1// Copyright 2012 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package bn256 implements a particular bilinear group at the 128-bit security level.
6//
7// Bilinear groups are the basis of many of the new cryptographic protocols
8// that have been proposed over the past decade. They consist of a triplet of
9// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
10// (where gₓ is a generator of the respective group). That function is called
11// a pairing function.
12//
13// This package specifically implements the Optimal Ate pairing over a 256-bit
14// Barreto-Naehrig curve as described in
15// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
16// with the implementation described in that paper.
17package bn256 // import "golang.org/x/crypto/bn256"
18
19import (
20	"crypto/rand"
21	"io"
22	"math/big"
23)
24
25// BUG(agl): this implementation is not constant time.
26// TODO(agl): keep GF(p²) elements in Mongomery form.
27
28// G1 is an abstract cyclic group. The zero value is suitable for use as the
29// output of an operation, but cannot be used as an input.
30type G1 struct {
31	p *curvePoint
32}
33
34// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
35func RandomG1(r io.Reader) (*big.Int, *G1, error) {
36	var k *big.Int
37	var err error
38
39	for {
40		k, err = rand.Int(r, Order)
41		if err != nil {
42			return nil, nil, err
43		}
44		if k.Sign() > 0 {
45			break
46		}
47	}
48
49	return k, new(G1).ScalarBaseMult(k), nil
50}
51
52func (g *G1) String() string {
53	return "bn256.G1" + g.p.String()
54}
55
56// ScalarBaseMult sets e to g*k where g is the generator of the group and
57// then returns e.
58func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
59	if e.p == nil {
60		e.p = newCurvePoint(nil)
61	}
62	e.p.Mul(curveGen, k, new(bnPool))
63	return e
64}
65
66// ScalarMult sets e to a*k and then returns e.
67func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
68	if e.p == nil {
69		e.p = newCurvePoint(nil)
70	}
71	e.p.Mul(a.p, k, new(bnPool))
72	return e
73}
74
75// Add sets e to a+b and then returns e.
76// BUG(agl): this function is not complete: a==b fails.
77func (e *G1) Add(a, b *G1) *G1 {
78	if e.p == nil {
79		e.p = newCurvePoint(nil)
80	}
81	e.p.Add(a.p, b.p, new(bnPool))
82	return e
83}
84
85// Neg sets e to -a and then returns e.
86func (e *G1) Neg(a *G1) *G1 {
87	if e.p == nil {
88		e.p = newCurvePoint(nil)
89	}
90	e.p.Negative(a.p)
91	return e
92}
93
94// Marshal converts n to a byte slice.
95func (n *G1) Marshal() []byte {
96	n.p.MakeAffine(nil)
97
98	xBytes := new(big.Int).Mod(n.p.x, p).Bytes()
99	yBytes := new(big.Int).Mod(n.p.y, p).Bytes()
100
101	// Each value is a 256-bit number.
102	const numBytes = 256 / 8
103
104	ret := make([]byte, numBytes*2)
105	copy(ret[1*numBytes-len(xBytes):], xBytes)
106	copy(ret[2*numBytes-len(yBytes):], yBytes)
107
108	return ret
109}
110
111// Unmarshal sets e to the result of converting the output of Marshal back into
112// a group element and then returns e.
113func (e *G1) Unmarshal(m []byte) (*G1, bool) {
114	// Each value is a 256-bit number.
115	const numBytes = 256 / 8
116
117	if len(m) != 2*numBytes {
118		return nil, false
119	}
120
121	if e.p == nil {
122		e.p = newCurvePoint(nil)
123	}
124
125	e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
126	e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
127
128	if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
129		// This is the point at infinity.
130		e.p.y.SetInt64(1)
131		e.p.z.SetInt64(0)
132		e.p.t.SetInt64(0)
133	} else {
134		e.p.z.SetInt64(1)
135		e.p.t.SetInt64(1)
136
137		if !e.p.IsOnCurve() {
138			return nil, false
139		}
140	}
141
142	return e, true
143}
144
145// G2 is an abstract cyclic group. The zero value is suitable for use as the
146// output of an operation, but cannot be used as an input.
147type G2 struct {
148	p *twistPoint
149}
150
151// RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
152func RandomG2(r io.Reader) (*big.Int, *G2, error) {
153	var k *big.Int
154	var err error
155
156	for {
157		k, err = rand.Int(r, Order)
158		if err != nil {
159			return nil, nil, err
160		}
161		if k.Sign() > 0 {
162			break
163		}
164	}
165
166	return k, new(G2).ScalarBaseMult(k), nil
167}
168
169func (g *G2) String() string {
170	return "bn256.G2" + g.p.String()
171}
172
173// ScalarBaseMult sets e to g*k where g is the generator of the group and
174// then returns out.
175func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
176	if e.p == nil {
177		e.p = newTwistPoint(nil)
178	}
179	e.p.Mul(twistGen, k, new(bnPool))
180	return e
181}
182
183// ScalarMult sets e to a*k and then returns e.
184func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
185	if e.p == nil {
186		e.p = newTwistPoint(nil)
187	}
188	e.p.Mul(a.p, k, new(bnPool))
189	return e
190}
191
192// Add sets e to a+b and then returns e.
193// BUG(agl): this function is not complete: a==b fails.
194func (e *G2) Add(a, b *G2) *G2 {
195	if e.p == nil {
196		e.p = newTwistPoint(nil)
197	}
198	e.p.Add(a.p, b.p, new(bnPool))
199	return e
200}
201
202// Marshal converts n into a byte slice.
203func (n *G2) Marshal() []byte {
204	n.p.MakeAffine(nil)
205
206	xxBytes := new(big.Int).Mod(n.p.x.x, p).Bytes()
207	xyBytes := new(big.Int).Mod(n.p.x.y, p).Bytes()
208	yxBytes := new(big.Int).Mod(n.p.y.x, p).Bytes()
209	yyBytes := new(big.Int).Mod(n.p.y.y, p).Bytes()
210
211	// Each value is a 256-bit number.
212	const numBytes = 256 / 8
213
214	ret := make([]byte, numBytes*4)
215	copy(ret[1*numBytes-len(xxBytes):], xxBytes)
216	copy(ret[2*numBytes-len(xyBytes):], xyBytes)
217	copy(ret[3*numBytes-len(yxBytes):], yxBytes)
218	copy(ret[4*numBytes-len(yyBytes):], yyBytes)
219
220	return ret
221}
222
223// Unmarshal sets e to the result of converting the output of Marshal back into
224// a group element and then returns e.
225func (e *G2) Unmarshal(m []byte) (*G2, bool) {
226	// Each value is a 256-bit number.
227	const numBytes = 256 / 8
228
229	if len(m) != 4*numBytes {
230		return nil, false
231	}
232
233	if e.p == nil {
234		e.p = newTwistPoint(nil)
235	}
236
237	e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
238	e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
239	e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
240	e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
241
242	if e.p.x.x.Sign() == 0 &&
243		e.p.x.y.Sign() == 0 &&
244		e.p.y.x.Sign() == 0 &&
245		e.p.y.y.Sign() == 0 {
246		// This is the point at infinity.
247		e.p.y.SetOne()
248		e.p.z.SetZero()
249		e.p.t.SetZero()
250	} else {
251		e.p.z.SetOne()
252		e.p.t.SetOne()
253
254		if !e.p.IsOnCurve() {
255			return nil, false
256		}
257	}
258
259	return e, true
260}
261
262// GT is an abstract cyclic group. The zero value is suitable for use as the
263// output of an operation, but cannot be used as an input.
264type GT struct {
265	p *gfP12
266}
267
268func (g *GT) String() string {
269	return "bn256.GT" + g.p.String()
270}
271
272// ScalarMult sets e to a*k and then returns e.
273func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
274	if e.p == nil {
275		e.p = newGFp12(nil)
276	}
277	e.p.Exp(a.p, k, new(bnPool))
278	return e
279}
280
281// Add sets e to a+b and then returns e.
282func (e *GT) Add(a, b *GT) *GT {
283	if e.p == nil {
284		e.p = newGFp12(nil)
285	}
286	e.p.Mul(a.p, b.p, new(bnPool))
287	return e
288}
289
290// Neg sets e to -a and then returns e.
291func (e *GT) Neg(a *GT) *GT {
292	if e.p == nil {
293		e.p = newGFp12(nil)
294	}
295	e.p.Invert(a.p, new(bnPool))
296	return e
297}
298
299// Marshal converts n into a byte slice.
300func (n *GT) Marshal() []byte {
301	n.p.Minimal()
302
303	xxxBytes := n.p.x.x.x.Bytes()
304	xxyBytes := n.p.x.x.y.Bytes()
305	xyxBytes := n.p.x.y.x.Bytes()
306	xyyBytes := n.p.x.y.y.Bytes()
307	xzxBytes := n.p.x.z.x.Bytes()
308	xzyBytes := n.p.x.z.y.Bytes()
309	yxxBytes := n.p.y.x.x.Bytes()
310	yxyBytes := n.p.y.x.y.Bytes()
311	yyxBytes := n.p.y.y.x.Bytes()
312	yyyBytes := n.p.y.y.y.Bytes()
313	yzxBytes := n.p.y.z.x.Bytes()
314	yzyBytes := n.p.y.z.y.Bytes()
315
316	// Each value is a 256-bit number.
317	const numBytes = 256 / 8
318
319	ret := make([]byte, numBytes*12)
320	copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
321	copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
322	copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
323	copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
324	copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
325	copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
326	copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
327	copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
328	copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
329	copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
330	copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
331	copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
332
333	return ret
334}
335
336// Unmarshal sets e to the result of converting the output of Marshal back into
337// a group element and then returns e.
338func (e *GT) Unmarshal(m []byte) (*GT, bool) {
339	// Each value is a 256-bit number.
340	const numBytes = 256 / 8
341
342	if len(m) != 12*numBytes {
343		return nil, false
344	}
345
346	if e.p == nil {
347		e.p = newGFp12(nil)
348	}
349
350	e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
351	e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
352	e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
353	e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
354	e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
355	e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
356	e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
357	e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
358	e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
359	e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
360	e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
361	e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
362
363	return e, true
364}
365
366// Pair calculates an Optimal Ate pairing.
367func Pair(g1 *G1, g2 *G2) *GT {
368	return &GT{optimalAte(g2.p, g1.p, new(bnPool))}
369}
370
371// bnPool implements a tiny cache of *big.Int objects that's used to reduce the
372// number of allocations made during processing.
373type bnPool struct {
374	bns   []*big.Int
375	count int
376}
377
378func (pool *bnPool) Get() *big.Int {
379	if pool == nil {
380		return new(big.Int)
381	}
382
383	pool.count++
384	l := len(pool.bns)
385	if l == 0 {
386		return new(big.Int)
387	}
388
389	bn := pool.bns[l-1]
390	pool.bns = pool.bns[:l-1]
391	return bn
392}
393
394func (pool *bnPool) Put(bn *big.Int) {
395	if pool == nil {
396		return
397	}
398	pool.bns = append(pool.bns, bn)
399	pool.count--
400}
401
402func (pool *bnPool) Count() int {
403	return pool.count
404}
405