1 /*
2 ** 2001 September 22
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This is the implementation of generic hash-tables used in SQLite.
13 ** We've modified it slightly to serve as a standalone hash table
14 ** implementation for the full-text indexing module.
15 */
16 #include <assert.h>
17 #include <stdlib.h>
18 #include <string.h>
19 
20 #include "ft_hash.h"
21 
malloc_and_zero(int n)22 void *malloc_and_zero(int n){
23   void *p = malloc(n);
24   if( p ){
25     memset(p, 0, n);
26   }
27   return p;
28 }
29 
30 /* Turn bulk memory into a hash table object by initializing the
31 ** fields of the Hash structure.
32 **
33 ** "pNew" is a pointer to the hash table that is to be initialized.
34 ** keyClass is one of the constants HASH_INT, HASH_POINTER,
35 ** HASH_BINARY, or HASH_STRING.  The value of keyClass
36 ** determines what kind of key the hash table will use.  "copyKey" is
37 ** true if the hash table should make its own private copy of keys and
38 ** false if it should just use the supplied pointer.  CopyKey only makes
39 ** sense for HASH_STRING and HASH_BINARY and is ignored
40 ** for other key classes.
41 */
HashInit(Hash * pNew,int keyClass,int copyKey)42 void HashInit(Hash *pNew, int keyClass, int copyKey){
43   assert( pNew!=0 );
44   assert( keyClass>=HASH_STRING && keyClass<=HASH_BINARY );
45   pNew->keyClass = keyClass;
46 #if 0
47   if( keyClass==HASH_POINTER || keyClass==HASH_INT ) copyKey = 0;
48 #endif
49   pNew->copyKey = copyKey;
50   pNew->first = 0;
51   pNew->count = 0;
52   pNew->htsize = 0;
53   pNew->ht = 0;
54   pNew->xMalloc = malloc_and_zero;
55   pNew->xFree = free;
56 }
57 
58 /* Remove all entries from a hash table.  Reclaim all memory.
59 ** Call this routine to delete a hash table or to reset a hash table
60 ** to the empty state.
61 */
HashClear(Hash * pH)62 void HashClear(Hash *pH){
63   HashElem *elem;         /* For looping over all elements of the table */
64 
65   assert( pH!=0 );
66   elem = pH->first;
67   pH->first = 0;
68   if( pH->ht ) pH->xFree(pH->ht);
69   pH->ht = 0;
70   pH->htsize = 0;
71   while( elem ){
72     HashElem *next_elem = elem->next;
73     if( pH->copyKey && elem->pKey ){
74       pH->xFree(elem->pKey);
75     }
76     pH->xFree(elem);
77     elem = next_elem;
78   }
79   pH->count = 0;
80 }
81 
82 #if 0 /* NOT USED */
83 /*
84 ** Hash and comparison functions when the mode is HASH_INT
85 */
86 static int intHash(const void *pKey, int nKey){
87   return nKey ^ (nKey<<8) ^ (nKey>>8);
88 }
89 static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
90   return n2 - n1;
91 }
92 #endif
93 
94 #if 0 /* NOT USED */
95 /*
96 ** Hash and comparison functions when the mode is HASH_POINTER
97 */
98 static int ptrHash(const void *pKey, int nKey){
99   uptr x = Addr(pKey);
100   return x ^ (x<<8) ^ (x>>8);
101 }
102 static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
103   if( pKey1==pKey2 ) return 0;
104   if( pKey1<pKey2 ) return -1;
105   return 1;
106 }
107 #endif
108 
109 /*
110 ** Hash and comparison functions when the mode is HASH_STRING
111 */
strHash(const void * pKey,int nKey)112 static int strHash(const void *pKey, int nKey){
113   const char *z = (const char *)pKey;
114   int h = 0;
115   if( nKey<=0 ) nKey = (int) strlen(z);
116   while( nKey > 0  ){
117     h = (h<<3) ^ h ^ *z++;
118     nKey--;
119   }
120   return h & 0x7fffffff;
121 }
strCompare(const void * pKey1,int n1,const void * pKey2,int n2)122 static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
123   if( n1!=n2 ) return 1;
124   return strncmp((const char*)pKey1,(const char*)pKey2,n1);
125 }
126 
127 /*
128 ** Hash and comparison functions when the mode is HASH_BINARY
129 */
binHash(const void * pKey,int nKey)130 static int binHash(const void *pKey, int nKey){
131   int h = 0;
132   const char *z = (const char *)pKey;
133   while( nKey-- > 0 ){
134     h = (h<<3) ^ h ^ *(z++);
135   }
136   return h & 0x7fffffff;
137 }
binCompare(const void * pKey1,int n1,const void * pKey2,int n2)138 static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
139   if( n1!=n2 ) return 1;
140   return memcmp(pKey1,pKey2,n1);
141 }
142 
143 /*
144 ** Return a pointer to the appropriate hash function given the key class.
145 **
146 ** The C syntax in this function definition may be unfamilar to some
147 ** programmers, so we provide the following additional explanation:
148 **
149 ** The name of the function is "hashFunction".  The function takes a
150 ** single parameter "keyClass".  The return value of hashFunction()
151 ** is a pointer to another function.  Specifically, the return value
152 ** of hashFunction() is a pointer to a function that takes two parameters
153 ** with types "const void*" and "int" and returns an "int".
154 */
hashFunction(int keyClass)155 static int (*hashFunction(int keyClass))(const void*,int){
156 #if 0  /* HASH_INT and HASH_POINTER are never used */
157   switch( keyClass ){
158     case HASH_INT:     return &intHash;
159     case HASH_POINTER: return &ptrHash;
160     case HASH_STRING:  return &strHash;
161     case HASH_BINARY:  return &binHash;;
162     default: break;
163   }
164   return 0;
165 #else
166   if( keyClass==HASH_STRING ){
167     return &strHash;
168   }else{
169     assert( keyClass==HASH_BINARY );
170     return &binHash;
171   }
172 #endif
173 }
174 
175 /*
176 ** Return a pointer to the appropriate hash function given the key class.
177 **
178 ** For help in interpreted the obscure C code in the function definition,
179 ** see the header comment on the previous function.
180 */
compareFunction(int keyClass)181 static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
182 #if 0 /* HASH_INT and HASH_POINTER are never used */
183   switch( keyClass ){
184     case HASH_INT:     return &intCompare;
185     case HASH_POINTER: return &ptrCompare;
186     case HASH_STRING:  return &strCompare;
187     case HASH_BINARY:  return &binCompare;
188     default: break;
189   }
190   return 0;
191 #else
192   if( keyClass==HASH_STRING ){
193     return &strCompare;
194   }else{
195     assert( keyClass==HASH_BINARY );
196     return &binCompare;
197   }
198 #endif
199 }
200 
201 /* Link an element into the hash table
202 */
insertElement(Hash * pH,struct _ht * pEntry,HashElem * pNew)203 static void insertElement(
204   Hash *pH,              /* The complete hash table */
205   struct _ht *pEntry,    /* The entry into which pNew is inserted */
206   HashElem *pNew         /* The element to be inserted */
207 ){
208   HashElem *pHead;       /* First element already in pEntry */
209   pHead = pEntry->chain;
210   if( pHead ){
211     pNew->next = pHead;
212     pNew->prev = pHead->prev;
213     if( pHead->prev ){ pHead->prev->next = pNew; }
214     else             { pH->first = pNew; }
215     pHead->prev = pNew;
216   }else{
217     pNew->next = pH->first;
218     if( pH->first ){ pH->first->prev = pNew; }
219     pNew->prev = 0;
220     pH->first = pNew;
221   }
222   pEntry->count++;
223   pEntry->chain = pNew;
224 }
225 
226 
227 /* Resize the hash table so that it cantains "new_size" buckets.
228 ** "new_size" must be a power of 2.  The hash table might fail
229 ** to resize if sqliteMalloc() fails.
230 */
rehash(Hash * pH,int new_size)231 static void rehash(Hash *pH, int new_size){
232   struct _ht *new_ht;            /* The new hash table */
233   HashElem *elem, *next_elem;    /* For looping over existing elements */
234   int (*xHash)(const void*,int); /* The hash function */
235 
236   assert( (new_size & (new_size-1))==0 );
237   new_ht = (struct _ht *)pH->xMalloc( new_size*sizeof(struct _ht) );
238   if( new_ht==0 ) return;
239   if( pH->ht ) pH->xFree(pH->ht);
240   pH->ht = new_ht;
241   pH->htsize = new_size;
242   xHash = hashFunction(pH->keyClass);
243   for(elem=pH->first, pH->first=0; elem; elem = next_elem){
244     int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
245     next_elem = elem->next;
246     insertElement(pH, &new_ht[h], elem);
247   }
248 }
249 
250 /* This function (for internal use only) locates an element in an
251 ** hash table that matches the given key.  The hash for this key has
252 ** already been computed and is passed as the 4th parameter.
253 */
findElementGivenHash(const Hash * pH,const void * pKey,int nKey,int h)254 static HashElem *findElementGivenHash(
255   const Hash *pH,     /* The pH to be searched */
256   const void *pKey,   /* The key we are searching for */
257   int nKey,
258   int h               /* The hash for this key. */
259 ){
260   HashElem *elem;                /* Used to loop thru the element list */
261   int count;                     /* Number of elements left to test */
262   int (*xCompare)(const void*,int,const void*,int);  /* comparison function */
263 
264   if( pH->ht ){
265     struct _ht *pEntry = &pH->ht[h];
266     elem = pEntry->chain;
267     count = pEntry->count;
268     xCompare = compareFunction(pH->keyClass);
269     while( count-- && elem ){
270       if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
271         return elem;
272       }
273       elem = elem->next;
274     }
275   }
276   return 0;
277 }
278 
279 /* Remove a single entry from the hash table given a pointer to that
280 ** element and a hash on the element's key.
281 */
removeElementGivenHash(Hash * pH,HashElem * elem,int h)282 static void removeElementGivenHash(
283   Hash *pH,         /* The pH containing "elem" */
284   HashElem* elem,   /* The element to be removed from the pH */
285   int h             /* Hash value for the element */
286 ){
287   struct _ht *pEntry;
288   if( elem->prev ){
289     elem->prev->next = elem->next;
290   }else{
291     pH->first = elem->next;
292   }
293   if( elem->next ){
294     elem->next->prev = elem->prev;
295   }
296   pEntry = &pH->ht[h];
297   if( pEntry->chain==elem ){
298     pEntry->chain = elem->next;
299   }
300   pEntry->count--;
301   if( pEntry->count<=0 ){
302     pEntry->chain = 0;
303   }
304   if( pH->copyKey && elem->pKey ){
305     pH->xFree(elem->pKey);
306   }
307   pH->xFree( elem );
308   pH->count--;
309   if( pH->count<=0 ){
310     assert( pH->first==0 );
311     assert( pH->count==0 );
312     HashClear(pH);
313   }
314 }
315 
316 /* Attempt to locate an element of the hash table pH with a key
317 ** that matches pKey,nKey.  Return the data for this element if it is
318 ** found, or NULL if there is no match.
319 */
HashFind(const Hash * pH,const void * pKey,int nKey)320 void *HashFind(const Hash *pH, const void *pKey, int nKey){
321   int h;             /* A hash on key */
322   HashElem *elem;    /* The element that matches key */
323   int (*xHash)(const void*,int);  /* The hash function */
324 
325   if( pH==0 || pH->ht==0 ) return 0;
326   xHash = hashFunction(pH->keyClass);
327   assert( xHash!=0 );
328   h = (*xHash)(pKey,nKey);
329   assert( (pH->htsize & (pH->htsize-1))==0 );
330   elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
331   return elem ? elem->data : 0;
332 }
333 
334 /* Insert an element into the hash table pH.  The key is pKey,nKey
335 ** and the data is "data".
336 **
337 ** If no element exists with a matching key, then a new
338 ** element is created.  A copy of the key is made if the copyKey
339 ** flag is set.  NULL is returned.
340 **
341 ** If another element already exists with the same key, then the
342 ** new data replaces the old data and the old data is returned.
343 ** The key is not copied in this instance.  If a malloc fails, then
344 ** the new data is returned and the hash table is unchanged.
345 **
346 ** If the "data" parameter to this function is NULL, then the
347 ** element corresponding to "key" is removed from the hash table.
348 */
HashInsert(Hash * pH,const void * pKey,int nKey,void * data)349 void *HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
350   int hraw;             /* Raw hash value of the key */
351   int h;                /* the hash of the key modulo hash table size */
352   HashElem *elem;       /* Used to loop thru the element list */
353   HashElem *new_elem;   /* New element added to the pH */
354   int (*xHash)(const void*,int);  /* The hash function */
355 
356   assert( pH!=0 );
357   xHash = hashFunction(pH->keyClass);
358   assert( xHash!=0 );
359   hraw = (*xHash)(pKey, nKey);
360   assert( (pH->htsize & (pH->htsize-1))==0 );
361   h = hraw & (pH->htsize-1);
362   elem = findElementGivenHash(pH,pKey,nKey,h);
363   if( elem ){
364     void *old_data = elem->data;
365     if( data==0 ){
366       removeElementGivenHash(pH,elem,h);
367     }else{
368       elem->data = data;
369     }
370     return old_data;
371   }
372   if( data==0 ) return 0;
373   new_elem = (HashElem*)pH->xMalloc( sizeof(HashElem) );
374   if( new_elem==0 ) return data;
375   if( pH->copyKey && pKey!=0 ){
376     new_elem->pKey = pH->xMalloc( nKey );
377     if( new_elem->pKey==0 ){
378       pH->xFree(new_elem);
379       return data;
380     }
381     memcpy((void*)new_elem->pKey, pKey, nKey);
382   }else{
383     new_elem->pKey = (void*)pKey;
384   }
385   new_elem->nKey = nKey;
386   pH->count++;
387   if( pH->htsize==0 ){
388     rehash(pH,8);
389     if( pH->htsize==0 ){
390       pH->count = 0;
391       pH->xFree(new_elem);
392       return data;
393     }
394   }
395   if( pH->count > pH->htsize ){
396     rehash(pH,pH->htsize*2);
397   }
398   assert( pH->htsize>0 );
399   assert( (pH->htsize & (pH->htsize-1))==0 );
400   h = hraw & (pH->htsize-1);
401   insertElement(pH, &pH->ht[h], new_elem);
402   new_elem->data = data;
403   return 0;
404 }
405