1 /*							log10q.c
2  *
3  *	Common logarithm, 128-bit __float128 precision
4  *
5  *
6  *
7  * SYNOPSIS:
8  *
9  * __float128 x, y, log10l();
10  *
11  * y = log10q( x );
12  *
13  *
14  *
15  * DESCRIPTION:
16  *
17  * Returns the base 10 logarithm of x.
18  *
19  * The argument is separated into its exponent and fractional
20  * parts.  If the exponent is between -1 and +1, the logarithm
21  * of the fraction is approximated by
22  *
23  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
24  *
25  * Otherwise, setting  z = 2(x-1)/x+1),
26  *
27  *     log(x) = z + z^3 P(z)/Q(z).
28  *
29  *
30  *
31  * ACCURACY:
32  *
33  *                      Relative error:
34  * arithmetic   domain     # trials      peak         rms
35  *    IEEE      0.5, 2.0     30000      2.3e-34     4.9e-35
36  *    IEEE     exp(+-10000)  30000      1.0e-34     4.1e-35
37  *
38  * In the tests over the interval exp(+-10000), the logarithms
39  * of the random arguments were uniformly distributed over
40  * [-10000, +10000].
41  *
42  */
43 
44 /*
45    Cephes Math Library Release 2.2:  January, 1991
46    Copyright 1984, 1991 by Stephen L. Moshier
47    Adapted for glibc November, 2001
48 
49     This library is free software; you can redistribute it and/or
50     modify it under the terms of the GNU Lesser General Public
51     License as published by the Free Software Foundation; either
52     version 2.1 of the License, or (at your option) any later version.
53 
54     This library is distributed in the hope that it will be useful,
55     but WITHOUT ANY WARRANTY; without even the implied warranty of
56     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
57     Lesser General Public License for more details.
58 
59     You should have received a copy of the GNU Lesser General Public
60     License along with this library; if not, write to the Free Software
61     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA
62 
63  */
64 
65 #include "quadmath-imp.h"
66 
67 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
68  * 1/sqrt(2) <= x < sqrt(2)
69  * Theoretical peak relative error = 5.3e-37,
70  * relative peak error spread = 2.3e-14
71  */
72 static const __float128 P[13] =
73 {
74   1.313572404063446165910279910527789794488E4Q,
75   7.771154681358524243729929227226708890930E4Q,
76   2.014652742082537582487669938141683759923E5Q,
77   3.007007295140399532324943111654767187848E5Q,
78   2.854829159639697837788887080758954924001E5Q,
79   1.797628303815655343403735250238293741397E5Q,
80   7.594356839258970405033155585486712125861E4Q,
81   2.128857716871515081352991964243375186031E4Q,
82   3.824952356185897735160588078446136783779E3Q,
83   4.114517881637811823002128927449878962058E2Q,
84   2.321125933898420063925789532045674660756E1Q,
85   4.998469661968096229986658302195402690910E-1Q,
86   1.538612243596254322971797716843006400388E-6Q
87 };
88 static const __float128 Q[12] =
89 {
90   3.940717212190338497730839731583397586124E4Q,
91   2.626900195321832660448791748036714883242E5Q,
92   7.777690340007566932935753241556479363645E5Q,
93   1.347518538384329112529391120390701166528E6Q,
94   1.514882452993549494932585972882995548426E6Q,
95   1.158019977462989115839826904108208787040E6Q,
96   6.132189329546557743179177159925690841200E5Q,
97   2.248234257620569139969141618556349415120E5Q,
98   5.605842085972455027590989944010492125825E4Q,
99   9.147150349299596453976674231612674085381E3Q,
100   9.104928120962988414618126155557301584078E2Q,
101   4.839208193348159620282142911143429644326E1Q
102 /* 1.000000000000000000000000000000000000000E0Q, */
103 };
104 
105 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
106  * where z = 2(x-1)/(x+1)
107  * 1/sqrt(2) <= x < sqrt(2)
108  * Theoretical peak relative error = 1.1e-35,
109  * relative peak error spread 1.1e-9
110  */
111 static const __float128 R[6] =
112 {
113   1.418134209872192732479751274970992665513E5Q,
114  -8.977257995689735303686582344659576526998E4Q,
115   2.048819892795278657810231591630928516206E4Q,
116  -2.024301798136027039250415126250455056397E3Q,
117   8.057002716646055371965756206836056074715E1Q,
118  -8.828896441624934385266096344596648080902E-1Q
119 };
120 static const __float128 S[6] =
121 {
122   1.701761051846631278975701529965589676574E6Q,
123  -1.332535117259762928288745111081235577029E6Q,
124   4.001557694070773974936904547424676279307E5Q,
125  -5.748542087379434595104154610899551484314E4Q,
126   3.998526750980007367835804959888064681098E3Q,
127  -1.186359407982897997337150403816839480438E2Q
128 /* 1.000000000000000000000000000000000000000E0Q, */
129 };
130 
131 static const __float128
132 /* log10(2) */
133 L102A = 0.3125Q,
134 L102B = -1.14700043360188047862611052755069732318101185E-2Q,
135 /* log10(e) */
136 L10EA = 0.5Q,
137 L10EB = -6.570551809674817234887108108339491770560299E-2Q,
138 /* sqrt(2)/2 */
139 SQRTH = 7.071067811865475244008443621048490392848359E-1Q;
140 
141 
142 
143 /* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
144 
145 static __float128
neval(__float128 x,const __float128 * p,int n)146 neval (__float128 x, const __float128 *p, int n)
147 {
148   __float128 y;
149 
150   p += n;
151   y = *p--;
152   do
153     {
154       y = y * x + *p--;
155     }
156   while (--n > 0);
157   return y;
158 }
159 
160 
161 /* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
162 
163 static __float128
deval(__float128 x,const __float128 * p,int n)164 deval (__float128 x, const __float128 *p, int n)
165 {
166   __float128 y;
167 
168   p += n;
169   y = x + *p--;
170   do
171     {
172       y = y * x + *p--;
173     }
174   while (--n > 0);
175   return y;
176 }
177 
178 
179 
180 __float128
log10q(__float128 x)181 log10q (__float128 x)
182 {
183   __float128 z;
184   __float128 y;
185   int e;
186   int64_t hx, lx;
187 
188 /* Test for domain */
189   GET_FLT128_WORDS64 (hx, lx, x);
190   if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
191     return (-1.0Q / fabsq (x));		/* log10l(+-0)=-inf  */
192   if (hx < 0)
193     return (x - x) / (x - x);
194   if (hx >= 0x7fff000000000000LL)
195     return (x + x);
196 
197   if (x == 1.0Q)
198     return 0.0Q;
199 
200 /* separate mantissa from exponent */
201 
202 /* Note, frexp is used so that denormal numbers
203  * will be handled properly.
204  */
205   x = frexpq (x, &e);
206 
207 
208 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
209  * where z = 2(x-1)/x+1)
210  */
211   if ((e > 2) || (e < -2))
212     {
213       if (x < SQRTH)
214 	{			/* 2( 2x-1 )/( 2x+1 ) */
215 	  e -= 1;
216 	  z = x - 0.5Q;
217 	  y = 0.5Q * z + 0.5Q;
218 	}
219       else
220 	{			/*  2 (x-1)/(x+1)   */
221 	  z = x - 0.5Q;
222 	  z -= 0.5Q;
223 	  y = 0.5Q * x + 0.5Q;
224 	}
225       x = z / y;
226       z = x * x;
227       y = x * (z * neval (z, R, 5) / deval (z, S, 5));
228       goto done;
229     }
230 
231 
232 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
233 
234   if (x < SQRTH)
235     {
236       e -= 1;
237       x = 2.0 * x - 1.0Q;	/*  2x - 1  */
238     }
239   else
240     {
241       x = x - 1.0Q;
242     }
243   z = x * x;
244   y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
245   y = y - 0.5 * z;
246 
247 done:
248 
249   /* Multiply log of fraction by log10(e)
250    * and base 2 exponent by log10(2).
251    */
252   z = y * L10EB;
253   z += x * L10EB;
254   z += e * L102B;
255   z += y * L10EA;
256   z += x * L10EA;
257   z += e * L102A;
258   return (z);
259 }
260