1 /*
2  * xxHash - Extremely Fast Hash algorithm
3  * Header File
4  * Copyright (C) 2012-2020 Yann Collet
5  *
6  * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are
10  * met:
11  *
12  *    * Redistributions of source code must retain the above copyright
13  *      notice, this list of conditions and the following disclaimer.
14  *    * Redistributions in binary form must reproduce the above
15  *      copyright notice, this list of conditions and the following disclaimer
16  *      in the documentation and/or other materials provided with the
17  *      distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  * You can contact the author at:
32  *   - xxHash homepage: https://www.xxhash.com
33  *   - xxHash source repository: https://github.com/Cyan4973/xxHash
34  */
35 
36 /* TODO: update */
37 /* Notice extracted from xxHash homepage:
38 
39 xxHash is an extremely fast hash algorithm, running at RAM speed limits.
40 It also successfully passes all tests from the SMHasher suite.
41 
42 Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
43 
44 Name            Speed       Q.Score   Author
45 xxHash          5.4 GB/s     10
46 CrapWow         3.2 GB/s      2       Andrew
47 MumurHash 3a    2.7 GB/s     10       Austin Appleby
48 SpookyHash      2.0 GB/s     10       Bob Jenkins
49 SBox            1.4 GB/s      9       Bret Mulvey
50 Lookup3         1.2 GB/s      9       Bob Jenkins
51 SuperFastHash   1.2 GB/s      1       Paul Hsieh
52 CityHash64      1.05 GB/s    10       Pike & Alakuijala
53 FNV             0.55 GB/s     5       Fowler, Noll, Vo
54 CRC32           0.43 GB/s     9
55 MD5-32          0.33 GB/s    10       Ronald L. Rivest
56 SHA1-32         0.28 GB/s    10
57 
58 Q.Score is a measure of quality of the hash function.
59 It depends on successfully passing SMHasher test set.
60 10 is a perfect score.
61 
62 Note: SMHasher's CRC32 implementation is not the fastest one.
63 Other speed-oriented implementations can be faster,
64 especially in combination with PCLMUL instruction:
65 https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
66 
67 A 64-bit version, named XXH64, is available since r35.
68 It offers much better speed, but for 64-bit applications only.
69 Name     Speed on 64 bits    Speed on 32 bits
70 XXH64       13.8 GB/s            1.9 GB/s
71 XXH32        6.8 GB/s            6.0 GB/s
72 */
73 
74 #if defined (__cplusplus)
75 extern "C" {
76 #endif
77 
78 /* ****************************
79  *  INLINE mode
80  ******************************/
81 /*!
82  * XXH_INLINE_ALL (and XXH_PRIVATE_API)
83  * Use these build macros to inline xxhash into the target unit.
84  * Inlining improves performance on small inputs, especially when the length is
85  * expressed as a compile-time constant:
86  *
87  *      https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
88  *
89  * It also keeps xxHash symbols private to the unit, so they are not exported.
90  *
91  * Usage:
92  *     #define XXH_INLINE_ALL
93  *     #include "xxhash.h"
94  *
95  * Do not compile and link xxhash.o as a separate object, as it is not useful.
96  */
97 #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
98     && !defined(XXH_INLINE_ALL_31684351384)
99    /* this section should be traversed only once */
100 #  define XXH_INLINE_ALL_31684351384
101    /* give access to the advanced API, required to compile implementations */
102 #  undef XXH_STATIC_LINKING_ONLY   /* avoid macro redef */
103 #  define XXH_STATIC_LINKING_ONLY
104    /* make all functions private */
105 #  undef XXH_PUBLIC_API
106 #  if defined(__GNUC__)
107 #    define XXH_PUBLIC_API static __inline __attribute__((unused))
108 #  elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
109 #    define XXH_PUBLIC_API static inline
110 #  elif defined(_MSC_VER)
111 #    define XXH_PUBLIC_API static __inline
112 #  else
113      /* note: this version may generate warnings for unused static functions */
114 #    define XXH_PUBLIC_API static
115 #  endif
116 
117    /*
118     * This part deals with the special case where a unit wants to inline xxHash,
119     * but "xxhash.h" has previously been included without XXH_INLINE_ALL, such
120     * as part of some previously included *.h header file.
121     * Without further action, the new include would just be ignored,
122     * and functions would effectively _not_ be inlined (silent failure).
123     * The following macros solve this situation by prefixing all inlined names,
124     * avoiding naming collision with previous inclusions.
125     */
126 #  ifdef XXH_NAMESPACE
127 #    error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported"
128      /*
129       * Note: Alternative: #undef all symbols (it's a pretty large list).
130       * Without #error: it compiles, but functions are actually not inlined.
131       */
132 #  endif
133 #  define XXH_NAMESPACE XXH_INLINE_
134    /*
135     * Some identifiers (enums, type names) are not symbols, but they must
136     * still be renamed to avoid redeclaration.
137     * Alternative solution: do not redeclare them.
138     * However, this requires some #ifdefs, and is a more dispersed action.
139     * Meanwhile, renaming can be achieved in a single block
140     */
141 #  define XXH_IPREF(Id)   XXH_INLINE_ ## Id
142 #  define XXH_OK XXH_IPREF(XXH_OK)
143 #  define XXH_ERROR XXH_IPREF(XXH_ERROR)
144 #  define XXH_errorcode XXH_IPREF(XXH_errorcode)
145 #  define XXH32_canonical_t  XXH_IPREF(XXH32_canonical_t)
146 #  define XXH64_canonical_t  XXH_IPREF(XXH64_canonical_t)
147 #  define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
148 #  define XXH32_state_s XXH_IPREF(XXH32_state_s)
149 #  define XXH32_state_t XXH_IPREF(XXH32_state_t)
150 #  define XXH64_state_s XXH_IPREF(XXH64_state_s)
151 #  define XXH64_state_t XXH_IPREF(XXH64_state_t)
152 #  define XXH3_state_s  XXH_IPREF(XXH3_state_s)
153 #  define XXH3_state_t  XXH_IPREF(XXH3_state_t)
154 #  define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
155    /* Ensure the header is parsed again, even if it was previously included */
156 #  undef XXHASH_H_5627135585666179
157 #  undef XXHASH_H_STATIC_13879238742
158 #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
159 
160 
161 
162 /* ****************************************************************
163  *  Stable API
164  *****************************************************************/
165 #ifndef XXHASH_H_5627135585666179
166 #define XXHASH_H_5627135585666179 1
167 
168 /* specific declaration modes for Windows */
169 #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
170 #  if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
171 #    ifdef XXH_EXPORT
172 #      define XXH_PUBLIC_API __declspec(dllexport)
173 #    elif XXH_IMPORT
174 #      define XXH_PUBLIC_API __declspec(dllimport)
175 #    endif
176 #  else
177 #    define XXH_PUBLIC_API   /* do nothing */
178 #  endif
179 #endif
180 
181 /*!
182  * XXH_NAMESPACE, aka Namespace Emulation:
183  *
184  * If you want to include _and expose_ xxHash functions from within your own
185  * library, but also want to avoid symbol collisions with other libraries which
186  * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
187  * any public symbol from xxhash library with the value of XXH_NAMESPACE
188  * (therefore, avoid empty or numeric values).
189  *
190  * Note that no change is required within the calling program as long as it
191  * includes `xxhash.h`: Regular symbol names will be automatically translated
192  * by this header.
193  */
194 #ifdef XXH_NAMESPACE
195 #  define XXH_CAT(A,B) A##B
196 #  define XXH_NAME2(A,B) XXH_CAT(A,B)
197 #  define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
198 /* XXH32 */
199 #  define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
200 #  define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
201 #  define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
202 #  define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
203 #  define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
204 #  define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
205 #  define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
206 #  define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
207 #  define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
208 /* XXH64 */
209 #  define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
210 #  define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
211 #  define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
212 #  define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
213 #  define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
214 #  define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
215 #  define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
216 #  define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
217 #  define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
218 /* XXH3_64bits */
219 #  define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
220 #  define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
221 #  define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
222 #  define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
223 #  define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
224 #  define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
225 #  define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
226 #  define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
227 #  define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
228 #  define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
229 #  define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
230 #  define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
231 /* XXH3_128bits */
232 #  define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
233 #  define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
234 #  define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
235 #  define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
236 #  define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
237 #  define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
238 #  define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
239 #  define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
240 #  define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
241 #  define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
242 #  define XXH128_cmp     XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
243 #  define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
244 #  define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
245 #endif
246 
247 
248 /* *************************************
249 *  Version
250 ***************************************/
251 #define XXH_VERSION_MAJOR    0
252 #define XXH_VERSION_MINOR    8
253 #define XXH_VERSION_RELEASE  0
254 #define XXH_VERSION_NUMBER  (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
255 XXH_PUBLIC_API unsigned XXH_versionNumber (void);
256 
257 
258 /* ****************************
259 *  Definitions
260 ******************************/
261 #include <stddef.h>   /* size_t */
262 typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
263 
264 
265 /*-**********************************************************************
266 *  32-bit hash
267 ************************************************************************/
268 #if !defined (__VMS) \
269   && (defined (__cplusplus) \
270   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
271 #   include <stdint.h>
272     typedef uint32_t XXH32_hash_t;
273 #else
274 #   include <limits.h>
275 #   if UINT_MAX == 0xFFFFFFFFUL
276       typedef unsigned int XXH32_hash_t;
277 #   else
278 #     if ULONG_MAX == 0xFFFFFFFFUL
279         typedef unsigned long XXH32_hash_t;
280 #     else
281 #       error "unsupported platform: need a 32-bit type"
282 #     endif
283 #   endif
284 #endif
285 
286 /*!
287  * XXH32():
288  *  Calculate the 32-bit hash of sequence "length" bytes stored at memory address "input".
289  *  The memory between input & input+length must be valid (allocated and read-accessible).
290  *  "seed" can be used to alter the result predictably.
291  *  Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
292  *
293  * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems,
294  * and offers true 64/128 bit hash results. It provides a superior level of
295  * dispersion, and greatly reduces the risks of collisions.
296  */
297 XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
298 
299 /*******   Streaming   *******/
300 
301 /*
302  * Streaming functions generate the xxHash value from an incrememtal input.
303  * This method is slower than single-call functions, due to state management.
304  * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
305  *
306  * An XXH state must first be allocated using `XXH*_createState()`.
307  *
308  * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
309  *
310  * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
311  *
312  * The function returns an error code, with 0 meaning OK, and any other value
313  * meaning there is an error.
314  *
315  * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
316  * This function returns the nn-bits hash as an int or long long.
317  *
318  * It's still possible to continue inserting input into the hash state after a
319  * digest, and generate new hash values later on by invoking `XXH*_digest()`.
320  *
321  * When done, release the state using `XXH*_freeState()`.
322  */
323 
324 typedef struct XXH32_state_s XXH32_state_t;   /* incomplete type */
325 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
326 XXH_PUBLIC_API XXH_errorcode  XXH32_freeState(XXH32_state_t* statePtr);
327 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
328 
329 XXH_PUBLIC_API XXH_errorcode XXH32_reset  (XXH32_state_t* statePtr, XXH32_hash_t seed);
330 XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
331 XXH_PUBLIC_API XXH32_hash_t  XXH32_digest (const XXH32_state_t* statePtr);
332 
333 /*******   Canonical representation   *******/
334 
335 /*
336  * The default return values from XXH functions are unsigned 32 and 64 bit
337  * integers.
338  * This the simplest and fastest format for further post-processing.
339  *
340  * However, this leaves open the question of what is the order on the byte level,
341  * since little and big endian conventions will store the same number differently.
342  *
343  * The canonical representation settles this issue by mandating big-endian
344  * convention, the same convention as human-readable numbers (large digits first).
345  *
346  * When writing hash values to storage, sending them over a network, or printing
347  * them, it's highly recommended to use the canonical representation to ensure
348  * portability across a wider range of systems, present and future.
349  *
350  * The following functions allow transformation of hash values to and from
351  * canonical format.
352  */
353 
354 typedef struct { unsigned char digest[4]; } XXH32_canonical_t;
355 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
356 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
357 
358 
359 #ifndef XXH_NO_LONG_LONG
360 /*-**********************************************************************
361 *  64-bit hash
362 ************************************************************************/
363 #if !defined (__VMS) \
364   && (defined (__cplusplus) \
365   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
366 #   include <stdint.h>
367     typedef uint64_t XXH64_hash_t;
368 #else
369     /* the following type must have a width of 64-bit */
370     typedef unsigned long long XXH64_hash_t;
371 #endif
372 
373 /*!
374  * XXH64():
375  * Returns the 64-bit hash of sequence of length @length stored at memory
376  * address @input.
377  * @seed can be used to alter the result predictably.
378  *
379  * This function usually runs faster on 64-bit systems, but slower on 32-bit
380  * systems (see benchmark).
381  *
382  * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems,
383  * and offers true 64/128 bit hash results. It provides a superior level of
384  * dispersion, and greatly reduces the risks of collisions.
385  */
386 XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, XXH64_hash_t seed);
387 
388 /*******   Streaming   *******/
389 typedef struct XXH64_state_s XXH64_state_t;   /* incomplete type */
390 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
391 XXH_PUBLIC_API XXH_errorcode  XXH64_freeState(XXH64_state_t* statePtr);
392 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
393 
394 XXH_PUBLIC_API XXH_errorcode XXH64_reset  (XXH64_state_t* statePtr, XXH64_hash_t seed);
395 XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
396 XXH_PUBLIC_API XXH64_hash_t  XXH64_digest (const XXH64_state_t* statePtr);
397 
398 /*******   Canonical representation   *******/
399 typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
400 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
401 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
402 
403 
404 /*-**********************************************************************
405 *  XXH3 64-bit variant
406 ************************************************************************/
407 
408 /* ************************************************************************
409  * XXH3 is a new hash algorithm featuring:
410  *  - Improved speed for both small and large inputs
411  *  - True 64-bit and 128-bit outputs
412  *  - SIMD acceleration
413  *  - Improved 32-bit viability
414  *
415  * Speed analysis methodology is explained here:
416  *
417  *    https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
418  *
419  * In general, expect XXH3 to run about ~2x faster on large inputs and >3x
420  * faster on small ones compared to XXH64, though exact differences depend on
421  * the platform.
422  *
423  * The algorithm is portable: Like XXH32 and XXH64, it generates the same hash
424  * on all platforms.
425  *
426  * It benefits greatly from SIMD and 64-bit arithmetic, but does not require it.
427  *
428  * Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run
429  * XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are
430  * explained in the implementation.
431  *
432  * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
433  * ZVector and scalar targets. This can be controlled with the XXH_VECTOR macro.
434  *
435  * XXH3 offers 2 variants, _64bits and _128bits.
436  * When only 64 bits are needed, prefer calling the _64bits variant, as it
437  * reduces the amount of mixing, resulting in faster speed on small inputs.
438  *
439  * It's also generally simpler to manipulate a scalar return type than a struct.
440  *
441  * The 128-bit version adds additional strength, but it is slightly slower.
442  *
443  * The XXH3 algorithm is still in development.
444  * The results it produces may still change in future versions.
445  *
446  * Results produced by v0.7.x are not comparable with results from v0.7.y.
447  * However, the API is completely stable, and it can safely be used for
448  * ephemeral data (local sessions).
449  *
450  * Avoid storing values in long-term storage until the algorithm is finalized.
451  * XXH3's return values will be officially finalized upon reaching v0.8.0.
452  *
453  * After which, return values of XXH3 and XXH128 will no longer change in
454  * future versions.
455  *
456  * The API supports one-shot hashing, streaming mode, and custom secrets.
457  */
458 
459 /* XXH3_64bits():
460  * default 64-bit variant, using default secret and default seed of 0.
461  * It's the fastest variant. */
462 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
463 
464 /*
465  * XXH3_64bits_withSeed():
466  * This variant generates a custom secret on the fly
467  * based on default secret altered using the `seed` value.
468  * While this operation is decently fast, note that it's not completely free.
469  * Note: seed==0 produces the same results as XXH3_64bits().
470  */
471 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
472 
473 /*
474  * XXH3_64bits_withSecret():
475  * It's possible to provide any blob of bytes as a "secret" to generate the hash.
476  * This makes it more difficult for an external actor to prepare an intentional collision.
477  * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
478  * However, the quality of produced hash values depends on secret's entropy.
479  * Technically, the secret must look like a bunch of random bytes.
480  * Avoid "trivial" or structured data such as repeated sequences or a text document.
481  * Whenever unsure about the "randomness" of the blob of bytes,
482  * consider relabelling it as a "custom seed" instead,
483  * and employ "XXH3_generateSecret()" (see below)
484  * to generate a high entropy secret derived from the custom seed.
485  */
486 #define XXH3_SECRET_SIZE_MIN 136
487 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
488 
489 
490 /*******   Streaming   *******/
491 /*
492  * Streaming requires state maintenance.
493  * This operation costs memory and CPU.
494  * As a consequence, streaming is slower than one-shot hashing.
495  * For better performance, prefer one-shot functions whenever applicable.
496  */
497 typedef struct XXH3_state_s XXH3_state_t;
498 XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
499 XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
500 XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
501 
502 /*
503  * XXH3_64bits_reset():
504  * Initialize with default parameters.
505  * digest will be equivalent to `XXH3_64bits()`.
506  */
507 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
508 /*
509  * XXH3_64bits_reset_withSeed():
510  * Generate a custom secret from `seed`, and store it into `statePtr`.
511  * digest will be equivalent to `XXH3_64bits_withSeed()`.
512  */
513 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
514 /*
515  * XXH3_64bits_reset_withSecret():
516  * `secret` is referenced, it _must outlive_ the hash streaming session.
517  * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
518  * and the quality of produced hash values depends on secret's entropy
519  * (secret's content should look like a bunch of random bytes).
520  * When in doubt about the randomness of a candidate `secret`,
521  * consider employing `XXH3_generateSecret()` instead (see below).
522  */
523 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
524 
525 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
526 XXH_PUBLIC_API XXH64_hash_t  XXH3_64bits_digest (const XXH3_state_t* statePtr);
527 
528 /* note : canonical representation of XXH3 is the same as XXH64
529  * since they both produce XXH64_hash_t values */
530 
531 
532 /*-**********************************************************************
533 *  XXH3 128-bit variant
534 ************************************************************************/
535 
536 typedef struct {
537  XXH64_hash_t low64;
538  XXH64_hash_t high64;
539 } XXH128_hash_t;
540 
541 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
542 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
543 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
544 
545 /*******   Streaming   *******/
546 /*
547  * Streaming requires state maintenance.
548  * This operation costs memory and CPU.
549  * As a consequence, streaming is slower than one-shot hashing.
550  * For better performance, prefer one-shot functions whenever applicable.
551  *
552  * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
553  * Use already declared XXH3_createState() and XXH3_freeState().
554  *
555  * All reset and streaming functions have same meaning as their 64-bit counterpart.
556  */
557 
558 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
559 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
560 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
561 
562 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
563 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
564 
565 /* Following helper functions make it possible to compare XXH128_hast_t values.
566  * Since XXH128_hash_t is a structure, this capability is not offered by the language.
567  * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
568 
569 /*!
570  * XXH128_isEqual():
571  * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
572  */
573 XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
574 
575 /*!
576  * XXH128_cmp():
577  *
578  * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
579  *
580  * return: >0 if *h128_1  > *h128_2
581  *         =0 if *h128_1 == *h128_2
582  *         <0 if *h128_1  < *h128_2
583  */
584 XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
585 
586 
587 /*******   Canonical representation   *******/
588 typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
589 XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
590 XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
591 
592 
593 #endif  /* XXH_NO_LONG_LONG */
594 
595 #endif /* XXHASH_H_5627135585666179 */
596 
597 
598 
599 #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
600 #define XXHASH_H_STATIC_13879238742
601 /* ****************************************************************************
602  * This section contains declarations which are not guaranteed to remain stable.
603  * They may change in future versions, becoming incompatible with a different
604  * version of the library.
605  * These declarations should only be used with static linking.
606  * Never use them in association with dynamic linking!
607  ***************************************************************************** */
608 
609 /*
610  * These definitions are only present to allow static allocation
611  * of XXH states, on stack or in a struct, for example.
612  * Never **ever** access their members directly.
613  */
614 
615 struct XXH32_state_s {
616    XXH32_hash_t total_len_32;
617    XXH32_hash_t large_len;
618    XXH32_hash_t v1;
619    XXH32_hash_t v2;
620    XXH32_hash_t v3;
621    XXH32_hash_t v4;
622    XXH32_hash_t mem32[4];
623    XXH32_hash_t memsize;
624    XXH32_hash_t reserved;   /* never read nor write, might be removed in a future version */
625 };   /* typedef'd to XXH32_state_t */
626 
627 
628 #ifndef XXH_NO_LONG_LONG  /* defined when there is no 64-bit support */
629 
630 struct XXH64_state_s {
631    XXH64_hash_t total_len;
632    XXH64_hash_t v1;
633    XXH64_hash_t v2;
634    XXH64_hash_t v3;
635    XXH64_hash_t v4;
636    XXH64_hash_t mem64[4];
637    XXH32_hash_t memsize;
638    XXH32_hash_t reserved32;  /* required for padding anyway */
639    XXH64_hash_t reserved64;  /* never read nor write, might be removed in a future version */
640 };   /* typedef'd to XXH64_state_t */
641 
642 #if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)   /* C11+ */
643 #  include <stdalign.h>
644 #  define XXH_ALIGN(n)      alignas(n)
645 #elif defined(__GNUC__)
646 #  define XXH_ALIGN(n)      __attribute__ ((aligned(n)))
647 #elif defined(_MSC_VER)
648 #  define XXH_ALIGN(n)      __declspec(align(n))
649 #else
650 #  define XXH_ALIGN(n)   /* disabled */
651 #endif
652 
653 /* Old GCC versions only accept the attribute after the type in structures. */
654 #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L))   /* C11+ */ \
655     && defined(__GNUC__)
656 #   define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
657 #else
658 #   define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
659 #endif
660 
661 #define XXH3_INTERNALBUFFER_SIZE 256
662 #define XXH3_SECRET_DEFAULT_SIZE 192
663 struct XXH3_state_s {
664    XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
665    /* used to store a custom secret generated from a seed */
666    XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
667    XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
668    XXH32_hash_t bufferedSize;
669    XXH32_hash_t reserved32;
670    size_t nbStripesSoFar;
671    XXH64_hash_t totalLen;
672    size_t nbStripesPerBlock;
673    size_t secretLimit;
674    XXH64_hash_t seed;
675    XXH64_hash_t reserved64;
676    const unsigned char* extSecret;  /* reference to external secret;
677                                      * if == NULL, use .customSecret instead */
678    /* note: there may be some padding at the end due to alignment on 64 bytes */
679 }; /* typedef'd to XXH3_state_t */
680 
681 #undef XXH_ALIGN_MEMBER
682 
683 /* When the XXH3_state_t structure is merely emplaced on stack,
684  * it should be initialized with XXH3_INITSTATE() or a memset()
685  * in case its first reset uses XXH3_NNbits_reset_withSeed().
686  * This init can be omitted if the first reset uses default or _withSecret mode.
687  * This operation isn't necessary when the state is created with XXH3_createState().
688  * Note that this doesn't prepare the state for a streaming operation,
689  * it's still necessary to use XXH3_NNbits_reset*() afterwards.
690  */
691 #define XXH3_INITSTATE(XXH3_state_ptr)   { (XXH3_state_ptr)->seed = 0; }
692 
693 
694 /* ===   Experimental API   === */
695 /* Symbols defined below must be considered tied to a specific library version. */
696 
697 /*
698  * XXH3_generateSecret():
699  *
700  * Derive a high-entropy secret from any user-defined content, named customSeed.
701  * The generated secret can be used in combination with `*_withSecret()` functions.
702  * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed,
703  * as it becomes much more difficult for an external actor to guess how to impact the calculation logic.
704  *
705  * The function accepts as input a custom seed of any length and any content,
706  * and derives from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE
707  * into an already allocated buffer secretBuffer.
708  * The generated secret is _always_ XXH_SECRET_DEFAULT_SIZE bytes long.
709  *
710  * The generated secret can then be used with any `*_withSecret()` variant.
711  * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
712  * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()`
713  * are part of this list. They all accept a `secret` parameter
714  * which must be very long for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
715  * _and_ feature very high entropy (consist of random-looking bytes).
716  * These conditions can be a high bar to meet, so
717  * this function can be used to generate a secret of proper quality.
718  *
719  * customSeed can be anything. It can have any size, even small ones,
720  * and its content can be anything, even stupidly "low entropy" source such as a bunch of zeroes.
721  * The resulting `secret` will nonetheless provide all expected qualities.
722  *
723  * Supplying NULL as the customSeed copies the default secret into `secretBuffer`.
724  * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
725  */
726 XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize);
727 
728 
729 /* simple short-cut to pre-selected XXH3_128bits variant */
730 XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
731 
732 
733 #endif  /* XXH_NO_LONG_LONG */
734 
735 
736 #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
737 #  define XXH_IMPLEMENTATION
738 #endif
739 
740 #endif  /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
741 
742 
743 /* ======================================================================== */
744 /* ======================================================================== */
745 /* ======================================================================== */
746 
747 
748 /*-**********************************************************************
749  * xxHash implementation
750  *-**********************************************************************
751  * xxHash's implementation used to be hosted inside xxhash.c.
752  *
753  * However, inlining requires implementation to be visible to the compiler,
754  * hence be included alongside the header.
755  * Previously, implementation was hosted inside xxhash.c,
756  * which was then #included when inlining was activated.
757  * This construction created issues with a few build and install systems,
758  * as it required xxhash.c to be stored in /include directory.
759  *
760  * xxHash implementation is now directly integrated within xxhash.h.
761  * As a consequence, xxhash.c is no longer needed in /include.
762  *
763  * xxhash.c is still available and is still useful.
764  * In a "normal" setup, when xxhash is not inlined,
765  * xxhash.h only exposes the prototypes and public symbols,
766  * while xxhash.c can be built into an object file xxhash.o
767  * which can then be linked into the final binary.
768  ************************************************************************/
769 
770 #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
771    || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
772 #  define XXH_IMPLEM_13a8737387
773 
774 /* *************************************
775 *  Tuning parameters
776 ***************************************/
777 /*!
778  * XXH_FORCE_MEMORY_ACCESS:
779  * By default, access to unaligned memory is controlled by `memcpy()`, which is
780  * safe and portable.
781  *
782  * Unfortunately, on some target/compiler combinations, the generated assembly
783  * is sub-optimal.
784  *
785  * The below switch allow selection of a different access method
786  * in the search for improved performance.
787  * Method 0 (default):
788  *     Use `memcpy()`. Safe and portable. Default.
789  * Method 1:
790  *     `__attribute__((packed))` statement. It depends on compiler extensions
791  *     and is therefore not portable.
792  *     This method is safe if your compiler supports it, and *generally* as
793  *     fast or faster than `memcpy`.
794  * Method 2:
795  *     Direct access via cast. This method doesn't depend on the compiler but
796  *     violates the C standard.
797  *     It can generate buggy code on targets which do not support unaligned
798  *     memory accesses.
799  *     But in some circumstances, it's the only known way to get the most
800  *     performance (example: GCC + ARMv6)
801  * Method 3:
802  *     Byteshift. This can generate the best code on old compilers which don't
803  *     inline small `memcpy()` calls, and it might also be faster on big-endian
804  *     systems which lack a native byteswap instruction.
805  * See https://stackoverflow.com/a/32095106/646947 for details.
806  * Prefer these methods in priority order (0 > 1 > 2 > 3)
807  */
808 #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
809 #  if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6)
810 #    define XXH_FORCE_MEMORY_ACCESS 2
811 #  elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
812   (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7)))
813 #    define XXH_FORCE_MEMORY_ACCESS 1
814 #  endif
815 #endif
816 
817 /*!
818  * XXH_ACCEPT_NULL_INPUT_POINTER:
819  * If the input pointer is NULL, xxHash's default behavior is to dereference it,
820  * triggering a segfault.
821  * When this macro is enabled, xxHash actively checks the input for a null pointer.
822  * If it is, the result for null input pointers is the same as a zero-length input.
823  */
824 #ifndef XXH_ACCEPT_NULL_INPUT_POINTER   /* can be defined externally */
825 #  define XXH_ACCEPT_NULL_INPUT_POINTER 0
826 #endif
827 
828 /*!
829  * XXH_FORCE_ALIGN_CHECK:
830  * This is an important performance trick
831  * for architectures without decent unaligned memory access performance.
832  * It checks for input alignment, and when conditions are met,
833  * uses a "fast path" employing direct 32-bit/64-bit read,
834  * resulting in _dramatically faster_ read speed.
835  *
836  * The check costs one initial branch per hash, which is generally negligible, but not zero.
837  * Moreover, it's not useful to generate binary for an additional code path
838  * if memory access uses same instruction for both aligned and unaligned adresses.
839  *
840  * In these cases, the alignment check can be removed by setting this macro to 0.
841  * Then the code will always use unaligned memory access.
842  * Align check is automatically disabled on x86, x64 & arm64,
843  * which are platforms known to offer good unaligned memory accesses performance.
844  *
845  * This option does not affect XXH3 (only XXH32 and XXH64).
846  */
847 #ifndef XXH_FORCE_ALIGN_CHECK  /* can be defined externally */
848 #  if defined(__i386)  || defined(__x86_64__) || defined(__aarch64__) \
849    || defined(_M_IX86) || defined(_M_X64)     || defined(_M_ARM64) /* visual */
850 #    define XXH_FORCE_ALIGN_CHECK 0
851 #  else
852 #    define XXH_FORCE_ALIGN_CHECK 1
853 #  endif
854 #endif
855 
856 /*!
857  * XXH_NO_INLINE_HINTS:
858  *
859  * By default, xxHash tries to force the compiler to inline almost all internal
860  * functions.
861  *
862  * This can usually improve performance due to reduced jumping and improved
863  * constant folding, but significantly increases the size of the binary which
864  * might not be favorable.
865  *
866  * Additionally, sometimes the forced inlining can be detrimental to performance,
867  * depending on the architecture.
868  *
869  * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
870  * compiler full control on whether to inline or not.
871  *
872  * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
873  * -fno-inline with GCC or Clang, this will automatically be defined.
874  */
875 #ifndef XXH_NO_INLINE_HINTS
876 #  if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
877    || defined(__NO_INLINE__)     /* -O0, -fno-inline */
878 #    define XXH_NO_INLINE_HINTS 1
879 #  else
880 #    define XXH_NO_INLINE_HINTS 0
881 #  endif
882 #endif
883 
884 /*!
885  * XXH_REROLL:
886  * Whether to reroll XXH32_finalize, and XXH64_finalize,
887  * instead of using an unrolled jump table/if statement loop.
888  *
889  * This is automatically defined on -Os/-Oz on GCC and Clang.
890  */
891 #ifndef XXH_REROLL
892 #  if defined(__OPTIMIZE_SIZE__)
893 #    define XXH_REROLL 1
894 #  else
895 #    define XXH_REROLL 0
896 #  endif
897 #endif
898 
899 
900 /* *************************************
901 *  Includes & Memory related functions
902 ***************************************/
903 /*!
904  * Modify the local functions below should you wish to use
905  * different memory routines for malloc() and free()
906  */
907 #include <stdlib.h>
908 
XXH_malloc(size_t s)909 static void* XXH_malloc(size_t s) { return malloc(s); }
XXH_free(void * p)910 static void XXH_free(void* p) { free(p); }
911 
912 /*! and for memcpy() */
913 #include <string.h>
XXH_memcpy(void * dest,const void * src,size_t size)914 static void* XXH_memcpy(void* dest, const void* src, size_t size)
915 {
916     return memcpy(dest,src,size);
917 }
918 
919 #include <limits.h>   /* ULLONG_MAX */
920 
921 
922 /* *************************************
923 *  Compiler Specific Options
924 ***************************************/
925 #ifdef _MSC_VER /* Visual Studio warning fix */
926 #  pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
927 #endif
928 
929 #if XXH_NO_INLINE_HINTS  /* disable inlining hints */
930 #  if defined(__GNUC__)
931 #    define XXH_FORCE_INLINE static __attribute__((unused))
932 #  else
933 #    define XXH_FORCE_INLINE static
934 #  endif
935 #  define XXH_NO_INLINE static
936 /* enable inlining hints */
937 #elif defined(_MSC_VER)  /* Visual Studio */
938 #  define XXH_FORCE_INLINE static __forceinline
939 #  define XXH_NO_INLINE static __declspec(noinline)
940 #elif defined(__GNUC__)
941 #  define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
942 #  define XXH_NO_INLINE static __attribute__((noinline))
943 #elif defined (__cplusplus) \
944   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L))   /* C99 */
945 #  define XXH_FORCE_INLINE static inline
946 #  define XXH_NO_INLINE static
947 #else
948 #  define XXH_FORCE_INLINE static
949 #  define XXH_NO_INLINE static
950 #endif
951 
952 
953 
954 /* *************************************
955 *  Debug
956 ***************************************/
957 /*
958  * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
959  * compiler's command line options. The value must be a number.
960  */
961 #ifndef XXH_DEBUGLEVEL
962 #  ifdef DEBUGLEVEL /* backwards compat */
963 #    define XXH_DEBUGLEVEL DEBUGLEVEL
964 #  else
965 #    define XXH_DEBUGLEVEL 0
966 #  endif
967 #endif
968 
969 #if (XXH_DEBUGLEVEL>=1)
970 #  include <assert.h>   /* note: can still be disabled with NDEBUG */
971 #  define XXH_ASSERT(c)   assert(c)
972 #else
973 #  define XXH_ASSERT(c)   ((void)0)
974 #endif
975 
976 /* note: use after variable declarations */
977 #define XXH_STATIC_ASSERT(c)  do { enum { XXH_sa = 1/(int)(!!(c)) }; } while (0)
978 
979 
980 /* *************************************
981 *  Basic Types
982 ***************************************/
983 #if !defined (__VMS) \
984  && (defined (__cplusplus) \
985  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
986 # include <stdint.h>
987   typedef uint8_t xxh_u8;
988 #else
989   typedef unsigned char xxh_u8;
990 #endif
991 typedef XXH32_hash_t xxh_u32;
992 
993 #ifdef XXH_OLD_NAMES
994 #  define BYTE xxh_u8
995 #  define U8   xxh_u8
996 #  define U32  xxh_u32
997 #endif
998 
999 /* ***   Memory access   *** */
1000 
1001 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1002 /*
1003  * Manual byteshift. Best for old compilers which don't inline memcpy.
1004  * We actually directly use XXH_readLE32 and XXH_readBE32.
1005  */
1006 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
1007 
1008 /*
1009  * Force direct memory access. Only works on CPU which support unaligned memory
1010  * access in hardware.
1011  */
XXH_read32(const void * memPtr)1012 static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
1013 
1014 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
1015 
1016 /*
1017  * __pack instructions are safer but compiler specific, hence potentially
1018  * problematic for some compilers.
1019  *
1020  * Currently only defined for GCC and ICC.
1021  */
1022 #ifdef XXH_OLD_NAMES
1023 typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
1024 #endif
XXH_read32(const void * ptr)1025 static xxh_u32 XXH_read32(const void* ptr)
1026 {
1027     typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign;
1028     return ((const xxh_unalign*)ptr)->u32;
1029 }
1030 
1031 #else
1032 
1033 /*
1034  * Portable and safe solution. Generally efficient.
1035  * see: https://stackoverflow.com/a/32095106/646947
1036  */
XXH_read32(const void * memPtr)1037 static xxh_u32 XXH_read32(const void* memPtr)
1038 {
1039     xxh_u32 val;
1040     memcpy(&val, memPtr, sizeof(val));
1041     return val;
1042 }
1043 
1044 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
1045 
1046 
1047 /* ***   Endianess   *** */
1048 typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
1049 
1050 /*!
1051  * XXH_CPU_LITTLE_ENDIAN:
1052  * Defined to 1 if the target is little endian, or 0 if it is big endian.
1053  * It can be defined externally, for example on the compiler command line.
1054  *
1055  * If it is not defined, a runtime check (which is usually constant folded)
1056  * is used instead.
1057  */
1058 #ifndef XXH_CPU_LITTLE_ENDIAN
1059 /*
1060  * Try to detect endianness automatically, to avoid the nonstandard behavior
1061  * in `XXH_isLittleEndian()`
1062  */
1063 #  if defined(_WIN32) /* Windows is always little endian */ \
1064      || defined(__LITTLE_ENDIAN__) \
1065      || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
1066 #    define XXH_CPU_LITTLE_ENDIAN 1
1067 #  elif defined(__BIG_ENDIAN__) \
1068      || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
1069 #    define XXH_CPU_LITTLE_ENDIAN 0
1070 #  else
1071 /*
1072  * runtime test, presumed to simplify to a constant by compiler
1073  */
XXH_isLittleEndian(void)1074 static int XXH_isLittleEndian(void)
1075 {
1076     /*
1077      * Portable and well-defined behavior.
1078      * Don't use static: it is detrimental to performance.
1079      */
1080     const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
1081     return one.c[0];
1082 }
1083 #   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian()
1084 #  endif
1085 #endif
1086 
1087 
1088 
1089 
1090 /* ****************************************
1091 *  Compiler-specific Functions and Macros
1092 ******************************************/
1093 #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
1094 
1095 #ifdef __has_builtin
1096 #  define XXH_HAS_BUILTIN(x) __has_builtin(x)
1097 #else
1098 #  define XXH_HAS_BUILTIN(x) 0
1099 #endif
1100 
1101 #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
1102                                && XXH_HAS_BUILTIN(__builtin_rotateleft64)
1103 #  define XXH_rotl32 __builtin_rotateleft32
1104 #  define XXH_rotl64 __builtin_rotateleft64
1105 /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
1106 #elif defined(_MSC_VER)
1107 #  define XXH_rotl32(x,r) _rotl(x,r)
1108 #  define XXH_rotl64(x,r) _rotl64(x,r)
1109 #else
1110 #  define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
1111 #  define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
1112 #endif
1113 
1114 #if defined(_MSC_VER)     /* Visual Studio */
1115 #  define XXH_swap32 _byteswap_ulong
1116 #elif XXH_GCC_VERSION >= 403
1117 #  define XXH_swap32 __builtin_bswap32
1118 #else
XXH_swap32(xxh_u32 x)1119 static xxh_u32 XXH_swap32 (xxh_u32 x)
1120 {
1121     return  ((x << 24) & 0xff000000 ) |
1122             ((x <<  8) & 0x00ff0000 ) |
1123             ((x >>  8) & 0x0000ff00 ) |
1124             ((x >> 24) & 0x000000ff );
1125 }
1126 #endif
1127 
1128 
1129 /* ***************************
1130 *  Memory reads
1131 *****************************/
1132 typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
1133 
1134 /*
1135  * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
1136  *
1137  * This is ideal for older compilers which don't inline memcpy.
1138  */
1139 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1140 
XXH_readLE32(const void * memPtr)1141 XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
1142 {
1143     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1144     return bytePtr[0]
1145          | ((xxh_u32)bytePtr[1] << 8)
1146          | ((xxh_u32)bytePtr[2] << 16)
1147          | ((xxh_u32)bytePtr[3] << 24);
1148 }
1149 
XXH_readBE32(const void * memPtr)1150 XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
1151 {
1152     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1153     return bytePtr[3]
1154          | ((xxh_u32)bytePtr[2] << 8)
1155          | ((xxh_u32)bytePtr[1] << 16)
1156          | ((xxh_u32)bytePtr[0] << 24);
1157 }
1158 
1159 #else
XXH_readLE32(const void * ptr)1160 XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
1161 {
1162     return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
1163 }
1164 
XXH_readBE32(const void * ptr)1165 static xxh_u32 XXH_readBE32(const void* ptr)
1166 {
1167     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
1168 }
1169 #endif
1170 
1171 XXH_FORCE_INLINE xxh_u32
XXH_readLE32_align(const void * ptr,XXH_alignment align)1172 XXH_readLE32_align(const void* ptr, XXH_alignment align)
1173 {
1174     if (align==XXH_unaligned) {
1175         return XXH_readLE32(ptr);
1176     } else {
1177         return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
1178     }
1179 }
1180 
1181 
1182 /* *************************************
1183 *  Misc
1184 ***************************************/
XXH_versionNumber(void)1185 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
1186 
1187 
1188 /* *******************************************************************
1189 *  32-bit hash functions
1190 *********************************************************************/
1191 static const xxh_u32 XXH_PRIME32_1 = 0x9E3779B1U;   /* 0b10011110001101110111100110110001 */
1192 static const xxh_u32 XXH_PRIME32_2 = 0x85EBCA77U;   /* 0b10000101111010111100101001110111 */
1193 static const xxh_u32 XXH_PRIME32_3 = 0xC2B2AE3DU;   /* 0b11000010101100101010111000111101 */
1194 static const xxh_u32 XXH_PRIME32_4 = 0x27D4EB2FU;   /* 0b00100111110101001110101100101111 */
1195 static const xxh_u32 XXH_PRIME32_5 = 0x165667B1U;   /* 0b00010110010101100110011110110001 */
1196 
1197 #ifdef XXH_OLD_NAMES
1198 #  define PRIME32_1 XXH_PRIME32_1
1199 #  define PRIME32_2 XXH_PRIME32_2
1200 #  define PRIME32_3 XXH_PRIME32_3
1201 #  define PRIME32_4 XXH_PRIME32_4
1202 #  define PRIME32_5 XXH_PRIME32_5
1203 #endif
1204 
XXH32_round(xxh_u32 acc,xxh_u32 input)1205 static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
1206 {
1207     acc += input * XXH_PRIME32_2;
1208     acc  = XXH_rotl32(acc, 13);
1209     acc *= XXH_PRIME32_1;
1210 #if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE)
1211     /*
1212      * UGLY HACK:
1213      * This inline assembly hack forces acc into a normal register. This is the
1214      * only thing that prevents GCC and Clang from autovectorizing the XXH32
1215      * loop (pragmas and attributes don't work for some resason) without globally
1216      * disabling SSE4.1.
1217      *
1218      * The reason we want to avoid vectorization is because despite working on
1219      * 4 integers at a time, there are multiple factors slowing XXH32 down on
1220      * SSE4:
1221      * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
1222      *   newer chips!) making it slightly slower to multiply four integers at
1223      *   once compared to four integers independently. Even when pmulld was
1224      *   fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
1225      *   just to multiply unless doing a long operation.
1226      *
1227      * - Four instructions are required to rotate,
1228      *      movqda tmp,  v // not required with VEX encoding
1229      *      pslld  tmp, 13 // tmp <<= 13
1230      *      psrld  v,   19 // x >>= 19
1231      *      por    v,  tmp // x |= tmp
1232      *   compared to one for scalar:
1233      *      roll   v, 13    // reliably fast across the board
1234      *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason
1235      *
1236      * - Instruction level parallelism is actually more beneficial here because
1237      *   the SIMD actually serializes this operation: While v1 is rotating, v2
1238      *   can load data, while v3 can multiply. SSE forces them to operate
1239      *   together.
1240      *
1241      * How this hack works:
1242      * __asm__(""       // Declare an assembly block but don't declare any instructions
1243      *          :       // However, as an Input/Output Operand,
1244      *          "+r"    // constrain a read/write operand (+) as a general purpose register (r).
1245      *          (acc)   // and set acc as the operand
1246      * );
1247      *
1248      * Because of the 'r', the compiler has promised that seed will be in a
1249      * general purpose register and the '+' says that it will be 'read/write',
1250      * so it has to assume it has changed. It is like volatile without all the
1251      * loads and stores.
1252      *
1253      * Since the argument has to be in a normal register (not an SSE register),
1254      * each time XXH32_round is called, it is impossible to vectorize.
1255      */
1256     __asm__("" : "+r" (acc));
1257 #endif
1258     return acc;
1259 }
1260 
1261 /* mix all bits */
XXH32_avalanche(xxh_u32 h32)1262 static xxh_u32 XXH32_avalanche(xxh_u32 h32)
1263 {
1264     h32 ^= h32 >> 15;
1265     h32 *= XXH_PRIME32_2;
1266     h32 ^= h32 >> 13;
1267     h32 *= XXH_PRIME32_3;
1268     h32 ^= h32 >> 16;
1269     return(h32);
1270 }
1271 
1272 #define XXH_get32bits(p) XXH_readLE32_align(p, align)
1273 
1274 static xxh_u32
XXH32_finalize(xxh_u32 h32,const xxh_u8 * ptr,size_t len,XXH_alignment align)1275 XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
1276 {
1277 #define XXH_PROCESS1 do {                           \
1278     h32 += (*ptr++) * XXH_PRIME32_5;                \
1279     h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1;      \
1280 } while (0)
1281 
1282 #define XXH_PROCESS4 do {                           \
1283     h32 += XXH_get32bits(ptr) * XXH_PRIME32_3;      \
1284     ptr += 4;                                   \
1285     h32  = XXH_rotl32(h32, 17) * XXH_PRIME32_4;     \
1286 } while (0)
1287 
1288     /* Compact rerolled version */
1289     if (XXH_REROLL) {
1290         len &= 15;
1291         while (len >= 4) {
1292             XXH_PROCESS4;
1293             len -= 4;
1294         }
1295         while (len > 0) {
1296             XXH_PROCESS1;
1297             --len;
1298         }
1299         return XXH32_avalanche(h32);
1300     } else {
1301          switch(len&15) /* or switch(bEnd - p) */ {
1302            case 12:      XXH_PROCESS4;
1303                          /* fallthrough */
1304            case 8:       XXH_PROCESS4;
1305                          /* fallthrough */
1306            case 4:       XXH_PROCESS4;
1307                          return XXH32_avalanche(h32);
1308 
1309            case 13:      XXH_PROCESS4;
1310                          /* fallthrough */
1311            case 9:       XXH_PROCESS4;
1312                          /* fallthrough */
1313            case 5:       XXH_PROCESS4;
1314                          XXH_PROCESS1;
1315                          return XXH32_avalanche(h32);
1316 
1317            case 14:      XXH_PROCESS4;
1318                          /* fallthrough */
1319            case 10:      XXH_PROCESS4;
1320                          /* fallthrough */
1321            case 6:       XXH_PROCESS4;
1322                          XXH_PROCESS1;
1323                          XXH_PROCESS1;
1324                          return XXH32_avalanche(h32);
1325 
1326            case 15:      XXH_PROCESS4;
1327                          /* fallthrough */
1328            case 11:      XXH_PROCESS4;
1329                          /* fallthrough */
1330            case 7:       XXH_PROCESS4;
1331                          /* fallthrough */
1332            case 3:       XXH_PROCESS1;
1333                          /* fallthrough */
1334            case 2:       XXH_PROCESS1;
1335                          /* fallthrough */
1336            case 1:       XXH_PROCESS1;
1337                          /* fallthrough */
1338            case 0:       return XXH32_avalanche(h32);
1339         }
1340         XXH_ASSERT(0);
1341         return h32;   /* reaching this point is deemed impossible */
1342     }
1343 }
1344 
1345 #ifdef XXH_OLD_NAMES
1346 #  define PROCESS1 XXH_PROCESS1
1347 #  define PROCESS4 XXH_PROCESS4
1348 #else
1349 #  undef XXH_PROCESS1
1350 #  undef XXH_PROCESS4
1351 #endif
1352 
1353 XXH_FORCE_INLINE xxh_u32
XXH32_endian_align(const xxh_u8 * input,size_t len,xxh_u32 seed,XXH_alignment align)1354 XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
1355 {
1356     const xxh_u8* bEnd = input + len;
1357     xxh_u32 h32;
1358 
1359 #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
1360     if (input==NULL) {
1361         len=0;
1362         bEnd=input=(const xxh_u8*)(size_t)16;
1363     }
1364 #endif
1365 
1366     if (len>=16) {
1367         const xxh_u8* const limit = bEnd - 15;
1368         xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
1369         xxh_u32 v2 = seed + XXH_PRIME32_2;
1370         xxh_u32 v3 = seed + 0;
1371         xxh_u32 v4 = seed - XXH_PRIME32_1;
1372 
1373         do {
1374             v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
1375             v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
1376             v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
1377             v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
1378         } while (input < limit);
1379 
1380         h32 = XXH_rotl32(v1, 1)  + XXH_rotl32(v2, 7)
1381             + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
1382     } else {
1383         h32  = seed + XXH_PRIME32_5;
1384     }
1385 
1386     h32 += (xxh_u32)len;
1387 
1388     return XXH32_finalize(h32, input, len&15, align);
1389 }
1390 
1391 
XXH32(const void * input,size_t len,XXH32_hash_t seed)1392 XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
1393 {
1394 #if 0
1395     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
1396     XXH32_state_t state;
1397     XXH32_reset(&state, seed);
1398     XXH32_update(&state, (const xxh_u8*)input, len);
1399     return XXH32_digest(&state);
1400 
1401 #else
1402 
1403     if (XXH_FORCE_ALIGN_CHECK) {
1404         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
1405             return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
1406     }   }
1407 
1408     return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
1409 #endif
1410 }
1411 
1412 
1413 
1414 /*******   Hash streaming   *******/
1415 
XXH32_createState(void)1416 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
1417 {
1418     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
1419 }
XXH32_freeState(XXH32_state_t * statePtr)1420 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
1421 {
1422     XXH_free(statePtr);
1423     return XXH_OK;
1424 }
1425 
XXH32_copyState(XXH32_state_t * dstState,const XXH32_state_t * srcState)1426 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
1427 {
1428     memcpy(dstState, srcState, sizeof(*dstState));
1429 }
1430 
XXH32_reset(XXH32_state_t * statePtr,XXH32_hash_t seed)1431 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
1432 {
1433     XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
1434     memset(&state, 0, sizeof(state));
1435     state.v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
1436     state.v2 = seed + XXH_PRIME32_2;
1437     state.v3 = seed + 0;
1438     state.v4 = seed - XXH_PRIME32_1;
1439     /* do not write into reserved, planned to be removed in a future version */
1440     memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
1441     return XXH_OK;
1442 }
1443 
1444 
1445 XXH_PUBLIC_API XXH_errorcode
XXH32_update(XXH32_state_t * state,const void * input,size_t len)1446 XXH32_update(XXH32_state_t* state, const void* input, size_t len)
1447 {
1448     if (input==NULL)
1449 #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
1450         return XXH_OK;
1451 #else
1452         return XXH_ERROR;
1453 #endif
1454 
1455     {   const xxh_u8* p = (const xxh_u8*)input;
1456         const xxh_u8* const bEnd = p + len;
1457 
1458         state->total_len_32 += (XXH32_hash_t)len;
1459         state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
1460 
1461         if (state->memsize + len < 16)  {   /* fill in tmp buffer */
1462             XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
1463             state->memsize += (XXH32_hash_t)len;
1464             return XXH_OK;
1465         }
1466 
1467         if (state->memsize) {   /* some data left from previous update */
1468             XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
1469             {   const xxh_u32* p32 = state->mem32;
1470                 state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++;
1471                 state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++;
1472                 state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++;
1473                 state->v4 = XXH32_round(state->v4, XXH_readLE32(p32));
1474             }
1475             p += 16-state->memsize;
1476             state->memsize = 0;
1477         }
1478 
1479         if (p <= bEnd-16) {
1480             const xxh_u8* const limit = bEnd - 16;
1481             xxh_u32 v1 = state->v1;
1482             xxh_u32 v2 = state->v2;
1483             xxh_u32 v3 = state->v3;
1484             xxh_u32 v4 = state->v4;
1485 
1486             do {
1487                 v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4;
1488                 v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4;
1489                 v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4;
1490                 v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4;
1491             } while (p<=limit);
1492 
1493             state->v1 = v1;
1494             state->v2 = v2;
1495             state->v3 = v3;
1496             state->v4 = v4;
1497         }
1498 
1499         if (p < bEnd) {
1500             XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
1501             state->memsize = (unsigned)(bEnd-p);
1502         }
1503     }
1504 
1505     return XXH_OK;
1506 }
1507 
1508 
XXH32_digest(const XXH32_state_t * state)1509 XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* state)
1510 {
1511     xxh_u32 h32;
1512 
1513     if (state->large_len) {
1514         h32 = XXH_rotl32(state->v1, 1)
1515             + XXH_rotl32(state->v2, 7)
1516             + XXH_rotl32(state->v3, 12)
1517             + XXH_rotl32(state->v4, 18);
1518     } else {
1519         h32 = state->v3 /* == seed */ + XXH_PRIME32_5;
1520     }
1521 
1522     h32 += state->total_len_32;
1523 
1524     return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
1525 }
1526 
1527 
1528 /*******   Canonical representation   *******/
1529 
1530 /*
1531  * The default return values from XXH functions are unsigned 32 and 64 bit
1532  * integers.
1533  *
1534  * The canonical representation uses big endian convention, the same convention
1535  * as human-readable numbers (large digits first).
1536  *
1537  * This way, hash values can be written into a file or buffer, remaining
1538  * comparable across different systems.
1539  *
1540  * The following functions allow transformation of hash values to and from their
1541  * canonical format.
1542  */
XXH32_canonicalFromHash(XXH32_canonical_t * dst,XXH32_hash_t hash)1543 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
1544 {
1545     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
1546     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
1547     memcpy(dst, &hash, sizeof(*dst));
1548 }
1549 
XXH32_hashFromCanonical(const XXH32_canonical_t * src)1550 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
1551 {
1552     return XXH_readBE32(src);
1553 }
1554 
1555 
1556 #ifndef XXH_NO_LONG_LONG
1557 
1558 /* *******************************************************************
1559 *  64-bit hash functions
1560 *********************************************************************/
1561 
1562 /*******   Memory access   *******/
1563 
1564 typedef XXH64_hash_t xxh_u64;
1565 
1566 #ifdef XXH_OLD_NAMES
1567 #  define U64 xxh_u64
1568 #endif
1569 
1570 /*!
1571  * XXH_REROLL_XXH64:
1572  * Whether to reroll the XXH64_finalize() loop.
1573  *
1574  * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a
1575  * performance gain on 64-bit hosts, as only one jump is required.
1576  *
1577  * However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit
1578  * registers, and 64-bit arithmetic needs to be simulated, it isn't beneficial
1579  * to unroll. The code becomes ridiculously large (the largest function in the
1580  * binary on i386!), and rerolling it saves anywhere from 3kB to 20kB. It is
1581  * also slightly faster because it fits into cache better and is more likely
1582  * to be inlined by the compiler.
1583  *
1584  * If XXH_REROLL is defined, this is ignored and the loop is always rerolled.
1585  */
1586 #ifndef XXH_REROLL_XXH64
1587 #  if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \
1588    || !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \
1589      || defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \
1590      || defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \
1591      || defined(__mips64__) || defined(__mips64)) /* mips64 */ \
1592    || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */
1593 #    define XXH_REROLL_XXH64 1
1594 #  else
1595 #    define XXH_REROLL_XXH64 0
1596 #  endif
1597 #endif /* !defined(XXH_REROLL_XXH64) */
1598 
1599 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1600 /*
1601  * Manual byteshift. Best for old compilers which don't inline memcpy.
1602  * We actually directly use XXH_readLE64 and XXH_readBE64.
1603  */
1604 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
1605 
1606 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
XXH_read64(const void * memPtr)1607 static xxh_u64 XXH_read64(const void* memPtr) { return *(const xxh_u64*) memPtr; }
1608 
1609 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
1610 
1611 /*
1612  * __pack instructions are safer, but compiler specific, hence potentially
1613  * problematic for some compilers.
1614  *
1615  * Currently only defined for GCC and ICC.
1616  */
1617 #ifdef XXH_OLD_NAMES
1618 typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
1619 #endif
XXH_read64(const void * ptr)1620 static xxh_u64 XXH_read64(const void* ptr)
1621 {
1622     typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64;
1623     return ((const xxh_unalign64*)ptr)->u64;
1624 }
1625 
1626 #else
1627 
1628 /*
1629  * Portable and safe solution. Generally efficient.
1630  * see: https://stackoverflow.com/a/32095106/646947
1631  */
XXH_read64(const void * memPtr)1632 static xxh_u64 XXH_read64(const void* memPtr)
1633 {
1634     xxh_u64 val;
1635     memcpy(&val, memPtr, sizeof(val));
1636     return val;
1637 }
1638 
1639 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
1640 
1641 #if defined(_MSC_VER)     /* Visual Studio */
1642 #  define XXH_swap64 _byteswap_uint64
1643 #elif XXH_GCC_VERSION >= 403
1644 #  define XXH_swap64 __builtin_bswap64
1645 #else
XXH_swap64(xxh_u64 x)1646 static xxh_u64 XXH_swap64 (xxh_u64 x)
1647 {
1648     return  ((x << 56) & 0xff00000000000000ULL) |
1649             ((x << 40) & 0x00ff000000000000ULL) |
1650             ((x << 24) & 0x0000ff0000000000ULL) |
1651             ((x << 8)  & 0x000000ff00000000ULL) |
1652             ((x >> 8)  & 0x00000000ff000000ULL) |
1653             ((x >> 24) & 0x0000000000ff0000ULL) |
1654             ((x >> 40) & 0x000000000000ff00ULL) |
1655             ((x >> 56) & 0x00000000000000ffULL);
1656 }
1657 #endif
1658 
1659 
1660 /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
1661 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1662 
XXH_readLE64(const void * memPtr)1663 XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
1664 {
1665     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1666     return bytePtr[0]
1667          | ((xxh_u64)bytePtr[1] << 8)
1668          | ((xxh_u64)bytePtr[2] << 16)
1669          | ((xxh_u64)bytePtr[3] << 24)
1670          | ((xxh_u64)bytePtr[4] << 32)
1671          | ((xxh_u64)bytePtr[5] << 40)
1672          | ((xxh_u64)bytePtr[6] << 48)
1673          | ((xxh_u64)bytePtr[7] << 56);
1674 }
1675 
XXH_readBE64(const void * memPtr)1676 XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
1677 {
1678     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1679     return bytePtr[7]
1680          | ((xxh_u64)bytePtr[6] << 8)
1681          | ((xxh_u64)bytePtr[5] << 16)
1682          | ((xxh_u64)bytePtr[4] << 24)
1683          | ((xxh_u64)bytePtr[3] << 32)
1684          | ((xxh_u64)bytePtr[2] << 40)
1685          | ((xxh_u64)bytePtr[1] << 48)
1686          | ((xxh_u64)bytePtr[0] << 56);
1687 }
1688 
1689 #else
XXH_readLE64(const void * ptr)1690 XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
1691 {
1692     return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
1693 }
1694 
XXH_readBE64(const void * ptr)1695 static xxh_u64 XXH_readBE64(const void* ptr)
1696 {
1697     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
1698 }
1699 #endif
1700 
1701 XXH_FORCE_INLINE xxh_u64
XXH_readLE64_align(const void * ptr,XXH_alignment align)1702 XXH_readLE64_align(const void* ptr, XXH_alignment align)
1703 {
1704     if (align==XXH_unaligned)
1705         return XXH_readLE64(ptr);
1706     else
1707         return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
1708 }
1709 
1710 
1711 /*******   xxh64   *******/
1712 
1713 static const xxh_u64 XXH_PRIME64_1 = 0x9E3779B185EBCA87ULL;   /* 0b1001111000110111011110011011000110000101111010111100101010000111 */
1714 static const xxh_u64 XXH_PRIME64_2 = 0xC2B2AE3D27D4EB4FULL;   /* 0b1100001010110010101011100011110100100111110101001110101101001111 */
1715 static const xxh_u64 XXH_PRIME64_3 = 0x165667B19E3779F9ULL;   /* 0b0001011001010110011001111011000110011110001101110111100111111001 */
1716 static const xxh_u64 XXH_PRIME64_4 = 0x85EBCA77C2B2AE63ULL;   /* 0b1000010111101011110010100111011111000010101100101010111001100011 */
1717 static const xxh_u64 XXH_PRIME64_5 = 0x27D4EB2F165667C5ULL;   /* 0b0010011111010100111010110010111100010110010101100110011111000101 */
1718 
1719 #ifdef XXH_OLD_NAMES
1720 #  define PRIME64_1 XXH_PRIME64_1
1721 #  define PRIME64_2 XXH_PRIME64_2
1722 #  define PRIME64_3 XXH_PRIME64_3
1723 #  define PRIME64_4 XXH_PRIME64_4
1724 #  define PRIME64_5 XXH_PRIME64_5
1725 #endif
1726 
XXH64_round(xxh_u64 acc,xxh_u64 input)1727 static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
1728 {
1729     acc += input * XXH_PRIME64_2;
1730     acc  = XXH_rotl64(acc, 31);
1731     acc *= XXH_PRIME64_1;
1732     return acc;
1733 }
1734 
XXH64_mergeRound(xxh_u64 acc,xxh_u64 val)1735 static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
1736 {
1737     val  = XXH64_round(0, val);
1738     acc ^= val;
1739     acc  = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
1740     return acc;
1741 }
1742 
XXH64_avalanche(xxh_u64 h64)1743 static xxh_u64 XXH64_avalanche(xxh_u64 h64)
1744 {
1745     h64 ^= h64 >> 33;
1746     h64 *= XXH_PRIME64_2;
1747     h64 ^= h64 >> 29;
1748     h64 *= XXH_PRIME64_3;
1749     h64 ^= h64 >> 32;
1750     return h64;
1751 }
1752 
1753 
1754 #define XXH_get64bits(p) XXH_readLE64_align(p, align)
1755 
1756 static xxh_u64
XXH64_finalize(xxh_u64 h64,const xxh_u8 * ptr,size_t len,XXH_alignment align)1757 XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
1758 {
1759 #define XXH_PROCESS1_64 do {                                   \
1760     h64 ^= (*ptr++) * XXH_PRIME64_5;                           \
1761     h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1;                 \
1762 } while (0)
1763 
1764 #define XXH_PROCESS4_64 do {                                   \
1765     h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;      \
1766     ptr += 4;                                              \
1767     h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;     \
1768 } while (0)
1769 
1770 #define XXH_PROCESS8_64 do {                                   \
1771     xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \
1772     ptr += 8;                                              \
1773     h64 ^= k1;                                             \
1774     h64  = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4;     \
1775 } while (0)
1776 
1777     /* Rerolled version for 32-bit targets is faster and much smaller. */
1778     if (XXH_REROLL || XXH_REROLL_XXH64) {
1779         len &= 31;
1780         while (len >= 8) {
1781             XXH_PROCESS8_64;
1782             len -= 8;
1783         }
1784         if (len >= 4) {
1785             XXH_PROCESS4_64;
1786             len -= 4;
1787         }
1788         while (len > 0) {
1789             XXH_PROCESS1_64;
1790             --len;
1791         }
1792          return  XXH64_avalanche(h64);
1793     } else {
1794         switch(len & 31) {
1795            case 24: XXH_PROCESS8_64;
1796                          /* fallthrough */
1797            case 16: XXH_PROCESS8_64;
1798                          /* fallthrough */
1799            case  8: XXH_PROCESS8_64;
1800                     return XXH64_avalanche(h64);
1801 
1802            case 28: XXH_PROCESS8_64;
1803                          /* fallthrough */
1804            case 20: XXH_PROCESS8_64;
1805                          /* fallthrough */
1806            case 12: XXH_PROCESS8_64;
1807                          /* fallthrough */
1808            case  4: XXH_PROCESS4_64;
1809                     return XXH64_avalanche(h64);
1810 
1811            case 25: XXH_PROCESS8_64;
1812                          /* fallthrough */
1813            case 17: XXH_PROCESS8_64;
1814                          /* fallthrough */
1815            case  9: XXH_PROCESS8_64;
1816                     XXH_PROCESS1_64;
1817                     return XXH64_avalanche(h64);
1818 
1819            case 29: XXH_PROCESS8_64;
1820                          /* fallthrough */
1821            case 21: XXH_PROCESS8_64;
1822                          /* fallthrough */
1823            case 13: XXH_PROCESS8_64;
1824                          /* fallthrough */
1825            case  5: XXH_PROCESS4_64;
1826                     XXH_PROCESS1_64;
1827                     return XXH64_avalanche(h64);
1828 
1829            case 26: XXH_PROCESS8_64;
1830                          /* fallthrough */
1831            case 18: XXH_PROCESS8_64;
1832                          /* fallthrough */
1833            case 10: XXH_PROCESS8_64;
1834                     XXH_PROCESS1_64;
1835                     XXH_PROCESS1_64;
1836                     return XXH64_avalanche(h64);
1837 
1838            case 30: XXH_PROCESS8_64;
1839                          /* fallthrough */
1840            case 22: XXH_PROCESS8_64;
1841                          /* fallthrough */
1842            case 14: XXH_PROCESS8_64;
1843                          /* fallthrough */
1844            case  6: XXH_PROCESS4_64;
1845                     XXH_PROCESS1_64;
1846                     XXH_PROCESS1_64;
1847                     return XXH64_avalanche(h64);
1848 
1849            case 27: XXH_PROCESS8_64;
1850                          /* fallthrough */
1851            case 19: XXH_PROCESS8_64;
1852                          /* fallthrough */
1853            case 11: XXH_PROCESS8_64;
1854                     XXH_PROCESS1_64;
1855                     XXH_PROCESS1_64;
1856                     XXH_PROCESS1_64;
1857                     return XXH64_avalanche(h64);
1858 
1859            case 31: XXH_PROCESS8_64;
1860                          /* fallthrough */
1861            case 23: XXH_PROCESS8_64;
1862                          /* fallthrough */
1863            case 15: XXH_PROCESS8_64;
1864                          /* fallthrough */
1865            case  7: XXH_PROCESS4_64;
1866                          /* fallthrough */
1867            case  3: XXH_PROCESS1_64;
1868                          /* fallthrough */
1869            case  2: XXH_PROCESS1_64;
1870                          /* fallthrough */
1871            case  1: XXH_PROCESS1_64;
1872                          /* fallthrough */
1873            case  0: return XXH64_avalanche(h64);
1874         }
1875     }
1876     /* impossible to reach */
1877     XXH_ASSERT(0);
1878     return 0;  /* unreachable, but some compilers complain without it */
1879 }
1880 
1881 #ifdef XXH_OLD_NAMES
1882 #  define PROCESS1_64 XXH_PROCESS1_64
1883 #  define PROCESS4_64 XXH_PROCESS4_64
1884 #  define PROCESS8_64 XXH_PROCESS8_64
1885 #else
1886 #  undef XXH_PROCESS1_64
1887 #  undef XXH_PROCESS4_64
1888 #  undef XXH_PROCESS8_64
1889 #endif
1890 
1891 XXH_FORCE_INLINE xxh_u64
XXH64_endian_align(const xxh_u8 * input,size_t len,xxh_u64 seed,XXH_alignment align)1892 XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
1893 {
1894     const xxh_u8* bEnd = input + len;
1895     xxh_u64 h64;
1896 
1897 #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
1898     if (input==NULL) {
1899         len=0;
1900         bEnd=input=(const xxh_u8*)(size_t)32;
1901     }
1902 #endif
1903 
1904     if (len>=32) {
1905         const xxh_u8* const limit = bEnd - 32;
1906         xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
1907         xxh_u64 v2 = seed + XXH_PRIME64_2;
1908         xxh_u64 v3 = seed + 0;
1909         xxh_u64 v4 = seed - XXH_PRIME64_1;
1910 
1911         do {
1912             v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
1913             v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
1914             v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
1915             v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
1916         } while (input<=limit);
1917 
1918         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
1919         h64 = XXH64_mergeRound(h64, v1);
1920         h64 = XXH64_mergeRound(h64, v2);
1921         h64 = XXH64_mergeRound(h64, v3);
1922         h64 = XXH64_mergeRound(h64, v4);
1923 
1924     } else {
1925         h64  = seed + XXH_PRIME64_5;
1926     }
1927 
1928     h64 += (xxh_u64) len;
1929 
1930     return XXH64_finalize(h64, input, len, align);
1931 }
1932 
1933 
XXH64(const void * input,size_t len,XXH64_hash_t seed)1934 XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
1935 {
1936 #if 0
1937     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
1938     XXH64_state_t state;
1939     XXH64_reset(&state, seed);
1940     XXH64_update(&state, (const xxh_u8*)input, len);
1941     return XXH64_digest(&state);
1942 
1943 #else
1944 
1945     if (XXH_FORCE_ALIGN_CHECK) {
1946         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
1947             return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
1948     }   }
1949 
1950     return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
1951 
1952 #endif
1953 }
1954 
1955 /*******   Hash Streaming   *******/
1956 
XXH64_createState(void)1957 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
1958 {
1959     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
1960 }
XXH64_freeState(XXH64_state_t * statePtr)1961 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
1962 {
1963     XXH_free(statePtr);
1964     return XXH_OK;
1965 }
1966 
XXH64_copyState(XXH64_state_t * dstState,const XXH64_state_t * srcState)1967 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
1968 {
1969     memcpy(dstState, srcState, sizeof(*dstState));
1970 }
1971 
XXH64_reset(XXH64_state_t * statePtr,XXH64_hash_t seed)1972 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
1973 {
1974     XXH64_state_t state;   /* use a local state to memcpy() in order to avoid strict-aliasing warnings */
1975     memset(&state, 0, sizeof(state));
1976     state.v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
1977     state.v2 = seed + XXH_PRIME64_2;
1978     state.v3 = seed + 0;
1979     state.v4 = seed - XXH_PRIME64_1;
1980      /* do not write into reserved64, might be removed in a future version */
1981     memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
1982     return XXH_OK;
1983 }
1984 
1985 XXH_PUBLIC_API XXH_errorcode
XXH64_update(XXH64_state_t * state,const void * input,size_t len)1986 XXH64_update (XXH64_state_t* state, const void* input, size_t len)
1987 {
1988     if (input==NULL)
1989 #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
1990         return XXH_OK;
1991 #else
1992         return XXH_ERROR;
1993 #endif
1994 
1995     {   const xxh_u8* p = (const xxh_u8*)input;
1996         const xxh_u8* const bEnd = p + len;
1997 
1998         state->total_len += len;
1999 
2000         if (state->memsize + len < 32) {  /* fill in tmp buffer */
2001             XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
2002             state->memsize += (xxh_u32)len;
2003             return XXH_OK;
2004         }
2005 
2006         if (state->memsize) {   /* tmp buffer is full */
2007             XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
2008             state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0));
2009             state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1));
2010             state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2));
2011             state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3));
2012             p += 32-state->memsize;
2013             state->memsize = 0;
2014         }
2015 
2016         if (p+32 <= bEnd) {
2017             const xxh_u8* const limit = bEnd - 32;
2018             xxh_u64 v1 = state->v1;
2019             xxh_u64 v2 = state->v2;
2020             xxh_u64 v3 = state->v3;
2021             xxh_u64 v4 = state->v4;
2022 
2023             do {
2024                 v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8;
2025                 v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8;
2026                 v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8;
2027                 v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8;
2028             } while (p<=limit);
2029 
2030             state->v1 = v1;
2031             state->v2 = v2;
2032             state->v3 = v3;
2033             state->v4 = v4;
2034         }
2035 
2036         if (p < bEnd) {
2037             XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
2038             state->memsize = (unsigned)(bEnd-p);
2039         }
2040     }
2041 
2042     return XXH_OK;
2043 }
2044 
2045 
XXH64_digest(const XXH64_state_t * state)2046 XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* state)
2047 {
2048     xxh_u64 h64;
2049 
2050     if (state->total_len >= 32) {
2051         xxh_u64 const v1 = state->v1;
2052         xxh_u64 const v2 = state->v2;
2053         xxh_u64 const v3 = state->v3;
2054         xxh_u64 const v4 = state->v4;
2055 
2056         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
2057         h64 = XXH64_mergeRound(h64, v1);
2058         h64 = XXH64_mergeRound(h64, v2);
2059         h64 = XXH64_mergeRound(h64, v3);
2060         h64 = XXH64_mergeRound(h64, v4);
2061     } else {
2062         h64  = state->v3 /*seed*/ + XXH_PRIME64_5;
2063     }
2064 
2065     h64 += (xxh_u64) state->total_len;
2066 
2067     return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
2068 }
2069 
2070 
2071 /******* Canonical representation   *******/
2072 
XXH64_canonicalFromHash(XXH64_canonical_t * dst,XXH64_hash_t hash)2073 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
2074 {
2075     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
2076     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
2077     memcpy(dst, &hash, sizeof(*dst));
2078 }
2079 
XXH64_hashFromCanonical(const XXH64_canonical_t * src)2080 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
2081 {
2082     return XXH_readBE64(src);
2083 }
2084 
2085 
2086 
2087 /* *********************************************************************
2088 *  XXH3
2089 *  New generation hash designed for speed on small keys and vectorization
2090 ************************************************************************ */
2091 
2092 /* ===   Compiler specifics   === */
2093 
2094 #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* >= C99 */
2095 #  define XXH_RESTRICT   restrict
2096 #else
2097 /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
2098 #  define XXH_RESTRICT   /* disable */
2099 #endif
2100 
2101 #if (defined(__GNUC__) && (__GNUC__ >= 3))  \
2102   || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
2103   || defined(__clang__)
2104 #    define XXH_likely(x) __builtin_expect(x, 1)
2105 #    define XXH_unlikely(x) __builtin_expect(x, 0)
2106 #else
2107 #    define XXH_likely(x) (x)
2108 #    define XXH_unlikely(x) (x)
2109 #endif
2110 
2111 #if defined(__GNUC__)
2112 #  if defined(__AVX2__)
2113 #    include <immintrin.h>
2114 #  elif defined(__SSE2__)
2115 #    include <emmintrin.h>
2116 #  elif defined(__ARM_NEON__) || defined(__ARM_NEON)
2117 #    define inline __inline__  /* circumvent a clang bug */
2118 #    include <arm_neon.h>
2119 #    undef inline
2120 #  endif
2121 #elif defined(_MSC_VER)
2122 #  include <intrin.h>
2123 #endif
2124 
2125 /*
2126  * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
2127  * remaining a true 64-bit/128-bit hash function.
2128  *
2129  * This is done by prioritizing a subset of 64-bit operations that can be
2130  * emulated without too many steps on the average 32-bit machine.
2131  *
2132  * For example, these two lines seem similar, and run equally fast on 64-bit:
2133  *
2134  *   xxh_u64 x;
2135  *   x ^= (x >> 47); // good
2136  *   x ^= (x >> 13); // bad
2137  *
2138  * However, to a 32-bit machine, there is a major difference.
2139  *
2140  * x ^= (x >> 47) looks like this:
2141  *
2142  *   x.lo ^= (x.hi >> (47 - 32));
2143  *
2144  * while x ^= (x >> 13) looks like this:
2145  *
2146  *   // note: funnel shifts are not usually cheap.
2147  *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
2148  *   x.hi ^= (x.hi >> 13);
2149  *
2150  * The first one is significantly faster than the second, simply because the
2151  * shift is larger than 32. This means:
2152  *  - All the bits we need are in the upper 32 bits, so we can ignore the lower
2153  *    32 bits in the shift.
2154  *  - The shift result will always fit in the lower 32 bits, and therefore,
2155  *    we can ignore the upper 32 bits in the xor.
2156  *
2157  * Thanks to this optimization, XXH3 only requires these features to be efficient:
2158  *
2159  *  - Usable unaligned access
2160  *  - A 32-bit or 64-bit ALU
2161  *      - If 32-bit, a decent ADC instruction
2162  *  - A 32 or 64-bit multiply with a 64-bit result
2163  *  - For the 128-bit variant, a decent byteswap helps short inputs.
2164  *
2165  * The first two are already required by XXH32, and almost all 32-bit and 64-bit
2166  * platforms which can run XXH32 can run XXH3 efficiently.
2167  *
2168  * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
2169  * notable exception.
2170  *
2171  * First of all, Thumb-1 lacks support for the UMULL instruction which
2172  * performs the important long multiply. This means numerous __aeabi_lmul
2173  * calls.
2174  *
2175  * Second of all, the 8 functional registers are just not enough.
2176  * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
2177  * Lo registers, and this shuffling results in thousands more MOVs than A32.
2178  *
2179  * A32 and T32 don't have this limitation. They can access all 14 registers,
2180  * do a 32->64 multiply with UMULL, and the flexible operand allowing free
2181  * shifts is helpful, too.
2182  *
2183  * Therefore, we do a quick sanity check.
2184  *
2185  * If compiling Thumb-1 for a target which supports ARM instructions, we will
2186  * emit a warning, as it is not a "sane" platform to compile for.
2187  *
2188  * Usually, if this happens, it is because of an accident and you probably need
2189  * to specify -march, as you likely meant to compile for a newer architecture.
2190  *
2191  * Credit: large sections of the vectorial and asm source code paths
2192  *         have been contributed by @easyaspi314
2193  */
2194 #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
2195 #   warning "XXH3 is highly inefficient without ARM or Thumb-2."
2196 #endif
2197 
2198 /* ==========================================
2199  * Vectorization detection
2200  * ========================================== */
2201 #define XXH_SCALAR 0  /* Portable scalar version */
2202 #define XXH_SSE2   1  /* SSE2 for Pentium 4 and all x86_64 */
2203 #define XXH_AVX2   2  /* AVX2 for Haswell and Bulldozer */
2204 #define XXH_AVX512 3  /* AVX512 for Skylake and Icelake */
2205 #define XXH_NEON   4  /* NEON for most ARMv7-A and all AArch64 */
2206 #define XXH_VSX    5  /* VSX and ZVector for POWER8/z13 */
2207 
2208 #ifndef XXH_VECTOR    /* can be defined on command line */
2209 #  if defined(__AVX512F__)
2210 #    define XXH_VECTOR XXH_AVX512
2211 #  elif defined(__AVX2__)
2212 #    define XXH_VECTOR XXH_AVX2
2213 #  elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
2214 #    define XXH_VECTOR XXH_SSE2
2215 #  elif defined(__GNUC__) /* msvc support maybe later */ \
2216   && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \
2217   && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
2218     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
2219 #    define XXH_VECTOR XXH_NEON
2220 #  elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
2221      || (defined(__s390x__) && defined(__VEC__)) \
2222      && defined(__GNUC__) /* TODO: IBM XL */
2223 #    define XXH_VECTOR XXH_VSX
2224 #  else
2225 #    define XXH_VECTOR XXH_SCALAR
2226 #  endif
2227 #endif
2228 
2229 /*
2230  * Controls the alignment of the accumulator,
2231  * for compatibility with aligned vector loads, which are usually faster.
2232  */
2233 #ifndef XXH_ACC_ALIGN
2234 #  if defined(XXH_X86DISPATCH)
2235 #     define XXH_ACC_ALIGN 64  /* for compatibility with avx512 */
2236 #  elif XXH_VECTOR == XXH_SCALAR  /* scalar */
2237 #     define XXH_ACC_ALIGN 8
2238 #  elif XXH_VECTOR == XXH_SSE2  /* sse2 */
2239 #     define XXH_ACC_ALIGN 16
2240 #  elif XXH_VECTOR == XXH_AVX2  /* avx2 */
2241 #     define XXH_ACC_ALIGN 32
2242 #  elif XXH_VECTOR == XXH_NEON  /* neon */
2243 #     define XXH_ACC_ALIGN 16
2244 #  elif XXH_VECTOR == XXH_VSX   /* vsx */
2245 #     define XXH_ACC_ALIGN 16
2246 #  elif XXH_VECTOR == XXH_AVX512  /* avx512 */
2247 #     define XXH_ACC_ALIGN 64
2248 #  endif
2249 #endif
2250 
2251 #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
2252     || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
2253 #  define XXH_SEC_ALIGN XXH_ACC_ALIGN
2254 #else
2255 #  define XXH_SEC_ALIGN 8
2256 #endif
2257 
2258 /*
2259  * UGLY HACK:
2260  * GCC usually generates the best code with -O3 for xxHash.
2261  *
2262  * However, when targeting AVX2, it is overzealous in its unrolling resulting
2263  * in code roughly 3/4 the speed of Clang.
2264  *
2265  * There are other issues, such as GCC splitting _mm256_loadu_si256 into
2266  * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
2267  * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
2268  *
2269  * That is why when compiling the AVX2 version, it is recommended to use either
2270  *   -O2 -mavx2 -march=haswell
2271  * or
2272  *   -O2 -mavx2 -mno-avx256-split-unaligned-load
2273  * for decent performance, or to use Clang instead.
2274  *
2275  * Fortunately, we can control the first one with a pragma that forces GCC into
2276  * -O2, but the other one we can't control without "failed to inline always
2277  * inline function due to target mismatch" warnings.
2278  */
2279 #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
2280   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
2281   && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
2282 #  pragma GCC push_options
2283 #  pragma GCC optimize("-O2")
2284 #endif
2285 
2286 
2287 #if XXH_VECTOR == XXH_NEON
2288 /*
2289  * NEON's setup for vmlal_u32 is a little more complicated than it is on
2290  * SSE2, AVX2, and VSX.
2291  *
2292  * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
2293  *
2294  * To do the same operation, the 128-bit 'Q' register needs to be split into
2295  * two 64-bit 'D' registers, performing this operation::
2296  *
2297  *   [                a                 |                 b                ]
2298  *            |              '---------. .--------'                |
2299  *            |                         x                          |
2300  *            |              .---------' '--------.                |
2301  *   [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[    a >> 32     |     b >> 32    ]
2302  *
2303  * Due to significant changes in aarch64, the fastest method for aarch64 is
2304  * completely different than the fastest method for ARMv7-A.
2305  *
2306  * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
2307  * D11 will modify the high half of Q5. This is similar to how modifying AH
2308  * will only affect bits 8-15 of AX on x86.
2309  *
2310  * VZIP takes two registers, and puts even lanes in one register and odd lanes
2311  * in the other.
2312  *
2313  * On ARMv7-A, this strangely modifies both parameters in place instead of
2314  * taking the usual 3-operand form.
2315  *
2316  * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
2317  * lower and upper halves of the Q register to end up with the high and low
2318  * halves where we want - all in one instruction.
2319  *
2320  *   vzip.32   d10, d11       @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
2321  *
2322  * Unfortunately we need inline assembly for this: Instructions modifying two
2323  * registers at once is not possible in GCC or Clang's IR, and they have to
2324  * create a copy.
2325  *
2326  * aarch64 requires a different approach.
2327  *
2328  * In order to make it easier to write a decent compiler for aarch64, many
2329  * quirks were removed, such as conditional execution.
2330  *
2331  * NEON was also affected by this.
2332  *
2333  * aarch64 cannot access the high bits of a Q-form register, and writes to a
2334  * D-form register zero the high bits, similar to how writes to W-form scalar
2335  * registers (or DWORD registers on x86_64) work.
2336  *
2337  * The formerly free vget_high intrinsics now require a vext (with a few
2338  * exceptions)
2339  *
2340  * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
2341  * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
2342  * operand.
2343  *
2344  * The equivalent of the VZIP.32 on the lower and upper halves would be this
2345  * mess:
2346  *
2347  *   ext     v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
2348  *   zip1    v1.2s, v0.2s, v2.2s     // v1 = { v0[0], v2[0] }
2349  *   zip2    v0.2s, v0.2s, v1.2s     // v0 = { v0[1], v2[1] }
2350  *
2351  * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
2352  *
2353  *   shrn    v1.2s, v0.2d, #32  // v1 = (uint32x2_t)(v0 >> 32);
2354  *   xtn     v0.2s, v0.2d       // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
2355  *
2356  * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
2357  */
2358 
2359 /*
2360  * Function-like macro:
2361  * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
2362  * {
2363  *     outLo = (uint32x2_t)(in & 0xFFFFFFFF);
2364  *     outHi = (uint32x2_t)(in >> 32);
2365  *     in = UNDEFINED;
2366  * }
2367  */
2368 # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
2369    && defined(__GNUC__) \
2370    && !defined(__aarch64__) && !defined(__arm64__)
2371 #  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                              \
2372     do {                                                                                    \
2373       /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
2374       /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */     \
2375       /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
2376       __asm__("vzip.32  %e0, %f0" : "+w" (in));                                             \
2377       (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in));                                   \
2378       (outHi) = vget_high_u32(vreinterpretq_u32_u64(in));                                   \
2379    } while (0)
2380 # else
2381 #  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                            \
2382     do {                                                                                  \
2383       (outLo) = vmovn_u64    (in);                                                        \
2384       (outHi) = vshrn_n_u64  ((in), 32);                                                  \
2385     } while (0)
2386 # endif
2387 #endif  /* XXH_VECTOR == XXH_NEON */
2388 
2389 /*
2390  * VSX and Z Vector helpers.
2391  *
2392  * This is very messy, and any pull requests to clean this up are welcome.
2393  *
2394  * There are a lot of problems with supporting VSX and s390x, due to
2395  * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
2396  */
2397 #if XXH_VECTOR == XXH_VSX
2398 #  if defined(__s390x__)
2399 #    include <s390intrin.h>
2400 #  else
2401 /* gcc's altivec.h can have the unwanted consequence to unconditionally
2402  * #define bool, vector, and pixel keywords,
2403  * with bad consequences for programs already using these keywords for other purposes.
2404  * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined.
2405  * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler,
2406  * but it seems that, in some cases, it isn't.
2407  * Force the build macro to be defined, so that keywords are not altered.
2408  */
2409 #    if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__)
2410 #      define __APPLE_ALTIVEC__
2411 #    endif
2412 #    define vector __vector
2413 #    include <altivec.h>
2414 #  endif
2415 
2416 typedef __vector unsigned long long xxh_u64x2;
2417 typedef __vector unsigned char xxh_u8x16;
2418 typedef __vector unsigned xxh_u32x4;
2419 
2420 # ifndef XXH_VSX_BE
2421 #  if defined(__BIG_ENDIAN__) \
2422   || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2423 #    define XXH_VSX_BE 1
2424 #  elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
2425 #    warning "-maltivec=be is not recommended. Please use native endianness."
2426 #    define XXH_VSX_BE 1
2427 #  else
2428 #    define XXH_VSX_BE 0
2429 #  endif
2430 # endif /* !defined(XXH_VSX_BE) */
2431 
2432 # if XXH_VSX_BE
2433 /* A wrapper for POWER9's vec_revb. */
2434 #  if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
2435 #    define XXH_vec_revb vec_revb
2436 #  else
XXH_vec_revb(xxh_u64x2 val)2437 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
2438 {
2439     xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
2440                                   0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
2441     return vec_perm(val, val, vByteSwap);
2442 }
2443 #  endif
2444 # endif /* XXH_VSX_BE */
2445 
2446 /*
2447  * Performs an unaligned load and byte swaps it on big endian.
2448  */
XXH_vec_loadu(const void * ptr)2449 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
2450 {
2451     xxh_u64x2 ret;
2452     memcpy(&ret, ptr, sizeof(xxh_u64x2));
2453 # if XXH_VSX_BE
2454     ret = XXH_vec_revb(ret);
2455 # endif
2456     return ret;
2457 }
2458 
2459 /*
2460  * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
2461  *
2462  * These intrinsics weren't added until GCC 8, despite existing for a while,
2463  * and they are endian dependent. Also, their meaning swap depending on version.
2464  * */
2465 # if defined(__s390x__)
2466  /* s390x is always big endian, no issue on this platform */
2467 #  define XXH_vec_mulo vec_mulo
2468 #  define XXH_vec_mule vec_mule
2469 # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
2470 /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
2471 #  define XXH_vec_mulo __builtin_altivec_vmulouw
2472 #  define XXH_vec_mule __builtin_altivec_vmuleuw
2473 # else
2474 /* gcc needs inline assembly */
2475 /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
XXH_vec_mulo(xxh_u32x4 a,xxh_u32x4 b)2476 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
2477 {
2478     xxh_u64x2 result;
2479     __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
2480     return result;
2481 }
XXH_vec_mule(xxh_u32x4 a,xxh_u32x4 b)2482 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
2483 {
2484     xxh_u64x2 result;
2485     __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
2486     return result;
2487 }
2488 # endif /* XXH_vec_mulo, XXH_vec_mule */
2489 #endif /* XXH_VECTOR == XXH_VSX */
2490 
2491 
2492 /* prefetch
2493  * can be disabled, by declaring XXH_NO_PREFETCH build macro */
2494 #if defined(XXH_NO_PREFETCH)
2495 #  define XXH_PREFETCH(ptr)  (void)(ptr)  /* disabled */
2496 #else
2497 #  if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86))  /* _mm_prefetch() is not defined outside of x86/x64 */
2498 #    include <mmintrin.h>   /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
2499 #    define XXH_PREFETCH(ptr)  _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
2500 #  elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
2501 #    define XXH_PREFETCH(ptr)  __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
2502 #  else
2503 #    define XXH_PREFETCH(ptr) (void)(ptr)  /* disabled */
2504 #  endif
2505 #endif  /* XXH_NO_PREFETCH */
2506 
2507 
2508 /* ==========================================
2509  * XXH3 default settings
2510  * ========================================== */
2511 
2512 #define XXH_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */
2513 
2514 #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
2515 #  error "default keyset is not large enough"
2516 #endif
2517 
2518 /* Pseudorandom secret taken directly from FARSH */
2519 XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
2520     0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
2521     0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
2522     0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
2523     0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
2524     0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
2525     0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
2526     0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
2527     0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
2528     0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
2529     0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
2530     0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
2531     0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
2532 };
2533 
2534 
2535 #ifdef XXH_OLD_NAMES
2536 #  define kSecret XXH3_kSecret
2537 #endif
2538 
2539 /*
2540  * Calculates a 32-bit to 64-bit long multiply.
2541  *
2542  * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't
2543  * need to (but it shouldn't need to anyways, it is about 7 instructions to do
2544  * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we
2545  * use that instead of the normal method.
2546  *
2547  * If you are compiling for platforms like Thumb-1 and don't have a better option,
2548  * you may also want to write your own long multiply routine here.
2549  *
2550  * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
2551  * {
2552  *    return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
2553  * }
2554  */
2555 #if defined(_MSC_VER) && defined(_M_IX86)
2556 #    include <intrin.h>
2557 #    define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
2558 #else
2559 /*
2560  * Downcast + upcast is usually better than masking on older compilers like
2561  * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
2562  *
2563  * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
2564  * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
2565  */
2566 #    define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
2567 #endif
2568 
2569 /*
2570  * Calculates a 64->128-bit long multiply.
2571  *
2572  * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version.
2573  */
2574 static XXH128_hash_t
XXH_mult64to128(xxh_u64 lhs,xxh_u64 rhs)2575 XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
2576 {
2577     /*
2578      * GCC/Clang __uint128_t method.
2579      *
2580      * On most 64-bit targets, GCC and Clang define a __uint128_t type.
2581      * This is usually the best way as it usually uses a native long 64-bit
2582      * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
2583      *
2584      * Usually.
2585      *
2586      * Despite being a 32-bit platform, Clang (and emscripten) define this type
2587      * despite not having the arithmetic for it. This results in a laggy
2588      * compiler builtin call which calculates a full 128-bit multiply.
2589      * In that case it is best to use the portable one.
2590      * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
2591      */
2592 #if defined(__GNUC__) && !defined(__wasm__) \
2593     && defined(__SIZEOF_INT128__) \
2594     || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
2595 
2596     __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
2597     XXH128_hash_t r128;
2598     r128.low64  = (xxh_u64)(product);
2599     r128.high64 = (xxh_u64)(product >> 64);
2600     return r128;
2601 
2602     /*
2603      * MSVC for x64's _umul128 method.
2604      *
2605      * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
2606      *
2607      * This compiles to single operand MUL on x64.
2608      */
2609 #elif defined(_M_X64) || defined(_M_IA64)
2610 
2611 #ifndef _MSC_VER
2612 #   pragma intrinsic(_umul128)
2613 #endif
2614     xxh_u64 product_high;
2615     xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
2616     XXH128_hash_t r128;
2617     r128.low64  = product_low;
2618     r128.high64 = product_high;
2619     return r128;
2620 
2621 #else
2622     /*
2623      * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
2624      *
2625      * This is a fast and simple grade school multiply, which is shown below
2626      * with base 10 arithmetic instead of base 0x100000000.
2627      *
2628      *           9 3 // D2 lhs = 93
2629      *         x 7 5 // D2 rhs = 75
2630      *     ----------
2631      *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
2632      *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
2633      *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
2634      *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
2635      *     ---------
2636      *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
2637      *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
2638      *     ---------
2639      *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
2640      *
2641      * The reasons for adding the products like this are:
2642      *  1. It avoids manual carry tracking. Just like how
2643      *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
2644      *     This avoids a lot of complexity.
2645      *
2646      *  2. It hints for, and on Clang, compiles to, the powerful UMAAL
2647      *     instruction available in ARM's Digital Signal Processing extension
2648      *     in 32-bit ARMv6 and later, which is shown below:
2649      *
2650      *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
2651      *         {
2652      *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
2653      *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
2654      *             *RdHi = (xxh_u32)(product >> 32);
2655      *         }
2656      *
2657      *     This instruction was designed for efficient long multiplication, and
2658      *     allows this to be calculated in only 4 instructions at speeds
2659      *     comparable to some 64-bit ALUs.
2660      *
2661      *  3. It isn't terrible on other platforms. Usually this will be a couple
2662      *     of 32-bit ADD/ADCs.
2663      */
2664 
2665     /* First calculate all of the cross products. */
2666     xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
2667     xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32,        rhs & 0xFFFFFFFF);
2668     xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
2669     xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32,        rhs >> 32);
2670 
2671     /* Now add the products together. These will never overflow. */
2672     xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
2673     xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32)        + hi_hi;
2674     xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
2675 
2676     XXH128_hash_t r128;
2677     r128.low64  = lower;
2678     r128.high64 = upper;
2679     return r128;
2680 #endif
2681 }
2682 
2683 /*
2684  * Does a 64-bit to 128-bit multiply, then XOR folds it.
2685  *
2686  * The reason for the separate function is to prevent passing too many structs
2687  * around by value. This will hopefully inline the multiply, but we don't force it.
2688  */
2689 static xxh_u64
XXH3_mul128_fold64(xxh_u64 lhs,xxh_u64 rhs)2690 XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
2691 {
2692     XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
2693     return product.low64 ^ product.high64;
2694 }
2695 
2696 /* Seems to produce slightly better code on GCC for some reason. */
XXH_xorshift64(xxh_u64 v64,int shift)2697 XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
2698 {
2699     XXH_ASSERT(0 <= shift && shift < 64);
2700     return v64 ^ (v64 >> shift);
2701 }
2702 
2703 /*
2704  * This is a fast avalanche stage,
2705  * suitable when input bits are already partially mixed
2706  */
XXH3_avalanche(xxh_u64 h64)2707 static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
2708 {
2709     h64 = XXH_xorshift64(h64, 37);
2710     h64 *= 0x165667919E3779F9ULL;
2711     h64 = XXH_xorshift64(h64, 32);
2712     return h64;
2713 }
2714 
2715 /*
2716  * This is a stronger avalanche,
2717  * inspired by Pelle Evensen's rrmxmx
2718  * preferable when input has not been previously mixed
2719  */
XXH3_rrmxmx(xxh_u64 h64,xxh_u64 len)2720 static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
2721 {
2722     /* this mix is inspired by Pelle Evensen's rrmxmx */
2723     h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
2724     h64 *= 0x9FB21C651E98DF25ULL;
2725     h64 ^= (h64 >> 35) + len ;
2726     h64 *= 0x9FB21C651E98DF25ULL;
2727     return XXH_xorshift64(h64, 28);
2728 }
2729 
2730 
2731 /* ==========================================
2732  * Short keys
2733  * ==========================================
2734  * One of the shortcomings of XXH32 and XXH64 was that their performance was
2735  * sub-optimal on short lengths. It used an iterative algorithm which strongly
2736  * favored lengths that were a multiple of 4 or 8.
2737  *
2738  * Instead of iterating over individual inputs, we use a set of single shot
2739  * functions which piece together a range of lengths and operate in constant time.
2740  *
2741  * Additionally, the number of multiplies has been significantly reduced. This
2742  * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
2743  *
2744  * Depending on the platform, this may or may not be faster than XXH32, but it
2745  * is almost guaranteed to be faster than XXH64.
2746  */
2747 
2748 /*
2749  * At very short lengths, there isn't enough input to fully hide secrets, or use
2750  * the entire secret.
2751  *
2752  * There is also only a limited amount of mixing we can do before significantly
2753  * impacting performance.
2754  *
2755  * Therefore, we use different sections of the secret and always mix two secret
2756  * samples with an XOR. This should have no effect on performance on the
2757  * seedless or withSeed variants because everything _should_ be constant folded
2758  * by modern compilers.
2759  *
2760  * The XOR mixing hides individual parts of the secret and increases entropy.
2761  *
2762  * This adds an extra layer of strength for custom secrets.
2763  */
2764 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_1to3_64b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)2765 XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
2766 {
2767     XXH_ASSERT(input != NULL);
2768     XXH_ASSERT(1 <= len && len <= 3);
2769     XXH_ASSERT(secret != NULL);
2770     /*
2771      * len = 1: combined = { input[0], 0x01, input[0], input[0] }
2772      * len = 2: combined = { input[1], 0x02, input[0], input[1] }
2773      * len = 3: combined = { input[2], 0x03, input[0], input[1] }
2774      */
2775     {   xxh_u8  const c1 = input[0];
2776         xxh_u8  const c2 = input[len >> 1];
2777         xxh_u8  const c3 = input[len - 1];
2778         xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2  << 24)
2779                                | ((xxh_u32)c3 <<  0) | ((xxh_u32)len << 8);
2780         xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
2781         xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
2782         return XXH64_avalanche(keyed);
2783     }
2784 }
2785 
2786 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_4to8_64b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)2787 XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
2788 {
2789     XXH_ASSERT(input != NULL);
2790     XXH_ASSERT(secret != NULL);
2791     XXH_ASSERT(4 <= len && len < 8);
2792     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
2793     {   xxh_u32 const input1 = XXH_readLE32(input);
2794         xxh_u32 const input2 = XXH_readLE32(input + len - 4);
2795         xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
2796         xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
2797         xxh_u64 const keyed = input64 ^ bitflip;
2798         return XXH3_rrmxmx(keyed, len);
2799     }
2800 }
2801 
2802 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_9to16_64b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)2803 XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
2804 {
2805     XXH_ASSERT(input != NULL);
2806     XXH_ASSERT(secret != NULL);
2807     XXH_ASSERT(8 <= len && len <= 16);
2808     {   xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
2809         xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
2810         xxh_u64 const input_lo = XXH_readLE64(input)           ^ bitflip1;
2811         xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
2812         xxh_u64 const acc = len
2813                           + XXH_swap64(input_lo) + input_hi
2814                           + XXH3_mul128_fold64(input_lo, input_hi);
2815         return XXH3_avalanche(acc);
2816     }
2817 }
2818 
2819 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_0to16_64b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)2820 XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
2821 {
2822     XXH_ASSERT(len <= 16);
2823     {   if (XXH_likely(len >  8)) return XXH3_len_9to16_64b(input, len, secret, seed);
2824         if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
2825         if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
2826         return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
2827     }
2828 }
2829 
2830 /*
2831  * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
2832  * multiplication by zero, affecting hashes of lengths 17 to 240.
2833  *
2834  * However, they are very unlikely.
2835  *
2836  * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
2837  * unseeded non-cryptographic hashes, it does not attempt to defend itself
2838  * against specially crafted inputs, only random inputs.
2839  *
2840  * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
2841  * cancelling out the secret is taken an arbitrary number of times (addressed
2842  * in XXH3_accumulate_512), this collision is very unlikely with random inputs
2843  * and/or proper seeding:
2844  *
2845  * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
2846  * function that is only called up to 16 times per hash with up to 240 bytes of
2847  * input.
2848  *
2849  * This is not too bad for a non-cryptographic hash function, especially with
2850  * only 64 bit outputs.
2851  *
2852  * The 128-bit variant (which trades some speed for strength) is NOT affected
2853  * by this, although it is always a good idea to use a proper seed if you care
2854  * about strength.
2855  */
XXH3_mix16B(const xxh_u8 * XXH_RESTRICT input,const xxh_u8 * XXH_RESTRICT secret,xxh_u64 seed64)2856 XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
2857                                      const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
2858 {
2859 #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
2860   && defined(__i386__) && defined(__SSE2__)  /* x86 + SSE2 */ \
2861   && !defined(XXH_ENABLE_AUTOVECTORIZE)      /* Define to disable like XXH32 hack */
2862     /*
2863      * UGLY HACK:
2864      * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
2865      * slower code.
2866      *
2867      * By forcing seed64 into a register, we disrupt the cost model and
2868      * cause it to scalarize. See `XXH32_round()`
2869      *
2870      * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
2871      * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
2872      * GCC 9.2, despite both emitting scalar code.
2873      *
2874      * GCC generates much better scalar code than Clang for the rest of XXH3,
2875      * which is why finding a more optimal codepath is an interest.
2876      */
2877     __asm__ ("" : "+r" (seed64));
2878 #endif
2879     {   xxh_u64 const input_lo = XXH_readLE64(input);
2880         xxh_u64 const input_hi = XXH_readLE64(input+8);
2881         return XXH3_mul128_fold64(
2882             input_lo ^ (XXH_readLE64(secret)   + seed64),
2883             input_hi ^ (XXH_readLE64(secret+8) - seed64)
2884         );
2885     }
2886 }
2887 
2888 /* For mid range keys, XXH3 uses a Mum-hash variant. */
2889 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_17to128_64b(const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH64_hash_t seed)2890 XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
2891                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
2892                      XXH64_hash_t seed)
2893 {
2894     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
2895     XXH_ASSERT(16 < len && len <= 128);
2896 
2897     {   xxh_u64 acc = len * XXH_PRIME64_1;
2898         if (len > 32) {
2899             if (len > 64) {
2900                 if (len > 96) {
2901                     acc += XXH3_mix16B(input+48, secret+96, seed);
2902                     acc += XXH3_mix16B(input+len-64, secret+112, seed);
2903                 }
2904                 acc += XXH3_mix16B(input+32, secret+64, seed);
2905                 acc += XXH3_mix16B(input+len-48, secret+80, seed);
2906             }
2907             acc += XXH3_mix16B(input+16, secret+32, seed);
2908             acc += XXH3_mix16B(input+len-32, secret+48, seed);
2909         }
2910         acc += XXH3_mix16B(input+0, secret+0, seed);
2911         acc += XXH3_mix16B(input+len-16, secret+16, seed);
2912 
2913         return XXH3_avalanche(acc);
2914     }
2915 }
2916 
2917 #define XXH3_MIDSIZE_MAX 240
2918 
2919 XXH_NO_INLINE XXH64_hash_t
XXH3_len_129to240_64b(const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH64_hash_t seed)2920 XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
2921                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
2922                       XXH64_hash_t seed)
2923 {
2924     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
2925     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
2926 
2927     #define XXH3_MIDSIZE_STARTOFFSET 3
2928     #define XXH3_MIDSIZE_LASTOFFSET  17
2929 
2930     {   xxh_u64 acc = len * XXH_PRIME64_1;
2931         int const nbRounds = (int)len / 16;
2932         int i;
2933         for (i=0; i<8; i++) {
2934             acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
2935         }
2936         acc = XXH3_avalanche(acc);
2937         XXH_ASSERT(nbRounds >= 8);
2938 #if defined(__clang__)                                /* Clang */ \
2939     && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
2940     && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
2941         /*
2942          * UGLY HACK:
2943          * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
2944          * In everywhere else, it uses scalar code.
2945          *
2946          * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
2947          * would still be slower than UMAAL (see XXH_mult64to128).
2948          *
2949          * Unfortunately, Clang doesn't handle the long multiplies properly and
2950          * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
2951          * scalarized into an ugly mess of VMOV.32 instructions.
2952          *
2953          * This mess is difficult to avoid without turning autovectorization
2954          * off completely, but they are usually relatively minor and/or not
2955          * worth it to fix.
2956          *
2957          * This loop is the easiest to fix, as unlike XXH32, this pragma
2958          * _actually works_ because it is a loop vectorization instead of an
2959          * SLP vectorization.
2960          */
2961         #pragma clang loop vectorize(disable)
2962 #endif
2963         for (i=8 ; i < nbRounds; i++) {
2964             acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
2965         }
2966         /* last bytes */
2967         acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
2968         return XXH3_avalanche(acc);
2969     }
2970 }
2971 
2972 
2973 /* =======     Long Keys     ======= */
2974 
2975 #define XXH_STRIPE_LEN 64
2976 #define XXH_SECRET_CONSUME_RATE 8   /* nb of secret bytes consumed at each accumulation */
2977 #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
2978 
2979 #ifdef XXH_OLD_NAMES
2980 #  define STRIPE_LEN XXH_STRIPE_LEN
2981 #  define ACC_NB XXH_ACC_NB
2982 #endif
2983 
XXH_writeLE64(void * dst,xxh_u64 v64)2984 XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
2985 {
2986     if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
2987     memcpy(dst, &v64, sizeof(v64));
2988 }
2989 
2990 /* Several intrinsic functions below are supposed to accept __int64 as argument,
2991  * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
2992  * However, several environments do not define __int64 type,
2993  * requiring a workaround.
2994  */
2995 #if !defined (__VMS) \
2996   && (defined (__cplusplus) \
2997   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
2998     typedef int64_t xxh_i64;
2999 #else
3000     /* the following type must have a width of 64-bit */
3001     typedef long long xxh_i64;
3002 #endif
3003 
3004 /*
3005  * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
3006  *
3007  * It is a hardened version of UMAC, based off of FARSH's implementation.
3008  *
3009  * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
3010  * implementations, and it is ridiculously fast.
3011  *
3012  * We harden it by mixing the original input to the accumulators as well as the product.
3013  *
3014  * This means that in the (relatively likely) case of a multiply by zero, the
3015  * original input is preserved.
3016  *
3017  * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
3018  * cross-pollination, as otherwise the upper and lower halves would be
3019  * essentially independent.
3020  *
3021  * This doesn't matter on 64-bit hashes since they all get merged together in
3022  * the end, so we skip the extra step.
3023  *
3024  * Both XXH3_64bits and XXH3_128bits use this subroutine.
3025  */
3026 
3027 #if (XXH_VECTOR == XXH_AVX512) || defined(XXH_X86DISPATCH)
3028 
3029 #ifndef XXH_TARGET_AVX512
3030 # define XXH_TARGET_AVX512  /* disable attribute target */
3031 #endif
3032 
3033 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_accumulate_512_avx512(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)3034 XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
3035                      const void* XXH_RESTRICT input,
3036                      const void* XXH_RESTRICT secret)
3037 {
3038     XXH_ALIGN(64) __m512i* const xacc = (__m512i *) acc;
3039     XXH_ASSERT((((size_t)acc) & 63) == 0);
3040     XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3041 
3042     {
3043         /* data_vec    = input[0]; */
3044         __m512i const data_vec    = _mm512_loadu_si512   (input);
3045         /* key_vec     = secret[0]; */
3046         __m512i const key_vec     = _mm512_loadu_si512   (secret);
3047         /* data_key    = data_vec ^ key_vec; */
3048         __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec);
3049         /* data_key_lo = data_key >> 32; */
3050         __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3051         /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3052         __m512i const product     = _mm512_mul_epu32     (data_key, data_key_lo);
3053         /* xacc[0] += swap(data_vec); */
3054         __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
3055         __m512i const sum       = _mm512_add_epi64(*xacc, data_swap);
3056         /* xacc[0] += product; */
3057         *xacc = _mm512_add_epi64(product, sum);
3058     }
3059 }
3060 
3061 /*
3062  * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
3063  *
3064  * Multiplication isn't perfect, as explained by Google in HighwayHash:
3065  *
3066  *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
3067  *  // varying degrees. In descending order of goodness, bytes
3068  *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
3069  *  // As expected, the upper and lower bytes are much worse.
3070  *
3071  * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
3072  *
3073  * Since our algorithm uses a pseudorandom secret to add some variance into the
3074  * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
3075  *
3076  * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
3077  * extraction.
3078  *
3079  * Both XXH3_64bits and XXH3_128bits use this subroutine.
3080  */
3081 
3082 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_scrambleAcc_avx512(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)3083 XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3084 {
3085     XXH_ASSERT((((size_t)acc) & 63) == 0);
3086     XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3087     {   XXH_ALIGN(64) __m512i* const xacc = (__m512i*) acc;
3088         const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
3089 
3090         /* xacc[0] ^= (xacc[0] >> 47) */
3091         __m512i const acc_vec     = *xacc;
3092         __m512i const shifted     = _mm512_srli_epi64    (acc_vec, 47);
3093         __m512i const data_vec    = _mm512_xor_si512     (acc_vec, shifted);
3094         /* xacc[0] ^= secret; */
3095         __m512i const key_vec     = _mm512_loadu_si512   (secret);
3096         __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec);
3097 
3098         /* xacc[0] *= XXH_PRIME32_1; */
3099         __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3100         __m512i const prod_lo     = _mm512_mul_epu32     (data_key, prime32);
3101         __m512i const prod_hi     = _mm512_mul_epu32     (data_key_hi, prime32);
3102         *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
3103     }
3104 }
3105 
3106 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_initCustomSecret_avx512(void * XXH_RESTRICT customSecret,xxh_u64 seed64)3107 XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3108 {
3109     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
3110     XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
3111     XXH_ASSERT(((size_t)customSecret & 63) == 0);
3112     (void)(&XXH_writeLE64);
3113     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
3114         __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, -(xxh_i64)seed64);
3115 
3116         XXH_ALIGN(64) const __m512i* const src  = (const __m512i*) XXH3_kSecret;
3117         XXH_ALIGN(64)       __m512i* const dest = (      __m512i*) customSecret;
3118         int i;
3119         for (i=0; i < nbRounds; ++i) {
3120             /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*',
3121              * this will warn "discards ‘const’ qualifier". */
3122             union {
3123                 XXH_ALIGN(64) const __m512i* cp;
3124                 XXH_ALIGN(64) void* p;
3125             } remote_const_void;
3126             remote_const_void.cp = src + i;
3127             dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
3128     }   }
3129 }
3130 
3131 #endif
3132 
3133 #if (XXH_VECTOR == XXH_AVX2) || defined(XXH_X86DISPATCH)
3134 
3135 #ifndef XXH_TARGET_AVX2
3136 # define XXH_TARGET_AVX2  /* disable attribute target */
3137 #endif
3138 
3139 XXH_FORCE_INLINE XXH_TARGET_AVX2 void
XXH3_accumulate_512_avx2(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)3140 XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
3141                     const void* XXH_RESTRICT input,
3142                     const void* XXH_RESTRICT secret)
3143 {
3144     XXH_ASSERT((((size_t)acc) & 31) == 0);
3145     {   XXH_ALIGN(32) __m256i* const xacc    =       (__m256i *) acc;
3146         /* Unaligned. This is mainly for pointer arithmetic, and because
3147          * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason. */
3148         const         __m256i* const xinput  = (const __m256i *) input;
3149         /* Unaligned. This is mainly for pointer arithmetic, and because
3150          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3151         const         __m256i* const xsecret = (const __m256i *) secret;
3152 
3153         size_t i;
3154         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
3155             /* data_vec    = xinput[i]; */
3156             __m256i const data_vec    = _mm256_loadu_si256    (xinput+i);
3157             /* key_vec     = xsecret[i]; */
3158             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
3159             /* data_key    = data_vec ^ key_vec; */
3160             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
3161             /* data_key_lo = data_key >> 32; */
3162             __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3163             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3164             __m256i const product     = _mm256_mul_epu32     (data_key, data_key_lo);
3165             /* xacc[i] += swap(data_vec); */
3166             __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
3167             __m256i const sum       = _mm256_add_epi64(xacc[i], data_swap);
3168             /* xacc[i] += product; */
3169             xacc[i] = _mm256_add_epi64(product, sum);
3170     }   }
3171 }
3172 
3173 XXH_FORCE_INLINE XXH_TARGET_AVX2 void
XXH3_scrambleAcc_avx2(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)3174 XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3175 {
3176     XXH_ASSERT((((size_t)acc) & 31) == 0);
3177     {   XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc;
3178         /* Unaligned. This is mainly for pointer arithmetic, and because
3179          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3180         const         __m256i* const xsecret = (const __m256i *) secret;
3181         const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
3182 
3183         size_t i;
3184         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
3185             /* xacc[i] ^= (xacc[i] >> 47) */
3186             __m256i const acc_vec     = xacc[i];
3187             __m256i const shifted     = _mm256_srli_epi64    (acc_vec, 47);
3188             __m256i const data_vec    = _mm256_xor_si256     (acc_vec, shifted);
3189             /* xacc[i] ^= xsecret; */
3190             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
3191             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
3192 
3193             /* xacc[i] *= XXH_PRIME32_1; */
3194             __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3195             __m256i const prod_lo     = _mm256_mul_epu32     (data_key, prime32);
3196             __m256i const prod_hi     = _mm256_mul_epu32     (data_key_hi, prime32);
3197             xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
3198         }
3199     }
3200 }
3201 
XXH3_initCustomSecret_avx2(void * XXH_RESTRICT customSecret,xxh_u64 seed64)3202 XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3203 {
3204     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
3205     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
3206     XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
3207     (void)(&XXH_writeLE64);
3208     XXH_PREFETCH(customSecret);
3209     {   __m256i const seed = _mm256_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64, -(xxh_i64)seed64, (xxh_i64)seed64);
3210 
3211         XXH_ALIGN(64) const __m256i* const src  = (const __m256i*) XXH3_kSecret;
3212         XXH_ALIGN(64)       __m256i*       dest = (      __m256i*) customSecret;
3213 
3214 #       if defined(__GNUC__) || defined(__clang__)
3215         /*
3216          * On GCC & Clang, marking 'dest' as modified will cause the compiler:
3217          *   - do not extract the secret from sse registers in the internal loop
3218          *   - use less common registers, and avoid pushing these reg into stack
3219          * The asm hack causes Clang to assume that XXH3_kSecretPtr aliases with
3220          * customSecret, and on aarch64, this prevented LDP from merging two
3221          * loads together for free. Putting the loads together before the stores
3222          * properly generates LDP.
3223          */
3224         __asm__("" : "+r" (dest));
3225 #       endif
3226 
3227         /* GCC -O2 need unroll loop manually */
3228         dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed);
3229         dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed);
3230         dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed);
3231         dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed);
3232         dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed);
3233         dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed);
3234     }
3235 }
3236 
3237 #endif
3238 
3239 #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
3240 
3241 #ifndef XXH_TARGET_SSE2
3242 # define XXH_TARGET_SSE2  /* disable attribute target */
3243 #endif
3244 
3245 XXH_FORCE_INLINE XXH_TARGET_SSE2 void
XXH3_accumulate_512_sse2(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)3246 XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
3247                     const void* XXH_RESTRICT input,
3248                     const void* XXH_RESTRICT secret)
3249 {
3250     /* SSE2 is just a half-scale version of the AVX2 version. */
3251     XXH_ASSERT((((size_t)acc) & 15) == 0);
3252     {   XXH_ALIGN(16) __m128i* const xacc    =       (__m128i *) acc;
3253         /* Unaligned. This is mainly for pointer arithmetic, and because
3254          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3255         const         __m128i* const xinput  = (const __m128i *) input;
3256         /* Unaligned. This is mainly for pointer arithmetic, and because
3257          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3258         const         __m128i* const xsecret = (const __m128i *) secret;
3259 
3260         size_t i;
3261         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
3262             /* data_vec    = xinput[i]; */
3263             __m128i const data_vec    = _mm_loadu_si128   (xinput+i);
3264             /* key_vec     = xsecret[i]; */
3265             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
3266             /* data_key    = data_vec ^ key_vec; */
3267             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
3268             /* data_key_lo = data_key >> 32; */
3269             __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3270             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3271             __m128i const product     = _mm_mul_epu32     (data_key, data_key_lo);
3272             /* xacc[i] += swap(data_vec); */
3273             __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
3274             __m128i const sum       = _mm_add_epi64(xacc[i], data_swap);
3275             /* xacc[i] += product; */
3276             xacc[i] = _mm_add_epi64(product, sum);
3277     }   }
3278 }
3279 
3280 XXH_FORCE_INLINE XXH_TARGET_SSE2 void
XXH3_scrambleAcc_sse2(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)3281 XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3282 {
3283     XXH_ASSERT((((size_t)acc) & 15) == 0);
3284     {   XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc;
3285         /* Unaligned. This is mainly for pointer arithmetic, and because
3286          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3287         const         __m128i* const xsecret = (const __m128i *) secret;
3288         const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
3289 
3290         size_t i;
3291         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
3292             /* xacc[i] ^= (xacc[i] >> 47) */
3293             __m128i const acc_vec     = xacc[i];
3294             __m128i const shifted     = _mm_srli_epi64    (acc_vec, 47);
3295             __m128i const data_vec    = _mm_xor_si128     (acc_vec, shifted);
3296             /* xacc[i] ^= xsecret[i]; */
3297             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
3298             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
3299 
3300             /* xacc[i] *= XXH_PRIME32_1; */
3301             __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3302             __m128i const prod_lo     = _mm_mul_epu32     (data_key, prime32);
3303             __m128i const prod_hi     = _mm_mul_epu32     (data_key_hi, prime32);
3304             xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
3305         }
3306     }
3307 }
3308 
XXH3_initCustomSecret_sse2(void * XXH_RESTRICT customSecret,xxh_u64 seed64)3309 XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3310 {
3311     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
3312     (void)(&XXH_writeLE64);
3313     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
3314 
3315 #       if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
3316         // MSVC 32bit mode does not support _mm_set_epi64x before 2015
3317         XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, -(xxh_i64)seed64 };
3318         __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
3319 #       else
3320         __m128i const seed = _mm_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64);
3321 #       endif
3322         int i;
3323 
3324         XXH_ALIGN(64)        const float* const src  = (float const*) XXH3_kSecret;
3325         XXH_ALIGN(XXH_SEC_ALIGN) __m128i*       dest = (__m128i*) customSecret;
3326 #       if defined(__GNUC__) || defined(__clang__)
3327         /*
3328          * On GCC & Clang, marking 'dest' as modified will cause the compiler:
3329          *   - do not extract the secret from sse registers in the internal loop
3330          *   - use less common registers, and avoid pushing these reg into stack
3331          */
3332         __asm__("" : "+r" (dest));
3333 #       endif
3334 
3335         for (i=0; i < nbRounds; ++i) {
3336             dest[i] = _mm_add_epi64(_mm_castps_si128(_mm_load_ps(src+i*4)), seed);
3337     }   }
3338 }
3339 
3340 #endif
3341 
3342 #if (XXH_VECTOR == XXH_NEON)
3343 
3344 XXH_FORCE_INLINE void
XXH3_accumulate_512_neon(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)3345 XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
3346                     const void* XXH_RESTRICT input,
3347                     const void* XXH_RESTRICT secret)
3348 {
3349     XXH_ASSERT((((size_t)acc) & 15) == 0);
3350     {
3351         XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc;
3352         /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
3353         uint8_t const* const xinput = (const uint8_t *) input;
3354         uint8_t const* const xsecret  = (const uint8_t *) secret;
3355 
3356         size_t i;
3357         for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
3358             /* data_vec = xinput[i]; */
3359             uint8x16_t data_vec    = vld1q_u8(xinput  + (i * 16));
3360             /* key_vec  = xsecret[i];  */
3361             uint8x16_t key_vec     = vld1q_u8(xsecret + (i * 16));
3362             uint64x2_t data_key;
3363             uint32x2_t data_key_lo, data_key_hi;
3364             /* xacc[i] += swap(data_vec); */
3365             uint64x2_t const data64  = vreinterpretq_u64_u8(data_vec);
3366             uint64x2_t const swapped = vextq_u64(data64, data64, 1);
3367             xacc[i] = vaddq_u64 (xacc[i], swapped);
3368             /* data_key = data_vec ^ key_vec; */
3369             data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
3370             /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
3371              * data_key_hi = (uint32x2_t) (data_key >> 32);
3372              * data_key = UNDEFINED; */
3373             XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
3374             /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
3375             xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
3376 
3377         }
3378     }
3379 }
3380 
3381 XXH_FORCE_INLINE void
XXH3_scrambleAcc_neon(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)3382 XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3383 {
3384     XXH_ASSERT((((size_t)acc) & 15) == 0);
3385 
3386     {   uint64x2_t* xacc       = (uint64x2_t*) acc;
3387         uint8_t const* xsecret = (uint8_t const*) secret;
3388         uint32x2_t prime       = vdup_n_u32 (XXH_PRIME32_1);
3389 
3390         size_t i;
3391         for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) {
3392             /* xacc[i] ^= (xacc[i] >> 47); */
3393             uint64x2_t acc_vec  = xacc[i];
3394             uint64x2_t shifted  = vshrq_n_u64 (acc_vec, 47);
3395             uint64x2_t data_vec = veorq_u64   (acc_vec, shifted);
3396 
3397             /* xacc[i] ^= xsecret[i]; */
3398             uint8x16_t key_vec  = vld1q_u8(xsecret + (i * 16));
3399             uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec));
3400 
3401             /* xacc[i] *= XXH_PRIME32_1 */
3402             uint32x2_t data_key_lo, data_key_hi;
3403             /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
3404              * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
3405              * xacc[i] = UNDEFINED; */
3406             XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
3407             {   /*
3408                  * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
3409                  *
3410                  * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
3411                  * incorrectly "optimize" this:
3412                  *   tmp     = vmul_u32(vmovn_u64(a), vmovn_u64(b));
3413                  *   shifted = vshll_n_u32(tmp, 32);
3414                  * to this:
3415                  *   tmp     = "vmulq_u64"(a, b); // no such thing!
3416                  *   shifted = vshlq_n_u64(tmp, 32);
3417                  *
3418                  * However, unlike SSE, Clang lacks a 64-bit multiply routine
3419                  * for NEON, and it scalarizes two 64-bit multiplies instead.
3420                  *
3421                  * vmull_u32 has the same timing as vmul_u32, and it avoids
3422                  * this bug completely.
3423                  * See https://bugs.llvm.org/show_bug.cgi?id=39967
3424                  */
3425                 uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
3426                 /* xacc[i] = prod_hi << 32; */
3427                 xacc[i] = vshlq_n_u64(prod_hi, 32);
3428                 /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
3429                 xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
3430             }
3431     }   }
3432 }
3433 
3434 #endif
3435 
3436 #if (XXH_VECTOR == XXH_VSX)
3437 
3438 XXH_FORCE_INLINE void
XXH3_accumulate_512_vsx(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)3439 XXH3_accumulate_512_vsx(  void* XXH_RESTRICT acc,
3440                     const void* XXH_RESTRICT input,
3441                     const void* XXH_RESTRICT secret)
3442 {
3443           xxh_u64x2* const xacc     =       (xxh_u64x2*) acc;    /* presumed aligned */
3444     xxh_u64x2 const* const xinput   = (xxh_u64x2 const*) input;   /* no alignment restriction */
3445     xxh_u64x2 const* const xsecret  = (xxh_u64x2 const*) secret;    /* no alignment restriction */
3446     xxh_u64x2 const v32 = { 32, 32 };
3447     size_t i;
3448     for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
3449         /* data_vec = xinput[i]; */
3450         xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
3451         /* key_vec = xsecret[i]; */
3452         xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i);
3453         xxh_u64x2 const data_key = data_vec ^ key_vec;
3454         /* shuffled = (data_key << 32) | (data_key >> 32); */
3455         xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
3456         /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
3457         xxh_u64x2 const product  = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
3458         xacc[i] += product;
3459 
3460         /* swap high and low halves */
3461 #ifdef __s390x__
3462         xacc[i] += vec_permi(data_vec, data_vec, 2);
3463 #else
3464         xacc[i] += vec_xxpermdi(data_vec, data_vec, 2);
3465 #endif
3466     }
3467 }
3468 
3469 XXH_FORCE_INLINE void
XXH3_scrambleAcc_vsx(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)3470 XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3471 {
3472     XXH_ASSERT((((size_t)acc) & 15) == 0);
3473 
3474     {         xxh_u64x2* const xacc    =       (xxh_u64x2*) acc;
3475         const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
3476         /* constants */
3477         xxh_u64x2 const v32  = { 32, 32 };
3478         xxh_u64x2 const v47 = { 47, 47 };
3479         xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
3480         size_t i;
3481         for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
3482             /* xacc[i] ^= (xacc[i] >> 47); */
3483             xxh_u64x2 const acc_vec  = xacc[i];
3484             xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
3485 
3486             /* xacc[i] ^= xsecret[i]; */
3487             xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i);
3488             xxh_u64x2 const data_key = data_vec ^ key_vec;
3489 
3490             /* xacc[i] *= XXH_PRIME32_1 */
3491             /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF);  */
3492             xxh_u64x2 const prod_even  = XXH_vec_mule((xxh_u32x4)data_key, prime);
3493             /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */
3494             xxh_u64x2 const prod_odd  = XXH_vec_mulo((xxh_u32x4)data_key, prime);
3495             xacc[i] = prod_odd + (prod_even << v32);
3496     }   }
3497 }
3498 
3499 #endif
3500 
3501 /* scalar variants - universal */
3502 
3503 XXH_FORCE_INLINE void
XXH3_accumulate_512_scalar(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)3504 XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
3505                      const void* XXH_RESTRICT input,
3506                      const void* XXH_RESTRICT secret)
3507 {
3508     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
3509     const xxh_u8* const xinput  = (const xxh_u8*) input;  /* no alignment restriction */
3510     const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
3511     size_t i;
3512     XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
3513     for (i=0; i < XXH_ACC_NB; i++) {
3514         xxh_u64 const data_val = XXH_readLE64(xinput + 8*i);
3515         xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8);
3516         xacc[i ^ 1] += data_val; /* swap adjacent lanes */
3517         xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
3518     }
3519 }
3520 
3521 XXH_FORCE_INLINE void
XXH3_scrambleAcc_scalar(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)3522 XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3523 {
3524     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc;   /* presumed aligned */
3525     const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
3526     size_t i;
3527     XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
3528     for (i=0; i < XXH_ACC_NB; i++) {
3529         xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i);
3530         xxh_u64 acc64 = xacc[i];
3531         acc64 = XXH_xorshift64(acc64, 47);
3532         acc64 ^= key64;
3533         acc64 *= XXH_PRIME32_1;
3534         xacc[i] = acc64;
3535     }
3536 }
3537 
3538 XXH_FORCE_INLINE void
XXH3_initCustomSecret_scalar(void * XXH_RESTRICT customSecret,xxh_u64 seed64)3539 XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3540 {
3541     /*
3542      * We need a separate pointer for the hack below,
3543      * which requires a non-const pointer.
3544      * Any decent compiler will optimize this out otherwise.
3545      */
3546     const xxh_u8* kSecretPtr = XXH3_kSecret;
3547     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
3548 
3549 #if defined(__clang__) && defined(__aarch64__)
3550     /*
3551      * UGLY HACK:
3552      * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
3553      * placed sequentially, in order, at the top of the unrolled loop.
3554      *
3555      * While MOVK is great for generating constants (2 cycles for a 64-bit
3556      * constant compared to 4 cycles for LDR), long MOVK chains stall the
3557      * integer pipelines:
3558      *   I   L   S
3559      * MOVK
3560      * MOVK
3561      * MOVK
3562      * MOVK
3563      * ADD
3564      * SUB      STR
3565      *          STR
3566      * By forcing loads from memory (as the asm line causes Clang to assume
3567      * that XXH3_kSecretPtr has been changed), the pipelines are used more
3568      * efficiently:
3569      *   I   L   S
3570      *      LDR
3571      *  ADD LDR
3572      *  SUB     STR
3573      *          STR
3574      * XXH3_64bits_withSeed, len == 256, Snapdragon 835
3575      *   without hack: 2654.4 MB/s
3576      *   with hack:    3202.9 MB/s
3577      */
3578     __asm__("" : "+r" (kSecretPtr));
3579 #endif
3580     /*
3581      * Note: in debug mode, this overrides the asm optimization
3582      * and Clang will emit MOVK chains again.
3583      */
3584     XXH_ASSERT(kSecretPtr == XXH3_kSecret);
3585 
3586     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
3587         int i;
3588         for (i=0; i < nbRounds; i++) {
3589             /*
3590              * The asm hack causes Clang to assume that kSecretPtr aliases with
3591              * customSecret, and on aarch64, this prevented LDP from merging two
3592              * loads together for free. Putting the loads together before the stores
3593              * properly generates LDP.
3594              */
3595             xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i)     + seed64;
3596             xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
3597             XXH_writeLE64((xxh_u8*)customSecret + 16*i,     lo);
3598             XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
3599     }   }
3600 }
3601 
3602 
3603 typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*);
3604 typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
3605 typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
3606 
3607 
3608 #if (XXH_VECTOR == XXH_AVX512)
3609 
3610 #define XXH3_accumulate_512 XXH3_accumulate_512_avx512
3611 #define XXH3_scrambleAcc    XXH3_scrambleAcc_avx512
3612 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
3613 
3614 #elif (XXH_VECTOR == XXH_AVX2)
3615 
3616 #define XXH3_accumulate_512 XXH3_accumulate_512_avx2
3617 #define XXH3_scrambleAcc    XXH3_scrambleAcc_avx2
3618 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
3619 
3620 #elif (XXH_VECTOR == XXH_SSE2)
3621 
3622 #define XXH3_accumulate_512 XXH3_accumulate_512_sse2
3623 #define XXH3_scrambleAcc    XXH3_scrambleAcc_sse2
3624 #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
3625 
3626 #elif (XXH_VECTOR == XXH_NEON)
3627 
3628 #define XXH3_accumulate_512 XXH3_accumulate_512_neon
3629 #define XXH3_scrambleAcc    XXH3_scrambleAcc_neon
3630 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
3631 
3632 #elif (XXH_VECTOR == XXH_VSX)
3633 
3634 #define XXH3_accumulate_512 XXH3_accumulate_512_vsx
3635 #define XXH3_scrambleAcc    XXH3_scrambleAcc_vsx
3636 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
3637 
3638 #else /* scalar */
3639 
3640 #define XXH3_accumulate_512 XXH3_accumulate_512_scalar
3641 #define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar
3642 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
3643 
3644 #endif
3645 
3646 
3647 
3648 #ifndef XXH_PREFETCH_DIST
3649 #  ifdef __clang__
3650 #    define XXH_PREFETCH_DIST 320
3651 #  else
3652 #    if (XXH_VECTOR == XXH_AVX512)
3653 #      define XXH_PREFETCH_DIST 512
3654 #    else
3655 #      define XXH_PREFETCH_DIST 384
3656 #    endif
3657 #  endif  /* __clang__ */
3658 #endif  /* XXH_PREFETCH_DIST */
3659 
3660 /*
3661  * XXH3_accumulate()
3662  * Loops over XXH3_accumulate_512().
3663  * Assumption: nbStripes will not overflow the secret size
3664  */
3665 XXH_FORCE_INLINE void
XXH3_accumulate(xxh_u64 * XXH_RESTRICT acc,const xxh_u8 * XXH_RESTRICT input,const xxh_u8 * XXH_RESTRICT secret,size_t nbStripes,XXH3_f_accumulate_512 f_acc512)3666 XXH3_accumulate(     xxh_u64* XXH_RESTRICT acc,
3667                 const xxh_u8* XXH_RESTRICT input,
3668                 const xxh_u8* XXH_RESTRICT secret,
3669                       size_t nbStripes,
3670                       XXH3_f_accumulate_512 f_acc512)
3671 {
3672     size_t n;
3673     for (n = 0; n < nbStripes; n++ ) {
3674         const xxh_u8* const in = input + n*XXH_STRIPE_LEN;
3675         XXH_PREFETCH(in + XXH_PREFETCH_DIST);
3676         f_acc512(acc,
3677                  in,
3678                  secret + n*XXH_SECRET_CONSUME_RATE);
3679     }
3680 }
3681 
3682 XXH_FORCE_INLINE void
XXH3_hashLong_internal_loop(xxh_u64 * XXH_RESTRICT acc,const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)3683 XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
3684                       const xxh_u8* XXH_RESTRICT input, size_t len,
3685                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
3686                             XXH3_f_accumulate_512 f_acc512,
3687                             XXH3_f_scrambleAcc f_scramble)
3688 {
3689     size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
3690     size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
3691     size_t const nb_blocks = (len - 1) / block_len;
3692 
3693     size_t n;
3694 
3695     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
3696 
3697     for (n = 0; n < nb_blocks; n++) {
3698         XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512);
3699         f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
3700     }
3701 
3702     /* last partial block */
3703     XXH_ASSERT(len > XXH_STRIPE_LEN);
3704     {   size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
3705         XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
3706         XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512);
3707 
3708         /* last stripe */
3709         {   const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
3710 #define XXH_SECRET_LASTACC_START 7  /* not aligned on 8, last secret is different from acc & scrambler */
3711             f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
3712     }   }
3713 }
3714 
3715 XXH_FORCE_INLINE xxh_u64
XXH3_mix2Accs(const xxh_u64 * XXH_RESTRICT acc,const xxh_u8 * XXH_RESTRICT secret)3716 XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
3717 {
3718     return XXH3_mul128_fold64(
3719                acc[0] ^ XXH_readLE64(secret),
3720                acc[1] ^ XXH_readLE64(secret+8) );
3721 }
3722 
3723 static XXH64_hash_t
XXH3_mergeAccs(const xxh_u64 * XXH_RESTRICT acc,const xxh_u8 * XXH_RESTRICT secret,xxh_u64 start)3724 XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
3725 {
3726     xxh_u64 result64 = start;
3727     size_t i = 0;
3728 
3729     for (i = 0; i < 4; i++) {
3730         result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
3731 #if defined(__clang__)                                /* Clang */ \
3732     && (defined(__arm__) || defined(__thumb__))       /* ARMv7 */ \
3733     && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \
3734     && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
3735         /*
3736          * UGLY HACK:
3737          * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
3738          * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
3739          * XXH3_64bits, len == 256, Snapdragon 835:
3740          *   without hack: 2063.7 MB/s
3741          *   with hack:    2560.7 MB/s
3742          */
3743         __asm__("" : "+r" (result64));
3744 #endif
3745     }
3746 
3747     return XXH3_avalanche(result64);
3748 }
3749 
3750 #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
3751                         XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
3752 
3753 XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_internal(const void * XXH_RESTRICT input,size_t len,const void * XXH_RESTRICT secret,size_t secretSize,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)3754 XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
3755                            const void* XXH_RESTRICT secret, size_t secretSize,
3756                            XXH3_f_accumulate_512 f_acc512,
3757                            XXH3_f_scrambleAcc f_scramble)
3758 {
3759     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
3760 
3761     XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble);
3762 
3763     /* converge into final hash */
3764     XXH_STATIC_ASSERT(sizeof(acc) == 64);
3765     /* do not align on 8, so that the secret is different from the accumulator */
3766 #define XXH_SECRET_MERGEACCS_START 11
3767     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
3768     return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
3769 }
3770 
3771 /*
3772  * It's important for performance that XXH3_hashLong is not inlined.
3773  */
3774 XXH_NO_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSecret(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const xxh_u8 * XXH_RESTRICT secret,size_t secretLen)3775 XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
3776                              XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
3777 {
3778     (void)seed64;
3779     return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc);
3780 }
3781 
3782 /*
3783  * It's important for performance that XXH3_hashLong is not inlined.
3784  * Since the function is not inlined, the compiler may not be able to understand that,
3785  * in some scenarios, its `secret` argument is actually a compile time constant.
3786  * This variant enforces that the compiler can detect that,
3787  * and uses this opportunity to streamline the generated code for better performance.
3788  */
3789 XXH_NO_INLINE XXH64_hash_t
XXH3_hashLong_64b_default(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const xxh_u8 * XXH_RESTRICT secret,size_t secretLen)3790 XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
3791                           XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
3792 {
3793     (void)seed64; (void)secret; (void)secretLen;
3794     return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc);
3795 }
3796 
3797 /*
3798  * XXH3_hashLong_64b_withSeed():
3799  * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
3800  * and then use this key for long mode hashing.
3801  *
3802  * This operation is decently fast but nonetheless costs a little bit of time.
3803  * Try to avoid it whenever possible (typically when seed==0).
3804  *
3805  * It's important for performance that XXH3_hashLong is not inlined. Not sure
3806  * why (uop cache maybe?), but the difference is large and easily measurable.
3807  */
3808 XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSeed_internal(const void * input,size_t len,XXH64_hash_t seed,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble,XXH3_f_initCustomSecret f_initSec)3809 XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
3810                                     XXH64_hash_t seed,
3811                                     XXH3_f_accumulate_512 f_acc512,
3812                                     XXH3_f_scrambleAcc f_scramble,
3813                                     XXH3_f_initCustomSecret f_initSec)
3814 {
3815     if (seed == 0)
3816         return XXH3_hashLong_64b_internal(input, len,
3817                                           XXH3_kSecret, sizeof(XXH3_kSecret),
3818                                           f_acc512, f_scramble);
3819     {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
3820         f_initSec(secret, seed);
3821         return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
3822                                           f_acc512, f_scramble);
3823     }
3824 }
3825 
3826 /*
3827  * It's important for performance that XXH3_hashLong is not inlined.
3828  */
3829 XXH_NO_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSeed(const void * input,size_t len,XXH64_hash_t seed,const xxh_u8 * secret,size_t secretLen)3830 XXH3_hashLong_64b_withSeed(const void* input, size_t len,
3831                            XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen)
3832 {
3833     (void)secret; (void)secretLen;
3834     return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
3835                 XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
3836 }
3837 
3838 
3839 typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
3840                                           XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
3841 
3842 XXH_FORCE_INLINE XXH64_hash_t
XXH3_64bits_internal(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen,XXH3_hashLong64_f f_hashLong)3843 XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
3844                      XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
3845                      XXH3_hashLong64_f f_hashLong)
3846 {
3847     XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
3848     /*
3849      * If an action is to be taken if `secretLen` condition is not respected,
3850      * it should be done here.
3851      * For now, it's a contract pre-condition.
3852      * Adding a check and a branch here would cost performance at every hash.
3853      * Also, note that function signature doesn't offer room to return an error.
3854      */
3855     if (len <= 16)
3856         return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
3857     if (len <= 128)
3858         return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
3859     if (len <= XXH3_MIDSIZE_MAX)
3860         return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
3861     return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
3862 }
3863 
3864 
3865 /* ===   Public entry point   === */
3866 
XXH3_64bits(const void * input,size_t len)3867 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
3868 {
3869     return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
3870 }
3871 
3872 XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSecret(const void * input,size_t len,const void * secret,size_t secretSize)3873 XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
3874 {
3875     return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
3876 }
3877 
3878 XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSeed(const void * input,size_t len,XXH64_hash_t seed)3879 XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
3880 {
3881     return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
3882 }
3883 
3884 
3885 /* ===   XXH3 streaming   === */
3886 
3887 /*
3888  * Malloc's a pointer that is always aligned to align.
3889  *
3890  * This must be freed with `XXH_alignedFree()`.
3891  *
3892  * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
3893  * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
3894  * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
3895  *
3896  * This underalignment previously caused a rather obvious crash which went
3897  * completely unnoticed due to XXH3_createState() not actually being tested.
3898  * Credit to RedSpah for noticing this bug.
3899  *
3900  * The alignment is done manually: Functions like posix_memalign or _mm_malloc
3901  * are avoided: To maintain portability, we would have to write a fallback
3902  * like this anyways, and besides, testing for the existence of library
3903  * functions without relying on external build tools is impossible.
3904  *
3905  * The method is simple: Overallocate, manually align, and store the offset
3906  * to the original behind the returned pointer.
3907  *
3908  * Align must be a power of 2 and 8 <= align <= 128.
3909  */
XXH_alignedMalloc(size_t s,size_t align)3910 static void* XXH_alignedMalloc(size_t s, size_t align)
3911 {
3912     XXH_ASSERT(align <= 128 && align >= 8); /* range check */
3913     XXH_ASSERT((align & (align-1)) == 0);   /* power of 2 */
3914     XXH_ASSERT(s != 0 && s < (s + align));  /* empty/overflow */
3915     {   /* Overallocate to make room for manual realignment and an offset byte */
3916         xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
3917         if (base != NULL) {
3918             /*
3919              * Get the offset needed to align this pointer.
3920              *
3921              * Even if the returned pointer is aligned, there will always be
3922              * at least one byte to store the offset to the original pointer.
3923              */
3924             size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
3925             /* Add the offset for the now-aligned pointer */
3926             xxh_u8* ptr = base + offset;
3927 
3928             XXH_ASSERT((size_t)ptr % align == 0);
3929 
3930             /* Store the offset immediately before the returned pointer. */
3931             ptr[-1] = (xxh_u8)offset;
3932             return ptr;
3933         }
3934         return NULL;
3935     }
3936 }
3937 /*
3938  * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
3939  * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
3940  */
XXH_alignedFree(void * p)3941 static void XXH_alignedFree(void* p)
3942 {
3943     if (p != NULL) {
3944         xxh_u8* ptr = (xxh_u8*)p;
3945         /* Get the offset byte we added in XXH_malloc. */
3946         xxh_u8 offset = ptr[-1];
3947         /* Free the original malloc'd pointer */
3948         xxh_u8* base = ptr - offset;
3949         XXH_free(base);
3950     }
3951 }
XXH3_createState(void)3952 XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
3953 {
3954     XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
3955     if (state==NULL) return NULL;
3956     XXH3_INITSTATE(state);
3957     return state;
3958 }
3959 
XXH3_freeState(XXH3_state_t * statePtr)3960 XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
3961 {
3962     XXH_alignedFree(statePtr);
3963     return XXH_OK;
3964 }
3965 
3966 XXH_PUBLIC_API void
XXH3_copyState(XXH3_state_t * dst_state,const XXH3_state_t * src_state)3967 XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
3968 {
3969     memcpy(dst_state, src_state, sizeof(*dst_state));
3970 }
3971 
3972 static void
XXH3_64bits_reset_internal(XXH3_state_t * statePtr,XXH64_hash_t seed,const void * secret,size_t secretSize)3973 XXH3_64bits_reset_internal(XXH3_state_t* statePtr,
3974                            XXH64_hash_t seed,
3975                            const void* secret, size_t secretSize)
3976 {
3977     size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
3978     size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
3979     XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
3980     XXH_ASSERT(statePtr != NULL);
3981     /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
3982     memset((char*)statePtr + initStart, 0, initLength);
3983     statePtr->acc[0] = XXH_PRIME32_3;
3984     statePtr->acc[1] = XXH_PRIME64_1;
3985     statePtr->acc[2] = XXH_PRIME64_2;
3986     statePtr->acc[3] = XXH_PRIME64_3;
3987     statePtr->acc[4] = XXH_PRIME64_4;
3988     statePtr->acc[5] = XXH_PRIME32_2;
3989     statePtr->acc[6] = XXH_PRIME64_5;
3990     statePtr->acc[7] = XXH_PRIME32_1;
3991     statePtr->seed = seed;
3992     statePtr->extSecret = (const unsigned char*)secret;
3993     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
3994     statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
3995     statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
3996 }
3997 
3998 XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset(XXH3_state_t * statePtr)3999 XXH3_64bits_reset(XXH3_state_t* statePtr)
4000 {
4001     if (statePtr == NULL) return XXH_ERROR;
4002     XXH3_64bits_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4003     return XXH_OK;
4004 }
4005 
4006 XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecret(XXH3_state_t * statePtr,const void * secret,size_t secretSize)4007 XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
4008 {
4009     if (statePtr == NULL) return XXH_ERROR;
4010     XXH3_64bits_reset_internal(statePtr, 0, secret, secretSize);
4011     if (secret == NULL) return XXH_ERROR;
4012     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
4013     return XXH_OK;
4014 }
4015 
4016 XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSeed(XXH3_state_t * statePtr,XXH64_hash_t seed)4017 XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
4018 {
4019     if (statePtr == NULL) return XXH_ERROR;
4020     if (seed==0) return XXH3_64bits_reset(statePtr);
4021     if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed);
4022     XXH3_64bits_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
4023     return XXH_OK;
4024 }
4025 
4026 /* Note : when XXH3_consumeStripes() is invoked,
4027  * there must be a guarantee that at least one more byte must be consumed from input
4028  * so that the function can blindly consume all stripes using the "normal" secret segment */
4029 XXH_FORCE_INLINE void
XXH3_consumeStripes(xxh_u64 * XXH_RESTRICT acc,size_t * XXH_RESTRICT nbStripesSoFarPtr,size_t nbStripesPerBlock,const xxh_u8 * XXH_RESTRICT input,size_t nbStripes,const xxh_u8 * XXH_RESTRICT secret,size_t secretLimit,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)4030 XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
4031                     size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
4032                     const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
4033                     const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
4034                     XXH3_f_accumulate_512 f_acc512,
4035                     XXH3_f_scrambleAcc f_scramble)
4036 {
4037     XXH_ASSERT(nbStripes <= nbStripesPerBlock);  /* can handle max 1 scramble per invocation */
4038     XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
4039     if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) {
4040         /* need a scrambling operation */
4041         size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr;
4042         size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock;
4043         XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512);
4044         f_scramble(acc, secret + secretLimit);
4045         XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512);
4046         *nbStripesSoFarPtr = nbStripesAfterBlock;
4047     } else {
4048         XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512);
4049         *nbStripesSoFarPtr += nbStripes;
4050     }
4051 }
4052 
4053 /*
4054  * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
4055  */
4056 XXH_FORCE_INLINE XXH_errorcode
XXH3_update(XXH3_state_t * state,const xxh_u8 * input,size_t len,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)4057 XXH3_update(XXH3_state_t* state,
4058             const xxh_u8* input, size_t len,
4059             XXH3_f_accumulate_512 f_acc512,
4060             XXH3_f_scrambleAcc f_scramble)
4061 {
4062     if (input==NULL)
4063 #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
4064         return XXH_OK;
4065 #else
4066         return XXH_ERROR;
4067 #endif
4068 
4069     {   const xxh_u8* const bEnd = input + len;
4070         const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4071 
4072         state->totalLen += len;
4073 
4074         if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) {  /* fill in tmp buffer */
4075             XXH_memcpy(state->buffer + state->bufferedSize, input, len);
4076             state->bufferedSize += (XXH32_hash_t)len;
4077             return XXH_OK;
4078         }
4079         /* total input is now > XXH3_INTERNALBUFFER_SIZE */
4080 
4081         #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
4082         XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0);   /* clean multiple */
4083 
4084         /*
4085          * Internal buffer is partially filled (always, except at beginning)
4086          * Complete it, then consume it.
4087          */
4088         if (state->bufferedSize) {
4089             size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
4090             XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
4091             input += loadSize;
4092             XXH3_consumeStripes(state->acc,
4093                                &state->nbStripesSoFar, state->nbStripesPerBlock,
4094                                 state->buffer, XXH3_INTERNALBUFFER_STRIPES,
4095                                 secret, state->secretLimit,
4096                                 f_acc512, f_scramble);
4097             state->bufferedSize = 0;
4098         }
4099         XXH_ASSERT(input < bEnd);
4100 
4101         /* Consume input by a multiple of internal buffer size */
4102         if (input+XXH3_INTERNALBUFFER_SIZE < bEnd) {
4103             const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
4104             do {
4105                 XXH3_consumeStripes(state->acc,
4106                                    &state->nbStripesSoFar, state->nbStripesPerBlock,
4107                                     input, XXH3_INTERNALBUFFER_STRIPES,
4108                                     secret, state->secretLimit,
4109                                     f_acc512, f_scramble);
4110                 input += XXH3_INTERNALBUFFER_SIZE;
4111             } while (input<limit);
4112             /* for last partial stripe */
4113             memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
4114         }
4115         XXH_ASSERT(input < bEnd);
4116 
4117         /* Some remaining input (always) : buffer it */
4118         XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
4119         state->bufferedSize = (XXH32_hash_t)(bEnd-input);
4120     }
4121 
4122     return XXH_OK;
4123 }
4124 
4125 XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_update(XXH3_state_t * state,const void * input,size_t len)4126 XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
4127 {
4128     return XXH3_update(state, (const xxh_u8*)input, len,
4129                        XXH3_accumulate_512, XXH3_scrambleAcc);
4130 }
4131 
4132 
4133 XXH_FORCE_INLINE void
XXH3_digest_long(XXH64_hash_t * acc,const XXH3_state_t * state,const unsigned char * secret)4134 XXH3_digest_long (XXH64_hash_t* acc,
4135                   const XXH3_state_t* state,
4136                   const unsigned char* secret)
4137 {
4138     /*
4139      * Digest on a local copy. This way, the state remains unaltered, and it can
4140      * continue ingesting more input afterwards.
4141      */
4142     memcpy(acc, state->acc, sizeof(state->acc));
4143     if (state->bufferedSize >= XXH_STRIPE_LEN) {
4144         size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
4145         size_t nbStripesSoFar = state->nbStripesSoFar;
4146         XXH3_consumeStripes(acc,
4147                            &nbStripesSoFar, state->nbStripesPerBlock,
4148                             state->buffer, nbStripes,
4149                             secret, state->secretLimit,
4150                             XXH3_accumulate_512, XXH3_scrambleAcc);
4151         /* last stripe */
4152         XXH3_accumulate_512(acc,
4153                             state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
4154                             secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4155     } else {  /* bufferedSize < XXH_STRIPE_LEN */
4156         xxh_u8 lastStripe[XXH_STRIPE_LEN];
4157         size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
4158         XXH_ASSERT(state->bufferedSize > 0);  /* there is always some input buffered */
4159         memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
4160         memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
4161         XXH3_accumulate_512(acc,
4162                             lastStripe,
4163                             secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4164     }
4165 }
4166 
XXH3_64bits_digest(const XXH3_state_t * state)4167 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
4168 {
4169     const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4170     if (state->totalLen > XXH3_MIDSIZE_MAX) {
4171         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
4172         XXH3_digest_long(acc, state, secret);
4173         return XXH3_mergeAccs(acc,
4174                               secret + XXH_SECRET_MERGEACCS_START,
4175                               (xxh_u64)state->totalLen * XXH_PRIME64_1);
4176     }
4177     /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
4178     if (state->seed)
4179         return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
4180     return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
4181                                   secret, state->secretLimit + XXH_STRIPE_LEN);
4182 }
4183 
4184 
4185 #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
4186 
4187 XXH_PUBLIC_API void
XXH3_generateSecret(void * secretBuffer,const void * customSeed,size_t customSeedSize)4188 XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize)
4189 {
4190     XXH_ASSERT(secretBuffer != NULL);
4191     if (customSeedSize == 0) {
4192         memcpy(secretBuffer, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4193         return;
4194     }
4195     XXH_ASSERT(customSeed != NULL);
4196 
4197     {   size_t const segmentSize = sizeof(XXH128_hash_t);
4198         size_t const nbSegments = XXH_SECRET_DEFAULT_SIZE / segmentSize;
4199         XXH128_canonical_t scrambler;
4200         XXH64_hash_t seeds[12];
4201         size_t segnb;
4202         XXH_ASSERT(nbSegments == 12);
4203         XXH_ASSERT(segmentSize * nbSegments == XXH_SECRET_DEFAULT_SIZE); /* exact multiple */
4204         XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
4205 
4206         /*
4207         * Copy customSeed to seeds[], truncating or repeating as necessary.
4208         */
4209         {   size_t toFill = XXH_MIN(customSeedSize, sizeof(seeds));
4210             size_t filled = toFill;
4211             memcpy(seeds, customSeed, toFill);
4212             while (filled < sizeof(seeds)) {
4213                 toFill = XXH_MIN(filled, sizeof(seeds) - filled);
4214                 memcpy((char*)seeds + filled, seeds, toFill);
4215                 filled += toFill;
4216         }   }
4217 
4218         /* generate secret */
4219         memcpy(secretBuffer, &scrambler, sizeof(scrambler));
4220         for (segnb=1; segnb < nbSegments; segnb++) {
4221             size_t const segmentStart = segnb * segmentSize;
4222             XXH128_canonical_t segment;
4223             XXH128_canonicalFromHash(&segment,
4224                 XXH128(&scrambler, sizeof(scrambler), XXH_readLE64(seeds + segnb) + segnb) );
4225             memcpy((char*)secretBuffer + segmentStart, &segment, sizeof(segment));
4226     }   }
4227 }
4228 
4229 
4230 /* ==========================================
4231  * XXH3 128 bits (a.k.a XXH128)
4232  * ==========================================
4233  * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
4234  * even without counting the significantly larger output size.
4235  *
4236  * For example, extra steps are taken to avoid the seed-dependent collisions
4237  * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
4238  *
4239  * This strength naturally comes at the cost of some speed, especially on short
4240  * lengths. Note that longer hashes are about as fast as the 64-bit version
4241  * due to it using only a slight modification of the 64-bit loop.
4242  *
4243  * XXH128 is also more oriented towards 64-bit machines. It is still extremely
4244  * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
4245  */
4246 
4247 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_1to3_128b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)4248 XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4249 {
4250     /* A doubled version of 1to3_64b with different constants. */
4251     XXH_ASSERT(input != NULL);
4252     XXH_ASSERT(1 <= len && len <= 3);
4253     XXH_ASSERT(secret != NULL);
4254     /*
4255      * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
4256      * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
4257      * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
4258      */
4259     {   xxh_u8 const c1 = input[0];
4260         xxh_u8 const c2 = input[len >> 1];
4261         xxh_u8 const c3 = input[len - 1];
4262         xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
4263                                 | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
4264         xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
4265         xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
4266         xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
4267         xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
4268         xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
4269         XXH128_hash_t h128;
4270         h128.low64  = XXH64_avalanche(keyed_lo);
4271         h128.high64 = XXH64_avalanche(keyed_hi);
4272         return h128;
4273     }
4274 }
4275 
4276 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_4to8_128b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)4277 XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4278 {
4279     XXH_ASSERT(input != NULL);
4280     XXH_ASSERT(secret != NULL);
4281     XXH_ASSERT(4 <= len && len <= 8);
4282     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
4283     {   xxh_u32 const input_lo = XXH_readLE32(input);
4284         xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
4285         xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
4286         xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
4287         xxh_u64 const keyed = input_64 ^ bitflip;
4288 
4289         /* Shift len to the left to ensure it is even, this avoids even multiplies. */
4290         XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
4291 
4292         m128.high64 += (m128.low64 << 1);
4293         m128.low64  ^= (m128.high64 >> 3);
4294 
4295         m128.low64   = XXH_xorshift64(m128.low64, 35);
4296         m128.low64  *= 0x9FB21C651E98DF25ULL;
4297         m128.low64   = XXH_xorshift64(m128.low64, 28);
4298         m128.high64  = XXH3_avalanche(m128.high64);
4299         return m128;
4300     }
4301 }
4302 
4303 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_9to16_128b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)4304 XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4305 {
4306     XXH_ASSERT(input != NULL);
4307     XXH_ASSERT(secret != NULL);
4308     XXH_ASSERT(9 <= len && len <= 16);
4309     {   xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
4310         xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
4311         xxh_u64 const input_lo = XXH_readLE64(input);
4312         xxh_u64       input_hi = XXH_readLE64(input + len - 8);
4313         XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
4314         /*
4315          * Put len in the middle of m128 to ensure that the length gets mixed to
4316          * both the low and high bits in the 128x64 multiply below.
4317          */
4318         m128.low64 += (xxh_u64)(len - 1) << 54;
4319         input_hi   ^= bitfliph;
4320         /*
4321          * Add the high 32 bits of input_hi to the high 32 bits of m128, then
4322          * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
4323          * the high 64 bits of m128.
4324          *
4325          * The best approach to this operation is different on 32-bit and 64-bit.
4326          */
4327         if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
4328             /*
4329              * 32-bit optimized version, which is more readable.
4330              *
4331              * On 32-bit, it removes an ADC and delays a dependency between the two
4332              * halves of m128.high64, but it generates an extra mask on 64-bit.
4333              */
4334             m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
4335         } else {
4336             /*
4337              * 64-bit optimized (albeit more confusing) version.
4338              *
4339              * Uses some properties of addition and multiplication to remove the mask:
4340              *
4341              * Let:
4342              *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
4343              *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
4344              *    c = XXH_PRIME32_2
4345              *
4346              *    a + (b * c)
4347              * Inverse Property: x + y - x == y
4348              *    a + (b * (1 + c - 1))
4349              * Distributive Property: x * (y + z) == (x * y) + (x * z)
4350              *    a + (b * 1) + (b * (c - 1))
4351              * Identity Property: x * 1 == x
4352              *    a + b + (b * (c - 1))
4353              *
4354              * Substitute a, b, and c:
4355              *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
4356              *
4357              * Since input_hi.hi + input_hi.lo == input_hi, we get this:
4358              *    input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
4359              */
4360             m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
4361         }
4362         /* m128 ^= XXH_swap64(m128 >> 64); */
4363         m128.low64  ^= XXH_swap64(m128.high64);
4364 
4365         {   /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
4366             XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
4367             h128.high64 += m128.high64 * XXH_PRIME64_2;
4368 
4369             h128.low64   = XXH3_avalanche(h128.low64);
4370             h128.high64  = XXH3_avalanche(h128.high64);
4371             return h128;
4372     }   }
4373 }
4374 
4375 /*
4376  * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
4377  */
4378 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_0to16_128b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)4379 XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4380 {
4381     XXH_ASSERT(len <= 16);
4382     {   if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
4383         if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
4384         if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
4385         {   XXH128_hash_t h128;
4386             xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
4387             xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
4388             h128.low64 = XXH64_avalanche(seed ^ bitflipl);
4389             h128.high64 = XXH64_avalanche( seed ^ bitfliph);
4390             return h128;
4391     }   }
4392 }
4393 
4394 /*
4395  * A bit slower than XXH3_mix16B, but handles multiply by zero better.
4396  */
4397 XXH_FORCE_INLINE XXH128_hash_t
XXH128_mix32B(XXH128_hash_t acc,const xxh_u8 * input_1,const xxh_u8 * input_2,const xxh_u8 * secret,XXH64_hash_t seed)4398 XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
4399               const xxh_u8* secret, XXH64_hash_t seed)
4400 {
4401     acc.low64  += XXH3_mix16B (input_1, secret+0, seed);
4402     acc.low64  ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
4403     acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
4404     acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
4405     return acc;
4406 }
4407 
4408 
4409 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_17to128_128b(const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH64_hash_t seed)4410 XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
4411                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4412                       XXH64_hash_t seed)
4413 {
4414     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
4415     XXH_ASSERT(16 < len && len <= 128);
4416 
4417     {   XXH128_hash_t acc;
4418         acc.low64 = len * XXH_PRIME64_1;
4419         acc.high64 = 0;
4420         if (len > 32) {
4421             if (len > 64) {
4422                 if (len > 96) {
4423                     acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
4424                 }
4425                 acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
4426             }
4427             acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
4428         }
4429         acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
4430         {   XXH128_hash_t h128;
4431             h128.low64  = acc.low64 + acc.high64;
4432             h128.high64 = (acc.low64    * XXH_PRIME64_1)
4433                         + (acc.high64   * XXH_PRIME64_4)
4434                         + ((len - seed) * XXH_PRIME64_2);
4435             h128.low64  = XXH3_avalanche(h128.low64);
4436             h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
4437             return h128;
4438         }
4439     }
4440 }
4441 
4442 XXH_NO_INLINE XXH128_hash_t
XXH3_len_129to240_128b(const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH64_hash_t seed)4443 XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
4444                        const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4445                        XXH64_hash_t seed)
4446 {
4447     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
4448     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
4449 
4450     {   XXH128_hash_t acc;
4451         int const nbRounds = (int)len / 32;
4452         int i;
4453         acc.low64 = len * XXH_PRIME64_1;
4454         acc.high64 = 0;
4455         for (i=0; i<4; i++) {
4456             acc = XXH128_mix32B(acc,
4457                                 input  + (32 * i),
4458                                 input  + (32 * i) + 16,
4459                                 secret + (32 * i),
4460                                 seed);
4461         }
4462         acc.low64 = XXH3_avalanche(acc.low64);
4463         acc.high64 = XXH3_avalanche(acc.high64);
4464         XXH_ASSERT(nbRounds >= 4);
4465         for (i=4 ; i < nbRounds; i++) {
4466             acc = XXH128_mix32B(acc,
4467                                 input + (32 * i),
4468                                 input + (32 * i) + 16,
4469                                 secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
4470                                 seed);
4471         }
4472         /* last bytes */
4473         acc = XXH128_mix32B(acc,
4474                             input + len - 16,
4475                             input + len - 32,
4476                             secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
4477                             0ULL - seed);
4478 
4479         {   XXH128_hash_t h128;
4480             h128.low64  = acc.low64 + acc.high64;
4481             h128.high64 = (acc.low64    * XXH_PRIME64_1)
4482                         + (acc.high64   * XXH_PRIME64_4)
4483                         + ((len - seed) * XXH_PRIME64_2);
4484             h128.low64  = XXH3_avalanche(h128.low64);
4485             h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
4486             return h128;
4487         }
4488     }
4489 }
4490 
4491 XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_internal(const void * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)4492 XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
4493                             const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4494                             XXH3_f_accumulate_512 f_acc512,
4495                             XXH3_f_scrambleAcc f_scramble)
4496 {
4497     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
4498 
4499     XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble);
4500 
4501     /* converge into final hash */
4502     XXH_STATIC_ASSERT(sizeof(acc) == 64);
4503     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
4504     {   XXH128_hash_t h128;
4505         h128.low64  = XXH3_mergeAccs(acc,
4506                                      secret + XXH_SECRET_MERGEACCS_START,
4507                                      (xxh_u64)len * XXH_PRIME64_1);
4508         h128.high64 = XXH3_mergeAccs(acc,
4509                                      secret + secretSize
4510                                             - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
4511                                      ~((xxh_u64)len * XXH_PRIME64_2));
4512         return h128;
4513     }
4514 }
4515 
4516 /*
4517  * It's important for performance that XXH3_hashLong is not inlined.
4518  */
4519 XXH_NO_INLINE XXH128_hash_t
XXH3_hashLong_128b_default(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen)4520 XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
4521                            XXH64_hash_t seed64,
4522                            const void* XXH_RESTRICT secret, size_t secretLen)
4523 {
4524     (void)seed64; (void)secret; (void)secretLen;
4525     return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
4526                                        XXH3_accumulate_512, XXH3_scrambleAcc);
4527 }
4528 
4529 /*
4530  * It's important for performance that XXH3_hashLong is not inlined.
4531  */
4532 XXH_NO_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSecret(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen)4533 XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
4534                               XXH64_hash_t seed64,
4535                               const void* XXH_RESTRICT secret, size_t secretLen)
4536 {
4537     (void)seed64;
4538     return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
4539                                        XXH3_accumulate_512, XXH3_scrambleAcc);
4540 }
4541 
4542 XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSeed_internal(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble,XXH3_f_initCustomSecret f_initSec)4543 XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
4544                                 XXH64_hash_t seed64,
4545                                 XXH3_f_accumulate_512 f_acc512,
4546                                 XXH3_f_scrambleAcc f_scramble,
4547                                 XXH3_f_initCustomSecret f_initSec)
4548 {
4549     if (seed64 == 0)
4550         return XXH3_hashLong_128b_internal(input, len,
4551                                            XXH3_kSecret, sizeof(XXH3_kSecret),
4552                                            f_acc512, f_scramble);
4553     {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
4554         f_initSec(secret, seed64);
4555         return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
4556                                            f_acc512, f_scramble);
4557     }
4558 }
4559 
4560 /*
4561  * It's important for performance that XXH3_hashLong is not inlined.
4562  */
4563 XXH_NO_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSeed(const void * input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen)4564 XXH3_hashLong_128b_withSeed(const void* input, size_t len,
4565                             XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
4566 {
4567     (void)secret; (void)secretLen;
4568     return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
4569                 XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
4570 }
4571 
4572 typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
4573                                             XXH64_hash_t, const void* XXH_RESTRICT, size_t);
4574 
4575 XXH_FORCE_INLINE XXH128_hash_t
XXH3_128bits_internal(const void * input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen,XXH3_hashLong128_f f_hl128)4576 XXH3_128bits_internal(const void* input, size_t len,
4577                       XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
4578                       XXH3_hashLong128_f f_hl128)
4579 {
4580     XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
4581     /*
4582      * If an action is to be taken if `secret` conditions are not respected,
4583      * it should be done here.
4584      * For now, it's a contract pre-condition.
4585      * Adding a check and a branch here would cost performance at every hash.
4586      */
4587     if (len <= 16)
4588         return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
4589     if (len <= 128)
4590         return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4591     if (len <= XXH3_MIDSIZE_MAX)
4592         return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4593     return f_hl128(input, len, seed64, secret, secretLen);
4594 }
4595 
4596 
4597 /* ===   Public XXH128 API   === */
4598 
XXH3_128bits(const void * input,size_t len)4599 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
4600 {
4601     return XXH3_128bits_internal(input, len, 0,
4602                                  XXH3_kSecret, sizeof(XXH3_kSecret),
4603                                  XXH3_hashLong_128b_default);
4604 }
4605 
4606 XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSecret(const void * input,size_t len,const void * secret,size_t secretSize)4607 XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
4608 {
4609     return XXH3_128bits_internal(input, len, 0,
4610                                  (const xxh_u8*)secret, secretSize,
4611                                  XXH3_hashLong_128b_withSecret);
4612 }
4613 
4614 XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSeed(const void * input,size_t len,XXH64_hash_t seed)4615 XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
4616 {
4617     return XXH3_128bits_internal(input, len, seed,
4618                                  XXH3_kSecret, sizeof(XXH3_kSecret),
4619                                  XXH3_hashLong_128b_withSeed);
4620 }
4621 
4622 XXH_PUBLIC_API XXH128_hash_t
XXH128(const void * input,size_t len,XXH64_hash_t seed)4623 XXH128(const void* input, size_t len, XXH64_hash_t seed)
4624 {
4625     return XXH3_128bits_withSeed(input, len, seed);
4626 }
4627 
4628 
4629 /* ===   XXH3 128-bit streaming   === */
4630 
4631 /*
4632  * All the functions are actually the same as for 64-bit streaming variant.
4633  * The only difference is the finalizatiom routine.
4634  */
4635 
4636 static void
XXH3_128bits_reset_internal(XXH3_state_t * statePtr,XXH64_hash_t seed,const void * secret,size_t secretSize)4637 XXH3_128bits_reset_internal(XXH3_state_t* statePtr,
4638                             XXH64_hash_t seed,
4639                             const void* secret, size_t secretSize)
4640 {
4641     XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize);
4642 }
4643 
4644 XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset(XXH3_state_t * statePtr)4645 XXH3_128bits_reset(XXH3_state_t* statePtr)
4646 {
4647     if (statePtr == NULL) return XXH_ERROR;
4648     XXH3_128bits_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4649     return XXH_OK;
4650 }
4651 
4652 XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecret(XXH3_state_t * statePtr,const void * secret,size_t secretSize)4653 XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
4654 {
4655     if (statePtr == NULL) return XXH_ERROR;
4656     XXH3_128bits_reset_internal(statePtr, 0, secret, secretSize);
4657     if (secret == NULL) return XXH_ERROR;
4658     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
4659     return XXH_OK;
4660 }
4661 
4662 XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSeed(XXH3_state_t * statePtr,XXH64_hash_t seed)4663 XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
4664 {
4665     if (statePtr == NULL) return XXH_ERROR;
4666     if (seed==0) return XXH3_128bits_reset(statePtr);
4667     if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed);
4668     XXH3_128bits_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
4669     return XXH_OK;
4670 }
4671 
4672 XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_update(XXH3_state_t * state,const void * input,size_t len)4673 XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
4674 {
4675     return XXH3_update(state, (const xxh_u8*)input, len,
4676                        XXH3_accumulate_512, XXH3_scrambleAcc);
4677 }
4678 
XXH3_128bits_digest(const XXH3_state_t * state)4679 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
4680 {
4681     const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4682     if (state->totalLen > XXH3_MIDSIZE_MAX) {
4683         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
4684         XXH3_digest_long(acc, state, secret);
4685         XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
4686         {   XXH128_hash_t h128;
4687             h128.low64  = XXH3_mergeAccs(acc,
4688                                          secret + XXH_SECRET_MERGEACCS_START,
4689                                          (xxh_u64)state->totalLen * XXH_PRIME64_1);
4690             h128.high64 = XXH3_mergeAccs(acc,
4691                                          secret + state->secretLimit + XXH_STRIPE_LEN
4692                                                 - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
4693                                          ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
4694             return h128;
4695         }
4696     }
4697     /* len <= XXH3_MIDSIZE_MAX : short code */
4698     if (state->seed)
4699         return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
4700     return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
4701                                    secret, state->secretLimit + XXH_STRIPE_LEN);
4702 }
4703 
4704 /* 128-bit utility functions */
4705 
4706 #include <string.h>   /* memcmp, memcpy */
4707 
4708 /* return : 1 is equal, 0 if different */
XXH128_isEqual(XXH128_hash_t h1,XXH128_hash_t h2)4709 XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
4710 {
4711     /* note : XXH128_hash_t is compact, it has no padding byte */
4712     return !(memcmp(&h1, &h2, sizeof(h1)));
4713 }
4714 
4715 /* This prototype is compatible with stdlib's qsort().
4716  * return : >0 if *h128_1  > *h128_2
4717  *          <0 if *h128_1  < *h128_2
4718  *          =0 if *h128_1 == *h128_2  */
XXH128_cmp(const void * h128_1,const void * h128_2)4719 XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
4720 {
4721     XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
4722     XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
4723     int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
4724     /* note : bets that, in most cases, hash values are different */
4725     if (hcmp) return hcmp;
4726     return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
4727 }
4728 
4729 
4730 /*======   Canonical representation   ======*/
4731 XXH_PUBLIC_API void
XXH128_canonicalFromHash(XXH128_canonical_t * dst,XXH128_hash_t hash)4732 XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
4733 {
4734     XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
4735     if (XXH_CPU_LITTLE_ENDIAN) {
4736         hash.high64 = XXH_swap64(hash.high64);
4737         hash.low64  = XXH_swap64(hash.low64);
4738     }
4739     memcpy(dst, &hash.high64, sizeof(hash.high64));
4740     memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
4741 }
4742 
4743 XXH_PUBLIC_API XXH128_hash_t
XXH128_hashFromCanonical(const XXH128_canonical_t * src)4744 XXH128_hashFromCanonical(const XXH128_canonical_t* src)
4745 {
4746     XXH128_hash_t h;
4747     h.high64 = XXH_readBE64(src);
4748     h.low64  = XXH_readBE64(src->digest + 8);
4749     return h;
4750 }
4751 
4752 /* Pop our optimization override from above */
4753 #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
4754   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
4755   && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
4756 #  pragma GCC pop_options
4757 #endif
4758 
4759 #endif  /* XXH_NO_LONG_LONG */
4760 
4761 
4762 #endif  /* XXH_IMPLEMENTATION */
4763 
4764 
4765 #if defined (__cplusplus)
4766 }
4767 #endif
4768