1 /* Target macros for the FRV port of GCC.
2    Copyright (C) 1999-2018 Free Software Foundation, Inc.
3    Contributed by Red Hat Inc.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 3, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef __FRV_H__
22 #define __FRV_H__
23 
24 /* Frv general purpose macros.  */
25 /* Align an address.  */
26 #define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
27 
28 /* Driver configuration.  */
29 
30 /* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
31     FDPIC which multilib to use depends on whether FDPIC is in use or
32     not.  The trick we use is to introduce -multilib-library-pic as a
33     pseudo-flag that selects the library-pic multilib, and map fpic
34     and fPIC to it only if fdpic is not selected.  Also, if fdpic is
35     selected and no PIC/PIE options are present, we imply -fPIE.
36     Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
37     speed, or if we have -On with n>=3, enable inlining of PLTs.  As
38     for -mgprel-ro, we want to enable it by default, but not for -fpic or
39     -fpie.  */
40 
41 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
42 "%{mno-pack:\
43    %{!mhard-float:-msoft-float}\
44    %{!mmedia:-mno-media}}\
45  %{!mfdpic:%{" FPIC_SPEC ": -multilib-library-pic}}\
46  %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
47    	    %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
48 	  %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{" FPIC_SPEC ":-minline-plt} \
49                     %{" NO_FPIC_SPEC ":%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}} \
50 	  %{!mno-gprel-ro:%{" NO_FPIE1_AND_FPIC1_SPEC ":-mgprel-ro}}} \
51 "
52 #ifndef SUBTARGET_DRIVER_SELF_SPECS
53 # define SUBTARGET_DRIVER_SELF_SPECS
54 #endif
55 
56 #undef  ASM_SPEC
57 #define ASM_SPEC "\
58 %{G*} \
59 %{mtomcat-stats} \
60 %{!mno-eflags: \
61     %{mcpu=*} \
62     %{mgpr-*} %{mfpr-*} \
63     %{msoft-float} %{mhard-float} \
64     %{mdword} %{mno-dword} \
65     %{mdouble} %{mno-double} \
66     %{mmedia} %{mno-media} \
67     %{mmuladd} %{mno-muladd} \
68     %{mpack} %{mno-pack} \
69     %{mno-fdpic:-mnopic} %{mfdpic} \
70     %{" FPIE1_OR_FPIC1_SPEC ":-mpic} %{" FPIE2_OR_FPIC2_SPEC ":-mPIC} %{mlibrary-pic}}"
71 
72 #undef  STARTFILE_SPEC
73 #define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
74 
75 #undef  ENDFILE_SPEC
76 #define ENDFILE_SPEC "frvend%O%s"
77 
78 
79 #define MASK_DEFAULT_FRV	\
80   (MASK_MEDIA			\
81    | MASK_DOUBLE		\
82    | MASK_MULADD		\
83    | MASK_DWORD			\
84    | MASK_PACK)
85 
86 #define MASK_DEFAULT_FR500 \
87   (MASK_MEDIA | MASK_DWORD | MASK_PACK)
88 
89 #define MASK_DEFAULT_FR550 \
90   (MASK_MEDIA | MASK_DWORD | MASK_PACK)
91 
92 #define MASK_DEFAULT_FR450	\
93   (MASK_GPR_32			\
94    | MASK_FPR_32		\
95    | MASK_MEDIA			\
96    | MASK_SOFT_FLOAT		\
97    | MASK_DWORD			\
98    | MASK_PACK)
99 
100 #define MASK_DEFAULT_FR400	\
101   (MASK_GPR_32			\
102    | MASK_FPR_32		\
103    | MASK_MEDIA			\
104    | MASK_ACC_4			\
105    | MASK_SOFT_FLOAT		\
106    | MASK_DWORD			\
107    | MASK_PACK)
108 
109 #define MASK_DEFAULT_SIMPLE \
110   (MASK_GPR_32 | MASK_SOFT_FLOAT)
111 
112 /* A C string constant that tells the GCC driver program options to pass to
113    `cc1'.  It can also specify how to translate options you give to GCC into
114    options for GCC to pass to the `cc1'.
115 
116    Do not define this macro if it does not need to do anything.  */
117 /* For ABI compliance, we need to put bss data into the normal data section.  */
118 #define CC1_SPEC "%{G*}"
119 
120 #undef	LINK_SPEC
121 #define LINK_SPEC "\
122 %{h*} %{v:-V} \
123 %{mfdpic:-melf32frvfd -z text} \
124 %{static:-dn -Bstatic} \
125 %{shared:-Bdynamic} \
126 %{symbolic:-Bsymbolic} \
127 %{G*}"
128 
129 #undef  LIB_SPEC
130 #define LIB_SPEC "--start-group -lc -lsim --end-group"
131 
132 #ifndef CPU_TYPE
133 #define CPU_TYPE		FRV_CPU_FR500
134 #endif
135 
136 /* Run-time target specifications */
137 
138 #define TARGET_CPU_CPP_BUILTINS()					\
139   do									\
140     {									\
141       int issue_rate;							\
142 									\
143       builtin_define ("__frv__");					\
144       builtin_assert ("machine=frv");					\
145 									\
146       issue_rate = frv_issue_rate ();					\
147       if (issue_rate > 1)						\
148 	builtin_define_with_int_value ("__FRV_VLIW__", issue_rate);	\
149       builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS);		\
150       builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS);		\
151       builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS);		\
152 									\
153       switch (frv_cpu_type)						\
154 	{								\
155 	case FRV_CPU_GENERIC:						\
156 	  builtin_define ("__CPU_GENERIC__");				\
157 	  break;							\
158 	case FRV_CPU_FR550:						\
159 	  builtin_define ("__CPU_FR550__");				\
160 	  break;							\
161 	case FRV_CPU_FR500:						\
162 	case FRV_CPU_TOMCAT:						\
163 	  builtin_define ("__CPU_FR500__");				\
164 	  break;							\
165 	case FRV_CPU_FR450:						\
166 	  builtin_define ("__CPU_FR450__");				\
167 	  break;							\
168 	case FRV_CPU_FR405:						\
169 	  builtin_define ("__CPU_FR405__");				\
170 	  break;							\
171 	case FRV_CPU_FR400:						\
172 	  builtin_define ("__CPU_FR400__");				\
173 	  break;							\
174 	case FRV_CPU_FR300:						\
175 	case FRV_CPU_SIMPLE:						\
176 	  builtin_define ("__CPU_FR300__");				\
177 	  break;							\
178 	}								\
179 									\
180       if (TARGET_HARD_FLOAT)						\
181 	builtin_define ("__FRV_HARD_FLOAT__");				\
182       if (TARGET_DWORD)							\
183 	builtin_define ("__FRV_DWORD__");				\
184       if (TARGET_FDPIC)							\
185 	builtin_define ("__FRV_FDPIC__");				\
186       if (flag_leading_underscore > 0)					\
187 	builtin_define ("__FRV_UNDERSCORE__");				\
188     }									\
189   while (0)
190 
191 
192 #define TARGET_HAS_FPRS		(TARGET_HARD_FLOAT || TARGET_MEDIA)
193 
194 #define NUM_GPRS		(TARGET_GPR_32? 32 : 64)
195 #define NUM_FPRS		(!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
196 #define NUM_ACCS		(!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
197 
198 /* X is a valid accumulator number if (X & ACC_MASK) == X.  */
199 #define ACC_MASK						\
200   (!TARGET_MEDIA ? 0						\
201    : TARGET_ACC_4 ? 3						\
202    : frv_cpu_type == FRV_CPU_FR450 ? 11				\
203    : 7)
204 
205 /* Macros to identify the blend of media instructions available.  Revision 1
206    is the one found on the FR500.  Revision 2 includes the changes made for
207    the FR400.
208 
209    Treat the generic processor as a revision 1 machine for now, for
210    compatibility with earlier releases.  */
211 
212 #define TARGET_MEDIA_REV1					\
213   (TARGET_MEDIA							\
214    && (frv_cpu_type == FRV_CPU_GENERIC				\
215        || frv_cpu_type == FRV_CPU_FR500))
216 
217 #define TARGET_MEDIA_REV2					\
218   (TARGET_MEDIA							\
219    && (frv_cpu_type == FRV_CPU_FR400				\
220        || frv_cpu_type == FRV_CPU_FR405				\
221        || frv_cpu_type == FRV_CPU_FR450				\
222        || frv_cpu_type == FRV_CPU_FR550))
223 
224 #define TARGET_MEDIA_FR450					\
225   (frv_cpu_type == FRV_CPU_FR450)
226 
227 #define TARGET_FR500_FR550_BUILTINS				\
228    (frv_cpu_type == FRV_CPU_FR500				\
229     || frv_cpu_type == FRV_CPU_FR550)
230 
231 #define TARGET_FR405_BUILTINS					\
232   (frv_cpu_type == FRV_CPU_FR405				\
233    || frv_cpu_type == FRV_CPU_FR450)
234 
235 #ifndef HAVE_AS_TLS
236 #define HAVE_AS_TLS 0
237 #endif
238 
239 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
240 
241 /* Small Data Area Support.  */
242 /* Maximum size of variables that go in .sdata/.sbss.
243    The -msdata=foo switch also controls how small variables are handled.  */
244 #ifndef SDATA_DEFAULT_SIZE
245 #define SDATA_DEFAULT_SIZE 8
246 #endif
247 
248 
249 /* Storage Layout */
250 
251 /* Define this macro to have the value 1 if the most significant bit in a byte
252    has the lowest number; otherwise define it to have the value zero.  This
253    means that bit-field instructions count from the most significant bit.  If
254    the machine has no bit-field instructions, then this must still be defined,
255    but it doesn't matter which value it is defined to.  This macro need not be
256    a constant.
257 
258    This macro does not affect the way structure fields are packed into bytes or
259    words; that is controlled by `BYTES_BIG_ENDIAN'.  */
260 #define BITS_BIG_ENDIAN 1
261 
262 /* Define this macro to have the value 1 if the most significant byte in a word
263    has the lowest number.  This macro need not be a constant.  */
264 #define BYTES_BIG_ENDIAN 1
265 
266 /* Define this macro to have the value 1 if, in a multiword object, the most
267    significant word has the lowest number.  This applies to both memory
268    locations and registers; GCC fundamentally assumes that the order of
269    words in memory is the same as the order in registers.  This macro need not
270    be a constant.  */
271 #define WORDS_BIG_ENDIAN 1
272 
273 /* Number of storage units in a word; normally 4.  */
274 #define UNITS_PER_WORD 4
275 
276 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
277    which has the specified mode and signedness is to be stored in a register.
278    This macro is only called when TYPE is a scalar type.
279 
280    On most RISC machines, which only have operations that operate on a full
281    register, define this macro to set M to `word_mode' if M is an integer mode
282    narrower than `BITS_PER_WORD'.  In most cases, only integer modes should be
283    widened because wider-precision floating-point operations are usually more
284    expensive than their narrower counterparts.
285 
286    For most machines, the macro definition does not change UNSIGNEDP.  However,
287    some machines, have instructions that preferentially handle either signed or
288    unsigned quantities of certain modes.  For example, on the DEC Alpha, 32-bit
289    loads from memory and 32-bit add instructions sign-extend the result to 64
290    bits.  On such machines, set UNSIGNEDP according to which kind of extension
291    is more efficient.
292 
293    Do not define this macro if it would never modify MODE.  */
294 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
295   do						\
296     {						\
297       if (GET_MODE_CLASS (MODE) == MODE_INT	\
298 	  && GET_MODE_SIZE (MODE) < 4)		\
299 	(MODE) = SImode;			\
300     }						\
301   while (0)
302 
303 /* Normal alignment required for function parameters on the stack, in bits.
304    All stack parameters receive at least this much alignment regardless of data
305    type.  On most machines, this is the same as the size of an integer.  */
306 #define PARM_BOUNDARY 32
307 
308 /* Define this macro if you wish to preserve a certain alignment for the stack
309    pointer.  The definition is a C expression for the desired alignment
310    (measured in bits).
311 
312    If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
313    specified boundary.  If `PUSH_ROUNDING' is defined and specifies a less
314    strict alignment than `STACK_BOUNDARY', the stack may be momentarily
315    unaligned while pushing arguments.  */
316 #define STACK_BOUNDARY 64
317 
318 /* Alignment required for a function entry point, in bits.  */
319 #define FUNCTION_BOUNDARY 128
320 
321 /* Biggest alignment that any data type can require on this machine,
322    in bits.  */
323 #define BIGGEST_ALIGNMENT 64
324 
325 /* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
326    some reason.  */
327 #ifdef IN_TARGET_LIBS
328 #define BIGGEST_FIELD_ALIGNMENT 64
329 #else
330 /* An expression for the alignment of a structure field FIELD if the
331    alignment computed in the usual way is COMPUTED.  GCC uses this
332    value instead of the value in `BIGGEST_ALIGNMENT' or
333    `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only.  */
334 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) 			\
335   frv_adjust_field_align (FIELD, COMPUTED)
336 #endif
337 
338 /* If defined, a C expression to compute the alignment for a static variable.
339    TYPE is the data type, and ALIGN is the alignment that the object
340    would ordinarily have.  The value of this macro is used instead of that
341    alignment to align the object.
342 
343    If this macro is not defined, then ALIGN is used.
344 
345    One use of this macro is to increase alignment of medium-size data to make
346    it all fit in fewer cache lines.  Another is to cause character arrays to be
347    word-aligned so that `strcpy' calls that copy constants to character arrays
348    can be done inline.  */
349 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
350   (TREE_CODE (TYPE) == ARRAY_TYPE		\
351    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
352    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
353 
354 /* Define this macro to be the value 1 if instructions will fail to work if
355    given data not on the nominal alignment.  If instructions will merely go
356    slower in that case, define this macro as 0.  */
357 #define STRICT_ALIGNMENT 1
358 
359 #define PCC_BITFIELD_TYPE_MATTERS 1
360 
361 
362 /* Layout of Source Language Data Types.  */
363 
364 #define CHAR_TYPE_SIZE         8
365 #define SHORT_TYPE_SIZE       16
366 #define INT_TYPE_SIZE         32
367 #define LONG_TYPE_SIZE        32
368 #define LONG_LONG_TYPE_SIZE   64
369 #define FLOAT_TYPE_SIZE       32
370 #define DOUBLE_TYPE_SIZE      64
371 #define LONG_DOUBLE_TYPE_SIZE 64
372 
373 /* An expression whose value is 1 or 0, according to whether the type `char'
374    should be signed or unsigned by default.  The user can always override this
375    default with the options `-fsigned-char' and `-funsigned-char'.  */
376 #define DEFAULT_SIGNED_CHAR 1
377 
378 #undef  SIZE_TYPE
379 #define SIZE_TYPE "unsigned int"
380 
381 #undef  PTRDIFF_TYPE
382 #define PTRDIFF_TYPE "int"
383 
384 #undef  WCHAR_TYPE
385 #define WCHAR_TYPE "long int"
386 
387 #undef  WCHAR_TYPE_SIZE
388 #define WCHAR_TYPE_SIZE BITS_PER_WORD
389 
390 
391 /* General purpose registers.  */
392 #define GPR_FIRST       0                       /* First gpr */
393 #define GPR_LAST        (GPR_FIRST + 63)        /* Last gpr */
394 #define GPR_R0          GPR_FIRST               /* R0, constant 0 */
395 #define GPR_FP          (GPR_FIRST + 2)         /* Frame pointer */
396 #define GPR_SP          (GPR_FIRST + 1)         /* Stack pointer */
397 						/* small data register */
398 #define SDA_BASE_REG    ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
399 #define PIC_REGNO       (GPR_FIRST + (TARGET_FDPIC?15:17))        /* PIC register.  */
400 #define FDPIC_FPTR_REGNO  (GPR_FIRST + 14)        /* uClinux PIC function pointer register.  */
401 #define FDPIC_REGNO   (GPR_FIRST + 15)        /* uClinux PIC register.  */
402 
403 #define HARD_REGNO_RENAME_OK(from,to) (TARGET_FDPIC ? ((to) != FDPIC_REG) : 1)
404 
405 #define OUR_FDPIC_REG	get_hard_reg_initial_val (SImode, FDPIC_REGNO)
406 
407 #define FPR_FIRST       64			/* First FP reg */
408 #define FPR_LAST        127			/* Last  FP reg */
409 
410 #define GPR_TEMP_NUM	frv_condexec_temps	/* # gprs to reserve for temps */
411 
412 /* We reserve the last CR and CCR in each category to be used as a reload
413    register to reload the CR/CCR registers.  This is a kludge.  */
414 #define CC_FIRST	128			/* First ICC/FCC reg */
415 #define CC_LAST		135			/* Last  ICC/FCC reg */
416 #define ICC_FIRST	(CC_FIRST + 4)		/* First ICC reg */
417 #define ICC_LAST	(CC_FIRST + 7)		/* Last  ICC reg */
418 #define ICC_TEMP	(CC_FIRST + 7)		/* Temporary ICC reg */
419 #define FCC_FIRST	(CC_FIRST)		/* First FCC reg */
420 #define FCC_LAST	(CC_FIRST + 3)		/* Last  FCC reg */
421 
422 /* Amount to shift a value to locate a ICC or FCC register in the CCR
423    register and shift it to the bottom 4 bits.  */
424 #define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
425 
426 /* Mask to isolate a single ICC/FCC value.  */
427 #define CC_MASK		0xf
428 
429 /* Masks to isolate the various bits in an ICC field.  */
430 #define ICC_MASK_N	0x8	/* negative */
431 #define ICC_MASK_Z	0x4	/* zero */
432 #define ICC_MASK_V	0x2	/* overflow */
433 #define ICC_MASK_C	0x1	/* carry */
434 
435 /* Mask to isolate the N/Z flags in an ICC.  */
436 #define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
437 
438 /* Mask to isolate the Z/C flags in an ICC.  */
439 #define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
440 
441 /* Masks to isolate the various bits in a FCC field.  */
442 #define FCC_MASK_E	0x8	/* equal */
443 #define FCC_MASK_L	0x4	/* less than */
444 #define FCC_MASK_G	0x2	/* greater than */
445 #define FCC_MASK_U	0x1	/* unordered */
446 
447 /* For CCR registers, the machine wants CR4..CR7 to be used for integer
448    code and CR0..CR3 to be used for floating point.  */
449 #define CR_FIRST	136			/* First CCR */
450 #define CR_LAST		143			/* Last  CCR */
451 #define CR_NUM		(CR_LAST-CR_FIRST+1)	/* # of CCRs (8) */
452 #define ICR_FIRST	(CR_FIRST + 4)		/* First integer CCR */
453 #define ICR_LAST	(CR_FIRST + 7)		/* Last  integer CCR */
454 #define ICR_TEMP	ICR_LAST		/* Temp  integer CCR */
455 #define FCR_FIRST	(CR_FIRST + 0)		/* First float CCR */
456 #define FCR_LAST	(CR_FIRST + 3)		/* Last  float CCR */
457 
458 /* Amount to shift a value to locate a CR register in the CCCR special purpose
459    register and shift it to the bottom 2 bits.  */
460 #define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
461 
462 /* Mask to isolate a single CR value.  */
463 #define CR_MASK		0x3
464 
465 #define ACC_FIRST	144			/* First acc register */
466 #define ACC_LAST	155			/* Last  acc register */
467 
468 #define ACCG_FIRST	156			/* First accg register */
469 #define ACCG_LAST	167			/* Last  accg register */
470 
471 #define AP_FIRST	168			/* fake argument pointer */
472 
473 #define SPR_FIRST	169
474 #define SPR_LAST	172
475 #define LR_REGNO	(SPR_FIRST)
476 #define LCR_REGNO	(SPR_FIRST + 1)
477 #define IACC_FIRST	(SPR_FIRST + 2)
478 #define IACC_LAST	(SPR_FIRST + 3)
479 
480 #define GPR_P(R)	IN_RANGE (R, GPR_FIRST, GPR_LAST)
481 #define GPR_OR_AP_P(R)	(GPR_P (R) || (R) == ARG_POINTER_REGNUM)
482 #define FPR_P(R)	IN_RANGE (R, FPR_FIRST, FPR_LAST)
483 #define CC_P(R)		IN_RANGE (R, CC_FIRST, CC_LAST)
484 #define ICC_P(R)	IN_RANGE (R, ICC_FIRST, ICC_LAST)
485 #define FCC_P(R)	IN_RANGE (R, FCC_FIRST, FCC_LAST)
486 #define CR_P(R)		IN_RANGE (R, CR_FIRST, CR_LAST)
487 #define ICR_P(R)	IN_RANGE (R, ICR_FIRST, ICR_LAST)
488 #define FCR_P(R)	IN_RANGE (R, FCR_FIRST, FCR_LAST)
489 #define ACC_P(R)	IN_RANGE (R, ACC_FIRST, ACC_LAST)
490 #define ACCG_P(R)	IN_RANGE (R, ACCG_FIRST, ACCG_LAST)
491 #define SPR_P(R)	IN_RANGE (R, SPR_FIRST, SPR_LAST)
492 
493 #define GPR_OR_PSEUDO_P(R)	(GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
494 #define FPR_OR_PSEUDO_P(R)	(FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
495 #define GPR_AP_OR_PSEUDO_P(R)	(GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
496 #define CC_OR_PSEUDO_P(R)	(CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
497 #define ICC_OR_PSEUDO_P(R)	(ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
498 #define FCC_OR_PSEUDO_P(R)	(FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
499 #define CR_OR_PSEUDO_P(R)	(CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
500 #define ICR_OR_PSEUDO_P(R)	(ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
501 #define FCR_OR_PSEUDO_P(R)	(FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
502 #define ACC_OR_PSEUDO_P(R)	(ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
503 #define ACCG_OR_PSEUDO_P(R)	(ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
504 
505 #define MAX_STACK_IMMEDIATE_OFFSET 2047
506 
507 
508 /* Register Basics.  */
509 
510 /* Number of hardware registers known to the compiler.  They receive numbers 0
511    through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
512    really is assigned the number `FIRST_PSEUDO_REGISTER'.  */
513 #define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
514 
515 /* The first/last register that can contain the arguments to a function.  */
516 #define FIRST_ARG_REGNUM	(GPR_FIRST + 8)
517 #define LAST_ARG_REGNUM		(FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
518 
519 /* Registers used by the exception handling functions.  These should be
520    registers that are not otherwise used by the calling sequence.  */
521 #define FIRST_EH_REGNUM		14
522 #define LAST_EH_REGNUM		15
523 
524 /* Scratch registers used in the prologue, epilogue and thunks.
525    OFFSET_REGNO is for loading constant addends that are too big for a
526    single instruction.  TEMP_REGNO is used for transferring SPRs to and from
527    the stack, and various other activities.  */
528 #define OFFSET_REGNO		4
529 #define TEMP_REGNO		5
530 
531 /* Registers used in the prologue.  OLD_SP_REGNO is the old stack pointer,
532    which is sometimes used to set up the frame pointer.  */
533 #define OLD_SP_REGNO		6
534 
535 /* Registers used in the epilogue.  STACKADJ_REGNO stores the exception
536    handler's stack adjustment.  */
537 #define STACKADJ_REGNO		6
538 
539 /* Registers used in thunks.  JMP_REGNO is used for loading the target
540    address.  */
541 #define JUMP_REGNO		6
542 
543 #define EH_RETURN_DATA_REGNO(N)	((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
544 				 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
545 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, STACKADJ_REGNO)
546 #define EH_RETURN_HANDLER_RTX   RETURN_ADDR_RTX (0, frame_pointer_rtx)
547 
548 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
549 
550 /* An initializer that says which registers are used for fixed purposes all
551    throughout the compiled code and are therefore not available for general
552    allocation.  These would include the stack pointer, the frame pointer
553    (except on machines where that can be used as a general register when no
554    frame pointer is needed), the program counter on machines where that is
555    considered one of the addressable registers, and any other numbered register
556    with a standard use.
557 
558    This information is expressed as a sequence of numbers, separated by commas
559    and surrounded by braces.  The Nth number is 1 if register N is fixed, 0
560    otherwise.
561 
562    The table initialized from this macro, and the table initialized by the
563    following one, may be overridden at run time either automatically, by the
564    actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
565    command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'.  */
566 
567 /* gr0  -- Hard Zero
568    gr1  -- Stack Pointer
569    gr2  -- Frame Pointer
570    gr3  -- Hidden Parameter
571    gr16 -- Small Data reserved
572    gr17 -- Pic reserved
573    gr28 -- OS reserved
574    gr29 -- OS reserved
575    gr30 -- OS reserved
576    gr31 -- OS reserved
577    cr3  -- reserved to reload FCC registers.
578    cr7  -- reserved to reload ICC registers.  */
579 #define FIXED_REGISTERS							\
580 {	/* Integer Registers */						\
581 	1, 1, 1, 1, 0, 0, 0, 0,		/* 000-007, gr0  - gr7  */	\
582 	0, 0, 0, 0, 0, 0, 0, 0,		/* 008-015, gr8  - gr15 */	\
583 	1, 1, 0, 0, 0, 0, 0, 0,		/* 016-023, gr16 - gr23 */	\
584 	0, 0, 0, 0, 1, 1, 1, 1,		/* 024-031, gr24 - gr31 */	\
585 	0, 0, 0, 0, 0, 0, 0, 0,		/* 032-039, gr32 - gr39 */	\
586 	0, 0, 0, 0, 0, 0, 0, 0,		/* 040-040, gr48 - gr47 */	\
587 	0, 0, 0, 0, 0, 0, 0, 0,		/* 048-055, gr48 - gr55 */	\
588 	0, 0, 0, 0, 0, 0, 0, 0,		/* 056-063, gr56 - gr63 */	\
589 	/* Float Registers */						\
590 	0, 0, 0, 0, 0, 0, 0, 0,		/* 064-071, fr0  - fr7  */	\
591 	0, 0, 0, 0, 0, 0, 0, 0,		/* 072-079, fr8  - fr15 */	\
592 	0, 0, 0, 0, 0, 0, 0, 0,		/* 080-087, fr16 - fr23 */	\
593 	0, 0, 0, 0, 0, 0, 0, 0,		/* 088-095, fr24 - fr31 */	\
594 	0, 0, 0, 0, 0, 0, 0, 0,		/* 096-103, fr32 - fr39 */	\
595 	0, 0, 0, 0, 0, 0, 0, 0,		/* 104-111, fr48 - fr47 */	\
596 	0, 0, 0, 0, 0, 0, 0, 0,		/* 112-119, fr48 - fr55 */	\
597 	0, 0, 0, 0, 0, 0, 0, 0,		/* 120-127, fr56 - fr63 */	\
598 	/* Condition Code Registers */					\
599 	0, 0, 0, 0,			/* 128-131, fcc0 - fcc3  */	\
600 	0, 0, 0, 1,			/* 132-135, icc0 - icc3 */	\
601 	/* Conditional execution Registers (CCR) */			\
602 	0, 0, 0, 0, 0, 0, 0, 1,		/* 136-143, cr0 - cr7 */	\
603 	/* Accumulators */						\
604 	1, 1, 1, 1, 1, 1, 1, 1,		/* 144-151, acc0  - acc7 */	\
605 	1, 1, 1, 1,			/* 152-155, acc8  - acc11 */	\
606 	1, 1, 1, 1, 1, 1, 1, 1,		/* 156-163, accg0 - accg7 */	\
607 	1, 1, 1, 1,			/* 164-167, accg8 - accg11 */	\
608 	/* Other registers */						\
609 	1,				/* 168, AP   - fake arg ptr */	\
610 	1,				/* 169, LR   - Link register*/	\
611 	0,				/* 170, LCR  - Loop count reg*/	\
612 	1, 1				/* 171-172, iacc0 */		\
613 }
614 
615 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
616    general) by function calls as well as for fixed registers.  This macro
617    therefore identifies the registers that are not available for general
618    allocation of values that must live across function calls.
619 
620    If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
621    saves it on function entry and restores it on function exit, if the register
622    is used within the function.  */
623 #define CALL_USED_REGISTERS						\
624 {	/* Integer Registers */						\
625 	1, 1, 1, 1, 1, 1, 1, 1,		/* 000-007, gr0  - gr7  */	\
626 	1, 1, 1, 1, 1, 1, 1, 1,		/* 008-015, gr8  - gr15 */	\
627 	1, 1, 0, 0, 0, 0, 0, 0,		/* 016-023, gr16 - gr23 */	\
628 	0, 0, 0, 0, 1, 1, 1, 1,		/* 024-031, gr24 - gr31 */	\
629 	1, 1, 1, 1, 1, 1, 1, 1,		/* 032-039, gr32 - gr39 */	\
630 	1, 1, 1, 1, 1, 1, 1, 1,		/* 040-040, gr48 - gr47 */	\
631 	0, 0, 0, 0, 0, 0, 0, 0,		/* 048-055, gr48 - gr55 */	\
632 	0, 0, 0, 0, 0, 0, 0, 0,		/* 056-063, gr56 - gr63 */	\
633 	/* Float Registers */						\
634 	1, 1, 1, 1, 1, 1, 1, 1,		/* 064-071, fr0  - fr7  */	\
635 	1, 1, 1, 1, 1, 1, 1, 1,		/* 072-079, fr8  - fr15 */	\
636 	0, 0, 0, 0, 0, 0, 0, 0,		/* 080-087, fr16 - fr23 */	\
637 	0, 0, 0, 0, 0, 0, 0, 0,		/* 088-095, fr24 - fr31 */	\
638 	1, 1, 1, 1, 1, 1, 1, 1,		/* 096-103, fr32 - fr39 */	\
639 	1, 1, 1, 1, 1, 1, 1, 1,		/* 104-111, fr48 - fr47 */	\
640 	0, 0, 0, 0, 0, 0, 0, 0,		/* 112-119, fr48 - fr55 */	\
641 	0, 0, 0, 0, 0, 0, 0, 0,		/* 120-127, fr56 - fr63 */	\
642 	/* Condition Code Registers */					\
643 	1, 1, 1, 1,			/* 128-131, fcc0 - fcc3 */	\
644 	1, 1, 1, 1,			/* 132-135, icc0 - icc3  */	\
645 	/* Conditional execution Registers (CCR) */			\
646 	1, 1, 1, 1, 1, 1, 1, 1,		/* 136-143, cr0 - cr7 */	\
647 	/* Accumulators */						\
648 	1, 1, 1, 1, 1, 1, 1, 1,		/* 144-151, acc0 - acc7 */	\
649 	1, 1, 1, 1,			/* 152-155, acc8 - acc11 */	\
650 	1, 1, 1, 1, 1, 1, 1, 1,		/* 156-163, accg0 - accg7 */	\
651 	1, 1, 1, 1,			/* 164-167, accg8 - accg11 */	\
652 	/* Other registers */						\
653 	1,				/* 168, AP  - fake arg ptr */	\
654 	1,				/* 169, LR  - Link register*/	\
655 	1,				/* 170, LCR - Loop count reg */	\
656 	1, 1				/* 171-172, iacc0 */		\
657 }
658 
659 
660 /* Order of allocation of registers.  */
661 
662 /* If defined, an initializer for a vector of integers, containing the numbers
663    of hard registers in the order in which GCC should prefer to use them
664    (from most preferred to least).
665 
666    If this macro is not defined, registers are used lowest numbered first (all
667    else being equal).
668 
669    One use of this macro is on machines where the highest numbered registers
670    must always be saved and the save-multiple-registers instruction supports
671    only sequences of consecutive registers.  On such machines, define
672    `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
673    allocatable register first.  */
674 
675 /* On the FRV, allocate GR16 and GR17 after other saved registers so that we
676    have a better chance of allocating 2 registers at a time and can use the
677    double word load/store instructions in the prologue.  */
678 #define REG_ALLOC_ORDER							\
679 {									\
680   /* volatile registers */						\
681   GPR_FIRST  +  4, GPR_FIRST  +  5, GPR_FIRST  +  6, GPR_FIRST 	+  7,	\
682   GPR_FIRST  +  8, GPR_FIRST  +  9, GPR_FIRST  + 10, GPR_FIRST 	+ 11,	\
683   GPR_FIRST  + 12, GPR_FIRST  + 13, GPR_FIRST  + 14, GPR_FIRST 	+ 15,	\
684   GPR_FIRST  + 32, GPR_FIRST  + 33, GPR_FIRST  + 34, GPR_FIRST 	+ 35,	\
685   GPR_FIRST  + 36, GPR_FIRST  + 37, GPR_FIRST  + 38, GPR_FIRST 	+ 39,	\
686   GPR_FIRST  + 40, GPR_FIRST  + 41, GPR_FIRST  + 42, GPR_FIRST 	+ 43,	\
687   GPR_FIRST  + 44, GPR_FIRST  + 45, GPR_FIRST  + 46, GPR_FIRST 	+ 47,	\
688 									\
689   FPR_FIRST  +  0, FPR_FIRST  +  1, FPR_FIRST  +  2, FPR_FIRST 	+  3,	\
690   FPR_FIRST  +  4, FPR_FIRST  +  5, FPR_FIRST  +  6, FPR_FIRST 	+  7,	\
691   FPR_FIRST  +  8, FPR_FIRST  +  9, FPR_FIRST  + 10, FPR_FIRST 	+ 11,	\
692   FPR_FIRST  + 12, FPR_FIRST  + 13, FPR_FIRST  + 14, FPR_FIRST 	+ 15,	\
693   FPR_FIRST  + 32, FPR_FIRST  + 33, FPR_FIRST  + 34, FPR_FIRST 	+ 35,	\
694   FPR_FIRST  + 36, FPR_FIRST  + 37, FPR_FIRST  + 38, FPR_FIRST 	+ 39,	\
695   FPR_FIRST  + 40, FPR_FIRST  + 41, FPR_FIRST  + 42, FPR_FIRST 	+ 43,	\
696   FPR_FIRST  + 44, FPR_FIRST  + 45, FPR_FIRST  + 46, FPR_FIRST 	+ 47,	\
697 									\
698   ICC_FIRST  +  0, ICC_FIRST  +  1, ICC_FIRST  +  2, ICC_FIRST 	+  3,	\
699   FCC_FIRST  +  0, FCC_FIRST  +  1, FCC_FIRST  +  2, FCC_FIRST 	+  3,	\
700   CR_FIRST   +  0, CR_FIRST   +  1, CR_FIRST   +  2, CR_FIRST  	+  3,	\
701   CR_FIRST   +  4, CR_FIRST   +  5, CR_FIRST   +  6, CR_FIRST  	+  7,	\
702 									\
703   /* saved registers */							\
704   GPR_FIRST  + 18, GPR_FIRST  + 19,					\
705   GPR_FIRST  + 20, GPR_FIRST  + 21, GPR_FIRST  + 22, GPR_FIRST 	+ 23,	\
706   GPR_FIRST  + 24, GPR_FIRST  + 25, GPR_FIRST  + 26, GPR_FIRST 	+ 27,	\
707   GPR_FIRST  + 48, GPR_FIRST  + 49, GPR_FIRST  + 50, GPR_FIRST 	+ 51,	\
708   GPR_FIRST  + 52, GPR_FIRST  + 53, GPR_FIRST  + 54, GPR_FIRST 	+ 55,	\
709   GPR_FIRST  + 56, GPR_FIRST  + 57, GPR_FIRST  + 58, GPR_FIRST 	+ 59,	\
710   GPR_FIRST  + 60, GPR_FIRST  + 61, GPR_FIRST  + 62, GPR_FIRST 	+ 63,	\
711   GPR_FIRST  + 16, GPR_FIRST  + 17,					\
712 									\
713   FPR_FIRST  + 16, FPR_FIRST  + 17, FPR_FIRST  + 18, FPR_FIRST 	+ 19,	\
714   FPR_FIRST  + 20, FPR_FIRST  + 21, FPR_FIRST  + 22, FPR_FIRST 	+ 23,	\
715   FPR_FIRST  + 24, FPR_FIRST  + 25, FPR_FIRST  + 26, FPR_FIRST 	+ 27,	\
716   FPR_FIRST  + 28, FPR_FIRST  + 29, FPR_FIRST  + 30, FPR_FIRST 	+ 31,	\
717   FPR_FIRST  + 48, FPR_FIRST  + 49, FPR_FIRST  + 50, FPR_FIRST 	+ 51,	\
718   FPR_FIRST  + 52, FPR_FIRST  + 53, FPR_FIRST  + 54, FPR_FIRST 	+ 55,	\
719   FPR_FIRST  + 56, FPR_FIRST  + 57, FPR_FIRST  + 58, FPR_FIRST 	+ 59,	\
720   FPR_FIRST  + 60, FPR_FIRST  + 61, FPR_FIRST  + 62, FPR_FIRST 	+ 63,	\
721 									\
722   /* special or fixed registers */					\
723   GPR_FIRST  +  0, GPR_FIRST  +  1, GPR_FIRST  +  2, GPR_FIRST 	+  3,	\
724   GPR_FIRST  + 28, GPR_FIRST  + 29, GPR_FIRST  + 30, GPR_FIRST 	+ 31,	\
725   ACC_FIRST  +  0, ACC_FIRST  +  1, ACC_FIRST  +  2, ACC_FIRST 	+  3,	\
726   ACC_FIRST  +  4, ACC_FIRST  +  5, ACC_FIRST  +  6, ACC_FIRST 	+  7,	\
727   ACC_FIRST  +  8, ACC_FIRST  +  9, ACC_FIRST  + 10, ACC_FIRST 	+ 11,	\
728   ACCG_FIRST +  0, ACCG_FIRST +  1, ACCG_FIRST +  2, ACCG_FIRST	+  3,	\
729   ACCG_FIRST +  4, ACCG_FIRST +  5, ACCG_FIRST +  6, ACCG_FIRST	+  7,	\
730   ACCG_FIRST +  8, ACCG_FIRST +  9, ACCG_FIRST + 10, ACCG_FIRST	+ 11,	\
731   AP_FIRST, 	   LR_REGNO,       LCR_REGNO,				\
732   IACC_FIRST +  0, IACC_FIRST +  1					\
733 }
734 
735 
736 /* Define this macro if the compiler should avoid copies to/from CCmode
737    registers.  You should only define this macro if support fo copying to/from
738    CCmode is incomplete.  */
739 #define AVOID_CCMODE_COPIES
740 
741 
742 /* Register Classes.  */
743 
744 /* An enumeral type that must be defined with all the register class names as
745    enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
746    register class, followed by one more enumeral value, `LIM_REG_CLASSES',
747    which is not a register class but rather tells how many classes there are.
748 
749    Each register class has a number, which is the value of casting the class
750    name to type `int'.  The number serves as an index in many of the tables
751    described below.  */
752 enum reg_class
753 {
754   NO_REGS,
755   ICC_REGS,
756   FCC_REGS,
757   CC_REGS,
758   ICR_REGS,
759   FCR_REGS,
760   CR_REGS,
761   LCR_REG,
762   LR_REG,
763   GR8_REGS,
764   GR9_REGS,
765   GR89_REGS,
766   FDPIC_REGS,
767   FDPIC_FPTR_REGS,
768   FDPIC_CALL_REGS,
769   SPR_REGS,
770   QUAD_ACC_REGS,
771   ACCG_REGS,
772   QUAD_FPR_REGS,
773   QUAD_REGS,
774   GPR_REGS,
775   ALL_REGS,
776   LIM_REG_CLASSES
777 };
778 
779 #define GENERAL_REGS GPR_REGS
780 
781 /* The number of distinct register classes, defined as follows:
782 
783         #define N_REG_CLASSES (int) LIM_REG_CLASSES  */
784 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
785 
786 /* An initializer containing the names of the register classes as C string
787    constants.  These names are used in writing some of the debugging dumps.  */
788 #define REG_CLASS_NAMES {						\
789    "NO_REGS",								\
790    "ICC_REGS",								\
791    "FCC_REGS",								\
792    "CC_REGS",								\
793    "ICR_REGS",								\
794    "FCR_REGS",								\
795    "CR_REGS",								\
796    "LCR_REG",								\
797    "LR_REG",								\
798    "GR8_REGS",                                                          \
799    "GR9_REGS",                                                          \
800    "GR89_REGS",                                                         \
801    "FDPIC_REGS",							\
802    "FDPIC_FPTR_REGS",							\
803    "FDPIC_CALL_REGS",							\
804    "SPR_REGS",								\
805    "QUAD_ACC_REGS",							\
806    "ACCG_REGS",								\
807    "QUAD_FPR_REGS",							\
808    "QUAD_REGS",								\
809    "GPR_REGS",								\
810    "ALL_REGS"								\
811 }
812 
813 /* An initializer containing the contents of the register classes, as integers
814    which are bit masks.  The Nth integer specifies the contents of class N.
815    The way the integer MASK is interpreted is that register R is in the class
816    if `MASK & (1 << R)' is 1.
817 
818    When the machine has more than 32 registers, an integer does not suffice.
819    Then the integers are replaced by sub-initializers, braced groupings
820    containing several integers.  Each sub-initializer must be suitable as an
821    initializer for the type `HARD_REG_SET' which is defined in
822    `hard-reg-set.h'.  */
823 #define REG_CLASS_CONTENTS						       \
824 {  /* gr0-gr31 gr32-gr63  fr0-fr31   fr32-fr-63 cc/ccr/acc ap/spr */	       \
825   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS  */\
826   { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
827   { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
828   { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS  */\
829   { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
830   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
831   { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS  */\
832   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
833   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS  */\
834   { 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
835   { 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
836   { 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
837   { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
838   { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
839   { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
840   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
841   { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
842   { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
843   { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
844   { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
845   { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
846   { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
847 }
848 
849 #define EVEN_ACC_REGS   QUAD_ACC_REGS
850 #define ACC_REGS        QUAD_ACC_REGS
851 #define FEVEN_REGS      QUAD_FPR_REGS
852 #define FPR_REGS        QUAD_FPR_REGS
853 #define EVEN_REGS       QUAD_REGS
854 
855 /* A C expression whose value is a register class containing hard register
856    REGNO.  In general there is more than one such class; choose a class which
857    is "minimal", meaning that no smaller class also contains the register.  */
858 
859 extern enum reg_class regno_reg_class[];
860 #define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
861 
862 /* A macro whose definition is the name of the class to which a valid base
863    register must belong.  A base register is one used in an address which is
864    the register value plus a displacement.  */
865 #define BASE_REG_CLASS GPR_REGS
866 
867 /* A macro whose definition is the name of the class to which a valid index
868    register must belong.  An index register is one used in an address where its
869    value is either multiplied by a scale factor or added to another register
870    (as well as added to a displacement).  */
871 #define INDEX_REG_CLASS GPR_REGS
872 
873 /* A C expression which is nonzero if register number NUM is suitable for use
874    as a base register in operand addresses.  It may be either a suitable hard
875    register or a pseudo register that has been allocated such a hard register.  */
876 #define REGNO_OK_FOR_BASE_P(NUM)           \
877   ((NUM) < FIRST_PSEUDO_REGISTER           \
878    ? GPR_P (NUM)                           \
879    : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
880 
881 /* A C expression which is nonzero if register number NUM is suitable for use
882    as an index register in operand addresses.  It may be either a suitable hard
883    register or a pseudo register that has been allocated such a hard register.
884 
885    The difference between an index register and a base register is that the
886    index register may be scaled.  If an address involves the sum of two
887    registers, neither one of them scaled, then either one may be labeled the
888    "base" and the other the "index"; but whichever labeling is used must fit
889    the machine's constraints of which registers may serve in each capacity.
890    The compiler will try both labelings, looking for one that is valid, and
891    will reload one or both registers only if neither labeling works.  */
892 #define REGNO_OK_FOR_INDEX_P(NUM)                                       \
893   ((NUM) < FIRST_PSEUDO_REGISTER                                        \
894    ? GPR_P (NUM)                                                        \
895    : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
896 
897 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
898   frv_secondary_reload_class (CLASS, MODE, X)
899 
900 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
901   frv_secondary_reload_class (CLASS, MODE, X)
902 
903 #define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
904 
905 #define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
906 
907 
908 /* Basic Stack Layout.  */
909 
910 /* Structure to describe information about a saved range of registers */
911 
912 typedef struct frv_stack_regs {
913   const char * name;		/* name of the register ranges */
914   int first;			/* first register in the range */
915   int last;			/* last register in the range */
916   int size_1word;		/* # of bytes to be stored via 1 word stores */
917   int size_2words;		/* # of bytes to be stored via 2 word stores */
918   unsigned char field_p;	/* true if the registers are a single SPR */
919   unsigned char dword_p;	/* true if we can do dword stores */
920   unsigned char special_p;	/* true if the regs have a fixed save loc.  */
921 } frv_stack_regs_t;
922 
923 /* Register ranges to look into saving.  */
924 #define STACK_REGS_GPR		0	/* Gprs (normally gr16..gr31, gr48..gr63) */
925 #define STACK_REGS_FPR		1	/* Fprs (normally fr16..fr31, fr48..fr63) */
926 #define STACK_REGS_LR		2	/* LR register */
927 #define STACK_REGS_CC		3	/* CCrs (normally not saved) */
928 #define STACK_REGS_LCR		5	/* lcr register */
929 #define STACK_REGS_STDARG	6	/* stdarg registers */
930 #define STACK_REGS_STRUCT	7	/* structure return (gr3) */
931 #define STACK_REGS_FP		8	/* FP register */
932 #define STACK_REGS_MAX		9	/* # of register ranges */
933 
934 /* Values for save_p field.  */
935 #define REG_SAVE_NO_SAVE	0	/* register not saved */
936 #define REG_SAVE_1WORD		1	/* save the register */
937 #define REG_SAVE_2WORDS		2	/* save register and register+1 */
938 
939 /* Structure used to define the frv stack.  */
940 
941 typedef struct frv_stack {
942   int total_size;		/* total bytes allocated for stack */
943   int vars_size;		/* variable save area size */
944   int parameter_size;		/* outgoing parameter size */
945   int stdarg_size;		/* size of regs needed to be saved for stdarg */
946   int regs_size;		/* size of the saved registers */
947   int regs_size_1word;		/* # of bytes to be stored via 1 word stores */
948   int regs_size_2words;		/* # of bytes to be stored via 2 word stores */
949   int header_size;		/* size of the old FP, struct ret., LR save */
950   int pretend_size;		/* size of pretend args */
951   int vars_offset;		/* offset to save local variables from new SP*/
952   int regs_offset;		/* offset to save registers from new SP */
953 				/* register range information */
954   frv_stack_regs_t regs[STACK_REGS_MAX];
955 				/* offset to store each register */
956   int reg_offset[FIRST_PSEUDO_REGISTER];
957 				/* whether to save register (& reg+1) */
958   unsigned char save_p[FIRST_PSEUDO_REGISTER];
959 } frv_stack_t;
960 
961 /* Define this macro if pushing a word onto the stack moves the stack pointer
962    to a smaller address.  */
963 #define STACK_GROWS_DOWNWARD 1
964 
965 /* Define this macro to nonzero if the addresses of local variable slots
966    are at negative offsets from the frame pointer.  */
967 #define FRAME_GROWS_DOWNWARD 1
968 
969 /* Offset from the stack pointer register to the first location at which
970    outgoing arguments are placed.  If not specified, the default value of zero
971    is used.  This is the proper value for most machines.
972 
973    If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
974    location at which outgoing arguments are placed.  */
975 #define STACK_POINTER_OFFSET 0
976 
977 /* Offset from the argument pointer register to the first argument's address.
978    On some machines it may depend on the data type of the function.
979 
980    If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
981    argument's address.  */
982 #define FIRST_PARM_OFFSET(FUNDECL) 0
983 
984 /* A C expression whose value is RTL representing the address in a stack frame
985    where the pointer to the caller's frame is stored.  Assume that FRAMEADDR is
986    an RTL expression for the address of the stack frame itself.
987 
988    If you don't define this macro, the default is to return the value of
989    FRAMEADDR--that is, the stack frame address is also the address of the stack
990    word that points to the previous frame.  */
991 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
992 
993 /* A C expression whose value is RTL representing the value of the return
994    address for the frame COUNT steps up from the current frame, after the
995    prologue.  FRAMEADDR is the frame pointer of the COUNT frame, or the frame
996    pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
997    defined.
998 
999    The value of the expression must always be the correct address when COUNT is
1000    zero, but may be `NULL_RTX' if there is not way to determine the return
1001    address of other frames.  */
1002 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1003 
1004 #define RETURN_POINTER_REGNUM LR_REGNO
1005 
1006 /* A C expression whose value is RTL representing the location of the incoming
1007    return address at the beginning of any function, before the prologue.  This
1008    RTL is either a `REG', indicating that the return value is saved in `REG',
1009    or a `MEM' representing a location in the stack.
1010 
1011    You only need to define this macro if you want to support call frame
1012    debugging information like that provided by DWARF 2.  */
1013 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1014 
1015 
1016 /* Register That Address the Stack Frame.  */
1017 
1018 /* The register number of the stack pointer register, which must also be a
1019    fixed register according to `FIXED_REGISTERS'.  On most machines, the
1020    hardware determines which register this is.  */
1021 #define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1022 
1023 /* The register number of the frame pointer register, which is used to access
1024    automatic variables in the stack frame.  On some machines, the hardware
1025    determines which register this is.  On other machines, you can choose any
1026    register you wish for this purpose.  */
1027 #define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1028 
1029 /* The register number of the arg pointer register, which is used to access the
1030    function's argument list.  On some machines, this is the same as the frame
1031    pointer register.  On some machines, the hardware determines which register
1032    this is.  On other machines, you can choose any register you wish for this
1033    purpose.  If this is not the same register as the frame pointer register,
1034    then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1035    arrange to be able to eliminate it.  */
1036 
1037 /* On frv this is a fake register that is eliminated in
1038    terms of either the frame pointer or stack pointer.  */
1039 #define ARG_POINTER_REGNUM AP_FIRST
1040 
1041 /* Register numbers used for passing a function's static chain pointer.  If
1042    register windows are used, the register number as seen by the called
1043    function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1044    seen by the calling function is `STATIC_CHAIN_REGNUM'.  If these registers
1045    are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1046 
1047    The static chain register need not be a fixed register.
1048 
1049    If the static chain is passed in memory, these macros should not be defined;
1050    instead, the next two macros should be defined.  */
1051 #define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1052 #define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1053 
1054 
1055 /* Eliminating the Frame Pointer and the Arg Pointer.  */
1056 
1057 /* If defined, this macro specifies a table of register pairs used to eliminate
1058    unneeded registers that point into the stack frame.  If it is not defined,
1059    the only elimination attempted by the compiler is to replace references to
1060    the frame pointer with references to the stack pointer.
1061 
1062    The definition of this macro is a list of structure initializations, each of
1063    which specifies an original and replacement register.
1064 
1065    On some machines, the position of the argument pointer is not known until
1066    the compilation is completed.  In such a case, a separate hard register must
1067    be used for the argument pointer.  This register can be eliminated by
1068    replacing it with either the frame pointer or the argument pointer,
1069    depending on whether or not the frame pointer has been eliminated.
1070 
1071    In this case, you might specify:
1072         #define ELIMINABLE_REGS  \
1073         {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1074          {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1075          {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1076 
1077    Note that the elimination of the argument pointer with the stack pointer is
1078    specified first since that is the preferred elimination.  */
1079 
1080 #define ELIMINABLE_REGS							\
1081 {									\
1082   {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},				\
1083   {ARG_POINTER_REGNUM,	 FRAME_POINTER_REGNUM},				\
1084   {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}				\
1085 }
1086 
1087 /* This macro returns the initial difference between the specified pair
1088    of registers.  */
1089 
1090 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1091   (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1092 
1093 
1094 /* Passing Function Arguments on the Stack.  */
1095 
1096 /* If defined, the maximum amount of space required for outgoing arguments will
1097    be computed and placed into the variable
1098    `crtl->outgoing_args_size'.  No space will be pushed onto the
1099    stack for each call; instead, the function prologue should increase the
1100    stack frame size by this amount.
1101 
1102    Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1103    proper.  */
1104 #define ACCUMULATE_OUTGOING_ARGS 1
1105 
1106 
1107 /* The number of register assigned to holding function arguments.  */
1108 
1109 #define FRV_NUM_ARG_REGS        6
1110 
1111 /* A C type for declaring a variable that is used as the first argument of
1112    `FUNCTION_ARG' and other related values.  For some target machines, the type
1113    `int' suffices and can hold the number of bytes of argument so far.
1114 
1115    There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1116    that have been passed on the stack.  The compiler has other variables to
1117    keep track of that.  For target machines on which all arguments are passed
1118    on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1119    however, the data structure must exist and should not be empty, so use
1120    `int'.  */
1121 #define CUMULATIVE_ARGS int
1122 
1123 /* A C statement (sans semicolon) for initializing the variable CUM for the
1124    state at the beginning of the argument list.  The variable has type
1125    `CUMULATIVE_ARGS'.  The value of FNTYPE is the tree node for the data type
1126    of the function which will receive the args, or 0 if the args are to a
1127    compiler support library function.  The value of INDIRECT is nonzero when
1128    processing an indirect call, for example a call through a function pointer.
1129    The value of INDIRECT is zero for a call to an explicitly named function, a
1130    library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1131    arguments for the function being compiled.
1132 
1133    When processing a call to a compiler support library function, LIBNAME
1134    identifies which one.  It is a `symbol_ref' rtx which contains the name of
1135    the function, as a string.  LIBNAME is 0 when an ordinary C function call is
1136    being processed.  Thus, each time this macro is called, either LIBNAME or
1137    FNTYPE is nonzero, but never both of them at once.  */
1138 
1139 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1140   frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
1141 
1142 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1143    arguments for the function being compiled.  If this macro is undefined,
1144    `INIT_CUMULATIVE_ARGS' is used instead.
1145 
1146    The value passed for LIBNAME is always 0, since library routines with
1147    special calling conventions are never compiled with GCC.  The argument
1148    LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'.  */
1149 
1150 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1151   frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
1152 
1153 /* A C expression that is nonzero if REGNO is the number of a hard register in
1154    which function arguments are sometimes passed.  This does *not* include
1155    implicit arguments such as the static chain and the structure-value address.
1156    On many machines, no registers can be used for this purpose since all
1157    function arguments are pushed on the stack.  */
1158 #define FUNCTION_ARG_REGNO_P(REGNO) \
1159   ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1160 
1161 
1162 /* How Scalar Function Values are Returned.  */
1163 
1164 /* The number of the hard register that is used to return a scalar value from a
1165    function call.  */
1166 #define RETURN_VALUE_REGNUM	(GPR_FIRST + 8)
1167 
1168 #define FUNCTION_VALUE_REGNO_P(REGNO) frv_function_value_regno_p (REGNO)
1169 
1170 
1171 /* How Large Values are Returned.  */
1172 
1173 /* The number of the register that is used to pass the structure
1174    value address.  */
1175 #define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
1176 
1177 
1178 /* Function Entry and Exit.  */
1179 
1180 /* Define this macro as a C expression that is nonzero if the return
1181    instruction or the function epilogue ignores the value of the stack pointer;
1182    in other words, if it is safe to delete an instruction to adjust the stack
1183    pointer before a return from the function.
1184 
1185    Note that this macro's value is relevant only for functions for which frame
1186    pointers are maintained.  It is never safe to delete a final stack
1187    adjustment in a function that has no frame pointer, and the compiler knows
1188    this regardless of `EXIT_IGNORE_STACK'.  */
1189 #define EXIT_IGNORE_STACK 1
1190 
1191 /* Generating Code for Profiling.  */
1192 
1193 /* A C statement or compound statement to output to FILE some assembler code to
1194    call the profiling subroutine `mcount'.  Before calling, the assembler code
1195    must load the address of a counter variable into a register where `mcount'
1196    expects to find the address.  The name of this variable is `LP' followed by
1197    the number LABELNO, so you would generate the name using `LP%d' in a
1198    `fprintf'.
1199 
1200    The details of how the address should be passed to `mcount' are determined
1201    by your operating system environment, not by GCC.  To figure them out,
1202    compile a small program for profiling using the system's installed C
1203    compiler and look at the assembler code that results.
1204 
1205    This declaration must be present, but it can be an abort if profiling is
1206    not implemented.  */
1207 
1208 #define FUNCTION_PROFILER(FILE, LABELNO)
1209 
1210 /* Trampolines for Nested Functions.  */
1211 
1212 /* A C expression for the size in bytes of the trampoline, as an integer.  */
1213 #define TRAMPOLINE_SIZE frv_trampoline_size ()
1214 
1215 /* Alignment required for trampolines, in bits.
1216 
1217    If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
1218    aligning trampolines.  */
1219 #define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
1220 
1221 /* Define this macro if trampolines need a special subroutine to do their work.
1222    The macro should expand to a series of `asm' statements which will be
1223    compiled with GCC.  They go in a library function named
1224    `__transfer_from_trampoline'.
1225 
1226    If you need to avoid executing the ordinary prologue code of a compiled C
1227    function when you jump to the subroutine, you can do so by placing a special
1228    label of your own in the assembler code.  Use one `asm' statement to
1229    generate an assembler label, and another to make the label global.  Then
1230    trampolines can use that label to jump directly to your special assembler
1231    code.  */
1232 
1233 #ifdef __FRV_UNDERSCORE__
1234 #define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
1235 #else
1236 #define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
1237 #endif
1238 
1239 #define Twrite _write
1240 
1241 #if ! __FRV_FDPIC__
1242 #define TRANSFER_FROM_TRAMPOLINE					\
1243 extern int Twrite (int, const void *, unsigned);			\
1244 									\
1245 void									\
1246 __trampoline_setup (short * addr, int size, int fnaddr, int sc)		\
1247 {									\
1248   extern short __trampoline_template[];					\
1249   short * to = addr;							\
1250   short * from = &__trampoline_template[0];				\
1251   int i;								\
1252 									\
1253   if (size < 20)							\
1254     {									\
1255       Twrite (2, "__trampoline_setup bad size\n",			\
1256 	      sizeof ("__trampoline_setup bad size\n") - 1);		\
1257       exit (-1);							\
1258     }									\
1259 									\
1260   to[0] = from[0];							\
1261   to[1] = (short)(fnaddr);						\
1262   to[2] = from[2];							\
1263   to[3] = (short)(sc);							\
1264   to[4] = from[4];							\
1265   to[5] = (short)(fnaddr >> 16);					\
1266   to[6] = from[6];							\
1267   to[7] = (short)(sc >> 16);						\
1268   to[8] = from[8];							\
1269   to[9] = from[9];							\
1270 									\
1271   for (i = 0; i < 20; i++)						\
1272     __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1273 }									\
1274 									\
1275 __asm__("\n"								\
1276 	"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"			\
1277 	"\t.text\n"							\
1278 	TRAMPOLINE_TEMPLATE_NAME ":\n"					\
1279 	"\tsetlos #0, gr6\n"	/* jump register */			\
1280 	"\tsetlos #0, gr7\n"	/* static chain */			\
1281 	"\tsethi #0, gr6\n"						\
1282 	"\tsethi #0, gr7\n"						\
1283 	"\tjmpl @(gr0,gr6)\n");
1284 #else
1285 #define TRANSFER_FROM_TRAMPOLINE					\
1286 extern int Twrite (int, const void *, unsigned);			\
1287 									\
1288 void									\
1289 __trampoline_setup (addr, size, fnaddr, sc)				\
1290      short * addr;							\
1291      int size;								\
1292      int fnaddr;							\
1293      int sc;								\
1294 {									\
1295   extern short __trampoline_template[];					\
1296   short * from = &__trampoline_template[0];				\
1297   int i;								\
1298   short **desc = (short **)addr;					\
1299   short * to = addr + 4;						\
1300 									\
1301   if (size != 32)							\
1302     {									\
1303       Twrite (2, "__trampoline_setup bad size\n",			\
1304 	      sizeof ("__trampoline_setup bad size\n") - 1);		\
1305       exit (-1);							\
1306     }									\
1307 									\
1308   /* Create a function descriptor with the address of the code below	\
1309      and NULL as the FDPIC value.  We don't need the real GOT value	\
1310      here, since we don't use it, so we use NULL, that is just as	\
1311      good.  */								\
1312   desc[0] = to;								\
1313   desc[1] = NULL;							\
1314   size -= 8;								\
1315 									\
1316   to[0] = from[0];							\
1317   to[1] = (short)(fnaddr);						\
1318   to[2] = from[2];							\
1319   to[3] = (short)(sc);							\
1320   to[4] = from[4];							\
1321   to[5] = (short)(fnaddr >> 16);					\
1322   to[6] = from[6];							\
1323   to[7] = (short)(sc >> 16);						\
1324   to[8] = from[8];							\
1325   to[9] = from[9];							\
1326   to[10] = from[10];							\
1327   to[11] = from[11];							\
1328 									\
1329   for (i = 0; i < size; i++)						\
1330     __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1331 }									\
1332 									\
1333 __asm__("\n"								\
1334 	"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"			\
1335 	"\t.text\n"							\
1336 	TRAMPOLINE_TEMPLATE_NAME ":\n"					\
1337 	"\tsetlos #0, gr6\n"	/* Jump register.  */			\
1338 	"\tsetlos #0, gr7\n"	/* Static chain.  */			\
1339 	"\tsethi #0, gr6\n"						\
1340 	"\tsethi #0, gr7\n"						\
1341 	"\tldd @(gr6,gr0),gr14\n"					\
1342 	"\tjmpl @(gr14,gr0)\n"						\
1343 	);
1344 #endif
1345 
1346 
1347 /* Addressing Modes.  */
1348 
1349 /* A number, the maximum number of registers that can appear in a valid memory
1350    address.  Note that it is up to you to specify a value equal to the maximum
1351    number that `TARGET_LEGITIMATE_ADDRESS_P' would ever accept.  */
1352 #define MAX_REGS_PER_ADDRESS 2
1353 
1354 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1355    use as a base register.  For hard registers, it should always accept those
1356    which the hardware permits and reject the others.  Whether the macro accepts
1357    or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
1358    described above.  This usually requires two variant definitions, of which
1359    `REG_OK_STRICT' controls the one actually used.  */
1360 #ifdef REG_OK_STRICT
1361 #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
1362 #else
1363 #define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
1364 #endif
1365 
1366 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1367    use as an index register.
1368 
1369    The difference between an index register and a base register is that the
1370    index register may be scaled.  If an address involves the sum of two
1371    registers, neither one of them scaled, then either one may be labeled the
1372    "base" and the other the "index"; but whichever labeling is used must fit
1373    the machine's constraints of which registers may serve in each capacity.
1374    The compiler will try both labelings, looking for one that is valid, and
1375    will reload one or both registers only if neither labeling works.  */
1376 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1377 
1378 #define FIND_BASE_TERM frv_find_base_term
1379 
1380 /* The load-and-update commands allow pre-modification in addresses.
1381    The index has to be in a register.  */
1382 #define HAVE_PRE_MODIFY_REG 1
1383 
1384 
1385 /* We define extra CC modes in frv-modes.def so we need a selector.  */
1386 
1387 #define SELECT_CC_MODE frv_select_cc_mode
1388 
1389 /* A C expression whose value is one if it is always safe to reverse a
1390    comparison whose mode is MODE.  If `SELECT_CC_MODE' can ever return MODE for
1391    a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
1392    must be zero.
1393 
1394    You need not define this macro if it would always returns zero or if the
1395    floating-point format is anything other than `IEEE_FLOAT_FORMAT'.  For
1396    example, here is the definition used on the SPARC, where floating-point
1397    inequality comparisons are always given `CCFPEmode':
1398 
1399         #define REVERSIBLE_CC_MODE(MODE)  ((MODE) != CCFPEmode)  */
1400 
1401 /* On frv, don't consider floating point comparisons to be reversible.  In
1402    theory, fp equality comparisons can be reversible.  */
1403 #define REVERSIBLE_CC_MODE(MODE) \
1404   ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
1405 
1406 
1407 /* Describing Relative Costs of Operations.  */
1408 
1409 /* A C expression for the cost of a branch instruction.  A value of 1 is the
1410    default; other values are interpreted relative to that.  */
1411 #define BRANCH_COST(speed_p, predictable_p) frv_branch_cost_int
1412 
1413 /* Define this macro as a C expression which is nonzero if accessing less than
1414    a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1415    word of memory, i.e., if such access require more than one instruction or if
1416    there is no difference in cost between byte and (aligned) word loads.
1417 
1418    When this macro is not defined, the compiler will access a field by finding
1419    the smallest containing object; when it is defined, a fullword load will be
1420    used if alignment permits.  Unless bytes accesses are faster than word
1421    accesses, using word accesses is preferable since it may eliminate
1422    subsequent memory access if subsequent accesses occur to other fields in the
1423    same word of the structure, but to different bytes.  */
1424 #define SLOW_BYTE_ACCESS 1
1425 
1426 /* Define this macro if it is as good or better to call a constant function
1427    address than to call an address kept in a register.  */
1428 #define NO_FUNCTION_CSE 1
1429 
1430 
1431 /* Dividing the output into sections.  */
1432 
1433 /* A C expression whose value is a string containing the assembler operation
1434    that should precede instructions and read-only data.  Normally `".text"' is
1435    right.  */
1436 #define TEXT_SECTION_ASM_OP "\t.text"
1437 
1438 /* A C expression whose value is a string containing the assembler operation to
1439    identify the following data as writable initialized data.  Normally
1440    `".data"' is right.  */
1441 #define DATA_SECTION_ASM_OP "\t.data"
1442 
1443 #define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
1444 
1445 /* Short Data Support */
1446 #define SDATA_SECTION_ASM_OP	"\t.section .sdata,\"aw\""
1447 
1448 #undef	INIT_SECTION_ASM_OP
1449 #undef	FINI_SECTION_ASM_OP
1450 #define INIT_SECTION_ASM_OP	"\t.section .init,\"ax\""
1451 #define FINI_SECTION_ASM_OP	"\t.section .fini,\"ax\""
1452 
1453 #undef CTORS_SECTION_ASM_OP
1454 #undef DTORS_SECTION_ASM_OP
1455 #define CTORS_SECTION_ASM_OP	"\t.section\t.ctors,\"a\""
1456 #define DTORS_SECTION_ASM_OP	"\t.section\t.dtors,\"a\""
1457 
1458 /* A C expression whose value is a string containing the assembler operation to
1459    switch to the fixup section that records all initialized pointers in a -fpic
1460    program so they can be changed program startup time if the program is loaded
1461    at a different address than linked for.  */
1462 #define FIXUP_SECTION_ASM_OP	"\t.section .rofixup,\"a\""
1463 
1464 /* Position Independent Code.  */
1465 
1466 /* A C expression that is nonzero if X is a legitimate immediate operand on the
1467    target machine when generating position independent code.  You can assume
1468    that X satisfies `CONSTANT_P', so you need not check this.  You can also
1469    assume FLAG_PIC is true, so you need not check it either.  You need not
1470    define this macro if all constants (including `SYMBOL_REF') can be immediate
1471    operands when generating position independent code.  */
1472 #define LEGITIMATE_PIC_OPERAND_P(X)					\
1473   (   GET_CODE (X) == CONST_INT						\
1474    || GET_CODE (X) == CONST_DOUBLE					\
1475    || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT)	\
1476    || got12_operand (X, VOIDmode))					\
1477 
1478 
1479 /* The Overall Framework of an Assembler File.  */
1480 
1481 /* A C string constant describing how to begin a comment in the target
1482    assembler language.  The compiler assumes that the comment will end at the
1483    end of the line.  */
1484 #define ASM_COMMENT_START ";"
1485 
1486 /* A C string constant for text to be output before each `asm' statement or
1487    group of consecutive ones.  Normally this is `"#APP"', which is a comment
1488    that has no effect on most assemblers but tells the GNU assembler that it
1489    must check the lines that follow for all valid assembler constructs.  */
1490 #define ASM_APP_ON "#APP\n"
1491 
1492 /* A C string constant for text to be output after each `asm' statement or
1493    group of consecutive ones.  Normally this is `"#NO_APP"', which tells the
1494    GNU assembler to resume making the time-saving assumptions that are valid
1495    for ordinary compiler output.  */
1496 #define ASM_APP_OFF "#NO_APP\n"
1497 
1498 
1499 /* Output of Data.  */
1500 
1501 /* This is how to output a label to dwarf/dwarf2.  */
1502 #define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL)				\
1503 do {									\
1504   fprintf (STREAM, "\t.picptr\t");					\
1505   assemble_name (STREAM, LABEL);					\
1506 } while (0)
1507 
1508 /* Whether to emit the gas specific dwarf2 line number support.  */
1509 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
1510 
1511 /* Output of Uninitialized Variables.  */
1512 
1513 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1514    assembler definition of a local-common-label named NAME whose size is SIZE
1515    bytes.  The variable ROUNDED is the size rounded up to whatever alignment
1516    the caller wants.
1517 
1518    Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
1519    before and after that, output the additional assembler syntax for defining
1520    the name, and a newline.
1521 
1522    This macro controls how the assembler definitions of uninitialized static
1523    variables are output.  */
1524 #undef ASM_OUTPUT_LOCAL
1525 
1526 #undef ASM_OUTPUT_ALIGNED_LOCAL
1527 
1528 /* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME.  */
1529 extern int size_directive_output;
1530 
1531 /* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
1532    parameter - the DECL of variable to be output, if there is one.
1533    This macro can be called with DECL == NULL_TREE.  If you define
1534    this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
1535    `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
1536    handling the destination of the variable.  */
1537 #undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
1538 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN)	\
1539 do {                                                                   	\
1540   if ((SIZE) > 0 && (SIZE) <= (unsigned HOST_WIDE_INT) g_switch_value)	\
1541     switch_to_section (get_named_section (NULL, ".sbss", 0));           \
1542   else                                                                 	\
1543     switch_to_section (bss_section);                                  	\
1544   ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT));     	\
1545   ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL);                        	\
1546   ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1);                       	\
1547 } while (0)
1548 
1549 
1550 /* Output and Generation of Labels.  */
1551 
1552 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1553    assembler definition of a label named NAME.  Use the expression
1554    `assemble_name (STREAM, NAME)' to output the name itself; before and after
1555    that, output the additional assembler syntax for defining the name, and a
1556    newline.  */
1557 #define ASM_OUTPUT_LABEL(STREAM, NAME)					\
1558 do {									\
1559   assemble_name (STREAM, NAME);						\
1560   fputs (":\n", STREAM);						\
1561 } while (0)
1562 
1563 /* Globalizing directive for a label.  */
1564 #define GLOBAL_ASM_OP "\t.globl "
1565 
1566 #undef ASM_GENERATE_INTERNAL_LABEL
1567 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM)			\
1568 do {									\
1569   sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM);			\
1570 } while (0)
1571 
1572 
1573 /* Macros Controlling Initialization Routines.  */
1574 
1575 #undef INIT_SECTION_ASM_OP
1576 
1577 /* If defined, `main' will call `__main' despite the presence of
1578    `INIT_SECTION_ASM_OP'.  This macro should be defined for systems where the
1579    init section is not actually run automatically, but is still useful for
1580    collecting the lists of constructors and destructors.  */
1581 #define INVOKE__main
1582 
1583 /* Output of Assembler Instructions.  */
1584 
1585 /* A C initializer containing the assembler's names for the machine registers,
1586    each one as a C string constant.  This is what translates register numbers
1587    in the compiler into assembler language.  */
1588 #define REGISTER_NAMES							\
1589 {									\
1590  "gr0",  "sp",   "fp",   "gr3",  "gr4",  "gr5",  "gr6",  "gr7",		\
1591   "gr8",  "gr9",  "gr10", "gr11", "gr12", "gr13", "gr14", "gr15",	\
1592   "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23",	\
1593   "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31",	\
1594   "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39",	\
1595   "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47",	\
1596   "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55",	\
1597   "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63",	\
1598 									\
1599   "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",	\
1600   "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",	\
1601   "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",	\
1602   "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",	\
1603   "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",	\
1604   "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",	\
1605   "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",	\
1606   "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",	\
1607 									\
1608   "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3",	\
1609   "cc0",  "cc1",  "cc2",  "cc3",  "cc4",  "cc5",  "cc6",  "cc7",	\
1610   "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7",	\
1611   "acc8", "acc9", "acc10", "acc11",					\
1612   "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7",	\
1613   "accg8", "accg9", "accg10", "accg11",					\
1614   "ap",   "lr",   "lcr",  "iacc0h", "iacc0l"				\
1615 }
1616 
1617 /* Define this macro if you are using an unusual assembler that
1618    requires different names for the machine instructions.
1619 
1620    The definition is a C statement or statements which output an
1621    assembler instruction opcode to the stdio stream STREAM.  The
1622    macro-operand PTR is a variable of type `char *' which points to
1623    the opcode name in its "internal" form--the form that is written
1624    in the machine description.  The definition should output the
1625    opcode name to STREAM, performing any translation you desire, and
1626    increment the variable PTR to point at the end of the opcode so
1627    that it will not be output twice.
1628 
1629    In fact, your macro definition may process less than the entire
1630    opcode name, or more than the opcode name; but if you want to
1631    process text that includes `%'-sequences to substitute operands,
1632    you must take care of the substitution yourself.  Just be sure to
1633    increment PTR over whatever text should not be output normally.
1634 
1635    If you need to look at the operand values, they can be found as the
1636    elements of `recog_operand'.
1637 
1638    If the macro definition does nothing, the instruction is output in
1639    the usual way.  */
1640 
1641 #define ASM_OUTPUT_OPCODE(STREAM, PTR)\
1642    (PTR) = frv_asm_output_opcode (STREAM, PTR)
1643 
1644 /* If defined, a C statement to be executed just prior to the output
1645    of assembler code for INSN, to modify the extracted operands so
1646    they will be output differently.
1647 
1648    Here the argument OPVEC is the vector containing the operands
1649    extracted from INSN, and NOPERANDS is the number of elements of
1650    the vector which contain meaningful data for this insn.  The
1651    contents of this vector are what will be used to convert the insn
1652    template into assembler code, so you can change the assembler
1653    output by changing the contents of the vector.
1654 
1655    This macro is useful when various assembler syntaxes share a single
1656    file of instruction patterns; by defining this macro differently,
1657    you can cause a large class of instructions to be output
1658    differently (such as with rearranged operands).  Naturally,
1659    variations in assembler syntax affecting individual insn patterns
1660    ought to be handled by writing conditional output routines in
1661    those patterns.
1662 
1663    If this macro is not defined, it is equivalent to a null statement.  */
1664 
1665 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
1666   frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1667 
1668 #undef USER_LABEL_PREFIX
1669 #define USER_LABEL_PREFIX ""
1670 #define REGISTER_PREFIX ""
1671 #define LOCAL_LABEL_PREFIX "."
1672 #define IMMEDIATE_PREFIX "#"
1673 
1674 
1675 /* Output of dispatch tables.  */
1676 
1677 /* This macro should be provided on machines where the addresses in a dispatch
1678    table are relative to the table's own address.
1679 
1680    The definition should be a C statement to output to the stdio stream STREAM
1681    an assembler pseudo-instruction to generate a difference between two labels.
1682    VALUE and REL are the numbers of two internal labels.  The definitions of
1683    these labels are output using `(*targetm.asm_out.internal_label)', and they must be
1684    printed in the same way here.  For example,
1685 
1686         fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL)  */
1687 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1688 fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
1689 
1690 /* This macro should be provided on machines where the addresses in a dispatch
1691    table are absolute.
1692 
1693    The definition should be a C statement to output to the stdio stream STREAM
1694    an assembler pseudo-instruction to generate a reference to a label.  VALUE
1695    is the number of an internal label whose definition is output using
1696    `(*targetm.asm_out.internal_label)'.  For example,
1697 
1698         fprintf (STREAM, "\t.word L%d\n", VALUE)  */
1699 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1700 fprintf (STREAM, "\t.word .L%d\n", VALUE)
1701 
1702 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1703 
1704 /* Assembler Commands for Exception Regions.  */
1705 
1706 /* Define this macro to 0 if your target supports DWARF 2 frame unwind
1707    information, but it does not yet work with exception handling.  Otherwise,
1708    if your target supports this information (if it defines
1709    `INCOMING_RETURN_ADDR_RTX' and `OBJECT_FORMAT_ELF'), GCC will provide
1710    a default definition of 1.
1711 
1712    If this macro is defined to 1, the DWARF 2 unwinder will be the default
1713    exception handling mechanism; otherwise, setjmp/longjmp will be used by
1714    default.
1715 
1716    If this macro is defined to anything, the DWARF 2 unwinder will be used
1717    instead of inline unwinders and __unwind_function in the non-setjmp case.  */
1718 #define DWARF2_UNWIND_INFO 1
1719 
1720 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
1721 
1722 /* Assembler Commands for Alignment.  */
1723 
1724 #undef  ASM_OUTPUT_SKIP
1725 #define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
1726   fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
1727 
1728 /* A C statement to output to the stdio stream STREAM an assembler command to
1729    advance the location counter to a multiple of 2 to the POWER bytes.  POWER
1730    will be a C expression of type `int'.  */
1731 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1732   fprintf ((STREAM), "\t.p2align %d\n", (POWER))
1733 
1734 /* Inside the text section, align with unpacked nops rather than zeros.  */
1735 #define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
1736   fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
1737 
1738 /* Macros Affecting all Debug Formats.  */
1739 
1740 /* A C expression that returns the DBX register number for the compiler
1741    register number REGNO.  In simple cases, the value of this expression may be
1742    REGNO itself.  But sometimes there are some registers that the compiler
1743    knows about and DBX does not, or vice versa.  In such cases, some register
1744    may need to have one number in the compiler and another for DBX.
1745 
1746    If two registers have consecutive numbers inside GCC, and they can be
1747    used as a pair to hold a multiword value, then they *must* have consecutive
1748    numbers after renumbering with `DBX_REGISTER_NUMBER'.  Otherwise, debuggers
1749    will be unable to access such a pair, because they expect register pairs to
1750    be consecutive in their own numbering scheme.
1751 
1752    If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
1753    preserve register pairs, then what you must do instead is redefine the
1754    actual register numbering scheme.
1755 
1756    This declaration is required.  */
1757 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1758 
1759 #undef  PREFERRED_DEBUGGING_TYPE
1760 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1761 
1762 /* Miscellaneous Parameters.  */
1763 
1764 /* An alias for a machine mode name.  This is the machine mode that elements of
1765    a jump-table should have.  */
1766 #define CASE_VECTOR_MODE SImode
1767 
1768 /* Define this macro if operations between registers with integral mode smaller
1769    than a word are always performed on the entire register.  Most RISC machines
1770    have this property and most CISC machines do not.  */
1771 #define WORD_REGISTER_OPERATIONS 1
1772 
1773 /* Define this macro to be a C expression indicating when insns that read
1774    memory in MODE, an integral mode narrower than a word, set the bits outside
1775    of MODE to be either the sign-extension or the zero-extension of the data
1776    read.  Return `SIGN_EXTEND' for values of MODE for which the insn
1777    sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
1778    modes.
1779 
1780    This macro is not called with MODE non-integral or with a width greater than
1781    or equal to `BITS_PER_WORD', so you may return any value in this case.  Do
1782    not define this macro if it would always return `UNKNOWN'.  On machines where
1783    this macro is defined, you will normally define it as the constant
1784    `SIGN_EXTEND' or `ZERO_EXTEND'.  */
1785 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1786 
1787 /* Define if loading short immediate values into registers sign extends.  */
1788 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1789 
1790 /* The maximum number of bytes that a single instruction can move quickly from
1791    memory to memory.  */
1792 #define MOVE_MAX 8
1793 
1794 /* An alias for the machine mode for pointers.  On most machines, define this
1795    to be the integer mode corresponding to the width of a hardware pointer;
1796    `SImode' on 32-bit machine or `DImode' on 64-bit machines.  On some machines
1797    you must define this to be one of the partial integer modes, such as
1798    `PSImode'.
1799 
1800    The width of `Pmode' must be at least as large as the value of
1801    `POINTER_SIZE'.  If it is not equal, you must define the macro
1802    `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'.  */
1803 #define Pmode SImode
1804 
1805 /* An alias for the machine mode used for memory references to functions being
1806    called, in `call' RTL expressions.  On most machines this should be
1807    `QImode'.  */
1808 #define FUNCTION_MODE QImode
1809 
1810 /* A C expression for the maximum number of instructions to execute via
1811    conditional execution instructions instead of a branch.  A value of
1812    BRANCH_COST+1 is the default if the machine does not use
1813    cc0, and 1 if it does use cc0.  */
1814 #define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
1815 
1816 /* A C expression to modify the code described by the conditional if
1817    information CE_INFO, possibly updating the tests in TRUE_EXPR, and
1818    FALSE_EXPR for converting if-then and if-then-else code to conditional
1819    instructions.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
1820    tests cannot be converted.  */
1821 #define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR)		\
1822 frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
1823 
1824 /* A C expression to modify the code described by the conditional if
1825    information CE_INFO, for the basic block BB, possibly updating the tests in
1826    TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
1827    if-then-else code to conditional instructions.  OLD_TRUE and OLD_FALSE are
1828    the previous tests.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
1829    the tests cannot be converted.  */
1830 #define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
1831 frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
1832 
1833 /* A C expression to modify the code described by the conditional if
1834    information CE_INFO with the new PATTERN in INSN.  If PATTERN is a null
1835    pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
1836    insn cannot be converted to be executed conditionally.  */
1837 #define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
1838 (PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
1839 
1840 /* A C expression to perform any final machine dependent modifications in
1841    converting code to conditional execution in the code described by the
1842    conditional if information CE_INFO.  */
1843 #define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
1844 
1845 /* A C expression to cancel any machine dependent modifications in converting
1846    code to conditional execution in the code described by the conditional if
1847    information CE_INFO.  */
1848 #define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
1849 
1850 /* Initialize the machine-specific static data for if-conversion.  */
1851 #define IFCVT_MACHDEP_INIT(CE_INFO) frv_ifcvt_machdep_init (CE_INFO)
1852 
1853 /* The definition of the following macro results in that the 2nd jump
1854    optimization (after the 2nd insn scheduling) is minimal.  It is
1855    necessary to define when start cycle marks of insns (TImode is used
1856    for this) is used for VLIW insn packing.  Some jump optimizations
1857    make such marks invalid.  These marks are corrected for some
1858    (minimal) optimizations.  ??? Probably the macro is temporary.
1859    Final solution could making the 2nd jump optimizations before the
1860    2nd instruction scheduling or corrections of the marks for all jump
1861    optimizations.  Although some jump optimizations are actually
1862    deoptimizations for VLIW (super-scalar) processors.  */
1863 
1864 #define MINIMAL_SECOND_JUMP_OPTIMIZATION
1865 
1866 
1867 /* If the following macro is defined and nonzero and deterministic
1868    finite state automata are used for pipeline hazard recognition, we
1869    will try to exchange insns in queue ready to improve the schedule.
1870    The more macro value, the more tries will be made.  */
1871 #define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
1872 
1873 /* The following macro is used only when value of
1874    FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero.  The more macro value,
1875    the more tries will be made to choose better schedule.  If the
1876    macro value is zero or negative there will be no multi-pass
1877    scheduling.  */
1878 #define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
1879 
1880 enum frv_builtins
1881 {
1882   FRV_BUILTIN_MAND,
1883   FRV_BUILTIN_MOR,
1884   FRV_BUILTIN_MXOR,
1885   FRV_BUILTIN_MNOT,
1886   FRV_BUILTIN_MAVEH,
1887   FRV_BUILTIN_MSATHS,
1888   FRV_BUILTIN_MSATHU,
1889   FRV_BUILTIN_MADDHSS,
1890   FRV_BUILTIN_MADDHUS,
1891   FRV_BUILTIN_MSUBHSS,
1892   FRV_BUILTIN_MSUBHUS,
1893   FRV_BUILTIN_MPACKH,
1894   FRV_BUILTIN_MQADDHSS,
1895   FRV_BUILTIN_MQADDHUS,
1896   FRV_BUILTIN_MQSUBHSS,
1897   FRV_BUILTIN_MQSUBHUS,
1898   FRV_BUILTIN_MUNPACKH,
1899   FRV_BUILTIN_MDPACKH,
1900   FRV_BUILTIN_MBTOH,
1901   FRV_BUILTIN_MHTOB,
1902   FRV_BUILTIN_MCOP1,
1903   FRV_BUILTIN_MCOP2,
1904   FRV_BUILTIN_MROTLI,
1905   FRV_BUILTIN_MROTRI,
1906   FRV_BUILTIN_MWCUT,
1907   FRV_BUILTIN_MSLLHI,
1908   FRV_BUILTIN_MSRLHI,
1909   FRV_BUILTIN_MSRAHI,
1910   FRV_BUILTIN_MEXPDHW,
1911   FRV_BUILTIN_MEXPDHD,
1912   FRV_BUILTIN_MMULHS,
1913   FRV_BUILTIN_MMULHU,
1914   FRV_BUILTIN_MMULXHS,
1915   FRV_BUILTIN_MMULXHU,
1916   FRV_BUILTIN_MMACHS,
1917   FRV_BUILTIN_MMACHU,
1918   FRV_BUILTIN_MMRDHS,
1919   FRV_BUILTIN_MMRDHU,
1920   FRV_BUILTIN_MQMULHS,
1921   FRV_BUILTIN_MQMULHU,
1922   FRV_BUILTIN_MQMULXHU,
1923   FRV_BUILTIN_MQMULXHS,
1924   FRV_BUILTIN_MQMACHS,
1925   FRV_BUILTIN_MQMACHU,
1926   FRV_BUILTIN_MCPXRS,
1927   FRV_BUILTIN_MCPXRU,
1928   FRV_BUILTIN_MCPXIS,
1929   FRV_BUILTIN_MCPXIU,
1930   FRV_BUILTIN_MQCPXRS,
1931   FRV_BUILTIN_MQCPXRU,
1932   FRV_BUILTIN_MQCPXIS,
1933   FRV_BUILTIN_MQCPXIU,
1934   FRV_BUILTIN_MCUT,
1935   FRV_BUILTIN_MCUTSS,
1936   FRV_BUILTIN_MWTACC,
1937   FRV_BUILTIN_MWTACCG,
1938   FRV_BUILTIN_MRDACC,
1939   FRV_BUILTIN_MRDACCG,
1940   FRV_BUILTIN_MTRAP,
1941   FRV_BUILTIN_MCLRACC,
1942   FRV_BUILTIN_MCLRACCA,
1943   FRV_BUILTIN_MDUNPACKH,
1944   FRV_BUILTIN_MBTOHE,
1945   FRV_BUILTIN_MQXMACHS,
1946   FRV_BUILTIN_MQXMACXHS,
1947   FRV_BUILTIN_MQMACXHS,
1948   FRV_BUILTIN_MADDACCS,
1949   FRV_BUILTIN_MSUBACCS,
1950   FRV_BUILTIN_MASACCS,
1951   FRV_BUILTIN_MDADDACCS,
1952   FRV_BUILTIN_MDSUBACCS,
1953   FRV_BUILTIN_MDASACCS,
1954   FRV_BUILTIN_MABSHS,
1955   FRV_BUILTIN_MDROTLI,
1956   FRV_BUILTIN_MCPLHI,
1957   FRV_BUILTIN_MCPLI,
1958   FRV_BUILTIN_MDCUTSSI,
1959   FRV_BUILTIN_MQSATHS,
1960   FRV_BUILTIN_MQLCLRHS,
1961   FRV_BUILTIN_MQLMTHS,
1962   FRV_BUILTIN_MQSLLHI,
1963   FRV_BUILTIN_MQSRAHI,
1964   FRV_BUILTIN_MHSETLOS,
1965   FRV_BUILTIN_MHSETLOH,
1966   FRV_BUILTIN_MHSETHIS,
1967   FRV_BUILTIN_MHSETHIH,
1968   FRV_BUILTIN_MHDSETS,
1969   FRV_BUILTIN_MHDSETH,
1970   FRV_BUILTIN_SMUL,
1971   FRV_BUILTIN_UMUL,
1972   FRV_BUILTIN_PREFETCH0,
1973   FRV_BUILTIN_PREFETCH,
1974   FRV_BUILTIN_SMASS,
1975   FRV_BUILTIN_SMSSS,
1976   FRV_BUILTIN_SMU,
1977   FRV_BUILTIN_SCUTSS,
1978   FRV_BUILTIN_ADDSS,
1979   FRV_BUILTIN_SUBSS,
1980   FRV_BUILTIN_SLASS,
1981   FRV_BUILTIN_IACCreadll,
1982   FRV_BUILTIN_IACCreadl,
1983   FRV_BUILTIN_IACCsetll,
1984   FRV_BUILTIN_IACCsetl,
1985   FRV_BUILTIN_SCAN,
1986   FRV_BUILTIN_READ8,
1987   FRV_BUILTIN_READ16,
1988   FRV_BUILTIN_READ32,
1989   FRV_BUILTIN_READ64,
1990   FRV_BUILTIN_WRITE8,
1991   FRV_BUILTIN_WRITE16,
1992   FRV_BUILTIN_WRITE32,
1993   FRV_BUILTIN_WRITE64
1994 };
1995 #define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
1996 
1997 /* Enable prototypes on the call rtl functions.  */
1998 #define MD_CALL_PROTOTYPES 1
1999 
2000 #define CPU_UNITS_QUERY 1
2001 
2002 #endif /* __FRV_H__ */
2003