1 /* RTL dead store elimination.
2    Copyright (C) 2005-2018 Free Software Foundation, Inc.
3 
4    Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5    and Kenneth Zadeck <zadeck@naturalbridge.com>
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13 
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #undef BASELINE
24 
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "predict.h"
34 #include "df.h"
35 #include "memmodel.h"
36 #include "tm_p.h"
37 #include "gimple-ssa.h"
38 #include "expmed.h"
39 #include "optabs.h"
40 #include "emit-rtl.h"
41 #include "recog.h"
42 #include "alias.h"
43 #include "stor-layout.h"
44 #include "cfgrtl.h"
45 #include "cselib.h"
46 #include "tree-pass.h"
47 #include "explow.h"
48 #include "expr.h"
49 #include "dbgcnt.h"
50 #include "params.h"
51 #include "rtl-iter.h"
52 #include "cfgcleanup.h"
53 
54 /* This file contains three techniques for performing Dead Store
55    Elimination (dse).
56 
57    * The first technique performs dse locally on any base address.  It
58    is based on the cselib which is a local value numbering technique.
59    This technique is local to a basic block but deals with a fairly
60    general addresses.
61 
62    * The second technique performs dse globally but is restricted to
63    base addresses that are either constant or are relative to the
64    frame_pointer.
65 
66    * The third technique, (which is only done after register allocation)
67    processes the spill slots.  This differs from the second
68    technique because it takes advantage of the fact that spilling is
69    completely free from the effects of aliasing.
70 
71    Logically, dse is a backwards dataflow problem.  A store can be
72    deleted if it if cannot be reached in the backward direction by any
73    use of the value being stored.  However, the local technique uses a
74    forwards scan of the basic block because cselib requires that the
75    block be processed in that order.
76 
77    The pass is logically broken into 7 steps:
78 
79    0) Initialization.
80 
81    1) The local algorithm, as well as scanning the insns for the two
82    global algorithms.
83 
84    2) Analysis to see if the global algs are necessary.  In the case
85    of stores base on a constant address, there must be at least two
86    stores to that address, to make it possible to delete some of the
87    stores.  In the case of stores off of the frame or spill related
88    stores, only one store to an address is necessary because those
89    stores die at the end of the function.
90 
91    3) Set up the global dataflow equations based on processing the
92    info parsed in the first step.
93 
94    4) Solve the dataflow equations.
95 
96    5) Delete the insns that the global analysis has indicated are
97    unnecessary.
98 
99    6) Delete insns that store the same value as preceding store
100    where the earlier store couldn't be eliminated.
101 
102    7) Cleanup.
103 
104    This step uses cselib and canon_rtx to build the largest expression
105    possible for each address.  This pass is a forwards pass through
106    each basic block.  From the point of view of the global technique,
107    the first pass could examine a block in either direction.  The
108    forwards ordering is to accommodate cselib.
109 
110    We make a simplifying assumption: addresses fall into four broad
111    categories:
112 
113    1) base has rtx_varies_p == false, offset is constant.
114    2) base has rtx_varies_p == false, offset variable.
115    3) base has rtx_varies_p == true, offset constant.
116    4) base has rtx_varies_p == true, offset variable.
117 
118    The local passes are able to process all 4 kinds of addresses.  The
119    global pass only handles 1).
120 
121    The global problem is formulated as follows:
122 
123      A store, S1, to address A, where A is not relative to the stack
124      frame, can be eliminated if all paths from S1 to the end of the
125      function contain another store to A before a read to A.
126 
127      If the address A is relative to the stack frame, a store S2 to A
128      can be eliminated if there are no paths from S2 that reach the
129      end of the function that read A before another store to A.  In
130      this case S2 can be deleted if there are paths from S2 to the
131      end of the function that have no reads or writes to A.  This
132      second case allows stores to the stack frame to be deleted that
133      would otherwise die when the function returns.  This cannot be
134      done if stores_off_frame_dead_at_return is not true.  See the doc
135      for that variable for when this variable is false.
136 
137      The global problem is formulated as a backwards set union
138      dataflow problem where the stores are the gens and reads are the
139      kills.  Set union problems are rare and require some special
140      handling given our representation of bitmaps.  A straightforward
141      implementation requires a lot of bitmaps filled with 1s.
142      These are expensive and cumbersome in our bitmap formulation so
143      care has been taken to avoid large vectors filled with 1s.  See
144      the comments in bb_info and in the dataflow confluence functions
145      for details.
146 
147    There are two places for further enhancements to this algorithm:
148 
149    1) The original dse which was embedded in a pass called flow also
150    did local address forwarding.  For example in
151 
152    A <- r100
153    ... <- A
154 
155    flow would replace the right hand side of the second insn with a
156    reference to r100.  Most of the information is available to add this
157    to this pass.  It has not done it because it is a lot of work in
158    the case that either r100 is assigned to between the first and
159    second insn and/or the second insn is a load of part of the value
160    stored by the first insn.
161 
162    insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163    insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164    insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165    insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166 
167    2) The cleaning up of spill code is quite profitable.  It currently
168    depends on reading tea leaves and chicken entrails left by reload.
169    This pass depends on reload creating a singleton alias set for each
170    spill slot and telling the next dse pass which of these alias sets
171    are the singletons.  Rather than analyze the addresses of the
172    spills, dse's spill processing just does analysis of the loads and
173    stores that use those alias sets.  There are three cases where this
174    falls short:
175 
176      a) Reload sometimes creates the slot for one mode of access, and
177      then inserts loads and/or stores for a smaller mode.  In this
178      case, the current code just punts on the slot.  The proper thing
179      to do is to back out and use one bit vector position for each
180      byte of the entity associated with the slot.  This depends on
181      KNOWING that reload always generates the accesses for each of the
182      bytes in some canonical (read that easy to understand several
183      passes after reload happens) way.
184 
185      b) Reload sometimes decides that spill slot it allocated was not
186      large enough for the mode and goes back and allocates more slots
187      with the same mode and alias set.  The backout in this case is a
188      little more graceful than (a).  In this case the slot is unmarked
189      as being a spill slot and if final address comes out to be based
190      off the frame pointer, the global algorithm handles this slot.
191 
192      c) For any pass that may prespill, there is currently no
193      mechanism to tell the dse pass that the slot being used has the
194      special properties that reload uses.  It may be that all that is
195      required is to have those passes make the same calls that reload
196      does, assuming that the alias sets can be manipulated in the same
197      way.  */
198 
199 /* There are limits to the size of constant offsets we model for the
200    global problem.  There are certainly test cases, that exceed this
201    limit, however, it is unlikely that there are important programs
202    that really have constant offsets this size.  */
203 #define MAX_OFFSET (64 * 1024)
204 
205 /* Obstack for the DSE dataflow bitmaps.  We don't want to put these
206    on the default obstack because these bitmaps can grow quite large
207    (~2GB for the small (!) test case of PR54146) and we'll hold on to
208    all that memory until the end of the compiler run.
209    As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210    releasing the whole obstack.  */
211 static bitmap_obstack dse_bitmap_obstack;
212 
213 /* Obstack for other data.  As for above: Kinda nice to be able to
214    throw it all away at the end in one big sweep.  */
215 static struct obstack dse_obstack;
216 
217 /* Scratch bitmap for cselib's cselib_expand_value_rtx.  */
218 static bitmap scratch = NULL;
219 
220 struct insn_info_type;
221 
222 /* This structure holds information about a candidate store.  */
223 struct store_info
224 {
225 
226   /* False means this is a clobber.  */
227   bool is_set;
228 
229   /* False if a single HOST_WIDE_INT bitmap is used for positions_needed.  */
230   bool is_large;
231 
232   /* The id of the mem group of the base address.  If rtx_varies_p is
233      true, this is -1.  Otherwise, it is the index into the group
234      table.  */
235   int group_id;
236 
237   /* This is the cselib value.  */
238   cselib_val *cse_base;
239 
240   /* This canonized mem.  */
241   rtx mem;
242 
243   /* Canonized MEM address for use by canon_true_dependence.  */
244   rtx mem_addr;
245 
246   /* The offset of the first byte associated with the operation.  */
247   poly_int64 offset;
248 
249   /* The number of bytes covered by the operation.  This is always exact
250      and known (rather than -1).  */
251   poly_int64 width;
252 
253   union
254     {
255       /* A bitmask as wide as the number of bytes in the word that
256 	 contains a 1 if the byte may be needed.  The store is unused if
257 	 all of the bits are 0.  This is used if IS_LARGE is false.  */
258       unsigned HOST_WIDE_INT small_bitmask;
259 
260       struct
261 	{
262 	  /* A bitmap with one bit per byte, or null if the number of
263 	     bytes isn't known at compile time.  A cleared bit means
264 	     the position is needed.  Used if IS_LARGE is true.  */
265 	  bitmap bmap;
266 
267 	  /* When BITMAP is nonnull, this counts the number of set bits
268 	     (i.e. unneeded bytes) in the bitmap.  If it is equal to
269 	     WIDTH, the whole store is unused.
270 
271 	     When BITMAP is null:
272 	     - the store is definitely not needed when COUNT == 1
273 	     - all the store is needed when COUNT == 0 and RHS is nonnull
274 	     - otherwise we don't know which parts of the store are needed.  */
275 	  int count;
276 	} large;
277     } positions_needed;
278 
279   /* The next store info for this insn.  */
280   struct store_info *next;
281 
282   /* The right hand side of the store.  This is used if there is a
283      subsequent reload of the mems address somewhere later in the
284      basic block.  */
285   rtx rhs;
286 
287   /* If rhs is or holds a constant, this contains that constant,
288      otherwise NULL.  */
289   rtx const_rhs;
290 
291   /* Set if this store stores the same constant value as REDUNDANT_REASON
292      insn stored.  These aren't eliminated early, because doing that
293      might prevent the earlier larger store to be eliminated.  */
294   struct insn_info_type *redundant_reason;
295 };
296 
297 /* Return a bitmask with the first N low bits set.  */
298 
299 static unsigned HOST_WIDE_INT
lowpart_bitmask(int n)300 lowpart_bitmask (int n)
301 {
302   unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
303   return mask >> (HOST_BITS_PER_WIDE_INT - n);
304 }
305 
306 static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
307 
308 static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
309 
310 /* This structure holds information about a load.  These are only
311    built for rtx bases.  */
312 struct read_info_type
313 {
314   /* The id of the mem group of the base address.  */
315   int group_id;
316 
317   /* The offset of the first byte associated with the operation.  */
318   poly_int64 offset;
319 
320   /* The number of bytes covered by the operation, or -1 if not known.  */
321   poly_int64 width;
322 
323   /* The mem being read.  */
324   rtx mem;
325 
326   /* The next read_info for this insn.  */
327   struct read_info_type *next;
328 };
329 typedef struct read_info_type *read_info_t;
330 
331 static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
332 
333 /* One of these records is created for each insn.  */
334 
335 struct insn_info_type
336 {
337   /* Set true if the insn contains a store but the insn itself cannot
338      be deleted.  This is set if the insn is a parallel and there is
339      more than one non dead output or if the insn is in some way
340      volatile.  */
341   bool cannot_delete;
342 
343   /* This field is only used by the global algorithm.  It is set true
344      if the insn contains any read of mem except for a (1).  This is
345      also set if the insn is a call or has a clobber mem.  If the insn
346      contains a wild read, the use_rec will be null.  */
347   bool wild_read;
348 
349   /* This is true only for CALL instructions which could potentially read
350      any non-frame memory location. This field is used by the global
351      algorithm.  */
352   bool non_frame_wild_read;
353 
354   /* This field is only used for the processing of const functions.
355      These functions cannot read memory, but they can read the stack
356      because that is where they may get their parms.  We need to be
357      this conservative because, like the store motion pass, we don't
358      consider CALL_INSN_FUNCTION_USAGE when processing call insns.
359      Moreover, we need to distinguish two cases:
360      1. Before reload (register elimination), the stores related to
361 	outgoing arguments are stack pointer based and thus deemed
362 	of non-constant base in this pass.  This requires special
363 	handling but also means that the frame pointer based stores
364 	need not be killed upon encountering a const function call.
365      2. After reload, the stores related to outgoing arguments can be
366 	either stack pointer or hard frame pointer based.  This means
367 	that we have no other choice than also killing all the frame
368 	pointer based stores upon encountering a const function call.
369      This field is set after reload for const function calls and before
370      reload for const tail function calls on targets where arg pointer
371      is the frame pointer.  Having this set is less severe than a wild
372      read, it just means that all the frame related stores are killed
373      rather than all the stores.  */
374   bool frame_read;
375 
376   /* This field is only used for the processing of const functions.
377      It is set if the insn may contain a stack pointer based store.  */
378   bool stack_pointer_based;
379 
380   /* This is true if any of the sets within the store contains a
381      cselib base.  Such stores can only be deleted by the local
382      algorithm.  */
383   bool contains_cselib_groups;
384 
385   /* The insn. */
386   rtx_insn *insn;
387 
388   /* The list of mem sets or mem clobbers that are contained in this
389      insn.  If the insn is deletable, it contains only one mem set.
390      But it could also contain clobbers.  Insns that contain more than
391      one mem set are not deletable, but each of those mems are here in
392      order to provide info to delete other insns.  */
393   store_info *store_rec;
394 
395   /* The linked list of mem uses in this insn.  Only the reads from
396      rtx bases are listed here.  The reads to cselib bases are
397      completely processed during the first scan and so are never
398      created.  */
399   read_info_t read_rec;
400 
401   /* The live fixed registers.  We assume only fixed registers can
402      cause trouble by being clobbered from an expanded pattern;
403      storing only the live fixed registers (rather than all registers)
404      means less memory needs to be allocated / copied for the individual
405      stores.  */
406   regset fixed_regs_live;
407 
408   /* The prev insn in the basic block.  */
409   struct insn_info_type * prev_insn;
410 
411   /* The linked list of insns that are in consideration for removal in
412      the forwards pass through the basic block.  This pointer may be
413      trash as it is not cleared when a wild read occurs.  The only
414      time it is guaranteed to be correct is when the traversal starts
415      at active_local_stores.  */
416   struct insn_info_type * next_local_store;
417 };
418 typedef struct insn_info_type *insn_info_t;
419 
420 static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
421 
422 /* The linked list of stores that are under consideration in this
423    basic block.  */
424 static insn_info_t active_local_stores;
425 static int active_local_stores_len;
426 
427 struct dse_bb_info_type
428 {
429   /* Pointer to the insn info for the last insn in the block.  These
430      are linked so this is how all of the insns are reached.  During
431      scanning this is the current insn being scanned.  */
432   insn_info_t last_insn;
433 
434   /* The info for the global dataflow problem.  */
435 
436 
437   /* This is set if the transfer function should and in the wild_read
438      bitmap before applying the kill and gen sets.  That vector knocks
439      out most of the bits in the bitmap and thus speeds up the
440      operations.  */
441   bool apply_wild_read;
442 
443   /* The following 4 bitvectors hold information about which positions
444      of which stores are live or dead.  They are indexed by
445      get_bitmap_index.  */
446 
447   /* The set of store positions that exist in this block before a wild read.  */
448   bitmap gen;
449 
450   /* The set of load positions that exist in this block above the
451      same position of a store.  */
452   bitmap kill;
453 
454   /* The set of stores that reach the top of the block without being
455      killed by a read.
456 
457      Do not represent the in if it is all ones.  Note that this is
458      what the bitvector should logically be initialized to for a set
459      intersection problem.  However, like the kill set, this is too
460      expensive.  So initially, the in set will only be created for the
461      exit block and any block that contains a wild read.  */
462   bitmap in;
463 
464   /* The set of stores that reach the bottom of the block from it's
465      successors.
466 
467      Do not represent the in if it is all ones.  Note that this is
468      what the bitvector should logically be initialized to for a set
469      intersection problem.  However, like the kill and in set, this is
470      too expensive.  So what is done is that the confluence operator
471      just initializes the vector from one of the out sets of the
472      successors of the block.  */
473   bitmap out;
474 
475   /* The following bitvector is indexed by the reg number.  It
476      contains the set of regs that are live at the current instruction
477      being processed.  While it contains info for all of the
478      registers, only the hard registers are actually examined.  It is used
479      to assure that shift and/or add sequences that are inserted do not
480      accidentally clobber live hard regs.  */
481   bitmap regs_live;
482 };
483 
484 typedef struct dse_bb_info_type *bb_info_t;
485 
486 static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
487   ("bb_info_pool");
488 
489 /* Table to hold all bb_infos.  */
490 static bb_info_t *bb_table;
491 
492 /* There is a group_info for each rtx base that is used to reference
493    memory.  There are also not many of the rtx bases because they are
494    very limited in scope.  */
495 
496 struct group_info
497 {
498   /* The actual base of the address.  */
499   rtx rtx_base;
500 
501   /* The sequential id of the base.  This allows us to have a
502      canonical ordering of these that is not based on addresses.  */
503   int id;
504 
505   /* True if there are any positions that are to be processed
506      globally.  */
507   bool process_globally;
508 
509   /* True if the base of this group is either the frame_pointer or
510      hard_frame_pointer.  */
511   bool frame_related;
512 
513   /* A mem wrapped around the base pointer for the group in order to do
514      read dependency.  It must be given BLKmode in order to encompass all
515      the possible offsets from the base.  */
516   rtx base_mem;
517 
518   /* Canonized version of base_mem's address.  */
519   rtx canon_base_addr;
520 
521   /* These two sets of two bitmaps are used to keep track of how many
522      stores are actually referencing that position from this base.  We
523      only do this for rtx bases as this will be used to assign
524      positions in the bitmaps for the global problem.  Bit N is set in
525      store1 on the first store for offset N.  Bit N is set in store2
526      for the second store to offset N.  This is all we need since we
527      only care about offsets that have two or more stores for them.
528 
529      The "_n" suffix is for offsets less than 0 and the "_p" suffix is
530      for 0 and greater offsets.
531 
532      There is one special case here, for stores into the stack frame,
533      we will or store1 into store2 before deciding which stores look
534      at globally.  This is because stores to the stack frame that have
535      no other reads before the end of the function can also be
536      deleted.  */
537   bitmap store1_n, store1_p, store2_n, store2_p;
538 
539   /* These bitmaps keep track of offsets in this group escape this function.
540      An offset escapes if it corresponds to a named variable whose
541      addressable flag is set.  */
542   bitmap escaped_n, escaped_p;
543 
544   /* The positions in this bitmap have the same assignments as the in,
545      out, gen and kill bitmaps.  This bitmap is all zeros except for
546      the positions that are occupied by stores for this group.  */
547   bitmap group_kill;
548 
549   /* The offset_map is used to map the offsets from this base into
550      positions in the global bitmaps.  It is only created after all of
551      the all of stores have been scanned and we know which ones we
552      care about.  */
553   int *offset_map_n, *offset_map_p;
554   int offset_map_size_n, offset_map_size_p;
555 };
556 
557 static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
558 
559 /* Index into the rtx_group_vec.  */
560 static int rtx_group_next_id;
561 
562 
563 static vec<group_info *> rtx_group_vec;
564 
565 
566 /* This structure holds the set of changes that are being deferred
567    when removing read operation.  See replace_read.  */
568 struct deferred_change
569 {
570 
571   /* The mem that is being replaced.  */
572   rtx *loc;
573 
574   /* The reg it is being replaced with.  */
575   rtx reg;
576 
577   struct deferred_change *next;
578 };
579 
580 static object_allocator<deferred_change> deferred_change_pool
581   ("deferred_change_pool");
582 
583 static deferred_change *deferred_change_list = NULL;
584 
585 /* This is true except if cfun->stdarg -- i.e. we cannot do
586    this for vararg functions because they play games with the frame.  */
587 static bool stores_off_frame_dead_at_return;
588 
589 /* Counter for stats.  */
590 static int globally_deleted;
591 static int locally_deleted;
592 
593 static bitmap all_blocks;
594 
595 /* Locations that are killed by calls in the global phase.  */
596 static bitmap kill_on_calls;
597 
598 /* The number of bits used in the global bitmaps.  */
599 static unsigned int current_position;
600 
601 /* Print offset range [OFFSET, OFFSET + WIDTH) to FILE.  */
602 
603 static void
print_range(FILE * file,poly_int64 offset,poly_int64 width)604 print_range (FILE *file, poly_int64 offset, poly_int64 width)
605 {
606   fprintf (file, "[");
607   print_dec (offset, file, SIGNED);
608   fprintf (file, "..");
609   print_dec (offset + width, file, SIGNED);
610   fprintf (file, ")");
611 }
612 
613 /*----------------------------------------------------------------------------
614    Zeroth step.
615 
616    Initialization.
617 ----------------------------------------------------------------------------*/
618 
619 
620 /* Hashtable callbacks for maintaining the "bases" field of
621    store_group_info, given that the addresses are function invariants.  */
622 
623 struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
624 {
625   static inline hashval_t hash (const group_info *);
626   static inline bool equal (const group_info *, const group_info *);
627 };
628 
629 inline bool
equal(const group_info * gi1,const group_info * gi2)630 invariant_group_base_hasher::equal (const group_info *gi1,
631 				    const group_info *gi2)
632 {
633   return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
634 }
635 
636 inline hashval_t
hash(const group_info * gi)637 invariant_group_base_hasher::hash (const group_info *gi)
638 {
639   int do_not_record;
640   return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
641 }
642 
643 /* Tables of group_info structures, hashed by base value.  */
644 static hash_table<invariant_group_base_hasher> *rtx_group_table;
645 
646 
647 /* Get the GROUP for BASE.  Add a new group if it is not there.  */
648 
649 static group_info *
get_group_info(rtx base)650 get_group_info (rtx base)
651 {
652   struct group_info tmp_gi;
653   group_info *gi;
654   group_info **slot;
655 
656   gcc_assert (base != NULL_RTX);
657 
658   /* Find the store_base_info structure for BASE, creating a new one
659      if necessary.  */
660   tmp_gi.rtx_base = base;
661   slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
662   gi = *slot;
663 
664   if (gi == NULL)
665     {
666       *slot = gi = group_info_pool.allocate ();
667       gi->rtx_base = base;
668       gi->id = rtx_group_next_id++;
669       gi->base_mem = gen_rtx_MEM (BLKmode, base);
670       gi->canon_base_addr = canon_rtx (base);
671       gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
672       gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
673       gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
674       gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
675       gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
676       gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
677       gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
678       gi->process_globally = false;
679       gi->frame_related =
680 	(base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
681       gi->offset_map_size_n = 0;
682       gi->offset_map_size_p = 0;
683       gi->offset_map_n = NULL;
684       gi->offset_map_p = NULL;
685       rtx_group_vec.safe_push (gi);
686     }
687 
688   return gi;
689 }
690 
691 
692 /* Initialization of data structures.  */
693 
694 static void
dse_step0(void)695 dse_step0 (void)
696 {
697   locally_deleted = 0;
698   globally_deleted = 0;
699 
700   bitmap_obstack_initialize (&dse_bitmap_obstack);
701   gcc_obstack_init (&dse_obstack);
702 
703   scratch = BITMAP_ALLOC (&reg_obstack);
704   kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
705 
706 
707   rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
708 
709   bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
710   rtx_group_next_id = 0;
711 
712   stores_off_frame_dead_at_return = !cfun->stdarg;
713 
714   init_alias_analysis ();
715 }
716 
717 
718 
719 /*----------------------------------------------------------------------------
720    First step.
721 
722    Scan all of the insns.  Any random ordering of the blocks is fine.
723    Each block is scanned in forward order to accommodate cselib which
724    is used to remove stores with non-constant bases.
725 ----------------------------------------------------------------------------*/
726 
727 /* Delete all of the store_info recs from INSN_INFO.  */
728 
729 static void
free_store_info(insn_info_t insn_info)730 free_store_info (insn_info_t insn_info)
731 {
732   store_info *cur = insn_info->store_rec;
733   while (cur)
734     {
735       store_info *next = cur->next;
736       if (cur->is_large)
737 	BITMAP_FREE (cur->positions_needed.large.bmap);
738       if (cur->cse_base)
739 	cse_store_info_pool.remove (cur);
740       else
741 	rtx_store_info_pool.remove (cur);
742       cur = next;
743     }
744 
745   insn_info->cannot_delete = true;
746   insn_info->contains_cselib_groups = false;
747   insn_info->store_rec = NULL;
748 }
749 
750 struct note_add_store_info
751 {
752   rtx_insn *first, *current;
753   regset fixed_regs_live;
754   bool failure;
755 };
756 
757 /* Callback for emit_inc_dec_insn_before via note_stores.
758    Check if a register is clobbered which is live afterwards.  */
759 
760 static void
note_add_store(rtx loc,const_rtx expr ATTRIBUTE_UNUSED,void * data)761 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
762 {
763   rtx_insn *insn;
764   note_add_store_info *info = (note_add_store_info *) data;
765 
766   if (!REG_P (loc))
767     return;
768 
769   /* If this register is referenced by the current or an earlier insn,
770      that's OK.  E.g. this applies to the register that is being incremented
771      with this addition.  */
772   for (insn = info->first;
773        insn != NEXT_INSN (info->current);
774        insn = NEXT_INSN (insn))
775     if (reg_referenced_p (loc, PATTERN (insn)))
776       return;
777 
778   /* If we come here, we have a clobber of a register that's only OK
779      if that register is not live.  If we don't have liveness information
780      available, fail now.  */
781   if (!info->fixed_regs_live)
782     {
783       info->failure = true;
784       return;
785     }
786   /* Now check if this is a live fixed register.  */
787   unsigned int end_regno = END_REGNO (loc);
788   for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
789     if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
790       info->failure = true;
791 }
792 
793 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
794    SRC + SRCOFF before insn ARG.  */
795 
796 static int
emit_inc_dec_insn_before(rtx mem ATTRIBUTE_UNUSED,rtx op ATTRIBUTE_UNUSED,rtx dest,rtx src,rtx srcoff,void * arg)797 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
798 			  rtx op ATTRIBUTE_UNUSED,
799 			  rtx dest, rtx src, rtx srcoff, void *arg)
800 {
801   insn_info_t insn_info = (insn_info_t) arg;
802   rtx_insn *insn = insn_info->insn, *new_insn, *cur;
803   note_add_store_info info;
804 
805   /* We can reuse all operands without copying, because we are about
806      to delete the insn that contained it.  */
807   if (srcoff)
808     {
809       start_sequence ();
810       emit_insn (gen_add3_insn (dest, src, srcoff));
811       new_insn = get_insns ();
812       end_sequence ();
813     }
814   else
815     new_insn = gen_move_insn (dest, src);
816   info.first = new_insn;
817   info.fixed_regs_live = insn_info->fixed_regs_live;
818   info.failure = false;
819   for (cur = new_insn; cur; cur = NEXT_INSN (cur))
820     {
821       info.current = cur;
822       note_stores (PATTERN (cur), note_add_store, &info);
823     }
824 
825   /* If a failure was flagged above, return 1 so that for_each_inc_dec will
826      return it immediately, communicating the failure to its caller.  */
827   if (info.failure)
828     return 1;
829 
830   emit_insn_before (new_insn, insn);
831 
832   return 0;
833 }
834 
835 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
836    is there, is split into a separate insn.
837    Return true on success (or if there was nothing to do), false on failure.  */
838 
839 static bool
check_for_inc_dec_1(insn_info_t insn_info)840 check_for_inc_dec_1 (insn_info_t insn_info)
841 {
842   rtx_insn *insn = insn_info->insn;
843   rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
844   if (note)
845     return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
846 			     insn_info) == 0;
847   return true;
848 }
849 
850 
851 /* Entry point for postreload.  If you work on reload_cse, or you need this
852    anywhere else, consider if you can provide register liveness information
853    and add a parameter to this function so that it can be passed down in
854    insn_info.fixed_regs_live.  */
855 bool
check_for_inc_dec(rtx_insn * insn)856 check_for_inc_dec (rtx_insn *insn)
857 {
858   insn_info_type insn_info;
859   rtx note;
860 
861   insn_info.insn = insn;
862   insn_info.fixed_regs_live = NULL;
863   note = find_reg_note (insn, REG_INC, NULL_RTX);
864   if (note)
865     return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
866 			     &insn_info) == 0;
867   return true;
868 }
869 
870 /* Delete the insn and free all of the fields inside INSN_INFO.  */
871 
872 static void
delete_dead_store_insn(insn_info_t insn_info)873 delete_dead_store_insn (insn_info_t insn_info)
874 {
875   read_info_t read_info;
876 
877   if (!dbg_cnt (dse))
878     return;
879 
880   if (!check_for_inc_dec_1 (insn_info))
881     return;
882   if (dump_file && (dump_flags & TDF_DETAILS))
883     fprintf (dump_file, "Locally deleting insn %d\n",
884 	     INSN_UID (insn_info->insn));
885 
886   free_store_info (insn_info);
887   read_info = insn_info->read_rec;
888 
889   while (read_info)
890     {
891       read_info_t next = read_info->next;
892       read_info_type_pool.remove (read_info);
893       read_info = next;
894     }
895   insn_info->read_rec = NULL;
896 
897   delete_insn (insn_info->insn);
898   locally_deleted++;
899   insn_info->insn = NULL;
900 
901   insn_info->wild_read = false;
902 }
903 
904 /* Return whether DECL, a local variable, can possibly escape the current
905    function scope.  */
906 
907 static bool
local_variable_can_escape(tree decl)908 local_variable_can_escape (tree decl)
909 {
910   if (TREE_ADDRESSABLE (decl))
911     return true;
912 
913   /* If this is a partitioned variable, we need to consider all the variables
914      in the partition.  This is necessary because a store into one of them can
915      be replaced with a store into another and this may not change the outcome
916      of the escape analysis.  */
917   if (cfun->gimple_df->decls_to_pointers != NULL)
918     {
919       tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
920       if (namep)
921 	return TREE_ADDRESSABLE (*namep);
922     }
923 
924   return false;
925 }
926 
927 /* Return whether EXPR can possibly escape the current function scope.  */
928 
929 static bool
can_escape(tree expr)930 can_escape (tree expr)
931 {
932   tree base;
933   if (!expr)
934     return true;
935   base = get_base_address (expr);
936   if (DECL_P (base)
937       && !may_be_aliased (base)
938       && !(VAR_P (base)
939 	   && !DECL_EXTERNAL (base)
940 	   && !TREE_STATIC (base)
941 	   && local_variable_can_escape (base)))
942     return false;
943   return true;
944 }
945 
946 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
947    OFFSET and WIDTH.  */
948 
949 static void
set_usage_bits(group_info * group,poly_int64 offset,poly_int64 width,tree expr)950 set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
951                 tree expr)
952 {
953   /* Non-constant offsets and widths act as global kills, so there's no point
954      trying to use them to derive global DSE candidates.  */
955   HOST_WIDE_INT i, const_offset, const_width;
956   bool expr_escapes = can_escape (expr);
957   if (offset.is_constant (&const_offset)
958       && width.is_constant (&const_width)
959       && const_offset > -MAX_OFFSET
960       && const_offset + const_width < MAX_OFFSET)
961     for (i = const_offset; i < const_offset + const_width; ++i)
962       {
963 	bitmap store1;
964 	bitmap store2;
965         bitmap escaped;
966 	int ai;
967 	if (i < 0)
968 	  {
969 	    store1 = group->store1_n;
970 	    store2 = group->store2_n;
971 	    escaped = group->escaped_n;
972 	    ai = -i;
973 	  }
974 	else
975 	  {
976 	    store1 = group->store1_p;
977 	    store2 = group->store2_p;
978 	    escaped = group->escaped_p;
979 	    ai = i;
980 	  }
981 
982 	if (!bitmap_set_bit (store1, ai))
983 	  bitmap_set_bit (store2, ai);
984 	else
985 	  {
986 	    if (i < 0)
987 	      {
988 		if (group->offset_map_size_n < ai)
989 		  group->offset_map_size_n = ai;
990 	      }
991 	    else
992 	      {
993 		if (group->offset_map_size_p < ai)
994 		  group->offset_map_size_p = ai;
995 	      }
996 	  }
997         if (expr_escapes)
998           bitmap_set_bit (escaped, ai);
999       }
1000 }
1001 
1002 static void
reset_active_stores(void)1003 reset_active_stores (void)
1004 {
1005   active_local_stores = NULL;
1006   active_local_stores_len = 0;
1007 }
1008 
1009 /* Free all READ_REC of the LAST_INSN of BB_INFO.  */
1010 
1011 static void
free_read_records(bb_info_t bb_info)1012 free_read_records (bb_info_t bb_info)
1013 {
1014   insn_info_t insn_info = bb_info->last_insn;
1015   read_info_t *ptr = &insn_info->read_rec;
1016   while (*ptr)
1017     {
1018       read_info_t next = (*ptr)->next;
1019       read_info_type_pool.remove (*ptr);
1020       *ptr = next;
1021     }
1022 }
1023 
1024 /* Set the BB_INFO so that the last insn is marked as a wild read.  */
1025 
1026 static void
add_wild_read(bb_info_t bb_info)1027 add_wild_read (bb_info_t bb_info)
1028 {
1029   insn_info_t insn_info = bb_info->last_insn;
1030   insn_info->wild_read = true;
1031   free_read_records (bb_info);
1032   reset_active_stores ();
1033 }
1034 
1035 /* Set the BB_INFO so that the last insn is marked as a wild read of
1036    non-frame locations.  */
1037 
1038 static void
add_non_frame_wild_read(bb_info_t bb_info)1039 add_non_frame_wild_read (bb_info_t bb_info)
1040 {
1041   insn_info_t insn_info = bb_info->last_insn;
1042   insn_info->non_frame_wild_read = true;
1043   free_read_records (bb_info);
1044   reset_active_stores ();
1045 }
1046 
1047 /* Return true if X is a constant or one of the registers that behave
1048    as a constant over the life of a function.  This is equivalent to
1049    !rtx_varies_p for memory addresses.  */
1050 
1051 static bool
const_or_frame_p(rtx x)1052 const_or_frame_p (rtx x)
1053 {
1054   if (CONSTANT_P (x))
1055     return true;
1056 
1057   if (GET_CODE (x) == REG)
1058     {
1059       /* Note that we have to test for the actual rtx used for the frame
1060 	 and arg pointers and not just the register number in case we have
1061 	 eliminated the frame and/or arg pointer and are using it
1062 	 for pseudos.  */
1063       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1064 	  /* The arg pointer varies if it is not a fixed register.  */
1065 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1066 	  || x == pic_offset_table_rtx)
1067 	return true;
1068       return false;
1069     }
1070 
1071   return false;
1072 }
1073 
1074 /* Take all reasonable action to put the address of MEM into the form
1075    that we can do analysis on.
1076 
1077    The gold standard is to get the address into the form: address +
1078    OFFSET where address is something that rtx_varies_p considers a
1079    constant.  When we can get the address in this form, we can do
1080    global analysis on it.  Note that for constant bases, address is
1081    not actually returned, only the group_id.  The address can be
1082    obtained from that.
1083 
1084    If that fails, we try cselib to get a value we can at least use
1085    locally.  If that fails we return false.
1086 
1087    The GROUP_ID is set to -1 for cselib bases and the index of the
1088    group for non_varying bases.
1089 
1090    FOR_READ is true if this is a mem read and false if not.  */
1091 
1092 static bool
canon_address(rtx mem,int * group_id,poly_int64 * offset,cselib_val ** base)1093 canon_address (rtx mem,
1094 	       int *group_id,
1095 	       poly_int64 *offset,
1096 	       cselib_val **base)
1097 {
1098   machine_mode address_mode = get_address_mode (mem);
1099   rtx mem_address = XEXP (mem, 0);
1100   rtx expanded_address, address;
1101   int expanded;
1102 
1103   cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1104 
1105   if (dump_file && (dump_flags & TDF_DETAILS))
1106     {
1107       fprintf (dump_file, "  mem: ");
1108       print_inline_rtx (dump_file, mem_address, 0);
1109       fprintf (dump_file, "\n");
1110     }
1111 
1112   /* First see if just canon_rtx (mem_address) is const or frame,
1113      if not, try cselib_expand_value_rtx and call canon_rtx on that.  */
1114   address = NULL_RTX;
1115   for (expanded = 0; expanded < 2; expanded++)
1116     {
1117       if (expanded)
1118 	{
1119 	  /* Use cselib to replace all of the reg references with the full
1120 	     expression.  This will take care of the case where we have
1121 
1122 	     r_x = base + offset;
1123 	     val = *r_x;
1124 
1125 	     by making it into
1126 
1127 	     val = *(base + offset);  */
1128 
1129 	  expanded_address = cselib_expand_value_rtx (mem_address,
1130 						      scratch, 5);
1131 
1132 	  /* If this fails, just go with the address from first
1133 	     iteration.  */
1134 	  if (!expanded_address)
1135 	    break;
1136 	}
1137       else
1138 	expanded_address = mem_address;
1139 
1140       /* Split the address into canonical BASE + OFFSET terms.  */
1141       address = canon_rtx (expanded_address);
1142 
1143       *offset = 0;
1144 
1145       if (dump_file && (dump_flags & TDF_DETAILS))
1146 	{
1147 	  if (expanded)
1148 	    {
1149 	      fprintf (dump_file, "\n   after cselib_expand address: ");
1150 	      print_inline_rtx (dump_file, expanded_address, 0);
1151 	      fprintf (dump_file, "\n");
1152 	    }
1153 
1154 	  fprintf (dump_file, "\n   after canon_rtx address: ");
1155 	  print_inline_rtx (dump_file, address, 0);
1156 	  fprintf (dump_file, "\n");
1157 	}
1158 
1159       if (GET_CODE (address) == CONST)
1160 	address = XEXP (address, 0);
1161 
1162       address = strip_offset_and_add (address, offset);
1163 
1164       if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1165 	  && const_or_frame_p (address))
1166 	{
1167 	  group_info *group = get_group_info (address);
1168 
1169 	  if (dump_file && (dump_flags & TDF_DETAILS))
1170 	    {
1171 	      fprintf (dump_file, "  gid=%d offset=", group->id);
1172 	      print_dec (*offset, dump_file);
1173 	      fprintf (dump_file, "\n");
1174 	    }
1175 	  *base = NULL;
1176 	  *group_id = group->id;
1177 	  return true;
1178 	}
1179     }
1180 
1181   *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1182   *group_id = -1;
1183 
1184   if (*base == NULL)
1185     {
1186       if (dump_file && (dump_flags & TDF_DETAILS))
1187 	fprintf (dump_file, " no cselib val - should be a wild read.\n");
1188       return false;
1189     }
1190   if (dump_file && (dump_flags & TDF_DETAILS))
1191     {
1192       fprintf (dump_file, "  varying cselib base=%u:%u offset = ",
1193 	       (*base)->uid, (*base)->hash);
1194       print_dec (*offset, dump_file);
1195       fprintf (dump_file, "\n");
1196     }
1197   return true;
1198 }
1199 
1200 
1201 /* Clear the rhs field from the active_local_stores array.  */
1202 
1203 static void
clear_rhs_from_active_local_stores(void)1204 clear_rhs_from_active_local_stores (void)
1205 {
1206   insn_info_t ptr = active_local_stores;
1207 
1208   while (ptr)
1209     {
1210       store_info *store_info = ptr->store_rec;
1211       /* Skip the clobbers.  */
1212       while (!store_info->is_set)
1213 	store_info = store_info->next;
1214 
1215       store_info->rhs = NULL;
1216       store_info->const_rhs = NULL;
1217 
1218       ptr = ptr->next_local_store;
1219     }
1220 }
1221 
1222 
1223 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded.  */
1224 
1225 static inline void
set_position_unneeded(store_info * s_info,int pos)1226 set_position_unneeded (store_info *s_info, int pos)
1227 {
1228   if (__builtin_expect (s_info->is_large, false))
1229     {
1230       if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1231 	s_info->positions_needed.large.count++;
1232     }
1233   else
1234     s_info->positions_needed.small_bitmask
1235       &= ~(HOST_WIDE_INT_1U << pos);
1236 }
1237 
1238 /* Mark the whole store S_INFO as unneeded.  */
1239 
1240 static inline void
set_all_positions_unneeded(store_info * s_info)1241 set_all_positions_unneeded (store_info *s_info)
1242 {
1243   if (__builtin_expect (s_info->is_large, false))
1244     {
1245       HOST_WIDE_INT width;
1246       if (s_info->width.is_constant (&width))
1247 	{
1248 	  bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1249 	  s_info->positions_needed.large.count = width;
1250 	}
1251       else
1252 	{
1253 	  gcc_checking_assert (!s_info->positions_needed.large.bmap);
1254 	  s_info->positions_needed.large.count = 1;
1255 	}
1256     }
1257   else
1258     s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
1259 }
1260 
1261 /* Return TRUE if any bytes from S_INFO store are needed.  */
1262 
1263 static inline bool
any_positions_needed_p(store_info * s_info)1264 any_positions_needed_p (store_info *s_info)
1265 {
1266   if (__builtin_expect (s_info->is_large, false))
1267     {
1268       HOST_WIDE_INT width;
1269       if (s_info->width.is_constant (&width))
1270 	{
1271 	  gcc_checking_assert (s_info->positions_needed.large.bmap);
1272 	  return s_info->positions_needed.large.count < width;
1273 	}
1274       else
1275 	{
1276 	  gcc_checking_assert (!s_info->positions_needed.large.bmap);
1277 	  return s_info->positions_needed.large.count == 0;
1278 	}
1279     }
1280   else
1281     return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
1282 }
1283 
1284 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1285    store are known to be needed.  */
1286 
1287 static inline bool
all_positions_needed_p(store_info * s_info,poly_int64 start,poly_int64 width)1288 all_positions_needed_p (store_info *s_info, poly_int64 start,
1289 			poly_int64 width)
1290 {
1291   gcc_assert (s_info->rhs);
1292   if (!s_info->width.is_constant ())
1293     {
1294       gcc_assert (s_info->is_large
1295 		  && !s_info->positions_needed.large.bmap);
1296       return s_info->positions_needed.large.count == 0;
1297     }
1298 
1299   /* Otherwise, if START and WIDTH are non-constant, we're asking about
1300      a non-constant region of a constant-sized store.  We can't say for
1301      sure that all positions are needed.  */
1302   HOST_WIDE_INT const_start, const_width;
1303   if (!start.is_constant (&const_start)
1304       || !width.is_constant (&const_width))
1305     return false;
1306 
1307   if (__builtin_expect (s_info->is_large, false))
1308     {
1309       for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1310 	if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
1311 	  return false;
1312       return true;
1313     }
1314   else
1315     {
1316       unsigned HOST_WIDE_INT mask
1317 	= lowpart_bitmask (const_width) << const_start;
1318       return (s_info->positions_needed.small_bitmask & mask) == mask;
1319     }
1320 }
1321 
1322 
1323 static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1324 			   poly_int64, basic_block, bool);
1325 
1326 
1327 /* BODY is an instruction pattern that belongs to INSN.  Return 1 if
1328    there is a candidate store, after adding it to the appropriate
1329    local store group if so.  */
1330 
1331 static int
record_store(rtx body,bb_info_t bb_info)1332 record_store (rtx body, bb_info_t bb_info)
1333 {
1334   rtx mem, rhs, const_rhs, mem_addr;
1335   poly_int64 offset = 0;
1336   poly_int64 width = 0;
1337   insn_info_t insn_info = bb_info->last_insn;
1338   store_info *store_info = NULL;
1339   int group_id;
1340   cselib_val *base = NULL;
1341   insn_info_t ptr, last, redundant_reason;
1342   bool store_is_unused;
1343 
1344   if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1345     return 0;
1346 
1347   mem = SET_DEST (body);
1348 
1349   /* If this is not used, then this cannot be used to keep the insn
1350      from being deleted.  On the other hand, it does provide something
1351      that can be used to prove that another store is dead.  */
1352   store_is_unused
1353     = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1354 
1355   /* Check whether that value is a suitable memory location.  */
1356   if (!MEM_P (mem))
1357     {
1358       /* If the set or clobber is unused, then it does not effect our
1359 	 ability to get rid of the entire insn.  */
1360       if (!store_is_unused)
1361 	insn_info->cannot_delete = true;
1362       return 0;
1363     }
1364 
1365   /* At this point we know mem is a mem. */
1366   if (GET_MODE (mem) == BLKmode)
1367     {
1368       HOST_WIDE_INT const_size;
1369       if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1370 	{
1371 	  if (dump_file && (dump_flags & TDF_DETAILS))
1372 	    fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1373 	  add_wild_read (bb_info);
1374 	  insn_info->cannot_delete = true;
1375 	  return 0;
1376 	}
1377       /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1378 	 as memset (addr, 0, 36);  */
1379       else if (!MEM_SIZE_KNOWN_P (mem)
1380 	       || maybe_le (MEM_SIZE (mem), 0)
1381 	       /* This is a limit on the bitmap size, which is only relevant
1382 		  for constant-sized MEMs.  */
1383 	       || (MEM_SIZE (mem).is_constant (&const_size)
1384 		   && const_size > MAX_OFFSET)
1385 	       || GET_CODE (body) != SET
1386 	       || !CONST_INT_P (SET_SRC (body)))
1387 	{
1388 	  if (!store_is_unused)
1389 	    {
1390 	      /* If the set or clobber is unused, then it does not effect our
1391 		 ability to get rid of the entire insn.  */
1392 	      insn_info->cannot_delete = true;
1393 	      clear_rhs_from_active_local_stores ();
1394 	    }
1395 	  return 0;
1396 	}
1397     }
1398 
1399   /* We can still process a volatile mem, we just cannot delete it.  */
1400   if (MEM_VOLATILE_P (mem))
1401     insn_info->cannot_delete = true;
1402 
1403   if (!canon_address (mem, &group_id, &offset, &base))
1404     {
1405       clear_rhs_from_active_local_stores ();
1406       return 0;
1407     }
1408 
1409   if (GET_MODE (mem) == BLKmode)
1410     width = MEM_SIZE (mem);
1411   else
1412     width = GET_MODE_SIZE (GET_MODE (mem));
1413 
1414   if (!endpoint_representable_p (offset, width))
1415     {
1416       clear_rhs_from_active_local_stores ();
1417       return 0;
1418     }
1419 
1420   if (known_eq (width, 0))
1421     return 0;
1422 
1423   if (group_id >= 0)
1424     {
1425       /* In the restrictive case where the base is a constant or the
1426 	 frame pointer we can do global analysis.  */
1427 
1428       group_info *group
1429 	= rtx_group_vec[group_id];
1430       tree expr = MEM_EXPR (mem);
1431 
1432       store_info = rtx_store_info_pool.allocate ();
1433       set_usage_bits (group, offset, width, expr);
1434 
1435       if (dump_file && (dump_flags & TDF_DETAILS))
1436 	{
1437 	  fprintf (dump_file, " processing const base store gid=%d",
1438 		   group_id);
1439 	  print_range (dump_file, offset, width);
1440 	  fprintf (dump_file, "\n");
1441 	}
1442     }
1443   else
1444     {
1445       if (may_be_sp_based_p (XEXP (mem, 0)))
1446 	insn_info->stack_pointer_based = true;
1447       insn_info->contains_cselib_groups = true;
1448 
1449       store_info = cse_store_info_pool.allocate ();
1450       group_id = -1;
1451 
1452       if (dump_file && (dump_flags & TDF_DETAILS))
1453 	{
1454 	  fprintf (dump_file, " processing cselib store ");
1455 	  print_range (dump_file, offset, width);
1456 	  fprintf (dump_file, "\n");
1457 	}
1458     }
1459 
1460   const_rhs = rhs = NULL_RTX;
1461   if (GET_CODE (body) == SET
1462       /* No place to keep the value after ra.  */
1463       && !reload_completed
1464       && (REG_P (SET_SRC (body))
1465 	  || GET_CODE (SET_SRC (body)) == SUBREG
1466 	  || CONSTANT_P (SET_SRC (body)))
1467       && !MEM_VOLATILE_P (mem)
1468       /* Sometimes the store and reload is used for truncation and
1469 	 rounding.  */
1470       && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1471     {
1472       rhs = SET_SRC (body);
1473       if (CONSTANT_P (rhs))
1474 	const_rhs = rhs;
1475       else if (body == PATTERN (insn_info->insn))
1476 	{
1477 	  rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1478 	  if (tem && CONSTANT_P (XEXP (tem, 0)))
1479 	    const_rhs = XEXP (tem, 0);
1480 	}
1481       if (const_rhs == NULL_RTX && REG_P (rhs))
1482 	{
1483 	  rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1484 
1485 	  if (tem && CONSTANT_P (tem))
1486 	    const_rhs = tem;
1487 	}
1488     }
1489 
1490   /* Check to see if this stores causes some other stores to be
1491      dead.  */
1492   ptr = active_local_stores;
1493   last = NULL;
1494   redundant_reason = NULL;
1495   mem = canon_rtx (mem);
1496 
1497   if (group_id < 0)
1498     mem_addr = base->val_rtx;
1499   else
1500     {
1501       group_info *group = rtx_group_vec[group_id];
1502       mem_addr = group->canon_base_addr;
1503     }
1504   if (maybe_ne (offset, 0))
1505     mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1506 
1507   while (ptr)
1508     {
1509       insn_info_t next = ptr->next_local_store;
1510       struct store_info *s_info = ptr->store_rec;
1511       bool del = true;
1512 
1513       /* Skip the clobbers. We delete the active insn if this insn
1514 	 shadows the set.  To have been put on the active list, it
1515 	 has exactly on set. */
1516       while (!s_info->is_set)
1517 	s_info = s_info->next;
1518 
1519       if (s_info->group_id == group_id && s_info->cse_base == base)
1520 	{
1521 	  HOST_WIDE_INT i;
1522 	  if (dump_file && (dump_flags & TDF_DETAILS))
1523 	    {
1524 	      fprintf (dump_file, "    trying store in insn=%d gid=%d",
1525 		       INSN_UID (ptr->insn), s_info->group_id);
1526 	      print_range (dump_file, s_info->offset, s_info->width);
1527 	      fprintf (dump_file, "\n");
1528 	    }
1529 
1530 	  /* Even if PTR won't be eliminated as unneeded, if both
1531 	     PTR and this insn store the same constant value, we might
1532 	     eliminate this insn instead.  */
1533 	  if (s_info->const_rhs
1534 	      && const_rhs
1535 	      && known_subrange_p (offset, width,
1536 				   s_info->offset, s_info->width)
1537 	      && all_positions_needed_p (s_info, offset - s_info->offset,
1538 					 width)
1539 	      /* We can only remove the later store if the earlier aliases
1540 		 at least all accesses the later one.  */
1541 	      && (MEM_ALIAS_SET (mem) == MEM_ALIAS_SET (s_info->mem)
1542 		  || alias_set_subset_of (MEM_ALIAS_SET (mem),
1543 					  MEM_ALIAS_SET (s_info->mem))))
1544 	    {
1545 	      if (GET_MODE (mem) == BLKmode)
1546 		{
1547 		  if (GET_MODE (s_info->mem) == BLKmode
1548 		      && s_info->const_rhs == const_rhs)
1549 		    redundant_reason = ptr;
1550 		}
1551 	      else if (s_info->const_rhs == const0_rtx
1552 		       && const_rhs == const0_rtx)
1553 		redundant_reason = ptr;
1554 	      else
1555 		{
1556 		  rtx val;
1557 		  start_sequence ();
1558 		  val = get_stored_val (s_info, GET_MODE (mem), offset, width,
1559 					BLOCK_FOR_INSN (insn_info->insn),
1560 					true);
1561 		  if (get_insns () != NULL)
1562 		    val = NULL_RTX;
1563 		  end_sequence ();
1564 		  if (val && rtx_equal_p (val, const_rhs))
1565 		    redundant_reason = ptr;
1566 		}
1567 	    }
1568 
1569 	  HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
1570 	  if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1571 	    /* The new store touches every byte that S_INFO does.  */
1572 	    set_all_positions_unneeded (s_info);
1573 	  else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1574 		   && s_info->width.is_constant (&const_s_width)
1575 		   && width.is_constant (&const_width))
1576 	    {
1577 	      HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
1578 	      begin_unneeded = MAX (begin_unneeded, 0);
1579 	      end_unneeded = MIN (end_unneeded, const_s_width);
1580 	      for (i = begin_unneeded; i < end_unneeded; ++i)
1581 		set_position_unneeded (s_info, i);
1582 	    }
1583 	  else
1584 	    {
1585 	      /* We don't know which parts of S_INFO are needed and
1586 		 which aren't, so invalidate the RHS.  */
1587 	      s_info->rhs = NULL;
1588 	      s_info->const_rhs = NULL;
1589 	    }
1590 	}
1591       else if (s_info->rhs)
1592 	/* Need to see if it is possible for this store to overwrite
1593 	   the value of store_info.  If it is, set the rhs to NULL to
1594 	   keep it from being used to remove a load.  */
1595 	{
1596 	  if (canon_output_dependence (s_info->mem, true,
1597 				       mem, GET_MODE (mem),
1598 				       mem_addr))
1599 	    {
1600 	      s_info->rhs = NULL;
1601 	      s_info->const_rhs = NULL;
1602 	    }
1603 	}
1604 
1605       /* An insn can be deleted if every position of every one of
1606 	 its s_infos is zero.  */
1607       if (any_positions_needed_p (s_info))
1608 	del = false;
1609 
1610       if (del)
1611 	{
1612 	  insn_info_t insn_to_delete = ptr;
1613 
1614 	  active_local_stores_len--;
1615 	  if (last)
1616 	    last->next_local_store = ptr->next_local_store;
1617 	  else
1618 	    active_local_stores = ptr->next_local_store;
1619 
1620 	  if (!insn_to_delete->cannot_delete)
1621 	    delete_dead_store_insn (insn_to_delete);
1622 	}
1623       else
1624 	last = ptr;
1625 
1626       ptr = next;
1627     }
1628 
1629   /* Finish filling in the store_info.  */
1630   store_info->next = insn_info->store_rec;
1631   insn_info->store_rec = store_info;
1632   store_info->mem = mem;
1633   store_info->mem_addr = mem_addr;
1634   store_info->cse_base = base;
1635   HOST_WIDE_INT const_width;
1636   if (!width.is_constant (&const_width))
1637     {
1638       store_info->is_large = true;
1639       store_info->positions_needed.large.count = 0;
1640       store_info->positions_needed.large.bmap = NULL;
1641     }
1642   else if (const_width > HOST_BITS_PER_WIDE_INT)
1643     {
1644       store_info->is_large = true;
1645       store_info->positions_needed.large.count = 0;
1646       store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1647     }
1648   else
1649     {
1650       store_info->is_large = false;
1651       store_info->positions_needed.small_bitmask
1652 	= lowpart_bitmask (const_width);
1653     }
1654   store_info->group_id = group_id;
1655   store_info->offset = offset;
1656   store_info->width = width;
1657   store_info->is_set = GET_CODE (body) == SET;
1658   store_info->rhs = rhs;
1659   store_info->const_rhs = const_rhs;
1660   store_info->redundant_reason = redundant_reason;
1661 
1662   /* If this is a clobber, we return 0.  We will only be able to
1663      delete this insn if there is only one store USED store, but we
1664      can use the clobber to delete other stores earlier.  */
1665   return store_info->is_set ? 1 : 0;
1666 }
1667 
1668 
1669 static void
dump_insn_info(const char * start,insn_info_t insn_info)1670 dump_insn_info (const char * start, insn_info_t insn_info)
1671 {
1672   fprintf (dump_file, "%s insn=%d %s\n", start,
1673 	   INSN_UID (insn_info->insn),
1674 	   insn_info->store_rec ? "has store" : "naked");
1675 }
1676 
1677 
1678 /* If the modes are different and the value's source and target do not
1679    line up, we need to extract the value from lower part of the rhs of
1680    the store, shift it, and then put it into a form that can be shoved
1681    into the read_insn.  This function generates a right SHIFT of a
1682    value that is at least ACCESS_SIZE bytes wide of READ_MODE.  The
1683    shift sequence is returned or NULL if we failed to find a
1684    shift.  */
1685 
1686 static rtx
find_shift_sequence(poly_int64 access_size,store_info * store_info,machine_mode read_mode,poly_int64 shift,bool speed,bool require_cst)1687 find_shift_sequence (poly_int64 access_size,
1688 		     store_info *store_info,
1689 		     machine_mode read_mode,
1690 		     poly_int64 shift, bool speed, bool require_cst)
1691 {
1692   machine_mode store_mode = GET_MODE (store_info->mem);
1693   scalar_int_mode new_mode;
1694   rtx read_reg = NULL;
1695 
1696   /* Some machines like the x86 have shift insns for each size of
1697      operand.  Other machines like the ppc or the ia-64 may only have
1698      shift insns that shift values within 32 or 64 bit registers.
1699      This loop tries to find the smallest shift insn that will right
1700      justify the value we want to read but is available in one insn on
1701      the machine.  */
1702 
1703   opt_scalar_int_mode new_mode_iter;
1704   FOR_EACH_MODE_FROM (new_mode_iter,
1705 		      smallest_int_mode_for_size (access_size * BITS_PER_UNIT))
1706     {
1707       rtx target, new_reg, new_lhs;
1708       rtx_insn *shift_seq, *insn;
1709       int cost;
1710 
1711       new_mode = new_mode_iter.require ();
1712       if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1713 	break;
1714 
1715       /* If a constant was stored into memory, try to simplify it here,
1716 	 otherwise the cost of the shift might preclude this optimization
1717 	 e.g. at -Os, even when no actual shift will be needed.  */
1718       if (store_info->const_rhs)
1719 	{
1720 	  poly_uint64 byte = subreg_lowpart_offset (new_mode, store_mode);
1721 	  rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1722 				     store_mode, byte);
1723 	  if (ret && CONSTANT_P (ret))
1724 	    {
1725 	      rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
1726 	      ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1727 						     ret, shift_rtx);
1728 	      if (ret && CONSTANT_P (ret))
1729 		{
1730 		  byte = subreg_lowpart_offset (read_mode, new_mode);
1731 		  ret = simplify_subreg (read_mode, ret, new_mode, byte);
1732 		  if (ret && CONSTANT_P (ret)
1733 		      && (set_src_cost (ret, read_mode, speed)
1734 			  <= COSTS_N_INSNS (1)))
1735 		    return ret;
1736 		}
1737 	    }
1738 	}
1739 
1740       if (require_cst)
1741 	return NULL_RTX;
1742 
1743       /* Try a wider mode if truncating the store mode to NEW_MODE
1744 	 requires a real instruction.  */
1745       if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
1746 	  && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1747 	continue;
1748 
1749       /* Also try a wider mode if the necessary punning is either not
1750 	 desirable or not possible.  */
1751       if (!CONSTANT_P (store_info->rhs)
1752 	  && !targetm.modes_tieable_p (new_mode, store_mode))
1753 	continue;
1754 
1755       new_reg = gen_reg_rtx (new_mode);
1756 
1757       start_sequence ();
1758 
1759       /* In theory we could also check for an ashr.  Ian Taylor knows
1760 	 of one dsp where the cost of these two was not the same.  But
1761 	 this really is a rare case anyway.  */
1762       target = expand_binop (new_mode, lshr_optab, new_reg,
1763 			     gen_int_shift_amount (new_mode, shift),
1764 			     new_reg, 1, OPTAB_DIRECT);
1765 
1766       shift_seq = get_insns ();
1767       end_sequence ();
1768 
1769       if (target != new_reg || shift_seq == NULL)
1770 	continue;
1771 
1772       cost = 0;
1773       for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1774 	if (INSN_P (insn))
1775 	  cost += insn_cost (insn, speed);
1776 
1777       /* The computation up to here is essentially independent
1778 	 of the arguments and could be precomputed.  It may
1779 	 not be worth doing so.  We could precompute if
1780 	 worthwhile or at least cache the results.  The result
1781 	 technically depends on both SHIFT and ACCESS_SIZE,
1782 	 but in practice the answer will depend only on ACCESS_SIZE.  */
1783 
1784       if (cost > COSTS_N_INSNS (1))
1785 	continue;
1786 
1787       new_lhs = extract_low_bits (new_mode, store_mode,
1788 				  copy_rtx (store_info->rhs));
1789       if (new_lhs == NULL_RTX)
1790 	continue;
1791 
1792       /* We found an acceptable shift.  Generate a move to
1793 	 take the value from the store and put it into the
1794 	 shift pseudo, then shift it, then generate another
1795 	 move to put in into the target of the read.  */
1796       emit_move_insn (new_reg, new_lhs);
1797       emit_insn (shift_seq);
1798       read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1799       break;
1800     }
1801 
1802   return read_reg;
1803 }
1804 
1805 
1806 /* Call back for note_stores to find the hard regs set or clobbered by
1807    insn.  Data is a bitmap of the hardregs set so far.  */
1808 
1809 static void
look_for_hardregs(rtx x,const_rtx pat ATTRIBUTE_UNUSED,void * data)1810 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1811 {
1812   bitmap regs_set = (bitmap) data;
1813 
1814   if (REG_P (x)
1815       && HARD_REGISTER_P (x))
1816     bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1817 }
1818 
1819 /* Helper function for replace_read and record_store.
1820    Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1821    consisting of READ_WIDTH bytes starting from READ_OFFSET.  Return NULL
1822    if not successful.  If REQUIRE_CST is true, return always constant.  */
1823 
1824 static rtx
get_stored_val(store_info * store_info,machine_mode read_mode,poly_int64 read_offset,poly_int64 read_width,basic_block bb,bool require_cst)1825 get_stored_val (store_info *store_info, machine_mode read_mode,
1826 		poly_int64 read_offset, poly_int64 read_width,
1827 		basic_block bb, bool require_cst)
1828 {
1829   machine_mode store_mode = GET_MODE (store_info->mem);
1830   poly_int64 gap;
1831   rtx read_reg;
1832 
1833   /* To get here the read is within the boundaries of the write so
1834      shift will never be negative.  Start out with the shift being in
1835      bytes.  */
1836   if (store_mode == BLKmode)
1837     gap = 0;
1838   else if (BYTES_BIG_ENDIAN)
1839     gap = ((store_info->offset + store_info->width)
1840 	   - (read_offset + read_width));
1841   else
1842     gap = read_offset - store_info->offset;
1843 
1844   if (maybe_ne (gap, 0))
1845     {
1846       poly_int64 shift = gap * BITS_PER_UNIT;
1847       poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
1848       read_reg = find_shift_sequence (access_size, store_info, read_mode,
1849 				      shift, optimize_bb_for_speed_p (bb),
1850 				      require_cst);
1851     }
1852   else if (store_mode == BLKmode)
1853     {
1854       /* The store is a memset (addr, const_val, const_size).  */
1855       gcc_assert (CONST_INT_P (store_info->rhs));
1856       scalar_int_mode int_store_mode;
1857       if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
1858 	read_reg = NULL_RTX;
1859       else if (store_info->rhs == const0_rtx)
1860 	read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1861       else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
1862 	       || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1863 	read_reg = NULL_RTX;
1864       else
1865 	{
1866 	  unsigned HOST_WIDE_INT c
1867 	    = INTVAL (store_info->rhs)
1868 	      & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
1869 	  int shift = BITS_PER_UNIT;
1870 	  while (shift < HOST_BITS_PER_WIDE_INT)
1871 	    {
1872 	      c |= (c << shift);
1873 	      shift <<= 1;
1874 	    }
1875 	  read_reg = gen_int_mode (c, int_store_mode);
1876 	  read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
1877 	}
1878     }
1879   else if (store_info->const_rhs
1880 	   && (require_cst
1881 	       || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1882     read_reg = extract_low_bits (read_mode, store_mode,
1883 				 copy_rtx (store_info->const_rhs));
1884   else
1885     read_reg = extract_low_bits (read_mode, store_mode,
1886 				 copy_rtx (store_info->rhs));
1887   if (require_cst && read_reg && !CONSTANT_P (read_reg))
1888     read_reg = NULL_RTX;
1889   return read_reg;
1890 }
1891 
1892 /* Take a sequence of:
1893      A <- r1
1894      ...
1895      ... <- A
1896 
1897    and change it into
1898    r2 <- r1
1899    A <- r1
1900    ...
1901    ... <- r2
1902 
1903    or
1904 
1905    r3 <- extract (r1)
1906    r3 <- r3 >> shift
1907    r2 <- extract (r3)
1908    ... <- r2
1909 
1910    or
1911 
1912    r2 <- extract (r1)
1913    ... <- r2
1914 
1915    Depending on the alignment and the mode of the store and
1916    subsequent load.
1917 
1918 
1919    The STORE_INFO and STORE_INSN are for the store and READ_INFO
1920    and READ_INSN are for the read.  Return true if the replacement
1921    went ok.  */
1922 
1923 static bool
replace_read(store_info * store_info,insn_info_t store_insn,read_info_t read_info,insn_info_t read_insn,rtx * loc,bitmap regs_live)1924 replace_read (store_info *store_info, insn_info_t store_insn,
1925 	      read_info_t read_info, insn_info_t read_insn, rtx *loc,
1926 	      bitmap regs_live)
1927 {
1928   machine_mode store_mode = GET_MODE (store_info->mem);
1929   machine_mode read_mode = GET_MODE (read_info->mem);
1930   rtx_insn *insns, *this_insn;
1931   rtx read_reg;
1932   basic_block bb;
1933 
1934   if (!dbg_cnt (dse))
1935     return false;
1936 
1937   /* Create a sequence of instructions to set up the read register.
1938      This sequence goes immediately before the store and its result
1939      is read by the load.
1940 
1941      We need to keep this in perspective.  We are replacing a read
1942      with a sequence of insns, but the read will almost certainly be
1943      in cache, so it is not going to be an expensive one.  Thus, we
1944      are not willing to do a multi insn shift or worse a subroutine
1945      call to get rid of the read.  */
1946   if (dump_file && (dump_flags & TDF_DETAILS))
1947     fprintf (dump_file, "trying to replace %smode load in insn %d"
1948 	     " from %smode store in insn %d\n",
1949 	     GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1950 	     GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1951   start_sequence ();
1952   bb = BLOCK_FOR_INSN (read_insn->insn);
1953   read_reg = get_stored_val (store_info,
1954 			     read_mode, read_info->offset, read_info->width,
1955 			     bb, false);
1956   if (read_reg == NULL_RTX)
1957     {
1958       end_sequence ();
1959       if (dump_file && (dump_flags & TDF_DETAILS))
1960 	fprintf (dump_file, " -- could not extract bits of stored value\n");
1961       return false;
1962     }
1963   /* Force the value into a new register so that it won't be clobbered
1964      between the store and the load.  */
1965   read_reg = copy_to_mode_reg (read_mode, read_reg);
1966   insns = get_insns ();
1967   end_sequence ();
1968 
1969   if (insns != NULL_RTX)
1970     {
1971       /* Now we have to scan the set of new instructions to see if the
1972 	 sequence contains and sets of hardregs that happened to be
1973 	 live at this point.  For instance, this can happen if one of
1974 	 the insns sets the CC and the CC happened to be live at that
1975 	 point.  This does occasionally happen, see PR 37922.  */
1976       bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
1977 
1978       for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
1979 	note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
1980 
1981       bitmap_and_into (regs_set, regs_live);
1982       if (!bitmap_empty_p (regs_set))
1983 	{
1984 	  if (dump_file && (dump_flags & TDF_DETAILS))
1985 	    {
1986 	      fprintf (dump_file,
1987 		       "abandoning replacement because sequence clobbers live hardregs:");
1988 	      df_print_regset (dump_file, regs_set);
1989 	    }
1990 
1991 	  BITMAP_FREE (regs_set);
1992 	  return false;
1993 	}
1994       BITMAP_FREE (regs_set);
1995     }
1996 
1997   if (validate_change (read_insn->insn, loc, read_reg, 0))
1998     {
1999       deferred_change *change = deferred_change_pool.allocate ();
2000 
2001       /* Insert this right before the store insn where it will be safe
2002 	 from later insns that might change it before the read.  */
2003       emit_insn_before (insns, store_insn->insn);
2004 
2005       /* And now for the kludge part: cselib croaks if you just
2006 	 return at this point.  There are two reasons for this:
2007 
2008 	 1) Cselib has an idea of how many pseudos there are and
2009 	 that does not include the new ones we just added.
2010 
2011 	 2) Cselib does not know about the move insn we added
2012 	 above the store_info, and there is no way to tell it
2013 	 about it, because it has "moved on".
2014 
2015 	 Problem (1) is fixable with a certain amount of engineering.
2016 	 Problem (2) is requires starting the bb from scratch.  This
2017 	 could be expensive.
2018 
2019 	 So we are just going to have to lie.  The move/extraction
2020 	 insns are not really an issue, cselib did not see them.  But
2021 	 the use of the new pseudo read_insn is a real problem because
2022 	 cselib has not scanned this insn.  The way that we solve this
2023 	 problem is that we are just going to put the mem back for now
2024 	 and when we are finished with the block, we undo this.  We
2025 	 keep a table of mems to get rid of.  At the end of the basic
2026 	 block we can put them back.  */
2027 
2028       *loc = read_info->mem;
2029       change->next = deferred_change_list;
2030       deferred_change_list = change;
2031       change->loc = loc;
2032       change->reg = read_reg;
2033 
2034       /* Get rid of the read_info, from the point of view of the
2035 	 rest of dse, play like this read never happened.  */
2036       read_insn->read_rec = read_info->next;
2037       read_info_type_pool.remove (read_info);
2038       if (dump_file && (dump_flags & TDF_DETAILS))
2039 	{
2040 	  fprintf (dump_file, " -- replaced the loaded MEM with ");
2041 	  print_simple_rtl (dump_file, read_reg);
2042 	  fprintf (dump_file, "\n");
2043 	}
2044       return true;
2045     }
2046   else
2047     {
2048       if (dump_file && (dump_flags & TDF_DETAILS))
2049 	{
2050 	  fprintf (dump_file, " -- replacing the loaded MEM with ");
2051 	  print_simple_rtl (dump_file, read_reg);
2052 	  fprintf (dump_file, " led to an invalid instruction\n");
2053 	}
2054       return false;
2055     }
2056 }
2057 
2058 /* Check the address of MEM *LOC and kill any appropriate stores that may
2059    be active.  */
2060 
2061 static void
check_mem_read_rtx(rtx * loc,bb_info_t bb_info)2062 check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2063 {
2064   rtx mem = *loc, mem_addr;
2065   insn_info_t insn_info;
2066   poly_int64 offset = 0;
2067   poly_int64 width = 0;
2068   cselib_val *base = NULL;
2069   int group_id;
2070   read_info_t read_info;
2071 
2072   insn_info = bb_info->last_insn;
2073 
2074   if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2075       || (MEM_VOLATILE_P (mem)))
2076     {
2077       if (dump_file && (dump_flags & TDF_DETAILS))
2078 	fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2079       add_wild_read (bb_info);
2080       insn_info->cannot_delete = true;
2081       return;
2082     }
2083 
2084   /* If it is reading readonly mem, then there can be no conflict with
2085      another write. */
2086   if (MEM_READONLY_P (mem))
2087     return;
2088 
2089   if (!canon_address (mem, &group_id, &offset, &base))
2090     {
2091       if (dump_file && (dump_flags & TDF_DETAILS))
2092 	fprintf (dump_file, " adding wild read, canon_address failure.\n");
2093       add_wild_read (bb_info);
2094       return;
2095     }
2096 
2097   if (GET_MODE (mem) == BLKmode)
2098     width = -1;
2099   else
2100     width = GET_MODE_SIZE (GET_MODE (mem));
2101 
2102   if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
2103     {
2104       if (dump_file && (dump_flags & TDF_DETAILS))
2105 	fprintf (dump_file, " adding wild read, due to overflow.\n");
2106       add_wild_read (bb_info);
2107       return;
2108     }
2109 
2110   read_info = read_info_type_pool.allocate ();
2111   read_info->group_id = group_id;
2112   read_info->mem = mem;
2113   read_info->offset = offset;
2114   read_info->width = width;
2115   read_info->next = insn_info->read_rec;
2116   insn_info->read_rec = read_info;
2117   if (group_id < 0)
2118     mem_addr = base->val_rtx;
2119   else
2120     {
2121       group_info *group = rtx_group_vec[group_id];
2122       mem_addr = group->canon_base_addr;
2123     }
2124   if (maybe_ne (offset, 0))
2125     mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2126 
2127   if (group_id >= 0)
2128     {
2129       /* This is the restricted case where the base is a constant or
2130 	 the frame pointer and offset is a constant.  */
2131       insn_info_t i_ptr = active_local_stores;
2132       insn_info_t last = NULL;
2133 
2134       if (dump_file && (dump_flags & TDF_DETAILS))
2135 	{
2136 	  if (!known_size_p (width))
2137 	    fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2138 		     group_id);
2139 	  else
2140 	    {
2141 	      fprintf (dump_file, " processing const load gid=%d", group_id);
2142 	      print_range (dump_file, offset, width);
2143 	      fprintf (dump_file, "\n");
2144 	    }
2145 	}
2146 
2147       while (i_ptr)
2148 	{
2149 	  bool remove = false;
2150 	  store_info *store_info = i_ptr->store_rec;
2151 
2152 	  /* Skip the clobbers.  */
2153 	  while (!store_info->is_set)
2154 	    store_info = store_info->next;
2155 
2156 	  /* There are three cases here.  */
2157 	  if (store_info->group_id < 0)
2158 	    /* We have a cselib store followed by a read from a
2159 	       const base. */
2160 	    remove
2161 	      = canon_true_dependence (store_info->mem,
2162 				       GET_MODE (store_info->mem),
2163 				       store_info->mem_addr,
2164 				       mem, mem_addr);
2165 
2166 	  else if (group_id == store_info->group_id)
2167 	    {
2168 	      /* This is a block mode load.  We may get lucky and
2169 		 canon_true_dependence may save the day.  */
2170 	      if (!known_size_p (width))
2171 		remove
2172 		  = canon_true_dependence (store_info->mem,
2173 					   GET_MODE (store_info->mem),
2174 					   store_info->mem_addr,
2175 					   mem, mem_addr);
2176 
2177 	      /* If this read is just reading back something that we just
2178 		 stored, rewrite the read.  */
2179 	      else
2180 		{
2181 		  if (store_info->rhs
2182 		      && known_subrange_p (offset, width, store_info->offset,
2183 					   store_info->width)
2184 		      && all_positions_needed_p (store_info,
2185 						 offset - store_info->offset,
2186 						 width)
2187 		      && replace_read (store_info, i_ptr, read_info,
2188 				       insn_info, loc, bb_info->regs_live))
2189 		    return;
2190 
2191 		  /* The bases are the same, just see if the offsets
2192 		     could overlap.  */
2193 		  if (ranges_maybe_overlap_p (offset, width,
2194 					      store_info->offset,
2195 					      store_info->width))
2196 		    remove = true;
2197 		}
2198 	    }
2199 
2200 	  /* else
2201 	     The else case that is missing here is that the
2202 	     bases are constant but different.  There is nothing
2203 	     to do here because there is no overlap.  */
2204 
2205 	  if (remove)
2206 	    {
2207 	      if (dump_file && (dump_flags & TDF_DETAILS))
2208 		dump_insn_info ("removing from active", i_ptr);
2209 
2210 	      active_local_stores_len--;
2211 	      if (last)
2212 		last->next_local_store = i_ptr->next_local_store;
2213 	      else
2214 		active_local_stores = i_ptr->next_local_store;
2215 	    }
2216 	  else
2217 	    last = i_ptr;
2218 	  i_ptr = i_ptr->next_local_store;
2219 	}
2220     }
2221   else
2222     {
2223       insn_info_t i_ptr = active_local_stores;
2224       insn_info_t last = NULL;
2225       if (dump_file && (dump_flags & TDF_DETAILS))
2226 	{
2227 	  fprintf (dump_file, " processing cselib load mem:");
2228 	  print_inline_rtx (dump_file, mem, 0);
2229 	  fprintf (dump_file, "\n");
2230 	}
2231 
2232       while (i_ptr)
2233 	{
2234 	  bool remove = false;
2235 	  store_info *store_info = i_ptr->store_rec;
2236 
2237 	  if (dump_file && (dump_flags & TDF_DETAILS))
2238 	    fprintf (dump_file, " processing cselib load against insn %d\n",
2239 		     INSN_UID (i_ptr->insn));
2240 
2241 	  /* Skip the clobbers.  */
2242 	  while (!store_info->is_set)
2243 	    store_info = store_info->next;
2244 
2245 	  /* If this read is just reading back something that we just
2246 	     stored, rewrite the read.  */
2247 	  if (store_info->rhs
2248 	      && store_info->group_id == -1
2249 	      && store_info->cse_base == base
2250 	      && known_subrange_p (offset, width, store_info->offset,
2251 				   store_info->width)
2252 	      && all_positions_needed_p (store_info,
2253 					 offset - store_info->offset, width)
2254 	      && replace_read (store_info, i_ptr,  read_info, insn_info, loc,
2255 			       bb_info->regs_live))
2256 	    return;
2257 
2258 	  remove = canon_true_dependence (store_info->mem,
2259 					  GET_MODE (store_info->mem),
2260 					  store_info->mem_addr,
2261 					  mem, mem_addr);
2262 
2263 	  if (remove)
2264 	    {
2265 	      if (dump_file && (dump_flags & TDF_DETAILS))
2266 		dump_insn_info ("removing from active", i_ptr);
2267 
2268 	      active_local_stores_len--;
2269 	      if (last)
2270 		last->next_local_store = i_ptr->next_local_store;
2271 	      else
2272 		active_local_stores = i_ptr->next_local_store;
2273 	    }
2274 	  else
2275 	    last = i_ptr;
2276 	  i_ptr = i_ptr->next_local_store;
2277 	}
2278     }
2279 }
2280 
2281 /* A note_uses callback in which DATA points the INSN_INFO for
2282    as check_mem_read_rtx.  Nullify the pointer if i_m_r_m_r returns
2283    true for any part of *LOC.  */
2284 
2285 static void
check_mem_read_use(rtx * loc,void * data)2286 check_mem_read_use (rtx *loc, void *data)
2287 {
2288   subrtx_ptr_iterator::array_type array;
2289   FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2290     {
2291       rtx *loc = *iter;
2292       if (MEM_P (*loc))
2293 	check_mem_read_rtx (loc, (bb_info_t) data);
2294     }
2295 }
2296 
2297 
2298 /* Get arguments passed to CALL_INSN.  Return TRUE if successful.
2299    So far it only handles arguments passed in registers.  */
2300 
2301 static bool
get_call_args(rtx call_insn,tree fn,rtx * args,int nargs)2302 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2303 {
2304   CUMULATIVE_ARGS args_so_far_v;
2305   cumulative_args_t args_so_far;
2306   tree arg;
2307   int idx;
2308 
2309   INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2310   args_so_far = pack_cumulative_args (&args_so_far_v);
2311 
2312   arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2313   for (idx = 0;
2314        arg != void_list_node && idx < nargs;
2315        arg = TREE_CHAIN (arg), idx++)
2316     {
2317       scalar_int_mode mode;
2318       rtx reg, link, tmp;
2319 
2320       if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2321 	return false;
2322 
2323       reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2324       if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
2325 	return false;
2326 
2327       for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2328 	   link;
2329 	   link = XEXP (link, 1))
2330 	if (GET_CODE (XEXP (link, 0)) == USE)
2331 	  {
2332 	    scalar_int_mode arg_mode;
2333 	    args[idx] = XEXP (XEXP (link, 0), 0);
2334 	    if (REG_P (args[idx])
2335 		&& REGNO (args[idx]) == REGNO (reg)
2336 		&& (GET_MODE (args[idx]) == mode
2337 		    || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2338 			&& (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2339 			&& (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
2340 	      break;
2341 	  }
2342       if (!link)
2343 	return false;
2344 
2345       tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2346       if (GET_MODE (args[idx]) != mode)
2347 	{
2348 	  if (!tmp || !CONST_INT_P (tmp))
2349 	    return false;
2350 	  tmp = gen_int_mode (INTVAL (tmp), mode);
2351 	}
2352       if (tmp)
2353 	args[idx] = tmp;
2354 
2355       targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2356     }
2357   if (arg != void_list_node || idx != nargs)
2358     return false;
2359   return true;
2360 }
2361 
2362 /* Return a bitmap of the fixed registers contained in IN.  */
2363 
2364 static bitmap
copy_fixed_regs(const_bitmap in)2365 copy_fixed_regs (const_bitmap in)
2366 {
2367   bitmap ret;
2368 
2369   ret = ALLOC_REG_SET (NULL);
2370   bitmap_and (ret, in, fixed_reg_set_regset);
2371   return ret;
2372 }
2373 
2374 /* Apply record_store to all candidate stores in INSN.  Mark INSN
2375    if some part of it is not a candidate store and assigns to a
2376    non-register target.  */
2377 
2378 static void
scan_insn(bb_info_t bb_info,rtx_insn * insn)2379 scan_insn (bb_info_t bb_info, rtx_insn *insn)
2380 {
2381   rtx body;
2382   insn_info_type *insn_info = insn_info_type_pool.allocate ();
2383   int mems_found = 0;
2384   memset (insn_info, 0, sizeof (struct insn_info_type));
2385 
2386   if (dump_file && (dump_flags & TDF_DETAILS))
2387     fprintf (dump_file, "\n**scanning insn=%d\n",
2388 	     INSN_UID (insn));
2389 
2390   insn_info->prev_insn = bb_info->last_insn;
2391   insn_info->insn = insn;
2392   bb_info->last_insn = insn_info;
2393 
2394   if (DEBUG_INSN_P (insn))
2395     {
2396       insn_info->cannot_delete = true;
2397       return;
2398     }
2399 
2400   /* Look at all of the uses in the insn.  */
2401   note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2402 
2403   if (CALL_P (insn))
2404     {
2405       bool const_call;
2406       rtx call, sym;
2407       tree memset_call = NULL_TREE;
2408 
2409       insn_info->cannot_delete = true;
2410 
2411       /* Const functions cannot do anything bad i.e. read memory,
2412 	 however, they can read their parameters which may have
2413 	 been pushed onto the stack.
2414 	 memset and bzero don't read memory either.  */
2415       const_call = RTL_CONST_CALL_P (insn);
2416       if (!const_call
2417 	  && (call = get_call_rtx_from (insn))
2418 	  && (sym = XEXP (XEXP (call, 0), 0))
2419 	  && GET_CODE (sym) == SYMBOL_REF
2420 	  && SYMBOL_REF_DECL (sym)
2421 	  && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
2422 	  && DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (sym)) == BUILT_IN_NORMAL
2423 	  && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (sym)) == BUILT_IN_MEMSET)
2424 	memset_call = SYMBOL_REF_DECL (sym);
2425 
2426       if (const_call || memset_call)
2427 	{
2428 	  insn_info_t i_ptr = active_local_stores;
2429 	  insn_info_t last = NULL;
2430 
2431 	  if (dump_file && (dump_flags & TDF_DETAILS))
2432 	    fprintf (dump_file, "%s call %d\n",
2433 		     const_call ? "const" : "memset", INSN_UID (insn));
2434 
2435 	  /* See the head comment of the frame_read field.  */
2436 	  if (reload_completed
2437 	      /* Tail calls are storing their arguments using
2438 		 arg pointer.  If it is a frame pointer on the target,
2439 		 even before reload we need to kill frame pointer based
2440 		 stores.  */
2441 	      || (SIBLING_CALL_P (insn)
2442 		  && HARD_FRAME_POINTER_IS_ARG_POINTER))
2443 	    insn_info->frame_read = true;
2444 
2445 	  /* Loop over the active stores and remove those which are
2446 	     killed by the const function call.  */
2447 	  while (i_ptr)
2448 	    {
2449 	      bool remove_store = false;
2450 
2451 	      /* The stack pointer based stores are always killed.  */
2452 	      if (i_ptr->stack_pointer_based)
2453 	        remove_store = true;
2454 
2455 	      /* If the frame is read, the frame related stores are killed.  */
2456 	      else if (insn_info->frame_read)
2457 		{
2458 		  store_info *store_info = i_ptr->store_rec;
2459 
2460 		  /* Skip the clobbers.  */
2461 		  while (!store_info->is_set)
2462 		    store_info = store_info->next;
2463 
2464 		  if (store_info->group_id >= 0
2465 		      && rtx_group_vec[store_info->group_id]->frame_related)
2466 		    remove_store = true;
2467 		}
2468 
2469 	      if (remove_store)
2470 		{
2471 		  if (dump_file && (dump_flags & TDF_DETAILS))
2472 		    dump_insn_info ("removing from active", i_ptr);
2473 
2474 		  active_local_stores_len--;
2475 		  if (last)
2476 		    last->next_local_store = i_ptr->next_local_store;
2477 		  else
2478 		    active_local_stores = i_ptr->next_local_store;
2479 		}
2480 	      else
2481 		last = i_ptr;
2482 
2483 	      i_ptr = i_ptr->next_local_store;
2484 	    }
2485 
2486 	  if (memset_call)
2487 	    {
2488 	      rtx args[3];
2489 	      if (get_call_args (insn, memset_call, args, 3)
2490 		  && CONST_INT_P (args[1])
2491 		  && CONST_INT_P (args[2])
2492 		  && INTVAL (args[2]) > 0)
2493 		{
2494 		  rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2495 		  set_mem_size (mem, INTVAL (args[2]));
2496 		  body = gen_rtx_SET (mem, args[1]);
2497 		  mems_found += record_store (body, bb_info);
2498 		  if (dump_file && (dump_flags & TDF_DETAILS))
2499 		    fprintf (dump_file, "handling memset as BLKmode store\n");
2500 		  if (mems_found == 1)
2501 		    {
2502 		      if (active_local_stores_len++
2503 			  >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2504 			{
2505 			  active_local_stores_len = 1;
2506 			  active_local_stores = NULL;
2507 			}
2508 		      insn_info->fixed_regs_live
2509 			= copy_fixed_regs (bb_info->regs_live);
2510 		      insn_info->next_local_store = active_local_stores;
2511 		      active_local_stores = insn_info;
2512 		    }
2513 		}
2514 	      else
2515 		clear_rhs_from_active_local_stores ();
2516 	    }
2517 	}
2518       else if (SIBLING_CALL_P (insn)
2519 	       && (reload_completed || HARD_FRAME_POINTER_IS_ARG_POINTER))
2520 	/* Arguments for a sibling call that are pushed to memory are passed
2521 	   using the incoming argument pointer of the current function.  After
2522 	   reload that might be (and likely is) frame pointer based.  And, if
2523 	   it is a frame pointer on the target, even before reload we need to
2524 	   kill frame pointer based stores.  */
2525 	add_wild_read (bb_info);
2526       else
2527 	/* Every other call, including pure functions, may read any memory
2528            that is not relative to the frame.  */
2529         add_non_frame_wild_read (bb_info);
2530 
2531       return;
2532     }
2533 
2534   /* Assuming that there are sets in these insns, we cannot delete
2535      them.  */
2536   if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2537       || volatile_refs_p (PATTERN (insn))
2538       || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2539       || (RTX_FRAME_RELATED_P (insn))
2540       || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2541     insn_info->cannot_delete = true;
2542 
2543   body = PATTERN (insn);
2544   if (GET_CODE (body) == PARALLEL)
2545     {
2546       int i;
2547       for (i = 0; i < XVECLEN (body, 0); i++)
2548 	mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2549     }
2550   else
2551     mems_found += record_store (body, bb_info);
2552 
2553   if (dump_file && (dump_flags & TDF_DETAILS))
2554     fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2555 	     mems_found, insn_info->cannot_delete ? "true" : "false");
2556 
2557   /* If we found some sets of mems, add it into the active_local_stores so
2558      that it can be locally deleted if found dead or used for
2559      replace_read and redundant constant store elimination.  Otherwise mark
2560      it as cannot delete.  This simplifies the processing later.  */
2561   if (mems_found == 1)
2562     {
2563       if (active_local_stores_len++
2564 	  >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2565 	{
2566 	  active_local_stores_len = 1;
2567 	  active_local_stores = NULL;
2568 	}
2569       insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2570       insn_info->next_local_store = active_local_stores;
2571       active_local_stores = insn_info;
2572     }
2573   else
2574     insn_info->cannot_delete = true;
2575 }
2576 
2577 
2578 /* Remove BASE from the set of active_local_stores.  This is a
2579    callback from cselib that is used to get rid of the stores in
2580    active_local_stores.  */
2581 
2582 static void
remove_useless_values(cselib_val * base)2583 remove_useless_values (cselib_val *base)
2584 {
2585   insn_info_t insn_info = active_local_stores;
2586   insn_info_t last = NULL;
2587 
2588   while (insn_info)
2589     {
2590       store_info *store_info = insn_info->store_rec;
2591       bool del = false;
2592 
2593       /* If ANY of the store_infos match the cselib group that is
2594 	 being deleted, then the insn can not be deleted.  */
2595       while (store_info)
2596 	{
2597 	  if ((store_info->group_id == -1)
2598 	      && (store_info->cse_base == base))
2599 	    {
2600 	      del = true;
2601 	      break;
2602 	    }
2603 	  store_info = store_info->next;
2604 	}
2605 
2606       if (del)
2607 	{
2608 	  active_local_stores_len--;
2609 	  if (last)
2610 	    last->next_local_store = insn_info->next_local_store;
2611 	  else
2612 	    active_local_stores = insn_info->next_local_store;
2613 	  free_store_info (insn_info);
2614 	}
2615       else
2616 	last = insn_info;
2617 
2618       insn_info = insn_info->next_local_store;
2619     }
2620 }
2621 
2622 
2623 /* Do all of step 1.  */
2624 
2625 static void
dse_step1(void)2626 dse_step1 (void)
2627 {
2628   basic_block bb;
2629   bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2630 
2631   cselib_init (0);
2632   all_blocks = BITMAP_ALLOC (NULL);
2633   bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2634   bitmap_set_bit (all_blocks, EXIT_BLOCK);
2635 
2636   FOR_ALL_BB_FN (bb, cfun)
2637     {
2638       insn_info_t ptr;
2639       bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2640 
2641       memset (bb_info, 0, sizeof (dse_bb_info_type));
2642       bitmap_set_bit (all_blocks, bb->index);
2643       bb_info->regs_live = regs_live;
2644 
2645       bitmap_copy (regs_live, DF_LR_IN (bb));
2646       df_simulate_initialize_forwards (bb, regs_live);
2647 
2648       bb_table[bb->index] = bb_info;
2649       cselib_discard_hook = remove_useless_values;
2650 
2651       if (bb->index >= NUM_FIXED_BLOCKS)
2652 	{
2653 	  rtx_insn *insn;
2654 
2655 	  active_local_stores = NULL;
2656 	  active_local_stores_len = 0;
2657 	  cselib_clear_table ();
2658 
2659 	  /* Scan the insns.  */
2660 	  FOR_BB_INSNS (bb, insn)
2661 	    {
2662 	      if (INSN_P (insn))
2663 		scan_insn (bb_info, insn);
2664 	      cselib_process_insn (insn);
2665 	      if (INSN_P (insn))
2666 		df_simulate_one_insn_forwards (bb, insn, regs_live);
2667 	    }
2668 
2669 	  /* This is something of a hack, because the global algorithm
2670 	     is supposed to take care of the case where stores go dead
2671 	     at the end of the function.  However, the global
2672 	     algorithm must take a more conservative view of block
2673 	     mode reads than the local alg does.  So to get the case
2674 	     where you have a store to the frame followed by a non
2675 	     overlapping block more read, we look at the active local
2676 	     stores at the end of the function and delete all of the
2677 	     frame and spill based ones.  */
2678 	  if (stores_off_frame_dead_at_return
2679 	      && (EDGE_COUNT (bb->succs) == 0
2680 		  || (single_succ_p (bb)
2681 		      && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2682 		      && ! crtl->calls_eh_return)))
2683 	    {
2684 	      insn_info_t i_ptr = active_local_stores;
2685 	      while (i_ptr)
2686 		{
2687 		  store_info *store_info = i_ptr->store_rec;
2688 
2689 		  /* Skip the clobbers.  */
2690 		  while (!store_info->is_set)
2691 		    store_info = store_info->next;
2692 		  if (store_info->group_id >= 0)
2693 		    {
2694 		      group_info *group = rtx_group_vec[store_info->group_id];
2695 		      if (group->frame_related && !i_ptr->cannot_delete)
2696 			delete_dead_store_insn (i_ptr);
2697 		    }
2698 
2699 		  i_ptr = i_ptr->next_local_store;
2700 		}
2701 	    }
2702 
2703 	  /* Get rid of the loads that were discovered in
2704 	     replace_read.  Cselib is finished with this block.  */
2705 	  while (deferred_change_list)
2706 	    {
2707 	      deferred_change *next = deferred_change_list->next;
2708 
2709 	      /* There is no reason to validate this change.  That was
2710 		 done earlier.  */
2711 	      *deferred_change_list->loc = deferred_change_list->reg;
2712 	      deferred_change_pool.remove (deferred_change_list);
2713 	      deferred_change_list = next;
2714 	    }
2715 
2716 	  /* Get rid of all of the cselib based store_infos in this
2717 	     block and mark the containing insns as not being
2718 	     deletable.  */
2719 	  ptr = bb_info->last_insn;
2720 	  while (ptr)
2721 	    {
2722 	      if (ptr->contains_cselib_groups)
2723 		{
2724 		  store_info *s_info = ptr->store_rec;
2725 		  while (s_info && !s_info->is_set)
2726 		    s_info = s_info->next;
2727 		  if (s_info
2728 		      && s_info->redundant_reason
2729 		      && s_info->redundant_reason->insn
2730 		      && !ptr->cannot_delete)
2731 		    {
2732 		      if (dump_file && (dump_flags & TDF_DETAILS))
2733 			fprintf (dump_file, "Locally deleting insn %d "
2734 					    "because insn %d stores the "
2735 					    "same value and couldn't be "
2736 					    "eliminated\n",
2737 				 INSN_UID (ptr->insn),
2738 				 INSN_UID (s_info->redundant_reason->insn));
2739 		      delete_dead_store_insn (ptr);
2740 		    }
2741 		  free_store_info (ptr);
2742 		}
2743 	      else
2744 		{
2745 		  store_info *s_info;
2746 
2747 		  /* Free at least positions_needed bitmaps.  */
2748 		  for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2749 		    if (s_info->is_large)
2750 		      {
2751 			BITMAP_FREE (s_info->positions_needed.large.bmap);
2752 			s_info->is_large = false;
2753 		      }
2754 		}
2755 	      ptr = ptr->prev_insn;
2756 	    }
2757 
2758 	  cse_store_info_pool.release ();
2759 	}
2760       bb_info->regs_live = NULL;
2761     }
2762 
2763   BITMAP_FREE (regs_live);
2764   cselib_finish ();
2765   rtx_group_table->empty ();
2766 }
2767 
2768 
2769 /*----------------------------------------------------------------------------
2770    Second step.
2771 
2772    Assign each byte position in the stores that we are going to
2773    analyze globally to a position in the bitmaps.  Returns true if
2774    there are any bit positions assigned.
2775 ----------------------------------------------------------------------------*/
2776 
2777 static void
dse_step2_init(void)2778 dse_step2_init (void)
2779 {
2780   unsigned int i;
2781   group_info *group;
2782 
2783   FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2784     {
2785       /* For all non stack related bases, we only consider a store to
2786 	 be deletable if there are two or more stores for that
2787 	 position.  This is because it takes one store to make the
2788 	 other store redundant.  However, for the stores that are
2789 	 stack related, we consider them if there is only one store
2790 	 for the position.  We do this because the stack related
2791 	 stores can be deleted if their is no read between them and
2792 	 the end of the function.
2793 
2794 	 To make this work in the current framework, we take the stack
2795 	 related bases add all of the bits from store1 into store2.
2796 	 This has the effect of making the eligible even if there is
2797 	 only one store.   */
2798 
2799       if (stores_off_frame_dead_at_return && group->frame_related)
2800 	{
2801 	  bitmap_ior_into (group->store2_n, group->store1_n);
2802 	  bitmap_ior_into (group->store2_p, group->store1_p);
2803 	  if (dump_file && (dump_flags & TDF_DETAILS))
2804 	    fprintf (dump_file, "group %d is frame related ", i);
2805 	}
2806 
2807       group->offset_map_size_n++;
2808       group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2809 				       group->offset_map_size_n);
2810       group->offset_map_size_p++;
2811       group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2812 				       group->offset_map_size_p);
2813       group->process_globally = false;
2814       if (dump_file && (dump_flags & TDF_DETAILS))
2815 	{
2816 	  fprintf (dump_file, "group %d(%d+%d): ", i,
2817 		   (int)bitmap_count_bits (group->store2_n),
2818 		   (int)bitmap_count_bits (group->store2_p));
2819 	  bitmap_print (dump_file, group->store2_n, "n ", " ");
2820 	  bitmap_print (dump_file, group->store2_p, "p ", "\n");
2821 	}
2822     }
2823 }
2824 
2825 
2826 /* Init the offset tables.  */
2827 
2828 static bool
dse_step2(void)2829 dse_step2 (void)
2830 {
2831   unsigned int i;
2832   group_info *group;
2833   /* Position 0 is unused because 0 is used in the maps to mean
2834      unused.  */
2835   current_position = 1;
2836   FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2837     {
2838       bitmap_iterator bi;
2839       unsigned int j;
2840 
2841       memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2842       memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2843       bitmap_clear (group->group_kill);
2844 
2845       EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2846 	{
2847 	  bitmap_set_bit (group->group_kill, current_position);
2848           if (bitmap_bit_p (group->escaped_n, j))
2849 	    bitmap_set_bit (kill_on_calls, current_position);
2850 	  group->offset_map_n[j] = current_position++;
2851 	  group->process_globally = true;
2852 	}
2853       EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2854 	{
2855 	  bitmap_set_bit (group->group_kill, current_position);
2856           if (bitmap_bit_p (group->escaped_p, j))
2857 	    bitmap_set_bit (kill_on_calls, current_position);
2858 	  group->offset_map_p[j] = current_position++;
2859 	  group->process_globally = true;
2860 	}
2861     }
2862   return current_position != 1;
2863 }
2864 
2865 
2866 
2867 /*----------------------------------------------------------------------------
2868   Third step.
2869 
2870   Build the bit vectors for the transfer functions.
2871 ----------------------------------------------------------------------------*/
2872 
2873 
2874 /* Look up the bitmap index for OFFSET in GROUP_INFO.  If it is not
2875    there, return 0.  */
2876 
2877 static int
get_bitmap_index(group_info * group_info,HOST_WIDE_INT offset)2878 get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
2879 {
2880   if (offset < 0)
2881     {
2882       HOST_WIDE_INT offset_p = -offset;
2883       if (offset_p >= group_info->offset_map_size_n)
2884 	return 0;
2885       return group_info->offset_map_n[offset_p];
2886     }
2887   else
2888     {
2889       if (offset >= group_info->offset_map_size_p)
2890 	return 0;
2891       return group_info->offset_map_p[offset];
2892     }
2893 }
2894 
2895 
2896 /* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
2897    may be NULL. */
2898 
2899 static void
scan_stores(store_info * store_info,bitmap gen,bitmap kill)2900 scan_stores (store_info *store_info, bitmap gen, bitmap kill)
2901 {
2902   while (store_info)
2903     {
2904       HOST_WIDE_INT i, offset, width;
2905       group_info *group_info
2906 	= rtx_group_vec[store_info->group_id];
2907       /* We can (conservatively) ignore stores whose bounds aren't known;
2908 	 they simply don't generate new global dse opportunities.  */
2909       if (group_info->process_globally
2910 	  && store_info->offset.is_constant (&offset)
2911 	  && store_info->width.is_constant (&width))
2912 	{
2913 	  HOST_WIDE_INT end = offset + width;
2914 	  for (i = offset; i < end; i++)
2915 	    {
2916 	      int index = get_bitmap_index (group_info, i);
2917 	      if (index != 0)
2918 		{
2919 		  bitmap_set_bit (gen, index);
2920 		  if (kill)
2921 		    bitmap_clear_bit (kill, index);
2922 		}
2923 	    }
2924 	}
2925       store_info = store_info->next;
2926     }
2927 }
2928 
2929 
2930 /* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
2931    may be NULL.  */
2932 
2933 static void
scan_reads(insn_info_t insn_info,bitmap gen,bitmap kill)2934 scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
2935 {
2936   read_info_t read_info = insn_info->read_rec;
2937   int i;
2938   group_info *group;
2939 
2940   /* If this insn reads the frame, kill all the frame related stores.  */
2941   if (insn_info->frame_read)
2942     {
2943       FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2944 	if (group->process_globally && group->frame_related)
2945 	  {
2946 	    if (kill)
2947 	      bitmap_ior_into (kill, group->group_kill);
2948 	    bitmap_and_compl_into (gen, group->group_kill);
2949 	  }
2950     }
2951   if (insn_info->non_frame_wild_read)
2952     {
2953       /* Kill all non-frame related stores.  Kill all stores of variables that
2954          escape.  */
2955       if (kill)
2956         bitmap_ior_into (kill, kill_on_calls);
2957       bitmap_and_compl_into (gen, kill_on_calls);
2958       FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2959 	if (group->process_globally && !group->frame_related)
2960 	  {
2961 	    if (kill)
2962 	      bitmap_ior_into (kill, group->group_kill);
2963 	    bitmap_and_compl_into (gen, group->group_kill);
2964 	  }
2965     }
2966   while (read_info)
2967     {
2968       FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2969 	{
2970 	  if (group->process_globally)
2971 	    {
2972 	      if (i == read_info->group_id)
2973 		{
2974 		  HOST_WIDE_INT offset, width;
2975 		  /* Reads with non-constant size kill all DSE opportunities
2976 		     in the group.  */
2977 		  if (!read_info->offset.is_constant (&offset)
2978 		      || !read_info->width.is_constant (&width)
2979 		      || !known_size_p (width))
2980 		    {
2981 		      /* Handle block mode reads.  */
2982 		      if (kill)
2983 			bitmap_ior_into (kill, group->group_kill);
2984 		      bitmap_and_compl_into (gen, group->group_kill);
2985 		    }
2986 		  else
2987 		    {
2988 		      /* The groups are the same, just process the
2989 			 offsets.  */
2990 		      HOST_WIDE_INT j;
2991 		      HOST_WIDE_INT end = offset + width;
2992 		      for (j = offset; j < end; j++)
2993 			{
2994 			  int index = get_bitmap_index (group, j);
2995 			  if (index != 0)
2996 			    {
2997 			      if (kill)
2998 				bitmap_set_bit (kill, index);
2999 			      bitmap_clear_bit (gen, index);
3000 			    }
3001 			}
3002 		    }
3003 		}
3004 	      else
3005 		{
3006 		  /* The groups are different, if the alias sets
3007 		     conflict, clear the entire group.  We only need
3008 		     to apply this test if the read_info is a cselib
3009 		     read.  Anything with a constant base cannot alias
3010 		     something else with a different constant
3011 		     base.  */
3012 		  if ((read_info->group_id < 0)
3013 		      && canon_true_dependence (group->base_mem,
3014 						GET_MODE (group->base_mem),
3015 						group->canon_base_addr,
3016 						read_info->mem, NULL_RTX))
3017 		    {
3018 		      if (kill)
3019 			bitmap_ior_into (kill, group->group_kill);
3020 		      bitmap_and_compl_into (gen, group->group_kill);
3021 		    }
3022 		}
3023 	    }
3024 	}
3025 
3026       read_info = read_info->next;
3027     }
3028 }
3029 
3030 
3031 /* Return the insn in BB_INFO before the first wild read or if there
3032    are no wild reads in the block, return the last insn.  */
3033 
3034 static insn_info_t
find_insn_before_first_wild_read(bb_info_t bb_info)3035 find_insn_before_first_wild_read (bb_info_t bb_info)
3036 {
3037   insn_info_t insn_info = bb_info->last_insn;
3038   insn_info_t last_wild_read = NULL;
3039 
3040   while (insn_info)
3041     {
3042       if (insn_info->wild_read)
3043 	{
3044 	  last_wild_read = insn_info->prev_insn;
3045 	  /* Block starts with wild read.  */
3046 	  if (!last_wild_read)
3047 	    return NULL;
3048 	}
3049 
3050       insn_info = insn_info->prev_insn;
3051     }
3052 
3053   if (last_wild_read)
3054     return last_wild_read;
3055   else
3056     return bb_info->last_insn;
3057 }
3058 
3059 
3060 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3061    the block in order to build the gen and kill sets for the block.
3062    We start at ptr which may be the last insn in the block or may be
3063    the first insn with a wild read.  In the latter case we are able to
3064    skip the rest of the block because it just does not matter:
3065    anything that happens is hidden by the wild read.  */
3066 
3067 static void
dse_step3_scan(basic_block bb)3068 dse_step3_scan (basic_block bb)
3069 {
3070   bb_info_t bb_info = bb_table[bb->index];
3071   insn_info_t insn_info;
3072 
3073   insn_info = find_insn_before_first_wild_read (bb_info);
3074 
3075   /* In the spill case or in the no_spill case if there is no wild
3076      read in the block, we will need a kill set.  */
3077   if (insn_info == bb_info->last_insn)
3078     {
3079       if (bb_info->kill)
3080 	bitmap_clear (bb_info->kill);
3081       else
3082 	bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3083     }
3084   else
3085     if (bb_info->kill)
3086       BITMAP_FREE (bb_info->kill);
3087 
3088   while (insn_info)
3089     {
3090       /* There may have been code deleted by the dce pass run before
3091 	 this phase.  */
3092       if (insn_info->insn && INSN_P (insn_info->insn))
3093 	{
3094 	  scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3095 	  scan_reads (insn_info, bb_info->gen, bb_info->kill);
3096 	}
3097 
3098       insn_info = insn_info->prev_insn;
3099     }
3100 }
3101 
3102 
3103 /* Set the gen set of the exit block, and also any block with no
3104    successors that does not have a wild read.  */
3105 
3106 static void
dse_step3_exit_block_scan(bb_info_t bb_info)3107 dse_step3_exit_block_scan (bb_info_t bb_info)
3108 {
3109   /* The gen set is all 0's for the exit block except for the
3110      frame_pointer_group.  */
3111 
3112   if (stores_off_frame_dead_at_return)
3113     {
3114       unsigned int i;
3115       group_info *group;
3116 
3117       FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3118 	{
3119 	  if (group->process_globally && group->frame_related)
3120 	    bitmap_ior_into (bb_info->gen, group->group_kill);
3121 	}
3122     }
3123 }
3124 
3125 
3126 /* Find all of the blocks that are not backwards reachable from the
3127    exit block or any block with no successors (BB).  These are the
3128    infinite loops or infinite self loops.  These blocks will still
3129    have their bits set in UNREACHABLE_BLOCKS.  */
3130 
3131 static void
mark_reachable_blocks(sbitmap unreachable_blocks,basic_block bb)3132 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3133 {
3134   edge e;
3135   edge_iterator ei;
3136 
3137   if (bitmap_bit_p (unreachable_blocks, bb->index))
3138     {
3139       bitmap_clear_bit (unreachable_blocks, bb->index);
3140       FOR_EACH_EDGE (e, ei, bb->preds)
3141 	{
3142 	  mark_reachable_blocks (unreachable_blocks, e->src);
3143 	}
3144     }
3145 }
3146 
3147 /* Build the transfer functions for the function.  */
3148 
3149 static void
dse_step3()3150 dse_step3 ()
3151 {
3152   basic_block bb;
3153   sbitmap_iterator sbi;
3154   bitmap all_ones = NULL;
3155   unsigned int i;
3156 
3157   auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
3158   bitmap_ones (unreachable_blocks);
3159 
3160   FOR_ALL_BB_FN (bb, cfun)
3161     {
3162       bb_info_t bb_info = bb_table[bb->index];
3163       if (bb_info->gen)
3164 	bitmap_clear (bb_info->gen);
3165       else
3166 	bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3167 
3168       if (bb->index == ENTRY_BLOCK)
3169 	;
3170       else if (bb->index == EXIT_BLOCK)
3171 	dse_step3_exit_block_scan (bb_info);
3172       else
3173 	dse_step3_scan (bb);
3174       if (EDGE_COUNT (bb->succs) == 0)
3175 	mark_reachable_blocks (unreachable_blocks, bb);
3176 
3177       /* If this is the second time dataflow is run, delete the old
3178 	 sets.  */
3179       if (bb_info->in)
3180 	BITMAP_FREE (bb_info->in);
3181       if (bb_info->out)
3182 	BITMAP_FREE (bb_info->out);
3183     }
3184 
3185   /* For any block in an infinite loop, we must initialize the out set
3186      to all ones.  This could be expensive, but almost never occurs in
3187      practice. However, it is common in regression tests.  */
3188   EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3189     {
3190       if (bitmap_bit_p (all_blocks, i))
3191 	{
3192 	  bb_info_t bb_info = bb_table[i];
3193 	  if (!all_ones)
3194 	    {
3195 	      unsigned int j;
3196 	      group_info *group;
3197 
3198 	      all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3199 	      FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3200 		bitmap_ior_into (all_ones, group->group_kill);
3201 	    }
3202 	  if (!bb_info->out)
3203 	    {
3204 	      bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3205 	      bitmap_copy (bb_info->out, all_ones);
3206 	    }
3207 	}
3208     }
3209 
3210   if (all_ones)
3211     BITMAP_FREE (all_ones);
3212 }
3213 
3214 
3215 
3216 /*----------------------------------------------------------------------------
3217    Fourth step.
3218 
3219    Solve the bitvector equations.
3220 ----------------------------------------------------------------------------*/
3221 
3222 
3223 /* Confluence function for blocks with no successors.  Create an out
3224    set from the gen set of the exit block.  This block logically has
3225    the exit block as a successor.  */
3226 
3227 
3228 
3229 static void
dse_confluence_0(basic_block bb)3230 dse_confluence_0 (basic_block bb)
3231 {
3232   bb_info_t bb_info = bb_table[bb->index];
3233 
3234   if (bb->index == EXIT_BLOCK)
3235     return;
3236 
3237   if (!bb_info->out)
3238     {
3239       bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3240       bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3241     }
3242 }
3243 
3244 /* Propagate the information from the in set of the dest of E to the
3245    out set of the src of E.  If the various in or out sets are not
3246    there, that means they are all ones.  */
3247 
3248 static bool
dse_confluence_n(edge e)3249 dse_confluence_n (edge e)
3250 {
3251   bb_info_t src_info = bb_table[e->src->index];
3252   bb_info_t dest_info = bb_table[e->dest->index];
3253 
3254   if (dest_info->in)
3255     {
3256       if (src_info->out)
3257 	bitmap_and_into (src_info->out, dest_info->in);
3258       else
3259 	{
3260 	  src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3261 	  bitmap_copy (src_info->out, dest_info->in);
3262 	}
3263     }
3264   return true;
3265 }
3266 
3267 
3268 /* Propagate the info from the out to the in set of BB_INDEX's basic
3269    block.  There are three cases:
3270 
3271    1) The block has no kill set.  In this case the kill set is all
3272    ones.  It does not matter what the out set of the block is, none of
3273    the info can reach the top.  The only thing that reaches the top is
3274    the gen set and we just copy the set.
3275 
3276    2) There is a kill set but no out set and bb has successors.  In
3277    this case we just return. Eventually an out set will be created and
3278    it is better to wait than to create a set of ones.
3279 
3280    3) There is both a kill and out set.  We apply the obvious transfer
3281    function.
3282 */
3283 
3284 static bool
dse_transfer_function(int bb_index)3285 dse_transfer_function (int bb_index)
3286 {
3287   bb_info_t bb_info = bb_table[bb_index];
3288 
3289   if (bb_info->kill)
3290     {
3291       if (bb_info->out)
3292 	{
3293 	  /* Case 3 above.  */
3294 	  if (bb_info->in)
3295 	    return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3296 					 bb_info->out, bb_info->kill);
3297 	  else
3298 	    {
3299 	      bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3300 	      bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3301 				    bb_info->out, bb_info->kill);
3302 	      return true;
3303 	    }
3304 	}
3305       else
3306 	/* Case 2 above.  */
3307 	return false;
3308     }
3309   else
3310     {
3311       /* Case 1 above.  If there is already an in set, nothing
3312 	 happens.  */
3313       if (bb_info->in)
3314 	return false;
3315       else
3316 	{
3317 	  bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3318 	  bitmap_copy (bb_info->in, bb_info->gen);
3319 	  return true;
3320 	}
3321     }
3322 }
3323 
3324 /* Solve the dataflow equations.  */
3325 
3326 static void
dse_step4(void)3327 dse_step4 (void)
3328 {
3329   df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3330 		      dse_confluence_n, dse_transfer_function,
3331 	   	      all_blocks, df_get_postorder (DF_BACKWARD),
3332 		      df_get_n_blocks (DF_BACKWARD));
3333   if (dump_file && (dump_flags & TDF_DETAILS))
3334     {
3335       basic_block bb;
3336 
3337       fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3338       FOR_ALL_BB_FN (bb, cfun)
3339 	{
3340 	  bb_info_t bb_info = bb_table[bb->index];
3341 
3342 	  df_print_bb_index (bb, dump_file);
3343 	  if (bb_info->in)
3344 	    bitmap_print (dump_file, bb_info->in, "  in:   ", "\n");
3345 	  else
3346 	    fprintf (dump_file, "  in:   *MISSING*\n");
3347 	  if (bb_info->gen)
3348 	    bitmap_print (dump_file, bb_info->gen, "  gen:  ", "\n");
3349 	  else
3350 	    fprintf (dump_file, "  gen:  *MISSING*\n");
3351 	  if (bb_info->kill)
3352 	    bitmap_print (dump_file, bb_info->kill, "  kill: ", "\n");
3353 	  else
3354 	    fprintf (dump_file, "  kill: *MISSING*\n");
3355 	  if (bb_info->out)
3356 	    bitmap_print (dump_file, bb_info->out, "  out:  ", "\n");
3357 	  else
3358 	    fprintf (dump_file, "  out:  *MISSING*\n\n");
3359 	}
3360     }
3361 }
3362 
3363 
3364 
3365 /*----------------------------------------------------------------------------
3366    Fifth step.
3367 
3368    Delete the stores that can only be deleted using the global information.
3369 ----------------------------------------------------------------------------*/
3370 
3371 
3372 static void
dse_step5(void)3373 dse_step5 (void)
3374 {
3375   basic_block bb;
3376   FOR_EACH_BB_FN (bb, cfun)
3377     {
3378       bb_info_t bb_info = bb_table[bb->index];
3379       insn_info_t insn_info = bb_info->last_insn;
3380       bitmap v = bb_info->out;
3381 
3382       while (insn_info)
3383 	{
3384 	  bool deleted = false;
3385 	  if (dump_file && insn_info->insn)
3386 	    {
3387 	      fprintf (dump_file, "starting to process insn %d\n",
3388 		       INSN_UID (insn_info->insn));
3389 	      bitmap_print (dump_file, v, "  v:  ", "\n");
3390 	    }
3391 
3392 	  /* There may have been code deleted by the dce pass run before
3393 	     this phase.  */
3394 	  if (insn_info->insn
3395 	      && INSN_P (insn_info->insn)
3396 	      && (!insn_info->cannot_delete)
3397 	      && (!bitmap_empty_p (v)))
3398 	    {
3399 	      store_info *store_info = insn_info->store_rec;
3400 
3401 	      /* Try to delete the current insn.  */
3402 	      deleted = true;
3403 
3404 	      /* Skip the clobbers.  */
3405 	      while (!store_info->is_set)
3406 		store_info = store_info->next;
3407 
3408 	      HOST_WIDE_INT i, offset, width;
3409 	      group_info *group_info = rtx_group_vec[store_info->group_id];
3410 
3411 	      if (!store_info->offset.is_constant (&offset)
3412 		  || !store_info->width.is_constant (&width))
3413 		deleted = false;
3414 	      else
3415 		{
3416 		  HOST_WIDE_INT end = offset + width;
3417 		  for (i = offset; i < end; i++)
3418 		    {
3419 		      int index = get_bitmap_index (group_info, i);
3420 
3421 		      if (dump_file && (dump_flags & TDF_DETAILS))
3422 			fprintf (dump_file, "i = %d, index = %d\n",
3423 				 (int) i, index);
3424 		      if (index == 0 || !bitmap_bit_p (v, index))
3425 			{
3426 			  if (dump_file && (dump_flags & TDF_DETAILS))
3427 			    fprintf (dump_file, "failing at i = %d\n",
3428 				     (int) i);
3429 			  deleted = false;
3430 			  break;
3431 			}
3432 		    }
3433 		}
3434 	      if (deleted)
3435 		{
3436 		  if (dbg_cnt (dse)
3437 		      && check_for_inc_dec_1 (insn_info))
3438 		    {
3439 		      delete_insn (insn_info->insn);
3440 		      insn_info->insn = NULL;
3441 		      globally_deleted++;
3442 		    }
3443 		}
3444 	    }
3445 	  /* We do want to process the local info if the insn was
3446 	     deleted.  For instance, if the insn did a wild read, we
3447 	     no longer need to trash the info.  */
3448 	  if (insn_info->insn
3449 	      && INSN_P (insn_info->insn)
3450 	      && (!deleted))
3451 	    {
3452 	      scan_stores (insn_info->store_rec, v, NULL);
3453 	      if (insn_info->wild_read)
3454 		{
3455 		  if (dump_file && (dump_flags & TDF_DETAILS))
3456 		    fprintf (dump_file, "wild read\n");
3457 		  bitmap_clear (v);
3458 		}
3459 	      else if (insn_info->read_rec
3460 		       || insn_info->non_frame_wild_read
3461 		       || insn_info->frame_read)
3462 		{
3463 		  if (dump_file && (dump_flags & TDF_DETAILS))
3464 		    {
3465 		      if (!insn_info->non_frame_wild_read
3466 			  && !insn_info->frame_read)
3467 			fprintf (dump_file, "regular read\n");
3468 		      if (insn_info->non_frame_wild_read)
3469 			fprintf (dump_file, "non-frame wild read\n");
3470 		      if (insn_info->frame_read)
3471 			fprintf (dump_file, "frame read\n");
3472 		    }
3473 		  scan_reads (insn_info, v, NULL);
3474 		}
3475 	    }
3476 
3477 	  insn_info = insn_info->prev_insn;
3478 	}
3479     }
3480 }
3481 
3482 
3483 
3484 /*----------------------------------------------------------------------------
3485    Sixth step.
3486 
3487    Delete stores made redundant by earlier stores (which store the same
3488    value) that couldn't be eliminated.
3489 ----------------------------------------------------------------------------*/
3490 
3491 static void
dse_step6(void)3492 dse_step6 (void)
3493 {
3494   basic_block bb;
3495 
3496   FOR_ALL_BB_FN (bb, cfun)
3497     {
3498       bb_info_t bb_info = bb_table[bb->index];
3499       insn_info_t insn_info = bb_info->last_insn;
3500 
3501       while (insn_info)
3502 	{
3503 	  /* There may have been code deleted by the dce pass run before
3504 	     this phase.  */
3505 	  if (insn_info->insn
3506 	      && INSN_P (insn_info->insn)
3507 	      && !insn_info->cannot_delete)
3508 	    {
3509 	      store_info *s_info = insn_info->store_rec;
3510 
3511 	      while (s_info && !s_info->is_set)
3512 		s_info = s_info->next;
3513 	      if (s_info
3514 		  && s_info->redundant_reason
3515 		  && s_info->redundant_reason->insn
3516 		  && INSN_P (s_info->redundant_reason->insn))
3517 		{
3518 		  rtx_insn *rinsn = s_info->redundant_reason->insn;
3519 		  if (dump_file && (dump_flags & TDF_DETAILS))
3520 		    fprintf (dump_file, "Locally deleting insn %d "
3521 					"because insn %d stores the "
3522 					"same value and couldn't be "
3523 					"eliminated\n",
3524 					INSN_UID (insn_info->insn),
3525 					INSN_UID (rinsn));
3526 		  delete_dead_store_insn (insn_info);
3527 		}
3528 	    }
3529 	  insn_info = insn_info->prev_insn;
3530 	}
3531     }
3532 }
3533 
3534 /*----------------------------------------------------------------------------
3535    Seventh step.
3536 
3537    Destroy everything left standing.
3538 ----------------------------------------------------------------------------*/
3539 
3540 static void
dse_step7(void)3541 dse_step7 (void)
3542 {
3543   bitmap_obstack_release (&dse_bitmap_obstack);
3544   obstack_free (&dse_obstack, NULL);
3545 
3546   end_alias_analysis ();
3547   free (bb_table);
3548   delete rtx_group_table;
3549   rtx_group_table = NULL;
3550   rtx_group_vec.release ();
3551   BITMAP_FREE (all_blocks);
3552   BITMAP_FREE (scratch);
3553 
3554   rtx_store_info_pool.release ();
3555   read_info_type_pool.release ();
3556   insn_info_type_pool.release ();
3557   dse_bb_info_type_pool.release ();
3558   group_info_pool.release ();
3559   deferred_change_pool.release ();
3560 }
3561 
3562 
3563 /* -------------------------------------------------------------------------
3564    DSE
3565    ------------------------------------------------------------------------- */
3566 
3567 /* Callback for running pass_rtl_dse.  */
3568 
3569 static unsigned int
rest_of_handle_dse(void)3570 rest_of_handle_dse (void)
3571 {
3572   df_set_flags (DF_DEFER_INSN_RESCAN);
3573 
3574   /* Need the notes since we must track live hardregs in the forwards
3575      direction.  */
3576   df_note_add_problem ();
3577   df_analyze ();
3578 
3579   dse_step0 ();
3580   dse_step1 ();
3581   dse_step2_init ();
3582   if (dse_step2 ())
3583     {
3584       df_set_flags (DF_LR_RUN_DCE);
3585       df_analyze ();
3586       if (dump_file && (dump_flags & TDF_DETAILS))
3587 	fprintf (dump_file, "doing global processing\n");
3588       dse_step3 ();
3589       dse_step4 ();
3590       dse_step5 ();
3591     }
3592 
3593   dse_step6 ();
3594   dse_step7 ();
3595 
3596   if (dump_file)
3597     fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3598 	     locally_deleted, globally_deleted);
3599 
3600   /* DSE can eliminate potentially-trapping MEMs.
3601      Remove any EH edges associated with them.  */
3602   if ((locally_deleted || globally_deleted)
3603       && cfun->can_throw_non_call_exceptions
3604       && purge_all_dead_edges ())
3605     cleanup_cfg (0);
3606 
3607   return 0;
3608 }
3609 
3610 namespace {
3611 
3612 const pass_data pass_data_rtl_dse1 =
3613 {
3614   RTL_PASS, /* type */
3615   "dse1", /* name */
3616   OPTGROUP_NONE, /* optinfo_flags */
3617   TV_DSE1, /* tv_id */
3618   0, /* properties_required */
3619   0, /* properties_provided */
3620   0, /* properties_destroyed */
3621   0, /* todo_flags_start */
3622   TODO_df_finish, /* todo_flags_finish */
3623 };
3624 
3625 class pass_rtl_dse1 : public rtl_opt_pass
3626 {
3627 public:
pass_rtl_dse1(gcc::context * ctxt)3628   pass_rtl_dse1 (gcc::context *ctxt)
3629     : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3630   {}
3631 
3632   /* opt_pass methods: */
gate(function *)3633   virtual bool gate (function *)
3634     {
3635       return optimize > 0 && flag_dse && dbg_cnt (dse1);
3636     }
3637 
execute(function *)3638   virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3639 
3640 }; // class pass_rtl_dse1
3641 
3642 } // anon namespace
3643 
3644 rtl_opt_pass *
make_pass_rtl_dse1(gcc::context * ctxt)3645 make_pass_rtl_dse1 (gcc::context *ctxt)
3646 {
3647   return new pass_rtl_dse1 (ctxt);
3648 }
3649 
3650 namespace {
3651 
3652 const pass_data pass_data_rtl_dse2 =
3653 {
3654   RTL_PASS, /* type */
3655   "dse2", /* name */
3656   OPTGROUP_NONE, /* optinfo_flags */
3657   TV_DSE2, /* tv_id */
3658   0, /* properties_required */
3659   0, /* properties_provided */
3660   0, /* properties_destroyed */
3661   0, /* todo_flags_start */
3662   TODO_df_finish, /* todo_flags_finish */
3663 };
3664 
3665 class pass_rtl_dse2 : public rtl_opt_pass
3666 {
3667 public:
pass_rtl_dse2(gcc::context * ctxt)3668   pass_rtl_dse2 (gcc::context *ctxt)
3669     : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3670   {}
3671 
3672   /* opt_pass methods: */
gate(function *)3673   virtual bool gate (function *)
3674     {
3675       return optimize > 0 && flag_dse && dbg_cnt (dse2);
3676     }
3677 
execute(function *)3678   virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3679 
3680 }; // class pass_rtl_dse2
3681 
3682 } // anon namespace
3683 
3684 rtl_opt_pass *
make_pass_rtl_dse2(gcc::context * ctxt)3685 make_pass_rtl_dse2 (gcc::context *ctxt)
3686 {
3687   return new pass_rtl_dse2 (ctxt);
3688 }
3689