1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT RUN-TIME COMPONENTS                         --
4--                                                                          --
5--                ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS                 --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2012, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNAT was originally developed  by the GNAT team at  New York University. --
28-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29--                                                                          --
30------------------------------------------------------------------------------
31
32--  This body is specifically for using an Ada interface to C math.h to get
33--  the computation engine. Many special cases are handled locally to avoid
34--  unnecessary calls or to meet Annex G strict mode requirements.
35
36--  Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan, sinh,
37--  cosh, tanh from C library via math.h
38
39with Ada.Numerics.Aux;
40
41package body Ada.Numerics.Generic_Elementary_Functions is
42
43   use type Ada.Numerics.Aux.Double;
44
45   Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
46   Log_Two  : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
47
48   Half_Log_Two : constant := Log_Two / 2;
49
50   subtype T is Float_Type'Base;
51   subtype Double is Aux.Double;
52
53   Two_Pi  : constant T := 2.0 * Pi;
54   Half_Pi : constant T := Pi / 2.0;
55
56   Half_Log_Epsilon    : constant T := T (1 - T'Model_Mantissa) * Half_Log_Two;
57   Log_Inverse_Epsilon : constant T := T (T'Model_Mantissa - 1) * Log_Two;
58   Sqrt_Epsilon        : constant T := Sqrt_Two ** (1 - T'Model_Mantissa);
59
60   -----------------------
61   -- Local Subprograms --
62   -----------------------
63
64   function Exp_Strict (X : Float_Type'Base) return Float_Type'Base;
65   --  Cody/Waite routine, supposedly more precise than the library version.
66   --  Currently only needed for Sinh/Cosh on X86 with the largest FP type.
67
68   function Local_Atan
69     (Y : Float_Type'Base;
70      X : Float_Type'Base := 1.0) return Float_Type'Base;
71   --  Common code for arc tangent after cycle reduction
72
73   ----------
74   -- "**" --
75   ----------
76
77   function "**" (Left, Right : Float_Type'Base) return Float_Type'Base is
78      A_Right  : Float_Type'Base;
79      Int_Part : Integer;
80      Result   : Float_Type'Base;
81      R1       : Float_Type'Base;
82      Rest     : Float_Type'Base;
83
84   begin
85      if Left = 0.0
86        and then Right = 0.0
87      then
88         raise Argument_Error;
89
90      elsif Left < 0.0 then
91         raise Argument_Error;
92
93      elsif Right = 0.0 then
94         return 1.0;
95
96      elsif Left = 0.0 then
97         if Right < 0.0 then
98            raise Constraint_Error;
99         else
100            return 0.0;
101         end if;
102
103      elsif Left = 1.0 then
104         return 1.0;
105
106      elsif Right = 1.0 then
107         return Left;
108
109      else
110         begin
111            if Right = 2.0 then
112               return Left * Left;
113
114            elsif Right = 0.5 then
115               return Sqrt (Left);
116
117            else
118               A_Right := abs (Right);
119
120               --  If exponent is larger than one, compute integer exponen-
121               --  tiation if possible, and evaluate fractional part with more
122               --  precision. The relative error is now proportional to the
123               --  fractional part of the exponent only.
124
125               if A_Right > 1.0
126                 and then A_Right < Float_Type'Base (Integer'Last)
127               then
128                  Int_Part := Integer (Float_Type'Base'Truncation (A_Right));
129                  Result := Left ** Int_Part;
130                  Rest :=  A_Right - Float_Type'Base (Int_Part);
131
132                  --  Compute with two leading bits of the mantissa using
133                  --  square roots. Bound  to be better than logarithms, and
134                  --  easily extended to greater precision.
135
136                  if Rest >= 0.5 then
137                     R1 := Sqrt (Left);
138                     Result := Result * R1;
139                     Rest := Rest - 0.5;
140
141                     if Rest >= 0.25 then
142                        Result := Result * Sqrt (R1);
143                        Rest := Rest - 0.25;
144                     end if;
145
146                  elsif Rest >= 0.25 then
147                     Result := Result * Sqrt (Sqrt (Left));
148                     Rest := Rest - 0.25;
149                  end if;
150
151                  Result :=  Result *
152                    Float_Type'Base (Aux.Pow (Double (Left), Double (Rest)));
153
154                  if Right >= 0.0 then
155                     return Result;
156                  else
157                     return (1.0 / Result);
158                  end if;
159               else
160                  return
161                    Float_Type'Base (Aux.Pow (Double (Left), Double (Right)));
162               end if;
163            end if;
164
165         exception
166            when others =>
167               raise Constraint_Error;
168         end;
169      end if;
170   end "**";
171
172   ------------
173   -- Arccos --
174   ------------
175
176   --  Natural cycle
177
178   function Arccos (X : Float_Type'Base) return Float_Type'Base is
179      Temp : Float_Type'Base;
180
181   begin
182      if abs X > 1.0 then
183         raise Argument_Error;
184
185      elsif abs X < Sqrt_Epsilon then
186         return Pi / 2.0 - X;
187
188      elsif X = 1.0 then
189         return 0.0;
190
191      elsif X = -1.0 then
192         return Pi;
193      end if;
194
195      Temp := Float_Type'Base (Aux.Acos (Double (X)));
196
197      if Temp < 0.0 then
198         Temp := Pi + Temp;
199      end if;
200
201      return Temp;
202   end Arccos;
203
204   --  Arbitrary cycle
205
206   function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base is
207      Temp : Float_Type'Base;
208
209   begin
210      if Cycle <= 0.0 then
211         raise Argument_Error;
212
213      elsif abs X > 1.0 then
214         raise Argument_Error;
215
216      elsif abs X < Sqrt_Epsilon then
217         return Cycle / 4.0;
218
219      elsif X = 1.0 then
220         return 0.0;
221
222      elsif X = -1.0 then
223         return Cycle / 2.0;
224      end if;
225
226      Temp := Arctan (Sqrt ((1.0 - X) * (1.0 + X)) / X, 1.0, Cycle);
227
228      if Temp < 0.0 then
229         Temp := Cycle / 2.0 + Temp;
230      end if;
231
232      return Temp;
233   end Arccos;
234
235   -------------
236   -- Arccosh --
237   -------------
238
239   function Arccosh (X : Float_Type'Base) return Float_Type'Base is
240   begin
241      --  Return positive branch of Log (X - Sqrt (X * X - 1.0)), or the proper
242      --  approximation for X close to 1 or >> 1.
243
244      if X < 1.0 then
245         raise Argument_Error;
246
247      elsif X < 1.0 + Sqrt_Epsilon then
248         return Sqrt (2.0 * (X - 1.0));
249
250      elsif  X > 1.0 / Sqrt_Epsilon then
251         return Log (X) + Log_Two;
252
253      else
254         return Log (X + Sqrt ((X - 1.0) * (X + 1.0)));
255      end if;
256   end Arccosh;
257
258   ------------
259   -- Arccot --
260   ------------
261
262   --  Natural cycle
263
264   function Arccot
265     (X    : Float_Type'Base;
266      Y    : Float_Type'Base := 1.0)
267      return Float_Type'Base
268   is
269   begin
270      --  Just reverse arguments
271
272      return Arctan (Y, X);
273   end Arccot;
274
275   --  Arbitrary cycle
276
277   function Arccot
278     (X     : Float_Type'Base;
279      Y     : Float_Type'Base := 1.0;
280      Cycle : Float_Type'Base)
281      return  Float_Type'Base
282   is
283   begin
284      --  Just reverse arguments
285
286      return Arctan (Y, X, Cycle);
287   end Arccot;
288
289   -------------
290   -- Arccoth --
291   -------------
292
293   function Arccoth (X : Float_Type'Base) return Float_Type'Base is
294   begin
295      if abs X > 2.0 then
296         return Arctanh (1.0 / X);
297
298      elsif abs X = 1.0 then
299         raise Constraint_Error;
300
301      elsif abs X < 1.0 then
302         raise Argument_Error;
303
304      else
305         --  1.0 < abs X <= 2.0. One of X + 1.0 and X - 1.0 is exact, the other
306         --  has error 0 or Epsilon.
307
308         return 0.5 * (Log (abs (X + 1.0)) - Log (abs (X - 1.0)));
309      end if;
310   end Arccoth;
311
312   ------------
313   -- Arcsin --
314   ------------
315
316   --  Natural cycle
317
318   function Arcsin (X : Float_Type'Base) return Float_Type'Base is
319   begin
320      if abs X > 1.0 then
321         raise Argument_Error;
322
323      elsif abs X < Sqrt_Epsilon then
324         return X;
325
326      elsif X = 1.0 then
327         return Pi / 2.0;
328
329      elsif X = -1.0 then
330         return -(Pi / 2.0);
331      end if;
332
333      return Float_Type'Base (Aux.Asin (Double (X)));
334   end Arcsin;
335
336   --  Arbitrary cycle
337
338   function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base is
339   begin
340      if Cycle <= 0.0 then
341         raise Argument_Error;
342
343      elsif abs X > 1.0 then
344         raise Argument_Error;
345
346      elsif X = 0.0 then
347         return X;
348
349      elsif X = 1.0 then
350         return Cycle / 4.0;
351
352      elsif X = -1.0 then
353         return -(Cycle / 4.0);
354      end if;
355
356      return Arctan (X / Sqrt ((1.0 - X) * (1.0 + X)), 1.0, Cycle);
357   end Arcsin;
358
359   -------------
360   -- Arcsinh --
361   -------------
362
363   function Arcsinh (X : Float_Type'Base) return Float_Type'Base is
364   begin
365      if abs X < Sqrt_Epsilon then
366         return X;
367
368      elsif X > 1.0 / Sqrt_Epsilon then
369         return Log (X) + Log_Two;
370
371      elsif X < -(1.0 / Sqrt_Epsilon) then
372         return -(Log (-X) + Log_Two);
373
374      elsif X < 0.0 then
375         return -Log (abs X + Sqrt (X * X + 1.0));
376
377      else
378         return Log (X + Sqrt (X * X + 1.0));
379      end if;
380   end Arcsinh;
381
382   ------------
383   -- Arctan --
384   ------------
385
386   --  Natural cycle
387
388   function Arctan
389     (Y    : Float_Type'Base;
390      X    : Float_Type'Base := 1.0)
391      return Float_Type'Base
392   is
393   begin
394      if X = 0.0 and then Y = 0.0 then
395         raise Argument_Error;
396
397      elsif Y = 0.0 then
398         if X > 0.0 then
399            return 0.0;
400         else -- X < 0.0
401            return Pi * Float_Type'Copy_Sign (1.0, Y);
402         end if;
403
404      elsif X = 0.0 then
405         return Float_Type'Copy_Sign (Half_Pi, Y);
406
407      else
408         return Local_Atan (Y, X);
409      end if;
410   end Arctan;
411
412   --  Arbitrary cycle
413
414   function Arctan
415     (Y     : Float_Type'Base;
416      X     : Float_Type'Base := 1.0;
417      Cycle : Float_Type'Base)
418      return  Float_Type'Base
419   is
420   begin
421      if Cycle <= 0.0 then
422         raise Argument_Error;
423
424      elsif X = 0.0 and then Y = 0.0 then
425         raise Argument_Error;
426
427      elsif Y = 0.0 then
428         if X > 0.0 then
429            return 0.0;
430         else -- X < 0.0
431            return Cycle / 2.0 * Float_Type'Copy_Sign (1.0, Y);
432         end if;
433
434      elsif X = 0.0 then
435         return Float_Type'Copy_Sign (Cycle / 4.0, Y);
436
437      else
438         return Local_Atan (Y, X) *  Cycle / Two_Pi;
439      end if;
440   end Arctan;
441
442   -------------
443   -- Arctanh --
444   -------------
445
446   function Arctanh (X : Float_Type'Base) return Float_Type'Base is
447      A, B, D, A_Plus_1, A_From_1 : Float_Type'Base;
448
449      Mantissa : constant Integer := Float_Type'Base'Machine_Mantissa;
450
451   begin
452      --  The naive formula:
453
454      --     Arctanh (X) := (1/2) * Log  (1 + X) / (1 - X)
455
456      --   is not well-behaved numerically when X < 0.5 and when X is close
457      --   to one. The following is accurate but probably not optimal.
458
459      if abs X = 1.0 then
460         raise Constraint_Error;
461
462      elsif abs X >= 1.0 - 2.0 ** (-Mantissa) then
463
464         if abs X >= 1.0 then
465            raise Argument_Error;
466         else
467
468            --  The one case that overflows if put through the method below:
469            --  abs X = 1.0 - Epsilon.  In this case (1/2) log (2/Epsilon) is
470            --  accurate. This simplifies to:
471
472            return Float_Type'Copy_Sign (
473               Half_Log_Two * Float_Type'Base (Mantissa + 1), X);
474         end if;
475
476      --  elsif abs X <= 0.5 then
477      --  why is above line commented out ???
478
479      else
480         --  Use several piecewise linear approximations. A is close to X,
481         --  chosen so 1.0 + A, 1.0 - A, and X - A are exact. The two scalings
482         --  remove the low-order bits of X.
483
484         A := Float_Type'Base'Scaling (
485             Float_Type'Base (Long_Long_Integer
486               (Float_Type'Base'Scaling (X, Mantissa - 1))), 1 - Mantissa);
487
488         B := X - A;                --  This is exact; abs B <= 2**(-Mantissa).
489         A_Plus_1 := 1.0 + A;       --  This is exact.
490         A_From_1 := 1.0 - A;       --  Ditto.
491         D := A_Plus_1 * A_From_1;  --  1 - A*A.
492
493         --  use one term of the series expansion:
494
495         --    f (x + e) = f(x) + e * f'(x) + ..
496
497         --  The derivative of Arctanh at A is 1/(1-A*A). Next term is
498         --  A*(B/D)**2 (if a quadratic approximation is ever needed).
499
500         return 0.5 * (Log (A_Plus_1) - Log (A_From_1)) + B / D;
501      end if;
502   end Arctanh;
503
504   ---------
505   -- Cos --
506   ---------
507
508   --  Natural cycle
509
510   function Cos (X : Float_Type'Base) return Float_Type'Base is
511   begin
512      if X = 0.0 then
513         return 1.0;
514
515      elsif abs X < Sqrt_Epsilon then
516         return 1.0;
517
518      end if;
519
520      return Float_Type'Base (Aux.Cos (Double (X)));
521   end Cos;
522
523   --  Arbitrary cycle
524
525   function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base is
526   begin
527      --  Just reuse the code for Sin. The potential small loss of speed is
528      --  negligible with proper (front-end) inlining.
529
530      return -Sin (abs X - Cycle * 0.25, Cycle);
531   end Cos;
532
533   ----------
534   -- Cosh --
535   ----------
536
537   function Cosh (X : Float_Type'Base) return Float_Type'Base is
538      Lnv      : constant Float_Type'Base := 8#0.542714#;
539      V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
540      Y        : constant Float_Type'Base := abs X;
541      Z        : Float_Type'Base;
542
543   begin
544      if Y < Sqrt_Epsilon then
545         return 1.0;
546
547      elsif  Y > Log_Inverse_Epsilon then
548         Z := Exp_Strict (Y - Lnv);
549         return (Z + V2minus1 * Z);
550
551      else
552         Z := Exp_Strict (Y);
553         return 0.5 * (Z + 1.0 / Z);
554      end if;
555
556   end Cosh;
557
558   ---------
559   -- Cot --
560   ---------
561
562   --  Natural cycle
563
564   function Cot (X : Float_Type'Base) return Float_Type'Base is
565   begin
566      if X = 0.0 then
567         raise Constraint_Error;
568
569      elsif abs X < Sqrt_Epsilon then
570         return 1.0 / X;
571      end if;
572
573      return 1.0 / Float_Type'Base (Aux.Tan (Double (X)));
574   end Cot;
575
576   --  Arbitrary cycle
577
578   function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base is
579      T : Float_Type'Base;
580
581   begin
582      if Cycle <= 0.0 then
583         raise Argument_Error;
584      end if;
585
586      T := Float_Type'Base'Remainder (X, Cycle);
587
588      if T = 0.0 or else abs T = 0.5 * Cycle then
589         raise Constraint_Error;
590
591      elsif abs T < Sqrt_Epsilon then
592         return 1.0 / T;
593
594      elsif abs T = 0.25 * Cycle then
595         return 0.0;
596
597      else
598         T := T / Cycle * Two_Pi;
599         return Cos (T) / Sin (T);
600      end if;
601   end Cot;
602
603   ----------
604   -- Coth --
605   ----------
606
607   function Coth (X : Float_Type'Base) return Float_Type'Base is
608   begin
609      if X = 0.0 then
610         raise Constraint_Error;
611
612      elsif X < Half_Log_Epsilon then
613         return -1.0;
614
615      elsif X > -Half_Log_Epsilon then
616         return 1.0;
617
618      elsif abs X < Sqrt_Epsilon then
619         return 1.0 / X;
620      end if;
621
622      return 1.0 / Float_Type'Base (Aux.Tanh (Double (X)));
623   end Coth;
624
625   ---------
626   -- Exp --
627   ---------
628
629   function Exp (X : Float_Type'Base) return Float_Type'Base is
630      Result : Float_Type'Base;
631
632   begin
633      if X = 0.0 then
634         return 1.0;
635      end if;
636
637      Result := Float_Type'Base (Aux.Exp (Double (X)));
638
639      --  Deal with case of Exp returning IEEE infinity. If Machine_Overflows
640      --  is False, then we can just leave it as an infinity (and indeed we
641      --  prefer to do so). But if Machine_Overflows is True, then we have
642      --  to raise a Constraint_Error exception as required by the RM.
643
644      if Float_Type'Machine_Overflows and then not Result'Valid then
645         raise Constraint_Error;
646      end if;
647
648      return Result;
649   end Exp;
650
651   ----------------
652   -- Exp_Strict --
653   ----------------
654
655   function Exp_Strict (X : Float_Type'Base) return Float_Type'Base is
656      G : Float_Type'Base;
657      Z : Float_Type'Base;
658
659      P0 : constant := 0.25000_00000_00000_00000;
660      P1 : constant := 0.75753_18015_94227_76666E-2;
661      P2 : constant := 0.31555_19276_56846_46356E-4;
662
663      Q0 : constant := 0.5;
664      Q1 : constant := 0.56817_30269_85512_21787E-1;
665      Q2 : constant := 0.63121_89437_43985_02557E-3;
666      Q3 : constant := 0.75104_02839_98700_46114E-6;
667
668      C1 : constant := 8#0.543#;
669      C2 : constant := -2.1219_44400_54690_58277E-4;
670      Le : constant := 1.4426_95040_88896_34074;
671
672      XN : Float_Type'Base;
673      P, Q, R : Float_Type'Base;
674
675   begin
676      if X = 0.0 then
677         return 1.0;
678      end if;
679
680      XN := Float_Type'Base'Rounding (X * Le);
681      G := (X - XN * C1) - XN * C2;
682      Z := G * G;
683      P := G * ((P2 * Z + P1) * Z + P0);
684      Q := ((Q3 * Z + Q2) * Z + Q1) * Z + Q0;
685      R := 0.5 + P / (Q - P);
686
687      R := Float_Type'Base'Scaling (R, Integer (XN) + 1);
688
689      --  Deal with case of Exp returning IEEE infinity. If Machine_Overflows
690      --  is False, then we can just leave it as an infinity (and indeed we
691      --  prefer to do so). But if Machine_Overflows is True, then we have to
692      --  raise a Constraint_Error exception as required by the RM.
693
694      if Float_Type'Machine_Overflows and then not R'Valid then
695         raise Constraint_Error;
696      else
697         return R;
698      end if;
699
700   end Exp_Strict;
701
702   ----------------
703   -- Local_Atan --
704   ----------------
705
706   function Local_Atan
707     (Y : Float_Type'Base;
708      X : Float_Type'Base := 1.0) return Float_Type'Base
709   is
710      Z        : Float_Type'Base;
711      Raw_Atan : Float_Type'Base;
712
713   begin
714      Z := (if abs Y > abs X then abs (X / Y) else abs (Y / X));
715
716      Raw_Atan :=
717        (if Z < Sqrt_Epsilon then Z
718         elsif Z = 1.0 then Pi / 4.0
719         else Float_Type'Base (Aux.Atan (Double (Z))));
720
721      if abs Y > abs X then
722         Raw_Atan := Half_Pi - Raw_Atan;
723      end if;
724
725      if X > 0.0 then
726         return Float_Type'Copy_Sign (Raw_Atan, Y);
727      else
728         return Float_Type'Copy_Sign (Pi - Raw_Atan, Y);
729      end if;
730   end Local_Atan;
731
732   ---------
733   -- Log --
734   ---------
735
736   --  Natural base
737
738   function Log (X : Float_Type'Base) return Float_Type'Base is
739   begin
740      if X < 0.0 then
741         raise Argument_Error;
742
743      elsif X = 0.0 then
744         raise Constraint_Error;
745
746      elsif X = 1.0 then
747         return 0.0;
748      end if;
749
750      return Float_Type'Base (Aux.Log (Double (X)));
751   end Log;
752
753   --  Arbitrary base
754
755   function Log (X, Base : Float_Type'Base) return Float_Type'Base is
756   begin
757      if X < 0.0 then
758         raise Argument_Error;
759
760      elsif Base <= 0.0 or else Base = 1.0 then
761         raise Argument_Error;
762
763      elsif X = 0.0 then
764         raise Constraint_Error;
765
766      elsif X = 1.0 then
767         return 0.0;
768      end if;
769
770      return Float_Type'Base (Aux.Log (Double (X)) / Aux.Log (Double (Base)));
771   end Log;
772
773   ---------
774   -- Sin --
775   ---------
776
777   --  Natural cycle
778
779   function Sin (X : Float_Type'Base) return Float_Type'Base is
780   begin
781      if abs X < Sqrt_Epsilon then
782         return X;
783      end if;
784
785      return Float_Type'Base (Aux.Sin (Double (X)));
786   end Sin;
787
788   --  Arbitrary cycle
789
790   function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base is
791      T : Float_Type'Base;
792
793   begin
794      if Cycle <= 0.0 then
795         raise Argument_Error;
796
797      --  If X is zero, return it as the result, preserving the argument sign.
798      --  Is this test really needed on any machine ???
799
800      elsif X = 0.0 then
801         return X;
802      end if;
803
804      T := Float_Type'Base'Remainder (X, Cycle);
805
806      --  The following two reductions reduce the argument to the interval
807      --  [-0.25 * Cycle, 0.25 * Cycle]. This reduction is exact and is needed
808      --  to prevent inaccuracy that may result if the sine function uses a
809      --  different (more accurate) value of Pi in its reduction than is used
810      --  in the multiplication with Two_Pi.
811
812      if abs T > 0.25 * Cycle then
813         T := 0.5 * Float_Type'Copy_Sign (Cycle, T) - T;
814      end if;
815
816      --  Could test for 12.0 * abs T = Cycle, and return an exact value in
817      --  those cases. It is not clear this is worth the extra test though.
818
819      return Float_Type'Base (Aux.Sin (Double (T / Cycle * Two_Pi)));
820   end Sin;
821
822   ----------
823   -- Sinh --
824   ----------
825
826   function Sinh (X : Float_Type'Base) return Float_Type'Base is
827      Lnv      : constant Float_Type'Base := 8#0.542714#;
828      V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
829      Y        : constant Float_Type'Base := abs X;
830      F        : constant Float_Type'Base := Y * Y;
831      Z        : Float_Type'Base;
832
833      Float_Digits_1_6 : constant Boolean := Float_Type'Digits < 7;
834
835   begin
836      if Y < Sqrt_Epsilon then
837         return X;
838
839      elsif  Y > Log_Inverse_Epsilon then
840         Z := Exp_Strict (Y - Lnv);
841         Z := Z + V2minus1 * Z;
842
843      elsif Y < 1.0 then
844
845         if Float_Digits_1_6 then
846
847            --  Use expansion provided by Cody and Waite, p. 226. Note that
848            --  leading term of the polynomial in Q is exactly 1.0.
849
850            declare
851               P0 : constant := -0.71379_3159E+1;
852               P1 : constant := -0.19033_3399E+0;
853               Q0 : constant := -0.42827_7109E+2;
854
855            begin
856               Z := Y + Y * F * (P1 * F + P0) / (F + Q0);
857            end;
858
859         else
860            declare
861               P0 : constant := -0.35181_28343_01771_17881E+6;
862               P1 : constant := -0.11563_52119_68517_68270E+5;
863               P2 : constant := -0.16375_79820_26307_51372E+3;
864               P3 : constant := -0.78966_12741_73570_99479E+0;
865               Q0 : constant := -0.21108_77005_81062_71242E+7;
866               Q1 : constant :=  0.36162_72310_94218_36460E+5;
867               Q2 : constant := -0.27773_52311_96507_01667E+3;
868
869            begin
870               Z := Y + Y * F * (((P3 * F + P2) * F + P1) * F + P0)
871                              / (((F + Q2) * F + Q1) * F + Q0);
872            end;
873         end if;
874
875      else
876         Z := Exp_Strict (Y);
877         Z := 0.5 * (Z - 1.0 / Z);
878      end if;
879
880      if X > 0.0 then
881         return Z;
882      else
883         return -Z;
884      end if;
885   end Sinh;
886
887   ----------
888   -- Sqrt --
889   ----------
890
891   function Sqrt (X : Float_Type'Base) return Float_Type'Base is
892   begin
893      if X < 0.0 then
894         raise Argument_Error;
895
896      --  Special case Sqrt (0.0) to preserve possible minus sign per IEEE
897
898      elsif X = 0.0 then
899         return X;
900      end if;
901
902      return Float_Type'Base (Aux.Sqrt (Double (X)));
903   end Sqrt;
904
905   ---------
906   -- Tan --
907   ---------
908
909   --  Natural cycle
910
911   function Tan (X : Float_Type'Base) return Float_Type'Base is
912   begin
913      if abs X < Sqrt_Epsilon then
914         return X;
915      end if;
916
917      --  Note: if X is exactly pi/2, then we should raise an exception, since
918      --  the result would overflow. But for all floating-point formats we deal
919      --  with, it is impossible for X to be exactly pi/2, and the result is
920      --  always in range.
921
922      return Float_Type'Base (Aux.Tan (Double (X)));
923   end Tan;
924
925   --  Arbitrary cycle
926
927   function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base is
928      T : Float_Type'Base;
929
930   begin
931      if Cycle <= 0.0 then
932         raise Argument_Error;
933
934      elsif X = 0.0 then
935         return X;
936      end if;
937
938      T := Float_Type'Base'Remainder (X, Cycle);
939
940      if abs T = 0.25 * Cycle then
941         raise Constraint_Error;
942
943      elsif abs T = 0.5 * Cycle then
944         return 0.0;
945
946      else
947         T := T / Cycle * Two_Pi;
948         return Sin (T) / Cos (T);
949      end if;
950
951   end Tan;
952
953   ----------
954   -- Tanh --
955   ----------
956
957   function Tanh (X : Float_Type'Base) return Float_Type'Base is
958      P0 : constant Float_Type'Base := -0.16134_11902_39962_28053E+4;
959      P1 : constant Float_Type'Base := -0.99225_92967_22360_83313E+2;
960      P2 : constant Float_Type'Base := -0.96437_49277_72254_69787E+0;
961
962      Q0 : constant Float_Type'Base :=  0.48402_35707_19886_88686E+4;
963      Q1 : constant Float_Type'Base :=  0.22337_72071_89623_12926E+4;
964      Q2 : constant Float_Type'Base :=  0.11274_47438_05349_49335E+3;
965      Q3 : constant Float_Type'Base :=  0.10000_00000_00000_00000E+1;
966
967      Half_Ln3 : constant Float_Type'Base := 0.54930_61443_34054_84570;
968
969      P, Q, R : Float_Type'Base;
970      Y : constant Float_Type'Base := abs X;
971      G : constant Float_Type'Base := Y * Y;
972
973      Float_Type_Digits_15_Or_More : constant Boolean :=
974        Float_Type'Digits > 14;
975
976   begin
977      if X < Half_Log_Epsilon then
978         return -1.0;
979
980      elsif X > -Half_Log_Epsilon then
981         return 1.0;
982
983      elsif Y < Sqrt_Epsilon then
984         return X;
985
986      elsif Y < Half_Ln3
987        and then Float_Type_Digits_15_Or_More
988      then
989         P := (P2 * G + P1) * G + P0;
990         Q := ((Q3 * G + Q2) * G + Q1) * G + Q0;
991         R := G * (P / Q);
992         return X + X * R;
993
994      else
995         return Float_Type'Base (Aux.Tanh (Double (X)));
996      end if;
997   end Tanh;
998
999end Ada.Numerics.Generic_Elementary_Functions;
1000