1 /* SSA Dominator optimizations for trees
2    Copyright (C) 2001-2018 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "cfgloop.h"
33 #include "gimple-fold.h"
34 #include "tree-eh.h"
35 #include "tree-inline.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-into-ssa.h"
39 #include "domwalk.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-ssa-threadupdate.h"
42 #include "params.h"
43 #include "tree-ssa-scopedtables.h"
44 #include "tree-ssa-threadedge.h"
45 #include "tree-ssa-dom.h"
46 #include "gimplify.h"
47 #include "tree-cfgcleanup.h"
48 #include "dbgcnt.h"
49 #include "alloc-pool.h"
50 #include "tree-vrp.h"
51 #include "vr-values.h"
52 #include "gimple-ssa-evrp-analyze.h"
53 
54 /* This file implements optimizations on the dominator tree.  */
55 
56 /* Structure for recording edge equivalences.
57 
58    Computing and storing the edge equivalences instead of creating
59    them on-demand can save significant amounts of time, particularly
60    for pathological cases involving switch statements.
61 
62    These structures live for a single iteration of the dominator
63    optimizer in the edge's AUX field.  At the end of an iteration we
64    free each of these structures.  */
65 class edge_info
66 {
67  public:
68   typedef std::pair <tree, tree> equiv_pair;
69   edge_info (edge);
70   ~edge_info ();
71 
72   /* Record a simple LHS = RHS equivalence.  This may trigger
73      calls to derive_equivalences.  */
74   void record_simple_equiv (tree, tree);
75 
76   /* If traversing this edge creates simple equivalences, we store
77      them as LHS/RHS pairs within this vector.  */
78   vec<equiv_pair> simple_equivalences;
79 
80   /* Traversing an edge may also indicate one or more particular conditions
81      are true or false.  */
82   vec<cond_equivalence> cond_equivalences;
83 
84  private:
85   /* Derive equivalences by walking the use-def chains.  */
86   void derive_equivalences (tree, tree, int);
87 };
88 
89 /* Track whether or not we have changed the control flow graph.  */
90 static bool cfg_altered;
91 
92 /* Bitmap of blocks that have had EH statements cleaned.  We should
93    remove their dead edges eventually.  */
94 static bitmap need_eh_cleanup;
95 static vec<gimple *> need_noreturn_fixup;
96 
97 /* Statistics for dominator optimizations.  */
98 struct opt_stats_d
99 {
100   long num_stmts;
101   long num_exprs_considered;
102   long num_re;
103   long num_const_prop;
104   long num_copy_prop;
105 };
106 
107 static struct opt_stats_d opt_stats;
108 
109 /* Local functions.  */
110 static void record_equality (tree, tree, class const_and_copies *);
111 static void record_equivalences_from_phis (basic_block);
112 static void record_equivalences_from_incoming_edge (basic_block,
113 						    class const_and_copies *,
114 						    class avail_exprs_stack *);
115 static void eliminate_redundant_computations (gimple_stmt_iterator *,
116 					      class const_and_copies *,
117 					      class avail_exprs_stack *);
118 static void record_equivalences_from_stmt (gimple *, int,
119 					   class avail_exprs_stack *);
120 static void dump_dominator_optimization_stats (FILE *file,
121 					       hash_table<expr_elt_hasher> *);
122 
123 /* Constructor for EDGE_INFO.  An EDGE_INFO instance is always
124    associated with an edge E.  */
125 
edge_info(edge e)126 edge_info::edge_info (edge e)
127 {
128   /* Free the old one associated with E, if it exists and
129      associate our new object with E.  */
130   free_dom_edge_info (e);
131   e->aux = this;
132 
133   /* And initialize the embedded vectors.  */
134   simple_equivalences = vNULL;
135   cond_equivalences = vNULL;
136 }
137 
138 /* Destructor just needs to release the vectors.  */
139 
~edge_info(void)140 edge_info::~edge_info (void)
141 {
142   this->cond_equivalences.release ();
143   this->simple_equivalences.release ();
144 }
145 
146 /* NAME is known to have the value VALUE, which must be a constant.
147 
148    Walk through its use-def chain to see if there are other equivalences
149    we might be able to derive.
150 
151    RECURSION_LIMIT controls how far back we recurse through the use-def
152    chains.  */
153 
154 void
derive_equivalences(tree name,tree value,int recursion_limit)155 edge_info::derive_equivalences (tree name, tree value, int recursion_limit)
156 {
157   if (TREE_CODE (name) != SSA_NAME || TREE_CODE (value) != INTEGER_CST)
158     return;
159 
160   /* This records the equivalence for the toplevel object.  Do
161      this before checking the recursion limit.  */
162   simple_equivalences.safe_push (equiv_pair (name, value));
163 
164   /* Limit how far up the use-def chains we are willing to walk.  */
165   if (recursion_limit == 0)
166     return;
167 
168   /* We can walk up the use-def chains to potentially find more
169      equivalences.  */
170   gimple *def_stmt = SSA_NAME_DEF_STMT (name);
171   if (is_gimple_assign (def_stmt))
172     {
173       enum tree_code code = gimple_assign_rhs_code (def_stmt);
174       switch (code)
175 	{
176 	/* If the result of an OR is zero, then its operands are, too.  */
177 	case BIT_IOR_EXPR:
178 	  if (integer_zerop (value))
179 	    {
180 	      tree rhs1 = gimple_assign_rhs1 (def_stmt);
181 	      tree rhs2 = gimple_assign_rhs2 (def_stmt);
182 
183 	      value = build_zero_cst (TREE_TYPE (rhs1));
184 	      derive_equivalences (rhs1, value, recursion_limit - 1);
185 	      value = build_zero_cst (TREE_TYPE (rhs2));
186 	      derive_equivalences (rhs2, value, recursion_limit - 1);
187 	    }
188 	  break;
189 
190 	/* If the result of an AND is nonzero, then its operands are, too.  */
191 	case BIT_AND_EXPR:
192 	  if (!integer_zerop (value))
193 	    {
194 	      tree rhs1 = gimple_assign_rhs1 (def_stmt);
195 	      tree rhs2 = gimple_assign_rhs2 (def_stmt);
196 
197 	      /* If either operand has a boolean range, then we
198 		 know its value must be one, otherwise we just know it
199 		 is nonzero.  The former is clearly useful, I haven't
200 		 seen cases where the latter is helpful yet.  */
201 	      if (TREE_CODE (rhs1) == SSA_NAME)
202 		{
203 		  if (ssa_name_has_boolean_range (rhs1))
204 		    {
205 		      value = build_one_cst (TREE_TYPE (rhs1));
206 		      derive_equivalences (rhs1, value, recursion_limit - 1);
207 		    }
208 		}
209 	      if (TREE_CODE (rhs2) == SSA_NAME)
210 		{
211 		  if (ssa_name_has_boolean_range (rhs2))
212 		    {
213 		      value = build_one_cst (TREE_TYPE (rhs2));
214 		      derive_equivalences (rhs2, value, recursion_limit - 1);
215 		    }
216 		}
217 	    }
218 	  break;
219 
220 	/* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
221 	   set via a widening type conversion, then we may be able to record
222 	   additional equivalences.  */
223 	case NOP_EXPR:
224 	case CONVERT_EXPR:
225 	  {
226 	    tree rhs = gimple_assign_rhs1 (def_stmt);
227 	    tree rhs_type = TREE_TYPE (rhs);
228 	    if (INTEGRAL_TYPE_P (rhs_type)
229 		&& (TYPE_PRECISION (TREE_TYPE (name))
230 		    >= TYPE_PRECISION (rhs_type))
231 		&& int_fits_type_p (value, rhs_type))
232 	      derive_equivalences (rhs,
233 				   fold_convert (rhs_type, value),
234 				   recursion_limit - 1);
235 	    break;
236 	  }
237 
238 	/* We can invert the operation of these codes trivially if
239 	   one of the RHS operands is a constant to produce a known
240 	   value for the other RHS operand.  */
241 	case POINTER_PLUS_EXPR:
242 	case PLUS_EXPR:
243 	  {
244 	    tree rhs1 = gimple_assign_rhs1 (def_stmt);
245 	    tree rhs2 = gimple_assign_rhs2 (def_stmt);
246 
247 	    /* If either argument is a constant, then we can compute
248 	       a constant value for the nonconstant argument.  */
249 	    if (TREE_CODE (rhs1) == INTEGER_CST
250 		&& TREE_CODE (rhs2) == SSA_NAME)
251 	      derive_equivalences (rhs2,
252 				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
253 						value, rhs1),
254 				   recursion_limit - 1);
255 	    else if (TREE_CODE (rhs2) == INTEGER_CST
256 		     && TREE_CODE (rhs1) == SSA_NAME)
257 	      derive_equivalences (rhs1,
258 				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
259 						value, rhs2),
260 				   recursion_limit - 1);
261 	    break;
262 	  }
263 
264 	/* If one of the operands is a constant, then we can compute
265 	   the value of the other operand.  If both operands are
266 	   SSA_NAMEs, then they must be equal if the result is zero.  */
267 	case MINUS_EXPR:
268 	  {
269 	    tree rhs1 = gimple_assign_rhs1 (def_stmt);
270 	    tree rhs2 = gimple_assign_rhs2 (def_stmt);
271 
272 	    /* If either argument is a constant, then we can compute
273 	       a constant value for the nonconstant argument.  */
274 	    if (TREE_CODE (rhs1) == INTEGER_CST
275 		&& TREE_CODE (rhs2) == SSA_NAME)
276 	      derive_equivalences (rhs2,
277 				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
278 						rhs1, value),
279 				   recursion_limit - 1);
280 	    else if (TREE_CODE (rhs2) == INTEGER_CST
281 		     && TREE_CODE (rhs1) == SSA_NAME)
282 	      derive_equivalences (rhs1,
283 				   fold_binary (PLUS_EXPR, TREE_TYPE (rhs1),
284 						value, rhs2),
285 				   recursion_limit - 1);
286 	    else if (integer_zerop (value))
287 	      {
288 		tree cond = build2 (EQ_EXPR, boolean_type_node,
289 				    gimple_assign_rhs1 (def_stmt),
290 				    gimple_assign_rhs2 (def_stmt));
291 		tree inverted = invert_truthvalue (cond);
292 		record_conditions (&this->cond_equivalences, cond, inverted);
293 	      }
294 	    break;
295 	  }
296 
297 	case EQ_EXPR:
298 	case NE_EXPR:
299 	  {
300 	    if ((code == EQ_EXPR && integer_onep (value))
301 		|| (code == NE_EXPR && integer_zerop (value)))
302 	      {
303 		tree rhs1 = gimple_assign_rhs1 (def_stmt);
304 		tree rhs2 = gimple_assign_rhs2 (def_stmt);
305 
306 		/* If either argument is a constant, then record the
307 		   other argument as being the same as that constant.
308 
309 		   If neither operand is a constant, then we have a
310 		   conditional name == name equivalence.  */
311 		if (TREE_CODE (rhs1) == INTEGER_CST)
312 		  derive_equivalences (rhs2, rhs1, recursion_limit - 1);
313 		else if (TREE_CODE (rhs2) == INTEGER_CST)
314 		  derive_equivalences (rhs1, rhs2, recursion_limit - 1);
315 	      }
316 	    else
317 	      {
318 		tree cond = build2 (code, boolean_type_node,
319 				    gimple_assign_rhs1 (def_stmt),
320 				    gimple_assign_rhs2 (def_stmt));
321 		tree inverted = invert_truthvalue (cond);
322 		if (integer_zerop (value))
323 		  std::swap (cond, inverted);
324 		record_conditions (&this->cond_equivalences, cond, inverted);
325 	      }
326 	    break;
327 	  }
328 
329 	/* For BIT_NOT and NEGATE, we can just apply the operation to the
330 	   VALUE to get the new equivalence.  It will always be a constant
331 	   so we can recurse.  */
332 	case BIT_NOT_EXPR:
333 	case NEGATE_EXPR:
334 	  {
335 	    tree rhs = gimple_assign_rhs1 (def_stmt);
336 	    tree res;
337 	    /* If this is a NOT and the operand has a boolean range, then we
338 	       know its value must be zero or one.  We are not supposed to
339 	       have a BIT_NOT_EXPR for boolean types with precision > 1 in
340 	       the general case, see e.g. the handling of TRUTH_NOT_EXPR in
341 	       the gimplifier, but it can be generated by match.pd out of
342 	       a BIT_XOR_EXPR wrapped in a BIT_AND_EXPR.  Now the handling
343 	       of BIT_AND_EXPR above already forces a specific semantics for
344 	       boolean types with precision > 1 so we must do the same here,
345 	       otherwise we could change the semantics of TRUTH_NOT_EXPR for
346 	       boolean types with precision > 1.  */
347 	    if (code == BIT_NOT_EXPR
348 		&& TREE_CODE (rhs) == SSA_NAME
349 		&& ssa_name_has_boolean_range (rhs))
350 	      {
351 		if ((TREE_INT_CST_LOW (value) & 1) == 0)
352 		  res = build_one_cst (TREE_TYPE (rhs));
353 		else
354 		  res = build_zero_cst (TREE_TYPE (rhs));
355 	      }
356 	    else
357 	      res = fold_build1 (code, TREE_TYPE (rhs), value);
358 	    derive_equivalences (rhs, res, recursion_limit - 1);
359 	    break;
360 	  }
361 
362 	default:
363 	  {
364 	    if (TREE_CODE_CLASS (code) == tcc_comparison)
365 	      {
366 		tree cond = build2 (code, boolean_type_node,
367 				    gimple_assign_rhs1 (def_stmt),
368 				    gimple_assign_rhs2 (def_stmt));
369 		tree inverted = invert_truthvalue (cond);
370 		if (integer_zerop (value))
371 		  std::swap (cond, inverted);
372 		record_conditions (&this->cond_equivalences, cond, inverted);
373 		break;
374 	      }
375 	    break;
376 	  }
377 	}
378     }
379 }
380 
381 void
record_simple_equiv(tree lhs,tree rhs)382 edge_info::record_simple_equiv (tree lhs, tree rhs)
383 {
384   /* If the RHS is a constant, then we may be able to derive
385      further equivalences.  Else just record the name = name
386      equivalence.  */
387   if (TREE_CODE (rhs) == INTEGER_CST)
388     derive_equivalences (lhs, rhs, 4);
389   else
390     simple_equivalences.safe_push (equiv_pair (lhs, rhs));
391 }
392 
393 /* Free the edge_info data attached to E, if it exists.  */
394 
395 void
free_dom_edge_info(edge e)396 free_dom_edge_info (edge e)
397 {
398   class edge_info *edge_info = (struct edge_info *)e->aux;
399 
400   if (edge_info)
401     delete edge_info;
402 }
403 
404 /* Free all EDGE_INFO structures associated with edges in the CFG.
405    If a particular edge can be threaded, copy the redirection
406    target from the EDGE_INFO structure into the edge's AUX field
407    as required by code to update the CFG and SSA graph for
408    jump threading.  */
409 
410 static void
free_all_edge_infos(void)411 free_all_edge_infos (void)
412 {
413   basic_block bb;
414   edge_iterator ei;
415   edge e;
416 
417   FOR_EACH_BB_FN (bb, cfun)
418     {
419       FOR_EACH_EDGE (e, ei, bb->preds)
420         {
421 	  free_dom_edge_info (e);
422 	  e->aux = NULL;
423 	}
424     }
425 }
426 
427 /* We have finished optimizing BB, record any information implied by
428    taking a specific outgoing edge from BB.  */
429 
430 static void
record_edge_info(basic_block bb)431 record_edge_info (basic_block bb)
432 {
433   gimple_stmt_iterator gsi = gsi_last_bb (bb);
434   class edge_info *edge_info;
435 
436   if (! gsi_end_p (gsi))
437     {
438       gimple *stmt = gsi_stmt (gsi);
439       location_t loc = gimple_location (stmt);
440 
441       if (gimple_code (stmt) == GIMPLE_SWITCH)
442 	{
443 	  gswitch *switch_stmt = as_a <gswitch *> (stmt);
444 	  tree index = gimple_switch_index (switch_stmt);
445 
446 	  if (TREE_CODE (index) == SSA_NAME)
447 	    {
448 	      int i;
449               int n_labels = gimple_switch_num_labels (switch_stmt);
450 	      tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
451 	      edge e;
452 	      edge_iterator ei;
453 
454 	      for (i = 0; i < n_labels; i++)
455 		{
456 		  tree label = gimple_switch_label (switch_stmt, i);
457 		  basic_block target_bb = label_to_block (CASE_LABEL (label));
458 		  if (CASE_HIGH (label)
459 		      || !CASE_LOW (label)
460 		      || info[target_bb->index])
461 		    info[target_bb->index] = error_mark_node;
462 		  else
463 		    info[target_bb->index] = label;
464 		}
465 
466 	      FOR_EACH_EDGE (e, ei, bb->succs)
467 		{
468 		  basic_block target_bb = e->dest;
469 		  tree label = info[target_bb->index];
470 
471 		  if (label != NULL && label != error_mark_node)
472 		    {
473 		      tree x = fold_convert_loc (loc, TREE_TYPE (index),
474 						 CASE_LOW (label));
475 		      edge_info = new class edge_info (e);
476 		      edge_info->record_simple_equiv (index, x);
477 		    }
478 		}
479 	      free (info);
480 	    }
481 	}
482 
483       /* A COND_EXPR may create equivalences too.  */
484       if (gimple_code (stmt) == GIMPLE_COND)
485 	{
486 	  edge true_edge;
487 	  edge false_edge;
488 
489           tree op0 = gimple_cond_lhs (stmt);
490           tree op1 = gimple_cond_rhs (stmt);
491           enum tree_code code = gimple_cond_code (stmt);
492 
493 	  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
494 
495           /* Special case comparing booleans against a constant as we
496              know the value of OP0 on both arms of the branch.  i.e., we
497              can record an equivalence for OP0 rather than COND.
498 
499 	     However, don't do this if the constant isn't zero or one.
500 	     Such conditionals will get optimized more thoroughly during
501 	     the domwalk.  */
502 	  if ((code == EQ_EXPR || code == NE_EXPR)
503 	      && TREE_CODE (op0) == SSA_NAME
504 	      && ssa_name_has_boolean_range (op0)
505 	      && is_gimple_min_invariant (op1)
506 	      && (integer_zerop (op1) || integer_onep (op1)))
507             {
508 	      tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
509 	      tree false_val = constant_boolean_node (false, TREE_TYPE (op0));
510 
511               if (code == EQ_EXPR)
512                 {
513 		  edge_info = new class edge_info (true_edge);
514 		  edge_info->record_simple_equiv (op0,
515 						  (integer_zerop (op1)
516 						   ? false_val : true_val));
517 		  edge_info = new class edge_info (false_edge);
518 		  edge_info->record_simple_equiv (op0,
519 						  (integer_zerop (op1)
520 						   ? true_val : false_val));
521                 }
522               else
523                 {
524 		  edge_info = new class edge_info (true_edge);
525 		  edge_info->record_simple_equiv (op0,
526 						  (integer_zerop (op1)
527 						   ? true_val : false_val));
528 		  edge_info = new class edge_info (false_edge);
529 		  edge_info->record_simple_equiv (op0,
530 						  (integer_zerop (op1)
531 						   ? false_val : true_val));
532                 }
533             }
534 	  /* This can show up in the IL as a result of copy propagation
535 	     it will eventually be canonicalized, but we have to cope
536 	     with this case within the pass.  */
537           else if (is_gimple_min_invariant (op0)
538                    && TREE_CODE (op1) == SSA_NAME)
539             {
540               tree cond = build2 (code, boolean_type_node, op0, op1);
541               tree inverted = invert_truthvalue_loc (loc, cond);
542               bool can_infer_simple_equiv
543                 = !(HONOR_SIGNED_ZEROS (op0)
544                     && real_zerop (op0));
545               struct edge_info *edge_info;
546 
547 	      edge_info = new class edge_info (true_edge);
548               record_conditions (&edge_info->cond_equivalences, cond, inverted);
549 
550               if (can_infer_simple_equiv && code == EQ_EXPR)
551 		edge_info->record_simple_equiv (op1, op0);
552 
553 	      edge_info = new class edge_info (false_edge);
554               record_conditions (&edge_info->cond_equivalences, inverted, cond);
555 
556               if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
557 		edge_info->record_simple_equiv (op1, op0);
558             }
559 
560           else if (TREE_CODE (op0) == SSA_NAME
561                    && (TREE_CODE (op1) == SSA_NAME
562                        || is_gimple_min_invariant (op1)))
563             {
564               tree cond = build2 (code, boolean_type_node, op0, op1);
565               tree inverted = invert_truthvalue_loc (loc, cond);
566               bool can_infer_simple_equiv
567                 = !(HONOR_SIGNED_ZEROS (op1)
568                     && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
569               struct edge_info *edge_info;
570 
571 	      edge_info = new class edge_info (true_edge);
572               record_conditions (&edge_info->cond_equivalences, cond, inverted);
573 
574               if (can_infer_simple_equiv && code == EQ_EXPR)
575 		edge_info->record_simple_equiv (op0, op1);
576 
577 	      edge_info = new class edge_info (false_edge);
578               record_conditions (&edge_info->cond_equivalences, inverted, cond);
579 
580               if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
581 		edge_info->record_simple_equiv (op0, op1);
582             }
583         }
584     }
585 }
586 
587 
588 class dom_opt_dom_walker : public dom_walker
589 {
590 public:
dom_opt_dom_walker(cdi_direction direction,class const_and_copies * const_and_copies,class avail_exprs_stack * avail_exprs_stack,gcond * dummy_cond)591   dom_opt_dom_walker (cdi_direction direction,
592 		      class const_and_copies *const_and_copies,
593 		      class avail_exprs_stack *avail_exprs_stack,
594 		      gcond *dummy_cond)
595     : dom_walker (direction, REACHABLE_BLOCKS),
596       m_const_and_copies (const_and_copies),
597       m_avail_exprs_stack (avail_exprs_stack),
598       m_dummy_cond (dummy_cond) { }
599 
600   virtual edge before_dom_children (basic_block);
601   virtual void after_dom_children (basic_block);
602 
603 private:
604 
605   /* Unwindable equivalences, both const/copy and expression varieties.  */
606   class const_and_copies *m_const_and_copies;
607   class avail_exprs_stack *m_avail_exprs_stack;
608 
609   /* VRP data.  */
610   class evrp_range_analyzer evrp_range_analyzer;
611 
612   /* Dummy condition to avoid creating lots of throw away statements.  */
613   gcond *m_dummy_cond;
614 
615   /* Optimize a single statement within a basic block using the
616      various tables mantained by DOM.  Returns the taken edge if
617      the statement is a conditional with a statically determined
618      value.  */
619   edge optimize_stmt (basic_block, gimple_stmt_iterator *, bool *);
620 };
621 
622 /* Jump threading, redundancy elimination and const/copy propagation.
623 
624    This pass may expose new symbols that need to be renamed into SSA.  For
625    every new symbol exposed, its corresponding bit will be set in
626    VARS_TO_RENAME.  */
627 
628 namespace {
629 
630 const pass_data pass_data_dominator =
631 {
632   GIMPLE_PASS, /* type */
633   "dom", /* name */
634   OPTGROUP_NONE, /* optinfo_flags */
635   TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
636   ( PROP_cfg | PROP_ssa ), /* properties_required */
637   0, /* properties_provided */
638   0, /* properties_destroyed */
639   0, /* todo_flags_start */
640   ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
641 };
642 
643 class pass_dominator : public gimple_opt_pass
644 {
645 public:
pass_dominator(gcc::context * ctxt)646   pass_dominator (gcc::context *ctxt)
647     : gimple_opt_pass (pass_data_dominator, ctxt),
648       may_peel_loop_headers_p (false)
649   {}
650 
651   /* opt_pass methods: */
clone()652   opt_pass * clone () { return new pass_dominator (m_ctxt); }
set_pass_param(unsigned int n,bool param)653   void set_pass_param (unsigned int n, bool param)
654     {
655       gcc_assert (n == 0);
656       may_peel_loop_headers_p = param;
657     }
gate(function *)658   virtual bool gate (function *) { return flag_tree_dom != 0; }
659   virtual unsigned int execute (function *);
660 
661  private:
662   /* This flag is used to prevent loops from being peeled repeatedly in jump
663      threading; it will be removed once we preserve loop structures throughout
664      the compilation -- we will be able to mark the affected loops directly in
665      jump threading, and avoid peeling them next time.  */
666   bool may_peel_loop_headers_p;
667 }; // class pass_dominator
668 
669 unsigned int
execute(function * fun)670 pass_dominator::execute (function *fun)
671 {
672   memset (&opt_stats, 0, sizeof (opt_stats));
673 
674   /* Create our hash tables.  */
675   hash_table<expr_elt_hasher> *avail_exprs
676     = new hash_table<expr_elt_hasher> (1024);
677   class avail_exprs_stack *avail_exprs_stack
678     = new class avail_exprs_stack (avail_exprs);
679   class const_and_copies *const_and_copies = new class const_and_copies ();
680   need_eh_cleanup = BITMAP_ALLOC (NULL);
681   need_noreturn_fixup.create (0);
682 
683   calculate_dominance_info (CDI_DOMINATORS);
684   cfg_altered = false;
685 
686   /* We need to know loop structures in order to avoid destroying them
687      in jump threading.  Note that we still can e.g. thread through loop
688      headers to an exit edge, or through loop header to the loop body, assuming
689      that we update the loop info.
690 
691      TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
692      to several overly conservative bail-outs in jump threading, case
693      gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
694      missing.  We should improve jump threading in future then
695      LOOPS_HAVE_PREHEADERS won't be needed here.  */
696   loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES);
697 
698   /* Initialize the value-handle array.  */
699   threadedge_initialize_values ();
700 
701   /* We need accurate information regarding back edges in the CFG
702      for jump threading; this may include back edges that are not part of
703      a single loop.  */
704   mark_dfs_back_edges ();
705 
706   /* We want to create the edge info structures before the dominator walk
707      so that they'll be in place for the jump threader, particularly when
708      threading through a join block.
709 
710      The conditions will be lazily updated with global equivalences as
711      we reach them during the dominator walk.  */
712   basic_block bb;
713   FOR_EACH_BB_FN (bb, fun)
714     record_edge_info (bb);
715 
716   gcond *dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
717 					 integer_zero_node, NULL, NULL);
718 
719   /* Recursively walk the dominator tree optimizing statements.  */
720   dom_opt_dom_walker walker (CDI_DOMINATORS, const_and_copies,
721 			     avail_exprs_stack, dummy_cond);
722   walker.walk (fun->cfg->x_entry_block_ptr);
723 
724   /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
725      edge.  When found, remove jump threads which contain any outgoing
726      edge from the affected block.  */
727   if (cfg_altered)
728     {
729       FOR_EACH_BB_FN (bb, fun)
730 	{
731 	  edge_iterator ei;
732 	  edge e;
733 
734 	  /* First see if there are any edges without EDGE_EXECUTABLE
735 	     set.  */
736 	  bool found = false;
737 	  FOR_EACH_EDGE (e, ei, bb->succs)
738 	    {
739 	      if ((e->flags & EDGE_EXECUTABLE) == 0)
740 		{
741 		  found = true;
742 		  break;
743 		}
744 	    }
745 
746 	  /* If there were any such edges found, then remove jump threads
747 	     containing any edge leaving BB.  */
748 	  if (found)
749 	    FOR_EACH_EDGE (e, ei, bb->succs)
750 	      remove_jump_threads_including (e);
751 	}
752     }
753 
754   {
755     gimple_stmt_iterator gsi;
756     basic_block bb;
757     FOR_EACH_BB_FN (bb, fun)
758       {
759 	for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
760 	  update_stmt_if_modified (gsi_stmt (gsi));
761       }
762   }
763 
764   /* If we exposed any new variables, go ahead and put them into
765      SSA form now, before we handle jump threading.  This simplifies
766      interactions between rewriting of _DECL nodes into SSA form
767      and rewriting SSA_NAME nodes into SSA form after block
768      duplication and CFG manipulation.  */
769   update_ssa (TODO_update_ssa);
770 
771   free_all_edge_infos ();
772 
773   /* Thread jumps, creating duplicate blocks as needed.  */
774   cfg_altered |= thread_through_all_blocks (may_peel_loop_headers_p);
775 
776   if (cfg_altered)
777     free_dominance_info (CDI_DOMINATORS);
778 
779   /* Removal of statements may make some EH edges dead.  Purge
780      such edges from the CFG as needed.  */
781   if (!bitmap_empty_p (need_eh_cleanup))
782     {
783       unsigned i;
784       bitmap_iterator bi;
785 
786       /* Jump threading may have created forwarder blocks from blocks
787 	 needing EH cleanup; the new successor of these blocks, which
788 	 has inherited from the original block, needs the cleanup.
789 	 Don't clear bits in the bitmap, as that can break the bitmap
790 	 iterator.  */
791       EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
792 	{
793 	  basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
794 	  if (bb == NULL)
795 	    continue;
796 	  while (single_succ_p (bb)
797 		 && (single_succ_edge (bb)->flags
798 		     & (EDGE_EH|EDGE_DFS_BACK)) == 0)
799 	    bb = single_succ (bb);
800 	  if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
801 	    continue;
802 	  if ((unsigned) bb->index != i)
803 	    bitmap_set_bit (need_eh_cleanup, bb->index);
804 	}
805 
806       gimple_purge_all_dead_eh_edges (need_eh_cleanup);
807       bitmap_clear (need_eh_cleanup);
808     }
809 
810   /* Fixup stmts that became noreturn calls.  This may require splitting
811      blocks and thus isn't possible during the dominator walk or before
812      jump threading finished.  Do this in reverse order so we don't
813      inadvertedly remove a stmt we want to fixup by visiting a dominating
814      now noreturn call first.  */
815   while (!need_noreturn_fixup.is_empty ())
816     {
817       gimple *stmt = need_noreturn_fixup.pop ();
818       if (dump_file && dump_flags & TDF_DETAILS)
819 	{
820 	  fprintf (dump_file, "Fixing up noreturn call ");
821 	  print_gimple_stmt (dump_file, stmt, 0);
822 	  fprintf (dump_file, "\n");
823 	}
824       fixup_noreturn_call (stmt);
825     }
826 
827   statistics_counter_event (fun, "Redundant expressions eliminated",
828 			    opt_stats.num_re);
829   statistics_counter_event (fun, "Constants propagated",
830 			    opt_stats.num_const_prop);
831   statistics_counter_event (fun, "Copies propagated",
832 			    opt_stats.num_copy_prop);
833 
834   /* Debugging dumps.  */
835   if (dump_file && (dump_flags & TDF_STATS))
836     dump_dominator_optimization_stats (dump_file, avail_exprs);
837 
838   loop_optimizer_finalize ();
839 
840   /* Delete our main hashtable.  */
841   delete avail_exprs;
842   avail_exprs = NULL;
843 
844   /* Free asserted bitmaps and stacks.  */
845   BITMAP_FREE (need_eh_cleanup);
846   need_noreturn_fixup.release ();
847   delete avail_exprs_stack;
848   delete const_and_copies;
849 
850   /* Free the value-handle array.  */
851   threadedge_finalize_values ();
852 
853   return 0;
854 }
855 
856 } // anon namespace
857 
858 gimple_opt_pass *
make_pass_dominator(gcc::context * ctxt)859 make_pass_dominator (gcc::context *ctxt)
860 {
861   return new pass_dominator (ctxt);
862 }
863 
864 /* A hack until we remove threading from tree-vrp.c and bring the
865    simplification routine into the dom_opt_dom_walker class.  */
866 static class vr_values *x_vr_values;
867 
868 /* A trivial wrapper so that we can present the generic jump
869    threading code with a simple API for simplifying statements.  */
870 static tree
simplify_stmt_for_jump_threading(gimple * stmt,gimple * within_stmt ATTRIBUTE_UNUSED,class avail_exprs_stack * avail_exprs_stack,basic_block bb ATTRIBUTE_UNUSED)871 simplify_stmt_for_jump_threading (gimple *stmt,
872 				  gimple *within_stmt ATTRIBUTE_UNUSED,
873 				  class avail_exprs_stack *avail_exprs_stack,
874 				  basic_block bb ATTRIBUTE_UNUSED)
875 {
876   /* First query our hash table to see if the the expression is available
877      there.  A non-NULL return value will be either a constant or another
878      SSA_NAME.  */
879   tree cached_lhs =  avail_exprs_stack->lookup_avail_expr (stmt, false, true);
880   if (cached_lhs)
881     return cached_lhs;
882 
883   /* If the hash table query failed, query VRP information.  This is
884      essentially the same as tree-vrp's simplification routine.  The
885      copy in tree-vrp is scheduled for removal in gcc-9.  */
886   if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
887     {
888       cached_lhs
889 	= x_vr_values->vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
890 						 gimple_cond_lhs (cond_stmt),
891 						 gimple_cond_rhs (cond_stmt),
892 						 within_stmt);
893       return cached_lhs;
894     }
895 
896   if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
897     {
898       tree op = gimple_switch_index (switch_stmt);
899       if (TREE_CODE (op) != SSA_NAME)
900 	return NULL_TREE;
901 
902       value_range *vr = x_vr_values->get_value_range (op);
903       if ((vr->type != VR_RANGE && vr->type != VR_ANTI_RANGE)
904 	  || symbolic_range_p (vr))
905 	return NULL_TREE;
906 
907       if (vr->type == VR_RANGE)
908 	{
909 	  size_t i, j;
910 
911 	  find_case_label_range (switch_stmt, vr->min, vr->max, &i, &j);
912 
913 	  if (i == j)
914 	    {
915 	      tree label = gimple_switch_label (switch_stmt, i);
916 
917 	      if (CASE_HIGH (label) != NULL_TREE
918 		  ? (tree_int_cst_compare (CASE_LOW (label), vr->min) <= 0
919 		     && tree_int_cst_compare (CASE_HIGH (label), vr->max) >= 0)
920 		  : (tree_int_cst_equal (CASE_LOW (label), vr->min)
921 		     && tree_int_cst_equal (vr->min, vr->max)))
922 		return label;
923 
924 	      if (i > j)
925 		return gimple_switch_label (switch_stmt, 0);
926 	    }
927 	}
928 
929       if (vr->type == VR_ANTI_RANGE)
930           {
931             unsigned n = gimple_switch_num_labels (switch_stmt);
932             tree min_label = gimple_switch_label (switch_stmt, 1);
933             tree max_label = gimple_switch_label (switch_stmt, n - 1);
934 
935             /* The default label will be taken only if the anti-range of the
936                operand is entirely outside the bounds of all the (non-default)
937                case labels.  */
938             if (tree_int_cst_compare (vr->min, CASE_LOW (min_label)) <= 0
939                 && (CASE_HIGH (max_label) != NULL_TREE
940                     ? tree_int_cst_compare (vr->max, CASE_HIGH (max_label)) >= 0
941                     : tree_int_cst_compare (vr->max, CASE_LOW (max_label)) >= 0))
942             return gimple_switch_label (switch_stmt, 0);
943           }
944 	return NULL_TREE;
945     }
946 
947   if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
948     {
949       tree lhs = gimple_assign_lhs (assign_stmt);
950       if (TREE_CODE (lhs) == SSA_NAME
951 	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
952 	      || POINTER_TYPE_P (TREE_TYPE (lhs)))
953 	  && stmt_interesting_for_vrp (stmt))
954 	{
955 	  edge dummy_e;
956 	  tree dummy_tree;
957 	  value_range new_vr = VR_INITIALIZER;
958 	  x_vr_values->extract_range_from_stmt (stmt, &dummy_e,
959 					      &dummy_tree, &new_vr);
960 	  if (range_int_cst_singleton_p (&new_vr))
961 	    return new_vr.min;
962 	}
963     }
964   return NULL;
965 }
966 
967 /* Valueize hook for gimple_fold_stmt_to_constant_1.  */
968 
969 static tree
dom_valueize(tree t)970 dom_valueize (tree t)
971 {
972   if (TREE_CODE (t) == SSA_NAME)
973     {
974       tree tem = SSA_NAME_VALUE (t);
975       if (tem)
976 	return tem;
977     }
978   return t;
979 }
980 
981 /* We have just found an equivalence for LHS on an edge E.
982    Look backwards to other uses of LHS and see if we can derive
983    additional equivalences that are valid on edge E.  */
984 static void
back_propagate_equivalences(tree lhs,edge e,class const_and_copies * const_and_copies)985 back_propagate_equivalences (tree lhs, edge e,
986 			     class const_and_copies *const_and_copies)
987 {
988   use_operand_p use_p;
989   imm_use_iterator iter;
990   bitmap domby = NULL;
991   basic_block dest = e->dest;
992 
993   /* Iterate over the uses of LHS to see if any dominate E->dest.
994      If so, they may create useful equivalences too.
995 
996      ???  If the code gets re-organized to a worklist to catch more
997      indirect opportunities and it is made to handle PHIs then this
998      should only consider use_stmts in basic-blocks we have already visited.  */
999   FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
1000     {
1001       gimple *use_stmt = USE_STMT (use_p);
1002 
1003       /* Often the use is in DEST, which we trivially know we can't use.
1004 	 This is cheaper than the dominator set tests below.  */
1005       if (dest == gimple_bb (use_stmt))
1006 	continue;
1007 
1008       /* Filter out statements that can never produce a useful
1009 	 equivalence.  */
1010       tree lhs2 = gimple_get_lhs (use_stmt);
1011       if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME)
1012 	continue;
1013 
1014       /* Profiling has shown the domination tests here can be fairly
1015 	 expensive.  We get significant improvements by building the
1016 	 set of blocks that dominate BB.  We can then just test
1017 	 for set membership below.
1018 
1019 	 We also initialize the set lazily since often the only uses
1020 	 are going to be in the same block as DEST.  */
1021       if (!domby)
1022 	{
1023 	  domby = BITMAP_ALLOC (NULL);
1024 	  basic_block bb = get_immediate_dominator (CDI_DOMINATORS, dest);
1025 	  while (bb)
1026 	    {
1027 	      bitmap_set_bit (domby, bb->index);
1028 	      bb = get_immediate_dominator (CDI_DOMINATORS, bb);
1029 	    }
1030 	}
1031 
1032       /* This tests if USE_STMT does not dominate DEST.  */
1033       if (!bitmap_bit_p (domby, gimple_bb (use_stmt)->index))
1034 	continue;
1035 
1036       /* At this point USE_STMT dominates DEST and may result in a
1037 	 useful equivalence.  Try to simplify its RHS to a constant
1038 	 or SSA_NAME.  */
1039       tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize,
1040 						 no_follow_ssa_edges);
1041       if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res)))
1042 	record_equality (lhs2, res, const_and_copies);
1043     }
1044 
1045   if (domby)
1046     BITMAP_FREE (domby);
1047 }
1048 
1049 /* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
1050    by traversing edge E (which are cached in E->aux).
1051 
1052    Callers are responsible for managing the unwinding markers.  */
1053 void
record_temporary_equivalences(edge e,class const_and_copies * const_and_copies,class avail_exprs_stack * avail_exprs_stack)1054 record_temporary_equivalences (edge e,
1055 			       class const_and_copies *const_and_copies,
1056 			       class avail_exprs_stack *avail_exprs_stack)
1057 {
1058   int i;
1059   class edge_info *edge_info = (class edge_info *) e->aux;
1060 
1061   /* If we have info associated with this edge, record it into
1062      our equivalence tables.  */
1063   if (edge_info)
1064     {
1065       cond_equivalence *eq;
1066       /* If we have 0 = COND or 1 = COND equivalences, record them
1067 	 into our expression hash tables.  */
1068       for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
1069 	avail_exprs_stack->record_cond (eq);
1070 
1071       edge_info::equiv_pair *seq;
1072       for (i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1073 	{
1074 	  tree lhs = seq->first;
1075 	  if (!lhs || TREE_CODE (lhs) != SSA_NAME)
1076 	    continue;
1077 
1078 	  /* Record the simple NAME = VALUE equivalence.  */
1079 	  tree rhs = seq->second;
1080 
1081 	  /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is
1082 	     cheaper to compute than the other, then set up the equivalence
1083 	     such that we replace the expensive one with the cheap one.
1084 
1085 	     If they are the same cost to compute, then do not record
1086 	     anything.  */
1087 	  if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
1088 	    {
1089 	      gimple *rhs_def = SSA_NAME_DEF_STMT (rhs);
1090 	      int rhs_cost = estimate_num_insns (rhs_def, &eni_size_weights);
1091 
1092 	      gimple *lhs_def = SSA_NAME_DEF_STMT (lhs);
1093 	      int lhs_cost = estimate_num_insns (lhs_def, &eni_size_weights);
1094 
1095 	      if (rhs_cost > lhs_cost)
1096 	        record_equality (rhs, lhs, const_and_copies);
1097 	      else if (rhs_cost < lhs_cost)
1098 	        record_equality (lhs, rhs, const_and_copies);
1099 	    }
1100 	  else
1101 	    record_equality (lhs, rhs, const_and_copies);
1102 
1103 
1104 	  /* Any equivalence found for LHS may result in additional
1105 	     equivalences for other uses of LHS that we have already
1106 	     processed.  */
1107 	  back_propagate_equivalences (lhs, e, const_and_copies);
1108 	}
1109     }
1110 }
1111 
1112 /* PHI nodes can create equivalences too.
1113 
1114    Ignoring any alternatives which are the same as the result, if
1115    all the alternatives are equal, then the PHI node creates an
1116    equivalence.  */
1117 
1118 static void
record_equivalences_from_phis(basic_block bb)1119 record_equivalences_from_phis (basic_block bb)
1120 {
1121   gphi_iterator gsi;
1122 
1123   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1124     {
1125       gphi *phi = gsi.phi ();
1126 
1127       tree lhs = gimple_phi_result (phi);
1128       tree rhs = NULL;
1129       size_t i;
1130 
1131       for (i = 0; i < gimple_phi_num_args (phi); i++)
1132 	{
1133 	  tree t = gimple_phi_arg_def (phi, i);
1134 
1135 	  /* Ignore alternatives which are the same as our LHS.  Since
1136 	     LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1137 	     can simply compare pointers.  */
1138 	  if (lhs == t)
1139 	    continue;
1140 
1141 	  /* If the associated edge is not marked as executable, then it
1142 	     can be ignored.  */
1143 	  if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0)
1144 	    continue;
1145 
1146 	  t = dom_valueize (t);
1147 
1148 	  /* If T is an SSA_NAME and its associated edge is a backedge,
1149 	     then quit as we can not utilize this equivalence.  */
1150 	  if (TREE_CODE (t) == SSA_NAME
1151 	      && (gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK))
1152 	    break;
1153 
1154 	  /* If we have not processed an alternative yet, then set
1155 	     RHS to this alternative.  */
1156 	  if (rhs == NULL)
1157 	    rhs = t;
1158 	  /* If we have processed an alternative (stored in RHS), then
1159 	     see if it is equal to this one.  If it isn't, then stop
1160 	     the search.  */
1161 	  else if (! operand_equal_for_phi_arg_p (rhs, t))
1162 	    break;
1163 	}
1164 
1165       /* If we had no interesting alternatives, then all the RHS alternatives
1166 	 must have been the same as LHS.  */
1167       if (!rhs)
1168 	rhs = lhs;
1169 
1170       /* If we managed to iterate through each PHI alternative without
1171 	 breaking out of the loop, then we have a PHI which may create
1172 	 a useful equivalence.  We do not need to record unwind data for
1173 	 this, since this is a true assignment and not an equivalence
1174 	 inferred from a comparison.  All uses of this ssa name are dominated
1175 	 by this assignment, so unwinding just costs time and space.  */
1176       if (i == gimple_phi_num_args (phi)
1177 	  && may_propagate_copy (lhs, rhs))
1178 	set_ssa_name_value (lhs, rhs);
1179     }
1180 }
1181 
1182 /* Record any equivalences created by the incoming edge to BB into
1183    CONST_AND_COPIES and AVAIL_EXPRS_STACK.  If BB has more than one
1184    incoming edge, then no equivalence is created.  */
1185 
1186 static void
record_equivalences_from_incoming_edge(basic_block bb,class const_and_copies * const_and_copies,class avail_exprs_stack * avail_exprs_stack)1187 record_equivalences_from_incoming_edge (basic_block bb,
1188     class const_and_copies *const_and_copies,
1189     class avail_exprs_stack *avail_exprs_stack)
1190 {
1191   edge e;
1192   basic_block parent;
1193 
1194   /* If our parent block ended with a control statement, then we may be
1195      able to record some equivalences based on which outgoing edge from
1196      the parent was followed.  */
1197   parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1198 
1199   e = single_pred_edge_ignoring_loop_edges (bb, true);
1200 
1201   /* If we had a single incoming edge from our parent block, then enter
1202      any data associated with the edge into our tables.  */
1203   if (e && e->src == parent)
1204     record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
1205 }
1206 
1207 /* Dump statistics for the hash table HTAB.  */
1208 
1209 static void
htab_statistics(FILE * file,const hash_table<expr_elt_hasher> & htab)1210 htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
1211 {
1212   fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1213 	   (long) htab.size (),
1214 	   (long) htab.elements (),
1215 	   htab.collisions ());
1216 }
1217 
1218 /* Dump SSA statistics on FILE.  */
1219 
1220 static void
dump_dominator_optimization_stats(FILE * file,hash_table<expr_elt_hasher> * avail_exprs)1221 dump_dominator_optimization_stats (FILE *file,
1222 				   hash_table<expr_elt_hasher> *avail_exprs)
1223 {
1224   fprintf (file, "Total number of statements:                   %6ld\n\n",
1225 	   opt_stats.num_stmts);
1226   fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1227            opt_stats.num_exprs_considered);
1228 
1229   fprintf (file, "\nHash table statistics:\n");
1230 
1231   fprintf (file, "    avail_exprs: ");
1232   htab_statistics (file, *avail_exprs);
1233 }
1234 
1235 
1236 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1237    This constrains the cases in which we may treat this as assignment.  */
1238 
1239 static void
record_equality(tree x,tree y,class const_and_copies * const_and_copies)1240 record_equality (tree x, tree y, class const_and_copies *const_and_copies)
1241 {
1242   tree prev_x = NULL, prev_y = NULL;
1243 
1244   if (tree_swap_operands_p (x, y))
1245     std::swap (x, y);
1246 
1247   /* Most of the time tree_swap_operands_p does what we want.  But there
1248      are cases where we know one operand is better for copy propagation than
1249      the other.  Given no other code cares about ordering of equality
1250      comparison operators for that purpose, we just handle the special cases
1251      here.  */
1252   if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
1253     {
1254       /* If one operand is a single use operand, then make it
1255 	 X.  This will preserve its single use properly and if this
1256 	 conditional is eliminated, the computation of X can be
1257 	 eliminated as well.  */
1258       if (has_single_use (y) && ! has_single_use (x))
1259 	std::swap (x, y);
1260     }
1261   if (TREE_CODE (x) == SSA_NAME)
1262     prev_x = SSA_NAME_VALUE (x);
1263   if (TREE_CODE (y) == SSA_NAME)
1264     prev_y = SSA_NAME_VALUE (y);
1265 
1266   /* If one of the previous values is invariant, or invariant in more loops
1267      (by depth), then use that.
1268      Otherwise it doesn't matter which value we choose, just so
1269      long as we canonicalize on one value.  */
1270   if (is_gimple_min_invariant (y))
1271     ;
1272   else if (is_gimple_min_invariant (x))
1273     prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1274   else if (prev_x && is_gimple_min_invariant (prev_x))
1275     x = y, y = prev_x, prev_x = prev_y;
1276   else if (prev_y)
1277     y = prev_y;
1278 
1279   /* After the swapping, we must have one SSA_NAME.  */
1280   if (TREE_CODE (x) != SSA_NAME)
1281     return;
1282 
1283   /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1284      variable compared against zero.  If we're honoring signed zeros,
1285      then we cannot record this value unless we know that the value is
1286      nonzero.  */
1287   if (HONOR_SIGNED_ZEROS (x)
1288       && (TREE_CODE (y) != REAL_CST
1289 	  || real_equal (&dconst0, &TREE_REAL_CST (y))))
1290     return;
1291 
1292   const_and_copies->record_const_or_copy (x, y, prev_x);
1293 }
1294 
1295 /* Returns true when STMT is a simple iv increment.  It detects the
1296    following situation:
1297 
1298    i_1 = phi (..., i_k)
1299    [...]
1300    i_j = i_{j-1}  for each j : 2 <= j <= k-1
1301    [...]
1302    i_k = i_{k-1} +/- ...  */
1303 
1304 bool
simple_iv_increment_p(gimple * stmt)1305 simple_iv_increment_p (gimple *stmt)
1306 {
1307   enum tree_code code;
1308   tree lhs, preinc;
1309   gimple *phi;
1310   size_t i;
1311 
1312   if (gimple_code (stmt) != GIMPLE_ASSIGN)
1313     return false;
1314 
1315   lhs = gimple_assign_lhs (stmt);
1316   if (TREE_CODE (lhs) != SSA_NAME)
1317     return false;
1318 
1319   code = gimple_assign_rhs_code (stmt);
1320   if (code != PLUS_EXPR
1321       && code != MINUS_EXPR
1322       && code != POINTER_PLUS_EXPR)
1323     return false;
1324 
1325   preinc = gimple_assign_rhs1 (stmt);
1326   if (TREE_CODE (preinc) != SSA_NAME)
1327     return false;
1328 
1329   phi = SSA_NAME_DEF_STMT (preinc);
1330   while (gimple_code (phi) != GIMPLE_PHI)
1331     {
1332       /* Follow trivial copies, but not the DEF used in a back edge,
1333 	 so that we don't prevent coalescing.  */
1334       if (!gimple_assign_ssa_name_copy_p (phi))
1335 	return false;
1336       preinc = gimple_assign_rhs1 (phi);
1337       phi = SSA_NAME_DEF_STMT (preinc);
1338     }
1339 
1340   for (i = 0; i < gimple_phi_num_args (phi); i++)
1341     if (gimple_phi_arg_def (phi, i) == lhs)
1342       return true;
1343 
1344   return false;
1345 }
1346 
1347 /* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
1348    successors of BB.  */
1349 
1350 static void
cprop_into_successor_phis(basic_block bb,class const_and_copies * const_and_copies)1351 cprop_into_successor_phis (basic_block bb,
1352 			   class const_and_copies *const_and_copies)
1353 {
1354   edge e;
1355   edge_iterator ei;
1356 
1357   FOR_EACH_EDGE (e, ei, bb->succs)
1358     {
1359       int indx;
1360       gphi_iterator gsi;
1361 
1362       /* If this is an abnormal edge, then we do not want to copy propagate
1363 	 into the PHI alternative associated with this edge.  */
1364       if (e->flags & EDGE_ABNORMAL)
1365 	continue;
1366 
1367       gsi = gsi_start_phis (e->dest);
1368       if (gsi_end_p (gsi))
1369 	continue;
1370 
1371       /* We may have an equivalence associated with this edge.  While
1372 	 we can not propagate it into non-dominated blocks, we can
1373 	 propagate them into PHIs in non-dominated blocks.  */
1374 
1375       /* Push the unwind marker so we can reset the const and copies
1376 	 table back to its original state after processing this edge.  */
1377       const_and_copies->push_marker ();
1378 
1379       /* Extract and record any simple NAME = VALUE equivalences.
1380 
1381 	 Don't bother with [01] = COND equivalences, they're not useful
1382 	 here.  */
1383       class edge_info *edge_info = (class edge_info *) e->aux;
1384 
1385       if (edge_info)
1386 	{
1387 	  edge_info::equiv_pair *seq;
1388 	  for (int i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1389 	    {
1390 	      tree lhs = seq->first;
1391 	      tree rhs = seq->second;
1392 
1393 	      if (lhs && TREE_CODE (lhs) == SSA_NAME)
1394 		const_and_copies->record_const_or_copy (lhs, rhs);
1395 	    }
1396 
1397 	}
1398 
1399       indx = e->dest_idx;
1400       for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1401 	{
1402 	  tree new_val;
1403 	  use_operand_p orig_p;
1404 	  tree orig_val;
1405           gphi *phi = gsi.phi ();
1406 
1407 	  /* The alternative may be associated with a constant, so verify
1408 	     it is an SSA_NAME before doing anything with it.  */
1409 	  orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1410 	  orig_val = get_use_from_ptr (orig_p);
1411 	  if (TREE_CODE (orig_val) != SSA_NAME)
1412 	    continue;
1413 
1414 	  /* If we have *ORIG_P in our constant/copy table, then replace
1415 	     ORIG_P with its value in our constant/copy table.  */
1416 	  new_val = SSA_NAME_VALUE (orig_val);
1417 	  if (new_val
1418 	      && new_val != orig_val
1419 	      && may_propagate_copy (orig_val, new_val))
1420 	    propagate_value (orig_p, new_val);
1421 	}
1422 
1423       const_and_copies->pop_to_marker ();
1424     }
1425 }
1426 
1427 edge
before_dom_children(basic_block bb)1428 dom_opt_dom_walker::before_dom_children (basic_block bb)
1429 {
1430   gimple_stmt_iterator gsi;
1431 
1432   if (dump_file && (dump_flags & TDF_DETAILS))
1433     fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1434 
1435   evrp_range_analyzer.enter (bb);
1436 
1437   /* Push a marker on the stacks of local information so that we know how
1438      far to unwind when we finalize this block.  */
1439   m_avail_exprs_stack->push_marker ();
1440   m_const_and_copies->push_marker ();
1441 
1442   record_equivalences_from_incoming_edge (bb, m_const_and_copies,
1443 					  m_avail_exprs_stack);
1444 
1445   /* PHI nodes can create equivalences too.  */
1446   record_equivalences_from_phis (bb);
1447 
1448   /* Create equivalences from redundant PHIs.  PHIs are only truly
1449      redundant when they exist in the same block, so push another
1450      marker and unwind right afterwards.  */
1451   m_avail_exprs_stack->push_marker ();
1452   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1453     eliminate_redundant_computations (&gsi, m_const_and_copies,
1454 				      m_avail_exprs_stack);
1455   m_avail_exprs_stack->pop_to_marker ();
1456 
1457   edge taken_edge = NULL;
1458   /* Initialize visited flag ahead of us, it has undefined state on
1459      pass entry.  */
1460   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1461     gimple_set_visited (gsi_stmt (gsi), false);
1462   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1463     {
1464       /* Do not optimize a stmt twice, substitution might end up with
1465          _3 = _3 which is not valid.  */
1466       if (gimple_visited_p (gsi_stmt (gsi)))
1467 	{
1468 	  gsi_next (&gsi);
1469 	  continue;
1470 	}
1471 
1472       /* Compute range information and optimize the stmt.  */
1473       evrp_range_analyzer.record_ranges_from_stmt (gsi_stmt (gsi), false);
1474       bool removed_p = false;
1475       taken_edge = this->optimize_stmt (bb, &gsi, &removed_p);
1476       if (!removed_p)
1477 	gimple_set_visited (gsi_stmt (gsi), true);
1478 
1479       /* Go back and visit stmts inserted by folding after substituting
1480 	 into the stmt at gsi.  */
1481       if (gsi_end_p (gsi))
1482 	{
1483 	  gcc_checking_assert (removed_p);
1484 	  gsi = gsi_last_bb (bb);
1485 	  while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)))
1486 	    gsi_prev (&gsi);
1487 	}
1488       else
1489 	{
1490 	  do
1491 	    {
1492 	      gsi_prev (&gsi);
1493 	    }
1494 	  while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)));
1495 	}
1496       if (gsi_end_p (gsi))
1497 	gsi = gsi_start_bb (bb);
1498       else
1499 	gsi_next (&gsi);
1500     }
1501 
1502   /* Now prepare to process dominated blocks.  */
1503   record_edge_info (bb);
1504   cprop_into_successor_phis (bb, m_const_and_copies);
1505   if (taken_edge && !dbg_cnt (dom_unreachable_edges))
1506     return NULL;
1507 
1508   return taken_edge;
1509 }
1510 
1511 /* We have finished processing the dominator children of BB, perform
1512    any finalization actions in preparation for leaving this node in
1513    the dominator tree.  */
1514 
1515 void
after_dom_children(basic_block bb)1516 dom_opt_dom_walker::after_dom_children (basic_block bb)
1517 {
1518   x_vr_values = evrp_range_analyzer.get_vr_values ();
1519   thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
1520 			 m_avail_exprs_stack,
1521 			 &evrp_range_analyzer,
1522 			 simplify_stmt_for_jump_threading);
1523   x_vr_values = NULL;
1524 
1525   /* These remove expressions local to BB from the tables.  */
1526   m_avail_exprs_stack->pop_to_marker ();
1527   m_const_and_copies->pop_to_marker ();
1528   evrp_range_analyzer.leave (bb);
1529 }
1530 
1531 /* Search for redundant computations in STMT.  If any are found, then
1532    replace them with the variable holding the result of the computation.
1533 
1534    If safe, record this expression into AVAIL_EXPRS_STACK and
1535    CONST_AND_COPIES.  */
1536 
1537 static void
eliminate_redundant_computations(gimple_stmt_iterator * gsi,class const_and_copies * const_and_copies,class avail_exprs_stack * avail_exprs_stack)1538 eliminate_redundant_computations (gimple_stmt_iterator* gsi,
1539 				  class const_and_copies *const_and_copies,
1540 				  class avail_exprs_stack *avail_exprs_stack)
1541 {
1542   tree expr_type;
1543   tree cached_lhs;
1544   tree def;
1545   bool insert = true;
1546   bool assigns_var_p = false;
1547 
1548   gimple *stmt = gsi_stmt (*gsi);
1549 
1550   if (gimple_code (stmt) == GIMPLE_PHI)
1551     def = gimple_phi_result (stmt);
1552   else
1553     def = gimple_get_lhs (stmt);
1554 
1555   /* Certain expressions on the RHS can be optimized away, but can not
1556      themselves be entered into the hash tables.  */
1557   if (! def
1558       || TREE_CODE (def) != SSA_NAME
1559       || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
1560       || gimple_vdef (stmt)
1561       /* Do not record equivalences for increments of ivs.  This would create
1562 	 overlapping live ranges for a very questionable gain.  */
1563       || simple_iv_increment_p (stmt))
1564     insert = false;
1565 
1566   /* Check if the expression has been computed before.  */
1567   cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true);
1568 
1569   opt_stats.num_exprs_considered++;
1570 
1571   /* Get the type of the expression we are trying to optimize.  */
1572   if (is_gimple_assign (stmt))
1573     {
1574       expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
1575       assigns_var_p = true;
1576     }
1577   else if (gimple_code (stmt) == GIMPLE_COND)
1578     expr_type = boolean_type_node;
1579   else if (is_gimple_call (stmt))
1580     {
1581       gcc_assert (gimple_call_lhs (stmt));
1582       expr_type = TREE_TYPE (gimple_call_lhs (stmt));
1583       assigns_var_p = true;
1584     }
1585   else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1586     expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
1587   else if (gimple_code (stmt) == GIMPLE_PHI)
1588     /* We can't propagate into a phi, so the logic below doesn't apply.
1589        Instead record an equivalence between the cached LHS and the
1590        PHI result of this statement, provided they are in the same block.
1591        This should be sufficient to kill the redundant phi.  */
1592     {
1593       if (def && cached_lhs)
1594 	const_and_copies->record_const_or_copy (def, cached_lhs);
1595       return;
1596     }
1597   else
1598     gcc_unreachable ();
1599 
1600   if (!cached_lhs)
1601     return;
1602 
1603   /* It is safe to ignore types here since we have already done
1604      type checking in the hashing and equality routines.  In fact
1605      type checking here merely gets in the way of constant
1606      propagation.  Also, make sure that it is safe to propagate
1607      CACHED_LHS into the expression in STMT.  */
1608   if ((TREE_CODE (cached_lhs) != SSA_NAME
1609        && (assigns_var_p
1610            || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
1611       || may_propagate_copy_into_stmt (stmt, cached_lhs))
1612   {
1613       gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
1614 			   || is_gimple_min_invariant (cached_lhs));
1615 
1616       if (dump_file && (dump_flags & TDF_DETAILS))
1617 	{
1618 	  fprintf (dump_file, "  Replaced redundant expr '");
1619 	  print_gimple_expr (dump_file, stmt, 0, dump_flags);
1620 	  fprintf (dump_file, "' with '");
1621 	  print_generic_expr (dump_file, cached_lhs, dump_flags);
1622           fprintf (dump_file, "'\n");
1623 	}
1624 
1625       opt_stats.num_re++;
1626 
1627       if (assigns_var_p
1628 	  && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
1629 	cached_lhs = fold_convert (expr_type, cached_lhs);
1630 
1631       propagate_tree_value_into_stmt (gsi, cached_lhs);
1632 
1633       /* Since it is always necessary to mark the result as modified,
1634          perhaps we should move this into propagate_tree_value_into_stmt
1635          itself.  */
1636       gimple_set_modified (gsi_stmt (*gsi), true);
1637   }
1638 }
1639 
1640 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1641    the available expressions table or the const_and_copies table.
1642    Detect and record those equivalences into AVAIL_EXPRS_STACK.
1643 
1644    We handle only very simple copy equivalences here.  The heavy
1645    lifing is done by eliminate_redundant_computations.  */
1646 
1647 static void
record_equivalences_from_stmt(gimple * stmt,int may_optimize_p,class avail_exprs_stack * avail_exprs_stack)1648 record_equivalences_from_stmt (gimple *stmt, int may_optimize_p,
1649 			       class avail_exprs_stack *avail_exprs_stack)
1650 {
1651   tree lhs;
1652   enum tree_code lhs_code;
1653 
1654   gcc_assert (is_gimple_assign (stmt));
1655 
1656   lhs = gimple_assign_lhs (stmt);
1657   lhs_code = TREE_CODE (lhs);
1658 
1659   if (lhs_code == SSA_NAME
1660       && gimple_assign_single_p (stmt))
1661     {
1662       tree rhs = gimple_assign_rhs1 (stmt);
1663 
1664       /* If the RHS of the assignment is a constant or another variable that
1665 	 may be propagated, register it in the CONST_AND_COPIES table.  We
1666 	 do not need to record unwind data for this, since this is a true
1667 	 assignment and not an equivalence inferred from a comparison.  All
1668 	 uses of this ssa name are dominated by this assignment, so unwinding
1669 	 just costs time and space.  */
1670       if (may_optimize_p
1671 	  && (TREE_CODE (rhs) == SSA_NAME
1672 	      || is_gimple_min_invariant (rhs)))
1673 	{
1674 	  rhs = dom_valueize (rhs);
1675 
1676 	  if (dump_file && (dump_flags & TDF_DETAILS))
1677 	    {
1678 	      fprintf (dump_file, "==== ASGN ");
1679 	      print_generic_expr (dump_file, lhs);
1680 	      fprintf (dump_file, " = ");
1681 	      print_generic_expr (dump_file, rhs);
1682 	      fprintf (dump_file, "\n");
1683 	    }
1684 
1685 	  set_ssa_name_value (lhs, rhs);
1686 	}
1687     }
1688 
1689   /* Make sure we can propagate &x + CST.  */
1690   if (lhs_code == SSA_NAME
1691       && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
1692       && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
1693       && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
1694     {
1695       tree op0 = gimple_assign_rhs1 (stmt);
1696       tree op1 = gimple_assign_rhs2 (stmt);
1697       tree new_rhs
1698 	= build_fold_addr_expr (fold_build2 (MEM_REF,
1699 					     TREE_TYPE (TREE_TYPE (op0)),
1700 					     unshare_expr (op0),
1701 					     fold_convert (ptr_type_node,
1702 							   op1)));
1703       if (dump_file && (dump_flags & TDF_DETAILS))
1704 	{
1705 	  fprintf (dump_file, "==== ASGN ");
1706 	  print_generic_expr (dump_file, lhs);
1707 	  fprintf (dump_file, " = ");
1708 	  print_generic_expr (dump_file, new_rhs);
1709 	  fprintf (dump_file, "\n");
1710 	}
1711 
1712       set_ssa_name_value (lhs, new_rhs);
1713     }
1714 
1715   /* A memory store, even an aliased store, creates a useful
1716      equivalence.  By exchanging the LHS and RHS, creating suitable
1717      vops and recording the result in the available expression table,
1718      we may be able to expose more redundant loads.  */
1719   if (!gimple_has_volatile_ops (stmt)
1720       && gimple_references_memory_p (stmt)
1721       && gimple_assign_single_p (stmt)
1722       && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
1723 	  || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
1724       && !is_gimple_reg (lhs))
1725     {
1726       tree rhs = gimple_assign_rhs1 (stmt);
1727       gassign *new_stmt;
1728 
1729       /* Build a new statement with the RHS and LHS exchanged.  */
1730       if (TREE_CODE (rhs) == SSA_NAME)
1731         {
1732           /* NOTE tuples.  The call to gimple_build_assign below replaced
1733              a call to build_gimple_modify_stmt, which did not set the
1734              SSA_NAME_DEF_STMT on the LHS of the assignment.  Doing so
1735              may cause an SSA validation failure, as the LHS may be a
1736              default-initialized name and should have no definition.  I'm
1737              a bit dubious of this, as the artificial statement that we
1738              generate here may in fact be ill-formed, but it is simply
1739              used as an internal device in this pass, and never becomes
1740              part of the CFG.  */
1741 	  gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
1742           new_stmt = gimple_build_assign (rhs, lhs);
1743           SSA_NAME_DEF_STMT (rhs) = defstmt;
1744         }
1745       else
1746         new_stmt = gimple_build_assign (rhs, lhs);
1747 
1748       gimple_set_vuse (new_stmt, gimple_vdef (stmt));
1749 
1750       /* Finally enter the statement into the available expression
1751 	 table.  */
1752       avail_exprs_stack->lookup_avail_expr (new_stmt, true, true);
1753     }
1754 }
1755 
1756 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
1757    CONST_AND_COPIES.  */
1758 
1759 static void
cprop_operand(gimple * stmt,use_operand_p op_p)1760 cprop_operand (gimple *stmt, use_operand_p op_p)
1761 {
1762   tree val;
1763   tree op = USE_FROM_PTR (op_p);
1764 
1765   /* If the operand has a known constant value or it is known to be a
1766      copy of some other variable, use the value or copy stored in
1767      CONST_AND_COPIES.  */
1768   val = SSA_NAME_VALUE (op);
1769   if (val && val != op)
1770     {
1771       /* Do not replace hard register operands in asm statements.  */
1772       if (gimple_code (stmt) == GIMPLE_ASM
1773 	  && !may_propagate_copy_into_asm (op))
1774 	return;
1775 
1776       /* Certain operands are not allowed to be copy propagated due
1777 	 to their interaction with exception handling and some GCC
1778 	 extensions.  */
1779       if (!may_propagate_copy (op, val))
1780 	return;
1781 
1782       /* Do not propagate copies into BIVs.
1783          See PR23821 and PR62217 for how this can disturb IV and
1784 	 number of iteration analysis.  */
1785       if (TREE_CODE (val) != INTEGER_CST)
1786 	{
1787 	  gimple *def = SSA_NAME_DEF_STMT (op);
1788 	  if (gimple_code (def) == GIMPLE_PHI
1789 	      && gimple_bb (def)->loop_father->header == gimple_bb (def))
1790 	    return;
1791 	}
1792 
1793       /* Dump details.  */
1794       if (dump_file && (dump_flags & TDF_DETAILS))
1795 	{
1796 	  fprintf (dump_file, "  Replaced '");
1797 	  print_generic_expr (dump_file, op, dump_flags);
1798 	  fprintf (dump_file, "' with %s '",
1799 		   (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
1800 	  print_generic_expr (dump_file, val, dump_flags);
1801 	  fprintf (dump_file, "'\n");
1802 	}
1803 
1804       if (TREE_CODE (val) != SSA_NAME)
1805 	opt_stats.num_const_prop++;
1806       else
1807 	opt_stats.num_copy_prop++;
1808 
1809       propagate_value (op_p, val);
1810 
1811       /* And note that we modified this statement.  This is now
1812 	 safe, even if we changed virtual operands since we will
1813 	 rescan the statement and rewrite its operands again.  */
1814       gimple_set_modified (stmt, true);
1815     }
1816 }
1817 
1818 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1819    known value for that SSA_NAME (or NULL if no value is known).
1820 
1821    Propagate values from CONST_AND_COPIES into the uses, vuses and
1822    vdef_ops of STMT.  */
1823 
1824 static void
cprop_into_stmt(gimple * stmt)1825 cprop_into_stmt (gimple *stmt)
1826 {
1827   use_operand_p op_p;
1828   ssa_op_iter iter;
1829   tree last_copy_propagated_op = NULL;
1830 
1831   FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
1832     {
1833       tree old_op = USE_FROM_PTR (op_p);
1834 
1835       /* If we have A = B and B = A in the copy propagation tables
1836 	 (due to an equality comparison), avoid substituting B for A
1837 	 then A for B in the trivially discovered cases.   This allows
1838 	 optimization of statements were A and B appear as input
1839 	 operands.  */
1840       if (old_op != last_copy_propagated_op)
1841 	{
1842 	  cprop_operand (stmt, op_p);
1843 
1844 	  tree new_op = USE_FROM_PTR (op_p);
1845 	  if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME)
1846 	    last_copy_propagated_op = new_op;
1847 	}
1848     }
1849 }
1850 
1851 /* If STMT contains a relational test, try to convert it into an
1852    equality test if there is only a single value which can ever
1853    make the test true.
1854 
1855    For example, if the expression hash table contains:
1856 
1857     TRUE = (i <= 1)
1858 
1859    And we have a test within statement of i >= 1, then we can safely
1860    rewrite the test as i == 1 since there only a single value where
1861    the test is true.
1862 
1863    This is similar to code in VRP.  */
1864 
1865 static void
test_for_singularity(gimple * stmt,gcond * dummy_cond,avail_exprs_stack * avail_exprs_stack)1866 test_for_singularity (gimple *stmt, gcond *dummy_cond,
1867 		      avail_exprs_stack *avail_exprs_stack)
1868 {
1869   /* We want to support gimple conditionals as well as assignments
1870      where the RHS contains a conditional.  */
1871   if (is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND)
1872     {
1873       enum tree_code code = ERROR_MARK;
1874       tree lhs, rhs;
1875 
1876       /* Extract the condition of interest from both forms we support.  */
1877       if (is_gimple_assign (stmt))
1878 	{
1879 	  code = gimple_assign_rhs_code (stmt);
1880 	  lhs = gimple_assign_rhs1 (stmt);
1881 	  rhs = gimple_assign_rhs2 (stmt);
1882 	}
1883       else if (gimple_code (stmt) == GIMPLE_COND)
1884 	{
1885 	  code = gimple_cond_code (as_a <gcond *> (stmt));
1886 	  lhs = gimple_cond_lhs (as_a <gcond *> (stmt));
1887 	  rhs = gimple_cond_rhs (as_a <gcond *> (stmt));
1888 	}
1889 
1890       /* We're looking for a relational test using LE/GE.  Also note we can
1891 	 canonicalize LT/GT tests against constants into LE/GT tests.  */
1892       if (code == LE_EXPR || code == GE_EXPR
1893 	  || ((code == LT_EXPR || code == GT_EXPR)
1894 	       && TREE_CODE (rhs) == INTEGER_CST))
1895 	{
1896 	  /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR.  */
1897 	  if (code == LT_EXPR)
1898 	    rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (rhs),
1899 			       rhs, build_int_cst (TREE_TYPE (rhs), 1));
1900 
1901 	  if (code == GT_EXPR)
1902 	    rhs = fold_build2 (PLUS_EXPR, TREE_TYPE (rhs),
1903 			       rhs, build_int_cst (TREE_TYPE (rhs), 1));
1904 
1905 	  /* Determine the code we want to check for in the hash table.  */
1906 	  enum tree_code test_code;
1907 	  if (code == GE_EXPR || code == GT_EXPR)
1908 	    test_code = LE_EXPR;
1909 	  else
1910 	    test_code = GE_EXPR;
1911 
1912 	  /* Update the dummy statement so we can query the hash tables.  */
1913 	  gimple_cond_set_code (dummy_cond, test_code);
1914 	  gimple_cond_set_lhs (dummy_cond, lhs);
1915 	  gimple_cond_set_rhs (dummy_cond, rhs);
1916 	  tree cached_lhs
1917 	    = avail_exprs_stack->lookup_avail_expr (dummy_cond, false, false);
1918 
1919 	  /* If the lookup returned 1 (true), then the expression we
1920 	     queried was in the hash table.  As a result there is only
1921 	     one value that makes the original conditional true.  Update
1922 	     STMT accordingly.  */
1923 	  if (cached_lhs && integer_onep (cached_lhs))
1924 	    {
1925 	      if (is_gimple_assign (stmt))
1926 		{
1927 		  gimple_assign_set_rhs_code (stmt, EQ_EXPR);
1928 		  gimple_assign_set_rhs2 (stmt, rhs);
1929 		  gimple_set_modified (stmt, true);
1930 		}
1931 	      else
1932 		{
1933 		  gimple_set_modified (stmt, true);
1934 		  gimple_cond_set_code (as_a <gcond *> (stmt), EQ_EXPR);
1935 		  gimple_cond_set_rhs (as_a <gcond *> (stmt), rhs);
1936 		  gimple_set_modified (stmt, true);
1937 		}
1938 	    }
1939 	}
1940     }
1941 }
1942 
1943 /* Optimize the statement in block BB pointed to by iterator SI.
1944 
1945    We try to perform some simplistic global redundancy elimination and
1946    constant propagation:
1947 
1948    1- To detect global redundancy, we keep track of expressions that have
1949       been computed in this block and its dominators.  If we find that the
1950       same expression is computed more than once, we eliminate repeated
1951       computations by using the target of the first one.
1952 
1953    2- Constant values and copy assignments.  This is used to do very
1954       simplistic constant and copy propagation.  When a constant or copy
1955       assignment is found, we map the value on the RHS of the assignment to
1956       the variable in the LHS in the CONST_AND_COPIES table.
1957 
1958    3- Very simple redundant store elimination is performed.
1959 
1960    4- We can simpify a condition to a constant or from a relational
1961       condition to an equality condition.  */
1962 
1963 edge
optimize_stmt(basic_block bb,gimple_stmt_iterator * si,bool * removed_p)1964 dom_opt_dom_walker::optimize_stmt (basic_block bb, gimple_stmt_iterator *si,
1965 				   bool *removed_p)
1966 {
1967   gimple *stmt, *old_stmt;
1968   bool may_optimize_p;
1969   bool modified_p = false;
1970   bool was_noreturn;
1971   edge retval = NULL;
1972 
1973   old_stmt = stmt = gsi_stmt (*si);
1974   was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt);
1975 
1976   if (dump_file && (dump_flags & TDF_DETAILS))
1977     {
1978       fprintf (dump_file, "Optimizing statement ");
1979       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1980     }
1981 
1982   update_stmt_if_modified (stmt);
1983   opt_stats.num_stmts++;
1984 
1985   /* Const/copy propagate into USES, VUSES and the RHS of VDEFs.  */
1986   cprop_into_stmt (stmt);
1987 
1988   /* If the statement has been modified with constant replacements,
1989      fold its RHS before checking for redundant computations.  */
1990   if (gimple_modified_p (stmt))
1991     {
1992       tree rhs = NULL;
1993 
1994       /* Try to fold the statement making sure that STMT is kept
1995 	 up to date.  */
1996       if (fold_stmt (si))
1997 	{
1998 	  stmt = gsi_stmt (*si);
1999 	  gimple_set_modified (stmt, true);
2000 
2001 	  if (dump_file && (dump_flags & TDF_DETAILS))
2002 	    {
2003 	      fprintf (dump_file, "  Folded to: ");
2004 	      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2005 	    }
2006 	}
2007 
2008       /* We only need to consider cases that can yield a gimple operand.  */
2009       if (gimple_assign_single_p (stmt))
2010         rhs = gimple_assign_rhs1 (stmt);
2011       else if (gimple_code (stmt) == GIMPLE_GOTO)
2012         rhs = gimple_goto_dest (stmt);
2013       else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2014         /* This should never be an ADDR_EXPR.  */
2015         rhs = gimple_switch_index (swtch_stmt);
2016 
2017       if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2018         recompute_tree_invariant_for_addr_expr (rhs);
2019 
2020       /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2021 	 even if fold_stmt updated the stmt already and thus cleared
2022 	 gimple_modified_p flag on it.  */
2023       modified_p = true;
2024     }
2025 
2026   /* Check for redundant computations.  Do this optimization only
2027      for assignments that have no volatile ops and conditionals.  */
2028   may_optimize_p = (!gimple_has_side_effects (stmt)
2029                     && (is_gimple_assign (stmt)
2030                         || (is_gimple_call (stmt)
2031                             && gimple_call_lhs (stmt) != NULL_TREE)
2032                         || gimple_code (stmt) == GIMPLE_COND
2033                         || gimple_code (stmt) == GIMPLE_SWITCH));
2034 
2035   if (may_optimize_p)
2036     {
2037       if (gimple_code (stmt) == GIMPLE_CALL)
2038 	{
2039 	  /* Resolve __builtin_constant_p.  If it hasn't been
2040 	     folded to integer_one_node by now, it's fairly
2041 	     certain that the value simply isn't constant.  */
2042 	  tree callee = gimple_call_fndecl (stmt);
2043 	  if (callee
2044 	      && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2045 	      && DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P)
2046 	    {
2047 	      propagate_tree_value_into_stmt (si, integer_zero_node);
2048 	      stmt = gsi_stmt (*si);
2049 	    }
2050 	}
2051 
2052       if (gimple_code (stmt) == GIMPLE_COND)
2053 	{
2054 	  tree lhs = gimple_cond_lhs (stmt);
2055 	  tree rhs = gimple_cond_rhs (stmt);
2056 
2057 	  /* If the LHS has a range [0..1] and the RHS has a range ~[0..1],
2058 	     then this conditional is computable at compile time.  We can just
2059 	     shove either 0 or 1 into the LHS, mark the statement as modified
2060 	     and all the right things will just happen below.
2061 
2062 	     Note this would apply to any case where LHS has a range
2063 	     narrower than its type implies and RHS is outside that
2064 	     narrower range.  Future work.  */
2065 	  if (TREE_CODE (lhs) == SSA_NAME
2066 	      && ssa_name_has_boolean_range (lhs)
2067 	      && TREE_CODE (rhs) == INTEGER_CST
2068 	      && ! (integer_zerop (rhs) || integer_onep (rhs)))
2069 	    {
2070 	      gimple_cond_set_lhs (as_a <gcond *> (stmt),
2071 				   fold_convert (TREE_TYPE (lhs),
2072 						 integer_zero_node));
2073 	      gimple_set_modified (stmt, true);
2074 	    }
2075 	  else if (TREE_CODE (lhs) == SSA_NAME)
2076 	    {
2077 	      /* Exploiting EVRP data is not yet fully integrated into DOM
2078 		 but we need to do something for this case to avoid regressing
2079 		 udr4.f90 and new1.C which have unexecutable blocks with
2080 		 undefined behavior that get diagnosed if they're left in the
2081 		 IL because we've attached range information to new
2082 		 SSA_NAMES.  */
2083 	      update_stmt_if_modified (stmt);
2084 	      edge taken_edge = NULL;
2085 	      evrp_range_analyzer.vrp_visit_cond_stmt (as_a <gcond *> (stmt),
2086 						       &taken_edge);
2087 	      if (taken_edge)
2088 		{
2089 		  if (taken_edge->flags & EDGE_TRUE_VALUE)
2090 		    gimple_cond_make_true (as_a <gcond *> (stmt));
2091 		  else if (taken_edge->flags & EDGE_FALSE_VALUE)
2092 		    gimple_cond_make_false (as_a <gcond *> (stmt));
2093 		  else
2094 		    gcc_unreachable ();
2095 		  gimple_set_modified (stmt, true);
2096 		  update_stmt (stmt);
2097 		  cfg_altered = true;
2098 		  return taken_edge;
2099 		}
2100 	    }
2101 	}
2102 
2103       update_stmt_if_modified (stmt);
2104       eliminate_redundant_computations (si, m_const_and_copies,
2105 					m_avail_exprs_stack);
2106       stmt = gsi_stmt (*si);
2107 
2108       /* Perform simple redundant store elimination.  */
2109       if (gimple_assign_single_p (stmt)
2110 	  && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2111 	{
2112 	  tree lhs = gimple_assign_lhs (stmt);
2113 	  tree rhs = gimple_assign_rhs1 (stmt);
2114 	  tree cached_lhs;
2115 	  gassign *new_stmt;
2116 	  rhs = dom_valueize (rhs);
2117 	  /* Build a new statement with the RHS and LHS exchanged.  */
2118 	  if (TREE_CODE (rhs) == SSA_NAME)
2119 	    {
2120 	      gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
2121 	      new_stmt = gimple_build_assign (rhs, lhs);
2122 	      SSA_NAME_DEF_STMT (rhs) = defstmt;
2123 	    }
2124 	  else
2125 	    new_stmt = gimple_build_assign (rhs, lhs);
2126 	  gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2127 	  cached_lhs = m_avail_exprs_stack->lookup_avail_expr (new_stmt, false,
2128 							       false);
2129 	  if (cached_lhs && operand_equal_p (rhs, cached_lhs, 0))
2130 	    {
2131 	      basic_block bb = gimple_bb (stmt);
2132 	      unlink_stmt_vdef (stmt);
2133 	      if (gsi_remove (si, true))
2134 		{
2135 		  bitmap_set_bit (need_eh_cleanup, bb->index);
2136 		  if (dump_file && (dump_flags & TDF_DETAILS))
2137 		    fprintf (dump_file, "  Flagged to clear EH edges.\n");
2138 		}
2139 	      release_defs (stmt);
2140 	      *removed_p = true;
2141 	      return retval;
2142 	    }
2143 	}
2144 
2145       /* If this statement was not redundant, we may still be able to simplify
2146 	 it, which may in turn allow other part of DOM or other passes to do
2147 	 a better job.  */
2148       test_for_singularity (stmt, m_dummy_cond, m_avail_exprs_stack);
2149     }
2150 
2151   /* Record any additional equivalences created by this statement.  */
2152   if (is_gimple_assign (stmt))
2153     record_equivalences_from_stmt (stmt, may_optimize_p, m_avail_exprs_stack);
2154 
2155   /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may
2156      know where it goes.  */
2157   if (gimple_modified_p (stmt) || modified_p)
2158     {
2159       tree val = NULL;
2160 
2161       if (gimple_code (stmt) == GIMPLE_COND)
2162         val = fold_binary_loc (gimple_location (stmt),
2163 			       gimple_cond_code (stmt), boolean_type_node,
2164 			       gimple_cond_lhs (stmt),
2165 			       gimple_cond_rhs (stmt));
2166       else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2167 	val = gimple_switch_index (swtch_stmt);
2168 
2169       if (val && TREE_CODE (val) == INTEGER_CST)
2170 	{
2171 	  retval = find_taken_edge (bb, val);
2172 	  if (retval)
2173 	    {
2174 	      /* Fix the condition to be either true or false.  */
2175 	      if (gimple_code (stmt) == GIMPLE_COND)
2176 		{
2177 		  if (integer_zerop (val))
2178 		    gimple_cond_make_false (as_a <gcond *> (stmt));
2179 		  else if (integer_onep (val))
2180 		    gimple_cond_make_true (as_a <gcond *> (stmt));
2181 		  else
2182 		    gcc_unreachable ();
2183 
2184 		  gimple_set_modified (stmt, true);
2185 		}
2186 
2187 	      /* Further simplifications may be possible.  */
2188 	      cfg_altered = true;
2189 	    }
2190 	}
2191 
2192       update_stmt_if_modified (stmt);
2193 
2194       /* If we simplified a statement in such a way as to be shown that it
2195 	 cannot trap, update the eh information and the cfg to match.  */
2196       if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2197 	{
2198 	  bitmap_set_bit (need_eh_cleanup, bb->index);
2199 	  if (dump_file && (dump_flags & TDF_DETAILS))
2200 	    fprintf (dump_file, "  Flagged to clear EH edges.\n");
2201 	}
2202 
2203       if (!was_noreturn
2204 	  && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt))
2205 	need_noreturn_fixup.safe_push (stmt);
2206     }
2207   return retval;
2208 }
2209