1 /*****************************************************************************
2 
3 Copyright (c) 2014, 2020, Oracle and/or its affiliates. All Rights Reserved.
4 
5 This program is free software; you can redistribute it and/or modify it under
6 the terms of the GNU General Public License, version 2.0, as published by the
7 Free Software Foundation.
8 
9 This program is also distributed with certain software (including but not
10 limited to OpenSSL) that is licensed under separate terms, as designated in a
11 particular file or component or in included license documentation. The authors
12 of MySQL hereby grant you an additional permission to link the program and
13 your derivative works with the separately licensed software that they have
14 included with MySQL.
15 
16 This program is distributed in the hope that it will be useful, but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
18 FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0,
19 for more details.
20 
21 You should have received a copy of the GNU General Public License along with
22 this program; if not, write to the Free Software Foundation, Inc.,
23 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA
24 
25 *****************************************************************************/
26 
27 /** @file include/ut0new.h
28  Instrumented memory allocator.
29 
30  Created May 26, 2014 Vasil Dimov
31  *******************************************************/
32 
33 /** Dynamic memory allocation within InnoDB guidelines.
34 All dynamic (heap) memory allocations (malloc(3), strdup(3), etc, "new",
35 various std:: containers that allocate memory internally), that are done
36 within InnoDB are instrumented. This means that InnoDB uses a custom set
37 of functions for allocating memory, rather than calling e.g. "new" directly.
38 
39 Here follows a cheat sheet on what InnoDB functions to use whenever a
40 standard one would have been used.
41 
42 Creating new objects with "new":
43 --------------------------------
44 Standard:
45   new expression
46   or
47   new(std::nothrow) expression
48 InnoDB, default instrumentation:
49   UT_NEW_NOKEY(expression)
50 InnoDB, custom instrumentation, preferred:
51   UT_NEW(expression, key)
52 
53 Destroying objects, created with "new":
54 ---------------------------------------
55 Standard:
56   delete ptr
57 InnoDB:
58   UT_DELETE(ptr)
59 
60 Creating new arrays with "new[]":
61 ---------------------------------
62 Standard:
63   new type[num]
64   or
65   new(std::nothrow) type[num]
66 InnoDB, default instrumentation:
67   UT_NEW_ARRAY_NOKEY(type, num)
68 InnoDB, custom instrumentation, preferred:
69   UT_NEW_ARRAY(type, num, key)
70 
71 Destroying arrays, created with "new[]":
72 ----------------------------------------
73 Standard:
74   delete[] ptr
75 InnoDB:
76   UT_DELETE_ARRAY(ptr)
77 
78 Declaring a type with a std:: container, e.g. std::vector:
79 ----------------------------------------------------------
80 Standard:
81   std::vector<t>
82 InnoDB:
83   std::vector<t, ut_allocator<t> >
84 
85 Declaring objects of some std:: type:
86 -------------------------------------
87 Standard:
88   std::vector<t> v
89 InnoDB, default instrumentation:
90   std::vector<t, ut_allocator<t> > v
91 InnoDB, custom instrumentation, preferred:
92   std::vector<t, ut_allocator<t> > v(ut_allocator<t>(key))
93 
94 Raw block allocation (as usual in C++, consider whether using "new" would
95 not be more appropriate):
96 -------------------------------------------------------------------------
97 Standard:
98   malloc(num)
99 InnoDB, default instrumentation:
100   ut_malloc_nokey(num)
101 InnoDB, custom instrumentation, preferred:
102   ut_malloc(num, key)
103 
104 Raw block resize:
105 -----------------
106 Standard:
107   realloc(ptr, new_size)
108 InnoDB:
109   ut_realloc(ptr, new_size)
110 
111 Raw block deallocation:
112 -----------------------
113 Standard:
114   free(ptr)
115 InnoDB:
116   ut_free(ptr)
117 
118 Note: the expression passed to UT_NEW() or UT_NEW_NOKEY() must always end
119 with (), thus:
120 Standard:
121   new int
122 InnoDB:
123   UT_NEW_NOKEY(int())
124 */
125 
126 #ifndef ut0new_h
127 #define ut0new_h
128 
129 #include <algorithm>
130 #include <cerrno>
131 #include <cstddef>
132 #include <cstdlib>
133 #include <cstring>
134 #include <limits>
135 #include <map>
136 #include <type_traits> /* std::is_trivially_default_constructible */
137 
138 #include "my_basename.h"
139 #include "mysql/psi/mysql_memory.h"
140 #include "mysql/psi/psi_base.h"
141 #include "mysql/psi/psi_memory.h"
142 
143 #include "os0proc.h"
144 #include "os0thread.h"
145 #include "univ.i"
146 #include "ut0byte.h" /* ut_align */
147 #include "ut0cpu_cache.h"
148 #include "ut0ut.h"
149 
150 #define OUT_OF_MEMORY_MSG                                             \
151   "Check if you should increase the swap file or ulimits of your"     \
152   " operating system. Note that on most 32-bit computers the process" \
153   " memory space is limited to 2 GB or 4 GB."
154 
155 /** Maximum number of retries to allocate memory. */
156 extern const size_t alloc_max_retries;
157 
158 /** Keys for registering allocations with performance schema.
159 Pointers to these variables are supplied to PFS code via the pfs_info[]
160 array and the PFS code initializes them via PSI_MEMORY_CALL(register_memory)().
161 mem_key_other and mem_key_std are special in the following way.
162 * If the caller has not provided a key and the file name of the caller is
163   unknown, then mem_key_std will be used. This happens only when called from
164   within std::* containers.
165 * If the caller has not provided a key and the file name of the caller is
166   known, but is not amongst the predefined names (see ut_new_boot()) then
167   mem_key_other will be used. Generally this should not happen and if it
168   happens then that means that the list of predefined names must be extended.
169 Keep this list alphabetically sorted. */
170 extern PSI_memory_key mem_key_ahi;
171 extern PSI_memory_key mem_key_archive;
172 extern PSI_memory_key mem_key_buf_buf_pool;
173 extern PSI_memory_key mem_key_buf_stat_per_index_t;
174 /** Memory key for clone */
175 extern PSI_memory_key mem_key_clone;
176 extern PSI_memory_key mem_key_dict_stats_bg_recalc_pool_t;
177 extern PSI_memory_key mem_key_dict_stats_index_map_t;
178 extern PSI_memory_key mem_key_dict_stats_n_diff_on_level;
179 extern PSI_memory_key mem_key_redo_log_archive_queue_element;
180 extern PSI_memory_key mem_key_other;
181 extern PSI_memory_key mem_key_partitioning;
182 extern PSI_memory_key mem_key_row_log_buf;
183 extern PSI_memory_key mem_key_row_merge_sort;
184 extern PSI_memory_key mem_key_std;
185 extern PSI_memory_key mem_key_trx_sys_t_rw_trx_ids;
186 extern PSI_memory_key mem_key_undo_spaces;
187 extern PSI_memory_key mem_key_ut_lock_free_hash_t;
188 /* Please obey alphabetical order in the definitions above. */
189 
190 /** Setup the internal objects needed for UT_NEW() to operate.
191 This must be called before the first call to UT_NEW(). */
192 void ut_new_boot();
193 
194 /** Setup the internal objects needed for UT_NEW() to operate.
195 This must be called before the first call to UT_NEW(). This
196 version of function might be called several times and it will
197 simply skip all calls except the first one, during which the
198 initialization will happen. */
199 void ut_new_boot_safe();
200 
201 #ifdef UNIV_PFS_MEMORY
202 
203 /** List of filenames that allocate memory and are instrumented via PFS. */
204 static constexpr const char *auto_event_names[] = {
205     /* Keep this list alphabetically sorted. */
206     "api0api",
207     "api0misc",
208     "btr0btr",
209     "btr0bulk",
210     "btr0cur",
211     "btr0pcur",
212     "btr0sea",
213     "btr0types",
214     "buf",
215     "buf0buddy",
216     "buf0buf",
217     "buf0checksum",
218     "buf0dblwr",
219     "buf0dump",
220     "buf0flu",
221     "buf0lru",
222     "buf0rea",
223     "buf0stats",
224     "buf0types",
225     "checksum",
226     "crc32",
227     "create",
228     "data0data",
229     "data0type",
230     "data0types",
231     "db0err",
232     "dict",
233     "dict0boot",
234     "dict0crea",
235     "dict0dd",
236     "dict0dict",
237     "dict0load",
238     "dict0mem",
239     "dict0priv",
240     "dict0sdi",
241     "dict0stats",
242     "dict0stats_bg",
243     "dict0types",
244     "dyn0buf",
245     "dyn0types",
246     "eval0eval",
247     "eval0proc",
248     "fil0fil",
249     "fil0types",
250     "file",
251     "fsp0file",
252     "fsp0fsp",
253     "fsp0space",
254     "fsp0sysspace",
255     "fsp0types",
256     "fts0ast",
257     "fts0blex",
258     "fts0config",
259     "fts0fts",
260     "fts0opt",
261     "fts0pars",
262     "fts0plugin",
263     "fts0priv",
264     "fts0que",
265     "fts0sql",
266     "fts0tlex",
267     "fts0tokenize",
268     "fts0types",
269     "fts0vlc",
270     "fut0fut",
271     "fut0lst",
272     "gis0geo",
273     "gis0rtree",
274     "gis0sea",
275     "gis0type",
276     "ha0ha",
277     "ha0storage",
278     "ha_innodb",
279     "ha_innopart",
280     "ha_prototypes",
281     "handler0alter",
282     "hash0hash",
283     "i_s",
284     "ib0mutex",
285     "ibuf0ibuf",
286     "ibuf0types",
287     "lexyy",
288     "lob0lob",
289     "lock0iter",
290     "lock0lock",
291     "lock0prdt",
292     "lock0priv",
293     "lock0types",
294     "lock0wait",
295     "log0log",
296     "log0recv",
297     "log0write",
298     "mach0data",
299     "mem",
300     "mem0mem",
301     "memory",
302     "mtr0log",
303     "mtr0mtr",
304     "mtr0types",
305     "os0atomic",
306     "os0event",
307     "os0file",
308     "os0numa",
309     "os0once",
310     "os0proc",
311     "os0thread",
312     "page",
313     "page0cur",
314     "page0page",
315     "page0size",
316     "page0types",
317     "page0zip",
318     "pars0grm",
319     "pars0lex",
320     "pars0opt",
321     "pars0pars",
322     "pars0sym",
323     "pars0types",
324     "que0que",
325     "que0types",
326     "read0read",
327     "read0types",
328     "rec",
329     "rem0cmp",
330     "rem0rec",
331     "rem0types",
332     "row0ext",
333     "row0ftsort",
334     "row0import",
335     "row0ins",
336     "row0log",
337     "row0merge",
338     "row0mysql",
339     "row0purge",
340     "row0quiesce",
341     "row0row",
342     "row0sel",
343     "row0types",
344     "row0uins",
345     "row0umod",
346     "row0undo",
347     "row0upd",
348     "row0vers",
349     "sess0sess",
350     "srv0conc",
351     "srv0mon",
352     "srv0srv",
353     "srv0start",
354     "srv0tmp",
355     "sync0arr",
356     "sync0debug",
357     "sync0policy",
358     "sync0sharded_rw",
359     "sync0rw",
360     "sync0sync",
361     "sync0types",
362     "trx0i_s",
363     "trx0purge",
364     "trx0rec",
365     "trx0roll",
366     "trx0rseg",
367     "trx0sys",
368     "trx0trx",
369     "trx0types",
370     "trx0undo",
371     "trx0xa",
372     "usr0sess",
373     "usr0types",
374     "ut",
375     "ut0byte",
376     "ut0counter",
377     "ut0crc32",
378     "ut0dbg",
379     "ut0link_buf",
380     "ut0list",
381     "ut0lock_free_hash",
382     "ut0lst",
383     "ut0mem",
384     "ut0mutex",
385     "ut0new",
386     "ut0pool",
387     "ut0rbt",
388     "ut0rnd",
389     "ut0sort",
390     "ut0stage",
391     "ut0ut",
392     "ut0vec",
393     "ut0wqueue",
394     "zipdecompress",
395 };
396 
397 static constexpr size_t n_auto = UT_ARR_SIZE(auto_event_names);
398 extern PSI_memory_key auto_event_keys[n_auto];
399 extern PSI_memory_info pfs_info_auto[n_auto];
400 
401 /** gcc 5 fails to evalutate costexprs at compile time. */
402 #if defined(__GNUG__) && (__GNUG__ == 5)
403 
404 /** Compute whether a string begins with a given prefix, compile-time.
405 @param[in]	a	first string, taken to be zero-terminated
406 @param[in]	b	second string (prefix to search for)
407 @param[in]	b_len	length in bytes of second string
408 @param[in]	index	character index to start comparing at
409 @return whether b is a prefix of a */
410 constexpr bool ut_string_begins_with(const char *a, const char *b, size_t b_len,
411                                      size_t index = 0) {
412   return (index == b_len || (a[index] == b[index] &&
413                              ut_string_begins_with(a, b, b_len, index + 1)));
414 }
415 
416 /** Find the length of the filename without its file extension.
417 @param[in]	file	filename, with extension but without directory
418 @param[in]	index	character index to start scanning for extension
419                         separator at
420 @return length, in bytes */
421 constexpr size_t ut_len_without_extension(const char *file, size_t index = 0) {
422   return ((file[index] == '\0' || file[index] == '.')
423               ? index
424               : ut_len_without_extension(file, index + 1));
425 }
426 
427 /** Retrieve a memory key (registered with PFS), given the file name of the
428 caller.
429 @param[in]	file	portion of the filename - basename, with extension
430 @param[in]	len	length of the filename to check for
431 @param[in]	index	index of first PSI key to check
432 @return registered memory key or PSI_NOT_INSTRUMENTED if not found */
433 constexpr PSI_memory_key ut_new_get_key_by_base_file(const char *file,
434                                                      size_t len,
435                                                      size_t index = 0) {
436   return ((index == n_auto)
437               ? PSI_NOT_INSTRUMENTED
438               : (ut_string_begins_with(auto_event_names[index], file, len)
439                      ? auto_event_keys[index]
440                      : ut_new_get_key_by_base_file(file, len, index + 1)));
441 }
442 
443 /** Retrieve a memory key (registered with PFS), given the file name of
444 the caller.
445 @param[in]	file	portion of the filename - basename, with extension
446 @return registered memory key or PSI_NOT_INSTRUMENTED if not found */
ut_new_get_key_by_file(const char * file)447 constexpr PSI_memory_key ut_new_get_key_by_file(const char *file) {
448   return (ut_new_get_key_by_base_file(file, ut_len_without_extension(file)));
449 }
450 
451 #define UT_NEW_THIS_FILE_PSI_KEY ut_new_get_key_by_file(MY_BASENAME)
452 
453 #else /* __GNUG__ == 5 */
454 
455 /** Compute whether a string begins with a given prefix, compile-time.
456 @param[in]	a	first string, taken to be zero-terminated
457 @param[in]	b	second string (prefix to search for)
458 @param[in]	b_len	length in bytes of second string
459 @return whether b is a prefix of a */
ut_string_begins_with(const char * a,const char * b,size_t b_len)460 constexpr bool ut_string_begins_with(const char *a, const char *b,
461                                      size_t b_len) {
462   for (size_t i = 0; i < b_len; ++i) {
463     if (a[i] != b[i]) {
464       return false;
465     }
466   }
467   return true;
468 }
469 
470 /** Find the length of the filename without its file extension.
471 @param[in]	file	filename, with extension but without directory
472 @return length, in bytes */
ut_len_without_extension(const char * file)473 constexpr size_t ut_len_without_extension(const char *file) {
474   for (size_t i = 0;; ++i) {
475     if (file[i] == '\0' || file[i] == '.') {
476       return i;
477     }
478   }
479 }
480 
481 /** Retrieve a memory key (registered with PFS), given the file name of the
482 caller.
483 @param[in]	file	portion of the filename - basename, with extension
484 @param[in]	len	length of the filename to check for
485 @return index to registered memory key or -1 if not found */
ut_new_get_key_by_base_file(const char * file,size_t len)486 constexpr int ut_new_get_key_by_base_file(const char *file, size_t len) {
487   for (size_t i = 0; i < n_auto; ++i) {
488     if (ut_string_begins_with(auto_event_names[i], file, len)) {
489       return static_cast<int>(i);
490     }
491   }
492   return -1;
493 }
494 
495 /** Retrieve a memory key (registered with PFS), given the file name of
496 the caller.
497 @param[in]	file	portion of the filename - basename, with extension
498 @return index to memory key or -1 if not found */
ut_new_get_key_by_file(const char * file)499 constexpr int ut_new_get_key_by_file(const char *file) {
500   return ut_new_get_key_by_base_file(file, ut_len_without_extension(file));
501 }
502 
503 // Sending an expression through a template variable forces the compiler to
504 // evaluate the expression at compile time (constexpr in itself has no such
505 // guarantee, only that the compiler is allowed).
506 template <int Value>
507 struct force_constexpr {
508   static constexpr int value = Value;
509 };
510 
511 #define UT_NEW_THIS_FILE_PSI_INDEX \
512   (force_constexpr<ut_new_get_key_by_file(MY_BASENAME)>::value)
513 
514 #define UT_NEW_THIS_FILE_PSI_KEY    \
515   (UT_NEW_THIS_FILE_PSI_INDEX == -1 \
516        ? PSI_NOT_INSTRUMENTED       \
517        : auto_event_keys[UT_NEW_THIS_FILE_PSI_INDEX])
518 
519 #endif /* __GNUG__ == 5 */
520 
521 #endif /* UNIV_PFS_MEMORY */
522 
523 /** A structure that holds the necessary data for performance schema
524 accounting. An object of this type is put in front of each allocated block
525 of memory when allocation is done by ut_allocator::allocate(). This is
526 because the data is needed even when freeing the memory. Users of
527 ut_allocator::allocate_large() are responsible for maintaining this
528 themselves.
529  To maintain proper alignment of the pointers ut_allocator returns to the
530 calling code, this struct is declared with alignas(std::max_align_t). This tells
531 the compiler to insert enough padding to the struct to satisfy the strictest
532 fundamental alignment requirement. The size of this object then becomes a
533 multiple of the alignment requirement, this is implied by the fact that arrays
534 are contiguous in memory. This means that when we increment a pointer to
535 ut_new_pfx_t the resulting pointer must be aligned to the alignment requirement
536 of std::max_align_t. Ref. C++ standard: 6.6.5 [basic.align], 11.3.4 [dcl.array]
537 */
alignas(std::max_align_t)538 struct alignas(std::max_align_t) ut_new_pfx_t {
539 #ifdef UNIV_PFS_MEMORY
540 
541   /** Performance schema key. Assigned to a name at startup via
542   PSI_MEMORY_CALL(register_memory)() and later used for accounting
543   allocations and deallocations with
544   PSI_MEMORY_CALL(memory_alloc)(key, size, owner) and
545   PSI_MEMORY_CALL(memory_free)(key, size, owner). */
546   PSI_memory_key m_key;
547 
548   /**
549     Thread owner.
550     Instrumented thread that owns the allocated memory.
551     This state is used by the performance schema to maintain
552     per thread statistics,
553     when memory is given from thread A to thread B.
554   */
555   struct PSI_thread *m_owner;
556 
557 #endif /* UNIV_PFS_MEMORY */
558 
559   /** Size of the allocated block in bytes, including this prepended
560   aux structure (for ut_allocator::allocate()). For example if InnoDB
561   code requests to allocate 100 bytes, and sizeof(ut_new_pfx_t) is 16,
562   then 116 bytes are allocated in total and m_size will be 116.
563   ut_allocator::allocate_large() does not prepend this struct to the
564   allocated block and its users are responsible for maintaining it
565   and passing it later to ut_allocator::deallocate_large(). */
566   size_t m_size;
567 };
568 
569 /** Allocator class for allocating memory from inside std::* containers. */
570 template <class T>
571 class ut_allocator {
572  public:
573   typedef T *pointer;
574   typedef const T *const_pointer;
575   typedef T &reference;
576   typedef const T &const_reference;
577   typedef T value_type;
578   typedef size_t size_type;
579   typedef ptrdiff_t difference_type;
580 
581   static_assert(alignof(T) <= alignof(std::max_align_t),
582                 "ut_allocator does not support over-aligned types. Use "
583                 "aligned_memory or another similar allocator for this type.");
584   /** Default constructor.
585   @param[in] key  performance schema key. */
586   explicit ut_allocator(PSI_memory_key key = PSI_NOT_INSTRUMENTED)
587       :
588 #ifdef UNIV_PFS_MEMORY
m_key(key)589         m_key(key),
590 #endif /* UNIV_PFS_MEMORY */
591         m_oom_fatal(true) {
592   }
593 
594   /** Constructor from allocator of another type.
595   @param[in] other  the allocator to copy. */
596   template <class U>
ut_allocator(const ut_allocator<U> & other)597   ut_allocator(const ut_allocator<U> &other)
598       :
599 #ifdef UNIV_PFS_MEMORY
600         m_key(other.get_mem_key()),
601 #endif /* UNIV_PFS_MEMORY */
602         m_oom_fatal(other.is_oom_fatal()) {
603   }
604 
605   /** When out of memory (OOM) happens, report error and do not
606   make it fatal.
607   @return a reference to the allocator. */
set_oom_not_fatal()608   ut_allocator &set_oom_not_fatal() {
609     m_oom_fatal = false;
610     return (*this);
611   }
612 
613   /** Check if allocation failure is a fatal error.
614   @return true if allocation failure is fatal, false otherwise. */
is_oom_fatal()615   bool is_oom_fatal() const { return (m_oom_fatal); }
616 
617 #ifdef UNIV_PFS_MEMORY
618   /** Get the performance schema key to use for tracing allocations.
619   @return performance schema key */
get_mem_key()620   PSI_memory_key get_mem_key() const {
621     /* note: keep this as simple getter as is used by copy constructor */
622     return (m_key);
623   }
624 #endif /* UNIV_PFS_MEMORY */
625 
626   /** Return the maximum number of objects that can be allocated by
627   this allocator. */
max_size()628   size_type max_size() const {
629     const size_type s_max = std::numeric_limits<size_type>::max();
630 
631 #ifdef UNIV_PFS_MEMORY
632     return ((s_max - sizeof(ut_new_pfx_t)) / sizeof(T));
633 #else
634     return (s_max / sizeof(T));
635 #endif /* UNIV_PFS_MEMORY */
636   }
637 
638   /** Allocate a chunk of memory that can hold 'n_elements' objects of
639   type 'T' and trace the allocation.
640   If the allocation fails this method may throw an exception. This
641   is mandated by the standard and if it returns NULL instead, then
642   STL containers that use it (e.g. std::vector) may get confused.
643   After successful allocation the returned pointer must be passed
644   to ut_allocator::deallocate() when no longer needed.
645   @param[in]  n_elements      number of elements
646   @param[in]  hint            pointer to a nearby memory location,
647                               unused by this implementation
648   @param[in]  key             performance schema key
649   @param[in]  set_to_zero     if true, then the returned memory is
650                               initialized with 0x0 bytes.
651   @param[in]  throw_on_error  if true, then exception is throw on
652                               allocation failure
653   @return pointer to the allocated memory */
654   pointer allocate(size_type n_elements, const_pointer hint = nullptr,
655                    PSI_memory_key key = PSI_NOT_INSTRUMENTED,
656                    bool set_to_zero = false, bool throw_on_error = true) {
657     if (n_elements == 0) {
658       return (nullptr);
659     }
660 
661     if (n_elements > max_size()) {
662       if (throw_on_error) {
663         throw(std::bad_alloc());
664       } else {
665         return (nullptr);
666       }
667     }
668 
669     void *ptr;
670     size_t total_bytes = n_elements * sizeof(T);
671 
672 #ifdef UNIV_PFS_MEMORY
673     total_bytes += sizeof(ut_new_pfx_t);
674 #endif /* UNIV_PFS_MEMORY */
675 
676     for (size_t retries = 1;; retries++) {
677       if (set_to_zero) {
678         ptr = calloc(1, total_bytes);
679       } else {
680         ptr = malloc(total_bytes);
681       }
682 
683       if (ptr != nullptr || retries >= alloc_max_retries) {
684         break;
685       }
686 
687       os_thread_sleep(1000000 /* 1 second */);
688     }
689 
690     if (ptr == nullptr) {
691       ib::fatal_or_error(m_oom_fatal)
692           << "Cannot allocate " << total_bytes << " bytes of memory after "
693           << alloc_max_retries << " retries over " << alloc_max_retries
694           << " seconds. OS error: " << strerror(errno) << " (" << errno << "). "
695           << OUT_OF_MEMORY_MSG;
696       if (throw_on_error) {
697         throw(std::bad_alloc());
698       } else {
699         return (nullptr);
700       }
701     }
702 
703 #ifdef UNIV_PFS_MEMORY
704     ut_new_pfx_t *pfx = static_cast<ut_new_pfx_t *>(ptr);
705 
706     allocate_trace(total_bytes, key, pfx);
707 
708     return (reinterpret_cast<pointer>(pfx + 1));
709 #else
710     return (reinterpret_cast<pointer>(ptr));
711 #endif /* UNIV_PFS_MEMORY */
712   }
713 
714   /** Free a memory allocated by allocate() and trace the deallocation.
715   @param[in,out]	ptr		pointer to memory to free
716   @param[in]	n_elements	number of elements allocated (unused) */
717   void deallocate(pointer ptr, size_type n_elements = 0) {
718     if (ptr == nullptr) {
719       return;
720     }
721 
722 #ifdef UNIV_PFS_MEMORY
723     ut_new_pfx_t *pfx = reinterpret_cast<ut_new_pfx_t *>(ptr) - 1;
724 
725     deallocate_trace(pfx);
726 
727     free(pfx);
728 #else
729     free(ptr);
730 #endif /* UNIV_PFS_MEMORY */
731   }
732 
733   /** Create an object of type 'T' using the value 'val' over the
734   memory pointed by 'p'. */
construct(pointer p,const T & val)735   void construct(pointer p, const T &val) { new (p) T(val); }
736 
737   /** Destroy an object pointed by 'p'. */
destroy(pointer p)738   void destroy(pointer p) { p->~T(); }
739 
740   /** Return the address of an object. */
address(reference x)741   pointer address(reference x) const { return (&x); }
742 
743   /** Return the address of a const object. */
address(const_reference x)744   const_pointer address(const_reference x) const { return (&x); }
745 
746   template <class U>
747   struct rebind {
748     typedef ut_allocator<U> other;
749   };
750 
751   /* The following are custom methods, not required by the standard. */
752 
753 #ifdef UNIV_PFS_MEMORY
754 
755   /** realloc(3)-like method.
756   The passed in ptr must have been returned by allocate() and the
757   pointer returned by this method must be passed to deallocate() when
758   no longer needed.
759   @param[in,out]	ptr		old pointer to reallocate
760   @param[in]	n_elements	new number of elements to allocate
761   @param[in]	key		Performance schema key to allocate under
762   @return newly allocated memory */
reallocate(void * ptr,size_type n_elements,PSI_memory_key key)763   pointer reallocate(void *ptr, size_type n_elements, PSI_memory_key key) {
764     if (n_elements == 0) {
765       deallocate(static_cast<pointer>(ptr));
766       return (nullptr);
767     }
768 
769     if (ptr == nullptr) {
770       return (allocate(n_elements, nullptr, key, false, false));
771     }
772 
773     if (n_elements > max_size()) {
774       return (nullptr);
775     }
776 
777     ut_new_pfx_t *pfx_old;
778     ut_new_pfx_t *pfx_new;
779     size_t total_bytes;
780 
781     pfx_old = reinterpret_cast<ut_new_pfx_t *>(ptr) - 1;
782 
783     total_bytes = n_elements * sizeof(T) + sizeof(ut_new_pfx_t);
784 
785     for (size_t retries = 1;; retries++) {
786       pfx_new = static_cast<ut_new_pfx_t *>(realloc(pfx_old, total_bytes));
787 
788       if (pfx_new != nullptr || retries >= alloc_max_retries) {
789         break;
790       }
791 
792       os_thread_sleep(1000000 /* 1 second */);
793     }
794 
795     if (pfx_new == nullptr) {
796       ib::fatal_or_error(m_oom_fatal)
797           << "Cannot reallocate " << total_bytes << " bytes of memory after "
798           << alloc_max_retries << " retries over " << alloc_max_retries
799           << " seconds. OS error: " << strerror(errno) << " (" << errno << "). "
800           << OUT_OF_MEMORY_MSG;
801       /* not reached */
802       return (nullptr);
803     }
804 
805     /* pfx_new still contains the description of the old block
806     that was presumably freed by realloc(). */
807     deallocate_trace(pfx_new);
808 
809     /* pfx_new is set here to describe the new block. */
810     allocate_trace(total_bytes, key, pfx_new);
811 
812     return (reinterpret_cast<pointer>(pfx_new + 1));
813   }
814 
815   /** Allocate, trace the allocation and construct 'n_elements' objects
816   of type 'T'. If the allocation fails or if some of the constructors
817   throws an exception, then this method will return NULL. It does not
818   throw exceptions. After successful completion the returned pointer
819   must be passed to delete_array() when no longer needed.
820   @param[in]	n_elements	number of elements to allocate
821   @param[in]	key		Performance schema key to allocate under
822   @return pointer to the first allocated object or NULL */
new_array(size_type n_elements,PSI_memory_key key)823   pointer new_array(size_type n_elements, PSI_memory_key key) {
824     static_assert(std::is_default_constructible<T>::value,
825                   "Array element type must be default-constructible");
826 
827     T *p = allocate(n_elements, nullptr, key, false, false);
828 
829     if (p == nullptr) {
830       return (nullptr);
831     }
832 
833     T *first = p;
834     size_type i;
835 
836     try {
837       for (i = 0; i < n_elements; i++) {
838         new (p) T;
839         ++p;
840       }
841     } catch (...) {
842       for (size_type j = 0; j < i; j++) {
843         --p;
844         p->~T();
845       }
846 
847       deallocate(first);
848 
849       throw;
850     }
851 
852     return (first);
853   }
854 
855   /** Destroy, deallocate and trace the deallocation of an array created
856   by new_array().
857   @param[in,out]	ptr	pointer to the first object in the array */
delete_array(T * ptr)858   void delete_array(T *ptr) {
859     if (ptr == nullptr) {
860       return;
861     }
862 
863     const size_type n_elements = n_elements_allocated(ptr);
864 
865     T *p = ptr + n_elements - 1;
866 
867     for (size_type i = 0; i < n_elements; i++) {
868       p->~T();
869       --p;
870     }
871 
872     deallocate(ptr);
873   }
874 
875 #endif /* UNIV_PFS_MEMORY */
876 
877   /** Allocate a large chunk of memory that can hold 'n_elements'
878   objects of type 'T' and trace the allocation.
879   @param[in]	n_elements	number of elements
880   @param[out]	pfx		storage for the description of the
881   allocated memory. The caller must provide space for this one and keep
882   it until the memory is no longer needed and then pass it to
883   deallocate_large().
884   @return pointer to the allocated memory or NULL */
allocate_large(size_type n_elements,ut_new_pfx_t * pfx)885   pointer allocate_large(size_type n_elements, ut_new_pfx_t *pfx) {
886     if (n_elements == 0 || n_elements > max_size()) {
887       return (nullptr);
888     }
889 
890     ulint n_bytes = n_elements * sizeof(T);
891 
892     pointer ptr = reinterpret_cast<pointer>(os_mem_alloc_large(&n_bytes));
893 
894 #ifdef UNIV_PFS_MEMORY
895     if (ptr != nullptr) {
896       allocate_trace(n_bytes, PSI_NOT_INSTRUMENTED, pfx);
897     }
898 #else
899     pfx->m_size = n_bytes;
900 #endif /* UNIV_PFS_MEMORY */
901 
902     return (ptr);
903   }
904 
905   /** Free a memory allocated by allocate_large() and trace the
906   deallocation.
907   @param[in,out]	ptr	pointer to memory to free
908   @param[in]	pfx	descriptor of the memory, as returned by
909   allocate_large(). */
deallocate_large(pointer ptr,const ut_new_pfx_t * pfx)910   void deallocate_large(pointer ptr, const ut_new_pfx_t *pfx) {
911 #ifdef UNIV_PFS_MEMORY
912     deallocate_trace(pfx);
913 #endif /* UNIV_PFS_MEMORY */
914 
915     os_mem_free_large(ptr, pfx->m_size);
916   }
917 
918  private:
919 #ifdef UNIV_PFS_MEMORY
920 
921   /** Retrieve the size of a memory block allocated by new_array().
922   @param[in]	ptr	pointer returned by new_array().
923   @return size of memory block */
n_elements_allocated(const_pointer ptr)924   size_type n_elements_allocated(const_pointer ptr) {
925     const ut_new_pfx_t *pfx = reinterpret_cast<const ut_new_pfx_t *>(ptr) - 1;
926 
927     const size_type user_bytes = pfx->m_size - sizeof(ut_new_pfx_t);
928 
929     ut_ad(user_bytes % sizeof(T) == 0);
930 
931     return (user_bytes / sizeof(T));
932   }
933 
934   /** Trace a memory allocation.
935   @param[in]	size	number of bytes that were allocated
936   @param[in]	key	Performance Schema key
937   @param[out]	pfx	placeholder to store the info which will be
938                           needed when freeing the memory */
allocate_trace(size_t size,PSI_memory_key key,ut_new_pfx_t * pfx)939   void allocate_trace(size_t size, PSI_memory_key key, ut_new_pfx_t *pfx) {
940     if (m_key != PSI_NOT_INSTRUMENTED) {
941       key = m_key;
942     }
943 
944     pfx->m_key = PSI_MEMORY_CALL(memory_alloc)(key, size, &pfx->m_owner);
945 
946     pfx->m_size = size;
947   }
948 
949   /** Trace a memory deallocation.
950   @param[in]	pfx	info for the deallocation */
deallocate_trace(const ut_new_pfx_t * pfx)951   void deallocate_trace(const ut_new_pfx_t *pfx) {
952     PSI_MEMORY_CALL(memory_free)(pfx->m_key, pfx->m_size, pfx->m_owner);
953   }
954 #endif /* UNIV_PFS_MEMORY */
955 
956   /* Assignment operator, not used, thus disabled (private. */
957   template <class U>
958   void operator=(const ut_allocator<U> &);
959 
960 #ifdef UNIV_PFS_MEMORY
961   /** Performance schema key. */
962   PSI_memory_key m_key;
963 #endif /* UNIV_PFS_MEMORY */
964 
965   /** A flag to indicate whether out of memory (OOM) error is considered
966   fatal.  If true, it is fatal. */
967   bool m_oom_fatal;
968 };
969 
970 /** Compare two allocators of the same type.
971 As long as the type of A1 and A2 is the same, a memory allocated by A1
972 could be freed by A2 even if the pfs mem key is different. */
973 template <typename T>
974 inline bool operator==(const ut_allocator<T> &lhs, const ut_allocator<T> &rhs) {
975   return (true);
976 }
977 
978 /** Compare two allocators of the same type. */
979 template <typename T>
980 inline bool operator!=(const ut_allocator<T> &lhs, const ut_allocator<T> &rhs) {
981   return (!(lhs == rhs));
982 }
983 
984 #ifdef UNIV_PFS_MEMORY
985 
986 /** Allocate, trace the allocation and construct an object.
987 Use this macro instead of 'new' within InnoDB.
988 For example: instead of
989         Foo*	f = new Foo(args);
990 use:
991         Foo*	f = UT_NEW(Foo(args), mem_key_some);
992 Upon failure to allocate the memory, this macro may return NULL. It
993 will not throw exceptions. After successful allocation the returned
994 pointer must be passed to UT_DELETE() when no longer needed.
995 @param[in]	expr	any expression that could follow "new"
996 @param[in]	key	performance schema memory tracing key
997 @return pointer to the created object or NULL */
998 #define UT_NEW(expr, key)                                                \
999   /* Placement new will return NULL and not attempt to construct an      \
1000   object if the passed in pointer is NULL, e.g. if allocate() has        \
1001   failed to allocate memory and has returned NULL. */                    \
1002   ::new (ut_allocator<decltype(expr)>(key).allocate(1, NULL, key, false, \
1003                                                     false)) expr
1004 
1005 /** Allocate, trace the allocation and construct an object.
1006 Use this macro instead of 'new' within InnoDB and instead of UT_NEW()
1007 when creating a dedicated memory key is not feasible.
1008 For example: instead of
1009         Foo*	f = new Foo(args);
1010 use:
1011         Foo*	f = UT_NEW_NOKEY(Foo(args));
1012 Upon failure to allocate the memory, this macro may return NULL. It
1013 will not throw exceptions. After successful allocation the returned
1014 pointer must be passed to UT_DELETE() when no longer needed.
1015 @param[in]	expr	any expression that could follow "new"
1016 @return pointer to the created object or NULL */
1017 #define UT_NEW_NOKEY(expr) UT_NEW(expr, PSI_NOT_INSTRUMENTED)
1018 
1019 /** Destroy, deallocate and trace the deallocation of an object created by
1020 UT_NEW() or UT_NEW_NOKEY().
1021 We can't instantiate ut_allocator without having the type of the object, thus
1022 we redirect this to a template function. */
1023 #define UT_DELETE(ptr) ut_delete(ptr)
1024 
1025 /** Destroy and account object created by UT_NEW() or UT_NEW_NOKEY().
1026 @param[in,out]	ptr	pointer to the object */
1027 template <typename T>
ut_delete(T * ptr)1028 inline void ut_delete(T *ptr) {
1029   if (ptr == nullptr) {
1030     return;
1031   }
1032 
1033   ut_allocator<T> allocator;
1034 
1035   allocator.destroy(ptr);
1036   allocator.deallocate(ptr);
1037 }
1038 
1039 /** Allocate and account 'n_elements' objects of type 'type'.
1040 Use this macro to allocate memory within InnoDB instead of 'new[]'.
1041 The returned pointer must be passed to UT_DELETE_ARRAY().
1042 @param[in]	type		type of objects being created
1043 @param[in]	n_elements	number of objects to create
1044 @param[in]	key		performance schema memory tracing key
1045 @return pointer to the first allocated object or NULL */
1046 #define UT_NEW_ARRAY(type, n_elements, key) \
1047   ut_allocator<type>(key).new_array(n_elements, UT_NEW_THIS_FILE_PSI_KEY)
1048 
1049 /** Allocate and account 'n_elements' objects of type 'type'.
1050 Use this macro to allocate memory within InnoDB instead of 'new[]' and
1051 instead of UT_NEW_ARRAY() when it is not feasible to create a dedicated key.
1052 @param[in]	type		type of objects being created
1053 @param[in]	n_elements	number of objects to create
1054 @return pointer to the first allocated object or NULL */
1055 #define UT_NEW_ARRAY_NOKEY(type, n_elements) \
1056   UT_NEW_ARRAY(type, n_elements, PSI_NOT_INSTRUMENTED)
1057 
1058 /** Destroy, deallocate and trace the deallocation of an array created by
1059 UT_NEW_ARRAY() or UT_NEW_ARRAY_NOKEY().
1060 We can't instantiate ut_allocator without having the type of the object, thus
1061 we redirect this to a template function. */
1062 #define UT_DELETE_ARRAY(ptr) ut_delete_array(ptr)
1063 
1064 /** Destroy and account objects created by UT_NEW_ARRAY() or
1065 UT_NEW_ARRAY_NOKEY().
1066 @param[in,out]	ptr	pointer to the first object in the array */
1067 template <typename T>
ut_delete_array(T * ptr)1068 inline void ut_delete_array(T *ptr) {
1069   ut_allocator<T>().delete_array(ptr);
1070 }
1071 
1072 /**
1073 Do not use ut_malloc, ut_zalloc, ut_malloc_nokey, ut_zalloc_nokey,
1074 ut_zalloc_nokey_nofatal and ut_realloc when allocating memory for
1075 over-aligned types. We have to use aligned_pointer instead, analogously to how
1076 we have to use aligned_alloc when working with the standard library to handle
1077 dynamic allocation for over-aligned types. These macros use ut_allocator to
1078 allocate raw memory (no type information is passed). This is why ut_allocator
1079 needs to be instantiated with the byte type. This has implications on the max
1080 alignment of the objects that are allocated using this API. ut_allocator returns
1081 memory aligned to alignof(std::max_align_t), similarly to library allocation
1082 functions. This value is 16 bytes on most x64 machines. A static_assert enforces
1083 this when using UT_NEW, however, since the ut_allocator template is instantiated
1084 with byte here the assert will not be hit if using alignment >=
1085 alignof(std::max_align_t). Not meeting the alignment requirements for a type
1086 causes undefined behaviour.
1087 One should avoid using the macros below when writing new code in general,
1088 and try to remove them when refactoring existing code (in favor of using the
1089 UT_NEW). The reason behind this lies both in the undefined behaviour problem
1090 described above, and in the fact that standard C-like malloc use is discouraged
1091 in c++ (see CppCoreGuidelines - R.10: Avoid malloc() and free()). Using
1092 ut_malloc has the same problems as the standard library malloc.
1093 */
1094 
1095 #define ut_malloc(n_bytes, key)                         \
1096   static_cast<void *>(ut_allocator<byte>(key).allocate( \
1097       n_bytes, NULL, UT_NEW_THIS_FILE_PSI_KEY, false, false))
1098 
1099 #define ut_zalloc(n_bytes, key)                         \
1100   static_cast<void *>(ut_allocator<byte>(key).allocate( \
1101       n_bytes, NULL, UT_NEW_THIS_FILE_PSI_KEY, true, false))
1102 
1103 #define ut_malloc_nokey(n_bytes)               \
1104   static_cast<void *>(                         \
1105       ut_allocator<byte>(PSI_NOT_INSTRUMENTED) \
1106           .allocate(n_bytes, NULL, UT_NEW_THIS_FILE_PSI_KEY, false, false))
1107 
1108 #define ut_zalloc_nokey(n_bytes)               \
1109   static_cast<void *>(                         \
1110       ut_allocator<byte>(PSI_NOT_INSTRUMENTED) \
1111           .allocate(n_bytes, NULL, UT_NEW_THIS_FILE_PSI_KEY, true, false))
1112 
1113 #define ut_zalloc_nokey_nofatal(n_bytes)       \
1114   static_cast<void *>(                         \
1115       ut_allocator<byte>(PSI_NOT_INSTRUMENTED) \
1116           .set_oom_not_fatal()                 \
1117           .allocate(n_bytes, NULL, UT_NEW_THIS_FILE_PSI_KEY, true, false))
1118 
1119 #define ut_realloc(ptr, n_bytes)                               \
1120   static_cast<void *>(ut_allocator<byte>(PSI_NOT_INSTRUMENTED) \
1121                           .reallocate(ptr, n_bytes, UT_NEW_THIS_FILE_PSI_KEY))
1122 
1123 #define ut_free(ptr)                       \
1124   ut_allocator<byte>(PSI_NOT_INSTRUMENTED) \
1125       .deallocate(reinterpret_cast<byte *>(ptr))
1126 
1127 #else /* UNIV_PFS_MEMORY */
1128 
1129 /* Fallbacks when memory tracing is disabled at compile time. */
1130 
1131 #define UT_NEW(expr, key) ::new (std::nothrow) expr
1132 #define UT_NEW_NOKEY(expr) ::new (std::nothrow) expr
1133 #define UT_DELETE(ptr) ::delete ptr
1134 
1135 #define UT_NEW_ARRAY(type, n_elements, key) \
1136   ::new (std::nothrow) type[n_elements]
1137 
1138 #define UT_NEW_ARRAY_NOKEY(type, n_elements) \
1139   ::new (std::nothrow) type[n_elements]
1140 
1141 #define UT_DELETE_ARRAY(ptr) ::delete[] ptr
1142 
1143 #define ut_malloc(n_bytes, key) ::malloc(n_bytes)
1144 
1145 #define ut_zalloc(n_bytes, key) ::calloc(1, n_bytes)
1146 
1147 #define ut_malloc_nokey(n_bytes) ::malloc(n_bytes)
1148 
1149 #define ut_zalloc_nokey(n_bytes) ::calloc(1, n_bytes)
1150 
1151 #define ut_zalloc_nokey_nofatal(n_bytes) ::calloc(1, n_bytes)
1152 
1153 #define ut_realloc(ptr, n_bytes) ::realloc(ptr, n_bytes)
1154 
1155 #define ut_free(ptr) ::free(ptr)
1156 
1157 #endif /* UNIV_PFS_MEMORY */
1158 
1159 /** This is a forward declaration, which is because of the circular dependency
1160 between ut0new.h and ut0byte.h (going through univ.i and sync0types.h).
1161 I've managed to observe problem when building MEB and this helps then. */
1162 UNIV_INLINE
1163 void *ut_align(const void *ptr, ulint align_no);
1164 
1165 /** Abstract class to manage an object that is aligned to specified number of
1166 bytes.
1167 @tparam	T_Type		type of the object that is going to be managed
1168 @tparam T_Align_to	number of bytes to align to */
1169 template <typename T_Type, size_t T_Align_to>
1170 class aligned_memory {
1171  public:
~aligned_memory()1172   virtual ~aligned_memory() {
1173     if (!this->is_object_empty()) {
1174       this->free_memory();
1175     }
1176   }
1177 
1178   virtual void destroy() = 0;
1179 
1180   /** Allows casting to managed objects type to use it directly */
1181   operator T_Type *() const {
1182     ut_a(m_object != nullptr);
1183     return m_object;
1184   }
1185 
1186   /** Allows referencing the managed object as this was a normal
1187   pointer. */
1188   T_Type *operator->() const {
1189     ut_a(m_object != nullptr);
1190     return m_object;
1191   }
1192 
1193  protected:
1194   /** Checks if no object is currently being managed. */
is_object_empty()1195   bool is_object_empty() const { return m_object == nullptr; }
1196 
1197   /** Allocates memory for a new object and prepares aligned address for
1198   the object.
1199   @param[in]	size	Number of bytes to be delivered for the aligned
1200   object. Number of bytes actually allocated will be higher. */
allocate(size_t size)1201   T_Type *allocate(size_t size) {
1202     static_assert(T_Align_to > 0, "Incorrect alignment parameter");
1203     ut_a(m_memory == nullptr);
1204     ut_a(m_object == nullptr);
1205 
1206     m_memory = ut_zalloc_nokey(size + T_Align_to - 1);
1207     m_object = static_cast<T_Type *>(::ut_align(m_memory, T_Align_to));
1208     return m_object;
1209   }
1210 
1211   /** Releases memory used to store the object. */
free_memory()1212   void free_memory() {
1213     ut_a(m_memory != nullptr);
1214     ut_a(m_object != nullptr);
1215 
1216     ut_free(m_memory);
1217 
1218     m_memory = nullptr;
1219     m_object = nullptr;
1220   }
1221 
1222  private:
1223   /** Stores pointer to aligned object memory. */
1224   T_Type *m_object = nullptr;
1225 
1226   /** Stores pointer to memory used to allocate the object. */
1227   void *m_memory = nullptr;
1228 };
1229 
1230 /** Manages an object that is aligned to specified number of bytes.
1231 @tparam	T_Type		type of the object that is going to be managed
1232 @tparam T_Align_to	number of bytes to align to */
1233 template <typename T_Type, size_t T_Align_to = ut::INNODB_CACHE_LINE_SIZE>
1234 class aligned_pointer : public aligned_memory<T_Type, T_Align_to> {
1235  public:
~aligned_pointer()1236   ~aligned_pointer() {
1237     if (!this->is_object_empty()) {
1238       this->destroy();
1239     }
1240   }
1241 
1242   /** Allocates aligned memory for new object and constructs it there.
1243   @param[in]	args	arguments to be passed to object constructor */
1244   template <typename... T_Args>
create(T_Args...args)1245   void create(T_Args... args) {
1246     new (this->allocate(sizeof(T_Type))) T_Type(std::forward(args)...);
1247   }
1248 
1249   /** Destroys the managed object and releases its memory. */
destroy()1250   void destroy() {
1251     (*this)->~T_Type();
1252     this->free_memory();
1253   }
1254 };
1255 
1256 /** Manages an array of objects. The first element is aligned to specified
1257 number of bytes.
1258 @tparam	T_Type		type of the object that is going to be managed
1259 @tparam T_Align_to	number of bytes to align to */
1260 template <typename T_Type, size_t T_Align_to = ut::INNODB_CACHE_LINE_SIZE>
1261 class aligned_array_pointer : public aligned_memory<T_Type, T_Align_to> {
1262  public:
1263   /** Allocates aligned memory for new objects. Objects must be trivially
1264   constructible and destructible.
1265   @param[in]	size	Number of elements to allocate. */
create(size_t size)1266   void create(size_t size) {
1267 #if !(defined __GNUC__ && __GNUC__ <= 4)
1268     static_assert(std::is_trivially_default_constructible<T_Type>::value,
1269                   "Aligned array element type must be "
1270                   "trivially default-constructible");
1271 #endif
1272     m_size = size;
1273     this->allocate(sizeof(T_Type) * m_size);
1274   }
1275 
1276   /** Deallocates memory of array created earlier. */
destroy()1277   void destroy() {
1278     static_assert(std::is_trivially_destructible<T_Type>::value,
1279                   "Aligned array element type must be "
1280                   "trivially destructible");
1281     this->free_memory();
1282   }
1283 
1284   /** Accesses specified index in the allocated array.
1285   @param[in]	index	index of element in array to get reference to */
1286   T_Type &operator[](size_t index) const {
1287     ut_a(index < m_size);
1288     return ((T_Type *)*this)[index];
1289   }
1290 
1291  private:
1292   /** Size of the allocated array. */
1293   size_t m_size;
1294 };
1295 
1296 namespace ut {
1297 
1298 /** Specialization of basic_ostringstream which uses ut_allocator. Please note
1299 that it's .str() method returns std::basic_string which is not std::string, so
1300 it has similar API (in particular .c_str()), but you can't assign it to regular,
1301 std::string. */
1302 using ostringstream =
1303     std::basic_ostringstream<char, std::char_traits<char>, ut_allocator<char>>;
1304 
1305 /** Specialization of vector which uses ut_allocator. */
1306 template <typename T>
1307 using vector = std::vector<T, ut_allocator<T>>;
1308 
1309 }  // namespace ut
1310 #endif /* ut0new_h */
1311