1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             E X P _ F I X D                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2013, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Einfo;    use Einfo;
29with Exp_Util; use Exp_Util;
30with Nlists;   use Nlists;
31with Nmake;    use Nmake;
32with Rtsfind;  use Rtsfind;
33with Sem;      use Sem;
34with Sem_Eval; use Sem_Eval;
35with Sem_Res;  use Sem_Res;
36with Sem_Util; use Sem_Util;
37with Sinfo;    use Sinfo;
38with Stand;    use Stand;
39with Tbuild;   use Tbuild;
40with Uintp;    use Uintp;
41with Urealp;   use Urealp;
42
43package body Exp_Fixd is
44
45   -----------------------
46   -- Local Subprograms --
47   -----------------------
48
49   --  General note; in this unit, a number of routines are driven by the
50   --  types (Etype) of their operands. Since we are dealing with unanalyzed
51   --  expressions as they are constructed, the Etypes would not normally be
52   --  set, but the construction routines that we use in this unit do in fact
53   --  set the Etype values correctly. In addition, setting the Etype ensures
54   --  that the analyzer does not try to redetermine the type when the node
55   --  is analyzed (which would be wrong, since in the case where we set the
56   --  Treat_Fixed_As_Integer or Conversion_OK flags, it would think it was
57   --  still dealing with a normal fixed-point operation and mess it up).
58
59   function Build_Conversion
60     (N     : Node_Id;
61      Typ   : Entity_Id;
62      Expr  : Node_Id;
63      Rchk  : Boolean := False;
64      Trunc : Boolean := False) return Node_Id;
65   --  Build an expression that converts the expression Expr to type Typ,
66   --  taking the source location from Sloc (N). If the conversions involve
67   --  fixed-point types, then the Conversion_OK flag will be set so that the
68   --  resulting conversions do not get re-expanded. On return the resulting
69   --  node has its Etype set. If Rchk is set, then Do_Range_Check is set
70   --  in the resulting conversion node. If Trunc is set, then the
71   --  Float_Truncate flag is set on the conversion, which must be from
72   --  a floating-point type to an integer type.
73
74   function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id;
75   --  Builds an N_Op_Divide node from the given left and right operand
76   --  expressions, using the source location from Sloc (N). The operands are
77   --  either both Universal_Real, in which case Build_Divide differs from
78   --  Make_Op_Divide only in that the Etype of the resulting node is set (to
79   --  Universal_Real), or they can be integer types. In this case the integer
80   --  types need not be the same, and Build_Divide converts the operand with
81   --  the smaller sized type to match the type of the other operand and sets
82   --  this as the result type. The Rounded_Result flag of the result in this
83   --  case is set from the Rounded_Result flag of node N. On return, the
84   --  resulting node is analyzed, and has its Etype set.
85
86   function Build_Double_Divide
87     (N       : Node_Id;
88      X, Y, Z : Node_Id) return Node_Id;
89   --  Returns a node corresponding to the value X/(Y*Z) using the source
90   --  location from Sloc (N). The division is rounded if the Rounded_Result
91   --  flag of N is set. The integer types of X, Y, Z may be different. On
92   --  return the resulting node is analyzed, and has its Etype set.
93
94   procedure Build_Double_Divide_Code
95     (N        : Node_Id;
96      X, Y, Z  : Node_Id;
97      Qnn, Rnn : out Entity_Id;
98      Code     : out List_Id);
99   --  Generates a sequence of code for determining the quotient and remainder
100   --  of the division X/(Y*Z), using the source location from Sloc (N).
101   --  Entities of appropriate types are allocated for the quotient and
102   --  remainder and returned in Qnn and Rnn. The result is rounded if the
103   --  Rounded_Result flag of N is set. The Etype fields of Qnn and Rnn are
104   --  appropriately set on return.
105
106   function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id;
107   --  Builds an N_Op_Multiply node from the given left and right operand
108   --  expressions, using the source location from Sloc (N). The operands are
109   --  either both Universal_Real, in which case Build_Multiply differs from
110   --  Make_Op_Multiply only in that the Etype of the resulting node is set (to
111   --  Universal_Real), or they can be integer types. In this case the integer
112   --  types need not be the same, and Build_Multiply chooses a type long
113   --  enough to hold the product (i.e. twice the size of the longer of the two
114   --  operand types), and both operands are converted to this type. The Etype
115   --  of the result is also set to this value. However, the result can never
116   --  overflow Integer_64, so this is the largest type that is ever generated.
117   --  On return, the resulting node is analyzed and has its Etype set.
118
119   function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id;
120   --  Builds an N_Op_Rem node from the given left and right operand
121   --  expressions, using the source location from Sloc (N). The operands are
122   --  both integer types, which need not be the same. Build_Rem converts the
123   --  operand with the smaller sized type to match the type of the other
124   --  operand and sets this as the result type. The result is never rounded
125   --  (rem operations cannot be rounded in any case). On return, the resulting
126   --  node is analyzed and has its Etype set.
127
128   function Build_Scaled_Divide
129     (N       : Node_Id;
130      X, Y, Z : Node_Id) return Node_Id;
131   --  Returns a node corresponding to the value X*Y/Z using the source
132   --  location from Sloc (N). The division is rounded if the Rounded_Result
133   --  flag of N is set. The integer types of X, Y, Z may be different. On
134   --  return the resulting node is analyzed and has is Etype set.
135
136   procedure Build_Scaled_Divide_Code
137     (N        : Node_Id;
138      X, Y, Z  : Node_Id;
139      Qnn, Rnn : out Entity_Id;
140      Code     : out List_Id);
141   --  Generates a sequence of code for determining the quotient and remainder
142   --  of the division X*Y/Z, using the source location from Sloc (N). Entities
143   --  of appropriate types are allocated for the quotient and remainder and
144   --  returned in Qnn and Rrr. The integer types for X, Y, Z may be different.
145   --  The division is rounded if the Rounded_Result flag of N is set. The
146   --  Etype fields of Qnn and Rnn are appropriately set on return.
147
148   procedure Do_Divide_Fixed_Fixed (N : Node_Id);
149   --  Handles expansion of divide for case of two fixed-point operands
150   --  (neither of them universal), with an integer or fixed-point result.
151   --  N is the N_Op_Divide node to be expanded.
152
153   procedure Do_Divide_Fixed_Universal (N : Node_Id);
154   --  Handles expansion of divide for case of a fixed-point operand divided
155   --  by a universal real operand, with an integer or fixed-point result. N
156   --  is the N_Op_Divide node to be expanded.
157
158   procedure Do_Divide_Universal_Fixed (N : Node_Id);
159   --  Handles expansion of divide for case of a universal real operand
160   --  divided by a fixed-point operand, with an integer or fixed-point
161   --  result. N is the N_Op_Divide node to be expanded.
162
163   procedure Do_Multiply_Fixed_Fixed (N : Node_Id);
164   --  Handles expansion of multiply for case of two fixed-point operands
165   --  (neither of them universal), with an integer or fixed-point result.
166   --  N is the N_Op_Multiply node to be expanded.
167
168   procedure Do_Multiply_Fixed_Universal (N : Node_Id; Left, Right : Node_Id);
169   --  Handles expansion of multiply for case of a fixed-point operand
170   --  multiplied by a universal real operand, with an integer or fixed-
171   --  point result. N is the N_Op_Multiply node to be expanded, and
172   --  Left, Right are the operands (which may have been switched).
173
174   procedure Expand_Convert_Fixed_Static (N : Node_Id);
175   --  This routine is called where the node N is a conversion of a literal
176   --  or other static expression of a fixed-point type to some other type.
177   --  In such cases, we simply rewrite the operand as a real literal and
178   --  reanalyze. This avoids problems which would otherwise result from
179   --  attempting to build and fold expressions involving constants.
180
181   function Fpt_Value (N : Node_Id) return Node_Id;
182   --  Given an operand of fixed-point operation, return an expression that
183   --  represents the corresponding Universal_Real value. The expression
184   --  can be of integer type, floating-point type, or fixed-point type.
185   --  The expression returned is neither analyzed and resolved. The Etype
186   --  of the result is properly set (to Universal_Real).
187
188   function Integer_Literal
189     (N        : Node_Id;
190      V        : Uint;
191      Negative : Boolean := False) return Node_Id;
192   --  Given a non-negative universal integer value, build a typed integer
193   --  literal node, using the smallest applicable standard integer type. If
194   --  and only if Negative is true a negative literal is built. If V exceeds
195   --  2**63-1, the largest value allowed for perfect result set scaling
196   --  factors (see RM G.2.3(22)), then Empty is returned. The node N provides
197   --  the Sloc value for the constructed literal. The Etype of the resulting
198   --  literal is correctly set, and it is marked as analyzed.
199
200   function Real_Literal (N : Node_Id; V : Ureal) return Node_Id;
201   --  Build a real literal node from the given value, the Etype of the
202   --  returned node is set to Universal_Real, since all floating-point
203   --  arithmetic operations that we construct use Universal_Real
204
205   function Rounded_Result_Set (N : Node_Id) return Boolean;
206   --  Returns True if N is a node that contains the Rounded_Result flag
207   --  and if the flag is true or the target type is an integer type.
208
209   procedure Set_Result
210     (N     : Node_Id;
211      Expr  : Node_Id;
212      Rchk  : Boolean := False;
213      Trunc : Boolean := False);
214   --  N is the node for the current conversion, division or multiplication
215   --  operation, and Expr is an expression representing the result. Expr may
216   --  be of floating-point or integer type. If the operation result is fixed-
217   --  point, then the value of Expr is in units of small of the result type
218   --  (i.e. small's have already been dealt with). The result of the call is
219   --  to replace N by an appropriate conversion to the result type, dealing
220   --  with rounding for the decimal types case. The node is then analyzed and
221   --  resolved using the result type. If Rchk or Trunc are True, then
222   --  respectively Do_Range_Check and Float_Truncate are set in the
223   --  resulting conversion.
224
225   ----------------------
226   -- Build_Conversion --
227   ----------------------
228
229   function Build_Conversion
230     (N     : Node_Id;
231      Typ   : Entity_Id;
232      Expr  : Node_Id;
233      Rchk  : Boolean := False;
234      Trunc : Boolean := False) return Node_Id
235   is
236      Loc    : constant Source_Ptr := Sloc (N);
237      Result : Node_Id;
238      Rcheck : Boolean := Rchk;
239
240   begin
241      --  A special case, if the expression is an integer literal and the
242      --  target type is an integer type, then just retype the integer
243      --  literal to the desired target type. Don't do this if we need
244      --  a range check.
245
246      if Nkind (Expr) = N_Integer_Literal
247        and then Is_Integer_Type (Typ)
248        and then not Rchk
249      then
250         Result := Expr;
251
252      --  Cases where we end up with a conversion. Note that we do not use the
253      --  Convert_To abstraction here, since we may be decorating the resulting
254      --  conversion with Rounded_Result and/or Conversion_OK, so we want the
255      --  conversion node present, even if it appears to be redundant.
256
257      else
258         --  Remove inner conversion if both inner and outer conversions are
259         --  to integer types, since the inner one serves no purpose (except
260         --  perhaps to set rounding, so we preserve the Rounded_Result flag)
261         --  and also we preserve the range check flag on the inner operand
262
263         if Is_Integer_Type (Typ)
264           and then Is_Integer_Type (Etype (Expr))
265           and then Nkind (Expr) = N_Type_Conversion
266         then
267            Result :=
268              Make_Type_Conversion (Loc,
269                Subtype_Mark => New_Occurrence_Of (Typ, Loc),
270                Expression   => Expression (Expr));
271            Set_Rounded_Result (Result, Rounded_Result_Set (Expr));
272            Rcheck := Rcheck or Do_Range_Check (Expr);
273
274         --  For all other cases, a simple type conversion will work
275
276         else
277            Result :=
278              Make_Type_Conversion (Loc,
279                Subtype_Mark => New_Occurrence_Of (Typ, Loc),
280                Expression   => Expr);
281
282            Set_Float_Truncate (Result, Trunc);
283         end if;
284
285         --  Set Conversion_OK if either result or expression type is a
286         --  fixed-point type, since from a semantic point of view, we are
287         --  treating fixed-point values as integers at this stage.
288
289         if Is_Fixed_Point_Type (Typ)
290           or else Is_Fixed_Point_Type (Etype (Expression (Result)))
291         then
292            Set_Conversion_OK (Result);
293         end if;
294
295         --  Set Do_Range_Check if either it was requested by the caller,
296         --  or if an eliminated inner conversion had a range check.
297
298         if Rcheck then
299            Enable_Range_Check (Result);
300         else
301            Set_Do_Range_Check (Result, False);
302         end if;
303      end if;
304
305      Set_Etype (Result, Typ);
306      return Result;
307   end Build_Conversion;
308
309   ------------------
310   -- Build_Divide --
311   ------------------
312
313   function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id is
314      Loc         : constant Source_Ptr := Sloc (N);
315      Left_Type   : constant Entity_Id  := Base_Type (Etype (L));
316      Right_Type  : constant Entity_Id  := Base_Type (Etype (R));
317      Result_Type : Entity_Id;
318      Rnode       : Node_Id;
319
320   begin
321      --  Deal with floating-point case first
322
323      if Is_Floating_Point_Type (Left_Type) then
324         pragma Assert (Left_Type = Universal_Real);
325         pragma Assert (Right_Type = Universal_Real);
326
327         Rnode := Make_Op_Divide (Loc, L, R);
328         Result_Type := Universal_Real;
329
330      --  Integer and fixed-point cases
331
332      else
333         --  An optimization. If the right operand is the literal 1, then we
334         --  can just return the left hand operand. Putting the optimization
335         --  here allows us to omit the check at the call site.
336
337         if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
338            return L;
339         end if;
340
341         --  If left and right types are the same, no conversion needed
342
343         if Left_Type = Right_Type then
344            Result_Type := Left_Type;
345            Rnode :=
346              Make_Op_Divide (Loc,
347                Left_Opnd  => L,
348                Right_Opnd => R);
349
350         --  Use left type if it is the larger of the two
351
352         elsif Esize (Left_Type) >= Esize (Right_Type) then
353            Result_Type := Left_Type;
354            Rnode :=
355              Make_Op_Divide (Loc,
356                Left_Opnd  => L,
357                Right_Opnd => Build_Conversion (N, Left_Type, R));
358
359         --  Otherwise right type is larger of the two, us it
360
361         else
362            Result_Type := Right_Type;
363            Rnode :=
364              Make_Op_Divide (Loc,
365                Left_Opnd => Build_Conversion (N, Right_Type, L),
366                Right_Opnd => R);
367         end if;
368      end if;
369
370      --  We now have a divide node built with Result_Type set. First
371      --  set Etype of result, as required for all Build_xxx routines
372
373      Set_Etype (Rnode, Base_Type (Result_Type));
374
375      --  Set Treat_Fixed_As_Integer if operation on fixed-point type
376      --  since this is a literal arithmetic operation, to be performed
377      --  by Gigi without any consideration of small values.
378
379      if Is_Fixed_Point_Type (Result_Type) then
380         Set_Treat_Fixed_As_Integer (Rnode);
381      end if;
382
383      --  The result is rounded if the target of the operation is decimal
384      --  and Rounded_Result is set, or if the target of the operation
385      --  is an integer type.
386
387      if Is_Integer_Type (Etype (N))
388        or else Rounded_Result_Set (N)
389      then
390         Set_Rounded_Result (Rnode);
391      end if;
392
393      return Rnode;
394   end Build_Divide;
395
396   -------------------------
397   -- Build_Double_Divide --
398   -------------------------
399
400   function Build_Double_Divide
401     (N       : Node_Id;
402      X, Y, Z : Node_Id) return Node_Id
403   is
404      Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
405      Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
406      Expr   : Node_Id;
407
408   begin
409      --  If denominator fits in 64 bits, we can build the operations directly
410      --  without causing any intermediate overflow, so that's what we do.
411
412      if Int'Max (Y_Size, Z_Size) <= 32 then
413         return
414           Build_Divide (N, X, Build_Multiply (N, Y, Z));
415
416      --  Otherwise we use the runtime routine
417
418      --    [Qnn : Interfaces.Integer_64,
419      --     Rnn : Interfaces.Integer_64;
420      --     Double_Divide (X, Y, Z, Qnn, Rnn, Round);
421      --     Qnn]
422
423      else
424         declare
425            Loc  : constant Source_Ptr := Sloc (N);
426            Qnn  : Entity_Id;
427            Rnn  : Entity_Id;
428            Code : List_Id;
429
430            pragma Warnings (Off, Rnn);
431
432         begin
433            Build_Double_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
434            Insert_Actions (N, Code);
435            Expr := New_Occurrence_Of (Qnn, Loc);
436
437            --  Set type of result in case used elsewhere (see note at start)
438
439            Set_Etype (Expr, Etype (Qnn));
440
441            --  Set result as analyzed (see note at start on build routines)
442
443            return Expr;
444         end;
445      end if;
446   end Build_Double_Divide;
447
448   ------------------------------
449   -- Build_Double_Divide_Code --
450   ------------------------------
451
452   --  If the denominator can be computed in 64-bits, we build
453
454   --    [Nnn : constant typ := typ (X);
455   --     Dnn : constant typ := typ (Y) * typ (Z)
456   --     Qnn : constant typ := Nnn / Dnn;
457   --     Rnn : constant typ := Nnn / Dnn;
458
459   --  If the numerator cannot be computed in 64 bits, we build
460
461   --    [Qnn : typ;
462   --     Rnn : typ;
463   --     Double_Divide (X, Y, Z, Qnn, Rnn, Round);]
464
465   procedure Build_Double_Divide_Code
466     (N        : Node_Id;
467      X, Y, Z  : Node_Id;
468      Qnn, Rnn : out Entity_Id;
469      Code     : out List_Id)
470   is
471      Loc    : constant Source_Ptr := Sloc (N);
472
473      X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
474      Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
475      Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
476
477      QR_Siz : Int;
478      QR_Typ : Entity_Id;
479
480      Nnn : Entity_Id;
481      Dnn : Entity_Id;
482
483      Quo : Node_Id;
484      Rnd : Entity_Id;
485
486   begin
487      --  Find type that will allow computation of numerator
488
489      QR_Siz := Int'Max (X_Size, 2 * Int'Max (Y_Size, Z_Size));
490
491      if QR_Siz <= 16 then
492         QR_Typ := Standard_Integer_16;
493      elsif QR_Siz <= 32 then
494         QR_Typ := Standard_Integer_32;
495      elsif QR_Siz <= 64 then
496         QR_Typ := Standard_Integer_64;
497
498      --  For more than 64, bits, we use the 64-bit integer defined in
499      --  Interfaces, so that it can be handled by the runtime routine
500
501      else
502         QR_Typ := RTE (RE_Integer_64);
503      end if;
504
505      --  Define quotient and remainder, and set their Etypes, so
506      --  that they can be picked up by Build_xxx routines.
507
508      Qnn := Make_Temporary (Loc, 'S');
509      Rnn := Make_Temporary (Loc, 'R');
510
511      Set_Etype (Qnn, QR_Typ);
512      Set_Etype (Rnn, QR_Typ);
513
514      --  Case that we can compute the denominator in 64 bits
515
516      if QR_Siz <= 64 then
517
518         --  Create temporaries for numerator and denominator and set Etypes,
519         --  so that New_Occurrence_Of picks them up for Build_xxx calls.
520
521         Nnn := Make_Temporary (Loc, 'N');
522         Dnn := Make_Temporary (Loc, 'D');
523
524         Set_Etype (Nnn, QR_Typ);
525         Set_Etype (Dnn, QR_Typ);
526
527         Code := New_List (
528           Make_Object_Declaration (Loc,
529             Defining_Identifier => Nnn,
530             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
531             Constant_Present    => True,
532             Expression => Build_Conversion (N, QR_Typ, X)),
533
534           Make_Object_Declaration (Loc,
535             Defining_Identifier => Dnn,
536             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
537             Constant_Present    => True,
538             Expression =>
539               Build_Multiply (N,
540                 Build_Conversion (N, QR_Typ, Y),
541                 Build_Conversion (N, QR_Typ, Z))));
542
543         Quo :=
544           Build_Divide (N,
545             New_Occurrence_Of (Nnn, Loc),
546             New_Occurrence_Of (Dnn, Loc));
547
548         Set_Rounded_Result (Quo, Rounded_Result_Set (N));
549
550         Append_To (Code,
551           Make_Object_Declaration (Loc,
552             Defining_Identifier => Qnn,
553             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
554             Constant_Present    => True,
555             Expression          => Quo));
556
557         Append_To (Code,
558           Make_Object_Declaration (Loc,
559             Defining_Identifier => Rnn,
560             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
561             Constant_Present    => True,
562             Expression =>
563               Build_Rem (N,
564                 New_Occurrence_Of (Nnn, Loc),
565                 New_Occurrence_Of (Dnn, Loc))));
566
567      --  Case where denominator does not fit in 64 bits, so we have to
568      --  call the runtime routine to compute the quotient and remainder
569
570      else
571         Rnd := Boolean_Literals (Rounded_Result_Set (N));
572
573         Code := New_List (
574           Make_Object_Declaration (Loc,
575             Defining_Identifier => Qnn,
576             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc)),
577
578           Make_Object_Declaration (Loc,
579             Defining_Identifier => Rnn,
580             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc)),
581
582           Make_Procedure_Call_Statement (Loc,
583             Name => New_Occurrence_Of (RTE (RE_Double_Divide), Loc),
584             Parameter_Associations => New_List (
585               Build_Conversion (N, QR_Typ, X),
586               Build_Conversion (N, QR_Typ, Y),
587               Build_Conversion (N, QR_Typ, Z),
588               New_Occurrence_Of (Qnn, Loc),
589               New_Occurrence_Of (Rnn, Loc),
590               New_Occurrence_Of (Rnd, Loc))));
591      end if;
592   end Build_Double_Divide_Code;
593
594   --------------------
595   -- Build_Multiply --
596   --------------------
597
598   function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id is
599      Loc         : constant Source_Ptr := Sloc (N);
600      Left_Type   : constant Entity_Id  := Etype (L);
601      Right_Type  : constant Entity_Id  := Etype (R);
602      Left_Size   : Int;
603      Right_Size  : Int;
604      Rsize       : Int;
605      Result_Type : Entity_Id;
606      Rnode       : Node_Id;
607
608   begin
609      --  Deal with floating-point case first
610
611      if Is_Floating_Point_Type (Left_Type) then
612         pragma Assert (Left_Type = Universal_Real);
613         pragma Assert (Right_Type = Universal_Real);
614
615         Result_Type := Universal_Real;
616         Rnode := Make_Op_Multiply (Loc, L, R);
617
618      --  Integer and fixed-point cases
619
620      else
621         --  An optimization. If the right operand is the literal 1, then we
622         --  can just return the left hand operand. Putting the optimization
623         --  here allows us to omit the check at the call site. Similarly, if
624         --  the left operand is the integer 1 we can return the right operand.
625
626         if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
627            return L;
628         elsif Nkind (L) = N_Integer_Literal and then Intval (L) = 1 then
629            return R;
630         end if;
631
632         --  Otherwise we need to figure out the correct result type size
633         --  First figure out the effective sizes of the operands. Normally
634         --  the effective size of an operand is the RM_Size of the operand.
635         --  But a special case arises with operands whose size is known at
636         --  compile time. In this case, we can use the actual value of the
637         --  operand to get its size if it would fit signed in 8 or 16 bits.
638
639         Left_Size := UI_To_Int (RM_Size (Left_Type));
640
641         if Compile_Time_Known_Value (L) then
642            declare
643               Val : constant Uint := Expr_Value (L);
644            begin
645               if Val < Int'(2 ** 7) then
646                  Left_Size := 8;
647               elsif Val < Int'(2 ** 15) then
648                  Left_Size := 16;
649               end if;
650            end;
651         end if;
652
653         Right_Size := UI_To_Int (RM_Size (Right_Type));
654
655         if Compile_Time_Known_Value (R) then
656            declare
657               Val : constant Uint := Expr_Value (R);
658            begin
659               if Val <= Int'(2 ** 7) then
660                  Right_Size := 8;
661               elsif Val <= Int'(2 ** 15) then
662                  Right_Size := 16;
663               end if;
664            end;
665         end if;
666
667         --  Now the result size must be at least twice the longer of
668         --  the two sizes, to accommodate all possible results.
669
670         Rsize := 2 * Int'Max (Left_Size, Right_Size);
671
672         if Rsize <= 8 then
673            Result_Type := Standard_Integer_8;
674
675         elsif Rsize <= 16 then
676            Result_Type := Standard_Integer_16;
677
678         elsif Rsize <= 32 then
679            Result_Type := Standard_Integer_32;
680
681         else
682            Result_Type := Standard_Integer_64;
683         end if;
684
685         Rnode :=
686            Make_Op_Multiply (Loc,
687              Left_Opnd  => Build_Conversion (N, Result_Type, L),
688              Right_Opnd => Build_Conversion (N, Result_Type, R));
689      end if;
690
691      --  We now have a multiply node built with Result_Type set. First
692      --  set Etype of result, as required for all Build_xxx routines
693
694      Set_Etype (Rnode, Base_Type (Result_Type));
695
696      --  Set Treat_Fixed_As_Integer if operation on fixed-point type
697      --  since this is a literal arithmetic operation, to be performed
698      --  by Gigi without any consideration of small values.
699
700      if Is_Fixed_Point_Type (Result_Type) then
701         Set_Treat_Fixed_As_Integer (Rnode);
702      end if;
703
704      return Rnode;
705   end Build_Multiply;
706
707   ---------------
708   -- Build_Rem --
709   ---------------
710
711   function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id is
712      Loc         : constant Source_Ptr := Sloc (N);
713      Left_Type   : constant Entity_Id  := Etype (L);
714      Right_Type  : constant Entity_Id  := Etype (R);
715      Result_Type : Entity_Id;
716      Rnode       : Node_Id;
717
718   begin
719      if Left_Type = Right_Type then
720         Result_Type := Left_Type;
721         Rnode :=
722           Make_Op_Rem (Loc,
723             Left_Opnd  => L,
724             Right_Opnd => R);
725
726      --  If left size is larger, we do the remainder operation using the
727      --  size of the left type (i.e. the larger of the two integer types).
728
729      elsif Esize (Left_Type) >= Esize (Right_Type) then
730         Result_Type := Left_Type;
731         Rnode :=
732           Make_Op_Rem (Loc,
733             Left_Opnd  => L,
734             Right_Opnd => Build_Conversion (N, Left_Type, R));
735
736      --  Similarly, if the right size is larger, we do the remainder
737      --  operation using the right type.
738
739      else
740         Result_Type := Right_Type;
741         Rnode :=
742           Make_Op_Rem (Loc,
743             Left_Opnd => Build_Conversion (N, Right_Type, L),
744             Right_Opnd => R);
745      end if;
746
747      --  We now have an N_Op_Rem node built with Result_Type set. First
748      --  set Etype of result, as required for all Build_xxx routines
749
750      Set_Etype (Rnode, Base_Type (Result_Type));
751
752      --  Set Treat_Fixed_As_Integer if operation on fixed-point type
753      --  since this is a literal arithmetic operation, to be performed
754      --  by Gigi without any consideration of small values.
755
756      if Is_Fixed_Point_Type (Result_Type) then
757         Set_Treat_Fixed_As_Integer (Rnode);
758      end if;
759
760      --  One more check. We did the rem operation using the larger of the
761      --  two types, which is reasonable. However, in the case where the
762      --  two types have unequal sizes, it is impossible for the result of
763      --  a remainder operation to be larger than the smaller of the two
764      --  types, so we can put a conversion round the result to keep the
765      --  evolving operation size as small as possible.
766
767      if Esize (Left_Type) >= Esize (Right_Type) then
768         Rnode := Build_Conversion (N, Right_Type, Rnode);
769      elsif Esize (Right_Type) >= Esize (Left_Type) then
770         Rnode := Build_Conversion (N, Left_Type, Rnode);
771      end if;
772
773      return Rnode;
774   end Build_Rem;
775
776   -------------------------
777   -- Build_Scaled_Divide --
778   -------------------------
779
780   function Build_Scaled_Divide
781     (N       : Node_Id;
782      X, Y, Z : Node_Id) return Node_Id
783   is
784      X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
785      Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
786      Expr   : Node_Id;
787
788   begin
789      --  If numerator fits in 64 bits, we can build the operations directly
790      --  without causing any intermediate overflow, so that's what we do.
791
792      if Int'Max (X_Size, Y_Size) <= 32 then
793         return
794           Build_Divide (N, Build_Multiply (N, X, Y), Z);
795
796      --  Otherwise we use the runtime routine
797
798      --    [Qnn : Integer_64,
799      --     Rnn : Integer_64;
800      --     Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);
801      --     Qnn]
802
803      else
804         declare
805            Loc  : constant Source_Ptr := Sloc (N);
806            Qnn  : Entity_Id;
807            Rnn  : Entity_Id;
808            Code : List_Id;
809
810            pragma Warnings (Off, Rnn);
811
812         begin
813            Build_Scaled_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
814            Insert_Actions (N, Code);
815            Expr := New_Occurrence_Of (Qnn, Loc);
816
817            --  Set type of result in case used elsewhere (see note at start)
818
819            Set_Etype (Expr, Etype (Qnn));
820            return Expr;
821         end;
822      end if;
823   end Build_Scaled_Divide;
824
825   ------------------------------
826   -- Build_Scaled_Divide_Code --
827   ------------------------------
828
829   --  If the numerator can be computed in 64-bits, we build
830
831   --    [Nnn : constant typ := typ (X) * typ (Y);
832   --     Dnn : constant typ := typ (Z)
833   --     Qnn : constant typ := Nnn / Dnn;
834   --     Rnn : constant typ := Nnn / Dnn;
835
836   --  If the numerator cannot be computed in 64 bits, we build
837
838   --    [Qnn : Interfaces.Integer_64;
839   --     Rnn : Interfaces.Integer_64;
840   --     Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);]
841
842   procedure Build_Scaled_Divide_Code
843     (N        : Node_Id;
844      X, Y, Z  : Node_Id;
845      Qnn, Rnn : out Entity_Id;
846      Code     : out List_Id)
847   is
848      Loc    : constant Source_Ptr := Sloc (N);
849
850      X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
851      Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
852      Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
853
854      QR_Siz : Int;
855      QR_Typ : Entity_Id;
856
857      Nnn : Entity_Id;
858      Dnn : Entity_Id;
859
860      Quo : Node_Id;
861      Rnd : Entity_Id;
862
863   begin
864      --  Find type that will allow computation of numerator
865
866      QR_Siz := Int'Max (X_Size, 2 * Int'Max (Y_Size, Z_Size));
867
868      if QR_Siz <= 16 then
869         QR_Typ := Standard_Integer_16;
870      elsif QR_Siz <= 32 then
871         QR_Typ := Standard_Integer_32;
872      elsif QR_Siz <= 64 then
873         QR_Typ := Standard_Integer_64;
874
875      --  For more than 64, bits, we use the 64-bit integer defined in
876      --  Interfaces, so that it can be handled by the runtime routine
877
878      else
879         QR_Typ := RTE (RE_Integer_64);
880      end if;
881
882      --  Define quotient and remainder, and set their Etypes, so
883      --  that they can be picked up by Build_xxx routines.
884
885      Qnn := Make_Temporary (Loc, 'S');
886      Rnn := Make_Temporary (Loc, 'R');
887
888      Set_Etype (Qnn, QR_Typ);
889      Set_Etype (Rnn, QR_Typ);
890
891      --  Case that we can compute the numerator in 64 bits
892
893      if QR_Siz <= 64 then
894         Nnn := Make_Temporary (Loc, 'N');
895         Dnn := Make_Temporary (Loc, 'D');
896
897         --  Set Etypes, so that they can be picked up by New_Occurrence_Of
898
899         Set_Etype (Nnn, QR_Typ);
900         Set_Etype (Dnn, QR_Typ);
901
902         Code := New_List (
903           Make_Object_Declaration (Loc,
904             Defining_Identifier => Nnn,
905             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
906             Constant_Present    => True,
907             Expression =>
908               Build_Multiply (N,
909                 Build_Conversion (N, QR_Typ, X),
910                 Build_Conversion (N, QR_Typ, Y))),
911
912           Make_Object_Declaration (Loc,
913             Defining_Identifier => Dnn,
914             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
915             Constant_Present    => True,
916             Expression => Build_Conversion (N, QR_Typ, Z)));
917
918         Quo :=
919           Build_Divide (N,
920             New_Occurrence_Of (Nnn, Loc),
921             New_Occurrence_Of (Dnn, Loc));
922
923         Append_To (Code,
924           Make_Object_Declaration (Loc,
925             Defining_Identifier => Qnn,
926             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
927             Constant_Present    => True,
928             Expression          => Quo));
929
930         Append_To (Code,
931           Make_Object_Declaration (Loc,
932             Defining_Identifier => Rnn,
933             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc),
934             Constant_Present    => True,
935             Expression =>
936               Build_Rem (N,
937                 New_Occurrence_Of (Nnn, Loc),
938                 New_Occurrence_Of (Dnn, Loc))));
939
940      --  Case where numerator does not fit in 64 bits, so we have to
941      --  call the runtime routine to compute the quotient and remainder
942
943      else
944         Rnd := Boolean_Literals (Rounded_Result_Set (N));
945
946         Code := New_List (
947           Make_Object_Declaration (Loc,
948             Defining_Identifier => Qnn,
949             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc)),
950
951           Make_Object_Declaration (Loc,
952             Defining_Identifier => Rnn,
953             Object_Definition   => New_Occurrence_Of (QR_Typ, Loc)),
954
955           Make_Procedure_Call_Statement (Loc,
956             Name => New_Occurrence_Of (RTE (RE_Scaled_Divide), Loc),
957             Parameter_Associations => New_List (
958               Build_Conversion (N, QR_Typ, X),
959               Build_Conversion (N, QR_Typ, Y),
960               Build_Conversion (N, QR_Typ, Z),
961               New_Occurrence_Of (Qnn, Loc),
962               New_Occurrence_Of (Rnn, Loc),
963               New_Occurrence_Of (Rnd, Loc))));
964      end if;
965
966      --  Set type of result, for use in caller
967
968      Set_Etype (Qnn, QR_Typ);
969   end Build_Scaled_Divide_Code;
970
971   ---------------------------
972   -- Do_Divide_Fixed_Fixed --
973   ---------------------------
974
975   --  We have:
976
977   --    (Result_Value * Result_Small) =
978   --        (Left_Value * Left_Small) / (Right_Value * Right_Small)
979
980   --    Result_Value = (Left_Value / Right_Value) *
981   --                   (Left_Small / (Right_Small * Result_Small));
982
983   --  we can do the operation in integer arithmetic if this fraction is an
984   --  integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
985   --  Otherwise the result is in the close result set and our approach is to
986   --  use floating-point to compute this close result.
987
988   procedure Do_Divide_Fixed_Fixed (N : Node_Id) is
989      Left        : constant Node_Id   := Left_Opnd (N);
990      Right       : constant Node_Id   := Right_Opnd (N);
991      Left_Type   : constant Entity_Id := Etype (Left);
992      Right_Type  : constant Entity_Id := Etype (Right);
993      Result_Type : constant Entity_Id := Etype (N);
994      Right_Small : constant Ureal     := Small_Value (Right_Type);
995      Left_Small  : constant Ureal     := Small_Value (Left_Type);
996
997      Result_Small : Ureal;
998      Frac         : Ureal;
999      Frac_Num     : Uint;
1000      Frac_Den     : Uint;
1001      Lit_Int      : Node_Id;
1002
1003   begin
1004      --  Rounding is required if the result is integral
1005
1006      if Is_Integer_Type (Result_Type) then
1007         Set_Rounded_Result (N);
1008      end if;
1009
1010      --  Get result small. If the result is an integer, treat it as though
1011      --  it had a small of 1.0, all other processing is identical.
1012
1013      if Is_Integer_Type (Result_Type) then
1014         Result_Small := Ureal_1;
1015      else
1016         Result_Small := Small_Value (Result_Type);
1017      end if;
1018
1019      --  Get small ratio
1020
1021      Frac     := Left_Small / (Right_Small * Result_Small);
1022      Frac_Num := Norm_Num (Frac);
1023      Frac_Den := Norm_Den (Frac);
1024
1025      --  If the fraction is an integer, then we get the result by multiplying
1026      --  the left operand by the integer, and then dividing by the right
1027      --  operand (the order is important, if we did the divide first, we
1028      --  would lose precision).
1029
1030      if Frac_Den = 1 then
1031         Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
1032
1033         if Present (Lit_Int) then
1034            Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Right));
1035            return;
1036         end if;
1037
1038      --  If the fraction is the reciprocal of an integer, then we get the
1039      --  result by first multiplying the divisor by the integer, and then
1040      --  doing the division with the adjusted divisor.
1041
1042      --  Note: this is much better than doing two divisions: multiplications
1043      --  are much faster than divisions (and certainly faster than rounded
1044      --  divisions), and we don't get inaccuracies from double rounding.
1045
1046      elsif Frac_Num = 1 then
1047         Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
1048
1049         if Present (Lit_Int) then
1050            Set_Result (N, Build_Double_Divide (N, Left, Right, Lit_Int));
1051            return;
1052         end if;
1053      end if;
1054
1055      --  If we fall through, we use floating-point to compute the result
1056
1057      Set_Result (N,
1058        Build_Multiply (N,
1059          Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
1060          Real_Literal (N, Frac)));
1061   end Do_Divide_Fixed_Fixed;
1062
1063   -------------------------------
1064   -- Do_Divide_Fixed_Universal --
1065   -------------------------------
1066
1067   --  We have:
1068
1069   --    (Result_Value * Result_Small) = (Left_Value * Left_Small) / Lit_Value;
1070   --    Result_Value = Left_Value * Left_Small /(Lit_Value * Result_Small);
1071
1072   --  The result is required to be in the perfect result set if the literal
1073   --  can be factored so that the resulting small ratio is an integer or the
1074   --  reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1075   --  analysis of these RM requirements:
1076
1077   --  We must factor the literal, finding an integer K:
1078
1079   --     Lit_Value = K * Right_Small
1080   --     Right_Small = Lit_Value / K
1081
1082   --  such that the small ratio:
1083
1084   --              Left_Small
1085   --     ------------------------------
1086   --     (Lit_Value / K) * Result_Small
1087
1088   --            Left_Small
1089   --  =  ------------------------  *  K
1090   --     Lit_Value * Result_Small
1091
1092   --  is an integer or the reciprocal of an integer, and for
1093   --  implementation efficiency we need the smallest such K.
1094
1095   --  First we reduce the left fraction to lowest terms
1096
1097   --    If numerator = 1, then for K = 1, the small ratio is the reciprocal
1098   --    of an integer, and this is clearly the minimum K case, so set K = 1,
1099   --    Right_Small = Lit_Value.
1100
1101   --    If numerator > 1, then set K to the denominator of the fraction so
1102   --    that the resulting small ratio is an integer (the numerator value).
1103
1104   procedure Do_Divide_Fixed_Universal (N : Node_Id) is
1105      Left        : constant Node_Id   := Left_Opnd (N);
1106      Right       : constant Node_Id   := Right_Opnd (N);
1107      Left_Type   : constant Entity_Id := Etype (Left);
1108      Result_Type : constant Entity_Id := Etype (N);
1109      Left_Small  : constant Ureal     := Small_Value (Left_Type);
1110      Lit_Value   : constant Ureal     := Realval (Right);
1111
1112      Result_Small : Ureal;
1113      Frac         : Ureal;
1114      Frac_Num     : Uint;
1115      Frac_Den     : Uint;
1116      Lit_K        : Node_Id;
1117      Lit_Int      : Node_Id;
1118
1119   begin
1120      --  Get result small. If the result is an integer, treat it as though
1121      --  it had a small of 1.0, all other processing is identical.
1122
1123      if Is_Integer_Type (Result_Type) then
1124         Result_Small := Ureal_1;
1125      else
1126         Result_Small := Small_Value (Result_Type);
1127      end if;
1128
1129      --  Determine if literal can be rewritten successfully
1130
1131      Frac     := Left_Small / (Lit_Value * Result_Small);
1132      Frac_Num := Norm_Num (Frac);
1133      Frac_Den := Norm_Den (Frac);
1134
1135      --  Case where fraction is the reciprocal of an integer (K = 1, integer
1136      --  = denominator). If this integer is not too large, this is the case
1137      --  where the result can be obtained by dividing by this integer value.
1138
1139      if Frac_Num = 1 then
1140         Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
1141
1142         if Present (Lit_Int) then
1143            Set_Result (N, Build_Divide (N, Left, Lit_Int));
1144            return;
1145         end if;
1146
1147      --  Case where we choose K to make fraction an integer (K = denominator
1148      --  of fraction, integer = numerator of fraction). If both K and the
1149      --  numerator are small enough, this is the case where the result can
1150      --  be obtained by first multiplying by the integer value and then
1151      --  dividing by K (the order is important, if we divided first, we
1152      --  would lose precision).
1153
1154      else
1155         Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
1156         Lit_K   := Integer_Literal (N, Frac_Den, False);
1157
1158         if Present (Lit_Int) and then Present (Lit_K) then
1159            Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Lit_K));
1160            return;
1161         end if;
1162      end if;
1163
1164      --  Fall through if the literal cannot be successfully rewritten, or if
1165      --  the small ratio is out of range of integer arithmetic. In the former
1166      --  case it is fine to use floating-point to get the close result set,
1167      --  and in the latter case, it means that the result is zero or raises
1168      --  constraint error, and we can do that accurately in floating-point.
1169
1170      --  If we end up using floating-point, then we take the right integer
1171      --  to be one, and its small to be the value of the original right real
1172      --  literal. That way, we need only one floating-point multiplication.
1173
1174      Set_Result (N,
1175        Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
1176   end Do_Divide_Fixed_Universal;
1177
1178   -------------------------------
1179   -- Do_Divide_Universal_Fixed --
1180   -------------------------------
1181
1182   --  We have:
1183
1184   --    (Result_Value * Result_Small) =
1185   --          Lit_Value / (Right_Value * Right_Small)
1186   --    Result_Value =
1187   --          (Lit_Value / (Right_Small * Result_Small)) / Right_Value
1188
1189   --  The result is required to be in the perfect result set if the literal
1190   --  can be factored so that the resulting small ratio is an integer or the
1191   --  reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1192   --  analysis of these RM requirements:
1193
1194   --  We must factor the literal, finding an integer K:
1195
1196   --     Lit_Value = K * Left_Small
1197   --     Left_Small = Lit_Value / K
1198
1199   --  such that the small ratio:
1200
1201   --           (Lit_Value / K)
1202   --     --------------------------
1203   --     Right_Small * Result_Small
1204
1205   --              Lit_Value             1
1206   --  =  --------------------------  *  -
1207   --     Right_Small * Result_Small     K
1208
1209   --  is an integer or the reciprocal of an integer, and for
1210   --  implementation efficiency we need the smallest such K.
1211
1212   --  First we reduce the left fraction to lowest terms
1213
1214   --    If denominator = 1, then for K = 1, the small ratio is an integer
1215   --    (the numerator) and this is clearly the minimum K case, so set K = 1,
1216   --    and Left_Small = Lit_Value.
1217
1218   --    If denominator > 1, then set K to the numerator of the fraction so
1219   --    that the resulting small ratio is the reciprocal of an integer (the
1220   --    numerator value).
1221
1222   procedure Do_Divide_Universal_Fixed (N : Node_Id) is
1223      Left        : constant Node_Id   := Left_Opnd (N);
1224      Right       : constant Node_Id   := Right_Opnd (N);
1225      Right_Type  : constant Entity_Id := Etype (Right);
1226      Result_Type : constant Entity_Id := Etype (N);
1227      Right_Small : constant Ureal     := Small_Value (Right_Type);
1228      Lit_Value   : constant Ureal     := Realval (Left);
1229
1230      Result_Small : Ureal;
1231      Frac         : Ureal;
1232      Frac_Num     : Uint;
1233      Frac_Den     : Uint;
1234      Lit_K        : Node_Id;
1235      Lit_Int      : Node_Id;
1236
1237   begin
1238      --  Get result small. If the result is an integer, treat it as though
1239      --  it had a small of 1.0, all other processing is identical.
1240
1241      if Is_Integer_Type (Result_Type) then
1242         Result_Small := Ureal_1;
1243      else
1244         Result_Small := Small_Value (Result_Type);
1245      end if;
1246
1247      --  Determine if literal can be rewritten successfully
1248
1249      Frac     := Lit_Value / (Right_Small * Result_Small);
1250      Frac_Num := Norm_Num (Frac);
1251      Frac_Den := Norm_Den (Frac);
1252
1253      --  Case where fraction is an integer (K = 1, integer = numerator). If
1254      --  this integer is not too large, this is the case where the result
1255      --  can be obtained by dividing this integer by the right operand.
1256
1257      if Frac_Den = 1 then
1258         Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
1259
1260         if Present (Lit_Int) then
1261            Set_Result (N, Build_Divide (N, Lit_Int, Right));
1262            return;
1263         end if;
1264
1265      --  Case where we choose K to make the fraction the reciprocal of an
1266      --  integer (K = numerator of fraction, integer = numerator of fraction).
1267      --  If both K and the integer are small enough, this is the case where
1268      --  the result can be obtained by multiplying the right operand by K
1269      --  and then dividing by the integer value. The order of the operations
1270      --  is important (if we divided first, we would lose precision).
1271
1272      else
1273         Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
1274         Lit_K   := Integer_Literal (N, Frac_Num, False);
1275
1276         if Present (Lit_Int) and then Present (Lit_K) then
1277            Set_Result (N, Build_Double_Divide (N, Lit_K, Right, Lit_Int));
1278            return;
1279         end if;
1280      end if;
1281
1282      --  Fall through if the literal cannot be successfully rewritten, or if
1283      --  the small ratio is out of range of integer arithmetic. In the former
1284      --  case it is fine to use floating-point to get the close result set,
1285      --  and in the latter case, it means that the result is zero or raises
1286      --  constraint error, and we can do that accurately in floating-point.
1287
1288      --  If we end up using floating-point, then we take the right integer
1289      --  to be one, and its small to be the value of the original right real
1290      --  literal. That way, we need only one floating-point division.
1291
1292      Set_Result (N,
1293        Build_Divide (N, Real_Literal (N, Frac), Fpt_Value (Right)));
1294   end Do_Divide_Universal_Fixed;
1295
1296   -----------------------------
1297   -- Do_Multiply_Fixed_Fixed --
1298   -----------------------------
1299
1300   --  We have:
1301
1302   --    (Result_Value * Result_Small) =
1303   --        (Left_Value * Left_Small) * (Right_Value * Right_Small)
1304
1305   --    Result_Value = (Left_Value * Right_Value) *
1306   --                   (Left_Small * Right_Small) / Result_Small;
1307
1308   --  we can do the operation in integer arithmetic if this fraction is an
1309   --  integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
1310   --  Otherwise the result is in the close result set and our approach is to
1311   --  use floating-point to compute this close result.
1312
1313   procedure Do_Multiply_Fixed_Fixed (N : Node_Id) is
1314      Left  : constant Node_Id := Left_Opnd (N);
1315      Right : constant Node_Id := Right_Opnd (N);
1316
1317      Left_Type   : constant Entity_Id := Etype (Left);
1318      Right_Type  : constant Entity_Id := Etype (Right);
1319      Result_Type : constant Entity_Id := Etype (N);
1320      Right_Small : constant Ureal     := Small_Value (Right_Type);
1321      Left_Small  : constant Ureal     := Small_Value (Left_Type);
1322
1323      Result_Small : Ureal;
1324      Frac         : Ureal;
1325      Frac_Num     : Uint;
1326      Frac_Den     : Uint;
1327      Lit_Int      : Node_Id;
1328
1329   begin
1330      --  Get result small. If the result is an integer, treat it as though
1331      --  it had a small of 1.0, all other processing is identical.
1332
1333      if Is_Integer_Type (Result_Type) then
1334         Result_Small := Ureal_1;
1335      else
1336         Result_Small := Small_Value (Result_Type);
1337      end if;
1338
1339      --  Get small ratio
1340
1341      Frac     := (Left_Small * Right_Small) / Result_Small;
1342      Frac_Num := Norm_Num (Frac);
1343      Frac_Den := Norm_Den (Frac);
1344
1345      --  If the fraction is an integer, then we get the result by multiplying
1346      --  the operands, and then multiplying the result by the integer value.
1347
1348      if Frac_Den = 1 then
1349         Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
1350
1351         if Present (Lit_Int) then
1352            Set_Result (N,
1353              Build_Multiply (N, Build_Multiply (N, Left, Right),
1354                Lit_Int));
1355            return;
1356         end if;
1357
1358      --  If the fraction is the reciprocal of an integer, then we get the
1359      --  result by multiplying the operands, and then dividing the result by
1360      --  the integer value. The order of the operations is important, if we
1361      --  divided first, we would lose precision.
1362
1363      elsif Frac_Num = 1 then
1364         Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
1365
1366         if Present (Lit_Int) then
1367            Set_Result (N, Build_Scaled_Divide (N, Left, Right, Lit_Int));
1368            return;
1369         end if;
1370      end if;
1371
1372      --  If we fall through, we use floating-point to compute the result
1373
1374      Set_Result (N,
1375        Build_Multiply (N,
1376          Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
1377          Real_Literal (N, Frac)));
1378   end Do_Multiply_Fixed_Fixed;
1379
1380   ---------------------------------
1381   -- Do_Multiply_Fixed_Universal --
1382   ---------------------------------
1383
1384   --  We have:
1385
1386   --    (Result_Value * Result_Small) = (Left_Value * Left_Small) * Lit_Value;
1387   --    Result_Value = Left_Value * (Left_Small * Lit_Value) / Result_Small;
1388
1389   --  The result is required to be in the perfect result set if the literal
1390   --  can be factored so that the resulting small ratio is an integer or the
1391   --  reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1392   --  analysis of these RM requirements:
1393
1394   --  We must factor the literal, finding an integer K:
1395
1396   --     Lit_Value = K * Right_Small
1397   --     Right_Small = Lit_Value / K
1398
1399   --  such that the small ratio:
1400
1401   --     Left_Small * (Lit_Value / K)
1402   --     ----------------------------
1403   --             Result_Small
1404
1405   --     Left_Small * Lit_Value     1
1406   --  =  ----------------------  *  -
1407   --          Result_Small          K
1408
1409   --  is an integer or the reciprocal of an integer, and for
1410   --  implementation efficiency we need the smallest such K.
1411
1412   --  First we reduce the left fraction to lowest terms
1413
1414   --    If denominator = 1, then for K = 1, the small ratio is an integer, and
1415   --    this is clearly the minimum K case, so set
1416
1417   --      K = 1, Right_Small = Lit_Value
1418
1419   --    If denominator > 1, then set K to the numerator of the fraction, so
1420   --    that the resulting small ratio is the reciprocal of the integer (the
1421   --    denominator value).
1422
1423   procedure Do_Multiply_Fixed_Universal
1424     (N           : Node_Id;
1425      Left, Right : Node_Id)
1426   is
1427      Left_Type   : constant Entity_Id := Etype (Left);
1428      Result_Type : constant Entity_Id := Etype (N);
1429      Left_Small  : constant Ureal     := Small_Value (Left_Type);
1430      Lit_Value   : constant Ureal     := Realval (Right);
1431
1432      Result_Small : Ureal;
1433      Frac         : Ureal;
1434      Frac_Num     : Uint;
1435      Frac_Den     : Uint;
1436      Lit_K        : Node_Id;
1437      Lit_Int      : Node_Id;
1438
1439   begin
1440      --  Get result small. If the result is an integer, treat it as though
1441      --  it had a small of 1.0, all other processing is identical.
1442
1443      if Is_Integer_Type (Result_Type) then
1444         Result_Small := Ureal_1;
1445      else
1446         Result_Small := Small_Value (Result_Type);
1447      end if;
1448
1449      --  Determine if literal can be rewritten successfully
1450
1451      Frac     := (Left_Small * Lit_Value) / Result_Small;
1452      Frac_Num := Norm_Num (Frac);
1453      Frac_Den := Norm_Den (Frac);
1454
1455      --  Case where fraction is an integer (K = 1, integer = numerator). If
1456      --  this integer is not too large, this is the case where the result can
1457      --  be obtained by multiplying by this integer value.
1458
1459      if Frac_Den = 1 then
1460         Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
1461
1462         if Present (Lit_Int) then
1463            Set_Result (N, Build_Multiply (N, Left, Lit_Int));
1464            return;
1465         end if;
1466
1467      --  Case where we choose K to make fraction the reciprocal of an integer
1468      --  (K = numerator of fraction, integer = denominator of fraction). If
1469      --  both K and the denominator are small enough, this is the case where
1470      --  the result can be obtained by first multiplying by K, and then
1471      --  dividing by the integer value.
1472
1473      else
1474         Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
1475         Lit_K   := Integer_Literal (N, Frac_Num);
1476
1477         if Present (Lit_Int) and then Present (Lit_K) then
1478            Set_Result (N, Build_Scaled_Divide (N, Left, Lit_K, Lit_Int));
1479            return;
1480         end if;
1481      end if;
1482
1483      --  Fall through if the literal cannot be successfully rewritten, or if
1484      --  the small ratio is out of range of integer arithmetic. In the former
1485      --  case it is fine to use floating-point to get the close result set,
1486      --  and in the latter case, it means that the result is zero or raises
1487      --  constraint error, and we can do that accurately in floating-point.
1488
1489      --  If we end up using floating-point, then we take the right integer
1490      --  to be one, and its small to be the value of the original right real
1491      --  literal. That way, we need only one floating-point multiplication.
1492
1493      Set_Result (N,
1494        Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
1495   end Do_Multiply_Fixed_Universal;
1496
1497   ---------------------------------
1498   -- Expand_Convert_Fixed_Static --
1499   ---------------------------------
1500
1501   procedure Expand_Convert_Fixed_Static (N : Node_Id) is
1502   begin
1503      Rewrite (N,
1504        Convert_To (Etype (N),
1505          Make_Real_Literal (Sloc (N), Expr_Value_R (Expression (N)))));
1506      Analyze_And_Resolve (N);
1507   end Expand_Convert_Fixed_Static;
1508
1509   -----------------------------------
1510   -- Expand_Convert_Fixed_To_Fixed --
1511   -----------------------------------
1512
1513   --  We have:
1514
1515   --    Result_Value * Result_Small = Source_Value * Source_Small
1516   --    Result_Value = Source_Value * (Source_Small / Result_Small)
1517
1518   --  If the small ratio (Source_Small / Result_Small) is a sufficiently small
1519   --  integer, then the perfect result set is obtained by a single integer
1520   --  multiplication.
1521
1522   --  If the small ratio is the reciprocal of a sufficiently small integer,
1523   --  then the perfect result set is obtained by a single integer division.
1524
1525   --  In other cases, we obtain the close result set by calculating the
1526   --  result in floating-point.
1527
1528   procedure Expand_Convert_Fixed_To_Fixed (N : Node_Id) is
1529      Rng_Check   : constant Boolean   := Do_Range_Check (N);
1530      Expr        : constant Node_Id   := Expression (N);
1531      Result_Type : constant Entity_Id := Etype (N);
1532      Source_Type : constant Entity_Id := Etype (Expr);
1533      Small_Ratio : Ureal;
1534      Ratio_Num   : Uint;
1535      Ratio_Den   : Uint;
1536      Lit         : Node_Id;
1537
1538   begin
1539      if Is_OK_Static_Expression (Expr) then
1540         Expand_Convert_Fixed_Static (N);
1541         return;
1542      end if;
1543
1544      Small_Ratio := Small_Value (Source_Type) / Small_Value (Result_Type);
1545      Ratio_Num   := Norm_Num (Small_Ratio);
1546      Ratio_Den   := Norm_Den (Small_Ratio);
1547
1548      if Ratio_Den = 1 then
1549         if Ratio_Num = 1 then
1550            Set_Result (N, Expr);
1551            return;
1552
1553         else
1554            Lit := Integer_Literal (N, Ratio_Num);
1555
1556            if Present (Lit) then
1557               Set_Result (N, Build_Multiply (N, Expr, Lit));
1558               return;
1559            end if;
1560         end if;
1561
1562      elsif Ratio_Num = 1 then
1563         Lit := Integer_Literal (N, Ratio_Den);
1564
1565         if Present (Lit) then
1566            Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
1567            return;
1568         end if;
1569      end if;
1570
1571      --  Fall through to use floating-point for the close result set case
1572      --  either as a result of the small ratio not being an integer or the
1573      --  reciprocal of an integer, or if the integer is out of range.
1574
1575      Set_Result (N,
1576        Build_Multiply (N,
1577          Fpt_Value (Expr),
1578          Real_Literal (N, Small_Ratio)),
1579        Rng_Check);
1580   end Expand_Convert_Fixed_To_Fixed;
1581
1582   -----------------------------------
1583   -- Expand_Convert_Fixed_To_Float --
1584   -----------------------------------
1585
1586   --  If the small of the fixed type is 1.0, then we simply convert the
1587   --  integer value directly to the target floating-point type, otherwise
1588   --  we first have to multiply by the small, in Universal_Real, and then
1589   --  convert the result to the target floating-point type.
1590
1591   procedure Expand_Convert_Fixed_To_Float (N : Node_Id) is
1592      Rng_Check   : constant Boolean    := Do_Range_Check (N);
1593      Expr        : constant Node_Id    := Expression (N);
1594      Source_Type : constant Entity_Id  := Etype (Expr);
1595      Small       : constant Ureal      := Small_Value (Source_Type);
1596
1597   begin
1598      if Is_OK_Static_Expression (Expr) then
1599         Expand_Convert_Fixed_Static (N);
1600         return;
1601      end if;
1602
1603      if Small = Ureal_1 then
1604         Set_Result (N, Expr);
1605
1606      else
1607         Set_Result (N,
1608           Build_Multiply (N,
1609             Fpt_Value (Expr),
1610             Real_Literal (N, Small)),
1611           Rng_Check);
1612      end if;
1613   end Expand_Convert_Fixed_To_Float;
1614
1615   -------------------------------------
1616   -- Expand_Convert_Fixed_To_Integer --
1617   -------------------------------------
1618
1619   --  We have:
1620
1621   --    Result_Value = Source_Value * Source_Small
1622
1623   --  If the small value is a sufficiently small integer, then the perfect
1624   --  result set is obtained by a single integer multiplication.
1625
1626   --  If the small value is the reciprocal of a sufficiently small integer,
1627   --  then the perfect result set is obtained by a single integer division.
1628
1629   --  In other cases, we obtain the close result set by calculating the
1630   --  result in floating-point.
1631
1632   procedure Expand_Convert_Fixed_To_Integer (N : Node_Id) is
1633      Rng_Check   : constant Boolean   := Do_Range_Check (N);
1634      Expr        : constant Node_Id   := Expression (N);
1635      Source_Type : constant Entity_Id := Etype (Expr);
1636      Small       : constant Ureal     := Small_Value (Source_Type);
1637      Small_Num   : constant Uint      := Norm_Num (Small);
1638      Small_Den   : constant Uint      := Norm_Den (Small);
1639      Lit         : Node_Id;
1640
1641   begin
1642      if Is_OK_Static_Expression (Expr) then
1643         Expand_Convert_Fixed_Static (N);
1644         return;
1645      end if;
1646
1647      if Small_Den = 1 then
1648         Lit := Integer_Literal (N, Small_Num);
1649
1650         if Present (Lit) then
1651            Set_Result (N, Build_Multiply (N, Expr, Lit), Rng_Check);
1652            return;
1653         end if;
1654
1655      elsif Small_Num = 1 then
1656         Lit := Integer_Literal (N, Small_Den);
1657
1658         if Present (Lit) then
1659            Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
1660            return;
1661         end if;
1662      end if;
1663
1664      --  Fall through to use floating-point for the close result set case
1665      --  either as a result of the small value not being an integer or the
1666      --  reciprocal of an integer, or if the integer is out of range.
1667
1668      Set_Result (N,
1669        Build_Multiply (N,
1670          Fpt_Value (Expr),
1671          Real_Literal (N, Small)),
1672        Rng_Check);
1673   end Expand_Convert_Fixed_To_Integer;
1674
1675   -----------------------------------
1676   -- Expand_Convert_Float_To_Fixed --
1677   -----------------------------------
1678
1679   --  We have
1680
1681   --    Result_Value * Result_Small = Operand_Value
1682
1683   --  so compute:
1684
1685   --    Result_Value = Operand_Value * (1.0 / Result_Small)
1686
1687   --  We do the small scaling in floating-point, and we do a multiplication
1688   --  rather than a division, since it is accurate enough for the perfect
1689   --  result cases, and faster.
1690
1691   procedure Expand_Convert_Float_To_Fixed (N : Node_Id) is
1692      Rng_Check   : constant Boolean   := Do_Range_Check (N);
1693      Expr        : constant Node_Id   := Expression (N);
1694      Result_Type : constant Entity_Id := Etype (N);
1695      Small       : constant Ureal     := Small_Value (Result_Type);
1696
1697   begin
1698      --  Optimize small = 1, where we can avoid the multiply completely
1699
1700      if Small = Ureal_1 then
1701         Set_Result (N, Expr, Rng_Check, Trunc => True);
1702
1703      --  Normal case where multiply is required
1704      --  Rounding is truncating for decimal fixed point types only,
1705      --  see RM 4.6(29).
1706
1707      else
1708         Set_Result (N,
1709           Build_Multiply (N,
1710             Fpt_Value (Expr),
1711             Real_Literal (N, Ureal_1 / Small)),
1712           Rng_Check, Trunc => Is_Decimal_Fixed_Point_Type (Result_Type));
1713      end if;
1714   end Expand_Convert_Float_To_Fixed;
1715
1716   -------------------------------------
1717   -- Expand_Convert_Integer_To_Fixed --
1718   -------------------------------------
1719
1720   --  We have
1721
1722   --    Result_Value * Result_Small = Operand_Value
1723   --    Result_Value = Operand_Value / Result_Small
1724
1725   --  If the small value is a sufficiently small integer, then the perfect
1726   --  result set is obtained by a single integer division.
1727
1728   --  If the small value is the reciprocal of a sufficiently small integer,
1729   --  the perfect result set is obtained by a single integer multiplication.
1730
1731   --  In other cases, we obtain the close result set by calculating the
1732   --  result in floating-point using a multiplication by the reciprocal
1733   --  of the Result_Small.
1734
1735   procedure Expand_Convert_Integer_To_Fixed (N : Node_Id) is
1736      Rng_Check   : constant Boolean   := Do_Range_Check (N);
1737      Expr        : constant Node_Id   := Expression (N);
1738      Result_Type : constant Entity_Id := Etype (N);
1739      Small       : constant Ureal     := Small_Value (Result_Type);
1740      Small_Num   : constant Uint      := Norm_Num (Small);
1741      Small_Den   : constant Uint      := Norm_Den (Small);
1742      Lit         : Node_Id;
1743
1744   begin
1745      if Small_Den = 1 then
1746         Lit := Integer_Literal (N, Small_Num);
1747
1748         if Present (Lit) then
1749            Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
1750            return;
1751         end if;
1752
1753      elsif Small_Num = 1 then
1754         Lit := Integer_Literal (N, Small_Den);
1755
1756         if Present (Lit) then
1757            Set_Result (N, Build_Multiply (N, Expr, Lit), Rng_Check);
1758            return;
1759         end if;
1760      end if;
1761
1762      --  Fall through to use floating-point for the close result set case
1763      --  either as a result of the small value not being an integer or the
1764      --  reciprocal of an integer, or if the integer is out of range.
1765
1766      Set_Result (N,
1767        Build_Multiply (N,
1768          Fpt_Value (Expr),
1769          Real_Literal (N, Ureal_1 / Small)),
1770        Rng_Check);
1771   end Expand_Convert_Integer_To_Fixed;
1772
1773   --------------------------------
1774   -- Expand_Decimal_Divide_Call --
1775   --------------------------------
1776
1777   --  We have four operands
1778
1779   --    Dividend
1780   --    Divisor
1781   --    Quotient
1782   --    Remainder
1783
1784   --  All of which are decimal types, and which thus have associated
1785   --  decimal scales.
1786
1787   --  Computing the quotient is a similar problem to that faced by the
1788   --  normal fixed-point division, except that it is simpler, because
1789   --  we always have compatible smalls.
1790
1791   --    Quotient = (Dividend / Divisor) * 10**q
1792
1793   --      where 10 ** q = Dividend'Small / (Divisor'Small * Quotient'Small)
1794   --      so q = Divisor'Scale + Quotient'Scale - Dividend'Scale
1795
1796   --    For q >= 0, we compute
1797
1798   --      Numerator   := Dividend * 10 ** q
1799   --      Denominator := Divisor
1800   --      Quotient    := Numerator / Denominator
1801
1802   --    For q < 0, we compute
1803
1804   --      Numerator   := Dividend
1805   --      Denominator := Divisor * 10 ** q
1806   --      Quotient    := Numerator / Denominator
1807
1808   --  Both these divisions are done in truncated mode, and the remainder
1809   --  from these divisions is used to compute the result Remainder. This
1810   --  remainder has the effective scale of the numerator of the division,
1811
1812   --    For q >= 0, the remainder scale is Dividend'Scale + q
1813   --    For q <  0, the remainder scale is Dividend'Scale
1814
1815   --  The result Remainder is then computed by a normal truncating decimal
1816   --  conversion from this scale to the scale of the remainder, i.e. by a
1817   --  division or multiplication by the appropriate power of 10.
1818
1819   procedure Expand_Decimal_Divide_Call (N : Node_Id) is
1820      Loc : constant Source_Ptr := Sloc (N);
1821
1822      Dividend  : Node_Id := First_Actual (N);
1823      Divisor   : Node_Id := Next_Actual (Dividend);
1824      Quotient  : Node_Id := Next_Actual (Divisor);
1825      Remainder : Node_Id := Next_Actual (Quotient);
1826
1827      Dividend_Type   : constant Entity_Id := Etype (Dividend);
1828      Divisor_Type    : constant Entity_Id := Etype (Divisor);
1829      Quotient_Type   : constant Entity_Id := Etype (Quotient);
1830      Remainder_Type  : constant Entity_Id := Etype (Remainder);
1831
1832      Dividend_Scale  : constant Uint := Scale_Value (Dividend_Type);
1833      Divisor_Scale   : constant Uint := Scale_Value (Divisor_Type);
1834      Quotient_Scale  : constant Uint := Scale_Value (Quotient_Type);
1835      Remainder_Scale : constant Uint := Scale_Value (Remainder_Type);
1836
1837      Q                  : Uint;
1838      Numerator_Scale    : Uint;
1839      Stmts              : List_Id;
1840      Qnn                : Entity_Id;
1841      Rnn                : Entity_Id;
1842      Computed_Remainder : Node_Id;
1843      Adjusted_Remainder : Node_Id;
1844      Scale_Adjust       : Uint;
1845
1846   begin
1847      --  Relocate the operands, since they are now list elements, and we
1848      --  need to reference them separately as operands in the expanded code.
1849
1850      Dividend  := Relocate_Node (Dividend);
1851      Divisor   := Relocate_Node (Divisor);
1852      Quotient  := Relocate_Node (Quotient);
1853      Remainder := Relocate_Node (Remainder);
1854
1855      --  Now compute Q, the adjustment scale
1856
1857      Q := Divisor_Scale + Quotient_Scale - Dividend_Scale;
1858
1859      --  If Q is non-negative then we need a scaled divide
1860
1861      if Q >= 0 then
1862         Build_Scaled_Divide_Code
1863           (N,
1864            Dividend,
1865            Integer_Literal (N, Uint_10 ** Q),
1866            Divisor,
1867            Qnn, Rnn, Stmts);
1868
1869         Numerator_Scale := Dividend_Scale + Q;
1870
1871      --  If Q is negative, then we need a double divide
1872
1873      else
1874         Build_Double_Divide_Code
1875           (N,
1876            Dividend,
1877            Divisor,
1878            Integer_Literal (N, Uint_10 ** (-Q)),
1879            Qnn, Rnn, Stmts);
1880
1881         Numerator_Scale := Dividend_Scale;
1882      end if;
1883
1884      --  Add statement to set quotient value
1885
1886      --    Quotient := quotient-type!(Qnn);
1887
1888      Append_To (Stmts,
1889        Make_Assignment_Statement (Loc,
1890          Name => Quotient,
1891          Expression =>
1892            Unchecked_Convert_To (Quotient_Type,
1893              Build_Conversion (N, Quotient_Type,
1894                New_Occurrence_Of (Qnn, Loc)))));
1895
1896      --  Now we need to deal with computing and setting the remainder. The
1897      --  scale of the remainder is in Numerator_Scale, and the desired
1898      --  scale is the scale of the given Remainder argument. There are
1899      --  three cases:
1900
1901      --    Numerator_Scale > Remainder_Scale
1902
1903      --      in this case, there are extra digits in the computed remainder
1904      --      which must be eliminated by an extra division:
1905
1906      --        computed-remainder := Numerator rem Denominator
1907      --        scale_adjust = Numerator_Scale - Remainder_Scale
1908      --        adjusted-remainder := computed-remainder / 10 ** scale_adjust
1909
1910      --    Numerator_Scale = Remainder_Scale
1911
1912      --      in this case, the we have the remainder we need
1913
1914      --        computed-remainder := Numerator rem Denominator
1915      --        adjusted-remainder := computed-remainder
1916
1917      --    Numerator_Scale < Remainder_Scale
1918
1919      --      in this case, we have insufficient digits in the computed
1920      --      remainder, which must be eliminated by an extra multiply
1921
1922      --        computed-remainder := Numerator rem Denominator
1923      --        scale_adjust = Remainder_Scale - Numerator_Scale
1924      --        adjusted-remainder := computed-remainder * 10 ** scale_adjust
1925
1926      --  Finally we assign the adjusted-remainder to the result Remainder
1927      --  with conversions to get the proper fixed-point type representation.
1928
1929      Computed_Remainder := New_Occurrence_Of (Rnn, Loc);
1930
1931      if Numerator_Scale > Remainder_Scale then
1932         Scale_Adjust := Numerator_Scale - Remainder_Scale;
1933         Adjusted_Remainder :=
1934           Build_Divide
1935             (N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
1936
1937      elsif Numerator_Scale = Remainder_Scale then
1938         Adjusted_Remainder := Computed_Remainder;
1939
1940      else -- Numerator_Scale < Remainder_Scale
1941         Scale_Adjust := Remainder_Scale - Numerator_Scale;
1942         Adjusted_Remainder :=
1943           Build_Multiply
1944             (N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
1945      end if;
1946
1947      --  Assignment of remainder result
1948
1949      Append_To (Stmts,
1950        Make_Assignment_Statement (Loc,
1951          Name => Remainder,
1952          Expression =>
1953            Unchecked_Convert_To (Remainder_Type, Adjusted_Remainder)));
1954
1955      --  Final step is to rewrite the call with a block containing the
1956      --  above sequence of constructed statements for the divide operation.
1957
1958      Rewrite (N,
1959        Make_Block_Statement (Loc,
1960          Handled_Statement_Sequence =>
1961            Make_Handled_Sequence_Of_Statements (Loc,
1962              Statements => Stmts)));
1963
1964      Analyze (N);
1965   end Expand_Decimal_Divide_Call;
1966
1967   -----------------------------------------------
1968   -- Expand_Divide_Fixed_By_Fixed_Giving_Fixed --
1969   -----------------------------------------------
1970
1971   procedure Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
1972      Left  : constant Node_Id := Left_Opnd (N);
1973      Right : constant Node_Id := Right_Opnd (N);
1974
1975   begin
1976      --  Suppress expansion of a fixed-by-fixed division if the
1977      --  operation is supported directly by the target.
1978
1979      if Target_Has_Fixed_Ops (Etype (Left), Etype (Right), Etype (N)) then
1980         return;
1981      end if;
1982
1983      if Etype (Left) = Universal_Real then
1984         Do_Divide_Universal_Fixed (N);
1985
1986      elsif Etype (Right) = Universal_Real then
1987         Do_Divide_Fixed_Universal (N);
1988
1989      else
1990         Do_Divide_Fixed_Fixed (N);
1991      end if;
1992   end Expand_Divide_Fixed_By_Fixed_Giving_Fixed;
1993
1994   -----------------------------------------------
1995   -- Expand_Divide_Fixed_By_Fixed_Giving_Float --
1996   -----------------------------------------------
1997
1998   --  The division is done in Universal_Real, and the result is multiplied
1999   --  by the small ratio, which is Small (Right) / Small (Left). Special
2000   --  treatment is required for universal operands, which represent their
2001   --  own value and do not require conversion.
2002
2003   procedure Expand_Divide_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
2004      Left  : constant Node_Id := Left_Opnd (N);
2005      Right : constant Node_Id := Right_Opnd (N);
2006
2007      Left_Type  : constant Entity_Id := Etype (Left);
2008      Right_Type : constant Entity_Id := Etype (Right);
2009
2010   begin
2011      --  Case of left operand is universal real, the result we want is:
2012
2013      --    Left_Value / (Right_Value * Right_Small)
2014
2015      --  so we compute this as:
2016
2017      --    (Left_Value / Right_Small) / Right_Value
2018
2019      if Left_Type = Universal_Real then
2020         Set_Result (N,
2021           Build_Divide (N,
2022             Real_Literal (N, Realval (Left) / Small_Value (Right_Type)),
2023             Fpt_Value (Right)));
2024
2025      --  Case of right operand is universal real, the result we want is
2026
2027      --    (Left_Value * Left_Small) / Right_Value
2028
2029      --  so we compute this as:
2030
2031      --    Left_Value * (Left_Small / Right_Value)
2032
2033      --  Note we invert to a multiplication since usually floating-point
2034      --  multiplication is much faster than floating-point division.
2035
2036      elsif Right_Type = Universal_Real then
2037         Set_Result (N,
2038           Build_Multiply (N,
2039             Fpt_Value (Left),
2040             Real_Literal (N, Small_Value (Left_Type) / Realval (Right))));
2041
2042      --  Both operands are fixed, so the value we want is
2043
2044      --    (Left_Value * Left_Small) / (Right_Value * Right_Small)
2045
2046      --  which we compute as:
2047
2048      --    (Left_Value / Right_Value) * (Left_Small / Right_Small)
2049
2050      else
2051         Set_Result (N,
2052           Build_Multiply (N,
2053             Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
2054             Real_Literal (N,
2055               Small_Value (Left_Type) / Small_Value (Right_Type))));
2056      end if;
2057   end Expand_Divide_Fixed_By_Fixed_Giving_Float;
2058
2059   -------------------------------------------------
2060   -- Expand_Divide_Fixed_By_Fixed_Giving_Integer --
2061   -------------------------------------------------
2062
2063   procedure Expand_Divide_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
2064      Left  : constant Node_Id := Left_Opnd (N);
2065      Right : constant Node_Id := Right_Opnd (N);
2066   begin
2067      if Etype (Left) = Universal_Real then
2068         Do_Divide_Universal_Fixed (N);
2069      elsif Etype (Right) = Universal_Real then
2070         Do_Divide_Fixed_Universal (N);
2071      else
2072         Do_Divide_Fixed_Fixed (N);
2073      end if;
2074   end Expand_Divide_Fixed_By_Fixed_Giving_Integer;
2075
2076   -------------------------------------------------
2077   -- Expand_Divide_Fixed_By_Integer_Giving_Fixed --
2078   -------------------------------------------------
2079
2080   --  Since the operand and result fixed-point type is the same, this is
2081   --  a straight divide by the right operand, the small can be ignored.
2082
2083   procedure Expand_Divide_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
2084      Left  : constant Node_Id := Left_Opnd (N);
2085      Right : constant Node_Id := Right_Opnd (N);
2086   begin
2087      Set_Result (N, Build_Divide (N, Left, Right));
2088   end Expand_Divide_Fixed_By_Integer_Giving_Fixed;
2089
2090   -------------------------------------------------
2091   -- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed --
2092   -------------------------------------------------
2093
2094   procedure Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
2095      Left  : constant Node_Id := Left_Opnd (N);
2096      Right : constant Node_Id := Right_Opnd (N);
2097
2098      procedure Rewrite_Non_Static_Universal (Opnd : Node_Id);
2099      --  The operand may be a non-static universal value, such an
2100      --  exponentiation with a non-static exponent. In that case, treat
2101      --  as a fixed * fixed multiplication, and convert the argument to
2102      --  the target fixed type.
2103
2104      ----------------------------------
2105      -- Rewrite_Non_Static_Universal --
2106      ----------------------------------
2107
2108      procedure Rewrite_Non_Static_Universal (Opnd : Node_Id) is
2109         Loc : constant Source_Ptr := Sloc (N);
2110      begin
2111         Rewrite (Opnd,
2112           Make_Type_Conversion (Loc,
2113             Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
2114             Expression   => Expression (Opnd)));
2115         Analyze_And_Resolve (Opnd, Etype (N));
2116      end Rewrite_Non_Static_Universal;
2117
2118   --  Start of processing for Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
2119
2120   begin
2121      --  Suppress expansion of a fixed-by-fixed multiplication if the
2122      --  operation is supported directly by the target.
2123
2124      if Target_Has_Fixed_Ops (Etype (Left), Etype (Right), Etype (N)) then
2125         return;
2126      end if;
2127
2128      if Etype (Left) = Universal_Real then
2129         if Nkind (Left) = N_Real_Literal then
2130            Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left);
2131
2132         elsif Nkind (Left) = N_Type_Conversion then
2133            Rewrite_Non_Static_Universal (Left);
2134            Do_Multiply_Fixed_Fixed (N);
2135         end if;
2136
2137      elsif Etype (Right) = Universal_Real then
2138         if Nkind (Right) = N_Real_Literal then
2139            Do_Multiply_Fixed_Universal (N, Left, Right);
2140
2141         elsif Nkind (Right) = N_Type_Conversion then
2142            Rewrite_Non_Static_Universal (Right);
2143            Do_Multiply_Fixed_Fixed (N);
2144         end if;
2145
2146      else
2147         Do_Multiply_Fixed_Fixed (N);
2148      end if;
2149   end Expand_Multiply_Fixed_By_Fixed_Giving_Fixed;
2150
2151   -------------------------------------------------
2152   -- Expand_Multiply_Fixed_By_Fixed_Giving_Float --
2153   -------------------------------------------------
2154
2155   --  The multiply is done in Universal_Real, and the result is multiplied
2156   --  by the adjustment for the smalls which is Small (Right) * Small (Left).
2157   --  Special treatment is required for universal operands.
2158
2159   procedure Expand_Multiply_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
2160      Left  : constant Node_Id := Left_Opnd (N);
2161      Right : constant Node_Id := Right_Opnd (N);
2162
2163      Left_Type  : constant Entity_Id := Etype (Left);
2164      Right_Type : constant Entity_Id := Etype (Right);
2165
2166   begin
2167      --  Case of left operand is universal real, the result we want is
2168
2169      --    Left_Value * (Right_Value * Right_Small)
2170
2171      --  so we compute this as:
2172
2173      --    (Left_Value * Right_Small) * Right_Value;
2174
2175      if Left_Type = Universal_Real then
2176         Set_Result (N,
2177           Build_Multiply (N,
2178             Real_Literal (N, Realval (Left) * Small_Value (Right_Type)),
2179             Fpt_Value (Right)));
2180
2181      --  Case of right operand is universal real, the result we want is
2182
2183      --    (Left_Value * Left_Small) * Right_Value
2184
2185      --  so we compute this as:
2186
2187      --    Left_Value * (Left_Small * Right_Value)
2188
2189      elsif Right_Type = Universal_Real then
2190         Set_Result (N,
2191           Build_Multiply (N,
2192             Fpt_Value (Left),
2193             Real_Literal (N, Small_Value (Left_Type) * Realval (Right))));
2194
2195      --  Both operands are fixed, so the value we want is
2196
2197      --    (Left_Value * Left_Small) * (Right_Value * Right_Small)
2198
2199      --  which we compute as:
2200
2201      --    (Left_Value * Right_Value) * (Right_Small * Left_Small)
2202
2203      else
2204         Set_Result (N,
2205           Build_Multiply (N,
2206             Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
2207             Real_Literal (N,
2208               Small_Value (Right_Type) * Small_Value (Left_Type))));
2209      end if;
2210   end Expand_Multiply_Fixed_By_Fixed_Giving_Float;
2211
2212   ---------------------------------------------------
2213   -- Expand_Multiply_Fixed_By_Fixed_Giving_Integer --
2214   ---------------------------------------------------
2215
2216   procedure Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
2217      Left  : constant Node_Id := Left_Opnd (N);
2218      Right : constant Node_Id := Right_Opnd (N);
2219   begin
2220      if Etype (Left) = Universal_Real then
2221         Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left);
2222      elsif Etype (Right) = Universal_Real then
2223         Do_Multiply_Fixed_Universal (N, Left, Right);
2224      else
2225         Do_Multiply_Fixed_Fixed (N);
2226      end if;
2227   end Expand_Multiply_Fixed_By_Fixed_Giving_Integer;
2228
2229   ---------------------------------------------------
2230   -- Expand_Multiply_Fixed_By_Integer_Giving_Fixed --
2231   ---------------------------------------------------
2232
2233   --  Since the operand and result fixed-point type is the same, this is
2234   --  a straight multiply by the right operand, the small can be ignored.
2235
2236   procedure Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
2237   begin
2238      Set_Result (N,
2239        Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
2240   end Expand_Multiply_Fixed_By_Integer_Giving_Fixed;
2241
2242   ---------------------------------------------------
2243   -- Expand_Multiply_Integer_By_Fixed_Giving_Fixed --
2244   ---------------------------------------------------
2245
2246   --  Since the operand and result fixed-point type is the same, this is
2247   --  a straight multiply by the right operand, the small can be ignored.
2248
2249   procedure Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N : Node_Id) is
2250   begin
2251      Set_Result (N,
2252        Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
2253   end Expand_Multiply_Integer_By_Fixed_Giving_Fixed;
2254
2255   ---------------
2256   -- Fpt_Value --
2257   ---------------
2258
2259   function Fpt_Value (N : Node_Id) return Node_Id is
2260      Typ   : constant Entity_Id  := Etype (N);
2261
2262   begin
2263      if Is_Integer_Type (Typ)
2264        or else Is_Floating_Point_Type (Typ)
2265      then
2266         return Build_Conversion (N, Universal_Real, N);
2267
2268      --  Fixed-point case, must get integer value first
2269
2270      else
2271         return Build_Conversion (N, Universal_Real, N);
2272      end if;
2273   end Fpt_Value;
2274
2275   ---------------------
2276   -- Integer_Literal --
2277   ---------------------
2278
2279   function Integer_Literal
2280     (N        : Node_Id;
2281      V        : Uint;
2282      Negative : Boolean := False) return Node_Id
2283   is
2284      T : Entity_Id;
2285      L : Node_Id;
2286
2287   begin
2288      if V < Uint_2 ** 7 then
2289         T := Standard_Integer_8;
2290
2291      elsif V < Uint_2 ** 15 then
2292         T := Standard_Integer_16;
2293
2294      elsif V < Uint_2 ** 31 then
2295         T := Standard_Integer_32;
2296
2297      elsif V < Uint_2 ** 63 then
2298         T := Standard_Integer_64;
2299
2300      else
2301         return Empty;
2302      end if;
2303
2304      if Negative then
2305         L := Make_Integer_Literal (Sloc (N), UI_Negate (V));
2306      else
2307         L := Make_Integer_Literal (Sloc (N), V);
2308      end if;
2309
2310      --  Set type of result in case used elsewhere (see note at start)
2311
2312      Set_Etype (L, T);
2313      Set_Is_Static_Expression (L);
2314
2315      --  We really need to set Analyzed here because we may be creating a
2316      --  very strange beast, namely an integer literal typed as fixed-point
2317      --  and the analyzer won't like that. Probably we should allow the
2318      --  Treat_Fixed_As_Integer flag to appear on integer literal nodes
2319      --  and teach the analyzer how to handle them ???
2320
2321      Set_Analyzed (L);
2322      return L;
2323   end Integer_Literal;
2324
2325   ------------------
2326   -- Real_Literal --
2327   ------------------
2328
2329   function Real_Literal (N : Node_Id; V : Ureal) return Node_Id is
2330      L : Node_Id;
2331
2332   begin
2333      L := Make_Real_Literal (Sloc (N), V);
2334
2335      --  Set type of result in case used elsewhere (see note at start)
2336
2337      Set_Etype (L, Universal_Real);
2338      return L;
2339   end Real_Literal;
2340
2341   ------------------------
2342   -- Rounded_Result_Set --
2343   ------------------------
2344
2345   function Rounded_Result_Set (N : Node_Id) return Boolean is
2346      K : constant Node_Kind := Nkind (N);
2347   begin
2348      if (K = N_Type_Conversion or else
2349          K = N_Op_Divide       or else
2350          K = N_Op_Multiply)
2351        and then
2352          (Rounded_Result (N) or else Is_Integer_Type (Etype (N)))
2353      then
2354         return True;
2355      else
2356         return False;
2357      end if;
2358   end Rounded_Result_Set;
2359
2360   ----------------
2361   -- Set_Result --
2362   ----------------
2363
2364   procedure Set_Result
2365     (N     : Node_Id;
2366      Expr  : Node_Id;
2367      Rchk  : Boolean := False;
2368      Trunc : Boolean := False)
2369   is
2370      Cnode : Node_Id;
2371
2372      Expr_Type   : constant Entity_Id := Etype (Expr);
2373      Result_Type : constant Entity_Id := Etype (N);
2374
2375   begin
2376      --  No conversion required if types match and no range check or truncate
2377
2378      if Result_Type = Expr_Type and then not (Rchk or Trunc) then
2379         Cnode := Expr;
2380
2381      --  Else perform required conversion
2382
2383      else
2384         Cnode := Build_Conversion (N, Result_Type, Expr, Rchk, Trunc);
2385      end if;
2386
2387      Rewrite (N, Cnode);
2388      Analyze_And_Resolve (N, Result_Type);
2389   end Set_Result;
2390
2391end Exp_Fixd;
2392