1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ A G G R                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2018, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;  use Aspects;
27with Atree;    use Atree;
28with Checks;   use Checks;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Errout;   use Errout;
32with Expander; use Expander;
33with Exp_Ch6;  use Exp_Ch6;
34with Exp_Tss;  use Exp_Tss;
35with Exp_Util; use Exp_Util;
36with Freeze;   use Freeze;
37with Itypes;   use Itypes;
38with Lib;      use Lib;
39with Lib.Xref; use Lib.Xref;
40with Namet;    use Namet;
41with Namet.Sp; use Namet.Sp;
42with Nmake;    use Nmake;
43with Nlists;   use Nlists;
44with Opt;      use Opt;
45with Restrict; use Restrict;
46with Rident;   use Rident;
47with Sem;      use Sem;
48with Sem_Aux;  use Sem_Aux;
49with Sem_Cat;  use Sem_Cat;
50with Sem_Ch3;  use Sem_Ch3;
51with Sem_Ch8;  use Sem_Ch8;
52with Sem_Ch13; use Sem_Ch13;
53with Sem_Dim;  use Sem_Dim;
54with Sem_Eval; use Sem_Eval;
55with Sem_Res;  use Sem_Res;
56with Sem_Util; use Sem_Util;
57with Sem_Type; use Sem_Type;
58with Sem_Warn; use Sem_Warn;
59with Sinfo;    use Sinfo;
60with Snames;   use Snames;
61with Stringt;  use Stringt;
62with Stand;    use Stand;
63with Style;    use Style;
64with Targparm; use Targparm;
65with Tbuild;   use Tbuild;
66with Uintp;    use Uintp;
67
68package body Sem_Aggr is
69
70   type Case_Bounds is record
71      Lo : Node_Id;
72      --  Low bound of choice. Once we sort the Case_Table, then entries
73      --  will be in order of ascending Choice_Lo values.
74
75      Hi : Node_Id;
76      --  High Bound of choice. The sort does not pay any attention to the
77      --  high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
78
79      Highest : Uint;
80      --  If there are duplicates or missing entries, then in the sorted
81      --  table, this records the highest value among Choice_Hi values
82      --  seen so far, including this entry.
83
84      Choice : Node_Id;
85      --  The node of the choice
86   end record;
87
88   type Case_Table_Type is array (Nat range <>) of Case_Bounds;
89   --  Table type used by Check_Case_Choices procedure. Entry zero is not
90   --  used (reserved for the sort). Real entries start at one.
91
92   -----------------------
93   -- Local Subprograms --
94   -----------------------
95
96   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
97   --  Sort the Case Table using the Lower Bound of each Choice as the key. A
98   --  simple insertion sort is used since the choices in a case statement will
99   --  usually be in near sorted order.
100
101   procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
102   --  Ada 2005 (AI-231): Check bad usage of null for a component for which
103   --  null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
104   --  the array case (the component type of the array will be used) or an
105   --  E_Component/E_Discriminant entity in the record case, in which case the
106   --  type of the component will be used for the test. If Typ is any other
107   --  kind of entity, the call is ignored. Expr is the component node in the
108   --  aggregate which is known to have a null value. A warning message will be
109   --  issued if the component is null excluding.
110   --
111   --  It would be better to pass the proper type for Typ ???
112
113   procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
114   --  Check that Expr is either not limited or else is one of the cases of
115   --  expressions allowed for a limited component association (namely, an
116   --  aggregate, function call, or <> notation). Report error for violations.
117   --  Expression is also OK in an instance or inlining context, because we
118   --  have already pre-analyzed and it is known to be type correct.
119
120   procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id);
121   --  Given aggregate Expr, check that sub-aggregates of Expr that are nested
122   --  at Level are qualified. If Level = 0, this applies to Expr directly.
123   --  Only issue errors in formal verification mode.
124
125   function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean;
126   --  Return True of Expr is an aggregate not contained directly in another
127   --  aggregate.
128
129   ------------------------------------------------------
130   -- Subprograms used for RECORD AGGREGATE Processing --
131   ------------------------------------------------------
132
133   procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
134   --  This procedure performs all the semantic checks required for record
135   --  aggregates. Note that for aggregates analysis and resolution go
136   --  hand in hand. Aggregate analysis has been delayed up to here and
137   --  it is done while resolving the aggregate.
138   --
139   --    N is the N_Aggregate node.
140   --    Typ is the record type for the aggregate resolution
141   --
142   --  While performing the semantic checks, this procedure builds a new
143   --  Component_Association_List where each record field appears alone in a
144   --  Component_Choice_List along with its corresponding expression. The
145   --  record fields in the Component_Association_List appear in the same order
146   --  in which they appear in the record type Typ.
147   --
148   --  Once this new Component_Association_List is built and all the semantic
149   --  checks performed, the original aggregate subtree is replaced with the
150   --  new named record aggregate just built. Note that subtree substitution is
151   --  performed with Rewrite so as to be able to retrieve the original
152   --  aggregate.
153   --
154   --  The aggregate subtree manipulation performed by Resolve_Record_Aggregate
155   --  yields the aggregate format expected by Gigi. Typically, this kind of
156   --  tree manipulations are done in the expander. However, because the
157   --  semantic checks that need to be performed on record aggregates really go
158   --  hand in hand with the record aggregate normalization, the aggregate
159   --  subtree transformation is performed during resolution rather than
160   --  expansion. Had we decided otherwise we would have had to duplicate most
161   --  of the code in the expansion procedure Expand_Record_Aggregate. Note,
162   --  however, that all the expansion concerning aggregates for tagged records
163   --  is done in Expand_Record_Aggregate.
164   --
165   --  The algorithm of Resolve_Record_Aggregate proceeds as follows:
166   --
167   --  1. Make sure that the record type against which the record aggregate
168   --     has to be resolved is not abstract. Furthermore if the type is a
169   --     null aggregate make sure the input aggregate N is also null.
170   --
171   --  2. Verify that the structure of the aggregate is that of a record
172   --     aggregate. Specifically, look for component associations and ensure
173   --     that each choice list only has identifiers or the N_Others_Choice
174   --     node. Also make sure that if present, the N_Others_Choice occurs
175   --     last and by itself.
176   --
177   --  3. If Typ contains discriminants, the values for each discriminant is
178   --     looked for. If the record type Typ has variants, we check that the
179   --     expressions corresponding to each discriminant ruling the (possibly
180   --     nested) variant parts of Typ, are static. This allows us to determine
181   --     the variant parts to which the rest of the aggregate must conform.
182   --     The names of discriminants with their values are saved in a new
183   --     association list, New_Assoc_List which is later augmented with the
184   --     names and values of the remaining components in the record type.
185   --
186   --     During this phase we also make sure that every discriminant is
187   --     assigned exactly one value. Note that when several values for a given
188   --     discriminant are found, semantic processing continues looking for
189   --     further errors. In this case it's the first discriminant value found
190   --     which we will be recorded.
191   --
192   --     IMPORTANT NOTE: For derived tagged types this procedure expects
193   --     First_Discriminant and Next_Discriminant to give the correct list
194   --     of discriminants, in the correct order.
195   --
196   --  4. After all the discriminant values have been gathered, we can set the
197   --     Etype of the record aggregate. If Typ contains no discriminants this
198   --     is straightforward: the Etype of N is just Typ, otherwise a new
199   --     implicit constrained subtype of Typ is built to be the Etype of N.
200   --
201   --  5. Gather the remaining record components according to the discriminant
202   --     values. This involves recursively traversing the record type
203   --     structure to see what variants are selected by the given discriminant
204   --     values. This processing is a little more convoluted if Typ is a
205   --     derived tagged types since we need to retrieve the record structure
206   --     of all the ancestors of Typ.
207   --
208   --  6. After gathering the record components we look for their values in the
209   --     record aggregate and emit appropriate error messages should we not
210   --     find such values or should they be duplicated.
211   --
212   --  7. We then make sure no illegal component names appear in the record
213   --     aggregate and make sure that the type of the record components
214   --     appearing in a same choice list is the same. Finally we ensure that
215   --     the others choice, if present, is used to provide the value of at
216   --     least a record component.
217   --
218   --  8. The original aggregate node is replaced with the new named aggregate
219   --     built in steps 3 through 6, as explained earlier.
220   --
221   --  Given the complexity of record aggregate resolution, the primary goal of
222   --  this routine is clarity and simplicity rather than execution and storage
223   --  efficiency. If there are only positional components in the aggregate the
224   --  running time is linear. If there are associations the running time is
225   --  still linear as long as the order of the associations is not too far off
226   --  the order of the components in the record type. If this is not the case
227   --  the running time is at worst quadratic in the size of the association
228   --  list.
229
230   procedure Check_Misspelled_Component
231     (Elements  : Elist_Id;
232      Component : Node_Id);
233   --  Give possible misspelling diagnostic if Component is likely to be a
234   --  misspelling of one of the components of the Assoc_List. This is called
235   --  by Resolve_Aggr_Expr after producing an invalid component error message.
236
237   procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
238   --  An optimization: determine whether a discriminated subtype has a static
239   --  constraint, and contains array components whose length is also static,
240   --  either because they are constrained by the discriminant, or because the
241   --  original component bounds are static.
242
243   -----------------------------------------------------
244   -- Subprograms used for ARRAY AGGREGATE Processing --
245   -----------------------------------------------------
246
247   function Resolve_Array_Aggregate
248     (N              : Node_Id;
249      Index          : Node_Id;
250      Index_Constr   : Node_Id;
251      Component_Typ  : Entity_Id;
252      Others_Allowed : Boolean) return Boolean;
253   --  This procedure performs the semantic checks for an array aggregate.
254   --  True is returned if the aggregate resolution succeeds.
255   --
256   --  The procedure works by recursively checking each nested aggregate.
257   --  Specifically, after checking a sub-aggregate nested at the i-th level
258   --  we recursively check all the subaggregates at the i+1-st level (if any).
259   --  Note that for aggregates analysis and resolution go hand in hand.
260   --  Aggregate analysis has been delayed up to here and it is done while
261   --  resolving the aggregate.
262   --
263   --    N is the current N_Aggregate node to be checked.
264   --
265   --    Index is the index node corresponding to the array sub-aggregate that
266   --    we are currently checking (RM 4.3.3 (8)). Its Etype is the
267   --    corresponding index type (or subtype).
268   --
269   --    Index_Constr is the node giving the applicable index constraint if
270   --    any (RM 4.3.3 (10)). It "is a constraint provided by certain
271   --    contexts [...] that can be used to determine the bounds of the array
272   --    value specified by the aggregate". If Others_Allowed below is False
273   --    there is no applicable index constraint and this node is set to Index.
274   --
275   --    Component_Typ is the array component type.
276   --
277   --    Others_Allowed indicates whether an others choice is allowed
278   --    in the context where the top-level aggregate appeared.
279   --
280   --  The algorithm of Resolve_Array_Aggregate proceeds as follows:
281   --
282   --  1. Make sure that the others choice, if present, is by itself and
283   --     appears last in the sub-aggregate. Check that we do not have
284   --     positional and named components in the array sub-aggregate (unless
285   --     the named association is an others choice). Finally if an others
286   --     choice is present, make sure it is allowed in the aggregate context.
287   --
288   --  2. If the array sub-aggregate contains discrete_choices:
289   --
290   --     (A) Verify their validity. Specifically verify that:
291   --
292   --        (a) If a null range is present it must be the only possible
293   --            choice in the array aggregate.
294   --
295   --        (b) Ditto for a non static range.
296   --
297   --        (c) Ditto for a non static expression.
298   --
299   --        In addition this step analyzes and resolves each discrete_choice,
300   --        making sure that its type is the type of the corresponding Index.
301   --        If we are not at the lowest array aggregate level (in the case of
302   --        multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
303   --        recursively on each component expression. Otherwise, resolve the
304   --        bottom level component expressions against the expected component
305   --        type ONLY IF the component corresponds to a single discrete choice
306   --        which is not an others choice (to see why read the DELAYED
307   --        COMPONENT RESOLUTION below).
308   --
309   --     (B) Determine the bounds of the sub-aggregate and lowest and
310   --         highest choice values.
311   --
312   --  3. For positional aggregates:
313   --
314   --     (A) Loop over the component expressions either recursively invoking
315   --         Resolve_Array_Aggregate on each of these for multi-dimensional
316   --         array aggregates or resolving the bottom level component
317   --         expressions against the expected component type.
318   --
319   --     (B) Determine the bounds of the positional sub-aggregates.
320   --
321   --  4. Try to determine statically whether the evaluation of the array
322   --     sub-aggregate raises Constraint_Error. If yes emit proper
323   --     warnings. The precise checks are the following:
324   --
325   --     (A) Check that the index range defined by aggregate bounds is
326   --         compatible with corresponding index subtype.
327   --         We also check against the base type. In fact it could be that
328   --         Low/High bounds of the base type are static whereas those of
329   --         the index subtype are not. Thus if we can statically catch
330   --         a problem with respect to the base type we are guaranteed
331   --         that the same problem will arise with the index subtype
332   --
333   --     (B) If we are dealing with a named aggregate containing an others
334   --         choice and at least one discrete choice then make sure the range
335   --         specified by the discrete choices does not overflow the
336   --         aggregate bounds. We also check against the index type and base
337   --         type bounds for the same reasons given in (A).
338   --
339   --     (C) If we are dealing with a positional aggregate with an others
340   --         choice make sure the number of positional elements specified
341   --         does not overflow the aggregate bounds. We also check against
342   --         the index type and base type bounds as mentioned in (A).
343   --
344   --     Finally construct an N_Range node giving the sub-aggregate bounds.
345   --     Set the Aggregate_Bounds field of the sub-aggregate to be this
346   --     N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
347   --     to build the appropriate aggregate subtype. Aggregate_Bounds
348   --     information is needed during expansion.
349   --
350   --  DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
351   --  expressions in an array aggregate may call Duplicate_Subexpr or some
352   --  other routine that inserts code just outside the outermost aggregate.
353   --  If the array aggregate contains discrete choices or an others choice,
354   --  this may be wrong. Consider for instance the following example.
355   --
356   --    type Rec is record
357   --       V : Integer := 0;
358   --    end record;
359   --
360   --    type Acc_Rec is access Rec;
361   --    Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
362   --
363   --  Then the transformation of "new Rec" that occurs during resolution
364   --  entails the following code modifications
365   --
366   --    P7b : constant Acc_Rec := new Rec;
367   --    RecIP (P7b.all);
368   --    Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
369   --
370   --  This code transformation is clearly wrong, since we need to call
371   --  "new Rec" for each of the 3 array elements. To avoid this problem we
372   --  delay resolution of the components of non positional array aggregates
373   --  to the expansion phase. As an optimization, if the discrete choice
374   --  specifies a single value we do not delay resolution.
375
376   function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
377   --  This routine returns the type or subtype of an array aggregate.
378   --
379   --    N is the array aggregate node whose type we return.
380   --
381   --    Typ is the context type in which N occurs.
382   --
383   --  This routine creates an implicit array subtype whose bounds are
384   --  those defined by the aggregate. When this routine is invoked
385   --  Resolve_Array_Aggregate has already processed aggregate N. Thus the
386   --  Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
387   --  sub-aggregate bounds. When building the aggregate itype, this function
388   --  traverses the array aggregate N collecting such Aggregate_Bounds and
389   --  constructs the proper array aggregate itype.
390   --
391   --  Note that in the case of multidimensional aggregates each inner
392   --  sub-aggregate corresponding to a given array dimension, may provide a
393   --  different bounds. If it is possible to determine statically that
394   --  some sub-aggregates corresponding to the same index do not have the
395   --  same bounds, then a warning is emitted. If such check is not possible
396   --  statically (because some sub-aggregate bounds are dynamic expressions)
397   --  then this job is left to the expander. In all cases the particular
398   --  bounds that this function will chose for a given dimension is the first
399   --  N_Range node for a sub-aggregate corresponding to that dimension.
400   --
401   --  Note that the Raises_Constraint_Error flag of an array aggregate
402   --  whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
403   --  is set in Resolve_Array_Aggregate but the aggregate is not
404   --  immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
405   --  first construct the proper itype for the aggregate (Gigi needs
406   --  this). After constructing the proper itype we will eventually replace
407   --  the top-level aggregate with a raise CE (done in Resolve_Aggregate).
408   --  Of course in cases such as:
409   --
410   --     type Arr is array (integer range <>) of Integer;
411   --     A : Arr := (positive range -1 .. 2 => 0);
412   --
413   --  The bounds of the aggregate itype are cooked up to look reasonable
414   --  (in this particular case the bounds will be 1 .. 2).
415
416   procedure Make_String_Into_Aggregate (N : Node_Id);
417   --  A string literal can appear in a context in which a one dimensional
418   --  array of characters is expected. This procedure simply rewrites the
419   --  string as an aggregate, prior to resolution.
420
421   ---------------------------------
422   --  Delta aggregate processing --
423   ---------------------------------
424
425   procedure Resolve_Delta_Array_Aggregate  (N : Node_Id; Typ : Entity_Id);
426   procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
427
428   ------------------------
429   -- Array_Aggr_Subtype --
430   ------------------------
431
432   function Array_Aggr_Subtype
433     (N   : Node_Id;
434      Typ : Entity_Id) return Entity_Id
435   is
436      Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
437      --  Number of aggregate index dimensions
438
439      Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
440      --  Constrained N_Range of each index dimension in our aggregate itype
441
442      Aggr_Low  : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
443      Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
444      --  Low and High bounds for each index dimension in our aggregate itype
445
446      Is_Fully_Positional : Boolean := True;
447
448      procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
449      --  N is an array (sub-)aggregate. Dim is the dimension corresponding
450      --  to (sub-)aggregate N. This procedure collects and removes the side
451      --  effects of the constrained N_Range nodes corresponding to each index
452      --  dimension of our aggregate itype. These N_Range nodes are collected
453      --  in Aggr_Range above.
454      --
455      --  Likewise collect in Aggr_Low & Aggr_High above the low and high
456      --  bounds of each index dimension. If, when collecting, two bounds
457      --  corresponding to the same dimension are static and found to differ,
458      --  then emit a warning, and mark N as raising Constraint_Error.
459
460      -------------------------
461      -- Collect_Aggr_Bounds --
462      -------------------------
463
464      procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
465         This_Range : constant Node_Id := Aggregate_Bounds (N);
466         --  The aggregate range node of this specific sub-aggregate
467
468         This_Low  : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
469         This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
470         --  The aggregate bounds of this specific sub-aggregate
471
472         Assoc : Node_Id;
473         Expr  : Node_Id;
474
475      begin
476         Remove_Side_Effects (This_Low,  Variable_Ref => True);
477         Remove_Side_Effects (This_High, Variable_Ref => True);
478
479         --  Collect the first N_Range for a given dimension that you find.
480         --  For a given dimension they must be all equal anyway.
481
482         if No (Aggr_Range (Dim)) then
483            Aggr_Low (Dim)   := This_Low;
484            Aggr_High (Dim)  := This_High;
485            Aggr_Range (Dim) := This_Range;
486
487         else
488            if Compile_Time_Known_Value (This_Low) then
489               if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
490                  Aggr_Low (Dim) := This_Low;
491
492               elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
493                  Set_Raises_Constraint_Error (N);
494                  Error_Msg_Warn := SPARK_Mode /= On;
495                  Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
496                  Error_Msg_N ("\Constraint_Error [<<", N);
497               end if;
498            end if;
499
500            if Compile_Time_Known_Value (This_High) then
501               if not Compile_Time_Known_Value (Aggr_High (Dim)) then
502                  Aggr_High (Dim) := This_High;
503
504               elsif
505                 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
506               then
507                  Set_Raises_Constraint_Error (N);
508                  Error_Msg_Warn := SPARK_Mode /= On;
509                  Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
510                  Error_Msg_N ("\Constraint_Error [<<", N);
511               end if;
512            end if;
513         end if;
514
515         if Dim < Aggr_Dimension then
516
517            --  Process positional components
518
519            if Present (Expressions (N)) then
520               Expr := First (Expressions (N));
521               while Present (Expr) loop
522                  Collect_Aggr_Bounds (Expr, Dim + 1);
523                  Next (Expr);
524               end loop;
525            end if;
526
527            --  Process component associations
528
529            if Present (Component_Associations (N)) then
530               Is_Fully_Positional := False;
531
532               Assoc := First (Component_Associations (N));
533               while Present (Assoc) loop
534                  Expr := Expression (Assoc);
535                  Collect_Aggr_Bounds (Expr, Dim + 1);
536                  Next (Assoc);
537               end loop;
538            end if;
539         end if;
540      end Collect_Aggr_Bounds;
541
542      --  Array_Aggr_Subtype variables
543
544      Itype : Entity_Id;
545      --  The final itype of the overall aggregate
546
547      Index_Constraints : constant List_Id := New_List;
548      --  The list of index constraints of the aggregate itype
549
550   --  Start of processing for Array_Aggr_Subtype
551
552   begin
553      --  Make sure that the list of index constraints is properly attached to
554      --  the tree, and then collect the aggregate bounds.
555
556      Set_Parent (Index_Constraints, N);
557      Collect_Aggr_Bounds (N, 1);
558
559      --  Build the list of constrained indexes of our aggregate itype
560
561      for J in 1 .. Aggr_Dimension loop
562         Create_Index : declare
563            Index_Base : constant Entity_Id :=
564                           Base_Type (Etype (Aggr_Range (J)));
565            Index_Typ  : Entity_Id;
566
567         begin
568            --  Construct the Index subtype, and associate it with the range
569            --  construct that generates it.
570
571            Index_Typ :=
572              Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
573
574            Set_Etype (Index_Typ, Index_Base);
575
576            if Is_Character_Type (Index_Base) then
577               Set_Is_Character_Type (Index_Typ);
578            end if;
579
580            Set_Size_Info      (Index_Typ,                (Index_Base));
581            Set_RM_Size        (Index_Typ, RM_Size        (Index_Base));
582            Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
583            Set_Scalar_Range   (Index_Typ, Aggr_Range (J));
584
585            if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
586               Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
587            end if;
588
589            Set_Etype (Aggr_Range (J), Index_Typ);
590
591            Append (Aggr_Range (J), To => Index_Constraints);
592         end Create_Index;
593      end loop;
594
595      --  Now build the Itype
596
597      Itype := Create_Itype (E_Array_Subtype, N);
598
599      Set_First_Rep_Item         (Itype, First_Rep_Item        (Typ));
600      Set_Convention             (Itype, Convention            (Typ));
601      Set_Depends_On_Private     (Itype, Has_Private_Component (Typ));
602      Set_Etype                  (Itype, Base_Type             (Typ));
603      Set_Has_Alignment_Clause   (Itype, Has_Alignment_Clause  (Typ));
604      Set_Is_Aliased             (Itype, Is_Aliased            (Typ));
605      Set_Depends_On_Private     (Itype, Depends_On_Private    (Typ));
606
607      Copy_Suppress_Status (Index_Check,  Typ, Itype);
608      Copy_Suppress_Status (Length_Check, Typ, Itype);
609
610      Set_First_Index    (Itype, First (Index_Constraints));
611      Set_Is_Constrained (Itype, True);
612      Set_Is_Internal    (Itype, True);
613
614      --  A simple optimization: purely positional aggregates of static
615      --  components should be passed to gigi unexpanded whenever possible, and
616      --  regardless of the staticness of the bounds themselves. Subsequent
617      --  checks in exp_aggr verify that type is not packed, etc.
618
619      Set_Size_Known_At_Compile_Time
620        (Itype,
621         Is_Fully_Positional
622           and then Comes_From_Source (N)
623           and then Size_Known_At_Compile_Time (Component_Type (Typ)));
624
625      --  We always need a freeze node for a packed array subtype, so that we
626      --  can build the Packed_Array_Impl_Type corresponding to the subtype. If
627      --  expansion is disabled, the packed array subtype is not built, and we
628      --  must not generate a freeze node for the type, or else it will appear
629      --  incomplete to gigi.
630
631      if Is_Packed (Itype)
632        and then not In_Spec_Expression
633        and then Expander_Active
634      then
635         Freeze_Itype (Itype, N);
636      end if;
637
638      return Itype;
639   end Array_Aggr_Subtype;
640
641   --------------------------------
642   -- Check_Misspelled_Component --
643   --------------------------------
644
645   procedure Check_Misspelled_Component
646     (Elements  : Elist_Id;
647      Component : Node_Id)
648   is
649      Max_Suggestions   : constant := 2;
650
651      Nr_Of_Suggestions : Natural := 0;
652      Suggestion_1      : Entity_Id := Empty;
653      Suggestion_2      : Entity_Id := Empty;
654      Component_Elmt    : Elmt_Id;
655
656   begin
657      --  All the components of List are matched against Component and a count
658      --  is maintained of possible misspellings. When at the end of the
659      --  analysis there are one or two (not more) possible misspellings,
660      --  these misspellings will be suggested as possible corrections.
661
662      Component_Elmt := First_Elmt (Elements);
663      while Nr_Of_Suggestions <= Max_Suggestions
664        and then Present (Component_Elmt)
665      loop
666         if Is_Bad_Spelling_Of
667              (Chars (Node (Component_Elmt)),
668               Chars (Component))
669         then
670            Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
671
672            case Nr_Of_Suggestions is
673               when 1      => Suggestion_1 := Node (Component_Elmt);
674               when 2      => Suggestion_2 := Node (Component_Elmt);
675               when others => null;
676            end case;
677         end if;
678
679         Next_Elmt (Component_Elmt);
680      end loop;
681
682      --  Report at most two suggestions
683
684      if Nr_Of_Suggestions = 1 then
685         Error_Msg_NE -- CODEFIX
686           ("\possible misspelling of&", Component, Suggestion_1);
687
688      elsif Nr_Of_Suggestions = 2 then
689         Error_Msg_Node_2 := Suggestion_2;
690         Error_Msg_NE -- CODEFIX
691           ("\possible misspelling of& or&", Component, Suggestion_1);
692      end if;
693   end Check_Misspelled_Component;
694
695   ----------------------------------------
696   -- Check_Expr_OK_In_Limited_Aggregate --
697   ----------------------------------------
698
699   procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
700   begin
701      if Is_Limited_Type (Etype (Expr))
702         and then Comes_From_Source (Expr)
703      then
704         if In_Instance_Body or else In_Inlined_Body then
705            null;
706
707         elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
708            Error_Msg_N
709              ("initialization not allowed for limited types", Expr);
710            Explain_Limited_Type (Etype (Expr), Expr);
711         end if;
712      end if;
713   end Check_Expr_OK_In_Limited_Aggregate;
714
715   -------------------------------
716   -- Check_Qualified_Aggregate --
717   -------------------------------
718
719   procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id) is
720      Comp_Expr : Node_Id;
721      Comp_Assn : Node_Id;
722
723   begin
724      if Level = 0 then
725         if Nkind (Parent (Expr)) /= N_Qualified_Expression then
726            Check_SPARK_05_Restriction ("aggregate should be qualified", Expr);
727         end if;
728
729      else
730         Comp_Expr := First (Expressions (Expr));
731         while Present (Comp_Expr) loop
732            if Nkind (Comp_Expr) = N_Aggregate then
733               Check_Qualified_Aggregate (Level - 1, Comp_Expr);
734            end if;
735
736            Comp_Expr := Next (Comp_Expr);
737         end loop;
738
739         Comp_Assn := First (Component_Associations (Expr));
740         while Present (Comp_Assn) loop
741            Comp_Expr := Expression (Comp_Assn);
742
743            if Nkind (Comp_Expr) = N_Aggregate then
744               Check_Qualified_Aggregate (Level - 1, Comp_Expr);
745            end if;
746
747            Comp_Assn := Next (Comp_Assn);
748         end loop;
749      end if;
750   end Check_Qualified_Aggregate;
751
752   ----------------------------------------
753   -- Check_Static_Discriminated_Subtype --
754   ----------------------------------------
755
756   procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
757      Disc : constant Entity_Id := First_Discriminant (T);
758      Comp : Entity_Id;
759      Ind  : Entity_Id;
760
761   begin
762      if Has_Record_Rep_Clause (T) then
763         return;
764
765      elsif Present (Next_Discriminant (Disc)) then
766         return;
767
768      elsif Nkind (V) /= N_Integer_Literal then
769         return;
770      end if;
771
772      Comp := First_Component (T);
773      while Present (Comp) loop
774         if Is_Scalar_Type (Etype (Comp)) then
775            null;
776
777         elsif Is_Private_Type (Etype (Comp))
778           and then Present (Full_View (Etype (Comp)))
779           and then Is_Scalar_Type (Full_View (Etype (Comp)))
780         then
781            null;
782
783         elsif Is_Array_Type (Etype (Comp)) then
784            if Is_Bit_Packed_Array (Etype (Comp)) then
785               return;
786            end if;
787
788            Ind := First_Index (Etype (Comp));
789            while Present (Ind) loop
790               if Nkind (Ind) /= N_Range
791                 or else Nkind (Low_Bound (Ind))  /= N_Integer_Literal
792                 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
793               then
794                  return;
795               end if;
796
797               Next_Index (Ind);
798            end loop;
799
800         else
801            return;
802         end if;
803
804         Next_Component (Comp);
805      end loop;
806
807      --  On exit, all components have statically known sizes
808
809      Set_Size_Known_At_Compile_Time (T);
810   end Check_Static_Discriminated_Subtype;
811
812   -------------------------
813   -- Is_Others_Aggregate --
814   -------------------------
815
816   function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
817   begin
818      return No (Expressions (Aggr))
819        and then
820          Nkind (First (Choice_List (First (Component_Associations (Aggr))))) =
821            N_Others_Choice;
822   end Is_Others_Aggregate;
823
824   ----------------------------
825   -- Is_Top_Level_Aggregate --
826   ----------------------------
827
828   function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean is
829   begin
830      return Nkind (Parent (Expr)) /= N_Aggregate
831        and then (Nkind (Parent (Expr)) /= N_Component_Association
832                   or else Nkind (Parent (Parent (Expr))) /= N_Aggregate);
833   end Is_Top_Level_Aggregate;
834
835   --------------------------------
836   -- Make_String_Into_Aggregate --
837   --------------------------------
838
839   procedure Make_String_Into_Aggregate (N : Node_Id) is
840      Exprs  : constant List_Id    := New_List;
841      Loc    : constant Source_Ptr := Sloc (N);
842      Str    : constant String_Id  := Strval (N);
843      Strlen : constant Nat        := String_Length (Str);
844      C      : Char_Code;
845      C_Node : Node_Id;
846      New_N  : Node_Id;
847      P      : Source_Ptr;
848
849   begin
850      P := Loc + 1;
851      for J in  1 .. Strlen loop
852         C := Get_String_Char (Str, J);
853         Set_Character_Literal_Name (C);
854
855         C_Node :=
856           Make_Character_Literal (P,
857             Chars              => Name_Find,
858             Char_Literal_Value => UI_From_CC (C));
859         Set_Etype (C_Node, Any_Character);
860         Append_To (Exprs, C_Node);
861
862         P := P + 1;
863         --  Something special for wide strings???
864      end loop;
865
866      New_N := Make_Aggregate (Loc, Expressions => Exprs);
867      Set_Analyzed (New_N);
868      Set_Etype (New_N, Any_Composite);
869
870      Rewrite (N, New_N);
871   end Make_String_Into_Aggregate;
872
873   -----------------------
874   -- Resolve_Aggregate --
875   -----------------------
876
877   procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
878      Loc   : constant Source_Ptr := Sloc (N);
879      Pkind : constant Node_Kind  := Nkind (Parent (N));
880
881      Aggr_Subtyp : Entity_Id;
882      --  The actual aggregate subtype. This is not necessarily the same as Typ
883      --  which is the subtype of the context in which the aggregate was found.
884
885   begin
886      --  Ignore junk empty aggregate resulting from parser error
887
888      if No (Expressions (N))
889        and then No (Component_Associations (N))
890        and then not Null_Record_Present (N)
891      then
892         return;
893      end if;
894
895      --  If the aggregate has box-initialized components, its type must be
896      --  frozen so that initialization procedures can properly be called
897      --  in the resolution that follows.  The replacement of boxes with
898      --  initialization calls is properly an expansion activity but it must
899      --  be done during resolution.
900
901      if Expander_Active
902        and then Present (Component_Associations (N))
903      then
904         declare
905            Comp : Node_Id;
906
907         begin
908            Comp := First (Component_Associations (N));
909            while Present (Comp) loop
910               if Box_Present (Comp) then
911                  Insert_Actions (N, Freeze_Entity (Typ, N));
912                  exit;
913               end if;
914
915               Next (Comp);
916            end loop;
917         end;
918      end if;
919
920      --  An unqualified aggregate is restricted in SPARK to:
921
922      --    An aggregate item inside an aggregate for a multi-dimensional array
923
924      --    An expression being assigned to an unconstrained array, but only if
925      --    the aggregate specifies a value for OTHERS only.
926
927      if Nkind (Parent (N)) = N_Qualified_Expression then
928         if Is_Array_Type (Typ) then
929            Check_Qualified_Aggregate (Number_Dimensions (Typ), N);
930         else
931            Check_Qualified_Aggregate (1, N);
932         end if;
933      else
934         if Is_Array_Type (Typ)
935           and then Nkind (Parent (N)) = N_Assignment_Statement
936           and then not Is_Constrained (Etype (Name (Parent (N))))
937         then
938            if not Is_Others_Aggregate (N) then
939               Check_SPARK_05_Restriction
940                 ("array aggregate should have only OTHERS", N);
941            end if;
942
943         elsif Is_Top_Level_Aggregate (N) then
944            Check_SPARK_05_Restriction ("aggregate should be qualified", N);
945
946         --  The legality of this unqualified aggregate is checked by calling
947         --  Check_Qualified_Aggregate from one of its enclosing aggregate,
948         --  unless one of these already causes an error to be issued.
949
950         else
951            null;
952         end if;
953      end if;
954
955      --  Check for aggregates not allowed in configurable run-time mode.
956      --  We allow all cases of aggregates that do not come from source, since
957      --  these are all assumed to be small (e.g. bounds of a string literal).
958      --  We also allow aggregates of types we know to be small.
959
960      if not Support_Aggregates_On_Target
961        and then Comes_From_Source (N)
962        and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
963      then
964         Error_Msg_CRT ("aggregate", N);
965      end if;
966
967      --  Ada 2005 (AI-287): Limited aggregates allowed
968
969      --  In an instance, ignore aggregate subcomponents tnat may be limited,
970      --  because they originate in view conflicts. If the original aggregate
971      --  is legal and the actuals are legal, the aggregate itself is legal.
972
973      if Is_Limited_Type (Typ)
974        and then Ada_Version < Ada_2005
975        and then not In_Instance
976      then
977         Error_Msg_N ("aggregate type cannot be limited", N);
978         Explain_Limited_Type (Typ, N);
979
980      elsif Is_Class_Wide_Type (Typ) then
981         Error_Msg_N ("type of aggregate cannot be class-wide", N);
982
983      elsif Typ = Any_String
984        or else Typ = Any_Composite
985      then
986         Error_Msg_N ("no unique type for aggregate", N);
987         Set_Etype (N, Any_Composite);
988
989      elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
990         Error_Msg_N ("null record forbidden in array aggregate", N);
991
992      elsif Is_Record_Type (Typ) then
993         Resolve_Record_Aggregate (N, Typ);
994
995      elsif Is_Array_Type (Typ) then
996
997         --  First a special test, for the case of a positional aggregate of
998         --  characters which can be replaced by a string literal.
999
1000         --  Do not perform this transformation if this was a string literal
1001         --  to start with, whose components needed constraint checks, or if
1002         --  the component type is non-static, because it will require those
1003         --  checks and be transformed back into an aggregate. If the index
1004         --  type is not Integer the aggregate may represent a user-defined
1005         --  string type but the context might need the original type so we
1006         --  do not perform the transformation at this point.
1007
1008         if Number_Dimensions (Typ) = 1
1009           and then Is_Standard_Character_Type (Component_Type (Typ))
1010           and then No (Component_Associations (N))
1011           and then not Is_Limited_Composite (Typ)
1012           and then not Is_Private_Composite (Typ)
1013           and then not Is_Bit_Packed_Array (Typ)
1014           and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
1015           and then Is_OK_Static_Subtype (Component_Type (Typ))
1016           and then Base_Type (Etype (First_Index (Typ))) =
1017                      Base_Type (Standard_Integer)
1018         then
1019            declare
1020               Expr : Node_Id;
1021
1022            begin
1023               Expr := First (Expressions (N));
1024               while Present (Expr) loop
1025                  exit when Nkind (Expr) /= N_Character_Literal;
1026                  Next (Expr);
1027               end loop;
1028
1029               if No (Expr) then
1030                  Start_String;
1031
1032                  Expr := First (Expressions (N));
1033                  while Present (Expr) loop
1034                     Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
1035                     Next (Expr);
1036                  end loop;
1037
1038                  Rewrite (N, Make_String_Literal (Loc, End_String));
1039
1040                  Analyze_And_Resolve (N, Typ);
1041                  return;
1042               end if;
1043            end;
1044         end if;
1045
1046         --  Here if we have a real aggregate to deal with
1047
1048         Array_Aggregate : declare
1049            Aggr_Resolved : Boolean;
1050
1051            Aggr_Typ : constant Entity_Id := Etype (Typ);
1052            --  This is the unconstrained array type, which is the type against
1053            --  which the aggregate is to be resolved. Typ itself is the array
1054            --  type of the context which may not be the same subtype as the
1055            --  subtype for the final aggregate.
1056
1057         begin
1058            --  In the following we determine whether an OTHERS choice is
1059            --  allowed inside the array aggregate. The test checks the context
1060            --  in which the array aggregate occurs. If the context does not
1061            --  permit it, or the aggregate type is unconstrained, an OTHERS
1062            --  choice is not allowed (except that it is always allowed on the
1063            --  right-hand side of an assignment statement; in this case the
1064            --  constrainedness of the type doesn't matter).
1065
1066            --  If expansion is disabled (generic context, or semantics-only
1067            --  mode) actual subtypes cannot be constructed, and the type of an
1068            --  object may be its unconstrained nominal type. However, if the
1069            --  context is an assignment, we assume that OTHERS is allowed,
1070            --  because the target of the assignment will have a constrained
1071            --  subtype when fully compiled.
1072
1073            --  Note that there is no node for Explicit_Actual_Parameter.
1074            --  To test for this context we therefore have to test for node
1075            --  N_Parameter_Association which itself appears only if there is a
1076            --  formal parameter. Consequently we also need to test for
1077            --  N_Procedure_Call_Statement or N_Function_Call.
1078
1079            --  The context may be an N_Reference node, created by expansion.
1080            --  Legality of the others clause was established in the source,
1081            --  so the context is legal.
1082
1083            Set_Etype (N, Aggr_Typ);  --  May be overridden later on
1084
1085            if Pkind = N_Assignment_Statement
1086              or else (Is_Constrained (Typ)
1087                        and then
1088                          (Pkind = N_Parameter_Association     or else
1089                           Pkind = N_Function_Call             or else
1090                           Pkind = N_Procedure_Call_Statement  or else
1091                           Pkind = N_Generic_Association       or else
1092                           Pkind = N_Formal_Object_Declaration or else
1093                           Pkind = N_Simple_Return_Statement   or else
1094                           Pkind = N_Object_Declaration        or else
1095                           Pkind = N_Component_Declaration     or else
1096                           Pkind = N_Parameter_Specification   or else
1097                           Pkind = N_Qualified_Expression      or else
1098                           Pkind = N_Reference                 or else
1099                           Pkind = N_Aggregate                 or else
1100                           Pkind = N_Extension_Aggregate       or else
1101                           Pkind = N_Component_Association))
1102            then
1103               Aggr_Resolved :=
1104                 Resolve_Array_Aggregate
1105                   (N,
1106                    Index          => First_Index (Aggr_Typ),
1107                    Index_Constr   => First_Index (Typ),
1108                    Component_Typ  => Component_Type (Typ),
1109                    Others_Allowed => True);
1110            else
1111               Aggr_Resolved :=
1112                 Resolve_Array_Aggregate
1113                   (N,
1114                    Index          => First_Index (Aggr_Typ),
1115                    Index_Constr   => First_Index (Aggr_Typ),
1116                    Component_Typ  => Component_Type (Typ),
1117                    Others_Allowed => False);
1118            end if;
1119
1120            if not Aggr_Resolved then
1121
1122               --  A parenthesized expression may have been intended as an
1123               --  aggregate, leading to a type error when analyzing the
1124               --  component. This can also happen for a nested component
1125               --  (see Analyze_Aggr_Expr).
1126
1127               if Paren_Count (N) > 0 then
1128                  Error_Msg_N
1129                    ("positional aggregate cannot have one component", N);
1130               end if;
1131
1132               Aggr_Subtyp := Any_Composite;
1133
1134            else
1135               Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1136            end if;
1137
1138            Set_Etype (N, Aggr_Subtyp);
1139         end Array_Aggregate;
1140
1141      elsif Is_Private_Type (Typ)
1142        and then Present (Full_View (Typ))
1143        and then (In_Inlined_Body or In_Instance_Body)
1144        and then Is_Composite_Type (Full_View (Typ))
1145      then
1146         Resolve (N, Full_View (Typ));
1147
1148      else
1149         Error_Msg_N ("illegal context for aggregate", N);
1150      end if;
1151
1152      --  If we can determine statically that the evaluation of the aggregate
1153      --  raises Constraint_Error, then replace the aggregate with an
1154      --  N_Raise_Constraint_Error node, but set the Etype to the right
1155      --  aggregate subtype. Gigi needs this.
1156
1157      if Raises_Constraint_Error (N) then
1158         Aggr_Subtyp := Etype (N);
1159         Rewrite (N,
1160           Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1161         Set_Raises_Constraint_Error (N);
1162         Set_Etype (N, Aggr_Subtyp);
1163         Set_Analyzed (N);
1164      end if;
1165
1166      Check_Function_Writable_Actuals (N);
1167   end Resolve_Aggregate;
1168
1169   -----------------------------
1170   -- Resolve_Array_Aggregate --
1171   -----------------------------
1172
1173   function Resolve_Array_Aggregate
1174     (N              : Node_Id;
1175      Index          : Node_Id;
1176      Index_Constr   : Node_Id;
1177      Component_Typ  : Entity_Id;
1178      Others_Allowed : Boolean) return Boolean
1179   is
1180      Loc : constant Source_Ptr := Sloc (N);
1181
1182      Failure : constant Boolean := False;
1183      Success : constant Boolean := True;
1184
1185      Index_Typ      : constant Entity_Id := Etype (Index);
1186      Index_Typ_Low  : constant Node_Id   := Type_Low_Bound  (Index_Typ);
1187      Index_Typ_High : constant Node_Id   := Type_High_Bound (Index_Typ);
1188      --  The type of the index corresponding to the array sub-aggregate along
1189      --  with its low and upper bounds.
1190
1191      Index_Base      : constant Entity_Id := Base_Type (Index_Typ);
1192      Index_Base_Low  : constant Node_Id   := Type_Low_Bound (Index_Base);
1193      Index_Base_High : constant Node_Id   := Type_High_Bound (Index_Base);
1194      --  Ditto for the base type
1195
1196      Others_Present : Boolean := False;
1197
1198      Nb_Choices : Nat := 0;
1199      --  Contains the overall number of named choices in this sub-aggregate
1200
1201      function Add (Val : Uint; To : Node_Id) return Node_Id;
1202      --  Creates a new expression node where Val is added to expression To.
1203      --  Tries to constant fold whenever possible. To must be an already
1204      --  analyzed expression.
1205
1206      procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1207      --  Checks that AH (the upper bound of an array aggregate) is less than
1208      --  or equal to BH (the upper bound of the index base type). If the check
1209      --  fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1210      --  set, and AH is replaced with a duplicate of BH.
1211
1212      procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1213      --  Checks that range AL .. AH is compatible with range L .. H. Emits a
1214      --  warning if not and sets the Raises_Constraint_Error flag in N.
1215
1216      procedure Check_Length (L, H : Node_Id; Len : Uint);
1217      --  Checks that range L .. H contains at least Len elements. Emits a
1218      --  warning if not and sets the Raises_Constraint_Error flag in N.
1219
1220      function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1221      --  Returns True if range L .. H is dynamic or null
1222
1223      procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1224      --  Given expression node From, this routine sets OK to False if it
1225      --  cannot statically evaluate From. Otherwise it stores this static
1226      --  value into Value.
1227
1228      function Resolve_Aggr_Expr
1229        (Expr        : Node_Id;
1230         Single_Elmt : Boolean) return Boolean;
1231      --  Resolves aggregate expression Expr. Returns False if resolution
1232      --  fails. If Single_Elmt is set to False, the expression Expr may be
1233      --  used to initialize several array aggregate elements (this can happen
1234      --  for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1235      --  In this event we do not resolve Expr unless expansion is disabled.
1236      --  To know why, see the DELAYED COMPONENT RESOLUTION note above.
1237      --
1238      --  NOTE: In the case of "... => <>", we pass the in the
1239      --  N_Component_Association node as Expr, since there is no Expression in
1240      --  that case, and we need a Sloc for the error message.
1241
1242      procedure Resolve_Iterated_Component_Association
1243        (N         : Node_Id;
1244         Index_Typ : Entity_Id);
1245      --  For AI12-061
1246
1247      ---------
1248      -- Add --
1249      ---------
1250
1251      function Add (Val : Uint; To : Node_Id) return Node_Id is
1252         Expr_Pos : Node_Id;
1253         Expr     : Node_Id;
1254         To_Pos   : Node_Id;
1255
1256      begin
1257         if Raises_Constraint_Error (To) then
1258            return To;
1259         end if;
1260
1261         --  First test if we can do constant folding
1262
1263         if Compile_Time_Known_Value (To)
1264           or else Nkind (To) = N_Integer_Literal
1265         then
1266            Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1267            Set_Is_Static_Expression (Expr_Pos);
1268            Set_Etype (Expr_Pos, Etype (To));
1269            Set_Analyzed (Expr_Pos, Analyzed (To));
1270
1271            if not Is_Enumeration_Type (Index_Typ) then
1272               Expr := Expr_Pos;
1273
1274            --  If we are dealing with enumeration return
1275            --     Index_Typ'Val (Expr_Pos)
1276
1277            else
1278               Expr :=
1279                 Make_Attribute_Reference
1280                   (Loc,
1281                    Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1282                    Attribute_Name => Name_Val,
1283                    Expressions    => New_List (Expr_Pos));
1284            end if;
1285
1286            return Expr;
1287         end if;
1288
1289         --  If we are here no constant folding possible
1290
1291         if not Is_Enumeration_Type (Index_Base) then
1292            Expr :=
1293              Make_Op_Add (Loc,
1294                Left_Opnd  => Duplicate_Subexpr (To),
1295                Right_Opnd => Make_Integer_Literal (Loc, Val));
1296
1297         --  If we are dealing with enumeration return
1298         --    Index_Typ'Val (Index_Typ'Pos (To) + Val)
1299
1300         else
1301            To_Pos :=
1302              Make_Attribute_Reference
1303                (Loc,
1304                 Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1305                 Attribute_Name => Name_Pos,
1306                 Expressions    => New_List (Duplicate_Subexpr (To)));
1307
1308            Expr_Pos :=
1309              Make_Op_Add (Loc,
1310                Left_Opnd  => To_Pos,
1311                Right_Opnd => Make_Integer_Literal (Loc, Val));
1312
1313            Expr :=
1314              Make_Attribute_Reference
1315                (Loc,
1316                 Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1317                 Attribute_Name => Name_Val,
1318                 Expressions    => New_List (Expr_Pos));
1319
1320            --  If the index type has a non standard representation, the
1321            --  attributes 'Val and 'Pos expand into function calls and the
1322            --  resulting expression is considered non-safe for reevaluation
1323            --  by the backend. Relocate it into a constant temporary in order
1324            --  to make it safe for reevaluation.
1325
1326            if Has_Non_Standard_Rep (Etype (N)) then
1327               declare
1328                  Def_Id : Entity_Id;
1329
1330               begin
1331                  Def_Id := Make_Temporary (Loc, 'R', Expr);
1332                  Set_Etype (Def_Id, Index_Typ);
1333                  Insert_Action (N,
1334                    Make_Object_Declaration (Loc,
1335                      Defining_Identifier => Def_Id,
1336                      Object_Definition   =>
1337                        New_Occurrence_Of (Index_Typ, Loc),
1338                      Constant_Present    => True,
1339                      Expression          => Relocate_Node (Expr)));
1340
1341                  Expr := New_Occurrence_Of (Def_Id, Loc);
1342               end;
1343            end if;
1344         end if;
1345
1346         return Expr;
1347      end Add;
1348
1349      -----------------
1350      -- Check_Bound --
1351      -----------------
1352
1353      procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1354         Val_BH : Uint;
1355         Val_AH : Uint;
1356
1357         OK_BH : Boolean;
1358         OK_AH : Boolean;
1359
1360      begin
1361         Get (Value => Val_BH, From => BH, OK => OK_BH);
1362         Get (Value => Val_AH, From => AH, OK => OK_AH);
1363
1364         if OK_BH and then OK_AH and then Val_BH < Val_AH then
1365            Set_Raises_Constraint_Error (N);
1366            Error_Msg_Warn := SPARK_Mode /= On;
1367            Error_Msg_N ("upper bound out of range<<", AH);
1368            Error_Msg_N ("\Constraint_Error [<<", AH);
1369
1370            --  You need to set AH to BH or else in the case of enumerations
1371            --  indexes we will not be able to resolve the aggregate bounds.
1372
1373            AH := Duplicate_Subexpr (BH);
1374         end if;
1375      end Check_Bound;
1376
1377      ------------------
1378      -- Check_Bounds --
1379      ------------------
1380
1381      procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1382         Val_L  : Uint;
1383         Val_H  : Uint;
1384         Val_AL : Uint;
1385         Val_AH : Uint;
1386
1387         OK_L : Boolean;
1388         OK_H : Boolean;
1389
1390         OK_AL : Boolean;
1391         OK_AH  : Boolean;
1392         pragma Warnings (Off, OK_AL);
1393         pragma Warnings (Off, OK_AH);
1394
1395      begin
1396         if Raises_Constraint_Error (N)
1397           or else Dynamic_Or_Null_Range (AL, AH)
1398         then
1399            return;
1400         end if;
1401
1402         Get (Value => Val_L, From => L, OK => OK_L);
1403         Get (Value => Val_H, From => H, OK => OK_H);
1404
1405         Get (Value => Val_AL, From => AL, OK => OK_AL);
1406         Get (Value => Val_AH, From => AH, OK => OK_AH);
1407
1408         if OK_L and then Val_L > Val_AL then
1409            Set_Raises_Constraint_Error (N);
1410            Error_Msg_Warn := SPARK_Mode /= On;
1411            Error_Msg_N ("lower bound of aggregate out of range<<", N);
1412            Error_Msg_N ("\Constraint_Error [<<", N);
1413         end if;
1414
1415         if OK_H and then Val_H < Val_AH then
1416            Set_Raises_Constraint_Error (N);
1417            Error_Msg_Warn := SPARK_Mode /= On;
1418            Error_Msg_N ("upper bound of aggregate out of range<<", N);
1419            Error_Msg_N ("\Constraint_Error [<<", N);
1420         end if;
1421      end Check_Bounds;
1422
1423      ------------------
1424      -- Check_Length --
1425      ------------------
1426
1427      procedure Check_Length (L, H : Node_Id; Len : Uint) is
1428         Val_L  : Uint;
1429         Val_H  : Uint;
1430
1431         OK_L  : Boolean;
1432         OK_H  : Boolean;
1433
1434         Range_Len : Uint;
1435
1436      begin
1437         if Raises_Constraint_Error (N) then
1438            return;
1439         end if;
1440
1441         Get (Value => Val_L, From => L, OK => OK_L);
1442         Get (Value => Val_H, From => H, OK => OK_H);
1443
1444         if not OK_L or else not OK_H then
1445            return;
1446         end if;
1447
1448         --  If null range length is zero
1449
1450         if Val_L > Val_H then
1451            Range_Len := Uint_0;
1452         else
1453            Range_Len := Val_H - Val_L + 1;
1454         end if;
1455
1456         if Range_Len < Len then
1457            Set_Raises_Constraint_Error (N);
1458            Error_Msg_Warn := SPARK_Mode /= On;
1459            Error_Msg_N ("too many elements<<", N);
1460            Error_Msg_N ("\Constraint_Error [<<", N);
1461         end if;
1462      end Check_Length;
1463
1464      ---------------------------
1465      -- Dynamic_Or_Null_Range --
1466      ---------------------------
1467
1468      function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1469         Val_L : Uint;
1470         Val_H : Uint;
1471
1472         OK_L  : Boolean;
1473         OK_H  : Boolean;
1474
1475      begin
1476         Get (Value => Val_L, From => L, OK => OK_L);
1477         Get (Value => Val_H, From => H, OK => OK_H);
1478
1479         return not OK_L or else not OK_H
1480           or else not Is_OK_Static_Expression (L)
1481           or else not Is_OK_Static_Expression (H)
1482           or else Val_L > Val_H;
1483      end Dynamic_Or_Null_Range;
1484
1485      ---------
1486      -- Get --
1487      ---------
1488
1489      procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1490      begin
1491         OK := True;
1492
1493         if Compile_Time_Known_Value (From) then
1494            Value := Expr_Value (From);
1495
1496         --  If expression From is something like Some_Type'Val (10) then
1497         --  Value = 10.
1498
1499         elsif Nkind (From) = N_Attribute_Reference
1500           and then Attribute_Name (From) = Name_Val
1501           and then Compile_Time_Known_Value (First (Expressions (From)))
1502         then
1503            Value := Expr_Value (First (Expressions (From)));
1504         else
1505            Value := Uint_0;
1506            OK := False;
1507         end if;
1508      end Get;
1509
1510      -----------------------
1511      -- Resolve_Aggr_Expr --
1512      -----------------------
1513
1514      function Resolve_Aggr_Expr
1515        (Expr        : Node_Id;
1516         Single_Elmt : Boolean) return Boolean
1517      is
1518         Nxt_Ind        : constant Node_Id := Next_Index (Index);
1519         Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1520         --  Index is the current index corresponding to the expression
1521
1522         Resolution_OK : Boolean := True;
1523         --  Set to False if resolution of the expression failed
1524
1525      begin
1526         --  Defend against previous errors
1527
1528         if Nkind (Expr) = N_Error
1529           or else Error_Posted (Expr)
1530         then
1531            return True;
1532         end if;
1533
1534         --  If the array type against which we are resolving the aggregate
1535         --  has several dimensions, the expressions nested inside the
1536         --  aggregate must be further aggregates (or strings).
1537
1538         if Present (Nxt_Ind) then
1539            if Nkind (Expr) /= N_Aggregate then
1540
1541               --  A string literal can appear where a one-dimensional array
1542               --  of characters is expected. If the literal looks like an
1543               --  operator, it is still an operator symbol, which will be
1544               --  transformed into a string when analyzed.
1545
1546               if Is_Character_Type (Component_Typ)
1547                 and then No (Next_Index (Nxt_Ind))
1548                 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
1549               then
1550                  --  A string literal used in a multidimensional array
1551                  --  aggregate in place of the final one-dimensional
1552                  --  aggregate must not be enclosed in parentheses.
1553
1554                  if Paren_Count (Expr) /= 0 then
1555                     Error_Msg_N ("no parenthesis allowed here", Expr);
1556                  end if;
1557
1558                  Make_String_Into_Aggregate (Expr);
1559
1560               else
1561                  Error_Msg_N ("nested array aggregate expected", Expr);
1562
1563                  --  If the expression is parenthesized, this may be
1564                  --  a missing component association for a 1-aggregate.
1565
1566                  if Paren_Count (Expr) > 0 then
1567                     Error_Msg_N
1568                       ("\if single-component aggregate is intended, "
1569                        & "write e.g. (1 ='> ...)", Expr);
1570                  end if;
1571
1572                  return Failure;
1573               end if;
1574            end if;
1575
1576            --  If it's "... => <>", nothing to resolve
1577
1578            if Nkind (Expr) = N_Component_Association then
1579               pragma Assert (Box_Present (Expr));
1580               return Success;
1581            end if;
1582
1583            --  Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1584            --  Required to check the null-exclusion attribute (if present).
1585            --  This value may be overridden later on.
1586
1587            Set_Etype (Expr, Etype (N));
1588
1589            Resolution_OK := Resolve_Array_Aggregate
1590              (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1591
1592         else
1593            --  If it's "... => <>", nothing to resolve
1594
1595            if Nkind (Expr) = N_Component_Association then
1596               pragma Assert (Box_Present (Expr));
1597               return Success;
1598            end if;
1599
1600            --  Do not resolve the expressions of discrete or others choices
1601            --  unless the expression covers a single component, or the
1602            --  expander is inactive.
1603
1604            --  In SPARK mode, expressions that can perform side effects will
1605            --  be recognized by the gnat2why back-end, and the whole
1606            --  subprogram will be ignored. So semantic analysis can be
1607            --  performed safely.
1608
1609            if Single_Elmt
1610              or else not Expander_Active
1611              or else In_Spec_Expression
1612            then
1613               Analyze_And_Resolve (Expr, Component_Typ);
1614               Check_Expr_OK_In_Limited_Aggregate (Expr);
1615               Check_Non_Static_Context (Expr);
1616               Aggregate_Constraint_Checks (Expr, Component_Typ);
1617               Check_Unset_Reference (Expr);
1618            end if;
1619         end if;
1620
1621         --  If an aggregate component has a type with predicates, an explicit
1622         --  predicate check must be applied, as for an assignment statement,
1623         --  because the aggegate might not be expanded into individual
1624         --  component assignments. If the expression covers several components
1625         --  the analysis and the predicate check take place later.
1626
1627         if Present (Predicate_Function (Component_Typ))
1628           and then Analyzed (Expr)
1629         then
1630            Apply_Predicate_Check (Expr, Component_Typ);
1631         end if;
1632
1633         if Raises_Constraint_Error (Expr)
1634           and then Nkind (Parent (Expr)) /= N_Component_Association
1635         then
1636            Set_Raises_Constraint_Error (N);
1637         end if;
1638
1639         --  If the expression has been marked as requiring a range check,
1640         --  then generate it here. It's a bit odd to be generating such
1641         --  checks in the analyzer, but harmless since Generate_Range_Check
1642         --  does nothing (other than making sure Do_Range_Check is set) if
1643         --  the expander is not active.
1644
1645         if Do_Range_Check (Expr) then
1646            Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1647         end if;
1648
1649         return Resolution_OK;
1650      end Resolve_Aggr_Expr;
1651
1652      --------------------------------------------
1653      -- Resolve_Iterated_Component_Association --
1654      --------------------------------------------
1655
1656      procedure Resolve_Iterated_Component_Association
1657        (N         : Node_Id;
1658         Index_Typ : Entity_Id)
1659      is
1660         Loc : constant Source_Ptr := Sloc (N);
1661
1662         Choice : Node_Id;
1663         Dummy  : Boolean;
1664         Ent    : Entity_Id;
1665         Expr   : Node_Id;
1666         Id     : Entity_Id;
1667
1668      begin
1669         Choice := First (Discrete_Choices (N));
1670
1671         while Present (Choice) loop
1672            if Nkind (Choice) = N_Others_Choice then
1673               Others_Present := True;
1674
1675            else
1676               Analyze (Choice);
1677
1678               --  Choice can be a subtype name, a range, or an expression
1679
1680               if Is_Entity_Name (Choice)
1681                 and then Is_Type (Entity (Choice))
1682                 and then Base_Type (Entity (Choice)) = Base_Type (Index_Typ)
1683               then
1684                  null;
1685
1686               else
1687                  Analyze_And_Resolve (Choice, Index_Typ);
1688               end if;
1689            end if;
1690
1691            Next (Choice);
1692         end loop;
1693
1694         --  Create a scope in which to introduce an index, which is usually
1695         --  visible in the expression for the component, and needed for its
1696         --  analysis.
1697
1698         Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
1699         Set_Etype  (Ent, Standard_Void_Type);
1700         Set_Parent (Ent, Parent (N));
1701         Push_Scope (Ent);
1702         Id :=
1703           Make_Defining_Identifier (Loc,
1704             Chars => Chars (Defining_Identifier (N)));
1705
1706         --  Insert and decorate the index variable in the current scope.
1707         --  The expression has to be analyzed once the index variable is
1708         --  directly visible. Mark the variable as referenced to prevent
1709         --  spurious warnings, given that subsequent uses of its name in the
1710         --  expression will reference the internal (synonym) loop variable.
1711
1712         Enter_Name (Id);
1713         Set_Etype (Id, Index_Typ);
1714         Set_Ekind (Id, E_Variable);
1715         Set_Scope (Id, Ent);
1716         Set_Referenced (Id);
1717
1718         --  Analyze a copy of the expression, to verify legality. We use
1719         --  a copy because the expression will be analyzed anew when the
1720         --  enclosing aggregate is expanded, and the construct is rewritten
1721         --  as a loop with a new index variable.
1722
1723         Expr := New_Copy_Tree (Expression (N));
1724         Dummy := Resolve_Aggr_Expr (Expr, False);
1725
1726         --  An iterated_component_association may appear in a nested
1727         --  aggregate for a multidimensional structure: preserve the bounds
1728         --  computed for the expression, as well as the anonymous array
1729         --  type generated for it; both are needed during array expansion.
1730         --  This does not work for more than two levels of nesting. ???
1731
1732         if Nkind (Expr) = N_Aggregate then
1733            Set_Aggregate_Bounds (Expression (N), Aggregate_Bounds (Expr));
1734            Set_Etype (Expression (N), Etype (Expr));
1735         end if;
1736
1737         End_Scope;
1738      end Resolve_Iterated_Component_Association;
1739
1740      --  Local variables
1741
1742      Assoc   : Node_Id;
1743      Choice  : Node_Id;
1744      Expr    : Node_Id;
1745      Discard : Node_Id;
1746
1747      Aggr_Low  : Node_Id := Empty;
1748      Aggr_High : Node_Id := Empty;
1749      --  The actual low and high bounds of this sub-aggregate
1750
1751      Case_Table_Size : Nat;
1752      --  Contains the size of the case table needed to sort aggregate choices
1753
1754      Choices_Low  : Node_Id := Empty;
1755      Choices_High : Node_Id := Empty;
1756      --  The lowest and highest discrete choices values for a named aggregate
1757
1758      Delete_Choice : Boolean;
1759      --  Used when replacing a subtype choice with predicate by a list
1760
1761      Nb_Elements : Uint := Uint_0;
1762      --  The number of elements in a positional aggregate
1763
1764      Nb_Discrete_Choices : Nat := 0;
1765      --  The overall number of discrete choices (not counting others choice)
1766
1767   --  Start of processing for Resolve_Array_Aggregate
1768
1769   begin
1770      --  Ignore junk empty aggregate resulting from parser error
1771
1772      if No (Expressions (N))
1773        and then No (Component_Associations (N))
1774        and then not Null_Record_Present (N)
1775      then
1776         return False;
1777      end if;
1778
1779      --  STEP 1: make sure the aggregate is correctly formatted
1780
1781      if Present (Component_Associations (N)) then
1782         Assoc := First (Component_Associations (N));
1783         while Present (Assoc) loop
1784            if Nkind (Assoc) = N_Iterated_Component_Association then
1785               Resolve_Iterated_Component_Association (Assoc, Index_Typ);
1786            end if;
1787
1788            Choice := First (Choice_List (Assoc));
1789            Delete_Choice := False;
1790            while Present (Choice) loop
1791               if Nkind (Choice) = N_Others_Choice then
1792                  Others_Present := True;
1793
1794                  if Choice /= First (Choice_List (Assoc))
1795                    or else Present (Next (Choice))
1796                  then
1797                     Error_Msg_N
1798                       ("OTHERS must appear alone in a choice list", Choice);
1799                     return Failure;
1800                  end if;
1801
1802                  if Present (Next (Assoc)) then
1803                     Error_Msg_N
1804                       ("OTHERS must appear last in an aggregate", Choice);
1805                     return Failure;
1806                  end if;
1807
1808                  if Ada_Version = Ada_83
1809                    and then Assoc /= First (Component_Associations (N))
1810                    and then Nkind_In (Parent (N), N_Assignment_Statement,
1811                                                   N_Object_Declaration)
1812                  then
1813                     Error_Msg_N
1814                       ("(Ada 83) illegal context for OTHERS choice", N);
1815                  end if;
1816
1817               elsif Is_Entity_Name (Choice) then
1818                  Analyze (Choice);
1819
1820                  declare
1821                     E      : constant Entity_Id := Entity (Choice);
1822                     New_Cs : List_Id;
1823                     P      : Node_Id;
1824                     C      : Node_Id;
1825
1826                  begin
1827                     if Is_Type (E) and then Has_Predicates (E) then
1828                        Freeze_Before (N, E);
1829
1830                        if Has_Dynamic_Predicate_Aspect (E) then
1831                           Error_Msg_NE
1832                             ("subtype& has dynamic predicate, not allowed "
1833                              & "in aggregate choice", Choice, E);
1834
1835                        elsif not Is_OK_Static_Subtype (E) then
1836                           Error_Msg_NE
1837                             ("non-static subtype& has predicate, not allowed "
1838                              & "in aggregate choice", Choice, E);
1839                        end if;
1840
1841                        --  If the subtype has a static predicate, replace the
1842                        --  original choice with the list of individual values
1843                        --  covered by the predicate. Do not perform this
1844                        --  transformation if we need to preserve the source
1845                        --  for ASIS use.
1846                        --  This should be deferred to expansion time ???
1847
1848                        if Present (Static_Discrete_Predicate (E))
1849                          and then not ASIS_Mode
1850                        then
1851                           Delete_Choice := True;
1852
1853                           New_Cs := New_List;
1854                           P := First (Static_Discrete_Predicate (E));
1855                           while Present (P) loop
1856                              C := New_Copy (P);
1857                              Set_Sloc (C, Sloc (Choice));
1858                              Append_To (New_Cs, C);
1859                              Next (P);
1860                           end loop;
1861
1862                           Insert_List_After (Choice, New_Cs);
1863                        end if;
1864                     end if;
1865                  end;
1866               end if;
1867
1868               Nb_Choices := Nb_Choices + 1;
1869
1870               declare
1871                  C : constant Node_Id := Choice;
1872
1873               begin
1874                  Next (Choice);
1875
1876                  if Delete_Choice then
1877                     Remove (C);
1878                     Nb_Choices := Nb_Choices - 1;
1879                     Delete_Choice := False;
1880                  end if;
1881               end;
1882            end loop;
1883
1884            Next (Assoc);
1885         end loop;
1886      end if;
1887
1888      --  At this point we know that the others choice, if present, is by
1889      --  itself and appears last in the aggregate. Check if we have mixed
1890      --  positional and discrete associations (other than the others choice).
1891
1892      if Present (Expressions (N))
1893        and then (Nb_Choices > 1
1894                   or else (Nb_Choices = 1 and then not Others_Present))
1895      then
1896         Error_Msg_N
1897           ("named association cannot follow positional association",
1898            First (Choice_List (First (Component_Associations (N)))));
1899         return Failure;
1900      end if;
1901
1902      --  Test for the validity of an others choice if present
1903
1904      if Others_Present and then not Others_Allowed then
1905         Error_Msg_N
1906           ("OTHERS choice not allowed here",
1907            First (Choices (First (Component_Associations (N)))));
1908         return Failure;
1909      end if;
1910
1911      --  Protect against cascaded errors
1912
1913      if Etype (Index_Typ) = Any_Type then
1914         return Failure;
1915      end if;
1916
1917      --  STEP 2: Process named components
1918
1919      if No (Expressions (N)) then
1920         if Others_Present then
1921            Case_Table_Size := Nb_Choices - 1;
1922         else
1923            Case_Table_Size := Nb_Choices;
1924         end if;
1925
1926         Step_2 : declare
1927            function Empty_Range (A : Node_Id) return Boolean;
1928            --  If an association covers an empty range, some warnings on the
1929            --  expression of the association can be disabled.
1930
1931            -----------------
1932            -- Empty_Range --
1933            -----------------
1934
1935            function Empty_Range (A : Node_Id) return Boolean is
1936               R : constant Node_Id := First (Choices (A));
1937            begin
1938               return No (Next (R))
1939                 and then Nkind (R) = N_Range
1940                 and then Compile_Time_Compare
1941                            (Low_Bound (R), High_Bound (R), False) = GT;
1942            end Empty_Range;
1943
1944            --  Local variables
1945
1946            Low  : Node_Id;
1947            High : Node_Id;
1948            --  Denote the lowest and highest values in an aggregate choice
1949
1950            S_Low  : Node_Id := Empty;
1951            S_High : Node_Id := Empty;
1952            --  if a choice in an aggregate is a subtype indication these
1953            --  denote the lowest and highest values of the subtype
1954
1955            Table : Case_Table_Type (0 .. Case_Table_Size);
1956            --  Used to sort all the different choice values. Entry zero is
1957            --  reserved for sorting purposes.
1958
1959            Single_Choice : Boolean;
1960            --  Set to true every time there is a single discrete choice in a
1961            --  discrete association
1962
1963            Prev_Nb_Discrete_Choices : Nat;
1964            --  Used to keep track of the number of discrete choices in the
1965            --  current association.
1966
1967            Errors_Posted_On_Choices : Boolean := False;
1968            --  Keeps track of whether any choices have semantic errors
1969
1970         --  Start of processing for Step_2
1971
1972         begin
1973            --  STEP 2 (A): Check discrete choices validity
1974
1975            Assoc := First (Component_Associations (N));
1976            while Present (Assoc) loop
1977               Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1978               Choice := First (Choice_List (Assoc));
1979
1980               loop
1981                  Analyze (Choice);
1982
1983                  if Nkind (Choice) = N_Others_Choice then
1984                     Single_Choice := False;
1985                     exit;
1986
1987                  --  Test for subtype mark without constraint
1988
1989                  elsif Is_Entity_Name (Choice) and then
1990                    Is_Type (Entity (Choice))
1991                  then
1992                     if Base_Type (Entity (Choice)) /= Index_Base then
1993                        Error_Msg_N
1994                          ("invalid subtype mark in aggregate choice",
1995                           Choice);
1996                        return Failure;
1997                     end if;
1998
1999                  --  Case of subtype indication
2000
2001                  elsif Nkind (Choice) = N_Subtype_Indication then
2002                     Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
2003
2004                     if Has_Dynamic_Predicate_Aspect
2005                       (Entity (Subtype_Mark (Choice)))
2006                     then
2007                        Error_Msg_NE
2008                          ("subtype& has dynamic predicate, "
2009                           & "not allowed in aggregate choice",
2010                           Choice, Entity (Subtype_Mark (Choice)));
2011                     end if;
2012
2013                     --  Does the subtype indication evaluation raise CE?
2014
2015                     Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
2016                     Get_Index_Bounds (Choice, Low, High);
2017                     Check_Bounds (S_Low, S_High, Low, High);
2018
2019                  --  Case of range or expression
2020
2021                  else
2022                     Resolve (Choice, Index_Base);
2023                     Check_Unset_Reference (Choice);
2024                     Check_Non_Static_Context (Choice);
2025
2026                     --  If semantic errors were posted on the choice, then
2027                     --  record that for possible early return from later
2028                     --  processing (see handling of enumeration choices).
2029
2030                     if Error_Posted (Choice) then
2031                        Errors_Posted_On_Choices := True;
2032                     end if;
2033
2034                     --  Do not range check a choice. This check is redundant
2035                     --  since this test is already done when we check that the
2036                     --  bounds of the array aggregate are within range.
2037
2038                     Set_Do_Range_Check (Choice, False);
2039
2040                     --  In SPARK, the choice must be static
2041
2042                     if not (Is_OK_Static_Expression (Choice)
2043                              or else (Nkind (Choice) = N_Range
2044                                        and then Is_OK_Static_Range (Choice)))
2045                     then
2046                        Check_SPARK_05_Restriction
2047                          ("choice should be static", Choice);
2048                     end if;
2049                  end if;
2050
2051                  --  If we could not resolve the discrete choice stop here
2052
2053                  if Etype (Choice) = Any_Type then
2054                     return Failure;
2055
2056                  --  If the discrete choice raises CE get its original bounds
2057
2058                  elsif Nkind (Choice) = N_Raise_Constraint_Error then
2059                     Set_Raises_Constraint_Error (N);
2060                     Get_Index_Bounds (Original_Node (Choice), Low, High);
2061
2062                  --  Otherwise get its bounds as usual
2063
2064                  else
2065                     Get_Index_Bounds (Choice, Low, High);
2066                  end if;
2067
2068                  if (Dynamic_Or_Null_Range (Low, High)
2069                       or else (Nkind (Choice) = N_Subtype_Indication
2070                                 and then
2071                                   Dynamic_Or_Null_Range (S_Low, S_High)))
2072                    and then Nb_Choices /= 1
2073                  then
2074                     Error_Msg_N
2075                       ("dynamic or empty choice in aggregate "
2076                        & "must be the only choice", Choice);
2077                     return Failure;
2078                  end if;
2079
2080                  if not (All_Composite_Constraints_Static (Low)
2081                            and then All_Composite_Constraints_Static (High)
2082                            and then All_Composite_Constraints_Static (S_Low)
2083                            and then All_Composite_Constraints_Static (S_High))
2084                  then
2085                     Check_Restriction (No_Dynamic_Sized_Objects, Choice);
2086                  end if;
2087
2088                  Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
2089                  Table (Nb_Discrete_Choices).Lo := Low;
2090                  Table (Nb_Discrete_Choices).Hi := High;
2091                  Table (Nb_Discrete_Choices).Choice := Choice;
2092
2093                  Next (Choice);
2094
2095                  if No (Choice) then
2096
2097                     --  Check if we have a single discrete choice and whether
2098                     --  this discrete choice specifies a single value.
2099
2100                     Single_Choice :=
2101                       (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
2102                         and then (Low = High);
2103
2104                     exit;
2105                  end if;
2106               end loop;
2107
2108               --  Ada 2005 (AI-231)
2109
2110               if Ada_Version >= Ada_2005
2111                 and then Known_Null (Expression (Assoc))
2112                 and then not Empty_Range (Assoc)
2113               then
2114                  Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2115               end if;
2116
2117               --  Ada 2005 (AI-287): In case of default initialized component
2118               --  we delay the resolution to the expansion phase.
2119
2120               if Box_Present (Assoc) then
2121
2122                  --  Ada 2005 (AI-287): In case of default initialization of a
2123                  --  component the expander will generate calls to the
2124                  --  corresponding initialization subprogram. We need to call
2125                  --  Resolve_Aggr_Expr to check the rules about
2126                  --  dimensionality.
2127
2128                  if not Resolve_Aggr_Expr
2129                           (Assoc, Single_Elmt => Single_Choice)
2130                  then
2131                     return Failure;
2132                  end if;
2133
2134               elsif Nkind (Assoc) = N_Iterated_Component_Association then
2135                  null;   --  handled above, in a loop context.
2136
2137               elsif not Resolve_Aggr_Expr
2138                           (Expression (Assoc), Single_Elmt => Single_Choice)
2139               then
2140                  return Failure;
2141
2142               --  Check incorrect use of dynamically tagged expression
2143
2144               --  We differentiate here two cases because the expression may
2145               --  not be decorated. For example, the analysis and resolution
2146               --  of the expression associated with the others choice will be
2147               --  done later with the full aggregate. In such case we
2148               --  duplicate the expression tree to analyze the copy and
2149               --  perform the required check.
2150
2151               elsif not Present (Etype (Expression (Assoc))) then
2152                  declare
2153                     Save_Analysis : constant Boolean := Full_Analysis;
2154                     Expr          : constant Node_Id :=
2155                                       New_Copy_Tree (Expression (Assoc));
2156
2157                  begin
2158                     Expander_Mode_Save_And_Set (False);
2159                     Full_Analysis := False;
2160
2161                     --  Analyze the expression, making sure it is properly
2162                     --  attached to the tree before we do the analysis.
2163
2164                     Set_Parent (Expr, Parent (Expression (Assoc)));
2165                     Analyze (Expr);
2166
2167                     --  Compute its dimensions now, rather than at the end of
2168                     --  resolution, because in the case of multidimensional
2169                     --  aggregates subsequent expansion may lead to spurious
2170                     --  errors.
2171
2172                     Check_Expression_Dimensions (Expr, Component_Typ);
2173
2174                     --  If the expression is a literal, propagate this info
2175                     --  to the expression in the association, to enable some
2176                     --  optimizations downstream.
2177
2178                     if Is_Entity_Name (Expr)
2179                       and then Present (Entity (Expr))
2180                       and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2181                     then
2182                        Analyze_And_Resolve
2183                          (Expression (Assoc), Component_Typ);
2184                     end if;
2185
2186                     Full_Analysis := Save_Analysis;
2187                     Expander_Mode_Restore;
2188
2189                     if Is_Tagged_Type (Etype (Expr)) then
2190                        Check_Dynamically_Tagged_Expression
2191                          (Expr => Expr,
2192                           Typ  => Component_Type (Etype (N)),
2193                           Related_Nod => N);
2194                     end if;
2195                  end;
2196
2197               elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2198                  Check_Dynamically_Tagged_Expression
2199                    (Expr        => Expression (Assoc),
2200                     Typ         => Component_Type (Etype (N)),
2201                     Related_Nod => N);
2202               end if;
2203
2204               Next (Assoc);
2205            end loop;
2206
2207            --  If aggregate contains more than one choice then these must be
2208            --  static. Check for duplicate and missing values.
2209
2210            --  Note: there is duplicated code here wrt Check_Choice_Set in
2211            --  the body of Sem_Case, and it is possible we could just reuse
2212            --  that procedure. To be checked ???
2213
2214            if Nb_Discrete_Choices > 1 then
2215               Check_Choices : declare
2216                  Choice : Node_Id;
2217                  --  Location of choice for messages
2218
2219                  Hi_Val : Uint;
2220                  Lo_Val : Uint;
2221                  --  High end of one range and Low end of the next. Should be
2222                  --  contiguous if there is no hole in the list of values.
2223
2224                  Lo_Dup : Uint;
2225                  Hi_Dup : Uint;
2226                  --  End points of duplicated range
2227
2228                  Missing_Or_Duplicates : Boolean := False;
2229                  --  Set True if missing or duplicate choices found
2230
2231                  procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2232                  --  Output continuation message with a representation of the
2233                  --  bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2234                  --  choice node where the message is to be posted.
2235
2236                  ------------------------
2237                  -- Output_Bad_Choices --
2238                  ------------------------
2239
2240                  procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2241                  begin
2242                     --  Enumeration type case
2243
2244                     if Is_Enumeration_Type (Index_Typ) then
2245                        Error_Msg_Name_1 :=
2246                          Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2247                        Error_Msg_Name_2 :=
2248                          Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2249
2250                        if Lo = Hi then
2251                           Error_Msg_N ("\\  %!", C);
2252                        else
2253                           Error_Msg_N ("\\  % .. %!", C);
2254                        end if;
2255
2256                        --  Integer types case
2257
2258                     else
2259                        Error_Msg_Uint_1 := Lo;
2260                        Error_Msg_Uint_2 := Hi;
2261
2262                        if Lo = Hi then
2263                           Error_Msg_N ("\\  ^!", C);
2264                        else
2265                           Error_Msg_N ("\\  ^ .. ^!", C);
2266                        end if;
2267                     end if;
2268                  end Output_Bad_Choices;
2269
2270               --  Start of processing for Check_Choices
2271
2272               begin
2273                  Sort_Case_Table (Table);
2274
2275                  --  First we do a quick linear loop to find out if we have
2276                  --  any duplicates or missing entries (usually we have a
2277                  --  legal aggregate, so this will get us out quickly).
2278
2279                  for J in 1 .. Nb_Discrete_Choices - 1 loop
2280                     Hi_Val := Expr_Value (Table (J).Hi);
2281                     Lo_Val := Expr_Value (Table (J + 1).Lo);
2282
2283                     if Lo_Val <= Hi_Val
2284                       or else (Lo_Val > Hi_Val + 1
2285                                 and then not Others_Present)
2286                     then
2287                        Missing_Or_Duplicates := True;
2288                        exit;
2289                     end if;
2290                  end loop;
2291
2292                  --  If we have missing or duplicate entries, first fill in
2293                  --  the Highest entries to make life easier in the following
2294                  --  loops to detect bad entries.
2295
2296                  if Missing_Or_Duplicates then
2297                     Table (1).Highest := Expr_Value (Table (1).Hi);
2298
2299                     for J in 2 .. Nb_Discrete_Choices loop
2300                        Table (J).Highest :=
2301                          UI_Max
2302                            (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2303                     end loop;
2304
2305                     --  Loop through table entries to find duplicate indexes
2306
2307                     for J in 2 .. Nb_Discrete_Choices loop
2308                        Lo_Val := Expr_Value (Table (J).Lo);
2309                        Hi_Val := Expr_Value (Table (J).Hi);
2310
2311                        --  Case where we have duplicates (the lower bound of
2312                        --  this choice is less than or equal to the highest
2313                        --  high bound found so far).
2314
2315                        if Lo_Val <= Table (J - 1).Highest then
2316
2317                           --  We move backwards looking for duplicates. We can
2318                           --  abandon this loop as soon as we reach a choice
2319                           --  highest value that is less than Lo_Val.
2320
2321                           for K in reverse 1 .. J - 1 loop
2322                              exit when Table (K).Highest < Lo_Val;
2323
2324                              --  Here we may have duplicates between entries
2325                              --  for K and J. Get range of duplicates.
2326
2327                              Lo_Dup :=
2328                                UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2329                              Hi_Dup :=
2330                                UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2331
2332                              --  Nothing to do if duplicate range is null
2333
2334                              if Lo_Dup > Hi_Dup then
2335                                 null;
2336
2337                              --  Otherwise place proper message. Because
2338                              --  of the missing expansion of subtypes with
2339                              --  predicates in ASIS mode, do not report
2340                              --  spurious overlap errors.
2341
2342                              elsif ASIS_Mode
2343                                and then
2344                                   ((Is_Type (Entity (Table (J).Choice))
2345                                       and then Has_Predicates
2346                                         (Entity (Table (J).Choice)))
2347                                  or else
2348                                    (Is_Type (Entity (Table (K).Choice))
2349                                       and then Has_Predicates
2350                                         (Entity (Table (K).Choice))))
2351                              then
2352                                 null;
2353
2354                              else
2355                                 --  We place message on later choice, with a
2356                                 --  line reference to the earlier choice.
2357
2358                                 if Sloc (Table (J).Choice) <
2359                                   Sloc (Table (K).Choice)
2360                                 then
2361                                    Choice := Table (K).Choice;
2362                                    Error_Msg_Sloc := Sloc (Table (J).Choice);
2363                                 else
2364                                    Choice := Table (J).Choice;
2365                                    Error_Msg_Sloc := Sloc (Table (K).Choice);
2366                                 end if;
2367
2368                                 if Lo_Dup = Hi_Dup then
2369                                    Error_Msg_N
2370                                      ("index value in array aggregate "
2371                                       & "duplicates the one given#!", Choice);
2372                                 else
2373                                    Error_Msg_N
2374                                      ("index values in array aggregate "
2375                                       & "duplicate those given#!", Choice);
2376                                 end if;
2377
2378                                 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2379                              end if;
2380                           end loop;
2381                        end if;
2382                     end loop;
2383
2384                     --  Loop through entries in table to find missing indexes.
2385                     --  Not needed if others, since missing impossible.
2386
2387                     if not Others_Present then
2388                        for J in 2 .. Nb_Discrete_Choices loop
2389                           Lo_Val := Expr_Value (Table (J).Lo);
2390                           Hi_Val := Table (J - 1).Highest;
2391
2392                           if Lo_Val > Hi_Val + 1 then
2393
2394                              declare
2395                                 Error_Node : Node_Id;
2396
2397                              begin
2398                                 --  If the choice is the bound of a range in
2399                                 --  a subtype indication, it is not in the
2400                                 --  source lists for the aggregate itself, so
2401                                 --  post the error on the aggregate. Otherwise
2402                                 --  post it on choice itself.
2403
2404                                 Choice := Table (J).Choice;
2405
2406                                 if Is_List_Member (Choice) then
2407                                    Error_Node := Choice;
2408                                 else
2409                                    Error_Node := N;
2410                                 end if;
2411
2412                                 if Hi_Val + 1 = Lo_Val - 1 then
2413                                    Error_Msg_N
2414                                      ("missing index value "
2415                                       & "in array aggregate!", Error_Node);
2416                                 else
2417                                    Error_Msg_N
2418                                      ("missing index values "
2419                                       & "in array aggregate!", Error_Node);
2420                                 end if;
2421
2422                                 Output_Bad_Choices
2423                                   (Hi_Val + 1, Lo_Val - 1, Error_Node);
2424                              end;
2425                           end if;
2426                        end loop;
2427                     end if;
2428
2429                     --  If either missing or duplicate values, return failure
2430
2431                     Set_Etype (N, Any_Composite);
2432                     return Failure;
2433                  end if;
2434               end Check_Choices;
2435            end if;
2436
2437            --  STEP 2 (B): Compute aggregate bounds and min/max choices values
2438
2439            if Nb_Discrete_Choices > 0 then
2440               Choices_Low  := Table (1).Lo;
2441               Choices_High := Table (Nb_Discrete_Choices).Hi;
2442            end if;
2443
2444            --  If Others is present, then bounds of aggregate come from the
2445            --  index constraint (not the choices in the aggregate itself).
2446
2447            if Others_Present then
2448               Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2449
2450               --  Abandon processing if either bound is already signalled as
2451               --  an error (prevents junk cascaded messages and blow ups).
2452
2453               if Nkind (Aggr_Low) = N_Error
2454                    or else
2455                  Nkind (Aggr_High) = N_Error
2456               then
2457                  return False;
2458               end if;
2459
2460            --  No others clause present
2461
2462            else
2463               --  Special processing if others allowed and not present. This
2464               --  means that the bounds of the aggregate come from the index
2465               --  constraint (and the length must match).
2466
2467               if Others_Allowed then
2468                  Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2469
2470                  --  Abandon processing if either bound is already signalled
2471                  --  as an error (stop junk cascaded messages and blow ups).
2472
2473                  if Nkind (Aggr_Low) = N_Error
2474                       or else
2475                     Nkind (Aggr_High) = N_Error
2476                  then
2477                     return False;
2478                  end if;
2479
2480                  --  If others allowed, and no others present, then the array
2481                  --  should cover all index values. If it does not, we will
2482                  --  get a length check warning, but there is two cases where
2483                  --  an additional warning is useful:
2484
2485                  --  If we have no positional components, and the length is
2486                  --  wrong (which we can tell by others being allowed with
2487                  --  missing components), and the index type is an enumeration
2488                  --  type, then issue appropriate warnings about these missing
2489                  --  components. They are only warnings, since the aggregate
2490                  --  is fine, it's just the wrong length. We skip this check
2491                  --  for standard character types (since there are no literals
2492                  --  and it is too much trouble to concoct them), and also if
2493                  --  any of the bounds have values that are not known at
2494                  --  compile time.
2495
2496                  --  Another case warranting a warning is when the length
2497                  --  is right, but as above we have an index type that is
2498                  --  an enumeration, and the bounds do not match. This is a
2499                  --  case where dubious sliding is allowed and we generate a
2500                  --  warning that the bounds do not match.
2501
2502                  if No (Expressions (N))
2503                    and then Nkind (Index) = N_Range
2504                    and then Is_Enumeration_Type (Etype (Index))
2505                    and then not Is_Standard_Character_Type (Etype (Index))
2506                    and then Compile_Time_Known_Value (Aggr_Low)
2507                    and then Compile_Time_Known_Value (Aggr_High)
2508                    and then Compile_Time_Known_Value (Choices_Low)
2509                    and then Compile_Time_Known_Value (Choices_High)
2510                  then
2511                     --  If any of the expressions or range bounds in choices
2512                     --  have semantic errors, then do not attempt further
2513                     --  resolution, to prevent cascaded errors.
2514
2515                     if Errors_Posted_On_Choices then
2516                        return Failure;
2517                     end if;
2518
2519                     declare
2520                        ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2521                        AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2522                        CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2523                        CHi : constant Node_Id := Expr_Value_E (Choices_High);
2524
2525                        Ent : Entity_Id;
2526
2527                     begin
2528                        --  Warning case 1, missing values at start/end. Only
2529                        --  do the check if the number of entries is too small.
2530
2531                        if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2532                              <
2533                           (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2534                        then
2535                           Error_Msg_N
2536                             ("missing index value(s) in array aggregate??",
2537                              N);
2538
2539                           --  Output missing value(s) at start
2540
2541                           if Chars (ALo) /= Chars (CLo) then
2542                              Ent := Prev (CLo);
2543
2544                              if Chars (ALo) = Chars (Ent) then
2545                                 Error_Msg_Name_1 := Chars (ALo);
2546                                 Error_Msg_N ("\  %??", N);
2547                              else
2548                                 Error_Msg_Name_1 := Chars (ALo);
2549                                 Error_Msg_Name_2 := Chars (Ent);
2550                                 Error_Msg_N ("\  % .. %??", N);
2551                              end if;
2552                           end if;
2553
2554                           --  Output missing value(s) at end
2555
2556                           if Chars (AHi) /= Chars (CHi) then
2557                              Ent := Next (CHi);
2558
2559                              if Chars (AHi) = Chars (Ent) then
2560                                 Error_Msg_Name_1 := Chars (Ent);
2561                                 Error_Msg_N ("\  %??", N);
2562                              else
2563                                 Error_Msg_Name_1 := Chars (Ent);
2564                                 Error_Msg_Name_2 := Chars (AHi);
2565                                 Error_Msg_N ("\  % .. %??", N);
2566                              end if;
2567                           end if;
2568
2569                        --  Warning case 2, dubious sliding. The First_Subtype
2570                        --  test distinguishes between a constrained type where
2571                        --  sliding is not allowed (so we will get a warning
2572                        --  later that Constraint_Error will be raised), and
2573                        --  the unconstrained case where sliding is permitted.
2574
2575                        elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2576                                 =
2577                              (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2578                          and then Chars (ALo) /= Chars (CLo)
2579                          and then
2580                            not Is_Constrained (First_Subtype (Etype (N)))
2581                        then
2582                           Error_Msg_N
2583                             ("bounds of aggregate do not match target??", N);
2584                        end if;
2585                     end;
2586                  end if;
2587               end if;
2588
2589               --  If no others, aggregate bounds come from aggregate
2590
2591               Aggr_Low  := Choices_Low;
2592               Aggr_High := Choices_High;
2593            end if;
2594         end Step_2;
2595
2596      --  STEP 3: Process positional components
2597
2598      else
2599         --  STEP 3 (A): Process positional elements
2600
2601         Expr := First (Expressions (N));
2602         Nb_Elements := Uint_0;
2603         while Present (Expr) loop
2604            Nb_Elements := Nb_Elements + 1;
2605
2606            --  Ada 2005 (AI-231)
2607
2608            if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
2609               Check_Can_Never_Be_Null (Etype (N), Expr);
2610            end if;
2611
2612            if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2613               return Failure;
2614            end if;
2615
2616            --  Check incorrect use of dynamically tagged expression
2617
2618            if Is_Tagged_Type (Etype (Expr)) then
2619               Check_Dynamically_Tagged_Expression
2620                 (Expr => Expr,
2621                  Typ  => Component_Type (Etype (N)),
2622                  Related_Nod => N);
2623            end if;
2624
2625            Next (Expr);
2626         end loop;
2627
2628         if Others_Present then
2629            Assoc := Last (Component_Associations (N));
2630
2631            --  Ada 2005 (AI-231)
2632
2633            if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
2634               Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2635            end if;
2636
2637            --  Ada 2005 (AI-287): In case of default initialized component,
2638            --  we delay the resolution to the expansion phase.
2639
2640            if Box_Present (Assoc) then
2641
2642               --  Ada 2005 (AI-287): In case of default initialization of a
2643               --  component the expander will generate calls to the
2644               --  corresponding initialization subprogram. We need to call
2645               --  Resolve_Aggr_Expr to check the rules about
2646               --  dimensionality.
2647
2648               if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2649                  return Failure;
2650               end if;
2651
2652            elsif not Resolve_Aggr_Expr (Expression (Assoc),
2653                                         Single_Elmt => False)
2654            then
2655               return Failure;
2656
2657            --  Check incorrect use of dynamically tagged expression. The
2658            --  expression of the others choice has not been resolved yet.
2659            --  In order to diagnose the semantic error we create a duplicate
2660            --  tree to analyze it and perform the check.
2661
2662            else
2663               declare
2664                  Save_Analysis : constant Boolean := Full_Analysis;
2665                  Expr          : constant Node_Id :=
2666                                    New_Copy_Tree (Expression (Assoc));
2667
2668               begin
2669                  Expander_Mode_Save_And_Set (False);
2670                  Full_Analysis := False;
2671                  Analyze (Expr);
2672                  Full_Analysis := Save_Analysis;
2673                  Expander_Mode_Restore;
2674
2675                  if Is_Tagged_Type (Etype (Expr)) then
2676                     Check_Dynamically_Tagged_Expression
2677                       (Expr        => Expr,
2678                        Typ         => Component_Type (Etype (N)),
2679                        Related_Nod => N);
2680                  end if;
2681               end;
2682            end if;
2683         end if;
2684
2685         --  STEP 3 (B): Compute the aggregate bounds
2686
2687         if Others_Present then
2688            Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2689
2690         else
2691            if Others_Allowed then
2692               Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2693            else
2694               Aggr_Low := Index_Typ_Low;
2695            end if;
2696
2697            Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2698            Check_Bound (Index_Base_High, Aggr_High);
2699         end if;
2700      end if;
2701
2702      --  STEP 4: Perform static aggregate checks and save the bounds
2703
2704      --  Check (A)
2705
2706      Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2707      Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2708
2709      --  Check (B)
2710
2711      if Others_Present and then Nb_Discrete_Choices > 0 then
2712         Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2713         Check_Bounds (Index_Typ_Low, Index_Typ_High,
2714                       Choices_Low, Choices_High);
2715         Check_Bounds (Index_Base_Low, Index_Base_High,
2716                       Choices_Low, Choices_High);
2717
2718      --  Check (C)
2719
2720      elsif Others_Present and then Nb_Elements > 0 then
2721         Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2722         Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2723         Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2724      end if;
2725
2726      if Raises_Constraint_Error (Aggr_Low)
2727        or else Raises_Constraint_Error (Aggr_High)
2728      then
2729         Set_Raises_Constraint_Error (N);
2730      end if;
2731
2732      Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2733
2734      --  Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2735      --  since the addition node returned by Add is not yet analyzed. Attach
2736      --  to tree and analyze first. Reset analyzed flag to ensure it will get
2737      --  analyzed when it is a literal bound whose type must be properly set.
2738
2739      if Others_Present or else Nb_Discrete_Choices > 0 then
2740         Aggr_High := Duplicate_Subexpr (Aggr_High);
2741
2742         if Etype (Aggr_High) = Universal_Integer then
2743            Set_Analyzed (Aggr_High, False);
2744         end if;
2745      end if;
2746
2747      --  If the aggregate already has bounds attached to it, it means this is
2748      --  a positional aggregate created as an optimization by
2749      --  Exp_Aggr.Convert_To_Positional, so we don't want to change those
2750      --  bounds.
2751
2752      if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2753         Aggr_Low  := Low_Bound  (Aggregate_Bounds (N));
2754         Aggr_High := High_Bound (Aggregate_Bounds (N));
2755      end if;
2756
2757      Set_Aggregate_Bounds
2758        (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2759
2760      --  The bounds may contain expressions that must be inserted upwards.
2761      --  Attach them fully to the tree. After analysis, remove side effects
2762      --  from upper bound, if still needed.
2763
2764      Set_Parent (Aggregate_Bounds (N), N);
2765      Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2766      Check_Unset_Reference (Aggregate_Bounds (N));
2767
2768      if not Others_Present and then Nb_Discrete_Choices = 0 then
2769         Set_High_Bound
2770           (Aggregate_Bounds (N),
2771            Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2772      end if;
2773
2774      --  Check the dimensions of each component in the array aggregate
2775
2776      Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2777
2778      return Success;
2779   end Resolve_Array_Aggregate;
2780
2781   -----------------------------
2782   -- Resolve_Delta_Aggregate --
2783   -----------------------------
2784
2785   procedure Resolve_Delta_Aggregate (N : Node_Id; Typ : Entity_Id) is
2786      Base : constant Node_Id := Expression (N);
2787
2788   begin
2789      if not Is_Composite_Type (Typ) then
2790         Error_Msg_N ("not a composite type", N);
2791      end if;
2792
2793      Analyze_And_Resolve (Base, Typ);
2794
2795      if Is_Array_Type (Typ) then
2796         Resolve_Delta_Array_Aggregate (N, Typ);
2797      else
2798         Resolve_Delta_Record_Aggregate (N, Typ);
2799      end if;
2800
2801      Set_Etype (N, Typ);
2802   end Resolve_Delta_Aggregate;
2803
2804   -----------------------------------
2805   -- Resolve_Delta_Array_Aggregate --
2806   -----------------------------------
2807
2808   procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id) is
2809      Deltas : constant List_Id := Component_Associations (N);
2810
2811      Assoc      : Node_Id;
2812      Choice     : Node_Id;
2813      Index_Type : Entity_Id;
2814
2815   begin
2816      Index_Type := Etype (First_Index (Typ));
2817
2818      Assoc := First (Deltas);
2819      while Present (Assoc) loop
2820         if Nkind (Assoc) = N_Iterated_Component_Association then
2821            Choice := First (Choice_List (Assoc));
2822            while Present (Choice) loop
2823               if Nkind (Choice) = N_Others_Choice then
2824                  Error_Msg_N
2825                    ("others not allowed in delta aggregate", Choice);
2826
2827               else
2828                  Analyze_And_Resolve (Choice, Index_Type);
2829               end if;
2830
2831               Next (Choice);
2832            end loop;
2833
2834            declare
2835               Id  : constant Entity_Id := Defining_Identifier (Assoc);
2836               Ent : constant Entity_Id :=
2837                       New_Internal_Entity
2838                         (E_Loop, Current_Scope, Sloc (Assoc), 'L');
2839
2840            begin
2841               Set_Etype  (Ent, Standard_Void_Type);
2842               Set_Parent (Ent, Assoc);
2843
2844               if No (Scope (Id)) then
2845                  Enter_Name (Id);
2846                  Set_Etype (Id, Index_Type);
2847                  Set_Ekind (Id, E_Variable);
2848                  Set_Scope (Id, Ent);
2849               end if;
2850
2851               Push_Scope (Ent);
2852               Analyze_And_Resolve
2853                 (New_Copy_Tree (Expression (Assoc)), Component_Type (Typ));
2854               End_Scope;
2855            end;
2856
2857         else
2858            Choice := First (Choice_List (Assoc));
2859            while Present (Choice) loop
2860               if Nkind (Choice) = N_Others_Choice then
2861                  Error_Msg_N
2862                    ("others not allowed in delta aggregate", Choice);
2863
2864               else
2865                  Analyze (Choice);
2866
2867                  if Is_Entity_Name (Choice)
2868                    and then Is_Type (Entity (Choice))
2869                  then
2870                     --  Choice covers a range of values
2871
2872                     if Base_Type (Entity (Choice)) /=
2873                        Base_Type (Index_Type)
2874                     then
2875                        Error_Msg_NE
2876                          ("choice does mat match index type of",
2877                           Choice, Typ);
2878                     end if;
2879                  else
2880                     Resolve (Choice, Index_Type);
2881                  end if;
2882               end if;
2883
2884               Next (Choice);
2885            end loop;
2886
2887            Analyze_And_Resolve (Expression (Assoc), Component_Type (Typ));
2888         end if;
2889
2890         Next (Assoc);
2891      end loop;
2892   end Resolve_Delta_Array_Aggregate;
2893
2894   ------------------------------------
2895   -- Resolve_Delta_Record_Aggregate --
2896   ------------------------------------
2897
2898   procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
2899
2900      --  Variables used to verify that discriminant-dependent components
2901      --  appear in the same variant.
2902
2903      Comp_Ref : Entity_Id := Empty; -- init to avoid warning
2904      Variant  : Node_Id;
2905
2906      procedure Check_Variant (Id : Entity_Id);
2907      --  If a given component of the delta aggregate appears in a variant
2908      --  part, verify that it is within the same variant as that of previous
2909      --  specified variant components of the delta.
2910
2911      function Get_Component_Type (Nam : Node_Id) return Entity_Id;
2912      --  Locate component with a given name and return its type. If none found
2913      --  report error.
2914
2915      function Nested_In (V1 : Node_Id; V2 : Node_Id) return Boolean;
2916      --  Determine whether variant V1 is within variant V2
2917
2918      function Variant_Depth (N : Node_Id) return Integer;
2919      --  Determine the distance of a variant to the enclosing type
2920      --  declaration.
2921
2922      --------------------
2923      --  Check_Variant --
2924      --------------------
2925
2926      procedure Check_Variant (Id : Entity_Id) is
2927         Comp         : Entity_Id;
2928         Comp_Variant : Node_Id;
2929
2930      begin
2931         if not Has_Discriminants (Typ) then
2932            return;
2933         end if;
2934
2935         Comp := First_Entity (Typ);
2936         while Present (Comp) loop
2937            exit when Chars (Comp) = Chars (Id);
2938            Next_Component (Comp);
2939         end loop;
2940
2941         --  Find the variant, if any, whose component list includes the
2942         --  component declaration.
2943
2944         Comp_Variant := Parent (Parent (List_Containing (Parent (Comp))));
2945         if Nkind (Comp_Variant) = N_Variant then
2946            if No (Variant) then
2947               Variant  := Comp_Variant;
2948               Comp_Ref := Comp;
2949
2950            elsif Variant /= Comp_Variant then
2951               declare
2952                  D1 : constant Integer := Variant_Depth (Variant);
2953                  D2 : constant Integer := Variant_Depth (Comp_Variant);
2954
2955               begin
2956                  if D1 = D2
2957                    or else
2958                      (D1 > D2 and then not Nested_In (Variant, Comp_Variant))
2959                    or else
2960                      (D2 > D1 and then not Nested_In (Comp_Variant, Variant))
2961                  then
2962                     pragma Assert (Present (Comp_Ref));
2963                     Error_Msg_Node_2 := Comp_Ref;
2964                     Error_Msg_NE
2965                       ("& and & appear in different variants", Id, Comp);
2966
2967                  --  Otherwise retain the deeper variant for subsequent tests
2968
2969                  elsif D2 > D1 then
2970                     Variant := Comp_Variant;
2971                  end if;
2972               end;
2973            end if;
2974         end if;
2975      end Check_Variant;
2976
2977      ------------------------
2978      -- Get_Component_Type --
2979      ------------------------
2980
2981      function Get_Component_Type (Nam : Node_Id) return Entity_Id is
2982         Comp : Entity_Id;
2983
2984      begin
2985         Comp := First_Entity (Typ);
2986         while Present (Comp) loop
2987            if Chars (Comp) = Chars (Nam) then
2988               if Ekind (Comp) = E_Discriminant then
2989                  Error_Msg_N ("delta cannot apply to discriminant", Nam);
2990               end if;
2991
2992               return Etype (Comp);
2993            end if;
2994
2995            Comp := Next_Entity (Comp);
2996         end loop;
2997
2998         Error_Msg_NE ("type& has no component with this name", Nam, Typ);
2999         return Any_Type;
3000      end Get_Component_Type;
3001
3002      ---------------
3003      -- Nested_In --
3004      ---------------
3005
3006      function Nested_In (V1, V2 : Node_Id) return Boolean is
3007         Par : Node_Id;
3008
3009      begin
3010         Par := Parent (V1);
3011         while Nkind (Par) /= N_Full_Type_Declaration loop
3012            if Par = V2 then
3013               return True;
3014            end if;
3015
3016            Par := Parent (Par);
3017         end loop;
3018
3019         return False;
3020      end Nested_In;
3021
3022      -------------------
3023      -- Variant_Depth --
3024      -------------------
3025
3026      function Variant_Depth (N : Node_Id) return Integer is
3027         Depth : Integer;
3028         Par   : Node_Id;
3029
3030      begin
3031         Depth := 0;
3032         Par   := Parent (N);
3033         while Nkind (Par) /= N_Full_Type_Declaration loop
3034            Depth := Depth + 1;
3035            Par   := Parent (Par);
3036         end loop;
3037
3038         return Depth;
3039      end Variant_Depth;
3040
3041      --  Local variables
3042
3043      Deltas : constant List_Id := Component_Associations (N);
3044
3045      Assoc     : Node_Id;
3046      Choice    : Node_Id;
3047      Comp_Type : Entity_Id := Empty; -- init to avoid warning
3048
3049   --  Start of processing for Resolve_Delta_Record_Aggregate
3050
3051   begin
3052      Variant := Empty;
3053
3054      Assoc := First (Deltas);
3055      while Present (Assoc) loop
3056         Choice := First (Choice_List (Assoc));
3057         while Present (Choice) loop
3058            Comp_Type := Get_Component_Type (Choice);
3059
3060            if Comp_Type /= Any_Type then
3061               Check_Variant (Choice);
3062            end if;
3063
3064            Next (Choice);
3065         end loop;
3066
3067         pragma Assert (Present (Comp_Type));
3068         Analyze_And_Resolve (Expression (Assoc), Comp_Type);
3069         Next (Assoc);
3070      end loop;
3071   end Resolve_Delta_Record_Aggregate;
3072
3073   ---------------------------------
3074   -- Resolve_Extension_Aggregate --
3075   ---------------------------------
3076
3077   --  There are two cases to consider:
3078
3079   --  a) If the ancestor part is a type mark, the components needed are the
3080   --  difference between the components of the expected type and the
3081   --  components of the given type mark.
3082
3083   --  b) If the ancestor part is an expression, it must be unambiguous, and
3084   --  once we have its type we can also compute the needed components as in
3085   --  the previous case. In both cases, if the ancestor type is not the
3086   --  immediate ancestor, we have to build this ancestor recursively.
3087
3088   --  In both cases, discriminants of the ancestor type do not play a role in
3089   --  the resolution of the needed components, because inherited discriminants
3090   --  cannot be used in a type extension. As a result we can compute
3091   --  independently the list of components of the ancestor type and of the
3092   --  expected type.
3093
3094   procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
3095      A      : constant Node_Id := Ancestor_Part (N);
3096      A_Type : Entity_Id;
3097      I      : Interp_Index;
3098      It     : Interp;
3099
3100      function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
3101      --  If the type is limited, verify that the ancestor part is a legal
3102      --  expression (aggregate or function call, including 'Input)) that does
3103      --  not require a copy, as specified in 7.5(2).
3104
3105      function Valid_Ancestor_Type return Boolean;
3106      --  Verify that the type of the ancestor part is a non-private ancestor
3107      --  of the expected type, which must be a type extension.
3108
3109      procedure Transform_BIP_Assignment (Typ : Entity_Id);
3110      --  For an extension aggregate whose ancestor part is a build-in-place
3111      --  call returning a nonlimited type, this is used to transform the
3112      --  assignment to the ancestor part to use a temp.
3113
3114      ----------------------------
3115      -- Valid_Limited_Ancestor --
3116      ----------------------------
3117
3118      function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
3119      begin
3120         if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
3121            return True;
3122
3123         --  The ancestor must be a call or an aggregate, but a call may
3124         --  have been expanded into a temporary, so check original node.
3125
3126         elsif Nkind_In (Anc, N_Aggregate,
3127                              N_Extension_Aggregate,
3128                              N_Function_Call)
3129         then
3130            return True;
3131
3132         elsif Nkind (Original_Node (Anc)) = N_Function_Call then
3133            return True;
3134
3135         elsif Nkind (Anc) = N_Attribute_Reference
3136           and then Attribute_Name (Anc) = Name_Input
3137         then
3138            return True;
3139
3140         elsif Nkind (Anc) = N_Qualified_Expression then
3141            return Valid_Limited_Ancestor (Expression (Anc));
3142
3143         else
3144            return False;
3145         end if;
3146      end Valid_Limited_Ancestor;
3147
3148      -------------------------
3149      -- Valid_Ancestor_Type --
3150      -------------------------
3151
3152      function Valid_Ancestor_Type return Boolean is
3153         Imm_Type : Entity_Id;
3154
3155      begin
3156         Imm_Type := Base_Type (Typ);
3157         while Is_Derived_Type (Imm_Type) loop
3158            if Etype (Imm_Type) = Base_Type (A_Type) then
3159               return True;
3160
3161            --  The base type of the parent type may appear as a private
3162            --  extension if it is declared as such in a parent unit of the
3163            --  current one. For consistency of the subsequent analysis use
3164            --  the partial view for the ancestor part.
3165
3166            elsif Is_Private_Type (Etype (Imm_Type))
3167              and then Present (Full_View (Etype (Imm_Type)))
3168              and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
3169            then
3170               A_Type := Etype (Imm_Type);
3171               return True;
3172
3173            --  The parent type may be a private extension. The aggregate is
3174            --  legal if the type of the aggregate is an extension of it that
3175            --  is not a private extension.
3176
3177            elsif Is_Private_Type (A_Type)
3178              and then not Is_Private_Type (Imm_Type)
3179              and then Present (Full_View (A_Type))
3180              and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
3181            then
3182               return True;
3183
3184            else
3185               Imm_Type := Etype (Base_Type (Imm_Type));
3186            end if;
3187         end loop;
3188
3189         --  If previous loop did not find a proper ancestor, report error
3190
3191         Error_Msg_NE ("expect ancestor type of &", A, Typ);
3192         return False;
3193      end Valid_Ancestor_Type;
3194
3195      ------------------------------
3196      -- Transform_BIP_Assignment --
3197      ------------------------------
3198
3199      procedure Transform_BIP_Assignment (Typ : Entity_Id) is
3200         Loc      : constant Source_Ptr := Sloc (N);
3201         Def_Id   : constant Entity_Id  := Make_Temporary (Loc, 'Y', A);
3202         Obj_Decl : constant Node_Id    :=
3203                      Make_Object_Declaration (Loc,
3204                        Defining_Identifier => Def_Id,
3205                        Constant_Present    => True,
3206                        Object_Definition   => New_Occurrence_Of (Typ, Loc),
3207                        Expression          => A,
3208                        Has_Init_Expression => True);
3209      begin
3210         Set_Etype (Def_Id, Typ);
3211         Set_Ancestor_Part (N, New_Occurrence_Of (Def_Id, Loc));
3212         Insert_Action (N, Obj_Decl);
3213      end Transform_BIP_Assignment;
3214
3215   --  Start of processing for Resolve_Extension_Aggregate
3216
3217   begin
3218      --  Analyze the ancestor part and account for the case where it is a
3219      --  parameterless function call.
3220
3221      Analyze (A);
3222      Check_Parameterless_Call (A);
3223
3224      --  In SPARK, the ancestor part cannot be a type mark
3225
3226      if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3227         Check_SPARK_05_Restriction ("ancestor part cannot be a type mark", A);
3228
3229         --  AI05-0115: if the ancestor part is a subtype mark, the ancestor
3230         --  must not have unknown discriminants.
3231
3232         if Has_Unknown_Discriminants (Root_Type (Typ)) then
3233            Error_Msg_NE
3234              ("aggregate not available for type& whose ancestor "
3235                 & "has unknown discriminants", N, Typ);
3236         end if;
3237      end if;
3238
3239      if not Is_Tagged_Type (Typ) then
3240         Error_Msg_N ("type of extension aggregate must be tagged", N);
3241         return;
3242
3243      elsif Is_Limited_Type (Typ) then
3244
3245         --  Ada 2005 (AI-287): Limited aggregates are allowed
3246
3247         if Ada_Version < Ada_2005 then
3248            Error_Msg_N ("aggregate type cannot be limited", N);
3249            Explain_Limited_Type (Typ, N);
3250            return;
3251
3252         elsif Valid_Limited_Ancestor (A) then
3253            null;
3254
3255         else
3256            Error_Msg_N
3257              ("limited ancestor part must be aggregate or function call", A);
3258         end if;
3259
3260      elsif Is_Class_Wide_Type (Typ) then
3261         Error_Msg_N ("aggregate cannot be of a class-wide type", N);
3262         return;
3263      end if;
3264
3265      if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3266         A_Type := Get_Full_View (Entity (A));
3267
3268         if Valid_Ancestor_Type then
3269            Set_Entity (A, A_Type);
3270            Set_Etype  (A, A_Type);
3271
3272            Validate_Ancestor_Part (N);
3273            Resolve_Record_Aggregate (N, Typ);
3274         end if;
3275
3276      elsif Nkind (A) /= N_Aggregate then
3277         if Is_Overloaded (A) then
3278            A_Type := Any_Type;
3279
3280            Get_First_Interp (A, I, It);
3281            while Present (It.Typ) loop
3282
3283               --  Consider limited interpretations if Ada 2005 or higher
3284
3285               if Is_Tagged_Type (It.Typ)
3286                 and then (Ada_Version >= Ada_2005
3287                            or else not Is_Limited_Type (It.Typ))
3288               then
3289                  if A_Type /= Any_Type then
3290                     Error_Msg_N ("cannot resolve expression", A);
3291                     return;
3292                  else
3293                     A_Type := It.Typ;
3294                  end if;
3295               end if;
3296
3297               Get_Next_Interp (I, It);
3298            end loop;
3299
3300            if A_Type = Any_Type then
3301               if Ada_Version >= Ada_2005 then
3302                  Error_Msg_N
3303                    ("ancestor part must be of a tagged type", A);
3304               else
3305                  Error_Msg_N
3306                    ("ancestor part must be of a nonlimited tagged type", A);
3307               end if;
3308
3309               return;
3310            end if;
3311
3312         else
3313            A_Type := Etype (A);
3314         end if;
3315
3316         if Valid_Ancestor_Type then
3317            Resolve (A, A_Type);
3318            Check_Unset_Reference (A);
3319            Check_Non_Static_Context (A);
3320
3321            --  The aggregate is illegal if the ancestor expression is a call
3322            --  to a function with a limited unconstrained result, unless the
3323            --  type of the aggregate is a null extension. This restriction
3324            --  was added in AI05-67 to simplify implementation.
3325
3326            if Nkind (A) = N_Function_Call
3327              and then Is_Limited_Type (A_Type)
3328              and then not Is_Null_Extension (Typ)
3329              and then not Is_Constrained (A_Type)
3330            then
3331               Error_Msg_N
3332                 ("type of limited ancestor part must be constrained", A);
3333
3334            --  Reject the use of CPP constructors that leave objects partially
3335            --  initialized. For example:
3336
3337            --    type CPP_Root is tagged limited record ...
3338            --    pragma Import (CPP, CPP_Root);
3339
3340            --    type CPP_DT is new CPP_Root and Iface ...
3341            --    pragma Import (CPP, CPP_DT);
3342
3343            --    type Ada_DT is new CPP_DT with ...
3344
3345            --    Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
3346
3347            --  Using the constructor of CPP_Root the slots of the dispatch
3348            --  table of CPP_DT cannot be set, and the secondary tag of
3349            --  CPP_DT is unknown.
3350
3351            elsif Nkind (A) = N_Function_Call
3352              and then Is_CPP_Constructor_Call (A)
3353              and then Enclosing_CPP_Parent (Typ) /= A_Type
3354            then
3355               Error_Msg_NE
3356                 ("??must use 'C'P'P constructor for type &", A,
3357                  Enclosing_CPP_Parent (Typ));
3358
3359               --  The following call is not needed if the previous warning
3360               --  is promoted to an error.
3361
3362               Resolve_Record_Aggregate (N, Typ);
3363
3364            elsif Is_Class_Wide_Type (Etype (A))
3365              and then Nkind (Original_Node (A)) = N_Function_Call
3366            then
3367               --  If the ancestor part is a dispatching call, it appears
3368               --  statically to be a legal ancestor, but it yields any member
3369               --  of the class, and it is not possible to determine whether
3370               --  it is an ancestor of the extension aggregate (much less
3371               --  which ancestor). It is not possible to determine the
3372               --  components of the extension part.
3373
3374               --  This check implements AI-306, which in fact was motivated by
3375               --  an AdaCore query to the ARG after this test was added.
3376
3377               Error_Msg_N ("ancestor part must be statically tagged", A);
3378            else
3379               --  We are using the build-in-place protocol, but we can't build
3380               --  in place, because we need to call the function before
3381               --  allocating the aggregate. Could do better for null
3382               --  extensions, and maybe for nondiscriminated types.
3383               --  This is wrong for limited, but those were wrong already.
3384
3385               if not Is_Limited_View (A_Type)
3386                 and then Is_Build_In_Place_Function_Call (A)
3387               then
3388                  Transform_BIP_Assignment (A_Type);
3389               end if;
3390
3391               Resolve_Record_Aggregate (N, Typ);
3392            end if;
3393         end if;
3394
3395      else
3396         Error_Msg_N ("no unique type for this aggregate", A);
3397      end if;
3398
3399      Check_Function_Writable_Actuals (N);
3400   end Resolve_Extension_Aggregate;
3401
3402   ------------------------------
3403   -- Resolve_Record_Aggregate --
3404   ------------------------------
3405
3406   procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3407      New_Assoc_List : constant List_Id := New_List;
3408      --  New_Assoc_List is the newly built list of N_Component_Association
3409      --  nodes.
3410
3411      Others_Etype : Entity_Id := Empty;
3412      --  This variable is used to save the Etype of the last record component
3413      --  that takes its value from the others choice. Its purpose is:
3414      --
3415      --    (a) make sure the others choice is useful
3416      --
3417      --    (b) make sure the type of all the components whose value is
3418      --        subsumed by the others choice are the same.
3419      --
3420      --  This variable is updated as a side effect of function Get_Value.
3421
3422      Box_Node       : Node_Id := Empty;
3423      Is_Box_Present : Boolean := False;
3424      Others_Box     : Integer := 0;
3425      --  Ada 2005 (AI-287): Variables used in case of default initialization
3426      --  to provide a functionality similar to Others_Etype. Box_Present
3427      --  indicates that the component takes its default initialization;
3428      --  Others_Box counts the number of components of the current aggregate
3429      --  (which may be a sub-aggregate of a larger one) that are default-
3430      --  initialized. A value of One indicates that an others_box is present.
3431      --  Any larger value indicates that the others_box is not redundant.
3432      --  These variables, similar to Others_Etype, are also updated as a side
3433      --  effect of function Get_Value. Box_Node is used to place a warning on
3434      --  a redundant others_box.
3435
3436      procedure Add_Association
3437        (Component      : Entity_Id;
3438         Expr           : Node_Id;
3439         Assoc_List     : List_Id;
3440         Is_Box_Present : Boolean := False);
3441      --  Builds a new N_Component_Association node which associates Component
3442      --  to expression Expr and adds it to the association list being built,
3443      --  either New_Assoc_List, or the association being built for an inner
3444      --  aggregate.
3445
3446      procedure Add_Discriminant_Values
3447        (New_Aggr   : Node_Id;
3448         Assoc_List : List_Id);
3449      --  The constraint to a component may be given by a discriminant of the
3450      --  enclosing type, in which case we have to retrieve its value, which is
3451      --  part of the enclosing aggregate. Assoc_List provides the discriminant
3452      --  associations of the current type or of some enclosing record.
3453
3454      function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
3455      --  If aggregate N is a regular aggregate this routine will return True.
3456      --  Otherwise, if N is an extension aggregate, then Input_Discr denotes
3457      --  a discriminant whose value may already have been specified by N's
3458      --  ancestor part. This routine checks whether this is indeed the case
3459      --  and if so returns False, signaling that no value for Input_Discr
3460      --  should appear in N's aggregate part. Also, in this case, the routine
3461      --  appends to New_Assoc_List the discriminant value specified in the
3462      --  ancestor part.
3463      --
3464      --  If the aggregate is in a context with expansion delayed, it will be
3465      --  reanalyzed. The inherited discriminant values must not be reinserted
3466      --  in the component list to prevent spurious errors, but they must be
3467      --  present on first analysis to build the proper subtype indications.
3468      --  The flag Inherited_Discriminant is used to prevent the re-insertion.
3469
3470      function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
3471      --  AI05-0115: Find earlier ancestor in the derivation chain that is
3472      --  derived from private view Typ. Whether the aggregate is legal depends
3473      --  on the current visibility of the type as well as that of the parent
3474      --  of the ancestor.
3475
3476      function Get_Value
3477        (Compon                 : Node_Id;
3478         From                   : List_Id;
3479         Consider_Others_Choice : Boolean := False) return Node_Id;
3480      --  Given a record component stored in parameter Compon, this function
3481      --  returns its value as it appears in the list From, which is a list
3482      --  of N_Component_Association nodes.
3483      --
3484      --  If no component association has a choice for the searched component,
3485      --  the value provided by the others choice is returned, if there is one,
3486      --  and Consider_Others_Choice is set to true. Otherwise Empty is
3487      --  returned. If there is more than one component association giving a
3488      --  value for the searched record component, an error message is emitted
3489      --  and the first found value is returned.
3490      --
3491      --  If Consider_Others_Choice is set and the returned expression comes
3492      --  from the others choice, then Others_Etype is set as a side effect.
3493      --  An error message is emitted if the components taking their value from
3494      --  the others choice do not have same type.
3495
3496      procedure Propagate_Discriminants
3497        (Aggr       : Node_Id;
3498         Assoc_List : List_Id);
3499      --  Nested components may themselves be discriminated types constrained
3500      --  by outer discriminants, whose values must be captured before the
3501      --  aggregate is expanded into assignments.
3502
3503      procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
3504      --  Analyzes and resolves expression Expr against the Etype of the
3505      --  Component. This routine also applies all appropriate checks to Expr.
3506      --  It finally saves a Expr in the newly created association list that
3507      --  will be attached to the final record aggregate. Note that if the
3508      --  Parent pointer of Expr is not set then Expr was produced with a
3509      --  New_Copy_Tree or some such.
3510
3511      procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id);
3512      --  Rewrite a range node Rge when its bounds refer to non-stored
3513      --  discriminants from Root_Type, to replace them with the stored
3514      --  discriminant values. This is required in GNATprove mode, and is
3515      --  adopted in all modes to avoid special-casing GNATprove mode.
3516
3517      ---------------------
3518      -- Add_Association --
3519      ---------------------
3520
3521      procedure Add_Association
3522        (Component      : Entity_Id;
3523         Expr           : Node_Id;
3524         Assoc_List     : List_Id;
3525         Is_Box_Present : Boolean := False)
3526      is
3527         Choice_List : constant List_Id := New_List;
3528         Loc         : Source_Ptr;
3529
3530      begin
3531         --  If this is a box association the expression is missing, so use the
3532         --  Sloc of the aggregate itself for the new association.
3533
3534         if Present (Expr) then
3535            Loc := Sloc (Expr);
3536         else
3537            Loc := Sloc (N);
3538         end if;
3539
3540         Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
3541
3542         Append_To (Assoc_List,
3543           Make_Component_Association (Loc,
3544             Choices     => Choice_List,
3545             Expression  => Expr,
3546             Box_Present => Is_Box_Present));
3547      end Add_Association;
3548
3549      -----------------------------
3550      -- Add_Discriminant_Values --
3551      -----------------------------
3552
3553      procedure Add_Discriminant_Values
3554        (New_Aggr   : Node_Id;
3555         Assoc_List : List_Id)
3556      is
3557         Assoc      : Node_Id;
3558         Discr      : Entity_Id;
3559         Discr_Elmt : Elmt_Id;
3560         Discr_Val  : Node_Id;
3561         Val        : Entity_Id;
3562
3563      begin
3564         Discr      := First_Discriminant (Etype (New_Aggr));
3565         Discr_Elmt := First_Elmt (Discriminant_Constraint (Etype (New_Aggr)));
3566         while Present (Discr_Elmt) loop
3567            Discr_Val := Node (Discr_Elmt);
3568
3569            --  If the constraint is given by a discriminant then it is a
3570            --  discriminant of an enclosing record, and its value has already
3571            --  been placed in the association list.
3572
3573            if Is_Entity_Name (Discr_Val)
3574              and then Ekind (Entity (Discr_Val)) = E_Discriminant
3575            then
3576               Val := Entity (Discr_Val);
3577
3578               Assoc := First (Assoc_List);
3579               while Present (Assoc) loop
3580                  if Present (Entity (First (Choices (Assoc))))
3581                    and then Entity (First (Choices (Assoc))) = Val
3582                  then
3583                     Discr_Val := Expression (Assoc);
3584                     exit;
3585                  end if;
3586
3587                  Next (Assoc);
3588               end loop;
3589            end if;
3590
3591            Add_Association
3592              (Discr, New_Copy_Tree (Discr_Val),
3593               Component_Associations (New_Aggr));
3594
3595            --  If the discriminant constraint is a current instance, mark the
3596            --  current aggregate so that the self-reference can be expanded
3597            --  later. The constraint may refer to the subtype of aggregate, so
3598            --  use base type for comparison.
3599
3600            if Nkind (Discr_Val) = N_Attribute_Reference
3601              and then Is_Entity_Name (Prefix (Discr_Val))
3602              and then Is_Type (Entity (Prefix (Discr_Val)))
3603              and then Base_Type (Etype (N)) = Entity (Prefix (Discr_Val))
3604            then
3605               Set_Has_Self_Reference (N);
3606            end if;
3607
3608            Next_Elmt (Discr_Elmt);
3609            Next_Discriminant (Discr);
3610         end loop;
3611      end Add_Discriminant_Values;
3612
3613      --------------------------
3614      -- Discriminant_Present --
3615      --------------------------
3616
3617      function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
3618         Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
3619
3620         Ancestor_Is_Subtyp : Boolean;
3621
3622         Loc : Source_Ptr;
3623
3624         Ancestor     : Node_Id;
3625         Ancestor_Typ : Entity_Id;
3626         Comp_Assoc   : Node_Id;
3627         Discr        : Entity_Id;
3628         Discr_Expr   : Node_Id;
3629         Discr_Val    : Elmt_Id := No_Elmt;
3630         Orig_Discr   : Entity_Id;
3631
3632      begin
3633         if Regular_Aggr then
3634            return True;
3635         end if;
3636
3637         --  Check whether inherited discriminant values have already been
3638         --  inserted in the aggregate. This will be the case if we are
3639         --  re-analyzing an aggregate whose expansion was delayed.
3640
3641         if Present (Component_Associations (N)) then
3642            Comp_Assoc := First (Component_Associations (N));
3643            while Present (Comp_Assoc) loop
3644               if Inherited_Discriminant (Comp_Assoc) then
3645                  return True;
3646               end if;
3647
3648               Next (Comp_Assoc);
3649            end loop;
3650         end if;
3651
3652         Ancestor     := Ancestor_Part (N);
3653         Ancestor_Typ := Etype (Ancestor);
3654         Loc          := Sloc (Ancestor);
3655
3656         --  For a private type with unknown discriminants, use the underlying
3657         --  record view if it is available.
3658
3659         if Has_Unknown_Discriminants (Ancestor_Typ)
3660           and then Present (Full_View (Ancestor_Typ))
3661           and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3662         then
3663            Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3664         end if;
3665
3666         Ancestor_Is_Subtyp :=
3667           Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3668
3669         --  If the ancestor part has no discriminants clearly N's aggregate
3670         --  part must provide a value for Discr.
3671
3672         if not Has_Discriminants (Ancestor_Typ) then
3673            return True;
3674
3675         --  If the ancestor part is an unconstrained subtype mark then the
3676         --  Discr must be present in N's aggregate part.
3677
3678         elsif Ancestor_Is_Subtyp
3679           and then not Is_Constrained (Entity (Ancestor))
3680         then
3681            return True;
3682         end if;
3683
3684         --  Now look to see if Discr was specified in the ancestor part
3685
3686         if Ancestor_Is_Subtyp then
3687            Discr_Val :=
3688              First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
3689         end if;
3690
3691         Orig_Discr := Original_Record_Component (Input_Discr);
3692
3693         Discr := First_Discriminant (Ancestor_Typ);
3694         while Present (Discr) loop
3695
3696            --  If Ancestor has already specified Disc value then insert its
3697            --  value in the final aggregate.
3698
3699            if Original_Record_Component (Discr) = Orig_Discr then
3700               if Ancestor_Is_Subtyp then
3701                  Discr_Expr := New_Copy_Tree (Node (Discr_Val));
3702               else
3703                  Discr_Expr :=
3704                    Make_Selected_Component (Loc,
3705                      Prefix        => Duplicate_Subexpr (Ancestor),
3706                      Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
3707               end if;
3708
3709               Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
3710               Set_Inherited_Discriminant (Last (New_Assoc_List));
3711               return False;
3712            end if;
3713
3714            Next_Discriminant (Discr);
3715
3716            if Ancestor_Is_Subtyp then
3717               Next_Elmt (Discr_Val);
3718            end if;
3719         end loop;
3720
3721         return True;
3722      end Discriminant_Present;
3723
3724      ---------------------------
3725      -- Find_Private_Ancestor --
3726      ---------------------------
3727
3728      function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
3729         Par : Entity_Id;
3730
3731      begin
3732         Par := Typ;
3733         loop
3734            if Has_Private_Ancestor (Par)
3735              and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3736            then
3737               return Par;
3738
3739            elsif not Is_Derived_Type (Par) then
3740               return Empty;
3741
3742            else
3743               Par := Etype (Base_Type (Par));
3744            end if;
3745         end loop;
3746      end Find_Private_Ancestor;
3747
3748      ---------------
3749      -- Get_Value --
3750      ---------------
3751
3752      function Get_Value
3753        (Compon                 : Node_Id;
3754         From                   : List_Id;
3755         Consider_Others_Choice : Boolean := False) return Node_Id
3756      is
3757         Typ           : constant Entity_Id := Etype (Compon);
3758         Assoc         : Node_Id;
3759         Expr          : Node_Id := Empty;
3760         Selector_Name : Node_Id;
3761
3762      begin
3763         Is_Box_Present := False;
3764
3765         if No (From) then
3766            return Empty;
3767         end if;
3768
3769         Assoc := First (From);
3770         while Present (Assoc) loop
3771            Selector_Name := First (Choices (Assoc));
3772            while Present (Selector_Name) loop
3773               if Nkind (Selector_Name) = N_Others_Choice then
3774                  if Consider_Others_Choice and then No (Expr) then
3775
3776                     --  We need to duplicate the expression for each
3777                     --  successive component covered by the others choice.
3778                     --  This is redundant if the others_choice covers only
3779                     --  one component (small optimization possible???), but
3780                     --  indispensable otherwise, because each one must be
3781                     --  expanded individually to preserve side effects.
3782
3783                     --  Ada 2005 (AI-287): In case of default initialization
3784                     --  of components, we duplicate the corresponding default
3785                     --  expression (from the record type declaration). The
3786                     --  copy must carry the sloc of the association (not the
3787                     --  original expression) to prevent spurious elaboration
3788                     --  checks when the default includes function calls.
3789
3790                     if Box_Present (Assoc) then
3791                        Others_Box     := Others_Box + 1;
3792                        Is_Box_Present := True;
3793
3794                        if Expander_Active then
3795                           return
3796                             New_Copy_Tree_And_Copy_Dimensions
3797                               (Expression (Parent (Compon)),
3798                                New_Sloc => Sloc (Assoc));
3799                        else
3800                           return Expression (Parent (Compon));
3801                        end if;
3802
3803                     else
3804                        if Present (Others_Etype)
3805                          and then Base_Type (Others_Etype) /= Base_Type (Typ)
3806                        then
3807                           --  If the components are of an anonymous access
3808                           --  type they are distinct, but this is legal in
3809                           --  Ada 2012 as long as designated types match.
3810
3811                           if (Ekind (Typ) = E_Anonymous_Access_Type
3812                                or else Ekind (Typ) =
3813                                            E_Anonymous_Access_Subprogram_Type)
3814                             and then Designated_Type (Typ) =
3815                                            Designated_Type (Others_Etype)
3816                           then
3817                              null;
3818                           else
3819                              Error_Msg_N
3820                                ("components in OTHERS choice must have same "
3821                                 & "type", Selector_Name);
3822                           end if;
3823                        end if;
3824
3825                        Others_Etype := Typ;
3826
3827                        --  Copy the expression so that it is resolved
3828                        --  independently for each component, This is needed
3829                        --  for accessibility checks on compoents of anonymous
3830                        --  access types, even in compile_only mode.
3831
3832                        if not Inside_A_Generic then
3833
3834                           --  In ASIS mode, preanalyze the expression in an
3835                           --  others association before making copies for
3836                           --  separate resolution and accessibility checks.
3837                           --  This ensures that the type of the expression is
3838                           --  available to ASIS in all cases, in particular if
3839                           --  the expression is itself an aggregate.
3840
3841                           if ASIS_Mode then
3842                              Preanalyze_And_Resolve (Expression (Assoc), Typ);
3843                           end if;
3844
3845                           return
3846                             New_Copy_Tree_And_Copy_Dimensions
3847                               (Expression (Assoc));
3848
3849                        else
3850                           return Expression (Assoc);
3851                        end if;
3852                     end if;
3853                  end if;
3854
3855               elsif Chars (Compon) = Chars (Selector_Name) then
3856                  if No (Expr) then
3857
3858                     --  Ada 2005 (AI-231)
3859
3860                     if Ada_Version >= Ada_2005
3861                       and then Known_Null (Expression (Assoc))
3862                     then
3863                        Check_Can_Never_Be_Null (Compon, Expression (Assoc));
3864                     end if;
3865
3866                     --  We need to duplicate the expression when several
3867                     --  components are grouped together with a "|" choice.
3868                     --  For instance "filed1 | filed2 => Expr"
3869
3870                     --  Ada 2005 (AI-287)
3871
3872                     if Box_Present (Assoc) then
3873                        Is_Box_Present := True;
3874
3875                        --  Duplicate the default expression of the component
3876                        --  from the record type declaration, so a new copy
3877                        --  can be attached to the association.
3878
3879                        --  Note that we always copy the default expression,
3880                        --  even when the association has a single choice, in
3881                        --  order to create a proper association for the
3882                        --  expanded aggregate.
3883
3884                        --  Component may have no default, in which case the
3885                        --  expression is empty and the component is default-
3886                        --  initialized, but an association for the component
3887                        --  exists, and it is not covered by an others clause.
3888
3889                        --  Scalar and private types have no initialization
3890                        --  procedure, so they remain uninitialized. If the
3891                        --  target of the aggregate is a constant this
3892                        --  deserves a warning.
3893
3894                        if No (Expression (Parent (Compon)))
3895                          and then not Has_Non_Null_Base_Init_Proc (Typ)
3896                          and then not Has_Aspect (Typ, Aspect_Default_Value)
3897                          and then not Is_Concurrent_Type (Typ)
3898                          and then Nkind (Parent (N)) = N_Object_Declaration
3899                          and then Constant_Present (Parent (N))
3900                        then
3901                           Error_Msg_Node_2 := Typ;
3902                           Error_Msg_NE
3903                             ("component&? of type& is uninitialized",
3904                              Assoc, Selector_Name);
3905
3906                           --  An additional reminder if the component type
3907                           --  is a generic formal.
3908
3909                           if Is_Generic_Type (Base_Type (Typ)) then
3910                              Error_Msg_NE
3911                                ("\instance should provide actual type with "
3912                                 & "initialization for&", Assoc, Typ);
3913                           end if;
3914                        end if;
3915
3916                        return
3917                          New_Copy_Tree_And_Copy_Dimensions
3918                            (Expression (Parent (Compon)));
3919
3920                     else
3921                        if Present (Next (Selector_Name)) then
3922                           Expr := New_Copy_Tree_And_Copy_Dimensions
3923                                     (Expression (Assoc));
3924                        else
3925                           Expr := Expression (Assoc);
3926                        end if;
3927                     end if;
3928
3929                     Generate_Reference (Compon, Selector_Name, 'm');
3930
3931                  else
3932                     Error_Msg_NE
3933                       ("more than one value supplied for &",
3934                        Selector_Name, Compon);
3935
3936                  end if;
3937               end if;
3938
3939               Next (Selector_Name);
3940            end loop;
3941
3942            Next (Assoc);
3943         end loop;
3944
3945         return Expr;
3946      end Get_Value;
3947
3948      -----------------------------
3949      -- Propagate_Discriminants --
3950      -----------------------------
3951
3952      procedure Propagate_Discriminants
3953        (Aggr       : Node_Id;
3954         Assoc_List : List_Id)
3955      is
3956         Loc : constant Source_Ptr := Sloc (N);
3957
3958         Needs_Box : Boolean := False;
3959
3960         procedure Process_Component (Comp : Entity_Id);
3961         --  Add one component with a box association to the inner aggregate,
3962         --  and recurse if component is itself composite.
3963
3964         -----------------------
3965         -- Process_Component --
3966         -----------------------
3967
3968         procedure Process_Component (Comp : Entity_Id) is
3969            T        : constant Entity_Id := Etype (Comp);
3970            New_Aggr : Node_Id;
3971
3972         begin
3973            if Is_Record_Type (T) and then Has_Discriminants (T) then
3974               New_Aggr := Make_Aggregate (Loc, New_List, New_List);
3975               Set_Etype (New_Aggr, T);
3976
3977               Add_Association
3978                 (Comp, New_Aggr, Component_Associations (Aggr));
3979
3980               --  Collect discriminant values and recurse
3981
3982               Add_Discriminant_Values (New_Aggr, Assoc_List);
3983               Propagate_Discriminants (New_Aggr, Assoc_List);
3984
3985            else
3986               Needs_Box := True;
3987            end if;
3988         end Process_Component;
3989
3990         --  Local variables
3991
3992         Aggr_Type  : constant Entity_Id := Base_Type (Etype (Aggr));
3993         Components : constant Elist_Id  := New_Elmt_List;
3994         Def_Node   : constant Node_Id   :=
3995                       Type_Definition (Declaration_Node (Aggr_Type));
3996
3997         Comp      : Node_Id;
3998         Comp_Elmt : Elmt_Id;
3999         Errors    : Boolean;
4000
4001      --  Start of processing for Propagate_Discriminants
4002
4003      begin
4004         --  The component type may be a variant type. Collect the components
4005         --  that are ruled by the known values of the discriminants. Their
4006         --  values have already been inserted into the component list of the
4007         --  current aggregate.
4008
4009         if Nkind (Def_Node) = N_Record_Definition
4010           and then Present (Component_List (Def_Node))
4011           and then Present (Variant_Part (Component_List (Def_Node)))
4012         then
4013            Gather_Components (Aggr_Type,
4014              Component_List (Def_Node),
4015              Governed_By   => Component_Associations (Aggr),
4016              Into          => Components,
4017              Report_Errors => Errors);
4018
4019            Comp_Elmt := First_Elmt (Components);
4020            while Present (Comp_Elmt) loop
4021               if Ekind (Node (Comp_Elmt)) /= E_Discriminant then
4022                  Process_Component (Node (Comp_Elmt));
4023               end if;
4024
4025               Next_Elmt (Comp_Elmt);
4026            end loop;
4027
4028            --  No variant part, iterate over all components
4029
4030         else
4031            Comp := First_Component (Etype (Aggr));
4032            while Present (Comp) loop
4033               Process_Component (Comp);
4034               Next_Component (Comp);
4035            end loop;
4036         end if;
4037
4038         if Needs_Box then
4039            Append_To (Component_Associations (Aggr),
4040              Make_Component_Association (Loc,
4041                Choices     => New_List (Make_Others_Choice (Loc)),
4042                Expression  => Empty,
4043                Box_Present => True));
4044         end if;
4045      end Propagate_Discriminants;
4046
4047      -----------------------
4048      -- Resolve_Aggr_Expr --
4049      -----------------------
4050
4051      procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
4052         function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
4053         --  If the expression is an aggregate (possibly qualified) then its
4054         --  expansion is delayed until the enclosing aggregate is expanded
4055         --  into assignments. In that case, do not generate checks on the
4056         --  expression, because they will be generated later, and will other-
4057         --  wise force a copy (to remove side effects) that would leave a
4058         --  dynamic-sized aggregate in the code, something that gigi cannot
4059         --  handle.
4060
4061         ---------------------------
4062         -- Has_Expansion_Delayed --
4063         ---------------------------
4064
4065         function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
4066         begin
4067            return
4068               (Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
4069                 and then Present (Etype (Expr))
4070                 and then Is_Record_Type (Etype (Expr))
4071                 and then Expansion_Delayed (Expr))
4072              or else
4073                (Nkind (Expr) = N_Qualified_Expression
4074                  and then Has_Expansion_Delayed (Expression (Expr)));
4075         end Has_Expansion_Delayed;
4076
4077         --  Local variables
4078
4079         Expr_Type : Entity_Id := Empty;
4080         New_C     : Entity_Id := Component;
4081         New_Expr  : Node_Id;
4082
4083         Relocate : Boolean;
4084         --  Set to True if the resolved Expr node needs to be relocated when
4085         --  attached to the newly created association list. This node need not
4086         --  be relocated if its parent pointer is not set. In fact in this
4087         --  case Expr is the output of a New_Copy_Tree call. If Relocate is
4088         --  True then we have analyzed the expression node in the original
4089         --  aggregate and hence it needs to be relocated when moved over to
4090         --  the new association list.
4091
4092      --  Start of processing for Resolve_Aggr_Expr
4093
4094      begin
4095         --  If the type of the component is elementary or the type of the
4096         --  aggregate does not contain discriminants, use the type of the
4097         --  component to resolve Expr.
4098
4099         if Is_Elementary_Type (Etype (Component))
4100           or else not Has_Discriminants (Etype (N))
4101         then
4102            Expr_Type := Etype (Component);
4103
4104         --  Otherwise we have to pick up the new type of the component from
4105         --  the new constrained subtype of the aggregate. In fact components
4106         --  which are of a composite type might be constrained by a
4107         --  discriminant, and we want to resolve Expr against the subtype were
4108         --  all discriminant occurrences are replaced with their actual value.
4109
4110         else
4111            New_C := First_Component (Etype (N));
4112            while Present (New_C) loop
4113               if Chars (New_C) = Chars (Component) then
4114                  Expr_Type := Etype (New_C);
4115                  exit;
4116               end if;
4117
4118               Next_Component (New_C);
4119            end loop;
4120
4121            pragma Assert (Present (Expr_Type));
4122
4123            --  For each range in an array type where a discriminant has been
4124            --  replaced with the constraint, check that this range is within
4125            --  the range of the base type. This checks is done in the init
4126            --  proc for regular objects, but has to be done here for
4127            --  aggregates since no init proc is called for them.
4128
4129            if Is_Array_Type (Expr_Type) then
4130               declare
4131                  Index : Node_Id;
4132                  --  Range of the current constrained index in the array
4133
4134                  Orig_Index : Node_Id := First_Index (Etype (Component));
4135                  --  Range corresponding to the range Index above in the
4136                  --  original unconstrained record type. The bounds of this
4137                  --  range may be governed by discriminants.
4138
4139                  Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
4140                  --  Range corresponding to the range Index above for the
4141                  --  unconstrained array type. This range is needed to apply
4142                  --  range checks.
4143
4144               begin
4145                  Index := First_Index (Expr_Type);
4146                  while Present (Index) loop
4147                     if Depends_On_Discriminant (Orig_Index) then
4148                        Apply_Range_Check (Index, Etype (Unconstr_Index));
4149                     end if;
4150
4151                     Next_Index (Index);
4152                     Next_Index (Orig_Index);
4153                     Next_Index (Unconstr_Index);
4154                  end loop;
4155               end;
4156            end if;
4157         end if;
4158
4159         --  If the Parent pointer of Expr is not set, Expr is an expression
4160         --  duplicated by New_Tree_Copy (this happens for record aggregates
4161         --  that look like (Field1 | Filed2 => Expr) or (others => Expr)).
4162         --  Such a duplicated expression must be attached to the tree
4163         --  before analysis and resolution to enforce the rule that a tree
4164         --  fragment should never be analyzed or resolved unless it is
4165         --  attached to the current compilation unit.
4166
4167         if No (Parent (Expr)) then
4168            Set_Parent (Expr, N);
4169            Relocate := False;
4170         else
4171            Relocate := True;
4172         end if;
4173
4174         Analyze_And_Resolve (Expr, Expr_Type);
4175         Check_Expr_OK_In_Limited_Aggregate (Expr);
4176         Check_Non_Static_Context (Expr);
4177         Check_Unset_Reference (Expr);
4178
4179         --  Check wrong use of class-wide types
4180
4181         if Is_Class_Wide_Type (Etype (Expr)) then
4182            Error_Msg_N ("dynamically tagged expression not allowed", Expr);
4183         end if;
4184
4185         if not Has_Expansion_Delayed (Expr) then
4186            Aggregate_Constraint_Checks (Expr, Expr_Type);
4187         end if;
4188
4189         --  If an aggregate component has a type with predicates, an explicit
4190         --  predicate check must be applied, as for an assignment statement,
4191         --  because the aggegate might not be expanded into individual
4192         --  component assignments.
4193
4194         if Present (Predicate_Function (Expr_Type))
4195           and then Analyzed (Expr)
4196         then
4197            Apply_Predicate_Check (Expr, Expr_Type);
4198         end if;
4199
4200         if Raises_Constraint_Error (Expr) then
4201            Set_Raises_Constraint_Error (N);
4202         end if;
4203
4204         --  If the expression has been marked as requiring a range check, then
4205         --  generate it here. It's a bit odd to be generating such checks in
4206         --  the analyzer, but harmless since Generate_Range_Check does nothing
4207         --  (other than making sure Do_Range_Check is set) if the expander is
4208         --  not active.
4209
4210         if Do_Range_Check (Expr) then
4211            Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
4212         end if;
4213
4214         --  Add association Component => Expr if the caller requests it
4215
4216         if Relocate then
4217            New_Expr := Relocate_Node (Expr);
4218
4219            --  Since New_Expr is not gonna be analyzed later on, we need to
4220            --  propagate here the dimensions form Expr to New_Expr.
4221
4222            Copy_Dimensions (Expr, New_Expr);
4223
4224         else
4225            New_Expr := Expr;
4226         end if;
4227
4228         Add_Association (New_C, New_Expr, New_Assoc_List);
4229      end Resolve_Aggr_Expr;
4230
4231      -------------------
4232      -- Rewrite_Range --
4233      -------------------
4234
4235      procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id) is
4236         procedure Rewrite_Bound
4237           (Bound     : Node_Id;
4238            Disc      : Entity_Id;
4239            Expr_Disc : Node_Id);
4240         --  Rewrite a bound of the range Bound, when it is equal to the
4241         --  non-stored discriminant Disc, into the stored discriminant
4242         --  value Expr_Disc.
4243
4244         -------------------
4245         -- Rewrite_Bound --
4246         -------------------
4247
4248         procedure Rewrite_Bound
4249           (Bound     : Node_Id;
4250            Disc      : Entity_Id;
4251            Expr_Disc : Node_Id)
4252         is
4253         begin
4254            if Nkind (Bound) = N_Identifier
4255              and then Entity (Bound) = Disc
4256            then
4257               Rewrite (Bound, New_Copy_Tree (Expr_Disc));
4258            end if;
4259         end Rewrite_Bound;
4260
4261         --  Local variables
4262
4263         Low, High : Node_Id;
4264         Disc      : Entity_Id;
4265         Expr_Disc : Elmt_Id;
4266
4267      --  Start of processing for Rewrite_Range
4268
4269      begin
4270         if Has_Discriminants (Root_Type)
4271           and then Nkind (Rge) = N_Range
4272         then
4273            Low := Low_Bound (Rge);
4274            High := High_Bound (Rge);
4275
4276            Disc      := First_Discriminant (Root_Type);
4277            Expr_Disc := First_Elmt (Stored_Constraint (Etype (N)));
4278            while Present (Disc) loop
4279               Rewrite_Bound (Low, Disc, Node (Expr_Disc));
4280               Rewrite_Bound (High, Disc, Node (Expr_Disc));
4281               Next_Discriminant (Disc);
4282               Next_Elmt (Expr_Disc);
4283            end loop;
4284         end if;
4285      end Rewrite_Range;
4286
4287      --  Local variables
4288
4289      Components : constant Elist_Id := New_Elmt_List;
4290      --  Components is the list of the record components whose value must be
4291      --  provided in the aggregate. This list does include discriminants.
4292
4293      Component       : Entity_Id;
4294      Component_Elmt  : Elmt_Id;
4295      Expr            : Node_Id;
4296      Positional_Expr : Node_Id;
4297
4298   --  Start of processing for Resolve_Record_Aggregate
4299
4300   begin
4301      --  A record aggregate is restricted in SPARK:
4302
4303      --    Each named association can have only a single choice.
4304      --    OTHERS cannot be used.
4305      --    Positional and named associations cannot be mixed.
4306
4307      if Present (Component_Associations (N))
4308        and then Present (First (Component_Associations (N)))
4309      then
4310         if Present (Expressions (N)) then
4311            Check_SPARK_05_Restriction
4312              ("named association cannot follow positional one",
4313               First (Choices (First (Component_Associations (N)))));
4314         end if;
4315
4316         declare
4317            Assoc : Node_Id;
4318
4319         begin
4320            Assoc := First (Component_Associations (N));
4321            while Present (Assoc) loop
4322               if Nkind (Assoc) = N_Iterated_Component_Association then
4323                  Error_Msg_N
4324                    ("iterated component association can only appear in an "
4325                     & "array aggregate", N);
4326                  raise Unrecoverable_Error;
4327
4328               else
4329                  if List_Length (Choices (Assoc)) > 1 then
4330                     Check_SPARK_05_Restriction
4331                       ("component association in record aggregate must "
4332                        & "contain a single choice", Assoc);
4333                  end if;
4334
4335                  if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4336                     Check_SPARK_05_Restriction
4337                       ("record aggregate cannot contain OTHERS", Assoc);
4338                  end if;
4339               end if;
4340
4341               Assoc := Next (Assoc);
4342            end loop;
4343         end;
4344      end if;
4345
4346      --  We may end up calling Duplicate_Subexpr on expressions that are
4347      --  attached to New_Assoc_List. For this reason we need to attach it
4348      --  to the tree by setting its parent pointer to N. This parent point
4349      --  will change in STEP 8 below.
4350
4351      Set_Parent (New_Assoc_List, N);
4352
4353      --  STEP 1: abstract type and null record verification
4354
4355      if Is_Abstract_Type (Typ) then
4356         Error_Msg_N ("type of aggregate cannot be abstract",  N);
4357      end if;
4358
4359      if No (First_Entity (Typ)) and then Null_Record_Present (N) then
4360         Set_Etype (N, Typ);
4361         return;
4362
4363      elsif Present (First_Entity (Typ))
4364        and then Null_Record_Present (N)
4365        and then not Is_Tagged_Type (Typ)
4366      then
4367         Error_Msg_N ("record aggregate cannot be null", N);
4368         return;
4369
4370      --  If the type has no components, then the aggregate should either
4371      --  have "null record", or in Ada 2005 it could instead have a single
4372      --  component association given by "others => <>". For Ada 95 we flag an
4373      --  error at this point, but for Ada 2005 we proceed with checking the
4374      --  associations below, which will catch the case where it's not an
4375      --  aggregate with "others => <>". Note that the legality of a <>
4376      --  aggregate for a null record type was established by AI05-016.
4377
4378      elsif No (First_Entity (Typ))
4379         and then Ada_Version < Ada_2005
4380      then
4381         Error_Msg_N ("record aggregate must be null", N);
4382         return;
4383      end if;
4384
4385      --  STEP 2: Verify aggregate structure
4386
4387      Step_2 : declare
4388         Assoc         : Node_Id;
4389         Bad_Aggregate : Boolean := False;
4390         Selector_Name : Node_Id;
4391
4392      begin
4393         if Present (Component_Associations (N)) then
4394            Assoc := First (Component_Associations (N));
4395         else
4396            Assoc := Empty;
4397         end if;
4398
4399         while Present (Assoc) loop
4400            Selector_Name := First (Choices (Assoc));
4401            while Present (Selector_Name) loop
4402               if Nkind (Selector_Name) = N_Identifier then
4403                  null;
4404
4405               elsif Nkind (Selector_Name) = N_Others_Choice then
4406                  if Selector_Name /= First (Choices (Assoc))
4407                    or else Present (Next (Selector_Name))
4408                  then
4409                     Error_Msg_N
4410                       ("OTHERS must appear alone in a choice list",
4411                        Selector_Name);
4412                     return;
4413
4414                  elsif Present (Next (Assoc)) then
4415                     Error_Msg_N
4416                       ("OTHERS must appear last in an aggregate",
4417                        Selector_Name);
4418                     return;
4419
4420                  --  (Ada 2005): If this is an association with a box,
4421                  --  indicate that the association need not represent
4422                  --  any component.
4423
4424                  elsif Box_Present (Assoc) then
4425                     Others_Box := 1;
4426                     Box_Node   := Assoc;
4427                  end if;
4428
4429               else
4430                  Error_Msg_N
4431                    ("selector name should be identifier or OTHERS",
4432                     Selector_Name);
4433                  Bad_Aggregate := True;
4434               end if;
4435
4436               Next (Selector_Name);
4437            end loop;
4438
4439            Next (Assoc);
4440         end loop;
4441
4442         if Bad_Aggregate then
4443            return;
4444         end if;
4445      end Step_2;
4446
4447      --  STEP 3: Find discriminant Values
4448
4449      Step_3 : declare
4450         Discrim               : Entity_Id;
4451         Missing_Discriminants : Boolean := False;
4452
4453      begin
4454         if Present (Expressions (N)) then
4455            Positional_Expr := First (Expressions (N));
4456         else
4457            Positional_Expr := Empty;
4458         end if;
4459
4460         --  AI05-0115: if the ancestor part is a subtype mark, the ancestor
4461         --  must not have unknown discriminants.
4462
4463         if Is_Derived_Type (Typ)
4464           and then Has_Unknown_Discriminants (Root_Type (Typ))
4465           and then Nkind (N) /= N_Extension_Aggregate
4466         then
4467            Error_Msg_NE
4468              ("aggregate not available for type& whose ancestor "
4469               & "has unknown discriminants ", N, Typ);
4470         end if;
4471
4472         if Has_Unknown_Discriminants (Typ)
4473           and then Present (Underlying_Record_View (Typ))
4474         then
4475            Discrim := First_Discriminant (Underlying_Record_View (Typ));
4476         elsif Has_Discriminants (Typ) then
4477            Discrim := First_Discriminant (Typ);
4478         else
4479            Discrim := Empty;
4480         end if;
4481
4482         --  First find the discriminant values in the positional components
4483
4484         while Present (Discrim) and then Present (Positional_Expr) loop
4485            if Discriminant_Present (Discrim) then
4486               Resolve_Aggr_Expr (Positional_Expr, Discrim);
4487
4488               --  Ada 2005 (AI-231)
4489
4490               if Ada_Version >= Ada_2005
4491                 and then Known_Null (Positional_Expr)
4492               then
4493                  Check_Can_Never_Be_Null (Discrim, Positional_Expr);
4494               end if;
4495
4496               Next (Positional_Expr);
4497            end if;
4498
4499            if Present (Get_Value (Discrim, Component_Associations (N))) then
4500               Error_Msg_NE
4501                 ("more than one value supplied for discriminant&",
4502                  N, Discrim);
4503            end if;
4504
4505            Next_Discriminant (Discrim);
4506         end loop;
4507
4508         --  Find remaining discriminant values if any among named components
4509
4510         while Present (Discrim) loop
4511            Expr := Get_Value (Discrim, Component_Associations (N), True);
4512
4513            if not Discriminant_Present (Discrim) then
4514               if Present (Expr) then
4515                  Error_Msg_NE
4516                    ("more than one value supplied for discriminant &",
4517                     N, Discrim);
4518               end if;
4519
4520            elsif No (Expr) then
4521               Error_Msg_NE
4522                 ("no value supplied for discriminant &", N, Discrim);
4523               Missing_Discriminants := True;
4524
4525            else
4526               Resolve_Aggr_Expr (Expr, Discrim);
4527            end if;
4528
4529            Next_Discriminant (Discrim);
4530         end loop;
4531
4532         if Missing_Discriminants then
4533            return;
4534         end if;
4535
4536         --  At this point and until the beginning of STEP 6, New_Assoc_List
4537         --  contains only the discriminants and their values.
4538
4539      end Step_3;
4540
4541      --  STEP 4: Set the Etype of the record aggregate
4542
4543      --  ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
4544      --  routine should really be exported in sem_util or some such and used
4545      --  in sem_ch3 and here rather than have a copy of the code which is a
4546      --  maintenance nightmare.
4547
4548      --  ??? Performance WARNING. The current implementation creates a new
4549      --  itype for all aggregates whose base type is discriminated. This means
4550      --  that for record aggregates nested inside an array aggregate we will
4551      --  create a new itype for each record aggregate if the array component
4552      --  type has discriminants. For large aggregates this may be a problem.
4553      --  What should be done in this case is to reuse itypes as much as
4554      --  possible.
4555
4556      if Has_Discriminants (Typ)
4557        or else (Has_Unknown_Discriminants (Typ)
4558                  and then Present (Underlying_Record_View (Typ)))
4559      then
4560         Build_Constrained_Itype : declare
4561            Constrs     : constant List_Id    := New_List;
4562            Loc         : constant Source_Ptr := Sloc (N);
4563            Def_Id      : Entity_Id;
4564            Indic       : Node_Id;
4565            New_Assoc   : Node_Id;
4566            Subtyp_Decl : Node_Id;
4567
4568         begin
4569            New_Assoc := First (New_Assoc_List);
4570            while Present (New_Assoc) loop
4571               Append_To (Constrs, Duplicate_Subexpr (Expression (New_Assoc)));
4572               Next (New_Assoc);
4573            end loop;
4574
4575            if Has_Unknown_Discriminants (Typ)
4576              and then Present (Underlying_Record_View (Typ))
4577            then
4578               Indic :=
4579                 Make_Subtype_Indication (Loc,
4580                   Subtype_Mark =>
4581                     New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
4582                   Constraint   =>
4583                     Make_Index_Or_Discriminant_Constraint (Loc,
4584                       Constraints => Constrs));
4585            else
4586               Indic :=
4587                 Make_Subtype_Indication (Loc,
4588                   Subtype_Mark =>
4589                     New_Occurrence_Of (Base_Type (Typ), Loc),
4590                   Constraint   =>
4591                     Make_Index_Or_Discriminant_Constraint (Loc,
4592                       Constraints => Constrs));
4593            end if;
4594
4595            Def_Id := Create_Itype (Ekind (Typ), N);
4596
4597            Subtyp_Decl :=
4598              Make_Subtype_Declaration (Loc,
4599                Defining_Identifier => Def_Id,
4600                Subtype_Indication  => Indic);
4601            Set_Parent (Subtyp_Decl, Parent (N));
4602
4603            --  Itypes must be analyzed with checks off (see itypes.ads)
4604
4605            Analyze (Subtyp_Decl, Suppress => All_Checks);
4606
4607            Set_Etype (N, Def_Id);
4608            Check_Static_Discriminated_Subtype
4609              (Def_Id, Expression (First (New_Assoc_List)));
4610         end Build_Constrained_Itype;
4611
4612      else
4613         Set_Etype (N, Typ);
4614      end if;
4615
4616      --  STEP 5: Get remaining components according to discriminant values
4617
4618      Step_5 : declare
4619         Dnode           : Node_Id;
4620         Errors_Found    : Boolean := False;
4621         Record_Def      : Node_Id;
4622         Parent_Typ      : Entity_Id;
4623         Parent_Typ_List : Elist_Id;
4624         Parent_Elmt     : Elmt_Id;
4625         Root_Typ        : Entity_Id;
4626
4627      begin
4628         if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
4629            Parent_Typ_List := New_Elmt_List;
4630
4631            --  If this is an extension aggregate, the component list must
4632            --  include all components that are not in the given ancestor type.
4633            --  Otherwise, the component list must include components of all
4634            --  ancestors, starting with the root.
4635
4636            if Nkind (N) = N_Extension_Aggregate then
4637               Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
4638
4639            else
4640               --  AI05-0115: check legality of aggregate for type with a
4641               --  private ancestor.
4642
4643               Root_Typ := Root_Type (Typ);
4644               if Has_Private_Ancestor (Typ) then
4645                  declare
4646                     Ancestor      : constant Entity_Id :=
4647                                       Find_Private_Ancestor (Typ);
4648                     Ancestor_Unit : constant Entity_Id :=
4649                                       Cunit_Entity
4650                                         (Get_Source_Unit (Ancestor));
4651                     Parent_Unit   : constant Entity_Id :=
4652                                       Cunit_Entity (Get_Source_Unit
4653                                         (Base_Type (Etype (Ancestor))));
4654                  begin
4655                     --  Check whether we are in a scope that has full view
4656                     --  over the private ancestor and its parent. This can
4657                     --  only happen if the derivation takes place in a child
4658                     --  unit of the unit that declares the parent, and we are
4659                     --  in the private part or body of that child unit, else
4660                     --  the aggregate is illegal.
4661
4662                     if Is_Child_Unit (Ancestor_Unit)
4663                       and then Scope (Ancestor_Unit) = Parent_Unit
4664                       and then In_Open_Scopes (Scope (Ancestor))
4665                       and then
4666                        (In_Private_Part (Scope (Ancestor))
4667                          or else In_Package_Body (Scope (Ancestor)))
4668                     then
4669                        null;
4670
4671                     else
4672                        Error_Msg_NE
4673                          ("type of aggregate has private ancestor&!",
4674                           N, Root_Typ);
4675                        Error_Msg_N ("must use extension aggregate!", N);
4676                        return;
4677                     end if;
4678                  end;
4679               end if;
4680
4681               Dnode := Declaration_Node (Base_Type (Root_Typ));
4682
4683               --  If we don't get a full declaration, then we have some error
4684               --  which will get signalled later so skip this part. Otherwise
4685               --  gather components of root that apply to the aggregate type.
4686               --  We use the base type in case there is an applicable stored
4687               --  constraint that renames the discriminants of the root.
4688
4689               if Nkind (Dnode) = N_Full_Type_Declaration then
4690                  Record_Def := Type_Definition (Dnode);
4691                  Gather_Components
4692                    (Base_Type (Typ),
4693                     Component_List (Record_Def),
4694                     Governed_By   => New_Assoc_List,
4695                     Into          => Components,
4696                     Report_Errors => Errors_Found);
4697
4698                  if Errors_Found then
4699                     Error_Msg_N
4700                       ("discriminant controlling variant part is not static",
4701                        N);
4702                     return;
4703                  end if;
4704               end if;
4705            end if;
4706
4707            Parent_Typ := Base_Type (Typ);
4708            while Parent_Typ /= Root_Typ loop
4709               Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
4710               Parent_Typ := Etype (Parent_Typ);
4711
4712               if Nkind (Parent (Base_Type (Parent_Typ))) =
4713                                        N_Private_Type_Declaration
4714                 or else Nkind (Parent (Base_Type (Parent_Typ))) =
4715                                        N_Private_Extension_Declaration
4716               then
4717                  if Nkind (N) /= N_Extension_Aggregate then
4718                     Error_Msg_NE
4719                       ("type of aggregate has private ancestor&!",
4720                        N, Parent_Typ);
4721                     Error_Msg_N  ("must use extension aggregate!", N);
4722                     return;
4723
4724                  elsif Parent_Typ /= Root_Typ then
4725                     Error_Msg_NE
4726                       ("ancestor part of aggregate must be private type&",
4727                         Ancestor_Part (N), Parent_Typ);
4728                     return;
4729                  end if;
4730
4731               --  The current view of ancestor part may be a private type,
4732               --  while the context type is always non-private.
4733
4734               elsif Is_Private_Type (Root_Typ)
4735                 and then Present (Full_View (Root_Typ))
4736                 and then Nkind (N) = N_Extension_Aggregate
4737               then
4738                  exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
4739               end if;
4740            end loop;
4741
4742            --  Now collect components from all other ancestors, beginning
4743            --  with the current type. If the type has unknown discriminants
4744            --  use the component list of the Underlying_Record_View, which
4745            --  needs to be used for the subsequent expansion of the aggregate
4746            --  into assignments.
4747
4748            Parent_Elmt := First_Elmt (Parent_Typ_List);
4749            while Present (Parent_Elmt) loop
4750               Parent_Typ := Node (Parent_Elmt);
4751
4752               if Has_Unknown_Discriminants (Parent_Typ)
4753                 and then Present (Underlying_Record_View (Typ))
4754               then
4755                  Parent_Typ := Underlying_Record_View (Parent_Typ);
4756               end if;
4757
4758               Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
4759               Gather_Components (Empty,
4760                 Component_List (Record_Extension_Part (Record_Def)),
4761                 Governed_By   => New_Assoc_List,
4762                 Into          => Components,
4763                 Report_Errors => Errors_Found);
4764
4765               Next_Elmt (Parent_Elmt);
4766            end loop;
4767
4768         --  Typ is not a derived tagged type
4769
4770         else
4771            Record_Def := Type_Definition (Parent (Base_Type (Typ)));
4772
4773            if Null_Present (Record_Def) then
4774               null;
4775
4776            elsif not Has_Unknown_Discriminants (Typ) then
4777               Gather_Components
4778                 (Base_Type (Typ),
4779                  Component_List (Record_Def),
4780                  Governed_By   => New_Assoc_List,
4781                  Into          => Components,
4782                  Report_Errors => Errors_Found);
4783
4784            else
4785               Gather_Components
4786                 (Base_Type (Underlying_Record_View (Typ)),
4787                  Component_List (Record_Def),
4788                  Governed_By   => New_Assoc_List,
4789                  Into          => Components,
4790                  Report_Errors => Errors_Found);
4791            end if;
4792         end if;
4793
4794         if Errors_Found then
4795            return;
4796         end if;
4797      end Step_5;
4798
4799      --  STEP 6: Find component Values
4800
4801      Component := Empty;
4802      Component_Elmt := First_Elmt (Components);
4803
4804      --  First scan the remaining positional associations in the aggregate.
4805      --  Remember that at this point Positional_Expr contains the current
4806      --  positional association if any is left after looking for discriminant
4807      --  values in step 3.
4808
4809      while Present (Positional_Expr) and then Present (Component_Elmt) loop
4810         Component := Node (Component_Elmt);
4811         Resolve_Aggr_Expr (Positional_Expr, Component);
4812
4813         --  Ada 2005 (AI-231)
4814
4815         if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
4816            Check_Can_Never_Be_Null (Component, Positional_Expr);
4817         end if;
4818
4819         if Present (Get_Value (Component, Component_Associations (N))) then
4820            Error_Msg_NE
4821              ("more than one value supplied for Component &", N, Component);
4822         end if;
4823
4824         Next (Positional_Expr);
4825         Next_Elmt (Component_Elmt);
4826      end loop;
4827
4828      if Present (Positional_Expr) then
4829         Error_Msg_N
4830           ("too many components for record aggregate", Positional_Expr);
4831      end if;
4832
4833      --  Now scan for the named arguments of the aggregate
4834
4835      while Present (Component_Elmt) loop
4836         Component := Node (Component_Elmt);
4837         Expr := Get_Value (Component, Component_Associations (N), True);
4838
4839         --  Note: The previous call to Get_Value sets the value of the
4840         --  variable Is_Box_Present.
4841
4842         --  Ada 2005 (AI-287): Handle components with default initialization.
4843         --  Note: This feature was originally added to Ada 2005 for limited
4844         --  but it was finally allowed with any type.
4845
4846         if Is_Box_Present then
4847            Check_Box_Component : declare
4848               Ctyp : constant Entity_Id := Etype (Component);
4849
4850            begin
4851               --  If there is a default expression for the aggregate, copy
4852               --  it into a new association. This copy must modify the scopes
4853               --  of internal types that may be attached to the expression
4854               --  (e.g. index subtypes of arrays) because in general the type
4855               --  declaration and the aggregate appear in different scopes,
4856               --  and the backend requires the scope of the type to match the
4857               --  point at which it is elaborated.
4858
4859               --  If the component has an initialization procedure (IP) we
4860               --  pass the component to the expander, which will generate
4861               --  the call to such IP.
4862
4863               --  If the component has discriminants, their values must
4864               --  be taken from their subtype. This is indispensable for
4865               --  constraints that are given by the current instance of an
4866               --  enclosing type, to allow the expansion of the aggregate to
4867               --  replace the reference to the current instance by the target
4868               --  object of the aggregate.
4869
4870               if Present (Parent (Component))
4871                 and then Nkind (Parent (Component)) = N_Component_Declaration
4872                 and then Present (Expression (Parent (Component)))
4873               then
4874                  Expr :=
4875                    New_Copy_Tree_And_Copy_Dimensions
4876                      (Expression (Parent (Component)),
4877                       New_Scope => Current_Scope,
4878                       New_Sloc  => Sloc (N));
4879
4880                  --  As the type of the copied default expression may refer
4881                  --  to discriminants of the record type declaration, these
4882                  --  non-stored discriminants need to be rewritten into stored
4883                  --  discriminant values for the aggregate. This is required
4884                  --  in GNATprove mode, and is adopted in all modes to avoid
4885                  --  special-casing GNATprove mode.
4886
4887                  if Is_Array_Type (Etype (Expr)) then
4888                     declare
4889                        Rec_Typ : constant Entity_Id := Scope (Component);
4890                        --  Root record type whose discriminants may be used as
4891                        --  bounds in range nodes.
4892
4893                        Index : Node_Id;
4894
4895                     begin
4896                        --  Rewrite the range nodes occurring in the indexes
4897                        --  and their types.
4898
4899                        Index := First_Index (Etype (Expr));
4900                        while Present (Index) loop
4901                           Rewrite_Range (Rec_Typ, Index);
4902                           Rewrite_Range
4903                             (Rec_Typ, Scalar_Range (Etype (Index)));
4904
4905                           Next_Index (Index);
4906                        end loop;
4907
4908                        --  Rewrite the range nodes occurring as aggregate
4909                        --  bounds.
4910
4911                        if Nkind (Expr) = N_Aggregate
4912                          and then Present (Aggregate_Bounds (Expr))
4913                        then
4914                           Rewrite_Range (Rec_Typ, Aggregate_Bounds (Expr));
4915                        end if;
4916                     end;
4917                  end if;
4918
4919                  Add_Association
4920                    (Component  => Component,
4921                     Expr       => Expr,
4922                     Assoc_List => New_Assoc_List);
4923                  Set_Has_Self_Reference (N);
4924
4925               --  A box-defaulted access component gets the value null. Also
4926               --  included are components of private types whose underlying
4927               --  type is an access type. In either case set the type of the
4928               --  literal, for subsequent use in semantic checks.
4929
4930               elsif Present (Underlying_Type (Ctyp))
4931                 and then Is_Access_Type (Underlying_Type (Ctyp))
4932               then
4933                  --  If the component's type is private with an access type as
4934                  --  its underlying type then we have to create an unchecked
4935                  --  conversion to satisfy type checking.
4936
4937                  if Is_Private_Type (Ctyp) then
4938                     declare
4939                        Qual_Null : constant Node_Id :=
4940                                      Make_Qualified_Expression (Sloc (N),
4941                                        Subtype_Mark =>
4942                                          New_Occurrence_Of
4943                                            (Underlying_Type (Ctyp), Sloc (N)),
4944                                        Expression   => Make_Null (Sloc (N)));
4945
4946                        Convert_Null : constant Node_Id :=
4947                                         Unchecked_Convert_To
4948                                           (Ctyp, Qual_Null);
4949
4950                     begin
4951                        Analyze_And_Resolve (Convert_Null, Ctyp);
4952                        Add_Association
4953                          (Component  => Component,
4954                           Expr       => Convert_Null,
4955                           Assoc_List => New_Assoc_List);
4956                     end;
4957
4958                  --  Otherwise the component type is non-private
4959
4960                  else
4961                     Expr := Make_Null (Sloc (N));
4962                     Set_Etype (Expr, Ctyp);
4963
4964                     Add_Association
4965                       (Component  => Component,
4966                        Expr       => Expr,
4967                        Assoc_List => New_Assoc_List);
4968                  end if;
4969
4970               --  Ada 2012: If component is scalar with default value, use it
4971
4972               elsif Is_Scalar_Type (Ctyp)
4973                 and then Has_Default_Aspect (Ctyp)
4974               then
4975                  Add_Association
4976                    (Component  => Component,
4977                     Expr       =>
4978                       Default_Aspect_Value
4979                         (First_Subtype (Underlying_Type (Ctyp))),
4980                     Assoc_List => New_Assoc_List);
4981
4982               elsif Has_Non_Null_Base_Init_Proc (Ctyp)
4983                 or else not Expander_Active
4984               then
4985                  if Is_Record_Type (Ctyp)
4986                    and then Has_Discriminants (Ctyp)
4987                    and then not Is_Private_Type (Ctyp)
4988                  then
4989                     --  We build a partially initialized aggregate with the
4990                     --  values of the discriminants and box initialization
4991                     --  for the rest, if other components are present.
4992
4993                     --  The type of the aggregate is the known subtype of
4994                     --  the component. The capture of discriminants must be
4995                     --  recursive because subcomponents may be constrained
4996                     --  (transitively) by discriminants of enclosing types.
4997                     --  For a private type with discriminants, a call to the
4998                     --  initialization procedure will be generated, and no
4999                     --  subaggregate is needed.
5000
5001                     Capture_Discriminants : declare
5002                        Loc  : constant Source_Ptr := Sloc (N);
5003                        Expr : Node_Id;
5004
5005                     begin
5006                        Expr := Make_Aggregate (Loc, New_List, New_List);
5007                        Set_Etype (Expr, Ctyp);
5008
5009                        --  If the enclosing type has discriminants, they have
5010                        --  been collected in the aggregate earlier, and they
5011                        --  may appear as constraints of subcomponents.
5012
5013                        --  Similarly if this component has discriminants, they
5014                        --  might in turn be propagated to their components.
5015
5016                        if Has_Discriminants (Typ) then
5017                           Add_Discriminant_Values (Expr, New_Assoc_List);
5018                           Propagate_Discriminants (Expr, New_Assoc_List);
5019
5020                        elsif Has_Discriminants (Ctyp) then
5021                           Add_Discriminant_Values
5022                             (Expr, Component_Associations (Expr));
5023                           Propagate_Discriminants
5024                             (Expr, Component_Associations (Expr));
5025
5026                        else
5027                           declare
5028                              Comp : Entity_Id;
5029
5030                           begin
5031                              --  If the type has additional components, create
5032                              --  an OTHERS box association for them.
5033
5034                              Comp := First_Component (Ctyp);
5035                              while Present (Comp) loop
5036                                 if Ekind (Comp) = E_Component then
5037                                    if not Is_Record_Type (Etype (Comp)) then
5038                                       Append_To
5039                                         (Component_Associations (Expr),
5040                                          Make_Component_Association (Loc,
5041                                            Choices     =>
5042                                              New_List (
5043                                                Make_Others_Choice (Loc)),
5044                                            Expression  => Empty,
5045                                            Box_Present => True));
5046                                    end if;
5047
5048                                    exit;
5049                                 end if;
5050
5051                                 Next_Component (Comp);
5052                              end loop;
5053                           end;
5054                        end if;
5055
5056                        Add_Association
5057                          (Component  => Component,
5058                           Expr       => Expr,
5059                           Assoc_List => New_Assoc_List);
5060                     end Capture_Discriminants;
5061
5062                  --  Otherwise the component type is not a record, or it has
5063                  --  not discriminants, or it is private.
5064
5065                  else
5066                     Add_Association
5067                       (Component      => Component,
5068                        Expr           => Empty,
5069                        Assoc_List     => New_Assoc_List,
5070                        Is_Box_Present => True);
5071                  end if;
5072
5073               --  Otherwise we only need to resolve the expression if the
5074               --  component has partially initialized values (required to
5075               --  expand the corresponding assignments and run-time checks).
5076
5077               elsif Present (Expr)
5078                 and then Is_Partially_Initialized_Type (Ctyp)
5079               then
5080                  Resolve_Aggr_Expr (Expr, Component);
5081               end if;
5082            end Check_Box_Component;
5083
5084         elsif No (Expr) then
5085
5086            --  Ignore hidden components associated with the position of the
5087            --  interface tags: these are initialized dynamically.
5088
5089            if not Present (Related_Type (Component)) then
5090               Error_Msg_NE
5091                 ("no value supplied for component &!", N, Component);
5092            end if;
5093
5094         else
5095            Resolve_Aggr_Expr (Expr, Component);
5096         end if;
5097
5098         Next_Elmt (Component_Elmt);
5099      end loop;
5100
5101      --  STEP 7: check for invalid components + check type in choice list
5102
5103      Step_7 : declare
5104         Assoc     : Node_Id;
5105         New_Assoc : Node_Id;
5106
5107         Selectr : Node_Id;
5108         --  Selector name
5109
5110         Typech : Entity_Id;
5111         --  Type of first component in choice list
5112
5113      begin
5114         if Present (Component_Associations (N)) then
5115            Assoc := First (Component_Associations (N));
5116         else
5117            Assoc := Empty;
5118         end if;
5119
5120         Verification : while Present (Assoc) loop
5121            Selectr := First (Choices (Assoc));
5122            Typech := Empty;
5123
5124            if Nkind (Selectr) = N_Others_Choice then
5125
5126               --  Ada 2005 (AI-287): others choice may have expression or box
5127
5128               if No (Others_Etype) and then Others_Box = 0 then
5129                  Error_Msg_N
5130                    ("OTHERS must represent at least one component", Selectr);
5131
5132               elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
5133                  Error_Msg_N ("others choice is redundant?", Box_Node);
5134                  Error_Msg_N
5135                    ("\previous choices cover all components?", Box_Node);
5136               end if;
5137
5138               exit Verification;
5139            end if;
5140
5141            while Present (Selectr) loop
5142               New_Assoc := First (New_Assoc_List);
5143               while Present (New_Assoc) loop
5144                  Component := First (Choices (New_Assoc));
5145
5146                  if Chars (Selectr) = Chars (Component) then
5147                     if Style_Check then
5148                        Check_Identifier (Selectr, Entity (Component));
5149                     end if;
5150
5151                     exit;
5152                  end if;
5153
5154                  Next (New_Assoc);
5155               end loop;
5156
5157               --  If no association, this is not a legal component of the type
5158               --  in question, unless its association is provided with a box.
5159
5160               if No (New_Assoc) then
5161                  if Box_Present (Parent (Selectr)) then
5162
5163                     --  This may still be a bogus component with a box. Scan
5164                     --  list of components to verify that a component with
5165                     --  that name exists.
5166
5167                     declare
5168                        C : Entity_Id;
5169
5170                     begin
5171                        C := First_Component (Typ);
5172                        while Present (C) loop
5173                           if Chars (C) = Chars (Selectr) then
5174
5175                              --  If the context is an extension aggregate,
5176                              --  the component must not be inherited from
5177                              --  the ancestor part of the aggregate.
5178
5179                              if Nkind (N) /= N_Extension_Aggregate
5180                                or else
5181                                  Scope (Original_Record_Component (C)) /=
5182                                    Etype (Ancestor_Part (N))
5183                              then
5184                                 exit;
5185                              end if;
5186                           end if;
5187
5188                           Next_Component (C);
5189                        end loop;
5190
5191                        if No (C) then
5192                           Error_Msg_Node_2 := Typ;
5193                           Error_Msg_N ("& is not a component of}", Selectr);
5194                        end if;
5195                     end;
5196
5197                  elsif Chars (Selectr) /= Name_uTag
5198                    and then Chars (Selectr) /= Name_uParent
5199                  then
5200                     if not Has_Discriminants (Typ) then
5201                        Error_Msg_Node_2 := Typ;
5202                        Error_Msg_N ("& is not a component of}", Selectr);
5203                     else
5204                        Error_Msg_N
5205                          ("& is not a component of the aggregate subtype",
5206                            Selectr);
5207                     end if;
5208
5209                     Check_Misspelled_Component (Components, Selectr);
5210                  end if;
5211
5212               elsif No (Typech) then
5213                  Typech := Base_Type (Etype (Component));
5214
5215               --  AI05-0199: In Ada 2012, several components of anonymous
5216               --  access types can appear in a choice list, as long as the
5217               --  designated types match.
5218
5219               elsif Typech /= Base_Type (Etype (Component)) then
5220                  if Ada_Version >= Ada_2012
5221                    and then Ekind (Typech) = E_Anonymous_Access_Type
5222                    and then
5223                       Ekind (Etype (Component)) = E_Anonymous_Access_Type
5224                    and then Base_Type (Designated_Type (Typech)) =
5225                             Base_Type (Designated_Type (Etype (Component)))
5226                    and then
5227                      Subtypes_Statically_Match (Typech, (Etype (Component)))
5228                  then
5229                     null;
5230
5231                  elsif not Box_Present (Parent (Selectr)) then
5232                     Error_Msg_N
5233                       ("components in choice list must have same type",
5234                        Selectr);
5235                  end if;
5236               end if;
5237
5238               Next (Selectr);
5239            end loop;
5240
5241            Next (Assoc);
5242         end loop Verification;
5243      end Step_7;
5244
5245      --  STEP 8: replace the original aggregate
5246
5247      Step_8 : declare
5248         New_Aggregate : constant Node_Id := New_Copy (N);
5249
5250      begin
5251         Set_Expressions            (New_Aggregate, No_List);
5252         Set_Etype                  (New_Aggregate, Etype (N));
5253         Set_Component_Associations (New_Aggregate, New_Assoc_List);
5254         Set_Check_Actuals          (New_Aggregate, Check_Actuals (N));
5255
5256         Rewrite (N, New_Aggregate);
5257      end Step_8;
5258
5259      --  Check the dimensions of the components in the record aggregate
5260
5261      Analyze_Dimension_Extension_Or_Record_Aggregate (N);
5262   end Resolve_Record_Aggregate;
5263
5264   -----------------------------
5265   -- Check_Can_Never_Be_Null --
5266   -----------------------------
5267
5268   procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
5269      Comp_Typ : Entity_Id;
5270
5271   begin
5272      pragma Assert
5273        (Ada_Version >= Ada_2005
5274          and then Present (Expr)
5275          and then Known_Null (Expr));
5276
5277      case Ekind (Typ) is
5278         when E_Array_Type  =>
5279            Comp_Typ := Component_Type (Typ);
5280
5281         when E_Component
5282            | E_Discriminant
5283         =>
5284            Comp_Typ := Etype (Typ);
5285
5286         when others =>
5287            return;
5288      end case;
5289
5290      if Can_Never_Be_Null (Comp_Typ) then
5291
5292         --  Here we know we have a constraint error. Note that we do not use
5293         --  Apply_Compile_Time_Constraint_Error here to the Expr, which might
5294         --  seem the more natural approach. That's because in some cases the
5295         --  components are rewritten, and the replacement would be missed.
5296         --  We do not mark the whole aggregate as raising a constraint error,
5297         --  because the association may be a null array range.
5298
5299         Error_Msg_N
5300           ("(Ada 2005) null not allowed in null-excluding component??", Expr);
5301         Error_Msg_N
5302           ("\Constraint_Error will be raised at run time??", Expr);
5303
5304         Rewrite (Expr,
5305           Make_Raise_Constraint_Error
5306             (Sloc (Expr), Reason => CE_Access_Check_Failed));
5307         Set_Etype    (Expr, Comp_Typ);
5308         Set_Analyzed (Expr);
5309      end if;
5310   end Check_Can_Never_Be_Null;
5311
5312   ---------------------
5313   -- Sort_Case_Table --
5314   ---------------------
5315
5316   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
5317      U : constant Int := Case_Table'Last;
5318      K : Int;
5319      J : Int;
5320      T : Case_Bounds;
5321
5322   begin
5323      K := 1;
5324      while K < U loop
5325         T := Case_Table (K + 1);
5326
5327         J := K + 1;
5328         while J > 1
5329           and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
5330         loop
5331            Case_Table (J) := Case_Table (J - 1);
5332            J := J - 1;
5333         end loop;
5334
5335         Case_Table (J) := T;
5336         K := K + 1;
5337      end loop;
5338   end Sort_Case_Table;
5339
5340end Sem_Aggr;
5341