1 /* Convert RTL to assembler code and output it, for GNU compiler.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This is the final pass of the compiler.
21    It looks at the rtl code for a function and outputs assembler code.
22 
23    Call `final_start_function' to output the assembler code for function entry,
24    `final' to output assembler code for some RTL code,
25    `final_end_function' to output assembler code for function exit.
26    If a function is compiled in several pieces, each piece is
27    output separately with `final'.
28 
29    Some optimizations are also done at this level.
30    Move instructions that were made unnecessary by good register allocation
31    are detected and omitted from the output.  (Though most of these
32    are removed by the last jump pass.)
33 
34    Instructions to set the condition codes are omitted when it can be
35    seen that the condition codes already had the desired values.
36 
37    In some cases it is sufficient if the inherited condition codes
38    have related values, but this may require the following insn
39    (the one that tests the condition codes) to be modified.
40 
41    The code for the function prologue and epilogue are generated
42    directly in assembler by the target functions function_prologue and
43    function_epilogue.  Those instructions never exist as rtl.  */
44 
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "params.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "asan.h"
82 #include "rtl-iter.h"
83 #include "print-rtl.h"
84 
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h"		/* Needed for external data declarations.  */
87 #endif
88 
89 #include "dwarf2out.h"
90 
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
94 
95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
96    So define a null default for it to save conditionalization later.  */
97 #ifndef CC_STATUS_INIT
98 #define CC_STATUS_INIT
99 #endif
100 
101 /* Is the given character a logical line separator for the assembler?  */
102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
104 #endif
105 
106 #ifndef JUMP_TABLES_IN_TEXT_SECTION
107 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #endif
109 
110 /* Bitflags used by final_scan_insn.  */
111 #define SEEN_NOTE	1
112 #define SEEN_EMITTED	2
113 #define SEEN_NEXT_VIEW	4
114 
115 /* Last insn processed by final_scan_insn.  */
116 static rtx_insn *debug_insn;
117 rtx_insn *current_output_insn;
118 
119 /* Line number of last NOTE.  */
120 static int last_linenum;
121 
122 /* Column number of last NOTE.  */
123 static int last_columnnum;
124 
125 /* Last discriminator written to assembly.  */
126 static int last_discriminator;
127 
128 /* Discriminator of current block.  */
129 static int discriminator;
130 
131 /* Highest line number in current block.  */
132 static int high_block_linenum;
133 
134 /* Likewise for function.  */
135 static int high_function_linenum;
136 
137 /* Filename of last NOTE.  */
138 static const char *last_filename;
139 
140 /* Override filename, line and column number.  */
141 static const char *override_filename;
142 static int override_linenum;
143 static int override_columnnum;
144 
145 /* Whether to force emission of a line note before the next insn.  */
146 static bool force_source_line = false;
147 
148 extern const int length_unit_log; /* This is defined in insn-attrtab.c.  */
149 
150 /* Nonzero while outputting an `asm' with operands.
151    This means that inconsistencies are the user's fault, so don't die.
152    The precise value is the insn being output, to pass to error_for_asm.  */
153 const rtx_insn *this_is_asm_operands;
154 
155 /* Number of operands of this insn, for an `asm' with operands.  */
156 static unsigned int insn_noperands;
157 
158 /* Compare optimization flag.  */
159 
160 static rtx last_ignored_compare = 0;
161 
162 /* Assign a unique number to each insn that is output.
163    This can be used to generate unique local labels.  */
164 
165 static int insn_counter = 0;
166 
167 /* This variable contains machine-dependent flags (defined in tm.h)
168    set and examined by output routines
169    that describe how to interpret the condition codes properly.  */
170 
171 CC_STATUS cc_status;
172 
173 /* During output of an insn, this contains a copy of cc_status
174    from before the insn.  */
175 
176 CC_STATUS cc_prev_status;
177 
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen.  */
179 
180 static int block_depth;
181 
182 /* Nonzero if have enabled APP processing of our assembler output.  */
183 
184 static int app_on;
185 
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187    Zero otherwise.  */
188 
189 rtx_sequence *final_sequence;
190 
191 #ifdef ASSEMBLER_DIALECT
192 
193 /* Number of the assembler dialect to use, starting at 0.  */
194 static int dialect_number;
195 #endif
196 
197 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern.  */
198 rtx current_insn_predicate;
199 
200 /* True if printing into -fdump-final-insns= dump.  */
201 bool final_insns_dump_p;
202 
203 /* True if profile_function should be called, but hasn't been called yet.  */
204 static bool need_profile_function;
205 
206 static int asm_insn_count (rtx);
207 static void profile_function (FILE *);
208 static void profile_after_prologue (FILE *);
209 static bool notice_source_line (rtx_insn *, bool *);
210 static rtx walk_alter_subreg (rtx *, bool *);
211 static void output_asm_name (void);
212 static void output_alternate_entry_point (FILE *, rtx_insn *);
213 static tree get_mem_expr_from_op (rtx, int *);
214 static void output_asm_operand_names (rtx *, int *, int);
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs (rtx_insn *);
217 #endif
218 #if HAVE_cc0
219 static int alter_cond (rtx);
220 #endif
221 static int align_fuzz (rtx, rtx, int, unsigned);
222 static void collect_fn_hard_reg_usage (void);
223 static tree get_call_fndecl (rtx_insn *);
224 
225 /* Initialize data in final at the beginning of a compilation.  */
226 
227 void
init_final(const char * filename ATTRIBUTE_UNUSED)228 init_final (const char *filename ATTRIBUTE_UNUSED)
229 {
230   app_on = 0;
231   final_sequence = 0;
232 
233 #ifdef ASSEMBLER_DIALECT
234   dialect_number = ASSEMBLER_DIALECT;
235 #endif
236 }
237 
238 /* Default target function prologue and epilogue assembler output.
239 
240    If not overridden for epilogue code, then the function body itself
241    contains return instructions wherever needed.  */
242 void
default_function_pro_epilogue(FILE *)243 default_function_pro_epilogue (FILE *)
244 {
245 }
246 
247 void
default_function_switched_text_sections(FILE * file ATTRIBUTE_UNUSED,tree decl ATTRIBUTE_UNUSED,bool new_is_cold ATTRIBUTE_UNUSED)248 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
249 					 tree decl ATTRIBUTE_UNUSED,
250 					 bool new_is_cold ATTRIBUTE_UNUSED)
251 {
252 }
253 
254 /* Default target hook that outputs nothing to a stream.  */
255 void
no_asm_to_stream(FILE * file ATTRIBUTE_UNUSED)256 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
257 {
258 }
259 
260 /* Enable APP processing of subsequent output.
261    Used before the output from an `asm' statement.  */
262 
263 void
app_enable(void)264 app_enable (void)
265 {
266   if (! app_on)
267     {
268       fputs (ASM_APP_ON, asm_out_file);
269       app_on = 1;
270     }
271 }
272 
273 /* Disable APP processing of subsequent output.
274    Called from varasm.c before most kinds of output.  */
275 
276 void
app_disable(void)277 app_disable (void)
278 {
279   if (app_on)
280     {
281       fputs (ASM_APP_OFF, asm_out_file);
282       app_on = 0;
283     }
284 }
285 
286 /* Return the number of slots filled in the current
287    delayed branch sequence (we don't count the insn needing the
288    delay slot).   Zero if not in a delayed branch sequence.  */
289 
290 int
dbr_sequence_length(void)291 dbr_sequence_length (void)
292 {
293   if (final_sequence != 0)
294     return XVECLEN (final_sequence, 0) - 1;
295   else
296     return 0;
297 }
298 
299 /* The next two pages contain routines used to compute the length of an insn
300    and to shorten branches.  */
301 
302 /* Arrays for insn lengths, and addresses.  The latter is referenced by
303    `insn_current_length'.  */
304 
305 static int *insn_lengths;
306 
307 vec<int> insn_addresses_;
308 
309 /* Max uid for which the above arrays are valid.  */
310 static int insn_lengths_max_uid;
311 
312 /* Address of insn being processed.  Used by `insn_current_length'.  */
313 int insn_current_address;
314 
315 /* Address of insn being processed in previous iteration.  */
316 int insn_last_address;
317 
318 /* known invariant alignment of insn being processed.  */
319 int insn_current_align;
320 
321 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
322    gives the next following alignment insn that increases the known
323    alignment, or NULL_RTX if there is no such insn.
324    For any alignment obtained this way, we can again index uid_align with
325    its uid to obtain the next following align that in turn increases the
326    alignment, till we reach NULL_RTX; the sequence obtained this way
327    for each insn we'll call the alignment chain of this insn in the following
328    comments.  */
329 
330 struct label_alignment
331 {
332   short alignment;
333   short max_skip;
334 };
335 
336 static rtx *uid_align;
337 static int *uid_shuid;
338 static struct label_alignment *label_align;
339 
340 /* Indicate that branch shortening hasn't yet been done.  */
341 
342 void
init_insn_lengths(void)343 init_insn_lengths (void)
344 {
345   if (uid_shuid)
346     {
347       free (uid_shuid);
348       uid_shuid = 0;
349     }
350   if (insn_lengths)
351     {
352       free (insn_lengths);
353       insn_lengths = 0;
354       insn_lengths_max_uid = 0;
355     }
356   if (HAVE_ATTR_length)
357     INSN_ADDRESSES_FREE ();
358   if (uid_align)
359     {
360       free (uid_align);
361       uid_align = 0;
362     }
363 }
364 
365 /* Obtain the current length of an insn.  If branch shortening has been done,
366    get its actual length.  Otherwise, use FALLBACK_FN to calculate the
367    length.  */
368 static int
get_attr_length_1(rtx_insn * insn,int (* fallback_fn)(rtx_insn *))369 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
370 {
371   rtx body;
372   int i;
373   int length = 0;
374 
375   if (!HAVE_ATTR_length)
376     return 0;
377 
378   if (insn_lengths_max_uid > INSN_UID (insn))
379     return insn_lengths[INSN_UID (insn)];
380   else
381     switch (GET_CODE (insn))
382       {
383       case NOTE:
384       case BARRIER:
385       case CODE_LABEL:
386       case DEBUG_INSN:
387 	return 0;
388 
389       case CALL_INSN:
390       case JUMP_INSN:
391 	length = fallback_fn (insn);
392 	break;
393 
394       case INSN:
395 	body = PATTERN (insn);
396 	if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
397 	  return 0;
398 
399 	else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
400 	  length = asm_insn_count (body) * fallback_fn (insn);
401 	else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
402 	  for (i = 0; i < seq->len (); i++)
403 	    length += get_attr_length_1 (seq->insn (i), fallback_fn);
404 	else
405 	  length = fallback_fn (insn);
406 	break;
407 
408       default:
409 	break;
410       }
411 
412 #ifdef ADJUST_INSN_LENGTH
413   ADJUST_INSN_LENGTH (insn, length);
414 #endif
415   return length;
416 }
417 
418 /* Obtain the current length of an insn.  If branch shortening has been done,
419    get its actual length.  Otherwise, get its maximum length.  */
420 int
get_attr_length(rtx_insn * insn)421 get_attr_length (rtx_insn *insn)
422 {
423   return get_attr_length_1 (insn, insn_default_length);
424 }
425 
426 /* Obtain the current length of an insn.  If branch shortening has been done,
427    get its actual length.  Otherwise, get its minimum length.  */
428 int
get_attr_min_length(rtx_insn * insn)429 get_attr_min_length (rtx_insn *insn)
430 {
431   return get_attr_length_1 (insn, insn_min_length);
432 }
433 
434 /* Code to handle alignment inside shorten_branches.  */
435 
436 /* Here is an explanation how the algorithm in align_fuzz can give
437    proper results:
438 
439    Call a sequence of instructions beginning with alignment point X
440    and continuing until the next alignment point `block X'.  When `X'
441    is used in an expression, it means the alignment value of the
442    alignment point.
443 
444    Call the distance between the start of the first insn of block X, and
445    the end of the last insn of block X `IX', for the `inner size of X'.
446    This is clearly the sum of the instruction lengths.
447 
448    Likewise with the next alignment-delimited block following X, which we
449    shall call block Y.
450 
451    Call the distance between the start of the first insn of block X, and
452    the start of the first insn of block Y `OX', for the `outer size of X'.
453 
454    The estimated padding is then OX - IX.
455 
456    OX can be safely estimated as
457 
458            if (X >= Y)
459                    OX = round_up(IX, Y)
460            else
461                    OX = round_up(IX, X) + Y - X
462 
463    Clearly est(IX) >= real(IX), because that only depends on the
464    instruction lengths, and those being overestimated is a given.
465 
466    Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
467    we needn't worry about that when thinking about OX.
468 
469    When X >= Y, the alignment provided by Y adds no uncertainty factor
470    for branch ranges starting before X, so we can just round what we have.
471    But when X < Y, we don't know anything about the, so to speak,
472    `middle bits', so we have to assume the worst when aligning up from an
473    address mod X to one mod Y, which is Y - X.  */
474 
475 #ifndef LABEL_ALIGN
476 #define LABEL_ALIGN(LABEL) align_labels_log
477 #endif
478 
479 #ifndef LOOP_ALIGN
480 #define LOOP_ALIGN(LABEL) align_loops_log
481 #endif
482 
483 #ifndef LABEL_ALIGN_AFTER_BARRIER
484 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
485 #endif
486 
487 #ifndef JUMP_ALIGN
488 #define JUMP_ALIGN(LABEL) align_jumps_log
489 #endif
490 
491 int
default_label_align_after_barrier_max_skip(rtx_insn * insn ATTRIBUTE_UNUSED)492 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
493 {
494   return 0;
495 }
496 
497 int
default_loop_align_max_skip(rtx_insn * insn ATTRIBUTE_UNUSED)498 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
499 {
500   return align_loops_max_skip;
501 }
502 
503 int
default_label_align_max_skip(rtx_insn * insn ATTRIBUTE_UNUSED)504 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
505 {
506   return align_labels_max_skip;
507 }
508 
509 int
default_jump_align_max_skip(rtx_insn * insn ATTRIBUTE_UNUSED)510 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
511 {
512   return align_jumps_max_skip;
513 }
514 
515 #ifndef ADDR_VEC_ALIGN
516 static int
final_addr_vec_align(rtx_jump_table_data * addr_vec)517 final_addr_vec_align (rtx_jump_table_data *addr_vec)
518 {
519   int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
520 
521   if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
522     align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
523   return exact_log2 (align);
524 
525 }
526 
527 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
528 #endif
529 
530 #ifndef INSN_LENGTH_ALIGNMENT
531 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
532 #endif
533 
534 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
535 
536 static int min_labelno, max_labelno;
537 
538 #define LABEL_TO_ALIGNMENT(LABEL) \
539   (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
540 
541 #define LABEL_TO_MAX_SKIP(LABEL) \
542   (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
543 
544 /* For the benefit of port specific code do this also as a function.  */
545 
546 int
label_to_alignment(rtx label)547 label_to_alignment (rtx label)
548 {
549   if (CODE_LABEL_NUMBER (label) <= max_labelno)
550     return LABEL_TO_ALIGNMENT (label);
551   return 0;
552 }
553 
554 int
label_to_max_skip(rtx label)555 label_to_max_skip (rtx label)
556 {
557   if (CODE_LABEL_NUMBER (label) <= max_labelno)
558     return LABEL_TO_MAX_SKIP (label);
559   return 0;
560 }
561 
562 /* The differences in addresses
563    between a branch and its target might grow or shrink depending on
564    the alignment the start insn of the range (the branch for a forward
565    branch or the label for a backward branch) starts out on; if these
566    differences are used naively, they can even oscillate infinitely.
567    We therefore want to compute a 'worst case' address difference that
568    is independent of the alignment the start insn of the range end
569    up on, and that is at least as large as the actual difference.
570    The function align_fuzz calculates the amount we have to add to the
571    naively computed difference, by traversing the part of the alignment
572    chain of the start insn of the range that is in front of the end insn
573    of the range, and considering for each alignment the maximum amount
574    that it might contribute to a size increase.
575 
576    For casesi tables, we also want to know worst case minimum amounts of
577    address difference, in case a machine description wants to introduce
578    some common offset that is added to all offsets in a table.
579    For this purpose, align_fuzz with a growth argument of 0 computes the
580    appropriate adjustment.  */
581 
582 /* Compute the maximum delta by which the difference of the addresses of
583    START and END might grow / shrink due to a different address for start
584    which changes the size of alignment insns between START and END.
585    KNOWN_ALIGN_LOG is the alignment known for START.
586    GROWTH should be ~0 if the objective is to compute potential code size
587    increase, and 0 if the objective is to compute potential shrink.
588    The return value is undefined for any other value of GROWTH.  */
589 
590 static int
align_fuzz(rtx start,rtx end,int known_align_log,unsigned int growth)591 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
592 {
593   int uid = INSN_UID (start);
594   rtx align_label;
595   int known_align = 1 << known_align_log;
596   int end_shuid = INSN_SHUID (end);
597   int fuzz = 0;
598 
599   for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
600     {
601       int align_addr, new_align;
602 
603       uid = INSN_UID (align_label);
604       align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
605       if (uid_shuid[uid] > end_shuid)
606 	break;
607       known_align_log = LABEL_TO_ALIGNMENT (align_label);
608       new_align = 1 << known_align_log;
609       if (new_align < known_align)
610 	continue;
611       fuzz += (-align_addr ^ growth) & (new_align - known_align);
612       known_align = new_align;
613     }
614   return fuzz;
615 }
616 
617 /* Compute a worst-case reference address of a branch so that it
618    can be safely used in the presence of aligned labels.  Since the
619    size of the branch itself is unknown, the size of the branch is
620    not included in the range.  I.e. for a forward branch, the reference
621    address is the end address of the branch as known from the previous
622    branch shortening pass, minus a value to account for possible size
623    increase due to alignment.  For a backward branch, it is the start
624    address of the branch as known from the current pass, plus a value
625    to account for possible size increase due to alignment.
626    NB.: Therefore, the maximum offset allowed for backward branches needs
627    to exclude the branch size.  */
628 
629 int
insn_current_reference_address(rtx_insn * branch)630 insn_current_reference_address (rtx_insn *branch)
631 {
632   rtx dest;
633   int seq_uid;
634 
635   if (! INSN_ADDRESSES_SET_P ())
636     return 0;
637 
638   rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
639   seq_uid = INSN_UID (seq);
640   if (!JUMP_P (branch))
641     /* This can happen for example on the PA; the objective is to know the
642        offset to address something in front of the start of the function.
643        Thus, we can treat it like a backward branch.
644        We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
645        any alignment we'd encounter, so we skip the call to align_fuzz.  */
646     return insn_current_address;
647   dest = JUMP_LABEL (branch);
648 
649   /* BRANCH has no proper alignment chain set, so use SEQ.
650      BRANCH also has no INSN_SHUID.  */
651   if (INSN_SHUID (seq) < INSN_SHUID (dest))
652     {
653       /* Forward branch.  */
654       return (insn_last_address + insn_lengths[seq_uid]
655 	      - align_fuzz (seq, dest, length_unit_log, ~0));
656     }
657   else
658     {
659       /* Backward branch.  */
660       return (insn_current_address
661 	      + align_fuzz (dest, seq, length_unit_log, ~0));
662     }
663 }
664 
665 /* Compute branch alignments based on CFG profile.  */
666 
667 unsigned int
compute_alignments(void)668 compute_alignments (void)
669 {
670   int log, max_skip, max_log;
671   basic_block bb;
672 
673   if (label_align)
674     {
675       free (label_align);
676       label_align = 0;
677     }
678 
679   max_labelno = max_label_num ();
680   min_labelno = get_first_label_num ();
681   label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
682 
683   /* If not optimizing or optimizing for size, don't assign any alignments.  */
684   if (! optimize || optimize_function_for_size_p (cfun))
685     return 0;
686 
687   if (dump_file)
688     {
689       dump_reg_info (dump_file);
690       dump_flow_info (dump_file, TDF_DETAILS);
691       flow_loops_dump (dump_file, NULL, 1);
692     }
693   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
694   profile_count count_threshold = cfun->cfg->count_max.apply_scale
695 		 (1, PARAM_VALUE (PARAM_ALIGN_THRESHOLD));
696 
697   if (dump_file)
698     {
699       fprintf (dump_file, "count_max: ");
700       cfun->cfg->count_max.dump (dump_file);
701       fprintf (dump_file, "\n");
702     }
703   FOR_EACH_BB_FN (bb, cfun)
704     {
705       rtx_insn *label = BB_HEAD (bb);
706       bool has_fallthru = 0;
707       edge e;
708       edge_iterator ei;
709 
710       if (!LABEL_P (label)
711 	  || optimize_bb_for_size_p (bb))
712 	{
713 	  if (dump_file)
714 	    fprintf (dump_file,
715 		     "BB %4i loop %2i loop_depth %2i skipped.\n",
716 		     bb->index,
717 		     bb->loop_father->num,
718 		     bb_loop_depth (bb));
719 	  continue;
720 	}
721       max_log = LABEL_ALIGN (label);
722       max_skip = targetm.asm_out.label_align_max_skip (label);
723       profile_count fallthru_count = profile_count::zero ();
724       profile_count branch_count = profile_count::zero ();
725 
726       FOR_EACH_EDGE (e, ei, bb->preds)
727 	{
728 	  if (e->flags & EDGE_FALLTHRU)
729 	    has_fallthru = 1, fallthru_count += e->count ();
730 	  else
731 	    branch_count += e->count ();
732 	}
733       if (dump_file)
734 	{
735 	  fprintf (dump_file, "BB %4i loop %2i loop_depth"
736 		   " %2i fall ",
737 		   bb->index, bb->loop_father->num,
738 		   bb_loop_depth (bb));
739 	  fallthru_count.dump (dump_file);
740 	  fprintf (dump_file, " branch ");
741 	  branch_count.dump (dump_file);
742 	  if (!bb->loop_father->inner && bb->loop_father->num)
743 	    fprintf (dump_file, " inner_loop");
744 	  if (bb->loop_father->header == bb)
745 	    fprintf (dump_file, " loop_header");
746 	  fprintf (dump_file, "\n");
747 	}
748       if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
749 	continue;
750 
751       /* There are two purposes to align block with no fallthru incoming edge:
752 	 1) to avoid fetch stalls when branch destination is near cache boundary
753 	 2) to improve cache efficiency in case the previous block is not executed
754 	    (so it does not need to be in the cache).
755 
756 	 We to catch first case, we align frequently executed blocks.
757 	 To catch the second, we align blocks that are executed more frequently
758 	 than the predecessor and the predecessor is likely to not be executed
759 	 when function is called.  */
760 
761       if (!has_fallthru
762 	  && (branch_count > count_threshold
763 	      || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
764 		  && (bb->prev_bb->count
765 		      <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
766 			   ->count.apply_scale (1, 2)))))
767 	{
768 	  log = JUMP_ALIGN (label);
769 	  if (dump_file)
770 	    fprintf (dump_file, "  jump alignment added.\n");
771 	  if (max_log < log)
772 	    {
773 	      max_log = log;
774 	      max_skip = targetm.asm_out.jump_align_max_skip (label);
775 	    }
776 	}
777       /* In case block is frequent and reached mostly by non-fallthru edge,
778 	 align it.  It is most likely a first block of loop.  */
779       if (has_fallthru
780 	  && !(single_succ_p (bb)
781 	       && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
782 	  && optimize_bb_for_speed_p (bb)
783 	  && branch_count + fallthru_count > count_threshold
784 	  && (branch_count
785 	      > fallthru_count.apply_scale
786 		    (PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS), 1)))
787 	{
788 	  log = LOOP_ALIGN (label);
789 	  if (dump_file)
790 	    fprintf (dump_file, "  internal loop alignment added.\n");
791 	  if (max_log < log)
792 	    {
793 	      max_log = log;
794 	      max_skip = targetm.asm_out.loop_align_max_skip (label);
795 	    }
796 	}
797       LABEL_TO_ALIGNMENT (label) = max_log;
798       LABEL_TO_MAX_SKIP (label) = max_skip;
799     }
800 
801   loop_optimizer_finalize ();
802   free_dominance_info (CDI_DOMINATORS);
803   return 0;
804 }
805 
806 /* Grow the LABEL_ALIGN array after new labels are created.  */
807 
808 static void
grow_label_align(void)809 grow_label_align (void)
810 {
811   int old = max_labelno;
812   int n_labels;
813   int n_old_labels;
814 
815   max_labelno = max_label_num ();
816 
817   n_labels = max_labelno - min_labelno + 1;
818   n_old_labels = old - min_labelno + 1;
819 
820   label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
821 
822   /* Range of labels grows monotonically in the function.  Failing here
823      means that the initialization of array got lost.  */
824   gcc_assert (n_old_labels <= n_labels);
825 
826   memset (label_align + n_old_labels, 0,
827           (n_labels - n_old_labels) * sizeof (struct label_alignment));
828 }
829 
830 /* Update the already computed alignment information.  LABEL_PAIRS is a vector
831    made up of pairs of labels for which the alignment information of the first
832    element will be copied from that of the second element.  */
833 
834 void
update_alignments(vec<rtx> & label_pairs)835 update_alignments (vec<rtx> &label_pairs)
836 {
837   unsigned int i = 0;
838   rtx iter, label = NULL_RTX;
839 
840   if (max_labelno != max_label_num ())
841     grow_label_align ();
842 
843   FOR_EACH_VEC_ELT (label_pairs, i, iter)
844     if (i & 1)
845       {
846 	LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
847 	LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
848       }
849     else
850       label = iter;
851 }
852 
853 namespace {
854 
855 const pass_data pass_data_compute_alignments =
856 {
857   RTL_PASS, /* type */
858   "alignments", /* name */
859   OPTGROUP_NONE, /* optinfo_flags */
860   TV_NONE, /* tv_id */
861   0, /* properties_required */
862   0, /* properties_provided */
863   0, /* properties_destroyed */
864   0, /* todo_flags_start */
865   0, /* todo_flags_finish */
866 };
867 
868 class pass_compute_alignments : public rtl_opt_pass
869 {
870 public:
pass_compute_alignments(gcc::context * ctxt)871   pass_compute_alignments (gcc::context *ctxt)
872     : rtl_opt_pass (pass_data_compute_alignments, ctxt)
873   {}
874 
875   /* opt_pass methods: */
execute(function *)876   virtual unsigned int execute (function *) { return compute_alignments (); }
877 
878 }; // class pass_compute_alignments
879 
880 } // anon namespace
881 
882 rtl_opt_pass *
make_pass_compute_alignments(gcc::context * ctxt)883 make_pass_compute_alignments (gcc::context *ctxt)
884 {
885   return new pass_compute_alignments (ctxt);
886 }
887 
888 
889 /* Make a pass over all insns and compute their actual lengths by shortening
890    any branches of variable length if possible.  */
891 
892 /* shorten_branches might be called multiple times:  for example, the SH
893    port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
894    In order to do this, it needs proper length information, which it obtains
895    by calling shorten_branches.  This cannot be collapsed with
896    shorten_branches itself into a single pass unless we also want to integrate
897    reorg.c, since the branch splitting exposes new instructions with delay
898    slots.  */
899 
900 void
shorten_branches(rtx_insn * first)901 shorten_branches (rtx_insn *first)
902 {
903   rtx_insn *insn;
904   int max_uid;
905   int i;
906   int max_log;
907   int max_skip;
908 #define MAX_CODE_ALIGN 16
909   rtx_insn *seq;
910   int something_changed = 1;
911   char *varying_length;
912   rtx body;
913   int uid;
914   rtx align_tab[MAX_CODE_ALIGN + 1];
915 
916   /* Compute maximum UID and allocate label_align / uid_shuid.  */
917   max_uid = get_max_uid ();
918 
919   /* Free uid_shuid before reallocating it.  */
920   free (uid_shuid);
921 
922   uid_shuid = XNEWVEC (int, max_uid);
923 
924   if (max_labelno != max_label_num ())
925     grow_label_align ();
926 
927   /* Initialize label_align and set up uid_shuid to be strictly
928      monotonically rising with insn order.  */
929   /* We use max_log here to keep track of the maximum alignment we want to
930      impose on the next CODE_LABEL (or the current one if we are processing
931      the CODE_LABEL itself).  */
932 
933   max_log = 0;
934   max_skip = 0;
935 
936   for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
937     {
938       int log;
939 
940       INSN_SHUID (insn) = i++;
941       if (INSN_P (insn))
942 	continue;
943 
944       if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
945 	{
946 	  /* Merge in alignments computed by compute_alignments.  */
947 	  log = LABEL_TO_ALIGNMENT (label);
948 	  if (max_log < log)
949 	    {
950 	      max_log = log;
951 	      max_skip = LABEL_TO_MAX_SKIP (label);
952 	    }
953 
954 	  rtx_jump_table_data *table = jump_table_for_label (label);
955 	  if (!table)
956 	    {
957 	      log = LABEL_ALIGN (label);
958 	      if (max_log < log)
959 		{
960 		  max_log = log;
961 		  max_skip = targetm.asm_out.label_align_max_skip (label);
962 		}
963 	    }
964 	  /* ADDR_VECs only take room if read-only data goes into the text
965 	     section.  */
966 	  if ((JUMP_TABLES_IN_TEXT_SECTION
967 	       || readonly_data_section == text_section)
968 	      && table)
969 	    {
970 	      log = ADDR_VEC_ALIGN (table);
971 	      if (max_log < log)
972 		{
973 		  max_log = log;
974 		  max_skip = targetm.asm_out.label_align_max_skip (label);
975 		}
976 	    }
977 	  LABEL_TO_ALIGNMENT (label) = max_log;
978 	  LABEL_TO_MAX_SKIP (label) = max_skip;
979 	  max_log = 0;
980 	  max_skip = 0;
981 	}
982       else if (BARRIER_P (insn))
983 	{
984 	  rtx_insn *label;
985 
986 	  for (label = insn; label && ! INSN_P (label);
987 	       label = NEXT_INSN (label))
988 	    if (LABEL_P (label))
989 	      {
990 		log = LABEL_ALIGN_AFTER_BARRIER (insn);
991 		if (max_log < log)
992 		  {
993 		    max_log = log;
994 		    max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
995 		  }
996 		break;
997 	      }
998 	}
999     }
1000   if (!HAVE_ATTR_length)
1001     return;
1002 
1003   /* Allocate the rest of the arrays.  */
1004   insn_lengths = XNEWVEC (int, max_uid);
1005   insn_lengths_max_uid = max_uid;
1006   /* Syntax errors can lead to labels being outside of the main insn stream.
1007      Initialize insn_addresses, so that we get reproducible results.  */
1008   INSN_ADDRESSES_ALLOC (max_uid);
1009 
1010   varying_length = XCNEWVEC (char, max_uid);
1011 
1012   /* Initialize uid_align.  We scan instructions
1013      from end to start, and keep in align_tab[n] the last seen insn
1014      that does an alignment of at least n+1, i.e. the successor
1015      in the alignment chain for an insn that does / has a known
1016      alignment of n.  */
1017   uid_align = XCNEWVEC (rtx, max_uid);
1018 
1019   for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
1020     align_tab[i] = NULL_RTX;
1021   seq = get_last_insn ();
1022   for (; seq; seq = PREV_INSN (seq))
1023     {
1024       int uid = INSN_UID (seq);
1025       int log;
1026       log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1027       uid_align[uid] = align_tab[0];
1028       if (log)
1029 	{
1030 	  /* Found an alignment label.  */
1031 	  uid_align[uid] = align_tab[log];
1032 	  for (i = log - 1; i >= 0; i--)
1033 	    align_tab[i] = seq;
1034 	}
1035     }
1036 
1037   /* When optimizing, we start assuming minimum length, and keep increasing
1038      lengths as we find the need for this, till nothing changes.
1039      When not optimizing, we start assuming maximum lengths, and
1040      do a single pass to update the lengths.  */
1041   bool increasing = optimize != 0;
1042 
1043 #ifdef CASE_VECTOR_SHORTEN_MODE
1044   if (optimize)
1045     {
1046       /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1047          label fields.  */
1048 
1049       int min_shuid = INSN_SHUID (get_insns ()) - 1;
1050       int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1051       int rel;
1052 
1053       for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1054 	{
1055 	  rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1056 	  int len, i, min, max, insn_shuid;
1057 	  int min_align;
1058 	  addr_diff_vec_flags flags;
1059 
1060 	  if (! JUMP_TABLE_DATA_P (insn)
1061 	      || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1062 	    continue;
1063 	  pat = PATTERN (insn);
1064 	  len = XVECLEN (pat, 1);
1065 	  gcc_assert (len > 0);
1066 	  min_align = MAX_CODE_ALIGN;
1067 	  for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1068 	    {
1069 	      rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1070 	      int shuid = INSN_SHUID (lab);
1071 	      if (shuid < min)
1072 		{
1073 		  min = shuid;
1074 		  min_lab = lab;
1075 		}
1076 	      if (shuid > max)
1077 		{
1078 		  max = shuid;
1079 		  max_lab = lab;
1080 		}
1081 	      if (min_align > LABEL_TO_ALIGNMENT (lab))
1082 		min_align = LABEL_TO_ALIGNMENT (lab);
1083 	    }
1084 	  XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1085 	  XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1086 	  insn_shuid = INSN_SHUID (insn);
1087 	  rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1088 	  memset (&flags, 0, sizeof (flags));
1089 	  flags.min_align = min_align;
1090 	  flags.base_after_vec = rel > insn_shuid;
1091 	  flags.min_after_vec  = min > insn_shuid;
1092 	  flags.max_after_vec  = max > insn_shuid;
1093 	  flags.min_after_base = min > rel;
1094 	  flags.max_after_base = max > rel;
1095 	  ADDR_DIFF_VEC_FLAGS (pat) = flags;
1096 
1097 	  if (increasing)
1098 	    PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1099 	}
1100     }
1101 #endif /* CASE_VECTOR_SHORTEN_MODE */
1102 
1103   /* Compute initial lengths, addresses, and varying flags for each insn.  */
1104   int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1105 
1106   for (insn_current_address = 0, insn = first;
1107        insn != 0;
1108        insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1109     {
1110       uid = INSN_UID (insn);
1111 
1112       insn_lengths[uid] = 0;
1113 
1114       if (LABEL_P (insn))
1115 	{
1116 	  int log = LABEL_TO_ALIGNMENT (insn);
1117 	  if (log)
1118 	    {
1119 	      int align = 1 << log;
1120 	      int new_address = (insn_current_address + align - 1) & -align;
1121 	      insn_lengths[uid] = new_address - insn_current_address;
1122 	    }
1123 	}
1124 
1125       INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1126 
1127       if (NOTE_P (insn) || BARRIER_P (insn)
1128 	  || LABEL_P (insn) || DEBUG_INSN_P (insn))
1129 	continue;
1130       if (insn->deleted ())
1131 	continue;
1132 
1133       body = PATTERN (insn);
1134       if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1135 	{
1136 	  /* This only takes room if read-only data goes into the text
1137 	     section.  */
1138 	  if (JUMP_TABLES_IN_TEXT_SECTION
1139 	      || readonly_data_section == text_section)
1140 	    insn_lengths[uid] = (XVECLEN (body,
1141 					  GET_CODE (body) == ADDR_DIFF_VEC)
1142 				 * GET_MODE_SIZE (table->get_data_mode ()));
1143 	  /* Alignment is handled by ADDR_VEC_ALIGN.  */
1144 	}
1145       else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1146 	insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1147       else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1148 	{
1149 	  int i;
1150 	  int const_delay_slots;
1151 	  if (DELAY_SLOTS)
1152 	    const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1153 	  else
1154 	    const_delay_slots = 0;
1155 
1156 	  int (*inner_length_fun) (rtx_insn *)
1157 	    = const_delay_slots ? length_fun : insn_default_length;
1158 	  /* Inside a delay slot sequence, we do not do any branch shortening
1159 	     if the shortening could change the number of delay slots
1160 	     of the branch.  */
1161 	  for (i = 0; i < body_seq->len (); i++)
1162 	    {
1163 	      rtx_insn *inner_insn = body_seq->insn (i);
1164 	      int inner_uid = INSN_UID (inner_insn);
1165 	      int inner_length;
1166 
1167 	      if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1168 		  || asm_noperands (PATTERN (inner_insn)) >= 0)
1169 		inner_length = (asm_insn_count (PATTERN (inner_insn))
1170 				* insn_default_length (inner_insn));
1171 	      else
1172 		inner_length = inner_length_fun (inner_insn);
1173 
1174 	      insn_lengths[inner_uid] = inner_length;
1175 	      if (const_delay_slots)
1176 		{
1177 		  if ((varying_length[inner_uid]
1178 		       = insn_variable_length_p (inner_insn)) != 0)
1179 		    varying_length[uid] = 1;
1180 		  INSN_ADDRESSES (inner_uid) = (insn_current_address
1181 						+ insn_lengths[uid]);
1182 		}
1183 	      else
1184 		varying_length[inner_uid] = 0;
1185 	      insn_lengths[uid] += inner_length;
1186 	    }
1187 	}
1188       else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1189 	{
1190 	  insn_lengths[uid] = length_fun (insn);
1191 	  varying_length[uid] = insn_variable_length_p (insn);
1192 	}
1193 
1194       /* If needed, do any adjustment.  */
1195 #ifdef ADJUST_INSN_LENGTH
1196       ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1197       if (insn_lengths[uid] < 0)
1198 	fatal_insn ("negative insn length", insn);
1199 #endif
1200     }
1201 
1202   /* Now loop over all the insns finding varying length insns.  For each,
1203      get the current insn length.  If it has changed, reflect the change.
1204      When nothing changes for a full pass, we are done.  */
1205 
1206   while (something_changed)
1207     {
1208       something_changed = 0;
1209       insn_current_align = MAX_CODE_ALIGN - 1;
1210       for (insn_current_address = 0, insn = first;
1211 	   insn != 0;
1212 	   insn = NEXT_INSN (insn))
1213 	{
1214 	  int new_length;
1215 #ifdef ADJUST_INSN_LENGTH
1216 	  int tmp_length;
1217 #endif
1218 	  int length_align;
1219 
1220 	  uid = INSN_UID (insn);
1221 
1222 	  if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1223 	    {
1224 	      int log = LABEL_TO_ALIGNMENT (label);
1225 
1226 #ifdef CASE_VECTOR_SHORTEN_MODE
1227 	      /* If the mode of a following jump table was changed, we
1228 		 may need to update the alignment of this label.  */
1229 
1230 	      if (JUMP_TABLES_IN_TEXT_SECTION
1231 		  || readonly_data_section == text_section)
1232 		{
1233 		  rtx_jump_table_data *table = jump_table_for_label (label);
1234 		  if (table)
1235 		    {
1236 		      int newlog = ADDR_VEC_ALIGN (table);
1237 		      if (newlog != log)
1238 			{
1239 			  log = newlog;
1240 			  LABEL_TO_ALIGNMENT (insn) = log;
1241 			  something_changed = 1;
1242 			}
1243 		    }
1244 		}
1245 #endif
1246 
1247 	      if (log > insn_current_align)
1248 		{
1249 		  int align = 1 << log;
1250 		  int new_address= (insn_current_address + align - 1) & -align;
1251 		  insn_lengths[uid] = new_address - insn_current_address;
1252 		  insn_current_align = log;
1253 		  insn_current_address = new_address;
1254 		}
1255 	      else
1256 		insn_lengths[uid] = 0;
1257 	      INSN_ADDRESSES (uid) = insn_current_address;
1258 	      continue;
1259 	    }
1260 
1261 	  length_align = INSN_LENGTH_ALIGNMENT (insn);
1262 	  if (length_align < insn_current_align)
1263 	    insn_current_align = length_align;
1264 
1265 	  insn_last_address = INSN_ADDRESSES (uid);
1266 	  INSN_ADDRESSES (uid) = insn_current_address;
1267 
1268 #ifdef CASE_VECTOR_SHORTEN_MODE
1269 	  if (optimize
1270 	      && JUMP_TABLE_DATA_P (insn)
1271 	      && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1272 	    {
1273 	      rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1274 	      rtx body = PATTERN (insn);
1275 	      int old_length = insn_lengths[uid];
1276 	      rtx_insn *rel_lab =
1277 		safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1278 	      rtx min_lab = XEXP (XEXP (body, 2), 0);
1279 	      rtx max_lab = XEXP (XEXP (body, 3), 0);
1280 	      int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1281 	      int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1282 	      int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1283 	      rtx_insn *prev;
1284 	      int rel_align = 0;
1285 	      addr_diff_vec_flags flags;
1286 	      scalar_int_mode vec_mode;
1287 
1288 	      /* Avoid automatic aggregate initialization.  */
1289 	      flags = ADDR_DIFF_VEC_FLAGS (body);
1290 
1291 	      /* Try to find a known alignment for rel_lab.  */
1292 	      for (prev = rel_lab;
1293 		   prev
1294 		   && ! insn_lengths[INSN_UID (prev)]
1295 		   && ! (varying_length[INSN_UID (prev)] & 1);
1296 		   prev = PREV_INSN (prev))
1297 		if (varying_length[INSN_UID (prev)] & 2)
1298 		  {
1299 		    rel_align = LABEL_TO_ALIGNMENT (prev);
1300 		    break;
1301 		  }
1302 
1303 	      /* See the comment on addr_diff_vec_flags in rtl.h for the
1304 		 meaning of the flags values.  base: REL_LAB   vec: INSN  */
1305 	      /* Anything after INSN has still addresses from the last
1306 		 pass; adjust these so that they reflect our current
1307 		 estimate for this pass.  */
1308 	      if (flags.base_after_vec)
1309 		rel_addr += insn_current_address - insn_last_address;
1310 	      if (flags.min_after_vec)
1311 		min_addr += insn_current_address - insn_last_address;
1312 	      if (flags.max_after_vec)
1313 		max_addr += insn_current_address - insn_last_address;
1314 	      /* We want to know the worst case, i.e. lowest possible value
1315 		 for the offset of MIN_LAB.  If MIN_LAB is after REL_LAB,
1316 		 its offset is positive, and we have to be wary of code shrink;
1317 		 otherwise, it is negative, and we have to be vary of code
1318 		 size increase.  */
1319 	      if (flags.min_after_base)
1320 		{
1321 		  /* If INSN is between REL_LAB and MIN_LAB, the size
1322 		     changes we are about to make can change the alignment
1323 		     within the observed offset, therefore we have to break
1324 		     it up into two parts that are independent.  */
1325 		  if (! flags.base_after_vec && flags.min_after_vec)
1326 		    {
1327 		      min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1328 		      min_addr -= align_fuzz (insn, min_lab, 0, 0);
1329 		    }
1330 		  else
1331 		    min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1332 		}
1333 	      else
1334 		{
1335 		  if (flags.base_after_vec && ! flags.min_after_vec)
1336 		    {
1337 		      min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1338 		      min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1339 		    }
1340 		  else
1341 		    min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1342 		}
1343 	      /* Likewise, determine the highest lowest possible value
1344 		 for the offset of MAX_LAB.  */
1345 	      if (flags.max_after_base)
1346 		{
1347 		  if (! flags.base_after_vec && flags.max_after_vec)
1348 		    {
1349 		      max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1350 		      max_addr += align_fuzz (insn, max_lab, 0, ~0);
1351 		    }
1352 		  else
1353 		    max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1354 		}
1355 	      else
1356 		{
1357 		  if (flags.base_after_vec && ! flags.max_after_vec)
1358 		    {
1359 		      max_addr += align_fuzz (max_lab, insn, 0, 0);
1360 		      max_addr += align_fuzz (insn, rel_lab, 0, 0);
1361 		    }
1362 		  else
1363 		    max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1364 		}
1365 	      vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1366 						   max_addr - rel_addr, body);
1367 	      if (!increasing
1368 		  || (GET_MODE_SIZE (vec_mode)
1369 		      >= GET_MODE_SIZE (table->get_data_mode ())))
1370 		PUT_MODE (body, vec_mode);
1371 	      if (JUMP_TABLES_IN_TEXT_SECTION
1372 		  || readonly_data_section == text_section)
1373 		{
1374 		  insn_lengths[uid]
1375 		    = (XVECLEN (body, 1)
1376 		       * GET_MODE_SIZE (table->get_data_mode ()));
1377 		  insn_current_address += insn_lengths[uid];
1378 		  if (insn_lengths[uid] != old_length)
1379 		    something_changed = 1;
1380 		}
1381 
1382 	      continue;
1383 	    }
1384 #endif /* CASE_VECTOR_SHORTEN_MODE */
1385 
1386 	  if (! (varying_length[uid]))
1387 	    {
1388 	      if (NONJUMP_INSN_P (insn)
1389 		  && GET_CODE (PATTERN (insn)) == SEQUENCE)
1390 		{
1391 		  int i;
1392 
1393 		  body = PATTERN (insn);
1394 		  for (i = 0; i < XVECLEN (body, 0); i++)
1395 		    {
1396 		      rtx inner_insn = XVECEXP (body, 0, i);
1397 		      int inner_uid = INSN_UID (inner_insn);
1398 
1399 		      INSN_ADDRESSES (inner_uid) = insn_current_address;
1400 
1401 		      insn_current_address += insn_lengths[inner_uid];
1402 		    }
1403 		}
1404 	      else
1405 		insn_current_address += insn_lengths[uid];
1406 
1407 	      continue;
1408 	    }
1409 
1410 	  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1411 	    {
1412 	      rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1413 	      int i;
1414 
1415 	      body = PATTERN (insn);
1416 	      new_length = 0;
1417 	      for (i = 0; i < seqn->len (); i++)
1418 		{
1419 		  rtx_insn *inner_insn = seqn->insn (i);
1420 		  int inner_uid = INSN_UID (inner_insn);
1421 		  int inner_length;
1422 
1423 		  INSN_ADDRESSES (inner_uid) = insn_current_address;
1424 
1425 		  /* insn_current_length returns 0 for insns with a
1426 		     non-varying length.  */
1427 		  if (! varying_length[inner_uid])
1428 		    inner_length = insn_lengths[inner_uid];
1429 		  else
1430 		    inner_length = insn_current_length (inner_insn);
1431 
1432 		  if (inner_length != insn_lengths[inner_uid])
1433 		    {
1434 		      if (!increasing || inner_length > insn_lengths[inner_uid])
1435 			{
1436 			  insn_lengths[inner_uid] = inner_length;
1437 			  something_changed = 1;
1438 			}
1439 		      else
1440 			inner_length = insn_lengths[inner_uid];
1441 		    }
1442 		  insn_current_address += inner_length;
1443 		  new_length += inner_length;
1444 		}
1445 	    }
1446 	  else
1447 	    {
1448 	      new_length = insn_current_length (insn);
1449 	      insn_current_address += new_length;
1450 	    }
1451 
1452 #ifdef ADJUST_INSN_LENGTH
1453 	  /* If needed, do any adjustment.  */
1454 	  tmp_length = new_length;
1455 	  ADJUST_INSN_LENGTH (insn, new_length);
1456 	  insn_current_address += (new_length - tmp_length);
1457 #endif
1458 
1459 	  if (new_length != insn_lengths[uid]
1460 	      && (!increasing || new_length > insn_lengths[uid]))
1461 	    {
1462 	      insn_lengths[uid] = new_length;
1463 	      something_changed = 1;
1464 	    }
1465 	  else
1466 	    insn_current_address += insn_lengths[uid] - new_length;
1467 	}
1468       /* For a non-optimizing compile, do only a single pass.  */
1469       if (!increasing)
1470 	break;
1471     }
1472   crtl->max_insn_address = insn_current_address;
1473   free (varying_length);
1474 }
1475 
1476 /* Given the body of an INSN known to be generated by an ASM statement, return
1477    the number of machine instructions likely to be generated for this insn.
1478    This is used to compute its length.  */
1479 
1480 static int
asm_insn_count(rtx body)1481 asm_insn_count (rtx body)
1482 {
1483   const char *templ;
1484 
1485   if (GET_CODE (body) == ASM_INPUT)
1486     templ = XSTR (body, 0);
1487   else
1488     templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1489 
1490   return asm_str_count (templ);
1491 }
1492 
1493 /* Return the number of machine instructions likely to be generated for the
1494    inline-asm template. */
1495 int
asm_str_count(const char * templ)1496 asm_str_count (const char *templ)
1497 {
1498   int count = 1;
1499 
1500   if (!*templ)
1501     return 0;
1502 
1503   for (; *templ; templ++)
1504     if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1505 	|| *templ == '\n')
1506       count++;
1507 
1508   return count;
1509 }
1510 
1511 /* Return true if DWARF2 debug info can be emitted for DECL.  */
1512 
1513 static bool
dwarf2_debug_info_emitted_p(tree decl)1514 dwarf2_debug_info_emitted_p (tree decl)
1515 {
1516   if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1517     return false;
1518 
1519   if (DECL_IGNORED_P (decl))
1520     return false;
1521 
1522   return true;
1523 }
1524 
1525 /* Return scope resulting from combination of S1 and S2.  */
1526 static tree
choose_inner_scope(tree s1,tree s2)1527 choose_inner_scope (tree s1, tree s2)
1528 {
1529    if (!s1)
1530      return s2;
1531    if (!s2)
1532      return s1;
1533    if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1534      return s1;
1535    return s2;
1536 }
1537 
1538 /* Emit lexical block notes needed to change scope from S1 to S2.  */
1539 
1540 static void
change_scope(rtx_insn * orig_insn,tree s1,tree s2)1541 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1542 {
1543   rtx_insn *insn = orig_insn;
1544   tree com = NULL_TREE;
1545   tree ts1 = s1, ts2 = s2;
1546   tree s;
1547 
1548   while (ts1 != ts2)
1549     {
1550       gcc_assert (ts1 && ts2);
1551       if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1552 	ts1 = BLOCK_SUPERCONTEXT (ts1);
1553       else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1554 	ts2 = BLOCK_SUPERCONTEXT (ts2);
1555       else
1556 	{
1557 	  ts1 = BLOCK_SUPERCONTEXT (ts1);
1558 	  ts2 = BLOCK_SUPERCONTEXT (ts2);
1559 	}
1560     }
1561   com = ts1;
1562 
1563   /* Close scopes.  */
1564   s = s1;
1565   while (s != com)
1566     {
1567       rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1568       NOTE_BLOCK (note) = s;
1569       s = BLOCK_SUPERCONTEXT (s);
1570     }
1571 
1572   /* Open scopes.  */
1573   s = s2;
1574   while (s != com)
1575     {
1576       insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1577       NOTE_BLOCK (insn) = s;
1578       s = BLOCK_SUPERCONTEXT (s);
1579     }
1580 }
1581 
1582 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1583    on the scope tree and the newly reordered instructions.  */
1584 
1585 static void
reemit_insn_block_notes(void)1586 reemit_insn_block_notes (void)
1587 {
1588   tree cur_block = DECL_INITIAL (cfun->decl);
1589   rtx_insn *insn;
1590 
1591   insn = get_insns ();
1592   for (; insn; insn = NEXT_INSN (insn))
1593     {
1594       tree this_block;
1595 
1596       /* Prevent lexical blocks from straddling section boundaries.  */
1597       if (NOTE_P (insn))
1598 	switch (NOTE_KIND (insn))
1599 	  {
1600 	  case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1601 	    {
1602 	      for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1603 		   s = BLOCK_SUPERCONTEXT (s))
1604 		{
1605 		  rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1606 		  NOTE_BLOCK (note) = s;
1607 		  note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1608 		  NOTE_BLOCK (note) = s;
1609 		}
1610 	    }
1611 	    break;
1612 
1613 	  case NOTE_INSN_BEGIN_STMT:
1614 	  case NOTE_INSN_INLINE_ENTRY:
1615 	    this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1616 	    goto set_cur_block_to_this_block;
1617 
1618 	  default:
1619 	    continue;
1620 	}
1621 
1622       if (!active_insn_p (insn))
1623         continue;
1624 
1625       /* Avoid putting scope notes between jump table and its label.  */
1626       if (JUMP_TABLE_DATA_P (insn))
1627 	continue;
1628 
1629       this_block = insn_scope (insn);
1630       /* For sequences compute scope resulting from merging all scopes
1631 	 of instructions nested inside.  */
1632       if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1633 	{
1634 	  int i;
1635 
1636 	  this_block = NULL;
1637 	  for (i = 0; i < body->len (); i++)
1638 	    this_block = choose_inner_scope (this_block,
1639 					     insn_scope (body->insn (i)));
1640 	}
1641     set_cur_block_to_this_block:
1642       if (! this_block)
1643 	{
1644 	  if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1645 	    continue;
1646 	  else
1647 	    this_block = DECL_INITIAL (cfun->decl);
1648 	}
1649 
1650       if (this_block != cur_block)
1651 	{
1652 	  change_scope (insn, cur_block, this_block);
1653 	  cur_block = this_block;
1654 	}
1655     }
1656 
1657   /* change_scope emits before the insn, not after.  */
1658   rtx_note *note = emit_note (NOTE_INSN_DELETED);
1659   change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1660   delete_insn (note);
1661 
1662   reorder_blocks ();
1663 }
1664 
1665 static const char *some_local_dynamic_name;
1666 
1667 /* Locate some local-dynamic symbol still in use by this function
1668    so that we can print its name in local-dynamic base patterns.
1669    Return null if there are no local-dynamic references.  */
1670 
1671 const char *
get_some_local_dynamic_name()1672 get_some_local_dynamic_name ()
1673 {
1674   subrtx_iterator::array_type array;
1675   rtx_insn *insn;
1676 
1677   if (some_local_dynamic_name)
1678     return some_local_dynamic_name;
1679 
1680   for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1681     if (NONDEBUG_INSN_P (insn))
1682       FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1683 	{
1684 	  const_rtx x = *iter;
1685 	  if (GET_CODE (x) == SYMBOL_REF)
1686 	    {
1687 	      if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1688 		return some_local_dynamic_name = XSTR (x, 0);
1689 	      if (CONSTANT_POOL_ADDRESS_P (x))
1690 		iter.substitute (get_pool_constant (x));
1691 	    }
1692 	}
1693 
1694   return 0;
1695 }
1696 
1697 /* Arrange for us to emit a source location note before any further
1698    real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1699    *SEEN, as long as we are keeping track of location views.  The bit
1700    indicates we have referenced the next view at the current PC, so we
1701    have to emit it.  This should be called next to the var_location
1702    debug hook.  */
1703 
1704 static inline void
set_next_view_needed(int * seen)1705 set_next_view_needed (int *seen)
1706 {
1707   if (debug_variable_location_views)
1708     *seen |= SEEN_NEXT_VIEW;
1709 }
1710 
1711 /* Clear the flag in *SEEN indicating we need to emit the next view.
1712    This should be called next to the source_line debug hook.  */
1713 
1714 static inline void
clear_next_view_needed(int * seen)1715 clear_next_view_needed (int *seen)
1716 {
1717   *seen &= ~SEEN_NEXT_VIEW;
1718 }
1719 
1720 /* Test whether we have a pending request to emit the next view in
1721    *SEEN, and emit it if needed, clearing the request bit.  */
1722 
1723 static inline void
maybe_output_next_view(int * seen)1724 maybe_output_next_view (int *seen)
1725 {
1726   if ((*seen & SEEN_NEXT_VIEW) != 0)
1727     {
1728       clear_next_view_needed (seen);
1729       (*debug_hooks->source_line) (last_linenum, last_columnnum,
1730 				   last_filename, last_discriminator,
1731 				   false);
1732     }
1733 }
1734 
1735 /* We want to emit param bindings (before the first begin_stmt) in the
1736    initial view, if we are emitting views.  To that end, we may
1737    consume initial notes in the function, processing them in
1738    final_start_function, before signaling the beginning of the
1739    prologue, rather than in final.
1740 
1741    We don't test whether the DECLs are PARM_DECLs: the assumption is
1742    that there will be a NOTE_INSN_BEGIN_STMT marker before any
1743    non-parameter NOTE_INSN_VAR_LOCATION.  It's ok if the marker is not
1744    there, we'll just have more variable locations bound in the initial
1745    view, which is consistent with their being bound without any code
1746    that would give them a value.  */
1747 
1748 static inline bool
in_initial_view_p(rtx_insn * insn)1749 in_initial_view_p (rtx_insn *insn)
1750 {
1751   return (!DECL_IGNORED_P (current_function_decl)
1752 	  && debug_variable_location_views
1753 	  && insn && GET_CODE (insn) == NOTE
1754 	  && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1755 	      || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1756 }
1757 
1758 /* Output assembler code for the start of a function,
1759    and initialize some of the variables in this file
1760    for the new function.  The label for the function and associated
1761    assembler pseudo-ops have already been output in `assemble_start_function'.
1762 
1763    FIRST is the first insn of the rtl for the function being compiled.
1764    FILE is the file to write assembler code to.
1765    SEEN should be initially set to zero, and it may be updated to
1766    indicate we have references to the next location view, that would
1767    require us to emit it at the current PC.
1768    OPTIMIZE_P is nonzero if we should eliminate redundant
1769      test and compare insns.  */
1770 
1771 static void
final_start_function_1(rtx_insn ** firstp,FILE * file,int * seen,int optimize_p ATTRIBUTE_UNUSED)1772 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1773 			int optimize_p ATTRIBUTE_UNUSED)
1774 {
1775   block_depth = 0;
1776 
1777   this_is_asm_operands = 0;
1778 
1779   need_profile_function = false;
1780 
1781   last_filename = LOCATION_FILE (prologue_location);
1782   last_linenum = LOCATION_LINE (prologue_location);
1783   last_columnnum = LOCATION_COLUMN (prologue_location);
1784   last_discriminator = discriminator = 0;
1785 
1786   high_block_linenum = high_function_linenum = last_linenum;
1787 
1788   if (flag_sanitize & SANITIZE_ADDRESS)
1789     asan_function_start ();
1790 
1791   rtx_insn *first = *firstp;
1792   if (in_initial_view_p (first))
1793     {
1794       do
1795 	{
1796 	  final_scan_insn (first, file, 0, 0, seen);
1797 	  first = NEXT_INSN (first);
1798 	}
1799       while (in_initial_view_p (first));
1800       *firstp = first;
1801     }
1802 
1803   if (!DECL_IGNORED_P (current_function_decl))
1804     debug_hooks->begin_prologue (last_linenum, last_columnnum,
1805 				 last_filename);
1806 
1807   if (!dwarf2_debug_info_emitted_p (current_function_decl))
1808     dwarf2out_begin_prologue (0, 0, NULL);
1809 
1810 #ifdef LEAF_REG_REMAP
1811   if (crtl->uses_only_leaf_regs)
1812     leaf_renumber_regs (first);
1813 #endif
1814 
1815   /* The Sun386i and perhaps other machines don't work right
1816      if the profiling code comes after the prologue.  */
1817   if (targetm.profile_before_prologue () && crtl->profile)
1818     {
1819       if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1820 	  && targetm.have_prologue ())
1821 	{
1822 	  rtx_insn *insn;
1823 	  for (insn = first; insn; insn = NEXT_INSN (insn))
1824 	    if (!NOTE_P (insn))
1825 	      {
1826 		insn = NULL;
1827 		break;
1828 	      }
1829 	    else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1830 		     || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1831 	      break;
1832 	    else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1833 		     || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1834 	      continue;
1835 	    else
1836 	      {
1837 		insn = NULL;
1838 		break;
1839 	      }
1840 
1841 	  if (insn)
1842 	    need_profile_function = true;
1843 	  else
1844 	    profile_function (file);
1845 	}
1846       else
1847 	profile_function (file);
1848     }
1849 
1850   /* If debugging, assign block numbers to all of the blocks in this
1851      function.  */
1852   if (write_symbols)
1853     {
1854       reemit_insn_block_notes ();
1855       number_blocks (current_function_decl);
1856       /* We never actually put out begin/end notes for the top-level
1857 	 block in the function.  But, conceptually, that block is
1858 	 always needed.  */
1859       TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1860     }
1861 
1862   HOST_WIDE_INT min_frame_size = constant_lower_bound (get_frame_size ());
1863   if (warn_frame_larger_than
1864       && min_frame_size > frame_larger_than_size)
1865     {
1866       /* Issue a warning */
1867       warning (OPT_Wframe_larger_than_,
1868 	       "the frame size of %wd bytes is larger than %wd bytes",
1869 	       min_frame_size, frame_larger_than_size);
1870     }
1871 
1872   /* First output the function prologue: code to set up the stack frame.  */
1873   targetm.asm_out.function_prologue (file);
1874 
1875   /* If the machine represents the prologue as RTL, the profiling code must
1876      be emitted when NOTE_INSN_PROLOGUE_END is scanned.  */
1877   if (! targetm.have_prologue ())
1878     profile_after_prologue (file);
1879 }
1880 
1881 /* This is an exported final_start_function_1, callable without SEEN.  */
1882 
1883 void
final_start_function(rtx_insn * first,FILE * file,int optimize_p ATTRIBUTE_UNUSED)1884 final_start_function (rtx_insn *first, FILE *file,
1885 		      int optimize_p ATTRIBUTE_UNUSED)
1886 {
1887   int seen = 0;
1888   final_start_function_1 (&first, file, &seen, optimize_p);
1889   gcc_assert (seen == 0);
1890 }
1891 
1892 static void
profile_after_prologue(FILE * file ATTRIBUTE_UNUSED)1893 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1894 {
1895   if (!targetm.profile_before_prologue () && crtl->profile)
1896     profile_function (file);
1897 }
1898 
1899 static void
profile_function(FILE * file ATTRIBUTE_UNUSED)1900 profile_function (FILE *file ATTRIBUTE_UNUSED)
1901 {
1902 #ifndef NO_PROFILE_COUNTERS
1903 # define NO_PROFILE_COUNTERS	0
1904 #endif
1905 #ifdef ASM_OUTPUT_REG_PUSH
1906   rtx sval = NULL, chain = NULL;
1907 
1908   if (cfun->returns_struct)
1909     sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1910 					   true);
1911   if (cfun->static_chain_decl)
1912     chain = targetm.calls.static_chain (current_function_decl, true);
1913 #endif /* ASM_OUTPUT_REG_PUSH */
1914 
1915   if (! NO_PROFILE_COUNTERS)
1916     {
1917       int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1918       switch_to_section (data_section);
1919       ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1920       targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1921       assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1922     }
1923 
1924   switch_to_section (current_function_section ());
1925 
1926 #ifdef ASM_OUTPUT_REG_PUSH
1927   if (sval && REG_P (sval))
1928     ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1929   if (chain && REG_P (chain))
1930     ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1931 #endif
1932 
1933   FUNCTION_PROFILER (file, current_function_funcdef_no);
1934 
1935 #ifdef ASM_OUTPUT_REG_PUSH
1936   if (chain && REG_P (chain))
1937     ASM_OUTPUT_REG_POP (file, REGNO (chain));
1938   if (sval && REG_P (sval))
1939     ASM_OUTPUT_REG_POP (file, REGNO (sval));
1940 #endif
1941 }
1942 
1943 /* Output assembler code for the end of a function.
1944    For clarity, args are same as those of `final_start_function'
1945    even though not all of them are needed.  */
1946 
1947 void
final_end_function(void)1948 final_end_function (void)
1949 {
1950   app_disable ();
1951 
1952   if (!DECL_IGNORED_P (current_function_decl))
1953     debug_hooks->end_function (high_function_linenum);
1954 
1955   /* Finally, output the function epilogue:
1956      code to restore the stack frame and return to the caller.  */
1957   targetm.asm_out.function_epilogue (asm_out_file);
1958 
1959   /* And debug output.  */
1960   if (!DECL_IGNORED_P (current_function_decl))
1961     debug_hooks->end_epilogue (last_linenum, last_filename);
1962 
1963   if (!dwarf2_debug_info_emitted_p (current_function_decl)
1964       && dwarf2out_do_frame ())
1965     dwarf2out_end_epilogue (last_linenum, last_filename);
1966 
1967   some_local_dynamic_name = 0;
1968 }
1969 
1970 
1971 /* Dumper helper for basic block information. FILE is the assembly
1972    output file, and INSN is the instruction being emitted.  */
1973 
1974 static void
dump_basic_block_info(FILE * file,rtx_insn * insn,basic_block * start_to_bb,basic_block * end_to_bb,int bb_map_size,int * bb_seqn)1975 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1976                        basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1977 {
1978   basic_block bb;
1979 
1980   if (!flag_debug_asm)
1981     return;
1982 
1983   if (INSN_UID (insn) < bb_map_size
1984       && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1985     {
1986       edge e;
1987       edge_iterator ei;
1988 
1989       fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1990       if (bb->count.initialized_p ())
1991 	{
1992           fprintf (file, ", count:");
1993 	  bb->count.dump (file);
1994 	}
1995       fprintf (file, " seq:%d", (*bb_seqn)++);
1996       fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1997       FOR_EACH_EDGE (e, ei, bb->preds)
1998         {
1999           dump_edge_info (file, e, TDF_DETAILS, 0);
2000         }
2001       fprintf (file, "\n");
2002     }
2003   if (INSN_UID (insn) < bb_map_size
2004       && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
2005     {
2006       edge e;
2007       edge_iterator ei;
2008 
2009       fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
2010       FOR_EACH_EDGE (e, ei, bb->succs)
2011        {
2012          dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
2013        }
2014       fprintf (file, "\n");
2015     }
2016 }
2017 
2018 /* Output assembler code for some insns: all or part of a function.
2019    For description of args, see `final_start_function', above.  */
2020 
2021 static void
final_1(rtx_insn * first,FILE * file,int seen,int optimize_p)2022 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
2023 {
2024   rtx_insn *insn, *next;
2025 
2026   /* Used for -dA dump.  */
2027   basic_block *start_to_bb = NULL;
2028   basic_block *end_to_bb = NULL;
2029   int bb_map_size = 0;
2030   int bb_seqn = 0;
2031 
2032   last_ignored_compare = 0;
2033 
2034   if (HAVE_cc0)
2035     for (insn = first; insn; insn = NEXT_INSN (insn))
2036       {
2037 	/* If CC tracking across branches is enabled, record the insn which
2038 	   jumps to each branch only reached from one place.  */
2039 	if (optimize_p && JUMP_P (insn))
2040 	  {
2041 	    rtx lab = JUMP_LABEL (insn);
2042 	    if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2043 	      {
2044 		LABEL_REFS (lab) = insn;
2045 	      }
2046 	  }
2047       }
2048 
2049   init_recog ();
2050 
2051   CC_STATUS_INIT;
2052 
2053   if (flag_debug_asm)
2054     {
2055       basic_block bb;
2056 
2057       bb_map_size = get_max_uid () + 1;
2058       start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2059       end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2060 
2061       /* There is no cfg for a thunk.  */
2062       if (!cfun->is_thunk)
2063 	FOR_EACH_BB_REVERSE_FN (bb, cfun)
2064 	  {
2065 	    start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2066 	    end_to_bb[INSN_UID (BB_END (bb))] = bb;
2067 	  }
2068     }
2069 
2070   /* Output the insns.  */
2071   for (insn = first; insn;)
2072     {
2073       if (HAVE_ATTR_length)
2074 	{
2075 	  if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2076 	    {
2077 	      /* This can be triggered by bugs elsewhere in the compiler if
2078 		 new insns are created after init_insn_lengths is called.  */
2079 	      gcc_assert (NOTE_P (insn));
2080 	      insn_current_address = -1;
2081 	    }
2082 	  else
2083 	    insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2084 	  /* final can be seen as an iteration of shorten_branches that
2085 	     does nothing (since a fixed point has already been reached).  */
2086 	  insn_last_address = insn_current_address;
2087 	}
2088 
2089       dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2090                              bb_map_size, &bb_seqn);
2091       insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2092     }
2093 
2094   maybe_output_next_view (&seen);
2095 
2096   if (flag_debug_asm)
2097     {
2098       free (start_to_bb);
2099       free (end_to_bb);
2100     }
2101 
2102   /* Remove CFI notes, to avoid compare-debug failures.  */
2103   for (insn = first; insn; insn = next)
2104     {
2105       next = NEXT_INSN (insn);
2106       if (NOTE_P (insn)
2107 	  && (NOTE_KIND (insn) == NOTE_INSN_CFI
2108 	      || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2109 	delete_insn (insn);
2110     }
2111 }
2112 
2113 /* This is an exported final_1, callable without SEEN.  */
2114 
2115 void
final(rtx_insn * first,FILE * file,int optimize_p)2116 final (rtx_insn *first, FILE *file, int optimize_p)
2117 {
2118   /* Those that use the internal final_start_function_1/final_1 API
2119      skip initial debug bind notes in final_start_function_1, and pass
2120      the modified FIRST to final_1.  But those that use the public
2121      final_start_function/final APIs, final_start_function can't move
2122      FIRST because it's not passed by reference, so if they were
2123      skipped there, skip them again here.  */
2124   while (in_initial_view_p (first))
2125     first = NEXT_INSN (first);
2126 
2127   final_1 (first, file, 0, optimize_p);
2128 }
2129 
2130 const char *
get_insn_template(int code,rtx insn)2131 get_insn_template (int code, rtx insn)
2132 {
2133   switch (insn_data[code].output_format)
2134     {
2135     case INSN_OUTPUT_FORMAT_SINGLE:
2136       return insn_data[code].output.single;
2137     case INSN_OUTPUT_FORMAT_MULTI:
2138       return insn_data[code].output.multi[which_alternative];
2139     case INSN_OUTPUT_FORMAT_FUNCTION:
2140       gcc_assert (insn);
2141       return (*insn_data[code].output.function) (recog_data.operand,
2142 						 as_a <rtx_insn *> (insn));
2143 
2144     default:
2145       gcc_unreachable ();
2146     }
2147 }
2148 
2149 /* Emit the appropriate declaration for an alternate-entry-point
2150    symbol represented by INSN, to FILE.  INSN is a CODE_LABEL with
2151    LABEL_KIND != LABEL_NORMAL.
2152 
2153    The case fall-through in this function is intentional.  */
2154 static void
output_alternate_entry_point(FILE * file,rtx_insn * insn)2155 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2156 {
2157   const char *name = LABEL_NAME (insn);
2158 
2159   switch (LABEL_KIND (insn))
2160     {
2161     case LABEL_WEAK_ENTRY:
2162 #ifdef ASM_WEAKEN_LABEL
2163       ASM_WEAKEN_LABEL (file, name);
2164       gcc_fallthrough ();
2165 #endif
2166     case LABEL_GLOBAL_ENTRY:
2167       targetm.asm_out.globalize_label (file, name);
2168       gcc_fallthrough ();
2169     case LABEL_STATIC_ENTRY:
2170 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2171       ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2172 #endif
2173       ASM_OUTPUT_LABEL (file, name);
2174       break;
2175 
2176     case LABEL_NORMAL:
2177     default:
2178       gcc_unreachable ();
2179     }
2180 }
2181 
2182 /* Given a CALL_INSN, find and return the nested CALL. */
2183 static rtx
call_from_call_insn(rtx_call_insn * insn)2184 call_from_call_insn (rtx_call_insn *insn)
2185 {
2186   rtx x;
2187   gcc_assert (CALL_P (insn));
2188   x = PATTERN (insn);
2189 
2190   while (GET_CODE (x) != CALL)
2191     {
2192       switch (GET_CODE (x))
2193 	{
2194 	default:
2195 	  gcc_unreachable ();
2196 	case COND_EXEC:
2197 	  x = COND_EXEC_CODE (x);
2198 	  break;
2199 	case PARALLEL:
2200 	  x = XVECEXP (x, 0, 0);
2201 	  break;
2202 	case SET:
2203 	  x = XEXP (x, 1);
2204 	  break;
2205 	}
2206     }
2207   return x;
2208 }
2209 
2210 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2211    corresponding source line, if available.  */
2212 
2213 static void
asm_show_source(const char * filename,int linenum)2214 asm_show_source (const char *filename, int linenum)
2215 {
2216   if (!filename)
2217     return;
2218 
2219   int line_size;
2220   const char *line = location_get_source_line (filename, linenum, &line_size);
2221   if (!line)
2222     return;
2223 
2224   fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2225   /* "line" is not 0-terminated, so we must use line_size.  */
2226   fwrite (line, 1, line_size, asm_out_file);
2227   fputc ('\n', asm_out_file);
2228 }
2229 
2230 /* The final scan for one insn, INSN.
2231    Args are same as in `final', except that INSN
2232    is the insn being scanned.
2233    Value returned is the next insn to be scanned.
2234 
2235    NOPEEPHOLES is the flag to disallow peephole processing (currently
2236    used for within delayed branch sequence output).
2237 
2238    SEEN is used to track the end of the prologue, for emitting
2239    debug information.  We force the emission of a line note after
2240    both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG.  */
2241 
2242 static rtx_insn *
final_scan_insn_1(rtx_insn * insn,FILE * file,int optimize_p ATTRIBUTE_UNUSED,int nopeepholes ATTRIBUTE_UNUSED,int * seen)2243 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2244 		   int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2245 {
2246 #if HAVE_cc0
2247   rtx set;
2248 #endif
2249   rtx_insn *next;
2250   rtx_jump_table_data *table;
2251 
2252   insn_counter++;
2253 
2254   /* Ignore deleted insns.  These can occur when we split insns (due to a
2255      template of "#") while not optimizing.  */
2256   if (insn->deleted ())
2257     return NEXT_INSN (insn);
2258 
2259   switch (GET_CODE (insn))
2260     {
2261     case NOTE:
2262       switch (NOTE_KIND (insn))
2263 	{
2264 	case NOTE_INSN_DELETED:
2265 	case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2266 	  break;
2267 
2268 	case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2269 	  maybe_output_next_view (seen);
2270 
2271 	  output_function_exception_table (0);
2272 
2273 	  if (targetm.asm_out.unwind_emit)
2274 	    targetm.asm_out.unwind_emit (asm_out_file, insn);
2275 
2276 	  in_cold_section_p = !in_cold_section_p;
2277 
2278 	  if (in_cold_section_p)
2279 	    cold_function_name
2280 	      = clone_function_name (current_function_decl, "cold");
2281 
2282 	  if (dwarf2out_do_frame ())
2283 	    {
2284 	      dwarf2out_switch_text_section ();
2285 	      if (!dwarf2_debug_info_emitted_p (current_function_decl)
2286 		  && !DECL_IGNORED_P (current_function_decl))
2287 		debug_hooks->switch_text_section ();
2288 	    }
2289 	  else if (!DECL_IGNORED_P (current_function_decl))
2290 	    debug_hooks->switch_text_section ();
2291 
2292 	  switch_to_section (current_function_section ());
2293 	  targetm.asm_out.function_switched_text_sections (asm_out_file,
2294 							   current_function_decl,
2295 							   in_cold_section_p);
2296 	  /* Emit a label for the split cold section.  Form label name by
2297 	     suffixing "cold" to the original function's name.  */
2298 	  if (in_cold_section_p)
2299 	    {
2300 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2301 	      ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2302 					      IDENTIFIER_POINTER
2303 					          (cold_function_name),
2304 					      current_function_decl);
2305 #else
2306 	      ASM_OUTPUT_LABEL (asm_out_file,
2307 				IDENTIFIER_POINTER (cold_function_name));
2308 #endif
2309 	      if (dwarf2out_do_frame ()
2310 	          && cfun->fde->dw_fde_second_begin != NULL)
2311 		ASM_OUTPUT_LABEL (asm_out_file, cfun->fde->dw_fde_second_begin);
2312 	    }
2313 	  break;
2314 
2315 	case NOTE_INSN_BASIC_BLOCK:
2316 	  if (need_profile_function)
2317 	    {
2318 	      profile_function (asm_out_file);
2319 	      need_profile_function = false;
2320 	    }
2321 
2322 	  if (targetm.asm_out.unwind_emit)
2323 	    targetm.asm_out.unwind_emit (asm_out_file, insn);
2324 
2325           discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2326 
2327 	  break;
2328 
2329 	case NOTE_INSN_EH_REGION_BEG:
2330 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2331 				  NOTE_EH_HANDLER (insn));
2332 	  break;
2333 
2334 	case NOTE_INSN_EH_REGION_END:
2335 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2336 				  NOTE_EH_HANDLER (insn));
2337 	  break;
2338 
2339 	case NOTE_INSN_PROLOGUE_END:
2340 	  targetm.asm_out.function_end_prologue (file);
2341 	  profile_after_prologue (file);
2342 
2343 	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2344 	    {
2345 	      *seen |= SEEN_EMITTED;
2346 	      force_source_line = true;
2347 	    }
2348 	  else
2349 	    *seen |= SEEN_NOTE;
2350 
2351 	  break;
2352 
2353 	case NOTE_INSN_EPILOGUE_BEG:
2354           if (!DECL_IGNORED_P (current_function_decl))
2355             (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2356 	  targetm.asm_out.function_begin_epilogue (file);
2357 	  break;
2358 
2359 	case NOTE_INSN_CFI:
2360 	  dwarf2out_emit_cfi (NOTE_CFI (insn));
2361 	  break;
2362 
2363 	case NOTE_INSN_CFI_LABEL:
2364 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2365 				  NOTE_LABEL_NUMBER (insn));
2366 	  break;
2367 
2368 	case NOTE_INSN_FUNCTION_BEG:
2369 	  if (need_profile_function)
2370 	    {
2371 	      profile_function (asm_out_file);
2372 	      need_profile_function = false;
2373 	    }
2374 
2375 	  app_disable ();
2376 	  if (!DECL_IGNORED_P (current_function_decl))
2377 	    debug_hooks->end_prologue (last_linenum, last_filename);
2378 
2379 	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2380 	    {
2381 	      *seen |= SEEN_EMITTED;
2382 	      force_source_line = true;
2383 	    }
2384 	  else
2385 	    *seen |= SEEN_NOTE;
2386 
2387 	  break;
2388 
2389 	case NOTE_INSN_BLOCK_BEG:
2390 	  if (debug_info_level == DINFO_LEVEL_NORMAL
2391 	      || debug_info_level == DINFO_LEVEL_VERBOSE
2392 	      || write_symbols == DWARF2_DEBUG
2393 	      || write_symbols == VMS_AND_DWARF2_DEBUG
2394 	      || write_symbols == VMS_DEBUG)
2395 	    {
2396 	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2397 
2398 	      app_disable ();
2399 	      ++block_depth;
2400 	      high_block_linenum = last_linenum;
2401 
2402 	      /* Output debugging info about the symbol-block beginning.  */
2403 	      if (!DECL_IGNORED_P (current_function_decl))
2404 		debug_hooks->begin_block (last_linenum, n);
2405 
2406 	      /* Mark this block as output.  */
2407 	      TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2408 	      BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2409 	    }
2410 	  if (write_symbols == DBX_DEBUG)
2411 	    {
2412 	      location_t *locus_ptr
2413 		= block_nonartificial_location (NOTE_BLOCK (insn));
2414 
2415 	      if (locus_ptr != NULL)
2416 		{
2417 		  override_filename = LOCATION_FILE (*locus_ptr);
2418 		  override_linenum = LOCATION_LINE (*locus_ptr);
2419 		  override_columnnum = LOCATION_COLUMN (*locus_ptr);
2420 		}
2421 	    }
2422 	  break;
2423 
2424 	case NOTE_INSN_BLOCK_END:
2425 	  maybe_output_next_view (seen);
2426 
2427 	  if (debug_info_level == DINFO_LEVEL_NORMAL
2428 	      || debug_info_level == DINFO_LEVEL_VERBOSE
2429 	      || write_symbols == DWARF2_DEBUG
2430 	      || write_symbols == VMS_AND_DWARF2_DEBUG
2431 	      || write_symbols == VMS_DEBUG)
2432 	    {
2433 	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2434 
2435 	      app_disable ();
2436 
2437 	      /* End of a symbol-block.  */
2438 	      --block_depth;
2439 	      gcc_assert (block_depth >= 0);
2440 
2441 	      if (!DECL_IGNORED_P (current_function_decl))
2442 		debug_hooks->end_block (high_block_linenum, n);
2443 	      gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2444 			  == in_cold_section_p);
2445 	    }
2446 	  if (write_symbols == DBX_DEBUG)
2447 	    {
2448 	      tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2449 	      location_t *locus_ptr
2450 		= block_nonartificial_location (outer_block);
2451 
2452 	      if (locus_ptr != NULL)
2453 		{
2454 		  override_filename = LOCATION_FILE (*locus_ptr);
2455 		  override_linenum = LOCATION_LINE (*locus_ptr);
2456 		  override_columnnum = LOCATION_COLUMN (*locus_ptr);
2457 		}
2458 	      else
2459 		{
2460 		  override_filename = NULL;
2461 		  override_linenum = 0;
2462 		  override_columnnum = 0;
2463 		}
2464 	    }
2465 	  break;
2466 
2467 	case NOTE_INSN_DELETED_LABEL:
2468 	  /* Emit the label.  We may have deleted the CODE_LABEL because
2469 	     the label could be proved to be unreachable, though still
2470 	     referenced (in the form of having its address taken.  */
2471 	  ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2472 	  break;
2473 
2474 	case NOTE_INSN_DELETED_DEBUG_LABEL:
2475 	  /* Similarly, but need to use different namespace for it.  */
2476 	  if (CODE_LABEL_NUMBER (insn) != -1)
2477 	    ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2478 	  break;
2479 
2480 	case NOTE_INSN_VAR_LOCATION:
2481 	  if (!DECL_IGNORED_P (current_function_decl))
2482 	    {
2483 	      debug_hooks->var_location (insn);
2484 	      set_next_view_needed (seen);
2485 	    }
2486 	  break;
2487 
2488 	case NOTE_INSN_BEGIN_STMT:
2489 	  gcc_checking_assert (cfun->debug_nonbind_markers);
2490 	  if (!DECL_IGNORED_P (current_function_decl)
2491 	      && notice_source_line (insn, NULL))
2492 	    {
2493 	    output_source_line:
2494 	      (*debug_hooks->source_line) (last_linenum, last_columnnum,
2495 					   last_filename, last_discriminator,
2496 					   true);
2497 	      clear_next_view_needed (seen);
2498 	    }
2499 	  break;
2500 
2501 	case NOTE_INSN_INLINE_ENTRY:
2502 	  gcc_checking_assert (cfun->debug_nonbind_markers);
2503 	  if (!DECL_IGNORED_P (current_function_decl))
2504 	    {
2505 	      if (!notice_source_line (insn, NULL))
2506 		break;
2507 	      (*debug_hooks->inline_entry) (LOCATION_BLOCK
2508 					    (NOTE_MARKER_LOCATION (insn)));
2509 	      goto output_source_line;
2510 	    }
2511 	  break;
2512 
2513 	default:
2514 	  gcc_unreachable ();
2515 	  break;
2516 	}
2517       break;
2518 
2519     case BARRIER:
2520       break;
2521 
2522     case CODE_LABEL:
2523       /* The target port might emit labels in the output function for
2524 	 some insn, e.g. sh.c output_branchy_insn.  */
2525       if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2526 	{
2527 	  int align = LABEL_TO_ALIGNMENT (insn);
2528 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2529 	  int max_skip = LABEL_TO_MAX_SKIP (insn);
2530 #endif
2531 
2532 	  if (align && NEXT_INSN (insn))
2533 	    {
2534 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2535 	      ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2536 #else
2537 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2538               ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2539 #else
2540 	      ASM_OUTPUT_ALIGN (file, align);
2541 #endif
2542 #endif
2543 	    }
2544 	}
2545       CC_STATUS_INIT;
2546 
2547       if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2548 	debug_hooks->label (as_a <rtx_code_label *> (insn));
2549 
2550       app_disable ();
2551 
2552       /* If this label is followed by a jump-table, make sure we put
2553 	 the label in the read-only section.  Also possibly write the
2554 	 label and jump table together.  */
2555       table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2556       if (table)
2557 	{
2558 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2559 	  /* In this case, the case vector is being moved by the
2560 	     target, so don't output the label at all.  Leave that
2561 	     to the back end macros.  */
2562 #else
2563 	  if (! JUMP_TABLES_IN_TEXT_SECTION)
2564 	    {
2565 	      int log_align;
2566 
2567 	      switch_to_section (targetm.asm_out.function_rodata_section
2568 				 (current_function_decl));
2569 
2570 #ifdef ADDR_VEC_ALIGN
2571 	      log_align = ADDR_VEC_ALIGN (table);
2572 #else
2573 	      log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2574 #endif
2575 	      ASM_OUTPUT_ALIGN (file, log_align);
2576 	    }
2577 	  else
2578 	    switch_to_section (current_function_section ());
2579 
2580 #ifdef ASM_OUTPUT_CASE_LABEL
2581 	  ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2582 #else
2583 	  targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2584 #endif
2585 #endif
2586 	  break;
2587 	}
2588       if (LABEL_ALT_ENTRY_P (insn))
2589 	output_alternate_entry_point (file, insn);
2590       else
2591 	targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2592       break;
2593 
2594     default:
2595       {
2596 	rtx body = PATTERN (insn);
2597 	int insn_code_number;
2598 	const char *templ;
2599 	bool is_stmt, *is_stmt_p;
2600 
2601 	if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2602 	  {
2603 	    is_stmt = false;
2604 	    is_stmt_p = NULL;
2605 	  }
2606 	else
2607 	  is_stmt_p = &is_stmt;
2608 
2609 	/* Reset this early so it is correct for ASM statements.  */
2610 	current_insn_predicate = NULL_RTX;
2611 
2612 	/* An INSN, JUMP_INSN or CALL_INSN.
2613 	   First check for special kinds that recog doesn't recognize.  */
2614 
2615 	if (GET_CODE (body) == USE /* These are just declarations.  */
2616 	    || GET_CODE (body) == CLOBBER)
2617 	  break;
2618 
2619 #if HAVE_cc0
2620 	{
2621 	  /* If there is a REG_CC_SETTER note on this insn, it means that
2622 	     the setting of the condition code was done in the delay slot
2623 	     of the insn that branched here.  So recover the cc status
2624 	     from the insn that set it.  */
2625 
2626 	  rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2627 	  if (note)
2628 	    {
2629 	      rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2630 	      NOTICE_UPDATE_CC (PATTERN (other), other);
2631 	      cc_prev_status = cc_status;
2632 	    }
2633 	}
2634 #endif
2635 
2636 	/* Detect insns that are really jump-tables
2637 	   and output them as such.  */
2638 
2639         if (JUMP_TABLE_DATA_P (insn))
2640 	  {
2641 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2642 	    int vlen, idx;
2643 #endif
2644 
2645 	    if (! JUMP_TABLES_IN_TEXT_SECTION)
2646 	      switch_to_section (targetm.asm_out.function_rodata_section
2647 				 (current_function_decl));
2648 	    else
2649 	      switch_to_section (current_function_section ());
2650 
2651 	    app_disable ();
2652 
2653 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2654 	    if (GET_CODE (body) == ADDR_VEC)
2655 	      {
2656 #ifdef ASM_OUTPUT_ADDR_VEC
2657 		ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2658 #else
2659 		gcc_unreachable ();
2660 #endif
2661 	      }
2662 	    else
2663 	      {
2664 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2665 		ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2666 #else
2667 		gcc_unreachable ();
2668 #endif
2669 	      }
2670 #else
2671 	    vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2672 	    for (idx = 0; idx < vlen; idx++)
2673 	      {
2674 		if (GET_CODE (body) == ADDR_VEC)
2675 		  {
2676 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2677 		    ASM_OUTPUT_ADDR_VEC_ELT
2678 		      (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2679 #else
2680 		    gcc_unreachable ();
2681 #endif
2682 		  }
2683 		else
2684 		  {
2685 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2686 		    ASM_OUTPUT_ADDR_DIFF_ELT
2687 		      (file,
2688 		       body,
2689 		       CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2690 		       CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2691 #else
2692 		    gcc_unreachable ();
2693 #endif
2694 		  }
2695 	      }
2696 #ifdef ASM_OUTPUT_CASE_END
2697 	    ASM_OUTPUT_CASE_END (file,
2698 				 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2699 				 insn);
2700 #endif
2701 #endif
2702 
2703 	    switch_to_section (current_function_section ());
2704 
2705 	    if (debug_variable_location_views
2706 		&& !DECL_IGNORED_P (current_function_decl))
2707 	      debug_hooks->var_location (insn);
2708 
2709 	    break;
2710 	  }
2711 	/* Output this line note if it is the first or the last line
2712 	   note in a row.  */
2713 	if (!DECL_IGNORED_P (current_function_decl)
2714 	    && notice_source_line (insn, is_stmt_p))
2715 	  {
2716 	    if (flag_verbose_asm)
2717 	      asm_show_source (last_filename, last_linenum);
2718 	    (*debug_hooks->source_line) (last_linenum, last_columnnum,
2719 					 last_filename, last_discriminator,
2720 					 is_stmt);
2721 	    clear_next_view_needed (seen);
2722 	  }
2723 	else
2724 	  maybe_output_next_view (seen);
2725 
2726 	gcc_checking_assert (!DEBUG_INSN_P (insn));
2727 
2728 	if (GET_CODE (body) == PARALLEL
2729 	    && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2730 	  body = XVECEXP (body, 0, 0);
2731 
2732 	if (GET_CODE (body) == ASM_INPUT)
2733 	  {
2734 	    const char *string = XSTR (body, 0);
2735 
2736 	    /* There's no telling what that did to the condition codes.  */
2737 	    CC_STATUS_INIT;
2738 
2739 	    if (string[0])
2740 	      {
2741 		expanded_location loc;
2742 
2743 		app_enable ();
2744 		loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2745 		if (*loc.file && loc.line)
2746 		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2747 			   ASM_COMMENT_START, loc.line, loc.file);
2748 		fprintf (asm_out_file, "\t%s\n", string);
2749 #if HAVE_AS_LINE_ZERO
2750 		if (*loc.file && loc.line)
2751 		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2752 #endif
2753 	      }
2754 	    break;
2755 	  }
2756 
2757 	/* Detect `asm' construct with operands.  */
2758 	if (asm_noperands (body) >= 0)
2759 	  {
2760 	    unsigned int noperands = asm_noperands (body);
2761 	    rtx *ops = XALLOCAVEC (rtx, noperands);
2762 	    const char *string;
2763 	    location_t loc;
2764 	    expanded_location expanded;
2765 
2766 	    /* There's no telling what that did to the condition codes.  */
2767 	    CC_STATUS_INIT;
2768 
2769 	    /* Get out the operand values.  */
2770 	    string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2771 	    /* Inhibit dying on what would otherwise be compiler bugs.  */
2772 	    insn_noperands = noperands;
2773 	    this_is_asm_operands = insn;
2774 	    expanded = expand_location (loc);
2775 
2776 #ifdef FINAL_PRESCAN_INSN
2777 	    FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2778 #endif
2779 
2780 	    /* Output the insn using them.  */
2781 	    if (string[0])
2782 	      {
2783 		app_enable ();
2784 		if (expanded.file && expanded.line)
2785 		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2786 			   ASM_COMMENT_START, expanded.line, expanded.file);
2787 	        output_asm_insn (string, ops);
2788 #if HAVE_AS_LINE_ZERO
2789 		if (expanded.file && expanded.line)
2790 		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2791 #endif
2792 	      }
2793 
2794 	    if (targetm.asm_out.final_postscan_insn)
2795 	      targetm.asm_out.final_postscan_insn (file, insn, ops,
2796 						   insn_noperands);
2797 
2798 	    this_is_asm_operands = 0;
2799 	    break;
2800 	  }
2801 
2802 	app_disable ();
2803 
2804 	if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2805 	  {
2806 	    /* A delayed-branch sequence */
2807 	    int i;
2808 
2809 	    final_sequence = seq;
2810 
2811 	    /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2812 	       force the restoration of a comparison that was previously
2813 	       thought unnecessary.  If that happens, cancel this sequence
2814 	       and cause that insn to be restored.  */
2815 
2816 	    next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2817 	    if (next != seq->insn (1))
2818 	      {
2819 		final_sequence = 0;
2820 		return next;
2821 	      }
2822 
2823 	    for (i = 1; i < seq->len (); i++)
2824 	      {
2825 		rtx_insn *insn = seq->insn (i);
2826 		rtx_insn *next = NEXT_INSN (insn);
2827 		/* We loop in case any instruction in a delay slot gets
2828 		   split.  */
2829 		do
2830 		  insn = final_scan_insn (insn, file, 0, 1, seen);
2831 		while (insn != next);
2832 	      }
2833 #ifdef DBR_OUTPUT_SEQEND
2834 	    DBR_OUTPUT_SEQEND (file);
2835 #endif
2836 	    final_sequence = 0;
2837 
2838 	    /* If the insn requiring the delay slot was a CALL_INSN, the
2839 	       insns in the delay slot are actually executed before the
2840 	       called function.  Hence we don't preserve any CC-setting
2841 	       actions in these insns and the CC must be marked as being
2842 	       clobbered by the function.  */
2843 	    if (CALL_P (seq->insn (0)))
2844 	      {
2845 		CC_STATUS_INIT;
2846 	      }
2847 	    break;
2848 	  }
2849 
2850 	/* We have a real machine instruction as rtl.  */
2851 
2852 	body = PATTERN (insn);
2853 
2854 #if HAVE_cc0
2855 	set = single_set (insn);
2856 
2857 	/* Check for redundant test and compare instructions
2858 	   (when the condition codes are already set up as desired).
2859 	   This is done only when optimizing; if not optimizing,
2860 	   it should be possible for the user to alter a variable
2861 	   with the debugger in between statements
2862 	   and the next statement should reexamine the variable
2863 	   to compute the condition codes.  */
2864 
2865 	if (optimize_p)
2866 	  {
2867 	    if (set
2868 		&& GET_CODE (SET_DEST (set)) == CC0
2869 		&& insn != last_ignored_compare)
2870 	      {
2871 		rtx src1, src2;
2872 		if (GET_CODE (SET_SRC (set)) == SUBREG)
2873 		  SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2874 
2875 		src1 = SET_SRC (set);
2876 		src2 = NULL_RTX;
2877 		if (GET_CODE (SET_SRC (set)) == COMPARE)
2878 		  {
2879 		    if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2880 		      XEXP (SET_SRC (set), 0)
2881 			= alter_subreg (&XEXP (SET_SRC (set), 0), true);
2882 		    if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2883 		      XEXP (SET_SRC (set), 1)
2884 			= alter_subreg (&XEXP (SET_SRC (set), 1), true);
2885 		    if (XEXP (SET_SRC (set), 1)
2886 			== CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2887 		      src2 = XEXP (SET_SRC (set), 0);
2888 		  }
2889 		if ((cc_status.value1 != 0
2890 		     && rtx_equal_p (src1, cc_status.value1))
2891 		    || (cc_status.value2 != 0
2892 			&& rtx_equal_p (src1, cc_status.value2))
2893 		    || (src2 != 0 && cc_status.value1 != 0
2894 		        && rtx_equal_p (src2, cc_status.value1))
2895 		    || (src2 != 0 && cc_status.value2 != 0
2896 			&& rtx_equal_p (src2, cc_status.value2)))
2897 		  {
2898 		    /* Don't delete insn if it has an addressing side-effect.  */
2899 		    if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2900 			/* or if anything in it is volatile.  */
2901 			&& ! volatile_refs_p (PATTERN (insn)))
2902 		      {
2903 			/* We don't really delete the insn; just ignore it.  */
2904 			last_ignored_compare = insn;
2905 			break;
2906 		      }
2907 		  }
2908 	      }
2909 	  }
2910 
2911 	/* If this is a conditional branch, maybe modify it
2912 	   if the cc's are in a nonstandard state
2913 	   so that it accomplishes the same thing that it would
2914 	   do straightforwardly if the cc's were set up normally.  */
2915 
2916 	if (cc_status.flags != 0
2917 	    && JUMP_P (insn)
2918 	    && GET_CODE (body) == SET
2919 	    && SET_DEST (body) == pc_rtx
2920 	    && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2921 	    && COMPARISON_P (XEXP (SET_SRC (body), 0))
2922 	    && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2923 	  {
2924 	    /* This function may alter the contents of its argument
2925 	       and clear some of the cc_status.flags bits.
2926 	       It may also return 1 meaning condition now always true
2927 	       or -1 meaning condition now always false
2928 	       or 2 meaning condition nontrivial but altered.  */
2929 	    int result = alter_cond (XEXP (SET_SRC (body), 0));
2930 	    /* If condition now has fixed value, replace the IF_THEN_ELSE
2931 	       with its then-operand or its else-operand.  */
2932 	    if (result == 1)
2933 	      SET_SRC (body) = XEXP (SET_SRC (body), 1);
2934 	    if (result == -1)
2935 	      SET_SRC (body) = XEXP (SET_SRC (body), 2);
2936 
2937 	    /* The jump is now either unconditional or a no-op.
2938 	       If it has become a no-op, don't try to output it.
2939 	       (It would not be recognized.)  */
2940 	    if (SET_SRC (body) == pc_rtx)
2941 	      {
2942 	        delete_insn (insn);
2943 		break;
2944 	      }
2945 	    else if (ANY_RETURN_P (SET_SRC (body)))
2946 	      /* Replace (set (pc) (return)) with (return).  */
2947 	      PATTERN (insn) = body = SET_SRC (body);
2948 
2949 	    /* Rerecognize the instruction if it has changed.  */
2950 	    if (result != 0)
2951 	      INSN_CODE (insn) = -1;
2952 	  }
2953 
2954 	/* If this is a conditional trap, maybe modify it if the cc's
2955 	   are in a nonstandard state so that it accomplishes the same
2956 	   thing that it would do straightforwardly if the cc's were
2957 	   set up normally.  */
2958 	if (cc_status.flags != 0
2959 	    && NONJUMP_INSN_P (insn)
2960 	    && GET_CODE (body) == TRAP_IF
2961 	    && COMPARISON_P (TRAP_CONDITION (body))
2962 	    && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2963 	  {
2964 	    /* This function may alter the contents of its argument
2965 	       and clear some of the cc_status.flags bits.
2966 	       It may also return 1 meaning condition now always true
2967 	       or -1 meaning condition now always false
2968 	       or 2 meaning condition nontrivial but altered.  */
2969 	    int result = alter_cond (TRAP_CONDITION (body));
2970 
2971 	    /* If TRAP_CONDITION has become always false, delete the
2972 	       instruction.  */
2973 	    if (result == -1)
2974 	      {
2975 		delete_insn (insn);
2976 		break;
2977 	      }
2978 
2979 	    /* If TRAP_CONDITION has become always true, replace
2980 	       TRAP_CONDITION with const_true_rtx.  */
2981 	    if (result == 1)
2982 	      TRAP_CONDITION (body) = const_true_rtx;
2983 
2984 	    /* Rerecognize the instruction if it has changed.  */
2985 	    if (result != 0)
2986 	      INSN_CODE (insn) = -1;
2987 	  }
2988 
2989 	/* Make same adjustments to instructions that examine the
2990 	   condition codes without jumping and instructions that
2991 	   handle conditional moves (if this machine has either one).  */
2992 
2993 	if (cc_status.flags != 0
2994 	    && set != 0)
2995 	  {
2996 	    rtx cond_rtx, then_rtx, else_rtx;
2997 
2998 	    if (!JUMP_P (insn)
2999 		&& GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
3000 	      {
3001 		cond_rtx = XEXP (SET_SRC (set), 0);
3002 		then_rtx = XEXP (SET_SRC (set), 1);
3003 		else_rtx = XEXP (SET_SRC (set), 2);
3004 	      }
3005 	    else
3006 	      {
3007 		cond_rtx = SET_SRC (set);
3008 		then_rtx = const_true_rtx;
3009 		else_rtx = const0_rtx;
3010 	      }
3011 
3012 	    if (COMPARISON_P (cond_rtx)
3013 		&& XEXP (cond_rtx, 0) == cc0_rtx)
3014 	      {
3015 		int result;
3016 		result = alter_cond (cond_rtx);
3017 		if (result == 1)
3018 		  validate_change (insn, &SET_SRC (set), then_rtx, 0);
3019 		else if (result == -1)
3020 		  validate_change (insn, &SET_SRC (set), else_rtx, 0);
3021 		else if (result == 2)
3022 		  INSN_CODE (insn) = -1;
3023 		if (SET_DEST (set) == SET_SRC (set))
3024 		  delete_insn (insn);
3025 	      }
3026 	  }
3027 
3028 #endif
3029 
3030 	/* Do machine-specific peephole optimizations if desired.  */
3031 
3032 	if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
3033 	  {
3034 	    rtx_insn *next = peephole (insn);
3035 	    /* When peepholing, if there were notes within the peephole,
3036 	       emit them before the peephole.  */
3037 	    if (next != 0 && next != NEXT_INSN (insn))
3038 	      {
3039 		rtx_insn *note, *prev = PREV_INSN (insn);
3040 
3041 		for (note = NEXT_INSN (insn); note != next;
3042 		     note = NEXT_INSN (note))
3043 		  final_scan_insn (note, file, optimize_p, nopeepholes, seen);
3044 
3045 		/* Put the notes in the proper position for a later
3046 		   rescan.  For example, the SH target can do this
3047 		   when generating a far jump in a delayed branch
3048 		   sequence.  */
3049 		note = NEXT_INSN (insn);
3050 		SET_PREV_INSN (note) = prev;
3051 		SET_NEXT_INSN (prev) = note;
3052 		SET_NEXT_INSN (PREV_INSN (next)) = insn;
3053 		SET_PREV_INSN (insn) = PREV_INSN (next);
3054 		SET_NEXT_INSN (insn) = next;
3055 		SET_PREV_INSN (next) = insn;
3056 	      }
3057 
3058 	    /* PEEPHOLE might have changed this.  */
3059 	    body = PATTERN (insn);
3060 	  }
3061 
3062 	/* Try to recognize the instruction.
3063 	   If successful, verify that the operands satisfy the
3064 	   constraints for the instruction.  Crash if they don't,
3065 	   since `reload' should have changed them so that they do.  */
3066 
3067 	insn_code_number = recog_memoized (insn);
3068 	cleanup_subreg_operands (insn);
3069 
3070 	/* Dump the insn in the assembly for debugging (-dAP).
3071 	   If the final dump is requested as slim RTL, dump slim
3072 	   RTL to the assembly file also.  */
3073 	if (flag_dump_rtl_in_asm)
3074 	  {
3075 	    print_rtx_head = ASM_COMMENT_START;
3076 	    if (! (dump_flags & TDF_SLIM))
3077 	      print_rtl_single (asm_out_file, insn);
3078 	    else
3079 	      dump_insn_slim (asm_out_file, insn);
3080 	    print_rtx_head = "";
3081 	  }
3082 
3083 	if (! constrain_operands_cached (insn, 1))
3084 	  fatal_insn_not_found (insn);
3085 
3086 	/* Some target machines need to prescan each insn before
3087 	   it is output.  */
3088 
3089 #ifdef FINAL_PRESCAN_INSN
3090 	FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3091 #endif
3092 
3093 	if (targetm.have_conditional_execution ()
3094 	    && GET_CODE (PATTERN (insn)) == COND_EXEC)
3095 	  current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3096 
3097 #if HAVE_cc0
3098 	cc_prev_status = cc_status;
3099 
3100 	/* Update `cc_status' for this instruction.
3101 	   The instruction's output routine may change it further.
3102 	   If the output routine for a jump insn needs to depend
3103 	   on the cc status, it should look at cc_prev_status.  */
3104 
3105 	NOTICE_UPDATE_CC (body, insn);
3106 #endif
3107 
3108 	current_output_insn = debug_insn = insn;
3109 
3110 	/* Find the proper template for this insn.  */
3111 	templ = get_insn_template (insn_code_number, insn);
3112 
3113 	/* If the C code returns 0, it means that it is a jump insn
3114 	   which follows a deleted test insn, and that test insn
3115 	   needs to be reinserted.  */
3116 	if (templ == 0)
3117 	  {
3118 	    rtx_insn *prev;
3119 
3120 	    gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3121 
3122 	    /* We have already processed the notes between the setter and
3123 	       the user.  Make sure we don't process them again, this is
3124 	       particularly important if one of the notes is a block
3125 	       scope note or an EH note.  */
3126 	    for (prev = insn;
3127 		 prev != last_ignored_compare;
3128 		 prev = PREV_INSN (prev))
3129 	      {
3130 		if (NOTE_P (prev))
3131 		  delete_insn (prev);	/* Use delete_note.  */
3132 	      }
3133 
3134 	    return prev;
3135 	  }
3136 
3137 	/* If the template is the string "#", it means that this insn must
3138 	   be split.  */
3139 	if (templ[0] == '#' && templ[1] == '\0')
3140 	  {
3141 	    rtx_insn *new_rtx = try_split (body, insn, 0);
3142 
3143 	    /* If we didn't split the insn, go away.  */
3144 	    if (new_rtx == insn && PATTERN (new_rtx) == body)
3145 	      fatal_insn ("could not split insn", insn);
3146 
3147 	    /* If we have a length attribute, this instruction should have
3148 	       been split in shorten_branches, to ensure that we would have
3149 	       valid length info for the splitees.  */
3150 	    gcc_assert (!HAVE_ATTR_length);
3151 
3152 	    return new_rtx;
3153 	  }
3154 
3155 	/* ??? This will put the directives in the wrong place if
3156 	   get_insn_template outputs assembly directly.  However calling it
3157 	   before get_insn_template breaks if the insns is split.  */
3158 	if (targetm.asm_out.unwind_emit_before_insn
3159 	    && targetm.asm_out.unwind_emit)
3160 	  targetm.asm_out.unwind_emit (asm_out_file, insn);
3161 
3162 	rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3163 	if (call_insn != NULL)
3164 	  {
3165 	    rtx x = call_from_call_insn (call_insn);
3166 	    x = XEXP (x, 0);
3167 	    if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3168 	      {
3169 		tree t;
3170 		x = XEXP (x, 0);
3171 		t = SYMBOL_REF_DECL (x);
3172 		if (t)
3173 		  assemble_external (t);
3174 	      }
3175 	  }
3176 
3177 	/* Output assembler code from the template.  */
3178 	output_asm_insn (templ, recog_data.operand);
3179 
3180 	/* Some target machines need to postscan each insn after
3181 	   it is output.  */
3182 	if (targetm.asm_out.final_postscan_insn)
3183 	  targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3184 					       recog_data.n_operands);
3185 
3186 	if (!targetm.asm_out.unwind_emit_before_insn
3187 	    && targetm.asm_out.unwind_emit)
3188 	  targetm.asm_out.unwind_emit (asm_out_file, insn);
3189 
3190 	/* Let the debug info back-end know about this call.  We do this only
3191 	   after the instruction has been emitted because labels that may be
3192 	   created to reference the call instruction must appear after it.  */
3193 	if ((debug_variable_location_views || call_insn != NULL)
3194 	    && !DECL_IGNORED_P (current_function_decl))
3195 	  debug_hooks->var_location (insn);
3196 
3197 	current_output_insn = debug_insn = 0;
3198       }
3199     }
3200   return NEXT_INSN (insn);
3201 }
3202 
3203 /* This is a wrapper around final_scan_insn_1 that allows ports to
3204    call it recursively without a known value for SEEN.  The value is
3205    saved at the outermost call, and recovered for recursive calls.
3206    Recursive calls MUST pass NULL, or the same pointer if they can
3207    otherwise get to it.  */
3208 
3209 rtx_insn *
final_scan_insn(rtx_insn * insn,FILE * file,int optimize_p,int nopeepholes,int * seen)3210 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
3211 		 int nopeepholes, int *seen)
3212 {
3213   static int *enclosing_seen;
3214   static int recursion_counter;
3215 
3216   gcc_assert (seen || recursion_counter);
3217   gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
3218 
3219   if (!recursion_counter++)
3220     enclosing_seen = seen;
3221   else if (!seen)
3222     seen = enclosing_seen;
3223 
3224   rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
3225 
3226   if (!--recursion_counter)
3227     enclosing_seen = NULL;
3228 
3229   return ret;
3230 }
3231 
3232 
3233 /* Return whether a source line note needs to be emitted before INSN.
3234    Sets IS_STMT to TRUE if the line should be marked as a possible
3235    breakpoint location.  */
3236 
3237 static bool
notice_source_line(rtx_insn * insn,bool * is_stmt)3238 notice_source_line (rtx_insn *insn, bool *is_stmt)
3239 {
3240   const char *filename;
3241   int linenum, columnnum;
3242 
3243   if (NOTE_MARKER_P (insn))
3244     {
3245       location_t loc = NOTE_MARKER_LOCATION (insn);
3246       /* The inline entry markers (gimple, insn, note) carry the
3247 	 location of the call, because that's what we want to carry
3248 	 during compilation, but the location we want to output in
3249 	 debug information for the inline entry point is the location
3250 	 of the function itself.  */
3251       if (NOTE_KIND (insn) == NOTE_INSN_INLINE_ENTRY)
3252 	{
3253 	  tree block = LOCATION_BLOCK (loc);
3254 	  tree fn = block_ultimate_origin (block);
3255 	  loc = DECL_SOURCE_LOCATION (fn);
3256 	}
3257       expanded_location xloc = expand_location (loc);
3258       if (xloc.line == 0)
3259 	{
3260 	  gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3261 			       || LOCATION_LOCUS (loc) == BUILTINS_LOCATION);
3262 	  return false;
3263 	}
3264       filename = xloc.file;
3265       linenum = xloc.line;
3266       columnnum = xloc.column;
3267       force_source_line = true;
3268     }
3269   else if (override_filename)
3270     {
3271       filename = override_filename;
3272       linenum = override_linenum;
3273       columnnum = override_columnnum;
3274     }
3275   else if (INSN_HAS_LOCATION (insn))
3276     {
3277       expanded_location xloc = insn_location (insn);
3278       filename = xloc.file;
3279       linenum = xloc.line;
3280       columnnum = xloc.column;
3281     }
3282   else
3283     {
3284       filename = NULL;
3285       linenum = 0;
3286       columnnum = 0;
3287     }
3288 
3289   if (filename == NULL)
3290     return false;
3291 
3292   if (force_source_line
3293       || filename != last_filename
3294       || last_linenum != linenum
3295       || (debug_column_info && last_columnnum != columnnum))
3296     {
3297       force_source_line = false;
3298       last_filename = filename;
3299       last_linenum = linenum;
3300       last_columnnum = columnnum;
3301       last_discriminator = discriminator;
3302       if (is_stmt)
3303 	*is_stmt = true;
3304       high_block_linenum = MAX (last_linenum, high_block_linenum);
3305       high_function_linenum = MAX (last_linenum, high_function_linenum);
3306       return true;
3307     }
3308 
3309   if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3310     {
3311       /* If the discriminator changed, but the line number did not,
3312          output the line table entry with is_stmt false so the
3313          debugger does not treat this as a breakpoint location.  */
3314       last_discriminator = discriminator;
3315       if (is_stmt)
3316 	*is_stmt = false;
3317       return true;
3318     }
3319 
3320   return false;
3321 }
3322 
3323 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3324    directly to the desired hard register.  */
3325 
3326 void
cleanup_subreg_operands(rtx_insn * insn)3327 cleanup_subreg_operands (rtx_insn *insn)
3328 {
3329   int i;
3330   bool changed = false;
3331   extract_insn_cached (insn);
3332   for (i = 0; i < recog_data.n_operands; i++)
3333     {
3334       /* The following test cannot use recog_data.operand when testing
3335 	 for a SUBREG: the underlying object might have been changed
3336 	 already if we are inside a match_operator expression that
3337 	 matches the else clause.  Instead we test the underlying
3338 	 expression directly.  */
3339       if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3340 	{
3341 	  recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3342 	  changed = true;
3343 	}
3344       else if (GET_CODE (recog_data.operand[i]) == PLUS
3345 	       || GET_CODE (recog_data.operand[i]) == MULT
3346 	       || MEM_P (recog_data.operand[i]))
3347 	recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3348     }
3349 
3350   for (i = 0; i < recog_data.n_dups; i++)
3351     {
3352       if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3353 	{
3354 	  *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3355 	  changed = true;
3356 	}
3357       else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3358 	       || GET_CODE (*recog_data.dup_loc[i]) == MULT
3359 	       || MEM_P (*recog_data.dup_loc[i]))
3360 	*recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3361     }
3362   if (changed)
3363     df_insn_rescan (insn);
3364 }
3365 
3366 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3367    the thing it is a subreg of.  Do it anyway if FINAL_P.  */
3368 
3369 rtx
alter_subreg(rtx * xp,bool final_p)3370 alter_subreg (rtx *xp, bool final_p)
3371 {
3372   rtx x = *xp;
3373   rtx y = SUBREG_REG (x);
3374 
3375   /* simplify_subreg does not remove subreg from volatile references.
3376      We are required to.  */
3377   if (MEM_P (y))
3378     {
3379       poly_int64 offset = SUBREG_BYTE (x);
3380 
3381       /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3382 	 contains 0 instead of the proper offset.  See simplify_subreg.  */
3383       if (paradoxical_subreg_p (x))
3384 	offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3385 
3386       if (final_p)
3387 	*xp = adjust_address (y, GET_MODE (x), offset);
3388       else
3389 	*xp = adjust_address_nv (y, GET_MODE (x), offset);
3390     }
3391   else if (REG_P (y) && HARD_REGISTER_P (y))
3392     {
3393       rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3394 				     SUBREG_BYTE (x));
3395 
3396       if (new_rtx != 0)
3397 	*xp = new_rtx;
3398       else if (final_p && REG_P (y))
3399 	{
3400 	  /* Simplify_subreg can't handle some REG cases, but we have to.  */
3401 	  unsigned int regno;
3402 	  poly_int64 offset;
3403 
3404 	  regno = subreg_regno (x);
3405 	  if (subreg_lowpart_p (x))
3406 	    offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3407 	  else
3408 	    offset = SUBREG_BYTE (x);
3409 	  *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3410 	}
3411     }
3412 
3413   return *xp;
3414 }
3415 
3416 /* Do alter_subreg on all the SUBREGs contained in X.  */
3417 
3418 static rtx
walk_alter_subreg(rtx * xp,bool * changed)3419 walk_alter_subreg (rtx *xp, bool *changed)
3420 {
3421   rtx x = *xp;
3422   switch (GET_CODE (x))
3423     {
3424     case PLUS:
3425     case MULT:
3426     case AND:
3427       XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3428       XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3429       break;
3430 
3431     case MEM:
3432     case ZERO_EXTEND:
3433       XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3434       break;
3435 
3436     case SUBREG:
3437       *changed = true;
3438       return alter_subreg (xp, true);
3439 
3440     default:
3441       break;
3442     }
3443 
3444   return *xp;
3445 }
3446 
3447 #if HAVE_cc0
3448 
3449 /* Given BODY, the body of a jump instruction, alter the jump condition
3450    as required by the bits that are set in cc_status.flags.
3451    Not all of the bits there can be handled at this level in all cases.
3452 
3453    The value is normally 0.
3454    1 means that the condition has become always true.
3455    -1 means that the condition has become always false.
3456    2 means that COND has been altered.  */
3457 
3458 static int
alter_cond(rtx cond)3459 alter_cond (rtx cond)
3460 {
3461   int value = 0;
3462 
3463   if (cc_status.flags & CC_REVERSED)
3464     {
3465       value = 2;
3466       PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3467     }
3468 
3469   if (cc_status.flags & CC_INVERTED)
3470     {
3471       value = 2;
3472       PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3473     }
3474 
3475   if (cc_status.flags & CC_NOT_POSITIVE)
3476     switch (GET_CODE (cond))
3477       {
3478       case LE:
3479       case LEU:
3480       case GEU:
3481 	/* Jump becomes unconditional.  */
3482 	return 1;
3483 
3484       case GT:
3485       case GTU:
3486       case LTU:
3487 	/* Jump becomes no-op.  */
3488 	return -1;
3489 
3490       case GE:
3491 	PUT_CODE (cond, EQ);
3492 	value = 2;
3493 	break;
3494 
3495       case LT:
3496 	PUT_CODE (cond, NE);
3497 	value = 2;
3498 	break;
3499 
3500       default:
3501 	break;
3502       }
3503 
3504   if (cc_status.flags & CC_NOT_NEGATIVE)
3505     switch (GET_CODE (cond))
3506       {
3507       case GE:
3508       case GEU:
3509 	/* Jump becomes unconditional.  */
3510 	return 1;
3511 
3512       case LT:
3513       case LTU:
3514 	/* Jump becomes no-op.  */
3515 	return -1;
3516 
3517       case LE:
3518       case LEU:
3519 	PUT_CODE (cond, EQ);
3520 	value = 2;
3521 	break;
3522 
3523       case GT:
3524       case GTU:
3525 	PUT_CODE (cond, NE);
3526 	value = 2;
3527 	break;
3528 
3529       default:
3530 	break;
3531       }
3532 
3533   if (cc_status.flags & CC_NO_OVERFLOW)
3534     switch (GET_CODE (cond))
3535       {
3536       case GEU:
3537 	/* Jump becomes unconditional.  */
3538 	return 1;
3539 
3540       case LEU:
3541 	PUT_CODE (cond, EQ);
3542 	value = 2;
3543 	break;
3544 
3545       case GTU:
3546 	PUT_CODE (cond, NE);
3547 	value = 2;
3548 	break;
3549 
3550       case LTU:
3551 	/* Jump becomes no-op.  */
3552 	return -1;
3553 
3554       default:
3555 	break;
3556       }
3557 
3558   if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3559     switch (GET_CODE (cond))
3560       {
3561       default:
3562 	gcc_unreachable ();
3563 
3564       case NE:
3565 	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3566 	value = 2;
3567 	break;
3568 
3569       case EQ:
3570 	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3571 	value = 2;
3572 	break;
3573       }
3574 
3575   if (cc_status.flags & CC_NOT_SIGNED)
3576     /* The flags are valid if signed condition operators are converted
3577        to unsigned.  */
3578     switch (GET_CODE (cond))
3579       {
3580       case LE:
3581 	PUT_CODE (cond, LEU);
3582 	value = 2;
3583 	break;
3584 
3585       case LT:
3586 	PUT_CODE (cond, LTU);
3587 	value = 2;
3588 	break;
3589 
3590       case GT:
3591 	PUT_CODE (cond, GTU);
3592 	value = 2;
3593 	break;
3594 
3595       case GE:
3596 	PUT_CODE (cond, GEU);
3597 	value = 2;
3598 	break;
3599 
3600       default:
3601 	break;
3602       }
3603 
3604   return value;
3605 }
3606 #endif
3607 
3608 /* Report inconsistency between the assembler template and the operands.
3609    In an `asm', it's the user's fault; otherwise, the compiler's fault.  */
3610 
3611 void
output_operand_lossage(const char * cmsgid,...)3612 output_operand_lossage (const char *cmsgid, ...)
3613 {
3614   char *fmt_string;
3615   char *new_message;
3616   const char *pfx_str;
3617   va_list ap;
3618 
3619   va_start (ap, cmsgid);
3620 
3621   pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3622   fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3623   new_message = xvasprintf (fmt_string, ap);
3624 
3625   if (this_is_asm_operands)
3626     error_for_asm (this_is_asm_operands, "%s", new_message);
3627   else
3628     internal_error ("%s", new_message);
3629 
3630   free (fmt_string);
3631   free (new_message);
3632   va_end (ap);
3633 }
3634 
3635 /* Output of assembler code from a template, and its subroutines.  */
3636 
3637 /* Annotate the assembly with a comment describing the pattern and
3638    alternative used.  */
3639 
3640 static void
output_asm_name(void)3641 output_asm_name (void)
3642 {
3643   if (debug_insn)
3644     {
3645       fprintf (asm_out_file, "\t%s %d\t",
3646 	       ASM_COMMENT_START, INSN_UID (debug_insn));
3647 
3648       fprintf (asm_out_file, "[c=%d",
3649 	       insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3650       if (HAVE_ATTR_length)
3651 	fprintf (asm_out_file, " l=%d",
3652 		 get_attr_length (debug_insn));
3653       fprintf (asm_out_file, "]  ");
3654 
3655       int num = INSN_CODE (debug_insn);
3656       fprintf (asm_out_file, "%s", insn_data[num].name);
3657       if (insn_data[num].n_alternatives > 1)
3658 	fprintf (asm_out_file, "/%d", which_alternative);
3659 
3660       /* Clear this so only the first assembler insn
3661 	 of any rtl insn will get the special comment for -dp.  */
3662       debug_insn = 0;
3663     }
3664 }
3665 
3666 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3667    or its address, return that expr .  Set *PADDRESSP to 1 if the expr
3668    corresponds to the address of the object and 0 if to the object.  */
3669 
3670 static tree
get_mem_expr_from_op(rtx op,int * paddressp)3671 get_mem_expr_from_op (rtx op, int *paddressp)
3672 {
3673   tree expr;
3674   int inner_addressp;
3675 
3676   *paddressp = 0;
3677 
3678   if (REG_P (op))
3679     return REG_EXPR (op);
3680   else if (!MEM_P (op))
3681     return 0;
3682 
3683   if (MEM_EXPR (op) != 0)
3684     return MEM_EXPR (op);
3685 
3686   /* Otherwise we have an address, so indicate it and look at the address.  */
3687   *paddressp = 1;
3688   op = XEXP (op, 0);
3689 
3690   /* First check if we have a decl for the address, then look at the right side
3691      if it is a PLUS.  Otherwise, strip off arithmetic and keep looking.
3692      But don't allow the address to itself be indirect.  */
3693   if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3694     return expr;
3695   else if (GET_CODE (op) == PLUS
3696 	   && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3697     return expr;
3698 
3699   while (UNARY_P (op)
3700 	 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3701     op = XEXP (op, 0);
3702 
3703   expr = get_mem_expr_from_op (op, &inner_addressp);
3704   return inner_addressp ? 0 : expr;
3705 }
3706 
3707 /* Output operand names for assembler instructions.  OPERANDS is the
3708    operand vector, OPORDER is the order to write the operands, and NOPS
3709    is the number of operands to write.  */
3710 
3711 static void
output_asm_operand_names(rtx * operands,int * oporder,int nops)3712 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3713 {
3714   int wrote = 0;
3715   int i;
3716 
3717   for (i = 0; i < nops; i++)
3718     {
3719       int addressp;
3720       rtx op = operands[oporder[i]];
3721       tree expr = get_mem_expr_from_op (op, &addressp);
3722 
3723       fprintf (asm_out_file, "%c%s",
3724 	       wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3725       wrote = 1;
3726       if (expr)
3727 	{
3728 	  fprintf (asm_out_file, "%s",
3729 		   addressp ? "*" : "");
3730 	  print_mem_expr (asm_out_file, expr);
3731 	  wrote = 1;
3732 	}
3733       else if (REG_P (op) && ORIGINAL_REGNO (op)
3734 	       && ORIGINAL_REGNO (op) != REGNO (op))
3735 	fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3736     }
3737 }
3738 
3739 #ifdef ASSEMBLER_DIALECT
3740 /* Helper function to parse assembler dialects in the asm string.
3741    This is called from output_asm_insn and asm_fprintf.  */
3742 static const char *
do_assembler_dialects(const char * p,int * dialect)3743 do_assembler_dialects (const char *p, int *dialect)
3744 {
3745   char c = *(p - 1);
3746 
3747   switch (c)
3748     {
3749     case '{':
3750       {
3751         int i;
3752 
3753         if (*dialect)
3754           output_operand_lossage ("nested assembly dialect alternatives");
3755         else
3756           *dialect = 1;
3757 
3758         /* If we want the first dialect, do nothing.  Otherwise, skip
3759            DIALECT_NUMBER of strings ending with '|'.  */
3760         for (i = 0; i < dialect_number; i++)
3761           {
3762             while (*p && *p != '}')
3763 	      {
3764 		if (*p == '|')
3765 		  {
3766 		    p++;
3767 		    break;
3768 		  }
3769 
3770 		/* Skip over any character after a percent sign.  */
3771 		if (*p == '%')
3772 		  p++;
3773 		if (*p)
3774 		  p++;
3775 	      }
3776 
3777             if (*p == '}')
3778 	      break;
3779           }
3780 
3781         if (*p == '\0')
3782           output_operand_lossage ("unterminated assembly dialect alternative");
3783       }
3784       break;
3785 
3786     case '|':
3787       if (*dialect)
3788         {
3789           /* Skip to close brace.  */
3790           do
3791             {
3792 	      if (*p == '\0')
3793 		{
3794 		  output_operand_lossage ("unterminated assembly dialect alternative");
3795 		  break;
3796 		}
3797 
3798 	      /* Skip over any character after a percent sign.  */
3799 	      if (*p == '%' && p[1])
3800 		{
3801 		  p += 2;
3802 		  continue;
3803 		}
3804 
3805 	      if (*p++ == '}')
3806 		break;
3807             }
3808           while (1);
3809 
3810           *dialect = 0;
3811         }
3812       else
3813         putc (c, asm_out_file);
3814       break;
3815 
3816     case '}':
3817       if (! *dialect)
3818         putc (c, asm_out_file);
3819       *dialect = 0;
3820       break;
3821     default:
3822       gcc_unreachable ();
3823     }
3824 
3825   return p;
3826 }
3827 #endif
3828 
3829 /* Output text from TEMPLATE to the assembler output file,
3830    obeying %-directions to substitute operands taken from
3831    the vector OPERANDS.
3832 
3833    %N (for N a digit) means print operand N in usual manner.
3834    %lN means require operand N to be a CODE_LABEL or LABEL_REF
3835       and print the label name with no punctuation.
3836    %cN means require operand N to be a constant
3837       and print the constant expression with no punctuation.
3838    %aN means expect operand N to be a memory address
3839       (not a memory reference!) and print a reference
3840       to that address.
3841    %nN means expect operand N to be a constant
3842       and print a constant expression for minus the value
3843       of the operand, with no other punctuation.  */
3844 
3845 void
output_asm_insn(const char * templ,rtx * operands)3846 output_asm_insn (const char *templ, rtx *operands)
3847 {
3848   const char *p;
3849   int c;
3850 #ifdef ASSEMBLER_DIALECT
3851   int dialect = 0;
3852 #endif
3853   int oporder[MAX_RECOG_OPERANDS];
3854   char opoutput[MAX_RECOG_OPERANDS];
3855   int ops = 0;
3856 
3857   /* An insn may return a null string template
3858      in a case where no assembler code is needed.  */
3859   if (*templ == 0)
3860     return;
3861 
3862   memset (opoutput, 0, sizeof opoutput);
3863   p = templ;
3864   putc ('\t', asm_out_file);
3865 
3866 #ifdef ASM_OUTPUT_OPCODE
3867   ASM_OUTPUT_OPCODE (asm_out_file, p);
3868 #endif
3869 
3870   while ((c = *p++))
3871     switch (c)
3872       {
3873       case '\n':
3874 	if (flag_verbose_asm)
3875 	  output_asm_operand_names (operands, oporder, ops);
3876 	if (flag_print_asm_name)
3877 	  output_asm_name ();
3878 
3879 	ops = 0;
3880 	memset (opoutput, 0, sizeof opoutput);
3881 
3882 	putc (c, asm_out_file);
3883 #ifdef ASM_OUTPUT_OPCODE
3884 	while ((c = *p) == '\t')
3885 	  {
3886 	    putc (c, asm_out_file);
3887 	    p++;
3888 	  }
3889 	ASM_OUTPUT_OPCODE (asm_out_file, p);
3890 #endif
3891 	break;
3892 
3893 #ifdef ASSEMBLER_DIALECT
3894       case '{':
3895       case '}':
3896       case '|':
3897 	p = do_assembler_dialects (p, &dialect);
3898 	break;
3899 #endif
3900 
3901       case '%':
3902 	/* %% outputs a single %.  %{, %} and %| print {, } and | respectively
3903 	   if ASSEMBLER_DIALECT defined and these characters have a special
3904 	   meaning as dialect delimiters.*/
3905 	if (*p == '%'
3906 #ifdef ASSEMBLER_DIALECT
3907 	    || *p == '{' || *p == '}' || *p == '|'
3908 #endif
3909 	    )
3910 	  {
3911 	    putc (*p, asm_out_file);
3912 	    p++;
3913 	  }
3914 	/* %= outputs a number which is unique to each insn in the entire
3915 	   compilation.  This is useful for making local labels that are
3916 	   referred to more than once in a given insn.  */
3917 	else if (*p == '=')
3918 	  {
3919 	    p++;
3920 	    fprintf (asm_out_file, "%d", insn_counter);
3921 	  }
3922 	/* % followed by a letter and some digits
3923 	   outputs an operand in a special way depending on the letter.
3924 	   Letters `acln' are implemented directly.
3925 	   Other letters are passed to `output_operand' so that
3926 	   the TARGET_PRINT_OPERAND hook can define them.  */
3927 	else if (ISALPHA (*p))
3928 	  {
3929 	    int letter = *p++;
3930 	    unsigned long opnum;
3931 	    char *endptr;
3932 
3933 	    opnum = strtoul (p, &endptr, 10);
3934 
3935 	    if (endptr == p)
3936 	      output_operand_lossage ("operand number missing "
3937 				      "after %%-letter");
3938 	    else if (this_is_asm_operands && opnum >= insn_noperands)
3939 	      output_operand_lossage ("operand number out of range");
3940 	    else if (letter == 'l')
3941 	      output_asm_label (operands[opnum]);
3942 	    else if (letter == 'a')
3943 	      output_address (VOIDmode, operands[opnum]);
3944 	    else if (letter == 'c')
3945 	      {
3946 		if (CONSTANT_ADDRESS_P (operands[opnum]))
3947 		  output_addr_const (asm_out_file, operands[opnum]);
3948 		else
3949 		  output_operand (operands[opnum], 'c');
3950 	      }
3951 	    else if (letter == 'n')
3952 	      {
3953 		if (CONST_INT_P (operands[opnum]))
3954 		  fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3955 			   - INTVAL (operands[opnum]));
3956 		else
3957 		  {
3958 		    putc ('-', asm_out_file);
3959 		    output_addr_const (asm_out_file, operands[opnum]);
3960 		  }
3961 	      }
3962 	    else
3963 	      output_operand (operands[opnum], letter);
3964 
3965 	    if (!opoutput[opnum])
3966 	      oporder[ops++] = opnum;
3967 	    opoutput[opnum] = 1;
3968 
3969 	    p = endptr;
3970 	    c = *p;
3971 	  }
3972 	/* % followed by a digit outputs an operand the default way.  */
3973 	else if (ISDIGIT (*p))
3974 	  {
3975 	    unsigned long opnum;
3976 	    char *endptr;
3977 
3978 	    opnum = strtoul (p, &endptr, 10);
3979 	    if (this_is_asm_operands && opnum >= insn_noperands)
3980 	      output_operand_lossage ("operand number out of range");
3981 	    else
3982 	      output_operand (operands[opnum], 0);
3983 
3984 	    if (!opoutput[opnum])
3985 	      oporder[ops++] = opnum;
3986 	    opoutput[opnum] = 1;
3987 
3988 	    p = endptr;
3989 	    c = *p;
3990 	  }
3991 	/* % followed by punctuation: output something for that
3992 	   punctuation character alone, with no operand.  The
3993 	   TARGET_PRINT_OPERAND hook decides what is actually done.  */
3994 	else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3995 	  output_operand (NULL_RTX, *p++);
3996 	else
3997 	  output_operand_lossage ("invalid %%-code");
3998 	break;
3999 
4000       default:
4001 	putc (c, asm_out_file);
4002       }
4003 
4004   /* Try to keep the asm a bit more readable.  */
4005   if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
4006     putc ('\t', asm_out_file);
4007 
4008   /* Write out the variable names for operands, if we know them.  */
4009   if (flag_verbose_asm)
4010     output_asm_operand_names (operands, oporder, ops);
4011   if (flag_print_asm_name)
4012     output_asm_name ();
4013 
4014   putc ('\n', asm_out_file);
4015 }
4016 
4017 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol.  */
4018 
4019 void
output_asm_label(rtx x)4020 output_asm_label (rtx x)
4021 {
4022   char buf[256];
4023 
4024   if (GET_CODE (x) == LABEL_REF)
4025     x = label_ref_label (x);
4026   if (LABEL_P (x)
4027       || (NOTE_P (x)
4028 	  && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
4029     ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4030   else
4031     output_operand_lossage ("'%%l' operand isn't a label");
4032 
4033   assemble_name (asm_out_file, buf);
4034 }
4035 
4036 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external.  */
4037 
4038 void
mark_symbol_refs_as_used(rtx x)4039 mark_symbol_refs_as_used (rtx x)
4040 {
4041   subrtx_iterator::array_type array;
4042   FOR_EACH_SUBRTX (iter, array, x, ALL)
4043     {
4044       const_rtx x = *iter;
4045       if (GET_CODE (x) == SYMBOL_REF)
4046 	if (tree t = SYMBOL_REF_DECL (x))
4047 	  assemble_external (t);
4048     }
4049 }
4050 
4051 /* Print operand X using machine-dependent assembler syntax.
4052    CODE is a non-digit that preceded the operand-number in the % spec,
4053    such as 'z' if the spec was `%z3'.  CODE is 0 if there was no char
4054    between the % and the digits.
4055    When CODE is a non-letter, X is 0.
4056 
4057    The meanings of the letters are machine-dependent and controlled
4058    by TARGET_PRINT_OPERAND.  */
4059 
4060 void
output_operand(rtx x,int code ATTRIBUTE_UNUSED)4061 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
4062 {
4063   if (x && GET_CODE (x) == SUBREG)
4064     x = alter_subreg (&x, true);
4065 
4066   /* X must not be a pseudo reg.  */
4067   if (!targetm.no_register_allocation)
4068     gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
4069 
4070   targetm.asm_out.print_operand (asm_out_file, x, code);
4071 
4072   if (x == NULL_RTX)
4073     return;
4074 
4075   mark_symbol_refs_as_used (x);
4076 }
4077 
4078 /* Print a memory reference operand for address X using
4079    machine-dependent assembler syntax.  */
4080 
4081 void
output_address(machine_mode mode,rtx x)4082 output_address (machine_mode mode, rtx x)
4083 {
4084   bool changed = false;
4085   walk_alter_subreg (&x, &changed);
4086   targetm.asm_out.print_operand_address (asm_out_file, mode, x);
4087 }
4088 
4089 /* Print an integer constant expression in assembler syntax.
4090    Addition and subtraction are the only arithmetic
4091    that may appear in these expressions.  */
4092 
4093 void
output_addr_const(FILE * file,rtx x)4094 output_addr_const (FILE *file, rtx x)
4095 {
4096   char buf[256];
4097 
4098  restart:
4099   switch (GET_CODE (x))
4100     {
4101     case PC:
4102       putc ('.', file);
4103       break;
4104 
4105     case SYMBOL_REF:
4106       if (SYMBOL_REF_DECL (x))
4107 	assemble_external (SYMBOL_REF_DECL (x));
4108 #ifdef ASM_OUTPUT_SYMBOL_REF
4109       ASM_OUTPUT_SYMBOL_REF (file, x);
4110 #else
4111       assemble_name (file, XSTR (x, 0));
4112 #endif
4113       break;
4114 
4115     case LABEL_REF:
4116       x = label_ref_label (x);
4117       /* Fall through.  */
4118     case CODE_LABEL:
4119       ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4120 #ifdef ASM_OUTPUT_LABEL_REF
4121       ASM_OUTPUT_LABEL_REF (file, buf);
4122 #else
4123       assemble_name (file, buf);
4124 #endif
4125       break;
4126 
4127     case CONST_INT:
4128       fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4129       break;
4130 
4131     case CONST:
4132       /* This used to output parentheses around the expression,
4133 	 but that does not work on the 386 (either ATT or BSD assembler).  */
4134       output_addr_const (file, XEXP (x, 0));
4135       break;
4136 
4137     case CONST_WIDE_INT:
4138       /* We do not know the mode here so we have to use a round about
4139 	 way to build a wide-int to get it printed properly.  */
4140       {
4141 	wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4142 					   CONST_WIDE_INT_NUNITS (x),
4143 					   CONST_WIDE_INT_NUNITS (x)
4144 					   * HOST_BITS_PER_WIDE_INT,
4145 					   false);
4146 	print_decs (w, file);
4147       }
4148       break;
4149 
4150     case CONST_DOUBLE:
4151       if (CONST_DOUBLE_AS_INT_P (x))
4152 	{
4153 	  /* We can use %d if the number is one word and positive.  */
4154 	  if (CONST_DOUBLE_HIGH (x))
4155 	    fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4156 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4157 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4158 	  else if (CONST_DOUBLE_LOW (x) < 0)
4159 	    fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4160 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4161 	  else
4162 	    fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4163 	}
4164       else
4165 	/* We can't handle floating point constants;
4166 	   PRINT_OPERAND must handle them.  */
4167 	output_operand_lossage ("floating constant misused");
4168       break;
4169 
4170     case CONST_FIXED:
4171       fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4172       break;
4173 
4174     case PLUS:
4175       /* Some assemblers need integer constants to appear last (eg masm).  */
4176       if (CONST_INT_P (XEXP (x, 0)))
4177 	{
4178 	  output_addr_const (file, XEXP (x, 1));
4179 	  if (INTVAL (XEXP (x, 0)) >= 0)
4180 	    fprintf (file, "+");
4181 	  output_addr_const (file, XEXP (x, 0));
4182 	}
4183       else
4184 	{
4185 	  output_addr_const (file, XEXP (x, 0));
4186 	  if (!CONST_INT_P (XEXP (x, 1))
4187 	      || INTVAL (XEXP (x, 1)) >= 0)
4188 	    fprintf (file, "+");
4189 	  output_addr_const (file, XEXP (x, 1));
4190 	}
4191       break;
4192 
4193     case MINUS:
4194       /* Avoid outputting things like x-x or x+5-x,
4195 	 since some assemblers can't handle that.  */
4196       x = simplify_subtraction (x);
4197       if (GET_CODE (x) != MINUS)
4198 	goto restart;
4199 
4200       output_addr_const (file, XEXP (x, 0));
4201       fprintf (file, "-");
4202       if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4203 	  || GET_CODE (XEXP (x, 1)) == PC
4204 	  || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4205 	output_addr_const (file, XEXP (x, 1));
4206       else
4207 	{
4208 	  fputs (targetm.asm_out.open_paren, file);
4209 	  output_addr_const (file, XEXP (x, 1));
4210 	  fputs (targetm.asm_out.close_paren, file);
4211 	}
4212       break;
4213 
4214     case ZERO_EXTEND:
4215     case SIGN_EXTEND:
4216     case SUBREG:
4217     case TRUNCATE:
4218       output_addr_const (file, XEXP (x, 0));
4219       break;
4220 
4221     default:
4222       if (targetm.asm_out.output_addr_const_extra (file, x))
4223 	break;
4224 
4225       output_operand_lossage ("invalid expression as operand");
4226     }
4227 }
4228 
4229 /* Output a quoted string.  */
4230 
4231 void
output_quoted_string(FILE * asm_file,const char * string)4232 output_quoted_string (FILE *asm_file, const char *string)
4233 {
4234 #ifdef OUTPUT_QUOTED_STRING
4235   OUTPUT_QUOTED_STRING (asm_file, string);
4236 #else
4237   char c;
4238 
4239   putc ('\"', asm_file);
4240   while ((c = *string++) != 0)
4241     {
4242       if (ISPRINT (c))
4243 	{
4244 	  if (c == '\"' || c == '\\')
4245 	    putc ('\\', asm_file);
4246 	  putc (c, asm_file);
4247 	}
4248       else
4249 	fprintf (asm_file, "\\%03o", (unsigned char) c);
4250     }
4251   putc ('\"', asm_file);
4252 #endif
4253 }
4254 
4255 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4256 
4257 void
fprint_whex(FILE * f,unsigned HOST_WIDE_INT value)4258 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4259 {
4260   char buf[2 + CHAR_BIT * sizeof (value) / 4];
4261   if (value == 0)
4262     putc ('0', f);
4263   else
4264     {
4265       char *p = buf + sizeof (buf);
4266       do
4267         *--p = "0123456789abcdef"[value % 16];
4268       while ((value /= 16) != 0);
4269       *--p = 'x';
4270       *--p = '0';
4271       fwrite (p, 1, buf + sizeof (buf) - p, f);
4272     }
4273 }
4274 
4275 /* Internal function that prints an unsigned long in decimal in reverse.
4276    The output string IS NOT null-terminated. */
4277 
4278 static int
sprint_ul_rev(char * s,unsigned long value)4279 sprint_ul_rev (char *s, unsigned long value)
4280 {
4281   int i = 0;
4282   do
4283     {
4284       s[i] = "0123456789"[value % 10];
4285       value /= 10;
4286       i++;
4287       /* alternate version, without modulo */
4288       /* oldval = value; */
4289       /* value /= 10; */
4290       /* s[i] = "0123456789" [oldval - 10*value]; */
4291       /* i++ */
4292     }
4293   while (value != 0);
4294   return i;
4295 }
4296 
4297 /* Write an unsigned long as decimal to a file, fast. */
4298 
4299 void
fprint_ul(FILE * f,unsigned long value)4300 fprint_ul (FILE *f, unsigned long value)
4301 {
4302   /* python says: len(str(2**64)) == 20 */
4303   char s[20];
4304   int i;
4305 
4306   i = sprint_ul_rev (s, value);
4307 
4308   /* It's probably too small to bother with string reversal and fputs. */
4309   do
4310     {
4311       i--;
4312       putc (s[i], f);
4313     }
4314   while (i != 0);
4315 }
4316 
4317 /* Write an unsigned long as decimal to a string, fast.
4318    s must be wide enough to not overflow, at least 21 chars.
4319    Returns the length of the string (without terminating '\0'). */
4320 
4321 int
sprint_ul(char * s,unsigned long value)4322 sprint_ul (char *s, unsigned long value)
4323 {
4324   int len = sprint_ul_rev (s, value);
4325   s[len] = '\0';
4326 
4327   std::reverse (s, s + len);
4328   return len;
4329 }
4330 
4331 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4332    %R prints the value of REGISTER_PREFIX.
4333    %L prints the value of LOCAL_LABEL_PREFIX.
4334    %U prints the value of USER_LABEL_PREFIX.
4335    %I prints the value of IMMEDIATE_PREFIX.
4336    %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4337    Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4338 
4339    We handle alternate assembler dialects here, just like output_asm_insn.  */
4340 
4341 void
asm_fprintf(FILE * file,const char * p,...)4342 asm_fprintf (FILE *file, const char *p, ...)
4343 {
4344   char buf[10];
4345   char *q, c;
4346 #ifdef ASSEMBLER_DIALECT
4347   int dialect = 0;
4348 #endif
4349   va_list argptr;
4350 
4351   va_start (argptr, p);
4352 
4353   buf[0] = '%';
4354 
4355   while ((c = *p++))
4356     switch (c)
4357       {
4358 #ifdef ASSEMBLER_DIALECT
4359       case '{':
4360       case '}':
4361       case '|':
4362 	p = do_assembler_dialects (p, &dialect);
4363 	break;
4364 #endif
4365 
4366       case '%':
4367 	c = *p++;
4368 	q = &buf[1];
4369 	while (strchr ("-+ #0", c))
4370 	  {
4371 	    *q++ = c;
4372 	    c = *p++;
4373 	  }
4374 	while (ISDIGIT (c) || c == '.')
4375 	  {
4376 	    *q++ = c;
4377 	    c = *p++;
4378 	  }
4379 	switch (c)
4380 	  {
4381 	  case '%':
4382 	    putc ('%', file);
4383 	    break;
4384 
4385 	  case 'd':  case 'i':  case 'u':
4386 	  case 'x':  case 'X':  case 'o':
4387 	  case 'c':
4388 	    *q++ = c;
4389 	    *q = 0;
4390 	    fprintf (file, buf, va_arg (argptr, int));
4391 	    break;
4392 
4393 	  case 'w':
4394 	    /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4395 	       'o' cases, but we do not check for those cases.  It
4396 	       means that the value is a HOST_WIDE_INT, which may be
4397 	       either `long' or `long long'.  */
4398 	    memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4399 	    q += strlen (HOST_WIDE_INT_PRINT);
4400 	    *q++ = *p++;
4401 	    *q = 0;
4402 	    fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4403 	    break;
4404 
4405 	  case 'l':
4406 	    *q++ = c;
4407 #ifdef HAVE_LONG_LONG
4408 	    if (*p == 'l')
4409 	      {
4410 		*q++ = *p++;
4411 		*q++ = *p++;
4412 		*q = 0;
4413 		fprintf (file, buf, va_arg (argptr, long long));
4414 	      }
4415 	    else
4416 #endif
4417 	      {
4418 		*q++ = *p++;
4419 		*q = 0;
4420 		fprintf (file, buf, va_arg (argptr, long));
4421 	      }
4422 
4423 	    break;
4424 
4425 	  case 's':
4426 	    *q++ = c;
4427 	    *q = 0;
4428 	    fprintf (file, buf, va_arg (argptr, char *));
4429 	    break;
4430 
4431 	  case 'O':
4432 #ifdef ASM_OUTPUT_OPCODE
4433 	    ASM_OUTPUT_OPCODE (asm_out_file, p);
4434 #endif
4435 	    break;
4436 
4437 	  case 'R':
4438 #ifdef REGISTER_PREFIX
4439 	    fprintf (file, "%s", REGISTER_PREFIX);
4440 #endif
4441 	    break;
4442 
4443 	  case 'I':
4444 #ifdef IMMEDIATE_PREFIX
4445 	    fprintf (file, "%s", IMMEDIATE_PREFIX);
4446 #endif
4447 	    break;
4448 
4449 	  case 'L':
4450 #ifdef LOCAL_LABEL_PREFIX
4451 	    fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4452 #endif
4453 	    break;
4454 
4455 	  case 'U':
4456 	    fputs (user_label_prefix, file);
4457 	    break;
4458 
4459 #ifdef ASM_FPRINTF_EXTENSIONS
4460 	    /* Uppercase letters are reserved for general use by asm_fprintf
4461 	       and so are not available to target specific code.  In order to
4462 	       prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4463 	       they are defined here.  As they get turned into real extensions
4464 	       to asm_fprintf they should be removed from this list.  */
4465 	  case 'A': case 'B': case 'C': case 'D': case 'E':
4466 	  case 'F': case 'G': case 'H': case 'J': case 'K':
4467 	  case 'M': case 'N': case 'P': case 'Q': case 'S':
4468 	  case 'T': case 'V': case 'W': case 'Y': case 'Z':
4469 	    break;
4470 
4471 	  ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4472 #endif
4473 	  default:
4474 	    gcc_unreachable ();
4475 	  }
4476 	break;
4477 
4478       default:
4479 	putc (c, file);
4480       }
4481   va_end (argptr);
4482 }
4483 
4484 /* Return nonzero if this function has no function calls.  */
4485 
4486 int
leaf_function_p(void)4487 leaf_function_p (void)
4488 {
4489   rtx_insn *insn;
4490 
4491   /* Ensure we walk the entire function body.  */
4492   gcc_assert (!in_sequence_p ());
4493 
4494   /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4495      functions even if they call mcount.  */
4496   if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4497     return 0;
4498 
4499   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4500     {
4501       if (CALL_P (insn)
4502 	  && ! SIBLING_CALL_P (insn))
4503 	return 0;
4504       if (NONJUMP_INSN_P (insn)
4505 	  && GET_CODE (PATTERN (insn)) == SEQUENCE
4506 	  && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4507 	  && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4508 	return 0;
4509     }
4510 
4511   return 1;
4512 }
4513 
4514 /* Return 1 if branch is a forward branch.
4515    Uses insn_shuid array, so it works only in the final pass.  May be used by
4516    output templates to customary add branch prediction hints.
4517  */
4518 int
final_forward_branch_p(rtx_insn * insn)4519 final_forward_branch_p (rtx_insn *insn)
4520 {
4521   int insn_id, label_id;
4522 
4523   gcc_assert (uid_shuid);
4524   insn_id = INSN_SHUID (insn);
4525   label_id = INSN_SHUID (JUMP_LABEL (insn));
4526   /* We've hit some insns that does not have id information available.  */
4527   gcc_assert (insn_id && label_id);
4528   return insn_id < label_id;
4529 }
4530 
4531 /* On some machines, a function with no call insns
4532    can run faster if it doesn't create its own register window.
4533    When output, the leaf function should use only the "output"
4534    registers.  Ordinarily, the function would be compiled to use
4535    the "input" registers to find its arguments; it is a candidate
4536    for leaf treatment if it uses only the "input" registers.
4537    Leaf function treatment means renumbering so the function
4538    uses the "output" registers instead.  */
4539 
4540 #ifdef LEAF_REGISTERS
4541 
4542 /* Return 1 if this function uses only the registers that can be
4543    safely renumbered.  */
4544 
4545 int
only_leaf_regs_used(void)4546 only_leaf_regs_used (void)
4547 {
4548   int i;
4549   const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4550 
4551   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4552     if ((df_regs_ever_live_p (i) || global_regs[i])
4553 	&& ! permitted_reg_in_leaf_functions[i])
4554       return 0;
4555 
4556   if (crtl->uses_pic_offset_table
4557       && pic_offset_table_rtx != 0
4558       && REG_P (pic_offset_table_rtx)
4559       && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4560     return 0;
4561 
4562   return 1;
4563 }
4564 
4565 /* Scan all instructions and renumber all registers into those
4566    available in leaf functions.  */
4567 
4568 static void
leaf_renumber_regs(rtx_insn * first)4569 leaf_renumber_regs (rtx_insn *first)
4570 {
4571   rtx_insn *insn;
4572 
4573   /* Renumber only the actual patterns.
4574      The reg-notes can contain frame pointer refs,
4575      and renumbering them could crash, and should not be needed.  */
4576   for (insn = first; insn; insn = NEXT_INSN (insn))
4577     if (INSN_P (insn))
4578       leaf_renumber_regs_insn (PATTERN (insn));
4579 }
4580 
4581 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4582    available in leaf functions.  */
4583 
4584 void
leaf_renumber_regs_insn(rtx in_rtx)4585 leaf_renumber_regs_insn (rtx in_rtx)
4586 {
4587   int i, j;
4588   const char *format_ptr;
4589 
4590   if (in_rtx == 0)
4591     return;
4592 
4593   /* Renumber all input-registers into output-registers.
4594      renumbered_regs would be 1 for an output-register;
4595      they  */
4596 
4597   if (REG_P (in_rtx))
4598     {
4599       int newreg;
4600 
4601       /* Don't renumber the same reg twice.  */
4602       if (in_rtx->used)
4603 	return;
4604 
4605       newreg = REGNO (in_rtx);
4606       /* Don't try to renumber pseudo regs.  It is possible for a pseudo reg
4607 	 to reach here as part of a REG_NOTE.  */
4608       if (newreg >= FIRST_PSEUDO_REGISTER)
4609 	{
4610 	  in_rtx->used = 1;
4611 	  return;
4612 	}
4613       newreg = LEAF_REG_REMAP (newreg);
4614       gcc_assert (newreg >= 0);
4615       df_set_regs_ever_live (REGNO (in_rtx), false);
4616       df_set_regs_ever_live (newreg, true);
4617       SET_REGNO (in_rtx, newreg);
4618       in_rtx->used = 1;
4619       return;
4620     }
4621 
4622   if (INSN_P (in_rtx))
4623     {
4624       /* Inside a SEQUENCE, we find insns.
4625 	 Renumber just the patterns of these insns,
4626 	 just as we do for the top-level insns.  */
4627       leaf_renumber_regs_insn (PATTERN (in_rtx));
4628       return;
4629     }
4630 
4631   format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4632 
4633   for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4634     switch (*format_ptr++)
4635       {
4636       case 'e':
4637 	leaf_renumber_regs_insn (XEXP (in_rtx, i));
4638 	break;
4639 
4640       case 'E':
4641 	if (XVEC (in_rtx, i) != NULL)
4642 	  for (j = 0; j < XVECLEN (in_rtx, i); j++)
4643 	    leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4644 	break;
4645 
4646       case 'S':
4647       case 's':
4648       case '0':
4649       case 'i':
4650       case 'w':
4651       case 'p':
4652       case 'n':
4653       case 'u':
4654 	break;
4655 
4656       default:
4657 	gcc_unreachable ();
4658       }
4659 }
4660 #endif
4661 
4662 /* Turn the RTL into assembly.  */
4663 static unsigned int
rest_of_handle_final(void)4664 rest_of_handle_final (void)
4665 {
4666   const char *fnname = get_fnname_from_decl (current_function_decl);
4667 
4668   /* Turn debug markers into notes if the var-tracking pass has not
4669      been invoked.  */
4670   if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4671     delete_vta_debug_insns (false);
4672 
4673   assemble_start_function (current_function_decl, fnname);
4674   rtx_insn *first = get_insns ();
4675   int seen = 0;
4676   final_start_function_1 (&first, asm_out_file, &seen, optimize);
4677   final_1 (first, asm_out_file, seen, optimize);
4678   if (flag_ipa_ra
4679       && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl))
4680       /* Functions with naked attributes are supported only with basic asm
4681 	 statements in the body, thus for supported use cases the information
4682 	 on clobbered registers is not available.  */
4683       && !lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)))
4684     collect_fn_hard_reg_usage ();
4685   final_end_function ();
4686 
4687   /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4688      directive that closes the procedure descriptor.  Similarly, for x64 SEH.
4689      Otherwise it's not strictly necessary, but it doesn't hurt either.  */
4690   output_function_exception_table (crtl->has_bb_partition ? 1 : 0);
4691 
4692   assemble_end_function (current_function_decl, fnname);
4693 
4694   /* Free up reg info memory.  */
4695   free_reg_info ();
4696 
4697   if (! quiet_flag)
4698     fflush (asm_out_file);
4699 
4700   /* Write DBX symbols if requested.  */
4701 
4702   /* Note that for those inline functions where we don't initially
4703      know for certain that we will be generating an out-of-line copy,
4704      the first invocation of this routine (rest_of_compilation) will
4705      skip over this code by doing a `goto exit_rest_of_compilation;'.
4706      Later on, wrapup_global_declarations will (indirectly) call
4707      rest_of_compilation again for those inline functions that need
4708      to have out-of-line copies generated.  During that call, we
4709      *will* be routed past here.  */
4710 
4711   timevar_push (TV_SYMOUT);
4712   if (!DECL_IGNORED_P (current_function_decl))
4713     debug_hooks->function_decl (current_function_decl);
4714   timevar_pop (TV_SYMOUT);
4715 
4716   /* Release the blocks that are linked to DECL_INITIAL() to free the memory.  */
4717   DECL_INITIAL (current_function_decl) = error_mark_node;
4718 
4719   if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4720       && targetm.have_ctors_dtors)
4721     targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4722 				 decl_init_priority_lookup
4723 				   (current_function_decl));
4724   if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4725       && targetm.have_ctors_dtors)
4726     targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4727 				decl_fini_priority_lookup
4728 				  (current_function_decl));
4729   return 0;
4730 }
4731 
4732 namespace {
4733 
4734 const pass_data pass_data_final =
4735 {
4736   RTL_PASS, /* type */
4737   "final", /* name */
4738   OPTGROUP_NONE, /* optinfo_flags */
4739   TV_FINAL, /* tv_id */
4740   0, /* properties_required */
4741   0, /* properties_provided */
4742   0, /* properties_destroyed */
4743   0, /* todo_flags_start */
4744   0, /* todo_flags_finish */
4745 };
4746 
4747 class pass_final : public rtl_opt_pass
4748 {
4749 public:
pass_final(gcc::context * ctxt)4750   pass_final (gcc::context *ctxt)
4751     : rtl_opt_pass (pass_data_final, ctxt)
4752   {}
4753 
4754   /* opt_pass methods: */
execute(function *)4755   virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4756 
4757 }; // class pass_final
4758 
4759 } // anon namespace
4760 
4761 rtl_opt_pass *
make_pass_final(gcc::context * ctxt)4762 make_pass_final (gcc::context *ctxt)
4763 {
4764   return new pass_final (ctxt);
4765 }
4766 
4767 
4768 static unsigned int
rest_of_handle_shorten_branches(void)4769 rest_of_handle_shorten_branches (void)
4770 {
4771   /* Shorten branches.  */
4772   shorten_branches (get_insns ());
4773   return 0;
4774 }
4775 
4776 namespace {
4777 
4778 const pass_data pass_data_shorten_branches =
4779 {
4780   RTL_PASS, /* type */
4781   "shorten", /* name */
4782   OPTGROUP_NONE, /* optinfo_flags */
4783   TV_SHORTEN_BRANCH, /* tv_id */
4784   0, /* properties_required */
4785   0, /* properties_provided */
4786   0, /* properties_destroyed */
4787   0, /* todo_flags_start */
4788   0, /* todo_flags_finish */
4789 };
4790 
4791 class pass_shorten_branches : public rtl_opt_pass
4792 {
4793 public:
pass_shorten_branches(gcc::context * ctxt)4794   pass_shorten_branches (gcc::context *ctxt)
4795     : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4796   {}
4797 
4798   /* opt_pass methods: */
execute(function *)4799   virtual unsigned int execute (function *)
4800     {
4801       return rest_of_handle_shorten_branches ();
4802     }
4803 
4804 }; // class pass_shorten_branches
4805 
4806 } // anon namespace
4807 
4808 rtl_opt_pass *
make_pass_shorten_branches(gcc::context * ctxt)4809 make_pass_shorten_branches (gcc::context *ctxt)
4810 {
4811   return new pass_shorten_branches (ctxt);
4812 }
4813 
4814 
4815 static unsigned int
rest_of_clean_state(void)4816 rest_of_clean_state (void)
4817 {
4818   rtx_insn *insn, *next;
4819   FILE *final_output = NULL;
4820   int save_unnumbered = flag_dump_unnumbered;
4821   int save_noaddr = flag_dump_noaddr;
4822 
4823   if (flag_dump_final_insns)
4824     {
4825       final_output = fopen (flag_dump_final_insns, "a");
4826       if (!final_output)
4827 	{
4828 	  error ("could not open final insn dump file %qs: %m",
4829 		 flag_dump_final_insns);
4830 	  flag_dump_final_insns = NULL;
4831 	}
4832       else
4833 	{
4834 	  flag_dump_noaddr = flag_dump_unnumbered = 1;
4835 	  if (flag_compare_debug_opt || flag_compare_debug)
4836 	    dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4837 	  dump_function_header (final_output, current_function_decl,
4838 				dump_flags);
4839 	  final_insns_dump_p = true;
4840 
4841 	  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4842 	    if (LABEL_P (insn))
4843 	      INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4844 	    else
4845 	      {
4846 		if (NOTE_P (insn))
4847 		  set_block_for_insn (insn, NULL);
4848 		INSN_UID (insn) = 0;
4849 	      }
4850 	}
4851     }
4852 
4853   /* It is very important to decompose the RTL instruction chain here:
4854      debug information keeps pointing into CODE_LABEL insns inside the function
4855      body.  If these remain pointing to the other insns, we end up preserving
4856      whole RTL chain and attached detailed debug info in memory.  */
4857   for (insn = get_insns (); insn; insn = next)
4858     {
4859       next = NEXT_INSN (insn);
4860       SET_NEXT_INSN (insn) = NULL;
4861       SET_PREV_INSN (insn) = NULL;
4862 
4863       rtx_insn *call_insn = insn;
4864       if (NONJUMP_INSN_P (call_insn)
4865 	  && GET_CODE (PATTERN (call_insn)) == SEQUENCE)
4866 	{
4867 	  rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (call_insn));
4868 	  call_insn = seq->insn (0);
4869 	}
4870       if (CALL_P (call_insn))
4871 	{
4872 	  rtx note
4873 	    = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
4874 	  if (note)
4875 	    remove_note (call_insn, note);
4876 	}
4877 
4878       if (final_output
4879 	  && (!NOTE_P (insn)
4880 	      || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4881 		  && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4882 		  && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4883 		  && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4884 		  && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4885 		  && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4886 	print_rtl_single (final_output, insn);
4887     }
4888 
4889   if (final_output)
4890     {
4891       flag_dump_noaddr = save_noaddr;
4892       flag_dump_unnumbered = save_unnumbered;
4893       final_insns_dump_p = false;
4894 
4895       if (fclose (final_output))
4896 	{
4897 	  error ("could not close final insn dump file %qs: %m",
4898 		 flag_dump_final_insns);
4899 	  flag_dump_final_insns = NULL;
4900 	}
4901     }
4902 
4903   flag_rerun_cse_after_global_opts = 0;
4904   reload_completed = 0;
4905   epilogue_completed = 0;
4906 #ifdef STACK_REGS
4907   regstack_completed = 0;
4908 #endif
4909 
4910   /* Clear out the insn_length contents now that they are no
4911      longer valid.  */
4912   init_insn_lengths ();
4913 
4914   /* Show no temporary slots allocated.  */
4915   init_temp_slots ();
4916 
4917   free_bb_for_insn ();
4918 
4919   if (cfun->gimple_df)
4920     delete_tree_ssa (cfun);
4921 
4922   /* We can reduce stack alignment on call site only when we are sure that
4923      the function body just produced will be actually used in the final
4924      executable.  */
4925   if (decl_binds_to_current_def_p (current_function_decl))
4926     {
4927       unsigned int pref = crtl->preferred_stack_boundary;
4928       if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4929         pref = crtl->stack_alignment_needed;
4930       cgraph_node::rtl_info (current_function_decl)
4931 	->preferred_incoming_stack_boundary = pref;
4932     }
4933 
4934   /* Make sure volatile mem refs aren't considered valid operands for
4935      arithmetic insns.  We must call this here if this is a nested inline
4936      function, since the above code leaves us in the init_recog state,
4937      and the function context push/pop code does not save/restore volatile_ok.
4938 
4939      ??? Maybe it isn't necessary for expand_start_function to call this
4940      anymore if we do it here?  */
4941 
4942   init_recog_no_volatile ();
4943 
4944   /* We're done with this function.  Free up memory if we can.  */
4945   free_after_parsing (cfun);
4946   free_after_compilation (cfun);
4947   return 0;
4948 }
4949 
4950 namespace {
4951 
4952 const pass_data pass_data_clean_state =
4953 {
4954   RTL_PASS, /* type */
4955   "*clean_state", /* name */
4956   OPTGROUP_NONE, /* optinfo_flags */
4957   TV_FINAL, /* tv_id */
4958   0, /* properties_required */
4959   0, /* properties_provided */
4960   PROP_rtl, /* properties_destroyed */
4961   0, /* todo_flags_start */
4962   0, /* todo_flags_finish */
4963 };
4964 
4965 class pass_clean_state : public rtl_opt_pass
4966 {
4967 public:
pass_clean_state(gcc::context * ctxt)4968   pass_clean_state (gcc::context *ctxt)
4969     : rtl_opt_pass (pass_data_clean_state, ctxt)
4970   {}
4971 
4972   /* opt_pass methods: */
execute(function *)4973   virtual unsigned int execute (function *)
4974     {
4975       return rest_of_clean_state ();
4976     }
4977 
4978 }; // class pass_clean_state
4979 
4980 } // anon namespace
4981 
4982 rtl_opt_pass *
make_pass_clean_state(gcc::context * ctxt)4983 make_pass_clean_state (gcc::context *ctxt)
4984 {
4985   return new pass_clean_state (ctxt);
4986 }
4987 
4988 /* Return true if INSN is a call to the current function.  */
4989 
4990 static bool
self_recursive_call_p(rtx_insn * insn)4991 self_recursive_call_p (rtx_insn *insn)
4992 {
4993   tree fndecl = get_call_fndecl (insn);
4994   return (fndecl == current_function_decl
4995 	  && decl_binds_to_current_def_p (fndecl));
4996 }
4997 
4998 /* Collect hard register usage for the current function.  */
4999 
5000 static void
collect_fn_hard_reg_usage(void)5001 collect_fn_hard_reg_usage (void)
5002 {
5003   rtx_insn *insn;
5004 #ifdef STACK_REGS
5005   int i;
5006 #endif
5007   struct cgraph_rtl_info *node;
5008   HARD_REG_SET function_used_regs;
5009 
5010   /* ??? To be removed when all the ports have been fixed.  */
5011   if (!targetm.call_fusage_contains_non_callee_clobbers)
5012     return;
5013 
5014   CLEAR_HARD_REG_SET (function_used_regs);
5015 
5016   for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
5017     {
5018       HARD_REG_SET insn_used_regs;
5019 
5020       if (!NONDEBUG_INSN_P (insn))
5021 	continue;
5022 
5023       if (CALL_P (insn)
5024 	  && !self_recursive_call_p (insn))
5025 	{
5026 	  if (!get_call_reg_set_usage (insn, &insn_used_regs,
5027 				       call_used_reg_set))
5028 	    return;
5029 
5030 	  IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5031 	}
5032 
5033       find_all_hard_reg_sets (insn, &insn_used_regs, false);
5034       IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5035     }
5036 
5037   /* Be conservative - mark fixed and global registers as used.  */
5038   IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
5039 
5040 #ifdef STACK_REGS
5041   /* Handle STACK_REGS conservatively, since the df-framework does not
5042      provide accurate information for them.  */
5043 
5044   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
5045     SET_HARD_REG_BIT (function_used_regs, i);
5046 #endif
5047 
5048   /* The information we have gathered is only interesting if it exposes a
5049      register from the call_used_regs that is not used in this function.  */
5050   if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
5051     return;
5052 
5053   node = cgraph_node::rtl_info (current_function_decl);
5054   gcc_assert (node != NULL);
5055 
5056   COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
5057   node->function_used_regs_valid = 1;
5058 }
5059 
5060 /* Get the declaration of the function called by INSN.  */
5061 
5062 static tree
get_call_fndecl(rtx_insn * insn)5063 get_call_fndecl (rtx_insn *insn)
5064 {
5065   rtx note, datum;
5066 
5067   note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
5068   if (note == NULL_RTX)
5069     return NULL_TREE;
5070 
5071   datum = XEXP (note, 0);
5072   if (datum != NULL_RTX)
5073     return SYMBOL_REF_DECL (datum);
5074 
5075   return NULL_TREE;
5076 }
5077 
5078 /* Return the cgraph_rtl_info of the function called by INSN.  Returns NULL for
5079    call targets that can be overwritten.  */
5080 
5081 static struct cgraph_rtl_info *
get_call_cgraph_rtl_info(rtx_insn * insn)5082 get_call_cgraph_rtl_info (rtx_insn *insn)
5083 {
5084   tree fndecl;
5085 
5086   if (insn == NULL_RTX)
5087     return NULL;
5088 
5089   fndecl = get_call_fndecl (insn);
5090   if (fndecl == NULL_TREE
5091       || !decl_binds_to_current_def_p (fndecl))
5092     return NULL;
5093 
5094   return cgraph_node::rtl_info (fndecl);
5095 }
5096 
5097 /* Find hard registers used by function call instruction INSN, and return them
5098    in REG_SET.  Return DEFAULT_SET in REG_SET if not found.  */
5099 
5100 bool
get_call_reg_set_usage(rtx_insn * insn,HARD_REG_SET * reg_set,HARD_REG_SET default_set)5101 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
5102 			HARD_REG_SET default_set)
5103 {
5104   if (flag_ipa_ra)
5105     {
5106       struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
5107       if (node != NULL
5108 	  && node->function_used_regs_valid)
5109 	{
5110 	  COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
5111 	  AND_HARD_REG_SET (*reg_set, default_set);
5112 	  return true;
5113 	}
5114     }
5115 
5116   COPY_HARD_REG_SET (*reg_set, default_set);
5117   return false;
5118 }
5119