1 /* Integrated Register Allocator (IRA) intercommunication header file.
2    Copyright (C) 2006-2018 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef GCC_IRA_INT_H
22 #define GCC_IRA_INT_H
23 
24 #include "recog.h"
25 
26 /* To provide consistency in naming, all IRA external variables,
27    functions, common typedefs start with prefix ira_.  */
28 
29 #if CHECKING_P
30 #define ENABLE_IRA_CHECKING
31 #endif
32 
33 #ifdef ENABLE_IRA_CHECKING
34 #define ira_assert(c) gcc_assert (c)
35 #else
36 /* Always define and include C, so that warnings for empty body in an
37   'if' statement and unused variable do not occur.  */
38 #define ira_assert(c) ((void)(0 && (c)))
39 #endif
40 
41 /* Compute register frequency from edge frequency FREQ.  It is
42    analogous to REG_FREQ_FROM_BB.  When optimizing for size, or
43    profile driven feedback is available and the function is never
44    executed, frequency is always equivalent.  Otherwise rescale the
45    edge frequency.  */
46 #define REG_FREQ_FROM_EDGE_FREQ(freq)				   \
47   (optimize_function_for_size_p (cfun)				   \
48    ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX)		   \
49    ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
50 
51 /* A modified value of flag `-fira-verbose' used internally.  */
52 extern int internal_flag_ira_verbose;
53 
54 /* Dump file of the allocator if it is not NULL.  */
55 extern FILE *ira_dump_file;
56 
57 /* Typedefs for pointers to allocno live range, allocno, and copy of
58    allocnos.  */
59 typedef struct live_range *live_range_t;
60 typedef struct ira_allocno *ira_allocno_t;
61 typedef struct ira_allocno_pref *ira_pref_t;
62 typedef struct ira_allocno_copy *ira_copy_t;
63 typedef struct ira_object *ira_object_t;
64 
65 /* Definition of vector of allocnos and copies.  */
66 
67 /* Typedef for pointer to the subsequent structure.  */
68 typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
69 
70 typedef unsigned short move_table[N_REG_CLASSES];
71 
72 /* In general case, IRA is a regional allocator.  The regions are
73    nested and form a tree.  Currently regions are natural loops.  The
74    following structure describes loop tree node (representing basic
75    block or loop).  We need such tree because the loop tree from
76    cfgloop.h is not convenient for the optimization: basic blocks are
77    not a part of the tree from cfgloop.h.  We also use the nodes for
78    storing additional information about basic blocks/loops for the
79    register allocation purposes.  */
80 struct ira_loop_tree_node
81 {
82   /* The node represents basic block if children == NULL.  */
83   basic_block bb;    /* NULL for loop.  */
84   /* NULL for BB or for loop tree root if we did not build CFG loop tree.  */
85   struct loop *loop;
86   /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
87      SUBLOOP_NEXT is always NULL for BBs.  */
88   ira_loop_tree_node_t subloop_next, next;
89   /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
90      the node.  They are NULL for BBs.  */
91   ira_loop_tree_node_t subloops, children;
92   /* The node immediately containing given node.  */
93   ira_loop_tree_node_t parent;
94 
95   /* Loop level in range [0, ira_loop_tree_height).  */
96   int level;
97 
98   /* All the following members are defined only for nodes representing
99      loops.  */
100 
101   /* The loop number from CFG loop tree.  The root number is 0.  */
102   int loop_num;
103 
104   /* True if the loop was marked for removal from the register
105      allocation.  */
106   bool to_remove_p;
107 
108   /* Allocnos in the loop corresponding to their regnos.  If it is
109      NULL the loop does not form a separate register allocation region
110      (e.g. because it has abnormal enter/exit edges and we can not put
111      code for register shuffling on the edges if a different
112      allocation is used for a pseudo-register on different sides of
113      the edges).  Caps are not in the map (remember we can have more
114      one cap with the same regno in a region).  */
115   ira_allocno_t *regno_allocno_map;
116 
117   /* True if there is an entry to given loop not from its parent (or
118      grandparent) basic block.  For example, it is possible for two
119      adjacent loops inside another loop.  */
120   bool entered_from_non_parent_p;
121 
122   /* Maximal register pressure inside loop for given register class
123      (defined only for the pressure classes).  */
124   int reg_pressure[N_REG_CLASSES];
125 
126   /* Numbers of allocnos referred or living in the loop node (except
127      for its subloops).  */
128   bitmap all_allocnos;
129 
130   /* Numbers of allocnos living at the loop borders.  */
131   bitmap border_allocnos;
132 
133   /* Regnos of pseudos modified in the loop node (including its
134      subloops).  */
135   bitmap modified_regnos;
136 
137   /* Numbers of copies referred in the corresponding loop.  */
138   bitmap local_copies;
139 };
140 
141 /* The root of the loop tree corresponding to the all function.  */
142 extern ira_loop_tree_node_t ira_loop_tree_root;
143 
144 /* Height of the loop tree.  */
145 extern int ira_loop_tree_height;
146 
147 /* All nodes representing basic blocks are referred through the
148    following array.  We can not use basic block member `aux' for this
149    because it is used for insertion of insns on edges.  */
150 extern ira_loop_tree_node_t ira_bb_nodes;
151 
152 /* Two access macros to the nodes representing basic blocks.  */
153 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
154 #define IRA_BB_NODE_BY_INDEX(index) __extension__			\
155 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]);		\
156      if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
157        {								\
158          fprintf (stderr,						\
159                   "\n%s: %d: error in %s: it is not a block node\n",	\
160                   __FILE__, __LINE__, __FUNCTION__);			\
161          gcc_unreachable ();						\
162        }								\
163      _node; }))
164 #else
165 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
166 #endif
167 
168 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
169 
170 /* All nodes representing loops are referred through the following
171    array.  */
172 extern ira_loop_tree_node_t ira_loop_nodes;
173 
174 /* Two access macros to the nodes representing loops.  */
175 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
176 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__			\
177 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);	\
178      if (_node->children == NULL || _node->bb != NULL			\
179          || (_node->loop == NULL && current_loops != NULL))		\
180        {								\
181          fprintf (stderr,						\
182                   "\n%s: %d: error in %s: it is not a loop node\n",	\
183                   __FILE__, __LINE__, __FUNCTION__);			\
184          gcc_unreachable ();						\
185        }								\
186      _node; }))
187 #else
188 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
189 #endif
190 
191 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
192 
193 
194 /* The structure describes program points where a given allocno lives.
195    If the live ranges of two allocnos are intersected, the allocnos
196    are in conflict.  */
197 struct live_range
198 {
199   /* Object whose live range is described by given structure.  */
200   ira_object_t object;
201   /* Program point range.  */
202   int start, finish;
203   /* Next structure describing program points where the allocno
204      lives.  */
205   live_range_t next;
206   /* Pointer to structures with the same start/finish.  */
207   live_range_t start_next, finish_next;
208 };
209 
210 /* Program points are enumerated by numbers from range
211    0..IRA_MAX_POINT-1.  There are approximately two times more program
212    points than insns.  Program points are places in the program where
213    liveness info can be changed.  In most general case (there are more
214    complicated cases too) some program points correspond to places
215    where input operand dies and other ones correspond to places where
216    output operands are born.  */
217 extern int ira_max_point;
218 
219 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
220    live ranges with given start/finish point.  */
221 extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
222 
223 /* A structure representing conflict information for an allocno
224    (or one of its subwords).  */
225 struct ira_object
226 {
227   /* The allocno associated with this record.  */
228   ira_allocno_t allocno;
229   /* Vector of accumulated conflicting conflict_redords with NULL end
230      marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
231      otherwise.  */
232   void *conflicts_array;
233   /* Pointer to structures describing at what program point the
234      object lives.  We always maintain the list in such way that *the
235      ranges in the list are not intersected and ordered by decreasing
236      their program points*.  */
237   live_range_t live_ranges;
238   /* The subword within ALLOCNO which is represented by this object.
239      Zero means the lowest-order subword (or the entire allocno in case
240      it is not being tracked in subwords).  */
241   int subword;
242   /* Allocated size of the conflicts array.  */
243   unsigned int conflicts_array_size;
244   /* A unique number for every instance of this structure, which is used
245      to represent it in conflict bit vectors.  */
246   int id;
247   /* Before building conflicts, MIN and MAX are initialized to
248      correspondingly minimal and maximal points of the accumulated
249      live ranges.  Afterwards, they hold the minimal and maximal ids
250      of other ira_objects that this one can conflict with.  */
251   int min, max;
252   /* Initial and accumulated hard registers conflicting with this
253      object and as a consequences can not be assigned to the allocno.
254      All non-allocatable hard regs and hard regs of register classes
255      different from given allocno one are included in the sets.  */
256   HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
257   /* Number of accumulated conflicts in the vector of conflicting
258      objects.  */
259   int num_accumulated_conflicts;
260   /* TRUE if conflicts are represented by a vector of pointers to
261      ira_object structures.  Otherwise, we use a bit vector indexed
262      by conflict ID numbers.  */
263   unsigned int conflict_vec_p : 1;
264 };
265 
266 /* A structure representing an allocno (allocation entity).  Allocno
267    represents a pseudo-register in an allocation region.  If
268    pseudo-register does not live in a region but it lives in the
269    nested regions, it is represented in the region by special allocno
270    called *cap*.  There may be more one cap representing the same
271    pseudo-register in region.  It means that the corresponding
272    pseudo-register lives in more one non-intersected subregion.  */
273 struct ira_allocno
274 {
275   /* The allocno order number starting with 0.  Each allocno has an
276      unique number and the number is never changed for the
277      allocno.  */
278   int num;
279   /* Regno for allocno or cap.  */
280   int regno;
281   /* Mode of the allocno which is the mode of the corresponding
282      pseudo-register.  */
283   ENUM_BITFIELD (machine_mode) mode : 8;
284   /* Widest mode of the allocno which in at least one case could be
285      for paradoxical subregs where wmode > mode.  */
286   ENUM_BITFIELD (machine_mode) wmode : 8;
287   /* Register class which should be used for allocation for given
288      allocno.  NO_REGS means that we should use memory.  */
289   ENUM_BITFIELD (reg_class) aclass : 16;
290   /* During the reload, value TRUE means that we should not reassign a
291      hard register to the allocno got memory earlier.  It is set up
292      when we removed memory-memory move insn before each iteration of
293      the reload.  */
294   unsigned int dont_reassign_p : 1;
295 #ifdef STACK_REGS
296   /* Set to TRUE if allocno can't be assigned to the stack hard
297      register correspondingly in this region and area including the
298      region and all its subregions recursively.  */
299   unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
300 #endif
301   /* TRUE value means that there is no sense to spill the allocno
302      during coloring because the spill will result in additional
303      reloads in reload pass.  */
304   unsigned int bad_spill_p : 1;
305   /* TRUE if a hard register or memory has been assigned to the
306      allocno.  */
307   unsigned int assigned_p : 1;
308   /* TRUE if conflicts for given allocno are represented by vector of
309      pointers to the conflicting allocnos.  Otherwise, we use a bit
310      vector where a bit with given index represents allocno with the
311      same number.  */
312   unsigned int conflict_vec_p : 1;
313   /* Hard register assigned to given allocno.  Negative value means
314      that memory was allocated to the allocno.  During the reload,
315      spilled allocno has value equal to the corresponding stack slot
316      number (0, ...) - 2.  Value -1 is used for allocnos spilled by the
317      reload (at this point pseudo-register has only one allocno) which
318      did not get stack slot yet.  */
319   signed int hard_regno : 16;
320   /* Allocnos with the same regno are linked by the following member.
321      Allocnos corresponding to inner loops are first in the list (it
322      corresponds to depth-first traverse of the loops).  */
323   ira_allocno_t next_regno_allocno;
324   /* There may be different allocnos with the same regno in different
325      regions.  Allocnos are bound to the corresponding loop tree node.
326      Pseudo-register may have only one regular allocno with given loop
327      tree node but more than one cap (see comments above).  */
328   ira_loop_tree_node_t loop_tree_node;
329   /* Accumulated usage references of the allocno.  Here and below,
330      word 'accumulated' means info for given region and all nested
331      subregions.  In this case, 'accumulated' means sum of references
332      of the corresponding pseudo-register in this region and in all
333      nested subregions recursively. */
334   int nrefs;
335   /* Accumulated frequency of usage of the allocno.  */
336   int freq;
337   /* Minimal accumulated and updated costs of usage register of the
338      allocno class.  */
339   int class_cost, updated_class_cost;
340   /* Minimal accumulated, and updated costs of memory for the allocno.
341      At the allocation start, the original and updated costs are
342      equal.  The updated cost may be changed after finishing
343      allocation in a region and starting allocation in a subregion.
344      The change reflects the cost of spill/restore code on the
345      subregion border if we assign memory to the pseudo in the
346      subregion.  */
347   int memory_cost, updated_memory_cost;
348   /* Accumulated number of points where the allocno lives and there is
349      excess pressure for its class.  Excess pressure for a register
350      class at some point means that there are more allocnos of given
351      register class living at the point than number of hard-registers
352      of the class available for the allocation.  */
353   int excess_pressure_points_num;
354   /* Allocno hard reg preferences.  */
355   ira_pref_t allocno_prefs;
356   /* Copies to other non-conflicting allocnos.  The copies can
357      represent move insn or potential move insn usually because of two
358      operand insn constraints.  */
359   ira_copy_t allocno_copies;
360   /* It is a allocno (cap) representing given allocno on upper loop tree
361      level.  */
362   ira_allocno_t cap;
363   /* It is a link to allocno (cap) on lower loop level represented by
364      given cap.  Null if given allocno is not a cap.  */
365   ira_allocno_t cap_member;
366   /* The number of objects tracked in the following array.  */
367   int num_objects;
368   /* An array of structures describing conflict information and live
369      ranges for each object associated with the allocno.  There may be
370      more than one such object in cases where the allocno represents a
371      multi-word register.  */
372   ira_object_t objects[2];
373   /* Accumulated frequency of calls which given allocno
374      intersects.  */
375   int call_freq;
376   /* Accumulated number of the intersected calls.  */
377   int calls_crossed_num;
378   /* The number of calls across which it is live, but which should not
379      affect register preferences.  */
380   int cheap_calls_crossed_num;
381   /* Registers clobbered by intersected calls.  */
382    HARD_REG_SET crossed_calls_clobbered_regs;
383   /* Array of usage costs (accumulated and the one updated during
384      coloring) for each hard register of the allocno class.  The
385      member value can be NULL if all costs are the same and equal to
386      CLASS_COST.  For example, the costs of two different hard
387      registers can be different if one hard register is callee-saved
388      and another one is callee-used and the allocno lives through
389      calls.  Another example can be case when for some insn the
390      corresponding pseudo-register value should be put in specific
391      register class (e.g. AREG for x86) which is a strict subset of
392      the allocno class (GENERAL_REGS for x86).  We have updated costs
393      to reflect the situation when the usage cost of a hard register
394      is decreased because the allocno is connected to another allocno
395      by a copy and the another allocno has been assigned to the hard
396      register.  */
397   int *hard_reg_costs, *updated_hard_reg_costs;
398   /* Array of decreasing costs (accumulated and the one updated during
399      coloring) for allocnos conflicting with given allocno for hard
400      regno of the allocno class.  The member value can be NULL if all
401      costs are the same.  These costs are used to reflect preferences
402      of other allocnos not assigned yet during assigning to given
403      allocno.  */
404   int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
405   /* Different additional data.  It is used to decrease size of
406      allocno data footprint.  */
407   void *add_data;
408 };
409 
410 
411 /* All members of the allocno structures should be accessed only
412    through the following macros.  */
413 #define ALLOCNO_NUM(A) ((A)->num)
414 #define ALLOCNO_REGNO(A) ((A)->regno)
415 #define ALLOCNO_REG(A) ((A)->reg)
416 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
417 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
418 #define ALLOCNO_CAP(A) ((A)->cap)
419 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
420 #define ALLOCNO_NREFS(A) ((A)->nrefs)
421 #define ALLOCNO_FREQ(A) ((A)->freq)
422 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
423 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
424 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
425 #define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
426 #define ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS(A) \
427   ((A)->crossed_calls_clobbered_regs)
428 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
429 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
430 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
431 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
432 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
433 #ifdef STACK_REGS
434 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
435 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
436 #endif
437 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
438 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
439 #define ALLOCNO_MODE(A) ((A)->mode)
440 #define ALLOCNO_WMODE(A) ((A)->wmode)
441 #define ALLOCNO_PREFS(A) ((A)->allocno_prefs)
442 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
443 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
444 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
445 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
446   ((A)->conflict_hard_reg_costs)
447 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
448   ((A)->updated_conflict_hard_reg_costs)
449 #define ALLOCNO_CLASS(A) ((A)->aclass)
450 #define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
451 #define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
452 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
453 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
454 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
455   ((A)->excess_pressure_points_num)
456 #define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
457 #define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
458 #define ALLOCNO_ADD_DATA(A) ((A)->add_data)
459 
460 /* Typedef for pointer to the subsequent structure.  */
461 typedef struct ira_emit_data *ira_emit_data_t;
462 
463 /* Allocno bound data used for emit pseudo live range split insns and
464    to flattening IR.  */
465 struct ira_emit_data
466 {
467   /* TRUE if the allocno assigned to memory was a destination of
468      removed move (see ira-emit.c) at loop exit because the value of
469      the corresponding pseudo-register is not changed inside the
470      loop.  */
471   unsigned int mem_optimized_dest_p : 1;
472   /* TRUE if the corresponding pseudo-register has disjoint live
473      ranges and the other allocnos of the pseudo-register except this
474      one changed REG.  */
475   unsigned int somewhere_renamed_p : 1;
476   /* TRUE if allocno with the same REGNO in a subregion has been
477      renamed, in other words, got a new pseudo-register.  */
478   unsigned int child_renamed_p : 1;
479   /* Final rtx representation of the allocno.  */
480   rtx reg;
481   /* Non NULL if we remove restoring value from given allocno to
482      MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
483      allocno value is not changed inside the loop.  */
484   ira_allocno_t mem_optimized_dest;
485 };
486 
487 #define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
488 
489 /* Data used to emit live range split insns and to flattening IR.  */
490 extern ira_emit_data_t ira_allocno_emit_data;
491 
492 /* Abbreviation for frequent emit data access.  */
493 static inline rtx
allocno_emit_reg(ira_allocno_t a)494 allocno_emit_reg (ira_allocno_t a)
495 {
496   return ALLOCNO_EMIT_DATA (a)->reg;
497 }
498 
499 #define OBJECT_ALLOCNO(O) ((O)->allocno)
500 #define OBJECT_SUBWORD(O) ((O)->subword)
501 #define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
502 #define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
503 #define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
504 #define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
505 #define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
506 #define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
507 #define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
508 #define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
509 #define OBJECT_MIN(O) ((O)->min)
510 #define OBJECT_MAX(O) ((O)->max)
511 #define OBJECT_CONFLICT_ID(O) ((O)->id)
512 #define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
513 
514 /* Map regno -> allocnos with given regno (see comments for
515    allocno member `next_regno_allocno').  */
516 extern ira_allocno_t *ira_regno_allocno_map;
517 
518 /* Array of references to all allocnos.  The order number of the
519    allocno corresponds to the index in the array.  Removed allocnos
520    have NULL element value.  */
521 extern ira_allocno_t *ira_allocnos;
522 
523 /* The size of the previous array.  */
524 extern int ira_allocnos_num;
525 
526 /* Map a conflict id to its corresponding ira_object structure.  */
527 extern ira_object_t *ira_object_id_map;
528 
529 /* The size of the previous array.  */
530 extern int ira_objects_num;
531 
532 /* The following structure represents a hard register preference of
533    allocno.  The preference represent move insns or potential move
534    insns usually because of two operand insn constraints.  One move
535    operand is a hard register.  */
536 struct ira_allocno_pref
537 {
538   /* The unique order number of the preference node starting with 0.  */
539   int num;
540   /* Preferred hard register.  */
541   int hard_regno;
542   /* Accumulated execution frequency of insns from which the
543      preference created.  */
544   int freq;
545   /* Given allocno.  */
546   ira_allocno_t allocno;
547   /* All preferences with the same allocno are linked by the following
548      member.  */
549   ira_pref_t next_pref;
550 };
551 
552 /* Array of references to all allocno preferences.  The order number
553    of the preference corresponds to the index in the array.  */
554 extern ira_pref_t *ira_prefs;
555 
556 /* Size of the previous array.  */
557 extern int ira_prefs_num;
558 
559 /* The following structure represents a copy of two allocnos.  The
560    copies represent move insns or potential move insns usually because
561    of two operand insn constraints.  To remove register shuffle, we
562    also create copies between allocno which is output of an insn and
563    allocno becoming dead in the insn.  */
564 struct ira_allocno_copy
565 {
566   /* The unique order number of the copy node starting with 0.  */
567   int num;
568   /* Allocnos connected by the copy.  The first allocno should have
569      smaller order number than the second one.  */
570   ira_allocno_t first, second;
571   /* Execution frequency of the copy.  */
572   int freq;
573   bool constraint_p;
574   /* It is a move insn which is an origin of the copy.  The member
575      value for the copy representing two operand insn constraints or
576      for the copy created to remove register shuffle is NULL.  In last
577      case the copy frequency is smaller than the corresponding insn
578      execution frequency.  */
579   rtx_insn *insn;
580   /* All copies with the same allocno as FIRST are linked by the two
581      following members.  */
582   ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
583   /* All copies with the same allocno as SECOND are linked by the two
584      following members.  */
585   ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
586   /* Region from which given copy is originated.  */
587   ira_loop_tree_node_t loop_tree_node;
588 };
589 
590 /* Array of references to all copies.  The order number of the copy
591    corresponds to the index in the array.  Removed copies have NULL
592    element value.  */
593 extern ira_copy_t *ira_copies;
594 
595 /* Size of the previous array.  */
596 extern int ira_copies_num;
597 
598 /* The following structure describes a stack slot used for spilled
599    pseudo-registers.  */
600 struct ira_spilled_reg_stack_slot
601 {
602   /* pseudo-registers assigned to the stack slot.  */
603   bitmap_head spilled_regs;
604   /* RTL representation of the stack slot.  */
605   rtx mem;
606   /* Size of the stack slot.  */
607   poly_uint64_pod width;
608 };
609 
610 /* The number of elements in the following array.  */
611 extern int ira_spilled_reg_stack_slots_num;
612 
613 /* The following array contains info about spilled pseudo-registers
614    stack slots used in current function so far.  */
615 extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
616 
617 /* Correspondingly overall cost of the allocation, cost of the
618    allocnos assigned to hard-registers, cost of the allocnos assigned
619    to memory, cost of loads, stores and register move insns generated
620    for pseudo-register live range splitting (see ira-emit.c).  */
621 extern int64_t ira_overall_cost;
622 extern int64_t ira_reg_cost, ira_mem_cost;
623 extern int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
624 extern int ira_move_loops_num, ira_additional_jumps_num;
625 
626 
627 /* This page contains a bitset implementation called 'min/max sets' used to
628    record conflicts in IRA.
629    They are named min/maxs set since we keep track of a minimum and a maximum
630    bit number for each set representing the bounds of valid elements.  Otherwise,
631    the implementation resembles sbitmaps in that we store an array of integers
632    whose bits directly represent the members of the set.  */
633 
634 /* The type used as elements in the array, and the number of bits in
635    this type.  */
636 
637 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
638 #define IRA_INT_TYPE HOST_WIDE_INT
639 
640 /* Set, clear or test bit number I in R, a bit vector of elements with
641    minimal index and maximal index equal correspondingly to MIN and
642    MAX.  */
643 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
644 
645 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__	        \
646   (({ int _min = (MIN), _max = (MAX), _i = (I);				\
647      if (_i < _min || _i > _max)					\
648        {								\
649          fprintf (stderr,						\
650                   "\n%s: %d: error in %s: %d not in range [%d,%d]\n",   \
651                   __FILE__, __LINE__, __FUNCTION__, _i, _min, _max);	\
652          gcc_unreachable ();						\
653        }								\
654      ((R)[(unsigned) (_i - _min) / IRA_INT_BITS]			\
655       |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
656 
657 
658 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__	        \
659   (({ int _min = (MIN), _max = (MAX), _i = (I);				\
660      if (_i < _min || _i > _max)					\
661        {								\
662          fprintf (stderr,						\
663                   "\n%s: %d: error in %s: %d not in range [%d,%d]\n",   \
664                   __FILE__, __LINE__, __FUNCTION__, _i, _min, _max);	\
665          gcc_unreachable ();						\
666        }								\
667      ((R)[(unsigned) (_i - _min) / IRA_INT_BITS]			\
668       &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
669 
670 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__	        \
671   (({ int _min = (MIN), _max = (MAX), _i = (I);				\
672      if (_i < _min || _i > _max)					\
673        {								\
674          fprintf (stderr,						\
675                   "\n%s: %d: error in %s: %d not in range [%d,%d]\n",   \
676                   __FILE__, __LINE__, __FUNCTION__, _i, _min, _max);	\
677          gcc_unreachable ();						\
678        }								\
679      ((R)[(unsigned) (_i - _min) / IRA_INT_BITS]			\
680       & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
681 
682 #else
683 
684 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX)			\
685   ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS]			\
686    |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
687 
688 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX)			\
689   ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS]			\
690    &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
691 
692 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX)			\
693   ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS]			\
694    & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
695 
696 #endif
697 
698 /* The iterator for min/max sets.  */
699 struct minmax_set_iterator {
700 
701   /* Array containing the bit vector.  */
702   IRA_INT_TYPE *vec;
703 
704   /* The number of the current element in the vector.  */
705   unsigned int word_num;
706 
707   /* The number of bits in the bit vector.  */
708   unsigned int nel;
709 
710   /* The current bit index of the bit vector.  */
711   unsigned int bit_num;
712 
713   /* Index corresponding to the 1st bit of the bit vector.   */
714   int start_val;
715 
716   /* The word of the bit vector currently visited.  */
717   unsigned IRA_INT_TYPE word;
718 };
719 
720 /* Initialize the iterator I for bit vector VEC containing minimal and
721    maximal values MIN and MAX.  */
722 static inline void
minmax_set_iter_init(minmax_set_iterator * i,IRA_INT_TYPE * vec,int min,int max)723 minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
724 		      int max)
725 {
726   i->vec = vec;
727   i->word_num = 0;
728   i->nel = max < min ? 0 : max - min + 1;
729   i->start_val = min;
730   i->bit_num = 0;
731   i->word = i->nel == 0 ? 0 : vec[0];
732 }
733 
734 /* Return TRUE if we have more allocnos to visit, in which case *N is
735    set to the number of the element to be visited.  Otherwise, return
736    FALSE.  */
737 static inline bool
minmax_set_iter_cond(minmax_set_iterator * i,int * n)738 minmax_set_iter_cond (minmax_set_iterator *i, int *n)
739 {
740   /* Skip words that are zeros.  */
741   for (; i->word == 0; i->word = i->vec[i->word_num])
742     {
743       i->word_num++;
744       i->bit_num = i->word_num * IRA_INT_BITS;
745 
746       /* If we have reached the end, break.  */
747       if (i->bit_num >= i->nel)
748 	return false;
749     }
750 
751   /* Skip bits that are zero.  */
752   for (; (i->word & 1) == 0; i->word >>= 1)
753     i->bit_num++;
754 
755   *n = (int) i->bit_num + i->start_val;
756 
757   return true;
758 }
759 
760 /* Advance to the next element in the set.  */
761 static inline void
minmax_set_iter_next(minmax_set_iterator * i)762 minmax_set_iter_next (minmax_set_iterator *i)
763 {
764   i->word >>= 1;
765   i->bit_num++;
766 }
767 
768 /* Loop over all elements of a min/max set given by bit vector VEC and
769    their minimal and maximal values MIN and MAX.  In each iteration, N
770    is set to the number of next allocno.  ITER is an instance of
771    minmax_set_iterator used to iterate over the set.  */
772 #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER)	\
773   for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX));	\
774        minmax_set_iter_cond (&(ITER), &(N));			\
775        minmax_set_iter_next (&(ITER)))
776 
777 struct target_ira_int {
778   ~target_ira_int ();
779 
780   void free_ira_costs ();
781   void free_register_move_costs ();
782 
783   /* Initialized once.  It is a maximal possible size of the allocated
784      struct costs.  */
785   size_t x_max_struct_costs_size;
786 
787   /* Allocated and initialized once, and used to initialize cost values
788      for each insn.  */
789   struct costs *x_init_cost;
790 
791   /* Allocated once, and used for temporary purposes.  */
792   struct costs *x_temp_costs;
793 
794   /* Allocated once, and used for the cost calculation.  */
795   struct costs *x_op_costs[MAX_RECOG_OPERANDS];
796   struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
797 
798   /* Hard registers that can not be used for the register allocator for
799      all functions of the current compilation unit.  */
800   HARD_REG_SET x_no_unit_alloc_regs;
801 
802   /* Map: hard regs X modes -> set of hard registers for storing value
803      of given mode starting with given hard register.  */
804   HARD_REG_SET (x_ira_reg_mode_hard_regset
805 		[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
806 
807   /* Maximum cost of moving from a register in one class to a register
808      in another class.  Based on TARGET_REGISTER_MOVE_COST.  */
809   move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
810 
811   /* Similar, but here we don't have to move if the first index is a
812      subset of the second so in that case the cost is zero.  */
813   move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
814 
815   /* Similar, but here we don't have to move if the first index is a
816      superset of the second so in that case the cost is zero.  */
817   move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
818 
819   /* Keep track of the last mode we initialized move costs for.  */
820   int x_last_mode_for_init_move_cost;
821 
822   /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
823      cost not minimal.  */
824   short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
825 
826   /* Map class->true if class is a possible allocno class, false
827      otherwise. */
828   bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
829 
830   /* Map class->true if class is a pressure class, false otherwise. */
831   bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
832 
833   /* Array of the number of hard registers of given class which are
834      available for allocation.  The order is defined by the hard
835      register numbers.  */
836   short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
837 
838   /* Index (in ira_class_hard_regs; for given register class and hard
839      register (in general case a hard register can belong to several
840      register classes;.  The index is negative for hard registers
841      unavailable for the allocation.  */
842   short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
843 
844   /* Index [CL][M] contains R if R appears somewhere in a register of the form:
845 
846          (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M]
847 
848      For example, if:
849 
850      - (reg:M 2) is valid and occupies two registers;
851      - register 2 belongs to CL; and
852      - register 3 belongs to the same pressure class as CL
853 
854      then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be
855      in the set.  */
856   HARD_REG_SET x_ira_useful_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
857 
858   /* The value is number of elements in the subsequent array.  */
859   int x_ira_important_classes_num;
860 
861   /* The array containing all non-empty classes.  Such classes is
862      important for calculation of the hard register usage costs.  */
863   enum reg_class x_ira_important_classes[N_REG_CLASSES];
864 
865   /* The array containing indexes of important classes in the previous
866      array.  The array elements are defined only for important
867      classes.  */
868   int x_ira_important_class_nums[N_REG_CLASSES];
869 
870   /* Map class->true if class is an uniform class, false otherwise.  */
871   bool x_ira_uniform_class_p[N_REG_CLASSES];
872 
873   /* The biggest important class inside of intersection of the two
874      classes (that is calculated taking only hard registers available
875      for allocation into account;.  If the both classes contain no hard
876      registers available for allocation, the value is calculated with
877      taking all hard-registers including fixed ones into account.  */
878   enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
879 
880   /* Classes with end marker LIM_REG_CLASSES which are intersected with
881      given class (the first index).  That includes given class itself.
882      This is calculated taking only hard registers available for
883      allocation into account.  */
884   enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
885 
886   /* The biggest (smallest) important class inside of (covering) union
887      of the two classes (that is calculated taking only hard registers
888      available for allocation into account).  If the both classes
889      contain no hard registers available for allocation, the value is
890      calculated with taking all hard-registers including fixed ones
891      into account.  In other words, the value is the corresponding
892      reg_class_subunion (reg_class_superunion) value.  */
893   enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
894   enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
895 
896   /* For each reg class, table listing all the classes contained in it
897      (excluding the class itself.  Non-allocatable registers are
898      excluded from the consideration).  */
899   enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
900 
901   /* Array whose values are hard regset of hard registers for which
902      move of the hard register in given mode into itself is
903      prohibited.  */
904   HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
905 
906   /* Flag of that the above array has been initialized.  */
907   bool x_ira_prohibited_mode_move_regs_initialized_p;
908 };
909 
910 extern struct target_ira_int default_target_ira_int;
911 #if SWITCHABLE_TARGET
912 extern struct target_ira_int *this_target_ira_int;
913 #else
914 #define this_target_ira_int (&default_target_ira_int)
915 #endif
916 
917 #define ira_reg_mode_hard_regset \
918   (this_target_ira_int->x_ira_reg_mode_hard_regset)
919 #define ira_register_move_cost \
920   (this_target_ira_int->x_ira_register_move_cost)
921 #define ira_max_memory_move_cost \
922   (this_target_ira_int->x_ira_max_memory_move_cost)
923 #define ira_may_move_in_cost \
924   (this_target_ira_int->x_ira_may_move_in_cost)
925 #define ira_may_move_out_cost \
926   (this_target_ira_int->x_ira_may_move_out_cost)
927 #define ira_reg_allocno_class_p \
928   (this_target_ira_int->x_ira_reg_allocno_class_p)
929 #define ira_reg_pressure_class_p \
930   (this_target_ira_int->x_ira_reg_pressure_class_p)
931 #define ira_non_ordered_class_hard_regs \
932   (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
933 #define ira_class_hard_reg_index \
934   (this_target_ira_int->x_ira_class_hard_reg_index)
935 #define ira_useful_class_mode_regs \
936   (this_target_ira_int->x_ira_useful_class_mode_regs)
937 #define ira_important_classes_num \
938   (this_target_ira_int->x_ira_important_classes_num)
939 #define ira_important_classes \
940   (this_target_ira_int->x_ira_important_classes)
941 #define ira_important_class_nums \
942   (this_target_ira_int->x_ira_important_class_nums)
943 #define ira_uniform_class_p \
944   (this_target_ira_int->x_ira_uniform_class_p)
945 #define ira_reg_class_intersect \
946   (this_target_ira_int->x_ira_reg_class_intersect)
947 #define ira_reg_class_super_classes \
948   (this_target_ira_int->x_ira_reg_class_super_classes)
949 #define ira_reg_class_subunion \
950   (this_target_ira_int->x_ira_reg_class_subunion)
951 #define ira_reg_class_superunion \
952   (this_target_ira_int->x_ira_reg_class_superunion)
953 #define ira_prohibited_mode_move_regs \
954   (this_target_ira_int->x_ira_prohibited_mode_move_regs)
955 
956 /* ira.c: */
957 
958 extern void *ira_allocate (size_t);
959 extern void ira_free (void *addr);
960 extern bitmap ira_allocate_bitmap (void);
961 extern void ira_free_bitmap (bitmap);
962 extern void ira_print_disposition (FILE *);
963 extern void ira_debug_disposition (void);
964 extern void ira_debug_allocno_classes (void);
965 extern void ira_init_register_move_cost (machine_mode);
966 extern void ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts);
967 extern int ira_get_dup_out_num (int op_num, HARD_REG_SET &alts);
968 
969 /* ira-build.c */
970 
971 /* The current loop tree node and its regno allocno map.  */
972 extern ira_loop_tree_node_t ira_curr_loop_tree_node;
973 extern ira_allocno_t *ira_curr_regno_allocno_map;
974 
975 extern void ira_debug_pref (ira_pref_t);
976 extern void ira_debug_prefs (void);
977 extern void ira_debug_allocno_prefs (ira_allocno_t);
978 
979 extern void ira_debug_copy (ira_copy_t);
980 extern void debug (ira_allocno_copy &ref);
981 extern void debug (ira_allocno_copy *ptr);
982 
983 extern void ira_debug_copies (void);
984 extern void ira_debug_allocno_copies (ira_allocno_t);
985 extern void debug (ira_allocno &ref);
986 extern void debug (ira_allocno *ptr);
987 
988 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
989 				    void (*) (ira_loop_tree_node_t),
990 				    void (*) (ira_loop_tree_node_t));
991 extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
992 extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
993 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
994 extern void ira_create_allocno_objects (ira_allocno_t);
995 extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
996 extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
997 extern void ira_allocate_conflict_vec (ira_object_t, int);
998 extern void ira_allocate_object_conflicts (ira_object_t, int);
999 extern void ior_hard_reg_conflicts (ira_allocno_t, HARD_REG_SET *);
1000 extern void ira_print_expanded_allocno (ira_allocno_t);
1001 extern void ira_add_live_range_to_object (ira_object_t, int, int);
1002 extern live_range_t ira_create_live_range (ira_object_t, int, int,
1003 					   live_range_t);
1004 extern live_range_t ira_copy_live_range_list (live_range_t);
1005 extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
1006 extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
1007 extern void ira_finish_live_range (live_range_t);
1008 extern void ira_finish_live_range_list (live_range_t);
1009 extern void ira_free_allocno_updated_costs (ira_allocno_t);
1010 extern ira_pref_t ira_create_pref (ira_allocno_t, int, int);
1011 extern void ira_add_allocno_pref (ira_allocno_t, int, int);
1012 extern void ira_remove_pref (ira_pref_t);
1013 extern void ira_remove_allocno_prefs (ira_allocno_t);
1014 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
1015 				   int, bool, rtx_insn *,
1016 				   ira_loop_tree_node_t);
1017 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
1018 					bool, rtx_insn *,
1019 					ira_loop_tree_node_t);
1020 
1021 extern int *ira_allocate_cost_vector (reg_class_t);
1022 extern void ira_free_cost_vector (int *, reg_class_t);
1023 
1024 extern void ira_flattening (int, int);
1025 extern bool ira_build (void);
1026 extern void ira_destroy (void);
1027 
1028 /* ira-costs.c */
1029 extern void ira_init_costs_once (void);
1030 extern void ira_init_costs (void);
1031 extern void ira_costs (void);
1032 extern void ira_tune_allocno_costs (void);
1033 
1034 /* ira-lives.c */
1035 
1036 extern void ira_rebuild_start_finish_chains (void);
1037 extern void ira_print_live_range_list (FILE *, live_range_t);
1038 extern void debug (live_range &ref);
1039 extern void debug (live_range *ptr);
1040 extern void ira_debug_live_range_list (live_range_t);
1041 extern void ira_debug_allocno_live_ranges (ira_allocno_t);
1042 extern void ira_debug_live_ranges (void);
1043 extern void ira_create_allocno_live_ranges (void);
1044 extern void ira_compress_allocno_live_ranges (void);
1045 extern void ira_finish_allocno_live_ranges (void);
1046 extern void ira_implicitly_set_insn_hard_regs (HARD_REG_SET *,
1047 					       alternative_mask);
1048 
1049 /* ira-conflicts.c */
1050 extern void ira_debug_conflicts (bool);
1051 extern void ira_build_conflicts (void);
1052 
1053 /* ira-color.c */
1054 extern void ira_debug_hard_regs_forest (void);
1055 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1056 extern void ira_reassign_conflict_allocnos (int);
1057 extern void ira_initiate_assign (void);
1058 extern void ira_finish_assign (void);
1059 extern void ira_color (void);
1060 
1061 /* ira-emit.c */
1062 extern void ira_initiate_emit_data (void);
1063 extern void ira_finish_emit_data (void);
1064 extern void ira_emit (bool);
1065 
1066 
1067 
1068 /* Return true if equivalence of pseudo REGNO is not a lvalue.  */
1069 static inline bool
ira_equiv_no_lvalue_p(int regno)1070 ira_equiv_no_lvalue_p (int regno)
1071 {
1072   if (regno >= ira_reg_equiv_len)
1073     return false;
1074   return (ira_reg_equiv[regno].constant != NULL_RTX
1075 	  || ira_reg_equiv[regno].invariant != NULL_RTX
1076 	  || (ira_reg_equiv[regno].memory != NULL_RTX
1077 	      && MEM_READONLY_P (ira_reg_equiv[regno].memory)));
1078 }
1079 
1080 
1081 
1082 /* Initialize register costs for MODE if necessary.  */
1083 static inline void
ira_init_register_move_cost_if_necessary(machine_mode mode)1084 ira_init_register_move_cost_if_necessary (machine_mode mode)
1085 {
1086   if (ira_register_move_cost[mode] == NULL)
1087     ira_init_register_move_cost (mode);
1088 }
1089 
1090 
1091 
1092 /* The iterator for all allocnos.  */
1093 struct ira_allocno_iterator {
1094   /* The number of the current element in IRA_ALLOCNOS.  */
1095   int n;
1096 };
1097 
1098 /* Initialize the iterator I.  */
1099 static inline void
ira_allocno_iter_init(ira_allocno_iterator * i)1100 ira_allocno_iter_init (ira_allocno_iterator *i)
1101 {
1102   i->n = 0;
1103 }
1104 
1105 /* Return TRUE if we have more allocnos to visit, in which case *A is
1106    set to the allocno to be visited.  Otherwise, return FALSE.  */
1107 static inline bool
ira_allocno_iter_cond(ira_allocno_iterator * i,ira_allocno_t * a)1108 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1109 {
1110   int n;
1111 
1112   for (n = i->n; n < ira_allocnos_num; n++)
1113     if (ira_allocnos[n] != NULL)
1114       {
1115 	*a = ira_allocnos[n];
1116 	i->n = n + 1;
1117 	return true;
1118       }
1119   return false;
1120 }
1121 
1122 /* Loop over all allocnos.  In each iteration, A is set to the next
1123    allocno.  ITER is an instance of ira_allocno_iterator used to iterate
1124    the allocnos.  */
1125 #define FOR_EACH_ALLOCNO(A, ITER)			\
1126   for (ira_allocno_iter_init (&(ITER));			\
1127        ira_allocno_iter_cond (&(ITER), &(A));)
1128 
1129 /* The iterator for all objects.  */
1130 struct ira_object_iterator {
1131   /* The number of the current element in ira_object_id_map.  */
1132   int n;
1133 };
1134 
1135 /* Initialize the iterator I.  */
1136 static inline void
ira_object_iter_init(ira_object_iterator * i)1137 ira_object_iter_init (ira_object_iterator *i)
1138 {
1139   i->n = 0;
1140 }
1141 
1142 /* Return TRUE if we have more objects to visit, in which case *OBJ is
1143    set to the object to be visited.  Otherwise, return FALSE.  */
1144 static inline bool
ira_object_iter_cond(ira_object_iterator * i,ira_object_t * obj)1145 ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1146 {
1147   int n;
1148 
1149   for (n = i->n; n < ira_objects_num; n++)
1150     if (ira_object_id_map[n] != NULL)
1151       {
1152 	*obj = ira_object_id_map[n];
1153 	i->n = n + 1;
1154 	return true;
1155       }
1156   return false;
1157 }
1158 
1159 /* Loop over all objects.  In each iteration, OBJ is set to the next
1160    object.  ITER is an instance of ira_object_iterator used to iterate
1161    the objects.  */
1162 #define FOR_EACH_OBJECT(OBJ, ITER)			\
1163   for (ira_object_iter_init (&(ITER));			\
1164        ira_object_iter_cond (&(ITER), &(OBJ));)
1165 
1166 /* The iterator for objects associated with an allocno.  */
1167 struct ira_allocno_object_iterator {
1168   /* The number of the element the allocno's object array.  */
1169   int n;
1170 };
1171 
1172 /* Initialize the iterator I.  */
1173 static inline void
ira_allocno_object_iter_init(ira_allocno_object_iterator * i)1174 ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1175 {
1176   i->n = 0;
1177 }
1178 
1179 /* Return TRUE if we have more objects to visit in allocno A, in which
1180    case *O is set to the object to be visited.  Otherwise, return
1181    FALSE.  */
1182 static inline bool
ira_allocno_object_iter_cond(ira_allocno_object_iterator * i,ira_allocno_t a,ira_object_t * o)1183 ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1184 			      ira_object_t *o)
1185 {
1186   int n = i->n++;
1187   if (n < ALLOCNO_NUM_OBJECTS (a))
1188     {
1189       *o = ALLOCNO_OBJECT (a, n);
1190       return true;
1191     }
1192   return false;
1193 }
1194 
1195 /* Loop over all objects associated with allocno A.  In each
1196    iteration, O is set to the next object.  ITER is an instance of
1197    ira_allocno_object_iterator used to iterate the conflicts.  */
1198 #define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER)			\
1199   for (ira_allocno_object_iter_init (&(ITER));			\
1200        ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1201 
1202 
1203 /* The iterator for prefs.  */
1204 struct ira_pref_iterator {
1205   /* The number of the current element in IRA_PREFS.  */
1206   int n;
1207 };
1208 
1209 /* Initialize the iterator I.  */
1210 static inline void
ira_pref_iter_init(ira_pref_iterator * i)1211 ira_pref_iter_init (ira_pref_iterator *i)
1212 {
1213   i->n = 0;
1214 }
1215 
1216 /* Return TRUE if we have more prefs to visit, in which case *PREF is
1217    set to the pref to be visited.  Otherwise, return FALSE.  */
1218 static inline bool
ira_pref_iter_cond(ira_pref_iterator * i,ira_pref_t * pref)1219 ira_pref_iter_cond (ira_pref_iterator *i, ira_pref_t *pref)
1220 {
1221   int n;
1222 
1223   for (n = i->n; n < ira_prefs_num; n++)
1224     if (ira_prefs[n] != NULL)
1225       {
1226 	*pref = ira_prefs[n];
1227 	i->n = n + 1;
1228 	return true;
1229       }
1230   return false;
1231 }
1232 
1233 /* Loop over all prefs.  In each iteration, P is set to the next
1234    pref.  ITER is an instance of ira_pref_iterator used to iterate
1235    the prefs.  */
1236 #define FOR_EACH_PREF(P, ITER)				\
1237   for (ira_pref_iter_init (&(ITER));			\
1238        ira_pref_iter_cond (&(ITER), &(P));)
1239 
1240 
1241 /* The iterator for copies.  */
1242 struct ira_copy_iterator {
1243   /* The number of the current element in IRA_COPIES.  */
1244   int n;
1245 };
1246 
1247 /* Initialize the iterator I.  */
1248 static inline void
ira_copy_iter_init(ira_copy_iterator * i)1249 ira_copy_iter_init (ira_copy_iterator *i)
1250 {
1251   i->n = 0;
1252 }
1253 
1254 /* Return TRUE if we have more copies to visit, in which case *CP is
1255    set to the copy to be visited.  Otherwise, return FALSE.  */
1256 static inline bool
ira_copy_iter_cond(ira_copy_iterator * i,ira_copy_t * cp)1257 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1258 {
1259   int n;
1260 
1261   for (n = i->n; n < ira_copies_num; n++)
1262     if (ira_copies[n] != NULL)
1263       {
1264 	*cp = ira_copies[n];
1265 	i->n = n + 1;
1266 	return true;
1267       }
1268   return false;
1269 }
1270 
1271 /* Loop over all copies.  In each iteration, C is set to the next
1272    copy.  ITER is an instance of ira_copy_iterator used to iterate
1273    the copies.  */
1274 #define FOR_EACH_COPY(C, ITER)				\
1275   for (ira_copy_iter_init (&(ITER));			\
1276        ira_copy_iter_cond (&(ITER), &(C));)
1277 
1278 /* The iterator for object conflicts.  */
1279 struct ira_object_conflict_iterator {
1280 
1281   /* TRUE if the conflicts are represented by vector of allocnos.  */
1282   bool conflict_vec_p;
1283 
1284   /* The conflict vector or conflict bit vector.  */
1285   void *vec;
1286 
1287   /* The number of the current element in the vector (of type
1288      ira_object_t or IRA_INT_TYPE).  */
1289   unsigned int word_num;
1290 
1291   /* The bit vector size.  It is defined only if
1292      OBJECT_CONFLICT_VEC_P is FALSE.  */
1293   unsigned int size;
1294 
1295   /* The current bit index of bit vector.  It is defined only if
1296      OBJECT_CONFLICT_VEC_P is FALSE.  */
1297   unsigned int bit_num;
1298 
1299   /* The object id corresponding to the 1st bit of the bit vector.  It
1300      is defined only if OBJECT_CONFLICT_VEC_P is FALSE.  */
1301   int base_conflict_id;
1302 
1303   /* The word of bit vector currently visited.  It is defined only if
1304      OBJECT_CONFLICT_VEC_P is FALSE.  */
1305   unsigned IRA_INT_TYPE word;
1306 };
1307 
1308 /* Initialize the iterator I with ALLOCNO conflicts.  */
1309 static inline void
ira_object_conflict_iter_init(ira_object_conflict_iterator * i,ira_object_t obj)1310 ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1311 			       ira_object_t obj)
1312 {
1313   i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1314   i->vec = OBJECT_CONFLICT_ARRAY (obj);
1315   i->word_num = 0;
1316   if (i->conflict_vec_p)
1317     i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1318   else
1319     {
1320       if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
1321 	i->size = 0;
1322       else
1323 	i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
1324 		    + IRA_INT_BITS)
1325 		   / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1326       i->bit_num = 0;
1327       i->base_conflict_id = OBJECT_MIN (obj);
1328       i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1329     }
1330 }
1331 
1332 /* Return TRUE if we have more conflicting allocnos to visit, in which
1333    case *A is set to the allocno to be visited.  Otherwise, return
1334    FALSE.  */
1335 static inline bool
ira_object_conflict_iter_cond(ira_object_conflict_iterator * i,ira_object_t * pobj)1336 ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1337 			       ira_object_t *pobj)
1338 {
1339   ira_object_t obj;
1340 
1341   if (i->conflict_vec_p)
1342     {
1343       obj = ((ira_object_t *) i->vec)[i->word_num++];
1344       if (obj == NULL)
1345 	return false;
1346     }
1347   else
1348     {
1349       unsigned IRA_INT_TYPE word = i->word;
1350       unsigned int bit_num = i->bit_num;
1351 
1352       /* Skip words that are zeros.  */
1353       for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1354 	{
1355 	  i->word_num++;
1356 
1357 	  /* If we have reached the end, break.  */
1358 	  if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1359 	    return false;
1360 
1361 	  bit_num = i->word_num * IRA_INT_BITS;
1362 	}
1363 
1364       /* Skip bits that are zero.  */
1365       for (; (word & 1) == 0; word >>= 1)
1366 	bit_num++;
1367 
1368       obj = ira_object_id_map[bit_num + i->base_conflict_id];
1369       i->bit_num = bit_num + 1;
1370       i->word = word >> 1;
1371     }
1372 
1373   *pobj = obj;
1374   return true;
1375 }
1376 
1377 /* Loop over all objects conflicting with OBJ.  In each iteration,
1378    CONF is set to the next conflicting object.  ITER is an instance
1379    of ira_object_conflict_iterator used to iterate the conflicts.  */
1380 #define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER)			\
1381   for (ira_object_conflict_iter_init (&(ITER), (OBJ));			\
1382        ira_object_conflict_iter_cond (&(ITER), &(CONF));)
1383 
1384 
1385 
1386 /* The function returns TRUE if at least one hard register from ones
1387    starting with HARD_REGNO and containing value of MODE are in set
1388    HARD_REGSET.  */
1389 static inline bool
ira_hard_reg_set_intersection_p(int hard_regno,machine_mode mode,HARD_REG_SET hard_regset)1390 ira_hard_reg_set_intersection_p (int hard_regno, machine_mode mode,
1391 				 HARD_REG_SET hard_regset)
1392 {
1393   int i;
1394 
1395   gcc_assert (hard_regno >= 0);
1396   for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--)
1397     if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1398       return true;
1399   return false;
1400 }
1401 
1402 /* Return number of hard registers in hard register SET.  */
1403 static inline int
hard_reg_set_size(HARD_REG_SET set)1404 hard_reg_set_size (HARD_REG_SET set)
1405 {
1406   int i, size;
1407 
1408   for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1409     if (TEST_HARD_REG_BIT (set, i))
1410       size++;
1411   return size;
1412 }
1413 
1414 /* The function returns TRUE if hard registers starting with
1415    HARD_REGNO and containing value of MODE are fully in set
1416    HARD_REGSET.  */
1417 static inline bool
ira_hard_reg_in_set_p(int hard_regno,machine_mode mode,HARD_REG_SET hard_regset)1418 ira_hard_reg_in_set_p (int hard_regno, machine_mode mode,
1419 		       HARD_REG_SET hard_regset)
1420 {
1421   int i;
1422 
1423   ira_assert (hard_regno >= 0);
1424   for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--)
1425     if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1426       return false;
1427   return true;
1428 }
1429 
1430 
1431 
1432 /* To save memory we use a lazy approach for allocation and
1433    initialization of the cost vectors.  We do this only when it is
1434    really necessary.  */
1435 
1436 /* Allocate cost vector *VEC for hard registers of ACLASS and
1437    initialize the elements by VAL if it is necessary */
1438 static inline void
ira_allocate_and_set_costs(int ** vec,reg_class_t aclass,int val)1439 ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
1440 {
1441   int i, *reg_costs;
1442   int len;
1443 
1444   if (*vec != NULL)
1445     return;
1446   *vec = reg_costs = ira_allocate_cost_vector (aclass);
1447   len = ira_class_hard_regs_num[(int) aclass];
1448   for (i = 0; i < len; i++)
1449     reg_costs[i] = val;
1450 }
1451 
1452 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1453    values of vector SRC into the vector if it is necessary */
1454 static inline void
ira_allocate_and_copy_costs(int ** vec,enum reg_class aclass,int * src)1455 ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
1456 {
1457   int len;
1458 
1459   if (*vec != NULL || src == NULL)
1460     return;
1461   *vec = ira_allocate_cost_vector (aclass);
1462   len = ira_class_hard_regs_num[aclass];
1463   memcpy (*vec, src, sizeof (int) * len);
1464 }
1465 
1466 /* Allocate cost vector *VEC for hard registers of ACLASS and add
1467    values of vector SRC into the vector if it is necessary */
1468 static inline void
ira_allocate_and_accumulate_costs(int ** vec,enum reg_class aclass,int * src)1469 ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
1470 {
1471   int i, len;
1472 
1473   if (src == NULL)
1474     return;
1475   len = ira_class_hard_regs_num[aclass];
1476   if (*vec == NULL)
1477     {
1478       *vec = ira_allocate_cost_vector (aclass);
1479       memset (*vec, 0, sizeof (int) * len);
1480     }
1481   for (i = 0; i < len; i++)
1482     (*vec)[i] += src[i];
1483 }
1484 
1485 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1486    values of vector SRC into the vector or initialize it by VAL (if
1487    SRC is null).  */
1488 static inline void
ira_allocate_and_set_or_copy_costs(int ** vec,enum reg_class aclass,int val,int * src)1489 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
1490 				    int val, int *src)
1491 {
1492   int i, *reg_costs;
1493   int len;
1494 
1495   if (*vec != NULL)
1496     return;
1497   *vec = reg_costs = ira_allocate_cost_vector (aclass);
1498   len = ira_class_hard_regs_num[aclass];
1499   if (src != NULL)
1500     memcpy (reg_costs, src, sizeof (int) * len);
1501   else
1502     {
1503       for (i = 0; i < len; i++)
1504 	reg_costs[i] = val;
1505     }
1506 }
1507 
1508 extern rtx ira_create_new_reg (rtx);
1509 extern int first_moveable_pseudo, last_moveable_pseudo;
1510 
1511 #endif /* GCC_IRA_INT_H */
1512