1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Binary to decimal floating point conversion. 6// Algorithm: 7// 1) store mantissa in multiprecision decimal 8// 2) shift decimal by exponent 9// 3) read digits out & format 10 11package strconv 12 13import "math" 14 15// TODO: move elsewhere? 16type floatInfo struct { 17 mantbits uint 18 expbits uint 19 bias int 20} 21 22var float32info = floatInfo{23, 8, -127} 23var float64info = floatInfo{52, 11, -1023} 24 25// FormatFloat converts the floating-point number f to a string, 26// according to the format fmt and precision prec. It rounds the 27// result assuming that the original was obtained from a floating-point 28// value of bitSize bits (32 for float32, 64 for float64). 29// 30// The format fmt is one of 31// 'b' (-ddddp±ddd, a binary exponent), 32// 'e' (-d.dddde±dd, a decimal exponent), 33// 'E' (-d.ddddE±dd, a decimal exponent), 34// 'f' (-ddd.dddd, no exponent), 35// 'g' ('e' for large exponents, 'f' otherwise), or 36// 'G' ('E' for large exponents, 'f' otherwise). 37// 38// The precision prec controls the number of digits 39// (excluding the exponent) printed by the 'e', 'E', 'f', 'g', and 'G' formats. 40// For 'e', 'E', and 'f' it is the number of digits after the decimal point. 41// For 'g' and 'G' it is the total number of digits. 42// The special precision -1 uses the smallest number of digits 43// necessary such that ParseFloat will return f exactly. 44func FormatFloat(f float64, fmt byte, prec, bitSize int) string { 45 return string(genericFtoa(make([]byte, 0, max(prec+4, 24)), f, fmt, prec, bitSize)) 46} 47 48// AppendFloat appends the string form of the floating-point number f, 49// as generated by FormatFloat, to dst and returns the extended buffer. 50func AppendFloat(dst []byte, f float64, fmt byte, prec, bitSize int) []byte { 51 return genericFtoa(dst, f, fmt, prec, bitSize) 52} 53 54func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte { 55 var bits uint64 56 var flt *floatInfo 57 switch bitSize { 58 case 32: 59 bits = uint64(math.Float32bits(float32(val))) 60 flt = &float32info 61 case 64: 62 bits = math.Float64bits(val) 63 flt = &float64info 64 default: 65 panic("strconv: illegal AppendFloat/FormatFloat bitSize") 66 } 67 68 neg := bits>>(flt.expbits+flt.mantbits) != 0 69 exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1) 70 mant := bits & (uint64(1)<<flt.mantbits - 1) 71 72 switch exp { 73 case 1<<flt.expbits - 1: 74 // Inf, NaN 75 var s string 76 switch { 77 case mant != 0: 78 s = "NaN" 79 case neg: 80 s = "-Inf" 81 default: 82 s = "+Inf" 83 } 84 return append(dst, s...) 85 86 case 0: 87 // denormalized 88 exp++ 89 90 default: 91 // add implicit top bit 92 mant |= uint64(1) << flt.mantbits 93 } 94 exp += flt.bias 95 96 // Pick off easy binary format. 97 if fmt == 'b' { 98 return fmtB(dst, neg, mant, exp, flt) 99 } 100 101 if !optimize { 102 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) 103 } 104 105 var digs decimalSlice 106 ok := false 107 // Negative precision means "only as much as needed to be exact." 108 shortest := prec < 0 109 if shortest { 110 // Try Grisu3 algorithm. 111 f := new(extFloat) 112 lower, upper := f.AssignComputeBounds(mant, exp, neg, flt) 113 var buf [32]byte 114 digs.d = buf[:] 115 ok = f.ShortestDecimal(&digs, &lower, &upper) 116 if !ok { 117 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) 118 } 119 // Precision for shortest representation mode. 120 switch fmt { 121 case 'e', 'E': 122 prec = max(digs.nd-1, 0) 123 case 'f': 124 prec = max(digs.nd-digs.dp, 0) 125 case 'g', 'G': 126 prec = digs.nd 127 } 128 } else if fmt != 'f' { 129 // Fixed number of digits. 130 digits := prec 131 switch fmt { 132 case 'e', 'E': 133 digits++ 134 case 'g', 'G': 135 if prec == 0 { 136 prec = 1 137 } 138 digits = prec 139 } 140 if digits <= 15 { 141 // try fast algorithm when the number of digits is reasonable. 142 var buf [24]byte 143 digs.d = buf[:] 144 f := extFloat{mant, exp - int(flt.mantbits), neg} 145 ok = f.FixedDecimal(&digs, digits) 146 } 147 } 148 if !ok { 149 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) 150 } 151 return formatDigits(dst, shortest, neg, digs, prec, fmt) 152} 153 154// bigFtoa uses multiprecision computations to format a float. 155func bigFtoa(dst []byte, prec int, fmt byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte { 156 d := new(decimal) 157 d.Assign(mant) 158 d.Shift(exp - int(flt.mantbits)) 159 var digs decimalSlice 160 shortest := prec < 0 161 if shortest { 162 roundShortest(d, mant, exp, flt) 163 digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp} 164 // Precision for shortest representation mode. 165 switch fmt { 166 case 'e', 'E': 167 prec = digs.nd - 1 168 case 'f': 169 prec = max(digs.nd-digs.dp, 0) 170 case 'g', 'G': 171 prec = digs.nd 172 } 173 } else { 174 // Round appropriately. 175 switch fmt { 176 case 'e', 'E': 177 d.Round(prec + 1) 178 case 'f': 179 d.Round(d.dp + prec) 180 case 'g', 'G': 181 if prec == 0 { 182 prec = 1 183 } 184 d.Round(prec) 185 } 186 digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp} 187 } 188 return formatDigits(dst, shortest, neg, digs, prec, fmt) 189} 190 191func formatDigits(dst []byte, shortest bool, neg bool, digs decimalSlice, prec int, fmt byte) []byte { 192 switch fmt { 193 case 'e', 'E': 194 return fmtE(dst, neg, digs, prec, fmt) 195 case 'f': 196 return fmtF(dst, neg, digs, prec) 197 case 'g', 'G': 198 // trailing fractional zeros in 'e' form will be trimmed. 199 eprec := prec 200 if eprec > digs.nd && digs.nd >= digs.dp { 201 eprec = digs.nd 202 } 203 // %e is used if the exponent from the conversion 204 // is less than -4 or greater than or equal to the precision. 205 // if precision was the shortest possible, use precision 6 for this decision. 206 if shortest { 207 eprec = 6 208 } 209 exp := digs.dp - 1 210 if exp < -4 || exp >= eprec { 211 if prec > digs.nd { 212 prec = digs.nd 213 } 214 return fmtE(dst, neg, digs, prec-1, fmt+'e'-'g') 215 } 216 if prec > digs.dp { 217 prec = digs.nd 218 } 219 return fmtF(dst, neg, digs, max(prec-digs.dp, 0)) 220 } 221 222 // unknown format 223 return append(dst, '%', fmt) 224} 225 226// roundShortest rounds d (= mant * 2^exp) to the shortest number of digits 227// that will let the original floating point value be precisely reconstructed. 228func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) { 229 // If mantissa is zero, the number is zero; stop now. 230 if mant == 0 { 231 d.nd = 0 232 return 233 } 234 235 // Compute upper and lower such that any decimal number 236 // between upper and lower (possibly inclusive) 237 // will round to the original floating point number. 238 239 // We may see at once that the number is already shortest. 240 // 241 // Suppose d is not denormal, so that 2^exp <= d < 10^dp. 242 // The closest shorter number is at least 10^(dp-nd) away. 243 // The lower/upper bounds computed below are at distance 244 // at most 2^(exp-mantbits). 245 // 246 // So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits), 247 // or equivalently log2(10)*(dp-nd) > exp-mantbits. 248 // It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32). 249 minexp := flt.bias + 1 // minimum possible exponent 250 if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) { 251 // The number is already shortest. 252 return 253 } 254 255 // d = mant << (exp - mantbits) 256 // Next highest floating point number is mant+1 << exp-mantbits. 257 // Our upper bound is halfway between, mant*2+1 << exp-mantbits-1. 258 upper := new(decimal) 259 upper.Assign(mant*2 + 1) 260 upper.Shift(exp - int(flt.mantbits) - 1) 261 262 // d = mant << (exp - mantbits) 263 // Next lowest floating point number is mant-1 << exp-mantbits, 264 // unless mant-1 drops the significant bit and exp is not the minimum exp, 265 // in which case the next lowest is mant*2-1 << exp-mantbits-1. 266 // Either way, call it mantlo << explo-mantbits. 267 // Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1. 268 var mantlo uint64 269 var explo int 270 if mant > 1<<flt.mantbits || exp == minexp { 271 mantlo = mant - 1 272 explo = exp 273 } else { 274 mantlo = mant*2 - 1 275 explo = exp - 1 276 } 277 lower := new(decimal) 278 lower.Assign(mantlo*2 + 1) 279 lower.Shift(explo - int(flt.mantbits) - 1) 280 281 // The upper and lower bounds are possible outputs only if 282 // the original mantissa is even, so that IEEE round-to-even 283 // would round to the original mantissa and not the neighbors. 284 inclusive := mant%2 == 0 285 286 // Now we can figure out the minimum number of digits required. 287 // Walk along until d has distinguished itself from upper and lower. 288 for i := 0; i < d.nd; i++ { 289 l := byte('0') // lower digit 290 if i < lower.nd { 291 l = lower.d[i] 292 } 293 m := d.d[i] // middle digit 294 u := byte('0') // upper digit 295 if i < upper.nd { 296 u = upper.d[i] 297 } 298 299 // Okay to round down (truncate) if lower has a different digit 300 // or if lower is inclusive and is exactly the result of rounding 301 // down (i.e., and we have reached the final digit of lower). 302 okdown := l != m || inclusive && i+1 == lower.nd 303 304 // Okay to round up if upper has a different digit and either upper 305 // is inclusive or upper is bigger than the result of rounding up. 306 okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd) 307 308 // If it's okay to do either, then round to the nearest one. 309 // If it's okay to do only one, do it. 310 switch { 311 case okdown && okup: 312 d.Round(i + 1) 313 return 314 case okdown: 315 d.RoundDown(i + 1) 316 return 317 case okup: 318 d.RoundUp(i + 1) 319 return 320 } 321 } 322} 323 324type decimalSlice struct { 325 d []byte 326 nd, dp int 327 neg bool 328} 329 330// %e: -d.ddddde±dd 331func fmtE(dst []byte, neg bool, d decimalSlice, prec int, fmt byte) []byte { 332 // sign 333 if neg { 334 dst = append(dst, '-') 335 } 336 337 // first digit 338 ch := byte('0') 339 if d.nd != 0 { 340 ch = d.d[0] 341 } 342 dst = append(dst, ch) 343 344 // .moredigits 345 if prec > 0 { 346 dst = append(dst, '.') 347 i := 1 348 m := min(d.nd, prec+1) 349 if i < m { 350 dst = append(dst, d.d[i:m]...) 351 i = m 352 } 353 for ; i <= prec; i++ { 354 dst = append(dst, '0') 355 } 356 } 357 358 // e± 359 dst = append(dst, fmt) 360 exp := d.dp - 1 361 if d.nd == 0 { // special case: 0 has exponent 0 362 exp = 0 363 } 364 if exp < 0 { 365 ch = '-' 366 exp = -exp 367 } else { 368 ch = '+' 369 } 370 dst = append(dst, ch) 371 372 // dd or ddd 373 switch { 374 case exp < 10: 375 dst = append(dst, '0', byte(exp)+'0') 376 case exp < 100: 377 dst = append(dst, byte(exp/10)+'0', byte(exp%10)+'0') 378 default: 379 dst = append(dst, byte(exp/100)+'0', byte(exp/10)%10+'0', byte(exp%10)+'0') 380 } 381 382 return dst 383} 384 385// %f: -ddddddd.ddddd 386func fmtF(dst []byte, neg bool, d decimalSlice, prec int) []byte { 387 // sign 388 if neg { 389 dst = append(dst, '-') 390 } 391 392 // integer, padded with zeros as needed. 393 if d.dp > 0 { 394 m := min(d.nd, d.dp) 395 dst = append(dst, d.d[:m]...) 396 for ; m < d.dp; m++ { 397 dst = append(dst, '0') 398 } 399 } else { 400 dst = append(dst, '0') 401 } 402 403 // fraction 404 if prec > 0 { 405 dst = append(dst, '.') 406 for i := 0; i < prec; i++ { 407 ch := byte('0') 408 if j := d.dp + i; 0 <= j && j < d.nd { 409 ch = d.d[j] 410 } 411 dst = append(dst, ch) 412 } 413 } 414 415 return dst 416} 417 418// %b: -ddddddddp±ddd 419func fmtB(dst []byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte { 420 // sign 421 if neg { 422 dst = append(dst, '-') 423 } 424 425 // mantissa 426 dst, _ = formatBits(dst, mant, 10, false, true) 427 428 // p 429 dst = append(dst, 'p') 430 431 // ±exponent 432 exp -= int(flt.mantbits) 433 if exp >= 0 { 434 dst = append(dst, '+') 435 } 436 dst, _ = formatBits(dst, uint64(exp), 10, exp < 0, true) 437 438 return dst 439} 440 441func min(a, b int) int { 442 if a < b { 443 return a 444 } 445 return b 446} 447 448func max(a, b int) int { 449 if a > b { 450 return a 451 } 452 return b 453} 454