') gt = 1;
1779     else if (op[0] == '<') lt = 1;
1780     else if (op[1] != '=') return 0; /* Syntax error. */
1781 
1782     size_t minlen = key_len < iter->key_len ? key_len : iter->key_len;
1783     int cmp = memcmp(iter->key,key,minlen);
1784 
1785     /* Handle == */
1786     if (lt == 0 && gt == 0) return cmp == 0 && key_len == iter->key_len;
1787 
1788     /* Handle >, >=, <, <= */
1789     if (cmp == 0) {
1790         /* Same prefix: longer wins. */
1791         if (eq && key_len == iter->key_len) return 1;
1792         else if (lt) return iter->key_len < key_len;
1793         else if (gt) return iter->key_len > key_len;
1794     } if (cmp > 0) {
1795         return gt ? 1 : 0;
1796     } else /* (cmp < 0) */ {
1797         return lt ? 1 : 0;
1798     }
1799 }
1800 
1801 /* Free the iterator. */
raxStop(raxIterator * it)1802 void raxStop(raxIterator *it) {
1803     if (it->key != it->key_static_string) rax_free(it->key);
1804     raxStackFree(&it->stack);
1805 }
1806 
1807 /* Return if the iterator is in an EOF state. This happens when raxSeek()
1808  * failed to seek an appropriate element, so that raxNext() or raxPrev()
1809  * will return zero, or when an EOF condition was reached while iterating
1810  * with raxNext() and raxPrev(). */
raxEOF(raxIterator * it)1811 int raxEOF(raxIterator *it) {
1812     return it->flags & RAX_ITER_EOF;
1813 }
1814 
1815 /* Return the number of elements inside the radix tree. */
raxSize(rax * rax)1816 uint64_t raxSize(rax *rax) {
1817     return rax->numele;
1818 }
1819 
1820 /* ----------------------------- Introspection ------------------------------ */
1821 
1822 /* This function is mostly used for debugging and learning purposes.
1823  * It shows an ASCII representation of a tree on standard output, outling
1824  * all the nodes and the contained keys.
1825  *
1826  * The representation is as follow:
1827  *
1828  *  "foobar" (compressed node)
1829  *  [abc] (normal node with three children)
1830  *  [abc]=0x12345678 (node is a key, pointing to value 0x12345678)
1831  *  [] (a normal empty node)
1832  *
1833  *  Children are represented in new idented lines, each children prefixed by
1834  *  the "`-(x)" string, where "x" is the edge byte.
1835  *
1836  *  [abc]
1837  *   `-(a) "ladin"
1838  *   `-(b) [kj]
1839  *   `-(c) []
1840  *
1841  *  However when a node has a single child the following representation
1842  *  is used instead:
1843  *
1844  *  [abc] -> "ladin" -> []
1845  */
1846 
1847 /* The actual implementation of raxShow(). */
raxRecursiveShow(int level,int lpad,raxNode * n)1848 void raxRecursiveShow(int level, int lpad, raxNode *n) {
1849     char s = n->iscompr ? '"' : '[';
1850     char e = n->iscompr ? '"' : ']';
1851 
1852     int numchars = printf("%c%.*s%c", s, n->size, n->data, e);
1853     if (n->iskey) {
1854         numchars += printf("=%p",raxGetData(n));
1855     }
1856 
1857     int numchildren = n->iscompr ? 1 : n->size;
1858     /* Note that 7 and 4 magic constants are the string length
1859      * of " `-(x) " and " -> " respectively. */
1860     if (level) {
1861         lpad += (numchildren > 1) ? 7 : 4;
1862         if (numchildren == 1) lpad += numchars;
1863     }
1864     raxNode **cp = raxNodeFirstChildPtr(n);
1865     for (int i = 0; i < numchildren; i++) {
1866         char *branch = " `-(%c) ";
1867         if (numchildren > 1) {
1868             printf("\n");
1869             for (int j = 0; j < lpad; j++) putchar(' ');
1870             printf(branch,n->data[i]);
1871         } else {
1872             printf(" -> ");
1873         }
1874         raxNode *child;
1875         memcpy(&child,cp,sizeof(child));
1876         raxRecursiveShow(level+1,lpad,child);
1877         cp++;
1878     }
1879 }
1880 
1881 /* Show a tree, as outlined in the comment above. */
raxShow(rax * rax)1882 void raxShow(rax *rax) {
1883     raxRecursiveShow(0,0,rax->head);
1884     putchar('\n');
1885 }
1886 
1887 /* Used by debugnode() macro to show info about a given node. */
raxDebugShowNode(const char * msg,raxNode * n)1888 void raxDebugShowNode(const char *msg, raxNode *n) {
1889     if (raxDebugMsg == 0) return;
1890     printf("%s: %p [%.*s] key:%d size:%d children:",
1891         msg, (void*)n, (int)n->size, (char*)n->data, n->iskey, n->size);
1892     int numcld = n->iscompr ? 1 : n->size;
1893     raxNode **cldptr = raxNodeLastChildPtr(n) - (numcld-1);
1894     while(numcld--) {
1895         raxNode *child;
1896         memcpy(&child,cldptr,sizeof(child));
1897         cldptr++;
1898         printf("%p ", (void*)child);
1899     }
1900     printf("\n");
1901     fflush(stdout);
1902 }
1903 
1904 /* Touch all the nodes of a tree returning a check sum. This is useful
1905  * in order to make Valgrind detect if there is something wrong while
1906  * reading the data structure.
1907  *
1908  * This function was used in order to identify Rax bugs after a big refactoring
1909  * using this technique:
1910  *
1911  * 1. The rax-test is executed using Valgrind, adding a printf() so that for
1912  *    the fuzz tester we see what iteration in the loop we are in.
1913  * 2. After every modification of the radix tree made by the fuzz tester
1914  *    in rax-test.c, we add a call to raxTouch().
1915  * 3. Now as soon as an operation will corrupt the tree, raxTouch() will
1916  *    detect it (via Valgrind) immediately. We can add more calls to narrow
1917  *    the state.
1918  * 4. At this point a good idea is to enable Rax debugging messages immediately
1919  *    before the moment the tree is corrupted, to see what happens.
1920  */
raxTouch(raxNode * n)1921 unsigned long raxTouch(raxNode *n) {
1922     debugf("Touching %p\n", (void*)n);
1923     unsigned long sum = 0;
1924     if (n->iskey) {
1925         sum += (unsigned long)raxGetData(n);
1926     }
1927 
1928     int numchildren = n->iscompr ? 1 : n->size;
1929     raxNode **cp = raxNodeFirstChildPtr(n);
1930     int count = 0;
1931     for (int i = 0; i < numchildren; i++) {
1932         if (numchildren > 1) {
1933             sum += (long)n->data[i];
1934         }
1935         raxNode *child;
1936         memcpy(&child,cp,sizeof(child));
1937         if (child == (void*)0x65d1760) count++;
1938         if (count > 1) exit(1);
1939         sum += raxTouch(child);
1940         cp++;
1941     }
1942     return sum;
1943 }
1944