1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             E X P _ P A K D                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2013, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Einfo;    use Einfo;
29with Errout;   use Errout;
30with Exp_Dbug; use Exp_Dbug;
31with Exp_Util; use Exp_Util;
32with Layout;   use Layout;
33with Namet;    use Namet;
34with Nlists;   use Nlists;
35with Nmake;    use Nmake;
36with Opt;      use Opt;
37with Rtsfind;  use Rtsfind;
38with Sem;      use Sem;
39with Sem_Aux;  use Sem_Aux;
40with Sem_Ch3;  use Sem_Ch3;
41with Sem_Ch8;  use Sem_Ch8;
42with Sem_Ch13; use Sem_Ch13;
43with Sem_Eval; use Sem_Eval;
44with Sem_Res;  use Sem_Res;
45with Sem_Util; use Sem_Util;
46with Sinfo;    use Sinfo;
47with Snames;   use Snames;
48with Stand;    use Stand;
49with Targparm; use Targparm;
50with Tbuild;   use Tbuild;
51with Ttypes;   use Ttypes;
52with Uintp;    use Uintp;
53
54package body Exp_Pakd is
55
56   ---------------------------
57   -- Endian Considerations --
58   ---------------------------
59
60   --  As described in the specification, bit numbering in a packed array
61   --  is consistent with bit numbering in a record representation clause,
62   --  and hence dependent on the endianness of the machine:
63
64   --    For little-endian machines, element zero is at the right hand end
65   --    (low order end) of a bit field.
66
67   --    For big-endian machines, element zero is at the left hand end
68   --    (high order end) of a bit field.
69
70   --  The shifts that are used to right justify a field therefore differ in
71   --  the two cases. For the little-endian case, we can simply use the bit
72   --  number (i.e. the element number * element size) as the count for a right
73   --  shift. For the big-endian case, we have to subtract the shift count from
74   --  an appropriate constant to use in the right shift. We use rotates
75   --  instead of shifts (which is necessary in the store case to preserve
76   --  other fields), and we expect that the backend will be able to change the
77   --  right rotate into a left rotate, avoiding the subtract, if the machine
78   --  architecture provides such an instruction.
79
80   ----------------------------------------------
81   -- Entity Tables for Packed Access Routines --
82   ----------------------------------------------
83
84   --  For the cases of component size = 3,5-7,9-15,17-31,33-63 we call library
85   --  routines. This table provides the entity for the proper routine.
86
87   type E_Array is array (Int range 01 .. 63) of RE_Id;
88
89   --  Array of Bits_nn entities. Note that we do not use library routines
90   --  for the 8-bit and 16-bit cases, but we still fill in the table, using
91   --  entries from System.Unsigned, because we also use this table for
92   --  certain special unchecked conversions in the big-endian case.
93
94   Bits_Id : constant E_Array :=
95     (01 => RE_Bits_1,
96      02 => RE_Bits_2,
97      03 => RE_Bits_03,
98      04 => RE_Bits_4,
99      05 => RE_Bits_05,
100      06 => RE_Bits_06,
101      07 => RE_Bits_07,
102      08 => RE_Unsigned_8,
103      09 => RE_Bits_09,
104      10 => RE_Bits_10,
105      11 => RE_Bits_11,
106      12 => RE_Bits_12,
107      13 => RE_Bits_13,
108      14 => RE_Bits_14,
109      15 => RE_Bits_15,
110      16 => RE_Unsigned_16,
111      17 => RE_Bits_17,
112      18 => RE_Bits_18,
113      19 => RE_Bits_19,
114      20 => RE_Bits_20,
115      21 => RE_Bits_21,
116      22 => RE_Bits_22,
117      23 => RE_Bits_23,
118      24 => RE_Bits_24,
119      25 => RE_Bits_25,
120      26 => RE_Bits_26,
121      27 => RE_Bits_27,
122      28 => RE_Bits_28,
123      29 => RE_Bits_29,
124      30 => RE_Bits_30,
125      31 => RE_Bits_31,
126      32 => RE_Unsigned_32,
127      33 => RE_Bits_33,
128      34 => RE_Bits_34,
129      35 => RE_Bits_35,
130      36 => RE_Bits_36,
131      37 => RE_Bits_37,
132      38 => RE_Bits_38,
133      39 => RE_Bits_39,
134      40 => RE_Bits_40,
135      41 => RE_Bits_41,
136      42 => RE_Bits_42,
137      43 => RE_Bits_43,
138      44 => RE_Bits_44,
139      45 => RE_Bits_45,
140      46 => RE_Bits_46,
141      47 => RE_Bits_47,
142      48 => RE_Bits_48,
143      49 => RE_Bits_49,
144      50 => RE_Bits_50,
145      51 => RE_Bits_51,
146      52 => RE_Bits_52,
147      53 => RE_Bits_53,
148      54 => RE_Bits_54,
149      55 => RE_Bits_55,
150      56 => RE_Bits_56,
151      57 => RE_Bits_57,
152      58 => RE_Bits_58,
153      59 => RE_Bits_59,
154      60 => RE_Bits_60,
155      61 => RE_Bits_61,
156      62 => RE_Bits_62,
157      63 => RE_Bits_63);
158
159   --  Array of Get routine entities. These are used to obtain an element from
160   --  a packed array. The N'th entry is used to obtain elements from a packed
161   --  array whose component size is N. RE_Null is used as a null entry, for
162   --  the cases where a library routine is not used.
163
164   Get_Id : constant E_Array :=
165     (01 => RE_Null,
166      02 => RE_Null,
167      03 => RE_Get_03,
168      04 => RE_Null,
169      05 => RE_Get_05,
170      06 => RE_Get_06,
171      07 => RE_Get_07,
172      08 => RE_Null,
173      09 => RE_Get_09,
174      10 => RE_Get_10,
175      11 => RE_Get_11,
176      12 => RE_Get_12,
177      13 => RE_Get_13,
178      14 => RE_Get_14,
179      15 => RE_Get_15,
180      16 => RE_Null,
181      17 => RE_Get_17,
182      18 => RE_Get_18,
183      19 => RE_Get_19,
184      20 => RE_Get_20,
185      21 => RE_Get_21,
186      22 => RE_Get_22,
187      23 => RE_Get_23,
188      24 => RE_Get_24,
189      25 => RE_Get_25,
190      26 => RE_Get_26,
191      27 => RE_Get_27,
192      28 => RE_Get_28,
193      29 => RE_Get_29,
194      30 => RE_Get_30,
195      31 => RE_Get_31,
196      32 => RE_Null,
197      33 => RE_Get_33,
198      34 => RE_Get_34,
199      35 => RE_Get_35,
200      36 => RE_Get_36,
201      37 => RE_Get_37,
202      38 => RE_Get_38,
203      39 => RE_Get_39,
204      40 => RE_Get_40,
205      41 => RE_Get_41,
206      42 => RE_Get_42,
207      43 => RE_Get_43,
208      44 => RE_Get_44,
209      45 => RE_Get_45,
210      46 => RE_Get_46,
211      47 => RE_Get_47,
212      48 => RE_Get_48,
213      49 => RE_Get_49,
214      50 => RE_Get_50,
215      51 => RE_Get_51,
216      52 => RE_Get_52,
217      53 => RE_Get_53,
218      54 => RE_Get_54,
219      55 => RE_Get_55,
220      56 => RE_Get_56,
221      57 => RE_Get_57,
222      58 => RE_Get_58,
223      59 => RE_Get_59,
224      60 => RE_Get_60,
225      61 => RE_Get_61,
226      62 => RE_Get_62,
227      63 => RE_Get_63);
228
229   --  Array of Get routine entities to be used in the case where the packed
230   --  array is itself a component of a packed structure, and therefore may not
231   --  be fully aligned. This only affects the even sizes, since for the odd
232   --  sizes, we do not get any fixed alignment in any case.
233
234   GetU_Id : constant E_Array :=
235     (01 => RE_Null,
236      02 => RE_Null,
237      03 => RE_Get_03,
238      04 => RE_Null,
239      05 => RE_Get_05,
240      06 => RE_GetU_06,
241      07 => RE_Get_07,
242      08 => RE_Null,
243      09 => RE_Get_09,
244      10 => RE_GetU_10,
245      11 => RE_Get_11,
246      12 => RE_GetU_12,
247      13 => RE_Get_13,
248      14 => RE_GetU_14,
249      15 => RE_Get_15,
250      16 => RE_Null,
251      17 => RE_Get_17,
252      18 => RE_GetU_18,
253      19 => RE_Get_19,
254      20 => RE_GetU_20,
255      21 => RE_Get_21,
256      22 => RE_GetU_22,
257      23 => RE_Get_23,
258      24 => RE_GetU_24,
259      25 => RE_Get_25,
260      26 => RE_GetU_26,
261      27 => RE_Get_27,
262      28 => RE_GetU_28,
263      29 => RE_Get_29,
264      30 => RE_GetU_30,
265      31 => RE_Get_31,
266      32 => RE_Null,
267      33 => RE_Get_33,
268      34 => RE_GetU_34,
269      35 => RE_Get_35,
270      36 => RE_GetU_36,
271      37 => RE_Get_37,
272      38 => RE_GetU_38,
273      39 => RE_Get_39,
274      40 => RE_GetU_40,
275      41 => RE_Get_41,
276      42 => RE_GetU_42,
277      43 => RE_Get_43,
278      44 => RE_GetU_44,
279      45 => RE_Get_45,
280      46 => RE_GetU_46,
281      47 => RE_Get_47,
282      48 => RE_GetU_48,
283      49 => RE_Get_49,
284      50 => RE_GetU_50,
285      51 => RE_Get_51,
286      52 => RE_GetU_52,
287      53 => RE_Get_53,
288      54 => RE_GetU_54,
289      55 => RE_Get_55,
290      56 => RE_GetU_56,
291      57 => RE_Get_57,
292      58 => RE_GetU_58,
293      59 => RE_Get_59,
294      60 => RE_GetU_60,
295      61 => RE_Get_61,
296      62 => RE_GetU_62,
297      63 => RE_Get_63);
298
299   --  Array of Set routine entities. These are used to assign an element of a
300   --  packed array. The N'th entry is used to assign elements for a packed
301   --  array whose component size is N. RE_Null is used as a null entry, for
302   --  the cases where a library routine is not used.
303
304   Set_Id : constant E_Array :=
305     (01 => RE_Null,
306      02 => RE_Null,
307      03 => RE_Set_03,
308      04 => RE_Null,
309      05 => RE_Set_05,
310      06 => RE_Set_06,
311      07 => RE_Set_07,
312      08 => RE_Null,
313      09 => RE_Set_09,
314      10 => RE_Set_10,
315      11 => RE_Set_11,
316      12 => RE_Set_12,
317      13 => RE_Set_13,
318      14 => RE_Set_14,
319      15 => RE_Set_15,
320      16 => RE_Null,
321      17 => RE_Set_17,
322      18 => RE_Set_18,
323      19 => RE_Set_19,
324      20 => RE_Set_20,
325      21 => RE_Set_21,
326      22 => RE_Set_22,
327      23 => RE_Set_23,
328      24 => RE_Set_24,
329      25 => RE_Set_25,
330      26 => RE_Set_26,
331      27 => RE_Set_27,
332      28 => RE_Set_28,
333      29 => RE_Set_29,
334      30 => RE_Set_30,
335      31 => RE_Set_31,
336      32 => RE_Null,
337      33 => RE_Set_33,
338      34 => RE_Set_34,
339      35 => RE_Set_35,
340      36 => RE_Set_36,
341      37 => RE_Set_37,
342      38 => RE_Set_38,
343      39 => RE_Set_39,
344      40 => RE_Set_40,
345      41 => RE_Set_41,
346      42 => RE_Set_42,
347      43 => RE_Set_43,
348      44 => RE_Set_44,
349      45 => RE_Set_45,
350      46 => RE_Set_46,
351      47 => RE_Set_47,
352      48 => RE_Set_48,
353      49 => RE_Set_49,
354      50 => RE_Set_50,
355      51 => RE_Set_51,
356      52 => RE_Set_52,
357      53 => RE_Set_53,
358      54 => RE_Set_54,
359      55 => RE_Set_55,
360      56 => RE_Set_56,
361      57 => RE_Set_57,
362      58 => RE_Set_58,
363      59 => RE_Set_59,
364      60 => RE_Set_60,
365      61 => RE_Set_61,
366      62 => RE_Set_62,
367      63 => RE_Set_63);
368
369   --  Array of Set routine entities to be used in the case where the packed
370   --  array is itself a component of a packed structure, and therefore may not
371   --  be fully aligned. This only affects the even sizes, since for the odd
372   --  sizes, we do not get any fixed alignment in any case.
373
374   SetU_Id : constant E_Array :=
375     (01 => RE_Null,
376      02 => RE_Null,
377      03 => RE_Set_03,
378      04 => RE_Null,
379      05 => RE_Set_05,
380      06 => RE_SetU_06,
381      07 => RE_Set_07,
382      08 => RE_Null,
383      09 => RE_Set_09,
384      10 => RE_SetU_10,
385      11 => RE_Set_11,
386      12 => RE_SetU_12,
387      13 => RE_Set_13,
388      14 => RE_SetU_14,
389      15 => RE_Set_15,
390      16 => RE_Null,
391      17 => RE_Set_17,
392      18 => RE_SetU_18,
393      19 => RE_Set_19,
394      20 => RE_SetU_20,
395      21 => RE_Set_21,
396      22 => RE_SetU_22,
397      23 => RE_Set_23,
398      24 => RE_SetU_24,
399      25 => RE_Set_25,
400      26 => RE_SetU_26,
401      27 => RE_Set_27,
402      28 => RE_SetU_28,
403      29 => RE_Set_29,
404      30 => RE_SetU_30,
405      31 => RE_Set_31,
406      32 => RE_Null,
407      33 => RE_Set_33,
408      34 => RE_SetU_34,
409      35 => RE_Set_35,
410      36 => RE_SetU_36,
411      37 => RE_Set_37,
412      38 => RE_SetU_38,
413      39 => RE_Set_39,
414      40 => RE_SetU_40,
415      41 => RE_Set_41,
416      42 => RE_SetU_42,
417      43 => RE_Set_43,
418      44 => RE_SetU_44,
419      45 => RE_Set_45,
420      46 => RE_SetU_46,
421      47 => RE_Set_47,
422      48 => RE_SetU_48,
423      49 => RE_Set_49,
424      50 => RE_SetU_50,
425      51 => RE_Set_51,
426      52 => RE_SetU_52,
427      53 => RE_Set_53,
428      54 => RE_SetU_54,
429      55 => RE_Set_55,
430      56 => RE_SetU_56,
431      57 => RE_Set_57,
432      58 => RE_SetU_58,
433      59 => RE_Set_59,
434      60 => RE_SetU_60,
435      61 => RE_Set_61,
436      62 => RE_SetU_62,
437      63 => RE_Set_63);
438
439   -----------------------
440   -- Local Subprograms --
441   -----------------------
442
443   procedure Compute_Linear_Subscript
444     (Atyp   : Entity_Id;
445      N      : Node_Id;
446      Subscr : out Node_Id);
447   --  Given a constrained array type Atyp, and an indexed component node N
448   --  referencing an array object of this type, build an expression of type
449   --  Standard.Integer representing the zero-based linear subscript value.
450   --  This expression includes any required range checks.
451
452   procedure Convert_To_PAT_Type (Aexp : Node_Id);
453   --  Given an expression of a packed array type, builds a corresponding
454   --  expression whose type is the implementation type used to represent
455   --  the packed array. Aexp is analyzed and resolved on entry and on exit.
456
457   procedure Get_Base_And_Bit_Offset
458     (N      : Node_Id;
459      Base   : out Node_Id;
460      Offset : out Node_Id);
461   --  Given a node N for a name which involves a packed array reference,
462   --  return the base object of the reference and build an expression of
463   --  type Standard.Integer representing the zero-based offset in bits
464   --  from Base'Address to the first bit of the reference.
465
466   function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean;
467   --  There are two versions of the Set routines, the ones used when the
468   --  object is known to be sufficiently well aligned given the number of
469   --  bits, and the ones used when the object is not known to be aligned.
470   --  This routine is used to determine which set to use. Obj is a reference
471   --  to the object, and Csiz is the component size of the packed array.
472   --  True is returned if the alignment of object is known to be sufficient,
473   --  defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
474   --  2 otherwise.
475
476   function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id;
477   --  Build a left shift node, checking for the case of a shift count of zero
478
479   function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id;
480   --  Build a right shift node, checking for the case of a shift count of zero
481
482   function RJ_Unchecked_Convert_To
483     (Typ  : Entity_Id;
484      Expr : Node_Id) return Node_Id;
485   --  The packed array code does unchecked conversions which in some cases
486   --  may involve non-discrete types with differing sizes. The semantics of
487   --  such conversions is potentially endian dependent, and the effect we
488   --  want here for such a conversion is to do the conversion in size as
489   --  though numeric items are involved, and we extend or truncate on the
490   --  left side. This happens naturally in the little-endian case, but in
491   --  the big endian case we can get left justification, when what we want
492   --  is right justification. This routine does the unchecked conversion in
493   --  a stepwise manner to ensure that it gives the expected result. Hence
494   --  the name (RJ = Right justified). The parameters Typ and Expr are as
495   --  for the case of a normal Unchecked_Convert_To call.
496
497   procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id);
498   --  This routine is called in the Get and Set case for arrays that are
499   --  packed but not bit-packed, meaning that they have at least one
500   --  subscript that is of an enumeration type with a non-standard
501   --  representation. This routine modifies the given node to properly
502   --  reference the corresponding packed array type.
503
504   procedure Setup_Inline_Packed_Array_Reference
505     (N      : Node_Id;
506      Atyp   : Entity_Id;
507      Obj    : in out Node_Id;
508      Cmask  : out Uint;
509      Shift  : out Node_Id);
510   --  This procedure performs common processing on the N_Indexed_Component
511   --  parameter given as N, whose prefix is a reference to a packed array.
512   --  This is used for the get and set when the component size is 1, 2, 4,
513   --  or for other component sizes when the packed array type is a modular
514   --  type (i.e. the cases that are handled with inline code).
515   --
516   --  On entry:
517   --
518   --    N is the N_Indexed_Component node for the packed array reference
519   --
520   --    Atyp is the constrained array type (the actual subtype has been
521   --    computed if necessary to obtain the constraints, but this is still
522   --    the original array type, not the Packed_Array_Type value).
523   --
524   --    Obj is the object which is to be indexed. It is always of type Atyp.
525   --
526   --  On return:
527   --
528   --    Obj is the object containing the desired bit field. It is of type
529   --    Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
530   --    entire value, for the small static case, or the proper selected byte
531   --    from the array in the large or dynamic case. This node is analyzed
532   --    and resolved on return.
533   --
534   --    Shift is a node representing the shift count to be used in the
535   --    rotate right instruction that positions the field for access.
536   --    This node is analyzed and resolved on return.
537   --
538   --    Cmask is a mask corresponding to the width of the component field.
539   --    Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
540   --
541   --  Note: in some cases the call to this routine may generate actions
542   --  (for handling multi-use references and the generation of the packed
543   --  array type on the fly). Such actions are inserted into the tree
544   --  directly using Insert_Action.
545
546   function Byte_Swap
547     (N             : Node_Id;
548      Left_Justify  : Boolean := False;
549      Right_Justify : Boolean := False) return Node_Id;
550   --  Wrap N in a call to a byte swapping function, with appropriate type
551   --  conversions. If Left_Justify is set True, the value is left justified
552   --  before swapping. If Right_Justify is set True, the value is right
553   --  justified after swapping. The Etype of the returned node is an
554   --  integer type of an appropriate power-of-2 size.
555
556   ---------------
557   -- Byte_Swap --
558   ---------------
559
560   function Byte_Swap
561     (N             : Node_Id;
562      Left_Justify  : Boolean := False;
563      Right_Justify : Boolean := False) return Node_Id
564   is
565      Loc     : constant Source_Ptr := Sloc (N);
566      T       : constant Entity_Id := Etype (N);
567      T_Size  : constant Uint := RM_Size (T);
568
569      Swap_RE : RE_Id;
570      Swap_F  : Entity_Id;
571      Swap_T  : Entity_Id;
572      --  Swapping function
573
574      Arg     : Node_Id;
575      Swapped : Node_Id;
576      Shift   : Uint;
577
578   begin
579      pragma Assert (T_Size > 8);
580
581      if T_Size <= 16 then
582         Swap_RE := RE_Bswap_16;
583
584      elsif T_Size <= 32 then
585         Swap_RE := RE_Bswap_32;
586
587      else pragma Assert (T_Size <= 64);
588         Swap_RE := RE_Bswap_64;
589      end if;
590
591      Swap_F := RTE (Swap_RE);
592      Swap_T := Etype (Swap_F);
593      Shift := Esize (Swap_T) - T_Size;
594
595      Arg := RJ_Unchecked_Convert_To (Swap_T, N);
596
597      if Left_Justify and then Shift > Uint_0 then
598         Arg :=
599           Make_Op_Shift_Left (Loc,
600             Left_Opnd  => Arg,
601             Right_Opnd => Make_Integer_Literal (Loc, Shift));
602      end if;
603
604      Swapped :=
605        Make_Function_Call (Loc,
606          Name                   => New_Occurrence_Of (Swap_F, Loc),
607          Parameter_Associations => New_List (Arg));
608
609      if Right_Justify and then Shift > Uint_0 then
610         Swapped :=
611           Make_Op_Shift_Right (Loc,
612             Left_Opnd  => Swapped,
613             Right_Opnd => Make_Integer_Literal (Loc, Shift));
614      end if;
615
616      Set_Etype (Swapped, Swap_T);
617      return Swapped;
618   end Byte_Swap;
619
620   ------------------------------
621   -- Compute_Linear_Subscript --
622   ------------------------------
623
624   procedure Compute_Linear_Subscript
625     (Atyp   : Entity_Id;
626      N      : Node_Id;
627      Subscr : out Node_Id)
628   is
629      Loc    : constant Source_Ptr := Sloc (N);
630      Oldsub : Node_Id;
631      Newsub : Node_Id;
632      Indx   : Node_Id;
633      Styp   : Entity_Id;
634
635   begin
636      Subscr := Empty;
637
638      --  Loop through dimensions
639
640      Indx   := First_Index (Atyp);
641      Oldsub := First (Expressions (N));
642
643      while Present (Indx) loop
644         Styp := Etype (Indx);
645         Newsub := Relocate_Node (Oldsub);
646
647         --  Get expression for the subscript value. First, if Do_Range_Check
648         --  is set on a subscript, then we must do a range check against the
649         --  original bounds (not the bounds of the packed array type). We do
650         --  this by introducing a subtype conversion.
651
652         if Do_Range_Check (Newsub)
653           and then Etype (Newsub) /= Styp
654         then
655            Newsub := Convert_To (Styp, Newsub);
656         end if;
657
658         --  Now evolve the expression for the subscript. First convert
659         --  the subscript to be zero based and of an integer type.
660
661         --  Case of integer type, where we just subtract to get lower bound
662
663         if Is_Integer_Type (Styp) then
664
665            --  If length of integer type is smaller than standard integer,
666            --  then we convert to integer first, then do the subtract
667
668            --  Integer (subscript) - Integer (Styp'First)
669
670            if Esize (Styp) < Esize (Standard_Integer) then
671               Newsub :=
672                 Make_Op_Subtract (Loc,
673                   Left_Opnd => Convert_To (Standard_Integer, Newsub),
674                 Right_Opnd =>
675                   Convert_To (Standard_Integer,
676                     Make_Attribute_Reference (Loc,
677                       Prefix         => New_Occurrence_Of (Styp, Loc),
678                       Attribute_Name => Name_First)));
679
680            --  For larger integer types, subtract first, then convert to
681            --  integer, this deals with strange long long integer bounds.
682
683            --    Integer (subscript - Styp'First)
684
685            else
686               Newsub :=
687                 Convert_To (Standard_Integer,
688                   Make_Op_Subtract (Loc,
689                     Left_Opnd => Newsub,
690                   Right_Opnd =>
691                     Make_Attribute_Reference (Loc,
692                       Prefix         => New_Occurrence_Of (Styp, Loc),
693                       Attribute_Name => Name_First)));
694            end if;
695
696         --  For the enumeration case, we have to use 'Pos to get the value
697         --  to work with before subtracting the lower bound.
698
699         --    Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
700
701         --  This is not quite right for bizarre cases where the size of the
702         --  enumeration type is > Integer'Size bits due to rep clause ???
703
704         else
705            pragma Assert (Is_Enumeration_Type (Styp));
706
707            Newsub :=
708              Make_Op_Subtract (Loc,
709                Left_Opnd => Convert_To (Standard_Integer,
710                  Make_Attribute_Reference (Loc,
711                    Prefix         => New_Occurrence_Of (Styp, Loc),
712                    Attribute_Name => Name_Pos,
713                    Expressions    => New_List (Newsub))),
714
715                Right_Opnd =>
716                  Convert_To (Standard_Integer,
717                    Make_Attribute_Reference (Loc,
718                      Prefix         => New_Occurrence_Of (Styp, Loc),
719                      Attribute_Name => Name_Pos,
720                      Expressions    => New_List (
721                        Make_Attribute_Reference (Loc,
722                          Prefix         => New_Occurrence_Of (Styp, Loc),
723                          Attribute_Name => Name_First)))));
724         end if;
725
726         Set_Paren_Count (Newsub, 1);
727
728         --  For the first subscript, we just copy that subscript value
729
730         if No (Subscr) then
731            Subscr := Newsub;
732
733         --  Otherwise, we must multiply what we already have by the current
734         --  stride and then add in the new value to the evolving subscript.
735
736         else
737            Subscr :=
738              Make_Op_Add (Loc,
739                Left_Opnd =>
740                  Make_Op_Multiply (Loc,
741                    Left_Opnd  => Subscr,
742                    Right_Opnd =>
743                      Make_Attribute_Reference (Loc,
744                        Attribute_Name => Name_Range_Length,
745                        Prefix         => New_Occurrence_Of (Styp, Loc))),
746                Right_Opnd => Newsub);
747         end if;
748
749         --  Move to next subscript
750
751         Next_Index (Indx);
752         Next (Oldsub);
753      end loop;
754   end Compute_Linear_Subscript;
755
756   -------------------------
757   -- Convert_To_PAT_Type --
758   -------------------------
759
760   --  The PAT is always obtained from the actual subtype
761
762   procedure Convert_To_PAT_Type (Aexp : Node_Id) is
763      Act_ST : Entity_Id;
764
765   begin
766      Convert_To_Actual_Subtype (Aexp);
767      Act_ST := Underlying_Type (Etype (Aexp));
768      Create_Packed_Array_Type (Act_ST);
769
770      --  Just replace the etype with the packed array type. This works because
771      --  the expression will not be further analyzed, and Gigi considers the
772      --  two types equivalent in any case.
773
774      --  This is not strictly the case ??? If the reference is an actual in
775      --  call, the expansion of the prefix is delayed, and must be reanalyzed,
776      --  see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
777      --  array reference, reanalysis can produce spurious type errors when the
778      --  PAT type is replaced again with the original type of the array. Same
779      --  for the case of a dereference. Ditto for function calls: expansion
780      --  may introduce additional actuals which will trigger errors if call is
781      --  reanalyzed. The following is correct and minimal, but the handling of
782      --  more complex packed expressions in actuals is confused. Probably the
783      --  problem only remains for actuals in calls.
784
785      Set_Etype (Aexp, Packed_Array_Type (Act_ST));
786
787      if Is_Entity_Name (Aexp)
788        or else
789           (Nkind (Aexp) = N_Indexed_Component
790             and then Is_Entity_Name (Prefix (Aexp)))
791        or else Nkind_In (Aexp, N_Explicit_Dereference, N_Function_Call)
792      then
793         Set_Analyzed (Aexp);
794      end if;
795   end Convert_To_PAT_Type;
796
797   ------------------------------
798   -- Create_Packed_Array_Type --
799   ------------------------------
800
801   procedure Create_Packed_Array_Type (Typ : Entity_Id) is
802      Loc      : constant Source_Ptr := Sloc (Typ);
803      Ctyp     : constant Entity_Id  := Component_Type (Typ);
804      Csize    : constant Uint       := Component_Size (Typ);
805
806      Ancest   : Entity_Id;
807      PB_Type  : Entity_Id;
808      PASize   : Uint;
809      Decl     : Node_Id;
810      PAT      : Entity_Id;
811      Len_Dim  : Node_Id;
812      Len_Expr : Node_Id;
813      Len_Bits : Uint;
814      Bits_U1  : Node_Id;
815      PAT_High : Node_Id;
816      Btyp     : Entity_Id;
817      Lit      : Node_Id;
818
819      procedure Install_PAT;
820      --  This procedure is called with Decl set to the declaration for the
821      --  packed array type. It creates the type and installs it as required.
822
823      procedure Set_PB_Type;
824      --  Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
825      --  requirements (see documentation in the spec of this package).
826
827      -----------------
828      -- Install_PAT --
829      -----------------
830
831      procedure Install_PAT is
832         Pushed_Scope : Boolean := False;
833
834      begin
835         --  We do not want to put the declaration we have created in the tree
836         --  since it is often hard, and sometimes impossible to find a proper
837         --  place for it (the impossible case arises for a packed array type
838         --  with bounds depending on the discriminant, a declaration cannot
839         --  be put inside the record, and the reference to the discriminant
840         --  cannot be outside the record).
841
842         --  The solution is to analyze the declaration while temporarily
843         --  attached to the tree at an appropriate point, and then we install
844         --  the resulting type as an Itype in the packed array type field of
845         --  the original type, so that no explicit declaration is required.
846
847         --  Note: the packed type is created in the scope of its parent
848         --  type. There are at least some cases where the current scope
849         --  is deeper, and so when this is the case, we temporarily reset
850         --  the scope for the definition. This is clearly safe, since the
851         --  first use of the packed array type will be the implicit
852         --  reference from the corresponding unpacked type when it is
853         --  elaborated.
854
855         if Is_Itype (Typ) then
856            Set_Parent (Decl, Associated_Node_For_Itype (Typ));
857         else
858            Set_Parent (Decl, Declaration_Node (Typ));
859         end if;
860
861         if Scope (Typ) /= Current_Scope then
862            Push_Scope (Scope (Typ));
863            Pushed_Scope := True;
864         end if;
865
866         Set_Is_Itype (PAT, True);
867         Set_Packed_Array_Type (Typ, PAT);
868         Analyze (Decl, Suppress => All_Checks);
869
870         if Pushed_Scope then
871            Pop_Scope;
872         end if;
873
874         --  Set Esize and RM_Size to the actual size of the packed object
875         --  Do not reset RM_Size if already set, as happens in the case of
876         --  a modular type.
877
878         if Unknown_Esize (PAT) then
879            Set_Esize (PAT, PASize);
880         end if;
881
882         if Unknown_RM_Size (PAT) then
883            Set_RM_Size (PAT, PASize);
884         end if;
885
886         Adjust_Esize_Alignment (PAT);
887
888         --  Set remaining fields of packed array type
889
890         Init_Alignment                (PAT);
891         Set_Parent                    (PAT, Empty);
892         Set_Associated_Node_For_Itype (PAT, Typ);
893         Set_Is_Packed_Array_Type      (PAT, True);
894         Set_Original_Array_Type       (PAT, Typ);
895
896         --  We definitely do not want to delay freezing for packed array
897         --  types. This is of particular importance for the itypes that
898         --  are generated for record components depending on discriminants
899         --  where there is no place to put the freeze node.
900
901         Set_Has_Delayed_Freeze (PAT, False);
902         Set_Has_Delayed_Freeze (Etype (PAT), False);
903
904         --  If we did allocate a freeze node, then clear out the reference
905         --  since it is obsolete (should we delete the freeze node???)
906
907         Set_Freeze_Node (PAT, Empty);
908         Set_Freeze_Node (Etype (PAT), Empty);
909      end Install_PAT;
910
911      -----------------
912      -- Set_PB_Type --
913      -----------------
914
915      procedure Set_PB_Type is
916      begin
917         --  If the user has specified an explicit alignment for the
918         --  type or component, take it into account.
919
920         if Csize <= 2 or else Csize = 4 or else Csize mod 2 /= 0
921           or else Alignment (Typ) = 1
922           or else Component_Alignment (Typ) = Calign_Storage_Unit
923         then
924            PB_Type := RTE (RE_Packed_Bytes1);
925
926         elsif Csize mod 4 /= 0
927           or else Alignment (Typ) = 2
928         then
929            PB_Type := RTE (RE_Packed_Bytes2);
930
931         else
932            PB_Type := RTE (RE_Packed_Bytes4);
933         end if;
934      end Set_PB_Type;
935
936   --  Start of processing for Create_Packed_Array_Type
937
938   begin
939      --  If we already have a packed array type, nothing to do
940
941      if Present (Packed_Array_Type (Typ)) then
942         return;
943      end if;
944
945      --  If our immediate ancestor subtype is constrained, and it already
946      --  has a packed array type, then just share the same type, since the
947      --  bounds must be the same. If the ancestor is not an array type but
948      --  a private type, as can happen with multiple instantiations, create
949      --  a new packed type, to avoid privacy issues.
950
951      if Ekind (Typ) = E_Array_Subtype then
952         Ancest := Ancestor_Subtype (Typ);
953
954         if Present (Ancest)
955           and then Is_Array_Type (Ancest)
956           and then Is_Constrained (Ancest)
957           and then Present (Packed_Array_Type (Ancest))
958         then
959            Set_Packed_Array_Type (Typ, Packed_Array_Type (Ancest));
960            return;
961         end if;
962      end if;
963
964      --  We preset the result type size from the size of the original array
965      --  type, since this size clearly belongs to the packed array type. The
966      --  size of the conceptual unpacked type is always set to unknown.
967
968      PASize := RM_Size (Typ);
969
970      --  Case of an array where at least one index is of an enumeration
971      --  type with a non-standard representation, but the component size
972      --  is not appropriate for bit packing. This is the case where we
973      --  have Is_Packed set (we would never be in this unit otherwise),
974      --  but Is_Bit_Packed_Array is false.
975
976      --  Note that if the component size is appropriate for bit packing,
977      --  then the circuit for the computation of the subscript properly
978      --  deals with the non-standard enumeration type case by taking the
979      --  Pos anyway.
980
981      if not Is_Bit_Packed_Array (Typ) then
982
983         --  Here we build a declaration:
984
985         --    type tttP is array (index1, index2, ...) of component_type
986
987         --  where index1, index2, are the index types. These are the same
988         --  as the index types of the original array, except for the non-
989         --  standard representation enumeration type case, where we have
990         --  two subcases.
991
992         --  For the unconstrained array case, we use
993
994         --    Natural range <>
995
996         --  For the constrained case, we use
997
998         --    Natural range Enum_Type'Pos (Enum_Type'First) ..
999         --                  Enum_Type'Pos (Enum_Type'Last);
1000
1001         PAT :=
1002           Make_Defining_Identifier (Loc,
1003             Chars => New_External_Name (Chars (Typ), 'P'));
1004
1005         Set_Packed_Array_Type (Typ, PAT);
1006
1007         declare
1008            Indexes   : constant List_Id := New_List;
1009            Indx      : Node_Id;
1010            Indx_Typ  : Entity_Id;
1011            Enum_Case : Boolean;
1012            Typedef   : Node_Id;
1013
1014         begin
1015            Indx := First_Index (Typ);
1016
1017            while Present (Indx) loop
1018               Indx_Typ := Etype (Indx);
1019
1020               Enum_Case := Is_Enumeration_Type (Indx_Typ)
1021                              and then Has_Non_Standard_Rep (Indx_Typ);
1022
1023               --  Unconstrained case
1024
1025               if not Is_Constrained (Typ) then
1026                  if Enum_Case then
1027                     Indx_Typ := Standard_Natural;
1028                  end if;
1029
1030                  Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
1031
1032               --  Constrained case
1033
1034               else
1035                  if not Enum_Case then
1036                     Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
1037
1038                  else
1039                     Append_To (Indexes,
1040                       Make_Subtype_Indication (Loc,
1041                         Subtype_Mark =>
1042                           New_Occurrence_Of (Standard_Natural, Loc),
1043                         Constraint =>
1044                           Make_Range_Constraint (Loc,
1045                             Range_Expression =>
1046                               Make_Range (Loc,
1047                                 Low_Bound =>
1048                                   Make_Attribute_Reference (Loc,
1049                                     Prefix         =>
1050                                       New_Occurrence_Of (Indx_Typ, Loc),
1051                                     Attribute_Name => Name_Pos,
1052                                     Expressions    => New_List (
1053                                       Make_Attribute_Reference (Loc,
1054                                         Prefix         =>
1055                                           New_Occurrence_Of (Indx_Typ, Loc),
1056                                         Attribute_Name => Name_First))),
1057
1058                                 High_Bound =>
1059                                   Make_Attribute_Reference (Loc,
1060                                     Prefix         =>
1061                                       New_Occurrence_Of (Indx_Typ, Loc),
1062                                     Attribute_Name => Name_Pos,
1063                                     Expressions    => New_List (
1064                                       Make_Attribute_Reference (Loc,
1065                                         Prefix         =>
1066                                           New_Occurrence_Of (Indx_Typ, Loc),
1067                                         Attribute_Name => Name_Last)))))));
1068
1069                  end if;
1070               end if;
1071
1072               Next_Index (Indx);
1073            end loop;
1074
1075            if not Is_Constrained (Typ) then
1076               Typedef :=
1077                 Make_Unconstrained_Array_Definition (Loc,
1078                   Subtype_Marks => Indexes,
1079                   Component_Definition =>
1080                     Make_Component_Definition (Loc,
1081                       Aliased_Present    => False,
1082                       Subtype_Indication =>
1083                          New_Occurrence_Of (Ctyp, Loc)));
1084
1085            else
1086               Typedef :=
1087                  Make_Constrained_Array_Definition (Loc,
1088                    Discrete_Subtype_Definitions => Indexes,
1089                    Component_Definition =>
1090                      Make_Component_Definition (Loc,
1091                        Aliased_Present    => False,
1092                        Subtype_Indication =>
1093                          New_Occurrence_Of (Ctyp, Loc)));
1094            end if;
1095
1096            Decl :=
1097              Make_Full_Type_Declaration (Loc,
1098                Defining_Identifier => PAT,
1099                Type_Definition => Typedef);
1100         end;
1101
1102         --  Set type as packed array type and install it
1103
1104         Set_Is_Packed_Array_Type (PAT);
1105         Install_PAT;
1106         return;
1107
1108      --  Case of bit-packing required for unconstrained array. We create
1109      --  a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
1110
1111      elsif not Is_Constrained (Typ) then
1112         PAT :=
1113           Make_Defining_Identifier (Loc,
1114             Chars => Make_Packed_Array_Type_Name (Typ, Csize));
1115
1116         Set_Packed_Array_Type (Typ, PAT);
1117         Set_PB_Type;
1118
1119         Decl :=
1120           Make_Subtype_Declaration (Loc,
1121             Defining_Identifier => PAT,
1122               Subtype_Indication => New_Occurrence_Of (PB_Type, Loc));
1123         Install_PAT;
1124         return;
1125
1126      --  Remaining code is for the case of bit-packing for constrained array
1127
1128      --  The name of the packed array subtype is
1129
1130      --    ttt___XPsss
1131
1132      --  where sss is the component size in bits and ttt is the name of
1133      --  the parent packed type.
1134
1135      else
1136         PAT :=
1137           Make_Defining_Identifier (Loc,
1138             Chars => Make_Packed_Array_Type_Name (Typ, Csize));
1139
1140         Set_Packed_Array_Type (Typ, PAT);
1141
1142         --  Build an expression for the length of the array in bits.
1143         --  This is the product of the length of each of the dimensions
1144
1145         declare
1146            J : Nat := 1;
1147
1148         begin
1149            Len_Expr := Empty; -- suppress junk warning
1150
1151            loop
1152               Len_Dim :=
1153                 Make_Attribute_Reference (Loc,
1154                   Attribute_Name => Name_Length,
1155                   Prefix         => New_Occurrence_Of (Typ, Loc),
1156                   Expressions    => New_List (
1157                     Make_Integer_Literal (Loc, J)));
1158
1159               if J = 1 then
1160                  Len_Expr := Len_Dim;
1161
1162               else
1163                  Len_Expr :=
1164                    Make_Op_Multiply (Loc,
1165                      Left_Opnd  => Len_Expr,
1166                      Right_Opnd => Len_Dim);
1167               end if;
1168
1169               J := J + 1;
1170               exit when J > Number_Dimensions (Typ);
1171            end loop;
1172         end;
1173
1174         --  Temporarily attach the length expression to the tree and analyze
1175         --  and resolve it, so that we can test its value. We assume that the
1176         --  total length fits in type Integer. This expression may involve
1177         --  discriminants, so we treat it as a default/per-object expression.
1178
1179         Set_Parent (Len_Expr, Typ);
1180         Preanalyze_Spec_Expression (Len_Expr, Standard_Long_Long_Integer);
1181
1182         --  Use a modular type if possible. We can do this if we have
1183         --  static bounds, and the length is small enough, and the length
1184         --  is not zero. We exclude the zero length case because the size
1185         --  of things is always at least one, and the zero length object
1186         --  would have an anomalous size.
1187
1188         if Compile_Time_Known_Value (Len_Expr) then
1189            Len_Bits := Expr_Value (Len_Expr) * Csize;
1190
1191            --  Check for size known to be too large
1192
1193            if Len_Bits >
1194              Uint_2 ** (Standard_Integer_Size - 1) * System_Storage_Unit
1195            then
1196               if System_Storage_Unit = 8 then
1197                  Error_Msg_N
1198                    ("packed array size cannot exceed " &
1199                     "Integer''Last bytes", Typ);
1200               else
1201                  Error_Msg_N
1202                    ("packed array size cannot exceed " &
1203                     "Integer''Last storage units", Typ);
1204               end if;
1205
1206               --  Reset length to arbitrary not too high value to continue
1207
1208               Len_Expr := Make_Integer_Literal (Loc, 65535);
1209               Analyze_And_Resolve (Len_Expr, Standard_Long_Long_Integer);
1210            end if;
1211
1212            --  We normally consider small enough to mean no larger than the
1213            --  value of System_Max_Binary_Modulus_Power, checking that in the
1214            --  case of values longer than word size, we have long shifts.
1215
1216            if Len_Bits > 0
1217              and then
1218                (Len_Bits <= System_Word_Size
1219                   or else (Len_Bits <= System_Max_Binary_Modulus_Power
1220                              and then Support_Long_Shifts_On_Target))
1221            then
1222               --  We can use the modular type, it has the form:
1223
1224               --    subtype tttPn is btyp
1225               --      range 0 .. 2 ** ((Typ'Length (1)
1226               --                * ... * Typ'Length (n)) * Csize) - 1;
1227
1228               --  The bounds are statically known, and btyp is one of the
1229               --  unsigned types, depending on the length.
1230
1231               if Len_Bits <= Standard_Short_Short_Integer_Size then
1232                  Btyp := RTE (RE_Short_Short_Unsigned);
1233
1234               elsif Len_Bits <= Standard_Short_Integer_Size then
1235                  Btyp := RTE (RE_Short_Unsigned);
1236
1237               elsif Len_Bits <= Standard_Integer_Size then
1238                  Btyp := RTE (RE_Unsigned);
1239
1240               elsif Len_Bits <= Standard_Long_Integer_Size then
1241                  Btyp := RTE (RE_Long_Unsigned);
1242
1243               else
1244                  Btyp := RTE (RE_Long_Long_Unsigned);
1245               end if;
1246
1247               Lit := Make_Integer_Literal (Loc, 2 ** Len_Bits - 1);
1248               Set_Print_In_Hex (Lit);
1249
1250               Decl :=
1251                 Make_Subtype_Declaration (Loc,
1252                   Defining_Identifier => PAT,
1253                     Subtype_Indication =>
1254                       Make_Subtype_Indication (Loc,
1255                         Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
1256
1257                         Constraint =>
1258                           Make_Range_Constraint (Loc,
1259                             Range_Expression =>
1260                               Make_Range (Loc,
1261                                 Low_Bound =>
1262                                   Make_Integer_Literal (Loc, 0),
1263                                 High_Bound => Lit))));
1264
1265               if PASize = Uint_0 then
1266                  PASize := Len_Bits;
1267               end if;
1268
1269               Install_PAT;
1270
1271               --  Propagate a given alignment to the modular type. This can
1272               --  cause it to be under-aligned, but that's OK.
1273
1274               if Present (Alignment_Clause (Typ)) then
1275                  Set_Alignment (PAT, Alignment (Typ));
1276               end if;
1277
1278               return;
1279            end if;
1280         end if;
1281
1282         --  Could not use a modular type, for all other cases, we build
1283         --  a packed array subtype:
1284
1285         --    subtype tttPn is
1286         --      System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
1287
1288         --  Bits is the length of the array in bits
1289
1290         Set_PB_Type;
1291
1292         Bits_U1 :=
1293           Make_Op_Add (Loc,
1294             Left_Opnd =>
1295               Make_Op_Multiply (Loc,
1296                 Left_Opnd  =>
1297                   Make_Integer_Literal (Loc, Csize),
1298                 Right_Opnd => Len_Expr),
1299
1300             Right_Opnd =>
1301               Make_Integer_Literal (Loc, 7));
1302
1303         Set_Paren_Count (Bits_U1, 1);
1304
1305         PAT_High :=
1306           Make_Op_Subtract (Loc,
1307             Left_Opnd =>
1308               Make_Op_Divide (Loc,
1309                 Left_Opnd => Bits_U1,
1310                 Right_Opnd => Make_Integer_Literal (Loc, 8)),
1311             Right_Opnd => Make_Integer_Literal (Loc, 1));
1312
1313         Decl :=
1314           Make_Subtype_Declaration (Loc,
1315             Defining_Identifier => PAT,
1316               Subtype_Indication =>
1317                 Make_Subtype_Indication (Loc,
1318                   Subtype_Mark => New_Occurrence_Of (PB_Type, Loc),
1319                   Constraint =>
1320                     Make_Index_Or_Discriminant_Constraint (Loc,
1321                       Constraints => New_List (
1322                         Make_Range (Loc,
1323                           Low_Bound =>
1324                             Make_Integer_Literal (Loc, 0),
1325                           High_Bound =>
1326                             Convert_To (Standard_Integer, PAT_High))))));
1327
1328         Install_PAT;
1329
1330         --  Currently the code in this unit requires that packed arrays
1331         --  represented by non-modular arrays of bytes be on a byte
1332         --  boundary for bit sizes handled by System.Pack_nn units.
1333         --  That's because these units assume the array being accessed
1334         --  starts on a byte boundary.
1335
1336         if Get_Id (UI_To_Int (Csize)) /= RE_Null then
1337            Set_Must_Be_On_Byte_Boundary (Typ);
1338         end if;
1339      end if;
1340   end Create_Packed_Array_Type;
1341
1342   -----------------------------------
1343   -- Expand_Bit_Packed_Element_Set --
1344   -----------------------------------
1345
1346   procedure Expand_Bit_Packed_Element_Set (N : Node_Id) is
1347      Loc : constant Source_Ptr := Sloc (N);
1348      Lhs : constant Node_Id    := Name (N);
1349
1350      Ass_OK : constant Boolean := Assignment_OK (Lhs);
1351      --  Used to preserve assignment OK status when assignment is rewritten
1352
1353      Rhs : Node_Id := Expression (N);
1354      --  Initially Rhs is the right hand side value, it will be replaced
1355      --  later by an appropriate unchecked conversion for the assignment.
1356
1357      Obj   : Node_Id;
1358      Atyp  : Entity_Id;
1359      PAT   : Entity_Id;
1360      Ctyp  : Entity_Id;
1361      Csiz  : Int;
1362      Cmask : Uint;
1363
1364      Shift : Node_Id;
1365      --  The expression for the shift value that is required
1366
1367      Shift_Used : Boolean := False;
1368      --  Set True if Shift has been used in the generated code at least once,
1369      --  so that it must be duplicated if used again.
1370
1371      New_Lhs : Node_Id;
1372      New_Rhs : Node_Id;
1373
1374      Rhs_Val_Known : Boolean;
1375      Rhs_Val       : Uint;
1376      --  If the value of the right hand side as an integer constant is
1377      --  known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1378      --  contains the value. Otherwise Rhs_Val_Known is set False, and
1379      --  the Rhs_Val is undefined.
1380
1381      function Get_Shift return Node_Id;
1382      --  Function used to get the value of Shift, making sure that it
1383      --  gets duplicated if the function is called more than once.
1384
1385      ---------------
1386      -- Get_Shift --
1387      ---------------
1388
1389      function Get_Shift return Node_Id is
1390      begin
1391         --  If we used the shift value already, then duplicate it. We
1392         --  set a temporary parent in case actions have to be inserted.
1393
1394         if Shift_Used then
1395            Set_Parent (Shift, N);
1396            return Duplicate_Subexpr_No_Checks (Shift);
1397
1398         --  If first time, use Shift unchanged, and set flag for first use
1399
1400         else
1401            Shift_Used := True;
1402            return Shift;
1403         end if;
1404      end Get_Shift;
1405
1406   --  Start of processing for Expand_Bit_Packed_Element_Set
1407
1408   begin
1409      pragma Assert (Is_Bit_Packed_Array (Etype (Prefix (Lhs))));
1410
1411      Obj := Relocate_Node (Prefix (Lhs));
1412      Convert_To_Actual_Subtype (Obj);
1413      Atyp := Etype (Obj);
1414      PAT  := Packed_Array_Type (Atyp);
1415      Ctyp := Component_Type (Atyp);
1416      Csiz := UI_To_Int (Component_Size (Atyp));
1417
1418      --  We remove side effects, in case the rhs modifies the lhs, because we
1419      --  are about to transform the rhs into an expression that first READS
1420      --  the lhs, so we can do the necessary shifting and masking. Example:
1421      --  "X(2) := F(...);" where F modifies X(3). Otherwise, the side effect
1422      --  will be lost.
1423
1424      Remove_Side_Effects (Rhs);
1425
1426      --  We convert the right hand side to the proper subtype to ensure
1427      --  that an appropriate range check is made (since the normal range
1428      --  check from assignment will be lost in the transformations). This
1429      --  conversion is analyzed immediately so that subsequent processing
1430      --  can work with an analyzed Rhs (and e.g. look at its Etype)
1431
1432      --  If the right-hand side is a string literal, create a temporary for
1433      --  it, constant-folding is not ready to wrap the bit representation
1434      --  of a string literal.
1435
1436      if Nkind (Rhs) = N_String_Literal then
1437         declare
1438            Decl : Node_Id;
1439         begin
1440            Decl :=
1441              Make_Object_Declaration (Loc,
1442                Defining_Identifier => Make_Temporary (Loc, 'T', Rhs),
1443                Object_Definition   => New_Occurrence_Of (Ctyp, Loc),
1444                Expression          => New_Copy_Tree (Rhs));
1445
1446            Insert_Actions (N, New_List (Decl));
1447            Rhs := New_Occurrence_Of (Defining_Identifier (Decl), Loc);
1448         end;
1449      end if;
1450
1451      Rhs := Convert_To (Ctyp, Rhs);
1452      Set_Parent (Rhs, N);
1453
1454      --  If we are building the initialization procedure for a packed array,
1455      --  and Initialize_Scalars is enabled, each component assignment is an
1456      --  out-of-range value by design.  Compile this value without checks,
1457      --  because a call to the array init_proc must not raise an exception.
1458
1459      if Within_Init_Proc
1460        and then Initialize_Scalars
1461      then
1462         Analyze_And_Resolve (Rhs, Ctyp, Suppress => All_Checks);
1463      else
1464         Analyze_And_Resolve (Rhs, Ctyp);
1465      end if;
1466
1467      --  For the AAMP target, indexing of certain packed array is passed
1468      --  through to the back end without expansion, because the expansion
1469      --  results in very inefficient code on that target. This allows the
1470      --  GNAAMP back end to generate specialized macros that support more
1471      --  efficient indexing of packed arrays with components having sizes
1472      --  that are small powers of two.
1473
1474      if AAMP_On_Target
1475        and then (Csiz = 1 or else Csiz = 2 or else Csiz = 4)
1476      then
1477         return;
1478      end if;
1479
1480      --  Case of component size 1,2,4 or any component size for the modular
1481      --  case. These are the cases for which we can inline the code.
1482
1483      if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1484        or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1485      then
1486         Setup_Inline_Packed_Array_Reference (Lhs, Atyp, Obj, Cmask, Shift);
1487
1488         --  The statement to be generated is:
1489
1490         --    Obj := atyp!((Obj and Mask1) or (shift_left (rhs, Shift)))
1491
1492         --  or in the case of a freestanding Reverse_Storage_Order object,
1493
1494         --    Obj := Swap (atyp!((Swap (Obj) and Mask1)
1495         --                         or (shift_left (rhs, Shift))))
1496
1497         --      where Mask1 is obtained by shifting Cmask left Shift bits
1498         --      and then complementing the result.
1499
1500         --      the "and Mask1" is omitted if rhs is constant and all 1 bits
1501
1502         --      the "or ..." is omitted if rhs is constant and all 0 bits
1503
1504         --      rhs is converted to the appropriate type
1505
1506         --      The result is converted back to the array type, since
1507         --      otherwise we lose knowledge of the packed nature.
1508
1509         --  Determine if right side is all 0 bits or all 1 bits
1510
1511         if Compile_Time_Known_Value (Rhs) then
1512            Rhs_Val       := Expr_Rep_Value (Rhs);
1513            Rhs_Val_Known := True;
1514
1515         --  The following test catches the case of an unchecked conversion of
1516         --  an integer literal. This results from optimizing aggregates of
1517         --  packed types.
1518
1519         elsif Nkind (Rhs) = N_Unchecked_Type_Conversion
1520           and then Compile_Time_Known_Value (Expression (Rhs))
1521         then
1522            Rhs_Val       := Expr_Rep_Value (Expression (Rhs));
1523            Rhs_Val_Known := True;
1524
1525         else
1526            Rhs_Val       := No_Uint;
1527            Rhs_Val_Known := False;
1528         end if;
1529
1530         --  Some special checks for the case where the right hand value is
1531         --  known at compile time. Basically we have to take care of the
1532         --  implicit conversion to the subtype of the component object.
1533
1534         if Rhs_Val_Known then
1535
1536            --  If we have a biased component type then we must manually do the
1537            --  biasing, since we are taking responsibility in this case for
1538            --  constructing the exact bit pattern to be used.
1539
1540            if Has_Biased_Representation (Ctyp) then
1541               Rhs_Val := Rhs_Val - Expr_Rep_Value (Type_Low_Bound (Ctyp));
1542            end if;
1543
1544            --  For a negative value, we manually convert the two's complement
1545            --  value to a corresponding unsigned value, so that the proper
1546            --  field width is maintained. If we did not do this, we would
1547            --  get too many leading sign bits later on.
1548
1549            if Rhs_Val < 0 then
1550               Rhs_Val := 2 ** UI_From_Int (Csiz) + Rhs_Val;
1551            end if;
1552         end if;
1553
1554         --  Now create copies removing side effects. Note that in some complex
1555         --  cases, this may cause the fact that we have already set a packed
1556         --  array type on Obj to get lost. So we save the type of Obj, and
1557         --  make sure it is reset properly.
1558
1559         New_Lhs := Duplicate_Subexpr (Obj, Name_Req => True);
1560         New_Rhs := Duplicate_Subexpr_No_Checks (Obj);
1561
1562         --  First we deal with the "and"
1563
1564         if not Rhs_Val_Known or else Rhs_Val /= Cmask then
1565            declare
1566               Mask1 : Node_Id;
1567               Lit   : Node_Id;
1568
1569            begin
1570               if Compile_Time_Known_Value (Shift) then
1571                  Mask1 :=
1572                    Make_Integer_Literal (Loc,
1573                      Modulus (Etype (Obj)) - 1 -
1574                                 (Cmask * (2 ** Expr_Value (Get_Shift))));
1575                  Set_Print_In_Hex (Mask1);
1576
1577               else
1578                  Lit := Make_Integer_Literal (Loc, Cmask);
1579                  Set_Print_In_Hex (Lit);
1580                  Mask1 :=
1581                    Make_Op_Not (Loc,
1582                      Right_Opnd => Make_Shift_Left (Lit, Get_Shift));
1583               end if;
1584
1585               New_Rhs :=
1586                 Make_Op_And (Loc,
1587                   Left_Opnd  => New_Rhs,
1588                   Right_Opnd => Mask1);
1589            end;
1590         end if;
1591
1592         --  Then deal with the "or"
1593
1594         if not Rhs_Val_Known or else Rhs_Val /= 0 then
1595            declare
1596               Or_Rhs : Node_Id;
1597
1598               procedure Fixup_Rhs;
1599               --  Adjust Rhs by bias if biased representation for components
1600               --  or remove extraneous high order sign bits if signed.
1601
1602               procedure Fixup_Rhs is
1603                  Etyp : constant Entity_Id := Etype (Rhs);
1604
1605               begin
1606                  --  For biased case, do the required biasing by simply
1607                  --  converting to the biased subtype (the conversion
1608                  --  will generate the required bias).
1609
1610                  if Has_Biased_Representation (Ctyp) then
1611                     Rhs := Convert_To (Ctyp, Rhs);
1612
1613                  --  For a signed integer type that is not biased, generate
1614                  --  a conversion to unsigned to strip high order sign bits.
1615
1616                  elsif Is_Signed_Integer_Type (Ctyp) then
1617                     Rhs := Unchecked_Convert_To (RTE (Bits_Id (Csiz)), Rhs);
1618                  end if;
1619
1620                  --  Set Etype, since it can be referenced before the node is
1621                  --  completely analyzed.
1622
1623                  Set_Etype (Rhs, Etyp);
1624
1625                  --  We now need to do an unchecked conversion of the
1626                  --  result to the target type, but it is important that
1627                  --  this conversion be a right justified conversion and
1628                  --  not a left justified conversion.
1629
1630                  Rhs := RJ_Unchecked_Convert_To (Etype (Obj), Rhs);
1631               end Fixup_Rhs;
1632
1633            begin
1634               if Rhs_Val_Known
1635                 and then Compile_Time_Known_Value (Get_Shift)
1636               then
1637                  Or_Rhs :=
1638                    Make_Integer_Literal (Loc,
1639                      Rhs_Val * (2 ** Expr_Value (Get_Shift)));
1640                  Set_Print_In_Hex (Or_Rhs);
1641
1642               else
1643                  --  We have to convert the right hand side to Etype (Obj).
1644                  --  A special case arises if what we have now is a Val
1645                  --  attribute reference whose expression type is Etype (Obj).
1646                  --  This happens for assignments of fields from the same
1647                  --  array. In this case we get the required right hand side
1648                  --  by simply removing the inner attribute reference.
1649
1650                  if Nkind (Rhs) = N_Attribute_Reference
1651                    and then Attribute_Name (Rhs) = Name_Val
1652                    and then Etype (First (Expressions (Rhs))) = Etype (Obj)
1653                  then
1654                     Rhs := Relocate_Node (First (Expressions (Rhs)));
1655                     Fixup_Rhs;
1656
1657                  --  If the value of the right hand side is a known integer
1658                  --  value, then just replace it by an untyped constant,
1659                  --  which will be properly retyped when we analyze and
1660                  --  resolve the expression.
1661
1662                  elsif Rhs_Val_Known then
1663
1664                     --  Note that Rhs_Val has already been normalized to
1665                     --  be an unsigned value with the proper number of bits.
1666
1667                     Rhs := Make_Integer_Literal (Loc, Rhs_Val);
1668
1669                  --  Otherwise we need an unchecked conversion
1670
1671                  else
1672                     Fixup_Rhs;
1673                  end if;
1674
1675                  Or_Rhs := Make_Shift_Left (Rhs, Get_Shift);
1676               end if;
1677
1678               if Nkind (New_Rhs) = N_Op_And then
1679                  Set_Paren_Count (New_Rhs, 1);
1680                  Set_Etype (New_Rhs, Etype (Left_Opnd (New_Rhs)));
1681               end if;
1682
1683               New_Rhs :=
1684                 Make_Op_Or (Loc,
1685                   Left_Opnd  => New_Rhs,
1686                   Right_Opnd => Or_Rhs);
1687            end;
1688         end if;
1689
1690         --  Now do the rewrite
1691
1692         Rewrite (N,
1693           Make_Assignment_Statement (Loc,
1694             Name       => New_Lhs,
1695             Expression =>
1696               Unchecked_Convert_To (Etype (New_Lhs), New_Rhs)));
1697         Set_Assignment_OK (Name (N), Ass_OK);
1698
1699      --  All other component sizes for non-modular case
1700
1701      else
1702         --  We generate
1703
1704         --    Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1705
1706         --  where Subscr is the computed linear subscript
1707
1708         declare
1709            Bits_nn : constant Entity_Id := RTE (Bits_Id (Csiz));
1710            Set_nn  : Entity_Id;
1711            Subscr  : Node_Id;
1712            Atyp    : Entity_Id;
1713
1714         begin
1715            if No (Bits_nn) then
1716
1717               --  Error, most likely High_Integrity_Mode restriction
1718
1719               return;
1720            end if;
1721
1722            --  Acquire proper Set entity. We use the aligned or unaligned
1723            --  case as appropriate.
1724
1725            if Known_Aligned_Enough (Obj, Csiz) then
1726               Set_nn := RTE (Set_Id (Csiz));
1727            else
1728               Set_nn := RTE (SetU_Id (Csiz));
1729            end if;
1730
1731            --  Now generate the set reference
1732
1733            Obj := Relocate_Node (Prefix (Lhs));
1734            Convert_To_Actual_Subtype (Obj);
1735            Atyp := Etype (Obj);
1736            Compute_Linear_Subscript (Atyp, Lhs, Subscr);
1737
1738            --  Below we must make the assumption that Obj is
1739            --  at least byte aligned, since otherwise its address
1740            --  cannot be taken. The assumption holds since the
1741            --  only arrays that can be misaligned are small packed
1742            --  arrays which are implemented as a modular type, and
1743            --  that is not the case here.
1744
1745            Rewrite (N,
1746              Make_Procedure_Call_Statement (Loc,
1747                  Name => New_Occurrence_Of (Set_nn, Loc),
1748                  Parameter_Associations => New_List (
1749                    Make_Attribute_Reference (Loc,
1750                      Prefix         => Obj,
1751                      Attribute_Name => Name_Address),
1752                    Subscr,
1753                    Unchecked_Convert_To (Bits_nn,
1754                      Convert_To (Ctyp, Rhs)))));
1755
1756         end;
1757      end if;
1758
1759      Analyze (N, Suppress => All_Checks);
1760   end Expand_Bit_Packed_Element_Set;
1761
1762   -------------------------------------
1763   -- Expand_Packed_Address_Reference --
1764   -------------------------------------
1765
1766   procedure Expand_Packed_Address_Reference (N : Node_Id) is
1767      Loc    : constant Source_Ptr := Sloc (N);
1768      Base   : Node_Id;
1769      Offset : Node_Id;
1770
1771   begin
1772      --  We build an expression that has the form
1773
1774      --    outer_object'Address
1775      --      + (linear-subscript * component_size  for each array reference
1776      --      +  field'Bit_Position                 for each record field
1777      --      +  ...
1778      --      +  ...) / Storage_Unit;
1779
1780      Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1781
1782      Rewrite (N,
1783        Unchecked_Convert_To (RTE (RE_Address),
1784          Make_Op_Add (Loc,
1785            Left_Opnd =>
1786              Unchecked_Convert_To (RTE (RE_Integer_Address),
1787                Make_Attribute_Reference (Loc,
1788                  Prefix         => Base,
1789                  Attribute_Name => Name_Address)),
1790
1791            Right_Opnd =>
1792              Unchecked_Convert_To (RTE (RE_Integer_Address),
1793                Make_Op_Divide (Loc,
1794                  Left_Opnd => Offset,
1795                  Right_Opnd =>
1796                    Make_Integer_Literal (Loc, System_Storage_Unit))))));
1797
1798      Analyze_And_Resolve (N, RTE (RE_Address));
1799   end Expand_Packed_Address_Reference;
1800
1801   ---------------------------------
1802   -- Expand_Packed_Bit_Reference --
1803   ---------------------------------
1804
1805   procedure Expand_Packed_Bit_Reference (N : Node_Id) is
1806      Loc    : constant Source_Ptr := Sloc (N);
1807      Base   : Node_Id;
1808      Offset : Node_Id;
1809
1810   begin
1811      --  We build an expression that has the form
1812
1813      --    (linear-subscript * component_size      for each array reference
1814      --      +  field'Bit_Position                 for each record field
1815      --      +  ...
1816      --      +  ...) mod Storage_Unit;
1817
1818      Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1819
1820      Rewrite (N,
1821        Unchecked_Convert_To (Universal_Integer,
1822          Make_Op_Mod (Loc,
1823            Left_Opnd => Offset,
1824            Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
1825
1826      Analyze_And_Resolve (N, Universal_Integer);
1827   end Expand_Packed_Bit_Reference;
1828
1829   ------------------------------------
1830   -- Expand_Packed_Boolean_Operator --
1831   ------------------------------------
1832
1833   --  This routine expands "a op b" for the packed cases
1834
1835   procedure Expand_Packed_Boolean_Operator (N : Node_Id) is
1836      Loc : constant Source_Ptr := Sloc (N);
1837      Typ : constant Entity_Id  := Etype (N);
1838      L   : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
1839      R   : constant Node_Id    := Relocate_Node (Right_Opnd (N));
1840
1841      Ltyp : Entity_Id;
1842      Rtyp : Entity_Id;
1843      PAT  : Entity_Id;
1844
1845   begin
1846      Convert_To_Actual_Subtype (L);
1847      Convert_To_Actual_Subtype (R);
1848
1849      Ensure_Defined (Etype (L), N);
1850      Ensure_Defined (Etype (R), N);
1851
1852      Apply_Length_Check (R, Etype (L));
1853
1854      Ltyp := Etype (L);
1855      Rtyp := Etype (R);
1856
1857      --  Deal with silly case of XOR where the subcomponent has a range
1858      --  True .. True where an exception must be raised.
1859
1860      if Nkind (N) = N_Op_Xor then
1861         Silly_Boolean_Array_Xor_Test (N, Rtyp);
1862      end if;
1863
1864      --  Now that that silliness is taken care of, get packed array type
1865
1866      Convert_To_PAT_Type (L);
1867      Convert_To_PAT_Type (R);
1868
1869      PAT := Etype (L);
1870
1871      --  For the modular case, we expand a op b into
1872
1873      --    rtyp!(pat!(a) op pat!(b))
1874
1875      --  where rtyp is the Etype of the left operand. Note that we do not
1876      --  convert to the base type, since this would be unconstrained, and
1877      --  hence not have a corresponding packed array type set.
1878
1879      --  Note that both operands must be modular for this code to be used
1880
1881      if Is_Modular_Integer_Type (PAT)
1882           and then
1883         Is_Modular_Integer_Type (Etype (R))
1884      then
1885         declare
1886            P : Node_Id;
1887
1888         begin
1889            if Nkind (N) = N_Op_And then
1890               P := Make_Op_And (Loc, L, R);
1891
1892            elsif Nkind (N) = N_Op_Or then
1893               P := Make_Op_Or  (Loc, L, R);
1894
1895            else -- Nkind (N) = N_Op_Xor
1896               P := Make_Op_Xor (Loc, L, R);
1897            end if;
1898
1899            Rewrite (N, Unchecked_Convert_To (Ltyp, P));
1900         end;
1901
1902      --  For the array case, we insert the actions
1903
1904      --    Result : Ltype;
1905
1906      --    System.Bit_Ops.Bit_And/Or/Xor
1907      --     (Left'Address,
1908      --      Ltype'Length * Ltype'Component_Size;
1909      --      Right'Address,
1910      --      Rtype'Length * Rtype'Component_Size
1911      --      Result'Address);
1912
1913      --  where Left and Right are the Packed_Bytes{1,2,4} operands and
1914      --  the second argument and fourth arguments are the lengths of the
1915      --  operands in bits. Then we replace the expression by a reference
1916      --  to Result.
1917
1918      --  Note that if we are mixing a modular and array operand, everything
1919      --  works fine, since we ensure that the modular representation has the
1920      --  same physical layout as the array representation (that's what the
1921      --  left justified modular stuff in the big-endian case is about).
1922
1923      else
1924         declare
1925            Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
1926            E_Id       : RE_Id;
1927
1928         begin
1929            if Nkind (N) = N_Op_And then
1930               E_Id := RE_Bit_And;
1931
1932            elsif Nkind (N) = N_Op_Or then
1933               E_Id := RE_Bit_Or;
1934
1935            else -- Nkind (N) = N_Op_Xor
1936               E_Id := RE_Bit_Xor;
1937            end if;
1938
1939            Insert_Actions (N, New_List (
1940
1941              Make_Object_Declaration (Loc,
1942                Defining_Identifier => Result_Ent,
1943                Object_Definition => New_Occurrence_Of (Ltyp, Loc)),
1944
1945              Make_Procedure_Call_Statement (Loc,
1946                Name => New_Occurrence_Of (RTE (E_Id), Loc),
1947                  Parameter_Associations => New_List (
1948
1949                    Make_Byte_Aligned_Attribute_Reference (Loc,
1950                      Prefix         => L,
1951                      Attribute_Name => Name_Address),
1952
1953                    Make_Op_Multiply (Loc,
1954                      Left_Opnd =>
1955                        Make_Attribute_Reference (Loc,
1956                          Prefix         =>
1957                            New_Occurrence_Of
1958                              (Etype (First_Index (Ltyp)), Loc),
1959                          Attribute_Name => Name_Range_Length),
1960
1961                      Right_Opnd =>
1962                        Make_Integer_Literal (Loc, Component_Size (Ltyp))),
1963
1964                    Make_Byte_Aligned_Attribute_Reference (Loc,
1965                      Prefix         => R,
1966                      Attribute_Name => Name_Address),
1967
1968                    Make_Op_Multiply (Loc,
1969                      Left_Opnd =>
1970                        Make_Attribute_Reference (Loc,
1971                          Prefix         =>
1972                            New_Occurrence_Of
1973                              (Etype (First_Index (Rtyp)), Loc),
1974                          Attribute_Name => Name_Range_Length),
1975
1976                      Right_Opnd =>
1977                        Make_Integer_Literal (Loc, Component_Size (Rtyp))),
1978
1979                    Make_Byte_Aligned_Attribute_Reference (Loc,
1980                      Prefix => New_Occurrence_Of (Result_Ent, Loc),
1981                      Attribute_Name => Name_Address)))));
1982
1983            Rewrite (N,
1984              New_Occurrence_Of (Result_Ent, Loc));
1985         end;
1986      end if;
1987
1988      Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
1989   end Expand_Packed_Boolean_Operator;
1990
1991   -------------------------------------
1992   -- Expand_Packed_Element_Reference --
1993   -------------------------------------
1994
1995   procedure Expand_Packed_Element_Reference (N : Node_Id) is
1996      Loc   : constant Source_Ptr := Sloc (N);
1997      Obj   : Node_Id;
1998      Atyp  : Entity_Id;
1999      PAT   : Entity_Id;
2000      Ctyp  : Entity_Id;
2001      Csiz  : Int;
2002      Shift : Node_Id;
2003      Cmask : Uint;
2004      Lit   : Node_Id;
2005      Arg   : Node_Id;
2006
2007   begin
2008      --  If the node is an actual in a call, the prefix has not been fully
2009      --  expanded, to account for the additional expansion for in-out actuals
2010      --  (see expand_actuals for details). If the prefix itself is a packed
2011      --  reference as well, we have to recurse to complete the transformation
2012      --  of the prefix.
2013
2014      if Nkind (Prefix (N)) = N_Indexed_Component
2015        and then not Analyzed (Prefix (N))
2016        and then Is_Bit_Packed_Array (Etype (Prefix (Prefix (N))))
2017      then
2018         Expand_Packed_Element_Reference (Prefix (N));
2019      end if;
2020
2021      --  If not bit packed, we have the enumeration case, which is easily
2022      --  dealt with (just adjust the subscripts of the indexed component)
2023
2024      --  Note: this leaves the result as an indexed component, which is
2025      --  still a variable, so can be used in the assignment case, as is
2026      --  required in the enumeration case.
2027
2028      if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
2029         Setup_Enumeration_Packed_Array_Reference (N);
2030         return;
2031      end if;
2032
2033      --  Remaining processing is for the bit-packed case
2034
2035      Obj := Relocate_Node (Prefix (N));
2036      Convert_To_Actual_Subtype (Obj);
2037      Atyp := Etype (Obj);
2038      PAT  := Packed_Array_Type (Atyp);
2039      Ctyp := Component_Type (Atyp);
2040      Csiz := UI_To_Int (Component_Size (Atyp));
2041
2042      --  For the AAMP target, indexing of certain packed array is passed
2043      --  through to the back end without expansion, because the expansion
2044      --  results in very inefficient code on that target. This allows the
2045      --  GNAAMP back end to generate specialized macros that support more
2046      --  efficient indexing of packed arrays with components having sizes
2047      --  that are small powers of two.
2048
2049      if AAMP_On_Target
2050        and then (Csiz = 1 or else Csiz = 2 or else Csiz = 4)
2051      then
2052         return;
2053      end if;
2054
2055      --  Case of component size 1,2,4 or any component size for the modular
2056      --  case. These are the cases for which we can inline the code.
2057
2058      if Csiz = 1 or else Csiz = 2 or else Csiz = 4
2059        or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
2060      then
2061         Setup_Inline_Packed_Array_Reference (N, Atyp, Obj, Cmask, Shift);
2062         Lit := Make_Integer_Literal (Loc, Cmask);
2063         Set_Print_In_Hex (Lit);
2064
2065         --  We generate a shift right to position the field, followed by a
2066         --  masking operation to extract the bit field, and we finally do an
2067         --  unchecked conversion to convert the result to the required target.
2068
2069         --  Note that the unchecked conversion automatically deals with the
2070         --  bias if we are dealing with a biased representation. What will
2071         --  happen is that we temporarily generate the biased representation,
2072         --  but almost immediately that will be converted to the original
2073         --  unbiased component type, and the bias will disappear.
2074
2075         Arg :=
2076           Make_Op_And (Loc,
2077             Left_Opnd  => Make_Shift_Right (Obj, Shift),
2078             Right_Opnd => Lit);
2079         Set_Etype (Arg, Ctyp);
2080
2081         --  Component extraction is performed on a native endianness scalar
2082         --  value: if Atyp has reverse storage order, then it has been byte
2083         --  swapped, and if the component being extracted is itself of a
2084         --  composite type with reverse storage order, then we need to swap
2085         --  it back to its expected endianness after extraction.
2086
2087         if Reverse_Storage_Order (Atyp)
2088           and then Esize (Atyp) > 8
2089           and then (Is_Record_Type (Ctyp) or else Is_Array_Type (Ctyp))
2090           and then Reverse_Storage_Order (Ctyp)
2091         then
2092            Arg :=
2093              Byte_Swap
2094                (Arg,
2095                 Left_Justify  => not Bytes_Big_Endian,
2096                 Right_Justify => False);
2097         end if;
2098
2099         --  We needed to analyze this before we do the unchecked convert
2100         --  below, but we need it temporarily attached to the tree for
2101         --  this analysis (hence the temporary Set_Parent call).
2102
2103         Set_Parent (Arg, Parent (N));
2104         Analyze_And_Resolve (Arg);
2105
2106         Rewrite (N, RJ_Unchecked_Convert_To (Ctyp, Arg));
2107
2108      --  All other component sizes for non-modular case
2109
2110      else
2111         --  We generate
2112
2113         --    Component_Type!(Get_nn (Arr'address, Subscr))
2114
2115         --  where Subscr is the computed linear subscript
2116
2117         declare
2118            Get_nn : Entity_Id;
2119            Subscr : Node_Id;
2120
2121         begin
2122            --  Acquire proper Get entity. We use the aligned or unaligned
2123            --  case as appropriate.
2124
2125            if Known_Aligned_Enough (Obj, Csiz) then
2126               Get_nn := RTE (Get_Id (Csiz));
2127            else
2128               Get_nn := RTE (GetU_Id (Csiz));
2129            end if;
2130
2131            --  Now generate the get reference
2132
2133            Compute_Linear_Subscript (Atyp, N, Subscr);
2134
2135            --  Below we make the assumption that Obj is at least byte
2136            --  aligned, since otherwise its address cannot be taken.
2137            --  The assumption holds since the only arrays that can be
2138            --  misaligned are small packed arrays which are implemented
2139            --  as a modular type, and that is not the case here.
2140
2141            Rewrite (N,
2142              Unchecked_Convert_To (Ctyp,
2143                Make_Function_Call (Loc,
2144                  Name => New_Occurrence_Of (Get_nn, Loc),
2145                  Parameter_Associations => New_List (
2146                    Make_Attribute_Reference (Loc,
2147                      Prefix         => Obj,
2148                      Attribute_Name => Name_Address),
2149                    Subscr))));
2150         end;
2151      end if;
2152
2153      Analyze_And_Resolve (N, Ctyp, Suppress => All_Checks);
2154
2155   end Expand_Packed_Element_Reference;
2156
2157   ----------------------
2158   -- Expand_Packed_Eq --
2159   ----------------------
2160
2161   --  Handles expansion of "=" on packed array types
2162
2163   procedure Expand_Packed_Eq (N : Node_Id) is
2164      Loc : constant Source_Ptr := Sloc (N);
2165      L   : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
2166      R   : constant Node_Id    := Relocate_Node (Right_Opnd (N));
2167
2168      LLexpr : Node_Id;
2169      RLexpr : Node_Id;
2170
2171      Ltyp : Entity_Id;
2172      Rtyp : Entity_Id;
2173      PAT  : Entity_Id;
2174
2175   begin
2176      Convert_To_Actual_Subtype (L);
2177      Convert_To_Actual_Subtype (R);
2178      Ltyp := Underlying_Type (Etype (L));
2179      Rtyp := Underlying_Type (Etype (R));
2180
2181      Convert_To_PAT_Type (L);
2182      Convert_To_PAT_Type (R);
2183      PAT := Etype (L);
2184
2185      LLexpr :=
2186        Make_Op_Multiply (Loc,
2187          Left_Opnd =>
2188            Make_Attribute_Reference (Loc,
2189              Prefix         => New_Occurrence_Of (Ltyp, Loc),
2190              Attribute_Name => Name_Length),
2191          Right_Opnd =>
2192            Make_Integer_Literal (Loc, Component_Size (Ltyp)));
2193
2194      RLexpr :=
2195        Make_Op_Multiply (Loc,
2196          Left_Opnd =>
2197            Make_Attribute_Reference (Loc,
2198              Prefix         => New_Occurrence_Of (Rtyp, Loc),
2199              Attribute_Name => Name_Length),
2200          Right_Opnd =>
2201            Make_Integer_Literal (Loc, Component_Size (Rtyp)));
2202
2203      --  For the modular case, we transform the comparison to:
2204
2205      --    Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
2206
2207      --  where PAT is the packed array type. This works fine, since in the
2208      --  modular case we guarantee that the unused bits are always zeroes.
2209      --  We do have to compare the lengths because we could be comparing
2210      --  two different subtypes of the same base type.
2211
2212      if Is_Modular_Integer_Type (PAT) then
2213         Rewrite (N,
2214           Make_And_Then (Loc,
2215             Left_Opnd =>
2216               Make_Op_Eq (Loc,
2217                 Left_Opnd  => LLexpr,
2218                 Right_Opnd => RLexpr),
2219
2220             Right_Opnd =>
2221               Make_Op_Eq (Loc,
2222                 Left_Opnd => L,
2223                 Right_Opnd => R)));
2224
2225      --  For the non-modular case, we call a runtime routine
2226
2227      --    System.Bit_Ops.Bit_Eq
2228      --      (L'Address, L_Length, R'Address, R_Length)
2229
2230      --  where PAT is the packed array type, and the lengths are the lengths
2231      --  in bits of the original packed arrays. This routine takes care of
2232      --  not comparing the unused bits in the last byte.
2233
2234      else
2235         Rewrite (N,
2236           Make_Function_Call (Loc,
2237             Name => New_Occurrence_Of (RTE (RE_Bit_Eq), Loc),
2238             Parameter_Associations => New_List (
2239               Make_Byte_Aligned_Attribute_Reference (Loc,
2240                 Prefix         => L,
2241                 Attribute_Name => Name_Address),
2242
2243               LLexpr,
2244
2245               Make_Byte_Aligned_Attribute_Reference (Loc,
2246                 Prefix         => R,
2247                 Attribute_Name => Name_Address),
2248
2249               RLexpr)));
2250      end if;
2251
2252      Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
2253   end Expand_Packed_Eq;
2254
2255   -----------------------
2256   -- Expand_Packed_Not --
2257   -----------------------
2258
2259   --  Handles expansion of "not" on packed array types
2260
2261   procedure Expand_Packed_Not (N : Node_Id) is
2262      Loc  : constant Source_Ptr := Sloc (N);
2263      Typ  : constant Entity_Id  := Etype (N);
2264      Opnd : constant Node_Id    := Relocate_Node (Right_Opnd (N));
2265
2266      Rtyp : Entity_Id;
2267      PAT  : Entity_Id;
2268      Lit  : Node_Id;
2269
2270   begin
2271      Convert_To_Actual_Subtype (Opnd);
2272      Rtyp := Etype (Opnd);
2273
2274      --  Deal with silly False..False and True..True subtype case
2275
2276      Silly_Boolean_Array_Not_Test (N, Rtyp);
2277
2278      --  Now that the silliness is taken care of, get packed array type
2279
2280      Convert_To_PAT_Type (Opnd);
2281      PAT := Etype (Opnd);
2282
2283      --  For the case where the packed array type is a modular type, "not A"
2284      --  expands simply into:
2285
2286      --     Rtyp!(PAT!(A) xor Mask)
2287
2288      --  where PAT is the packed array type, Mask is a mask of all 1 bits of
2289      --  length equal to the size of this packed type, and Rtyp is the actual
2290      --  actual subtype of the operand.
2291
2292      Lit := Make_Integer_Literal (Loc, 2 ** RM_Size (PAT) - 1);
2293      Set_Print_In_Hex (Lit);
2294
2295      if not Is_Array_Type (PAT) then
2296         Rewrite (N,
2297           Unchecked_Convert_To (Rtyp,
2298             Make_Op_Xor (Loc,
2299               Left_Opnd  => Opnd,
2300               Right_Opnd => Lit)));
2301
2302      --  For the array case, we insert the actions
2303
2304      --    Result : Typ;
2305
2306      --    System.Bit_Ops.Bit_Not
2307      --     (Opnd'Address,
2308      --      Typ'Length * Typ'Component_Size,
2309      --      Result'Address);
2310
2311      --  where Opnd is the Packed_Bytes{1,2,4} operand and the second argument
2312      --  is the length of the operand in bits. We then replace the expression
2313      --  with a reference to Result.
2314
2315      else
2316         declare
2317            Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
2318
2319         begin
2320            Insert_Actions (N, New_List (
2321              Make_Object_Declaration (Loc,
2322                Defining_Identifier => Result_Ent,
2323                Object_Definition   => New_Occurrence_Of (Rtyp, Loc)),
2324
2325              Make_Procedure_Call_Statement (Loc,
2326                Name => New_Occurrence_Of (RTE (RE_Bit_Not), Loc),
2327                  Parameter_Associations => New_List (
2328                    Make_Byte_Aligned_Attribute_Reference (Loc,
2329                      Prefix         => Opnd,
2330                      Attribute_Name => Name_Address),
2331
2332                    Make_Op_Multiply (Loc,
2333                      Left_Opnd =>
2334                        Make_Attribute_Reference (Loc,
2335                          Prefix         =>
2336                            New_Occurrence_Of
2337                              (Etype (First_Index (Rtyp)), Loc),
2338                          Attribute_Name => Name_Range_Length),
2339
2340                      Right_Opnd =>
2341                        Make_Integer_Literal (Loc, Component_Size (Rtyp))),
2342
2343                    Make_Byte_Aligned_Attribute_Reference (Loc,
2344                      Prefix         => New_Occurrence_Of (Result_Ent, Loc),
2345                      Attribute_Name => Name_Address)))));
2346
2347            Rewrite (N, New_Occurrence_Of (Result_Ent, Loc));
2348         end;
2349      end if;
2350
2351      Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
2352   end Expand_Packed_Not;
2353
2354   -----------------------------
2355   -- Get_Base_And_Bit_Offset --
2356   -----------------------------
2357
2358   procedure Get_Base_And_Bit_Offset
2359     (N      : Node_Id;
2360      Base   : out Node_Id;
2361      Offset : out Node_Id)
2362   is
2363      Loc    : Source_Ptr;
2364      Term   : Node_Id;
2365      Atyp   : Entity_Id;
2366      Subscr : Node_Id;
2367
2368   begin
2369      Base   := N;
2370      Offset := Empty;
2371
2372      --  We build up an expression serially that has the form
2373
2374      --    linear-subscript * component_size       for each array reference
2375      --      +  field'Bit_Position                 for each record field
2376      --      +  ...
2377
2378      loop
2379         Loc := Sloc (Base);
2380
2381         if Nkind (Base) = N_Indexed_Component then
2382            Convert_To_Actual_Subtype (Prefix (Base));
2383            Atyp := Etype (Prefix (Base));
2384            Compute_Linear_Subscript (Atyp, Base, Subscr);
2385
2386            Term :=
2387              Make_Op_Multiply (Loc,
2388                Left_Opnd => Subscr,
2389                Right_Opnd =>
2390                 Make_Attribute_Reference (Loc,
2391                   Prefix         => New_Occurrence_Of (Atyp, Loc),
2392                   Attribute_Name => Name_Component_Size));
2393
2394         elsif Nkind (Base) = N_Selected_Component then
2395            Term :=
2396              Make_Attribute_Reference (Loc,
2397                Prefix         => Selector_Name (Base),
2398                Attribute_Name => Name_Bit_Position);
2399
2400         else
2401            return;
2402         end if;
2403
2404         if No (Offset) then
2405            Offset := Term;
2406
2407         else
2408            Offset :=
2409              Make_Op_Add (Loc,
2410                Left_Opnd  => Offset,
2411                Right_Opnd => Term);
2412         end if;
2413
2414         Base := Prefix (Base);
2415      end loop;
2416   end Get_Base_And_Bit_Offset;
2417
2418   -------------------------------------
2419   -- Involves_Packed_Array_Reference --
2420   -------------------------------------
2421
2422   function Involves_Packed_Array_Reference (N : Node_Id) return Boolean is
2423   begin
2424      if Nkind (N) = N_Indexed_Component
2425        and then Is_Bit_Packed_Array (Etype (Prefix (N)))
2426      then
2427         return True;
2428
2429      elsif Nkind (N) = N_Selected_Component then
2430         return Involves_Packed_Array_Reference (Prefix (N));
2431
2432      else
2433         return False;
2434      end if;
2435   end Involves_Packed_Array_Reference;
2436
2437   --------------------------
2438   -- Known_Aligned_Enough --
2439   --------------------------
2440
2441   function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean is
2442      Typ : constant Entity_Id := Etype (Obj);
2443
2444      function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean;
2445      --  If the component is in a record that contains previous packed
2446      --  components, consider it unaligned because the back-end might
2447      --  choose to pack the rest of the record. Lead to less efficient code,
2448      --  but safer vis-a-vis of back-end choices.
2449
2450      --------------------------------
2451      -- In_Partially_Packed_Record --
2452      --------------------------------
2453
2454      function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean is
2455         Rec_Type  : constant Entity_Id := Scope (Comp);
2456         Prev_Comp : Entity_Id;
2457
2458      begin
2459         Prev_Comp := First_Entity (Rec_Type);
2460         while Present (Prev_Comp) loop
2461            if Is_Packed (Etype (Prev_Comp)) then
2462               return True;
2463
2464            elsif Prev_Comp = Comp then
2465               return False;
2466            end if;
2467
2468            Next_Entity (Prev_Comp);
2469         end loop;
2470
2471         return False;
2472      end  In_Partially_Packed_Record;
2473
2474   --  Start of processing for Known_Aligned_Enough
2475
2476   begin
2477      --  Odd bit sizes don't need alignment anyway
2478
2479      if Csiz mod 2 = 1 then
2480         return True;
2481
2482      --  If we have a specified alignment, see if it is sufficient, if not
2483      --  then we can't possibly be aligned enough in any case.
2484
2485      elsif Known_Alignment (Etype (Obj)) then
2486         --  Alignment required is 4 if size is a multiple of 4, and
2487         --  2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2488
2489         if Alignment (Etype (Obj)) < 4 - (Csiz mod 4) then
2490            return False;
2491         end if;
2492      end if;
2493
2494      --  OK, alignment should be sufficient, if object is aligned
2495
2496      --  If object is strictly aligned, then it is definitely aligned
2497
2498      if Strict_Alignment (Typ) then
2499         return True;
2500
2501      --  Case of subscripted array reference
2502
2503      elsif Nkind (Obj) = N_Indexed_Component then
2504
2505         --  If we have a pointer to an array, then this is definitely
2506         --  aligned, because pointers always point to aligned versions.
2507
2508         if Is_Access_Type (Etype (Prefix (Obj))) then
2509            return True;
2510
2511         --  Otherwise, go look at the prefix
2512
2513         else
2514            return Known_Aligned_Enough (Prefix (Obj), Csiz);
2515         end if;
2516
2517      --  Case of record field
2518
2519      elsif Nkind (Obj) = N_Selected_Component then
2520
2521         --  What is significant here is whether the record type is packed
2522
2523         if Is_Record_Type (Etype (Prefix (Obj)))
2524           and then Is_Packed (Etype (Prefix (Obj)))
2525         then
2526            return False;
2527
2528         --  Or the component has a component clause which might cause
2529         --  the component to become unaligned (we can't tell if the
2530         --  backend is doing alignment computations).
2531
2532         elsif Present (Component_Clause (Entity (Selector_Name (Obj)))) then
2533            return False;
2534
2535         elsif In_Partially_Packed_Record (Entity (Selector_Name (Obj))) then
2536            return False;
2537
2538         --  In all other cases, go look at prefix
2539
2540         else
2541            return Known_Aligned_Enough (Prefix (Obj), Csiz);
2542         end if;
2543
2544      elsif Nkind (Obj) = N_Type_Conversion then
2545         return Known_Aligned_Enough (Expression (Obj), Csiz);
2546
2547      --  For a formal parameter, it is safer to assume that it is not
2548      --  aligned, because the formal may be unconstrained while the actual
2549      --  is constrained. In this situation, a small constrained packed
2550      --  array, represented in modular form, may be unaligned.
2551
2552      elsif Is_Entity_Name (Obj) then
2553         return not Is_Formal (Entity (Obj));
2554      else
2555
2556      --  If none of the above, must be aligned
2557         return True;
2558      end if;
2559   end Known_Aligned_Enough;
2560
2561   ---------------------
2562   -- Make_Shift_Left --
2563   ---------------------
2564
2565   function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id is
2566      Nod : Node_Id;
2567
2568   begin
2569      if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2570         return N;
2571      else
2572         Nod :=
2573           Make_Op_Shift_Left (Sloc (N),
2574             Left_Opnd  => N,
2575             Right_Opnd => S);
2576         Set_Shift_Count_OK (Nod, True);
2577         return Nod;
2578      end if;
2579   end Make_Shift_Left;
2580
2581   ----------------------
2582   -- Make_Shift_Right --
2583   ----------------------
2584
2585   function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id is
2586      Nod : Node_Id;
2587
2588   begin
2589      if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2590         return N;
2591      else
2592         Nod :=
2593           Make_Op_Shift_Right (Sloc (N),
2594             Left_Opnd  => N,
2595             Right_Opnd => S);
2596         Set_Shift_Count_OK (Nod, True);
2597         return Nod;
2598      end if;
2599   end Make_Shift_Right;
2600
2601   -----------------------------
2602   -- RJ_Unchecked_Convert_To --
2603   -----------------------------
2604
2605   function RJ_Unchecked_Convert_To
2606     (Typ  : Entity_Id;
2607      Expr : Node_Id) return Node_Id
2608   is
2609      Source_Typ : constant Entity_Id := Etype (Expr);
2610      Target_Typ : constant Entity_Id := Typ;
2611
2612      Src : Node_Id := Expr;
2613
2614      Source_Siz : Nat;
2615      Target_Siz : Nat;
2616
2617   begin
2618      Source_Siz := UI_To_Int (RM_Size (Source_Typ));
2619      Target_Siz := UI_To_Int (RM_Size (Target_Typ));
2620
2621      --  For a little-endian target type stored byte-swapped on a
2622      --  big-endian machine, do not mask to Target_Siz bits.
2623
2624      if Bytes_Big_Endian
2625           and then (Is_Record_Type (Target_Typ)
2626                       or else
2627                     Is_Array_Type (Target_Typ))
2628           and then Reverse_Storage_Order (Target_Typ)
2629      then
2630         Source_Siz := Target_Siz;
2631      end if;
2632
2633      --  First step, if the source type is not a discrete type, then we first
2634      --  convert to a modular type of the source length, since otherwise, on
2635      --  a big-endian machine, we get left-justification. We do it for little-
2636      --  endian machines as well, because there might be junk bits that are
2637      --  not cleared if the type is not numeric.
2638
2639      if Source_Siz /= Target_Siz
2640        and then not Is_Discrete_Type (Source_Typ)
2641      then
2642         Src := Unchecked_Convert_To (RTE (Bits_Id (Source_Siz)), Src);
2643      end if;
2644
2645      --  In the big endian case, if the lengths of the two types differ, then
2646      --  we must worry about possible left justification in the conversion,
2647      --  and avoiding that is what this is all about.
2648
2649      if Bytes_Big_Endian and then Source_Siz /= Target_Siz then
2650
2651         --  Next step. If the target is not a discrete type, then we first
2652         --  convert to a modular type of the target length, since otherwise,
2653         --  on a big-endian machine, we get left-justification.
2654
2655         if not Is_Discrete_Type (Target_Typ) then
2656            Src := Unchecked_Convert_To (RTE (Bits_Id (Target_Siz)), Src);
2657         end if;
2658      end if;
2659
2660      --  And now we can do the final conversion to the target type
2661
2662      return Unchecked_Convert_To (Target_Typ, Src);
2663   end RJ_Unchecked_Convert_To;
2664
2665   ----------------------------------------------
2666   -- Setup_Enumeration_Packed_Array_Reference --
2667   ----------------------------------------------
2668
2669   --  All we have to do here is to find the subscripts that correspond to the
2670   --  index positions that have non-standard enumeration types and insert a
2671   --  Pos attribute to get the proper subscript value.
2672
2673   --  Finally the prefix must be uncheck-converted to the corresponding packed
2674   --  array type.
2675
2676   --  Note that the component type is unchanged, so we do not need to fiddle
2677   --  with the types (Gigi always automatically takes the packed array type if
2678   --  it is set, as it will be in this case).
2679
2680   procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id) is
2681      Pfx   : constant Node_Id   := Prefix (N);
2682      Typ   : constant Entity_Id := Etype (N);
2683      Exprs : constant List_Id   := Expressions (N);
2684      Expr  : Node_Id;
2685
2686   begin
2687      --  If the array is unconstrained, then we replace the array reference
2688      --  with its actual subtype. This actual subtype will have a packed array
2689      --  type with appropriate bounds.
2690
2691      if not Is_Constrained (Packed_Array_Type (Etype (Pfx))) then
2692         Convert_To_Actual_Subtype (Pfx);
2693      end if;
2694
2695      Expr := First (Exprs);
2696      while Present (Expr) loop
2697         declare
2698            Loc      : constant Source_Ptr := Sloc (Expr);
2699            Expr_Typ : constant Entity_Id := Etype (Expr);
2700
2701         begin
2702            if Is_Enumeration_Type (Expr_Typ)
2703              and then Has_Non_Standard_Rep (Expr_Typ)
2704            then
2705               Rewrite (Expr,
2706                 Make_Attribute_Reference (Loc,
2707                   Prefix         => New_Occurrence_Of (Expr_Typ, Loc),
2708                   Attribute_Name => Name_Pos,
2709                   Expressions    => New_List (Relocate_Node (Expr))));
2710               Analyze_And_Resolve (Expr, Standard_Natural);
2711            end if;
2712         end;
2713
2714         Next (Expr);
2715      end loop;
2716
2717      Rewrite (N,
2718        Make_Indexed_Component (Sloc (N),
2719          Prefix      =>
2720            Unchecked_Convert_To (Packed_Array_Type (Etype (Pfx)), Pfx),
2721          Expressions => Exprs));
2722
2723      Analyze_And_Resolve (N, Typ);
2724   end Setup_Enumeration_Packed_Array_Reference;
2725
2726   -----------------------------------------
2727   -- Setup_Inline_Packed_Array_Reference --
2728   -----------------------------------------
2729
2730   procedure Setup_Inline_Packed_Array_Reference
2731     (N      : Node_Id;
2732      Atyp   : Entity_Id;
2733      Obj    : in out Node_Id;
2734      Cmask  : out Uint;
2735      Shift  : out Node_Id)
2736   is
2737      Loc  : constant Source_Ptr := Sloc (N);
2738      PAT  : Entity_Id;
2739      Otyp : Entity_Id;
2740      Csiz : Uint;
2741      Osiz : Uint;
2742
2743   begin
2744      Csiz := Component_Size (Atyp);
2745
2746      Convert_To_PAT_Type (Obj);
2747      PAT := Etype (Obj);
2748
2749      Cmask := 2 ** Csiz - 1;
2750
2751      if Is_Array_Type (PAT) then
2752         Otyp := Component_Type (PAT);
2753         Osiz := Component_Size (PAT);
2754
2755      else
2756         Otyp := PAT;
2757
2758         --  In the case where the PAT is a modular type, we want the actual
2759         --  size in bits of the modular value we use. This is neither the
2760         --  Object_Size nor the Value_Size, either of which may have been
2761         --  reset to strange values, but rather the minimum size. Note that
2762         --  since this is a modular type with full range, the issue of
2763         --  biased representation does not arise.
2764
2765         Osiz := UI_From_Int (Minimum_Size (Otyp));
2766      end if;
2767
2768      Compute_Linear_Subscript (Atyp, N, Shift);
2769
2770      --  If the component size is not 1, then the subscript must be multiplied
2771      --  by the component size to get the shift count.
2772
2773      if Csiz /= 1 then
2774         Shift :=
2775           Make_Op_Multiply (Loc,
2776             Left_Opnd  => Make_Integer_Literal (Loc, Csiz),
2777             Right_Opnd => Shift);
2778      end if;
2779
2780      --  If we have the array case, then this shift count must be broken down
2781      --  into a byte subscript, and a shift within the byte.
2782
2783      if Is_Array_Type (PAT) then
2784
2785         declare
2786            New_Shift : Node_Id;
2787
2788         begin
2789            --  We must analyze shift, since we will duplicate it
2790
2791            Set_Parent (Shift, N);
2792            Analyze_And_Resolve
2793              (Shift, Standard_Integer, Suppress => All_Checks);
2794
2795            --  The shift count within the word is
2796            --    shift mod Osiz
2797
2798            New_Shift :=
2799              Make_Op_Mod (Loc,
2800                Left_Opnd  => Duplicate_Subexpr (Shift),
2801                Right_Opnd => Make_Integer_Literal (Loc, Osiz));
2802
2803            --  The subscript to be used on the PAT array is
2804            --    shift / Osiz
2805
2806            Obj :=
2807              Make_Indexed_Component (Loc,
2808                Prefix => Obj,
2809                Expressions => New_List (
2810                  Make_Op_Divide (Loc,
2811                    Left_Opnd  => Duplicate_Subexpr (Shift),
2812                    Right_Opnd => Make_Integer_Literal (Loc, Osiz))));
2813
2814            Shift := New_Shift;
2815         end;
2816
2817      --  For the modular integer case, the object to be manipulated is the
2818      --  entire array, so Obj is unchanged. Note that we will reset its type
2819      --  to PAT before returning to the caller.
2820
2821      else
2822         null;
2823      end if;
2824
2825      --  The one remaining step is to modify the shift count for the
2826      --  big-endian case. Consider the following example in a byte:
2827
2828      --     xxxxxxxx  bits of byte
2829      --     vvvvvvvv  bits of value
2830      --     33221100  little-endian numbering
2831      --     00112233  big-endian numbering
2832
2833      --  Here we have the case of 2-bit fields
2834
2835      --  For the little-endian case, we already have the proper shift count
2836      --  set, e.g. for element 2, the shift count is 2*2 = 4.
2837
2838      --  For the big endian case, we have to adjust the shift count, computing
2839      --  it as (N - F) - Shift, where N is the number of bits in an element of
2840      --  the array used to implement the packed array, F is the number of bits
2841      --  in a source array element, and Shift is the count so far computed.
2842
2843      --  We also have to adjust if the storage order is reversed
2844
2845      if Bytes_Big_Endian xor Reverse_Storage_Order (Base_Type (Atyp)) then
2846         Shift :=
2847           Make_Op_Subtract (Loc,
2848             Left_Opnd  => Make_Integer_Literal (Loc, Osiz - Csiz),
2849             Right_Opnd => Shift);
2850      end if;
2851
2852      Set_Parent (Shift, N);
2853      Set_Parent (Obj, N);
2854      Analyze_And_Resolve (Obj,   Otyp,             Suppress => All_Checks);
2855      Analyze_And_Resolve (Shift, Standard_Integer, Suppress => All_Checks);
2856
2857      --  Make sure final type of object is the appropriate packed type
2858
2859      Set_Etype (Obj, Otyp);
2860
2861   end Setup_Inline_Packed_Array_Reference;
2862
2863end Exp_Pakd;
2864