1// Copyright 2017 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5//go:generate go run make_tables.go
6
7// Package bits implements bit counting and manipulation
8// functions for the predeclared unsigned integer types.
9package bits
10
11const uintSize = 32 << (^uint(0) >> 32 & 1) // 32 or 64
12
13// UintSize is the size of a uint in bits.
14const UintSize = uintSize
15
16// --- LeadingZeros ---
17
18// LeadingZeros returns the number of leading zero bits in x; the result is UintSize for x == 0.
19func LeadingZeros(x uint) int { return UintSize - Len(x) }
20
21// LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
22func LeadingZeros8(x uint8) int { return 8 - Len8(x) }
23
24// LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0.
25func LeadingZeros16(x uint16) int { return 16 - Len16(x) }
26
27// LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0.
28func LeadingZeros32(x uint32) int { return 32 - Len32(x) }
29
30// LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
31func LeadingZeros64(x uint64) int { return 64 - Len64(x) }
32
33// --- TrailingZeros ---
34
35// See http://supertech.csail.mit.edu/papers/debruijn.pdf
36const deBruijn32 = 0x077CB531
37
38var deBruijn32tab = [32]byte{
39	0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
40	31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
41}
42
43const deBruijn64 = 0x03f79d71b4ca8b09
44
45var deBruijn64tab = [64]byte{
46	0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
47	62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
48	63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
49	54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
50}
51
52// TrailingZeros returns the number of trailing zero bits in x; the result is UintSize for x == 0.
53func TrailingZeros(x uint) int {
54	if UintSize == 32 {
55		return TrailingZeros32(uint32(x))
56	}
57	return TrailingZeros64(uint64(x))
58}
59
60// TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
61func TrailingZeros8(x uint8) int {
62	return int(ntz8tab[x])
63}
64
65// TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
66func TrailingZeros16(x uint16) (n int) {
67	if x == 0 {
68		return 16
69	}
70	// see comment in TrailingZeros64
71	return int(deBruijn32tab[uint32(x&-x)*deBruijn32>>(32-5)])
72}
73
74// TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
75func TrailingZeros32(x uint32) int {
76	if x == 0 {
77		return 32
78	}
79	// see comment in TrailingZeros64
80	return int(deBruijn32tab[(x&-x)*deBruijn32>>(32-5)])
81}
82
83// TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
84func TrailingZeros64(x uint64) int {
85	if x == 0 {
86		return 64
87	}
88	// If popcount is fast, replace code below with return popcount(^x & (x - 1)).
89	//
90	// x & -x leaves only the right-most bit set in the word. Let k be the
91	// index of that bit. Since only a single bit is set, the value is two
92	// to the power of k. Multiplying by a power of two is equivalent to
93	// left shifting, in this case by k bits. The de Bruijn (64 bit) constant
94	// is such that all six bit, consecutive substrings are distinct.
95	// Therefore, if we have a left shifted version of this constant we can
96	// find by how many bits it was shifted by looking at which six bit
97	// substring ended up at the top of the word.
98	// (Knuth, volume 4, section 7.3.1)
99	return int(deBruijn64tab[(x&-x)*deBruijn64>>(64-6)])
100}
101
102// --- OnesCount ---
103
104const m0 = 0x5555555555555555 // 01010101 ...
105const m1 = 0x3333333333333333 // 00110011 ...
106const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...
107const m3 = 0x00ff00ff00ff00ff // etc.
108const m4 = 0x0000ffff0000ffff
109
110// OnesCount returns the number of one bits ("population count") in x.
111func OnesCount(x uint) int {
112	if UintSize == 32 {
113		return OnesCount32(uint32(x))
114	}
115	return OnesCount64(uint64(x))
116}
117
118// OnesCount8 returns the number of one bits ("population count") in x.
119func OnesCount8(x uint8) int {
120	return int(pop8tab[x])
121}
122
123// OnesCount16 returns the number of one bits ("population count") in x.
124func OnesCount16(x uint16) int {
125	return int(pop8tab[x>>8] + pop8tab[x&0xff])
126}
127
128// OnesCount32 returns the number of one bits ("population count") in x.
129func OnesCount32(x uint32) int {
130	return int(pop8tab[x>>24] + pop8tab[x>>16&0xff] + pop8tab[x>>8&0xff] + pop8tab[x&0xff])
131}
132
133// OnesCount64 returns the number of one bits ("population count") in x.
134func OnesCount64(x uint64) int {
135	// Implementation: Parallel summing of adjacent bits.
136	// See "Hacker's Delight", Chap. 5: Counting Bits.
137	// The following pattern shows the general approach:
138	//
139	//   x = x>>1&(m0&m) + x&(m0&m)
140	//   x = x>>2&(m1&m) + x&(m1&m)
141	//   x = x>>4&(m2&m) + x&(m2&m)
142	//   x = x>>8&(m3&m) + x&(m3&m)
143	//   x = x>>16&(m4&m) + x&(m4&m)
144	//   x = x>>32&(m5&m) + x&(m5&m)
145	//   return int(x)
146	//
147	// Masking (& operations) can be left away when there's no
148	// danger that a field's sum will carry over into the next
149	// field: Since the result cannot be > 64, 8 bits is enough
150	// and we can ignore the masks for the shifts by 8 and up.
151	// Per "Hacker's Delight", the first line can be simplified
152	// more, but it saves at best one instruction, so we leave
153	// it alone for clarity.
154	const m = 1<<64 - 1
155	x = x>>1&(m0&m) + x&(m0&m)
156	x = x>>2&(m1&m) + x&(m1&m)
157	x = (x>>4 + x) & (m2 & m)
158	x += x >> 8
159	x += x >> 16
160	x += x >> 32
161	return int(x) & (1<<7 - 1)
162}
163
164// --- RotateLeft ---
165
166// RotateLeft returns the value of x rotated left by (k mod UintSize) bits.
167// To rotate x right by k bits, call RotateLeft(x, -k).
168func RotateLeft(x uint, k int) uint {
169	if UintSize == 32 {
170		return uint(RotateLeft32(uint32(x), k))
171	}
172	return uint(RotateLeft64(uint64(x), k))
173}
174
175// RotateLeft8 returns the value of x rotated left by (k mod 8) bits.
176// To rotate x right by k bits, call RotateLeft8(x, -k).
177func RotateLeft8(x uint8, k int) uint8 {
178	const n = 8
179	s := uint(k) & (n - 1)
180	return x<<s | x>>(n-s)
181}
182
183// RotateLeft16 returns the value of x rotated left by (k mod 16) bits.
184// To rotate x right by k bits, call RotateLeft16(x, -k).
185func RotateLeft16(x uint16, k int) uint16 {
186	const n = 16
187	s := uint(k) & (n - 1)
188	return x<<s | x>>(n-s)
189}
190
191// RotateLeft32 returns the value of x rotated left by (k mod 32) bits.
192// To rotate x right by k bits, call RotateLeft32(x, -k).
193func RotateLeft32(x uint32, k int) uint32 {
194	const n = 32
195	s := uint(k) & (n - 1)
196	return x<<s | x>>(n-s)
197}
198
199// RotateLeft64 returns the value of x rotated left by (k mod 64) bits.
200// To rotate x right by k bits, call RotateLeft64(x, -k).
201func RotateLeft64(x uint64, k int) uint64 {
202	const n = 64
203	s := uint(k) & (n - 1)
204	return x<<s | x>>(n-s)
205}
206
207// --- Reverse ---
208
209// Reverse returns the value of x with its bits in reversed order.
210func Reverse(x uint) uint {
211	if UintSize == 32 {
212		return uint(Reverse32(uint32(x)))
213	}
214	return uint(Reverse64(uint64(x)))
215}
216
217// Reverse8 returns the value of x with its bits in reversed order.
218func Reverse8(x uint8) uint8 {
219	return rev8tab[x]
220}
221
222// Reverse16 returns the value of x with its bits in reversed order.
223func Reverse16(x uint16) uint16 {
224	return uint16(rev8tab[x>>8]) | uint16(rev8tab[x&0xff])<<8
225}
226
227// Reverse32 returns the value of x with its bits in reversed order.
228func Reverse32(x uint32) uint32 {
229	const m = 1<<32 - 1
230	x = x>>1&(m0&m) | x&(m0&m)<<1
231	x = x>>2&(m1&m) | x&(m1&m)<<2
232	x = x>>4&(m2&m) | x&(m2&m)<<4
233	x = x>>8&(m3&m) | x&(m3&m)<<8
234	return x>>16 | x<<16
235}
236
237// Reverse64 returns the value of x with its bits in reversed order.
238func Reverse64(x uint64) uint64 {
239	const m = 1<<64 - 1
240	x = x>>1&(m0&m) | x&(m0&m)<<1
241	x = x>>2&(m1&m) | x&(m1&m)<<2
242	x = x>>4&(m2&m) | x&(m2&m)<<4
243	x = x>>8&(m3&m) | x&(m3&m)<<8
244	x = x>>16&(m4&m) | x&(m4&m)<<16
245	return x>>32 | x<<32
246}
247
248// --- ReverseBytes ---
249
250// ReverseBytes returns the value of x with its bytes in reversed order.
251func ReverseBytes(x uint) uint {
252	if UintSize == 32 {
253		return uint(ReverseBytes32(uint32(x)))
254	}
255	return uint(ReverseBytes64(uint64(x)))
256}
257
258// ReverseBytes16 returns the value of x with its bytes in reversed order.
259func ReverseBytes16(x uint16) uint16 {
260	return x>>8 | x<<8
261}
262
263// ReverseBytes32 returns the value of x with its bytes in reversed order.
264func ReverseBytes32(x uint32) uint32 {
265	const m = 1<<32 - 1
266	x = x>>8&(m3&m) | x&(m3&m)<<8
267	return x>>16 | x<<16
268}
269
270// ReverseBytes64 returns the value of x with its bytes in reversed order.
271func ReverseBytes64(x uint64) uint64 {
272	const m = 1<<64 - 1
273	x = x>>8&(m3&m) | x&(m3&m)<<8
274	x = x>>16&(m4&m) | x&(m4&m)<<16
275	return x>>32 | x<<32
276}
277
278// --- Len ---
279
280// Len returns the minimum number of bits required to represent x; the result is 0 for x == 0.
281func Len(x uint) int {
282	if UintSize == 32 {
283		return Len32(uint32(x))
284	}
285	return Len64(uint64(x))
286}
287
288// Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
289func Len8(x uint8) int {
290	return int(len8tab[x])
291}
292
293// Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
294func Len16(x uint16) (n int) {
295	if x >= 1<<8 {
296		x >>= 8
297		n = 8
298	}
299	return n + int(len8tab[x])
300}
301
302// Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
303func Len32(x uint32) (n int) {
304	if x >= 1<<16 {
305		x >>= 16
306		n = 16
307	}
308	if x >= 1<<8 {
309		x >>= 8
310		n += 8
311	}
312	return n + int(len8tab[x])
313}
314
315// Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
316func Len64(x uint64) (n int) {
317	if x >= 1<<32 {
318		x >>= 32
319		n = 32
320	}
321	if x >= 1<<16 {
322		x >>= 16
323		n += 16
324	}
325	if x >= 1<<8 {
326		x >>= 8
327		n += 8
328	}
329	return n + int(len8tab[x])
330}
331