1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package regexp
6
7import (
8	"io"
9	"regexp/syntax"
10)
11
12// A queue is a 'sparse array' holding pending threads of execution.
13// See http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html
14type queue struct {
15	sparse []uint32
16	dense  []entry
17}
18
19// An entry is an entry on a queue.
20// It holds both the instruction pc and the actual thread.
21// Some queue entries are just place holders so that the machine
22// knows it has considered that pc. Such entries have t == nil.
23type entry struct {
24	pc uint32
25	t  *thread
26}
27
28// A thread is the state of a single path through the machine:
29// an instruction and a corresponding capture array.
30// See http://swtch.com/~rsc/regexp/regexp2.html
31type thread struct {
32	inst *syntax.Inst
33	cap  []int
34}
35
36// A machine holds all the state during an NFA simulation for p.
37type machine struct {
38	re             *Regexp      // corresponding Regexp
39	p              *syntax.Prog // compiled program
40	op             *onePassProg // compiled onepass program, or notOnePass
41	maxBitStateLen int          // max length of string to search with bitstate
42	b              *bitState    // state for backtracker, allocated lazily
43	q0, q1         queue        // two queues for runq, nextq
44	pool           []*thread    // pool of available threads
45	matched        bool         // whether a match was found
46	matchcap       []int        // capture information for the match
47
48	// cached inputs, to avoid allocation
49	inputBytes  inputBytes
50	inputString inputString
51	inputReader inputReader
52}
53
54func (m *machine) newInputBytes(b []byte) input {
55	m.inputBytes.str = b
56	return &m.inputBytes
57}
58
59func (m *machine) newInputString(s string) input {
60	m.inputString.str = s
61	return &m.inputString
62}
63
64func (m *machine) newInputReader(r io.RuneReader) input {
65	m.inputReader.r = r
66	m.inputReader.atEOT = false
67	m.inputReader.pos = 0
68	return &m.inputReader
69}
70
71// progMachine returns a new machine running the prog p.
72func progMachine(p *syntax.Prog, op *onePassProg) *machine {
73	m := &machine{p: p, op: op}
74	n := len(m.p.Inst)
75	m.q0 = queue{make([]uint32, n), make([]entry, 0, n)}
76	m.q1 = queue{make([]uint32, n), make([]entry, 0, n)}
77	ncap := p.NumCap
78	if ncap < 2 {
79		ncap = 2
80	}
81	if op == notOnePass {
82		m.maxBitStateLen = maxBitStateLen(p)
83	}
84	m.matchcap = make([]int, ncap)
85	return m
86}
87
88func (m *machine) init(ncap int) {
89	for _, t := range m.pool {
90		t.cap = t.cap[:ncap]
91	}
92	m.matchcap = m.matchcap[:ncap]
93}
94
95// alloc allocates a new thread with the given instruction.
96// It uses the free pool if possible.
97func (m *machine) alloc(i *syntax.Inst) *thread {
98	var t *thread
99	if n := len(m.pool); n > 0 {
100		t = m.pool[n-1]
101		m.pool = m.pool[:n-1]
102	} else {
103		t = new(thread)
104		t.cap = make([]int, len(m.matchcap), cap(m.matchcap))
105	}
106	t.inst = i
107	return t
108}
109
110// match runs the machine over the input starting at pos.
111// It reports whether a match was found.
112// If so, m.matchcap holds the submatch information.
113func (m *machine) match(i input, pos int) bool {
114	startCond := m.re.cond
115	if startCond == ^syntax.EmptyOp(0) { // impossible
116		return false
117	}
118	m.matched = false
119	for i := range m.matchcap {
120		m.matchcap[i] = -1
121	}
122	runq, nextq := &m.q0, &m.q1
123	r, r1 := endOfText, endOfText
124	width, width1 := 0, 0
125	r, width = i.step(pos)
126	if r != endOfText {
127		r1, width1 = i.step(pos + width)
128	}
129	var flag syntax.EmptyOp
130	if pos == 0 {
131		flag = syntax.EmptyOpContext(-1, r)
132	} else {
133		flag = i.context(pos)
134	}
135	for {
136		if len(runq.dense) == 0 {
137			if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
138				// Anchored match, past beginning of text.
139				break
140			}
141			if m.matched {
142				// Have match; finished exploring alternatives.
143				break
144			}
145			if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() {
146				// Match requires literal prefix; fast search for it.
147				advance := i.index(m.re, pos)
148				if advance < 0 {
149					break
150				}
151				pos += advance
152				r, width = i.step(pos)
153				r1, width1 = i.step(pos + width)
154			}
155		}
156		if !m.matched {
157			if len(m.matchcap) > 0 {
158				m.matchcap[0] = pos
159			}
160			m.add(runq, uint32(m.p.Start), pos, m.matchcap, flag, nil)
161		}
162		flag = syntax.EmptyOpContext(r, r1)
163		m.step(runq, nextq, pos, pos+width, r, flag)
164		if width == 0 {
165			break
166		}
167		if len(m.matchcap) == 0 && m.matched {
168			// Found a match and not paying attention
169			// to where it is, so any match will do.
170			break
171		}
172		pos += width
173		r, width = r1, width1
174		if r != endOfText {
175			r1, width1 = i.step(pos + width)
176		}
177		runq, nextq = nextq, runq
178	}
179	m.clear(nextq)
180	return m.matched
181}
182
183// clear frees all threads on the thread queue.
184func (m *machine) clear(q *queue) {
185	for _, d := range q.dense {
186		if d.t != nil {
187			m.pool = append(m.pool, d.t)
188		}
189	}
190	q.dense = q.dense[:0]
191}
192
193// step executes one step of the machine, running each of the threads
194// on runq and appending new threads to nextq.
195// The step processes the rune c (which may be endOfText),
196// which starts at position pos and ends at nextPos.
197// nextCond gives the setting for the empty-width flags after c.
198func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond syntax.EmptyOp) {
199	longest := m.re.longest
200	for j := 0; j < len(runq.dense); j++ {
201		d := &runq.dense[j]
202		t := d.t
203		if t == nil {
204			continue
205		}
206		if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] {
207			m.pool = append(m.pool, t)
208			continue
209		}
210		i := t.inst
211		add := false
212		switch i.Op {
213		default:
214			panic("bad inst")
215
216		case syntax.InstMatch:
217			if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) {
218				t.cap[1] = pos
219				copy(m.matchcap, t.cap)
220			}
221			if !longest {
222				// First-match mode: cut off all lower-priority threads.
223				for _, d := range runq.dense[j+1:] {
224					if d.t != nil {
225						m.pool = append(m.pool, d.t)
226					}
227				}
228				runq.dense = runq.dense[:0]
229			}
230			m.matched = true
231
232		case syntax.InstRune:
233			add = i.MatchRune(c)
234		case syntax.InstRune1:
235			add = c == i.Rune[0]
236		case syntax.InstRuneAny:
237			add = true
238		case syntax.InstRuneAnyNotNL:
239			add = c != '\n'
240		}
241		if add {
242			t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t)
243		}
244		if t != nil {
245			m.pool = append(m.pool, t)
246		}
247	}
248	runq.dense = runq.dense[:0]
249}
250
251// add adds an entry to q for pc, unless the q already has such an entry.
252// It also recursively adds an entry for all instructions reachable from pc by following
253// empty-width conditions satisfied by cond.  pos gives the current position
254// in the input.
255func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond syntax.EmptyOp, t *thread) *thread {
256	if pc == 0 {
257		return t
258	}
259	if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc {
260		return t
261	}
262
263	j := len(q.dense)
264	q.dense = q.dense[:j+1]
265	d := &q.dense[j]
266	d.t = nil
267	d.pc = pc
268	q.sparse[pc] = uint32(j)
269
270	i := &m.p.Inst[pc]
271	switch i.Op {
272	default:
273		panic("unhandled")
274	case syntax.InstFail:
275		// nothing
276	case syntax.InstAlt, syntax.InstAltMatch:
277		t = m.add(q, i.Out, pos, cap, cond, t)
278		t = m.add(q, i.Arg, pos, cap, cond, t)
279	case syntax.InstEmptyWidth:
280		if syntax.EmptyOp(i.Arg)&^cond == 0 {
281			t = m.add(q, i.Out, pos, cap, cond, t)
282		}
283	case syntax.InstNop:
284		t = m.add(q, i.Out, pos, cap, cond, t)
285	case syntax.InstCapture:
286		if int(i.Arg) < len(cap) {
287			opos := cap[i.Arg]
288			cap[i.Arg] = pos
289			m.add(q, i.Out, pos, cap, cond, nil)
290			cap[i.Arg] = opos
291		} else {
292			t = m.add(q, i.Out, pos, cap, cond, t)
293		}
294	case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
295		if t == nil {
296			t = m.alloc(i)
297		} else {
298			t.inst = i
299		}
300		if len(cap) > 0 && &t.cap[0] != &cap[0] {
301			copy(t.cap, cap)
302		}
303		d.t = t
304		t = nil
305	}
306	return t
307}
308
309// onepass runs the machine over the input starting at pos.
310// It reports whether a match was found.
311// If so, m.matchcap holds the submatch information.
312// ncap is the number of captures.
313func (m *machine) onepass(i input, pos, ncap int) bool {
314	startCond := m.re.cond
315	if startCond == ^syntax.EmptyOp(0) { // impossible
316		return false
317	}
318	m.matched = false
319	m.matchcap = m.matchcap[:ncap]
320	for i := range m.matchcap {
321		m.matchcap[i] = -1
322	}
323	r, r1 := endOfText, endOfText
324	width, width1 := 0, 0
325	r, width = i.step(pos)
326	if r != endOfText {
327		r1, width1 = i.step(pos + width)
328	}
329	var flag syntax.EmptyOp
330	if pos == 0 {
331		flag = syntax.EmptyOpContext(-1, r)
332	} else {
333		flag = i.context(pos)
334	}
335	pc := m.op.Start
336	inst := m.op.Inst[pc]
337	// If there is a simple literal prefix, skip over it.
338	if pos == 0 && syntax.EmptyOp(inst.Arg)&^flag == 0 &&
339		len(m.re.prefix) > 0 && i.canCheckPrefix() {
340		// Match requires literal prefix; fast search for it.
341		if !i.hasPrefix(m.re) {
342			return m.matched
343		}
344		pos += len(m.re.prefix)
345		r, width = i.step(pos)
346		r1, width1 = i.step(pos + width)
347		flag = i.context(pos)
348		pc = int(m.re.prefixEnd)
349	}
350	for {
351		inst = m.op.Inst[pc]
352		pc = int(inst.Out)
353		switch inst.Op {
354		default:
355			panic("bad inst")
356		case syntax.InstMatch:
357			m.matched = true
358			if len(m.matchcap) > 0 {
359				m.matchcap[0] = 0
360				m.matchcap[1] = pos
361			}
362			return m.matched
363		case syntax.InstRune:
364			if !inst.MatchRune(r) {
365				return m.matched
366			}
367		case syntax.InstRune1:
368			if r != inst.Rune[0] {
369				return m.matched
370			}
371		case syntax.InstRuneAny:
372			// Nothing
373		case syntax.InstRuneAnyNotNL:
374			if r == '\n' {
375				return m.matched
376			}
377		// peek at the input rune to see which branch of the Alt to take
378		case syntax.InstAlt, syntax.InstAltMatch:
379			pc = int(onePassNext(&inst, r))
380			continue
381		case syntax.InstFail:
382			return m.matched
383		case syntax.InstNop:
384			continue
385		case syntax.InstEmptyWidth:
386			if syntax.EmptyOp(inst.Arg)&^flag != 0 {
387				return m.matched
388			}
389			continue
390		case syntax.InstCapture:
391			if int(inst.Arg) < len(m.matchcap) {
392				m.matchcap[inst.Arg] = pos
393			}
394			continue
395		}
396		if width == 0 {
397			break
398		}
399		flag = syntax.EmptyOpContext(r, r1)
400		pos += width
401		r, width = r1, width1
402		if r != endOfText {
403			r1, width1 = i.step(pos + width)
404		}
405	}
406	return m.matched
407}
408
409// doMatch reports whether either r, b or s match the regexp.
410func (re *Regexp) doMatch(r io.RuneReader, b []byte, s string) bool {
411	return re.doExecute(r, b, s, 0, 0, nil) != nil
412}
413
414// doExecute finds the leftmost match in the input, appends the position
415// of its subexpressions to dstCap and returns dstCap.
416//
417// nil is returned if no matches are found and non-nil if matches are found.
418func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int, dstCap []int) []int {
419	m := re.get()
420	var i input
421	var size int
422	if r != nil {
423		i = m.newInputReader(r)
424	} else if b != nil {
425		i = m.newInputBytes(b)
426		size = len(b)
427	} else {
428		i = m.newInputString(s)
429		size = len(s)
430	}
431	if m.op != notOnePass {
432		if !m.onepass(i, pos, ncap) {
433			re.put(m)
434			return nil
435		}
436	} else if size < m.maxBitStateLen && r == nil {
437		if m.b == nil {
438			m.b = newBitState(m.p)
439		}
440		if !m.backtrack(i, pos, size, ncap) {
441			re.put(m)
442			return nil
443		}
444	} else {
445		m.init(ncap)
446		if !m.match(i, pos) {
447			re.put(m)
448			return nil
449		}
450	}
451	dstCap = append(dstCap, m.matchcap...)
452	if dstCap == nil {
453		// Keep the promise of returning non-nil value on match.
454		dstCap = arrayNoInts[:0]
455	}
456	re.put(m)
457	return dstCap
458}
459
460// arrayNoInts is returned by doExecute match if nil dstCap is passed
461// to it with ncap=0.
462var arrayNoInts [0]int
463