1------------------------------------------------------------------------------
2--                                                                          --
3--                        GNAT RUN-TIME COMPONENTS                          --
4--                                                                          --
5--                  S Y S T E M . A S T _ H A N D L I N G                   --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--         Copyright (C) 1996-2013, Free Software Foundation, Inc.          --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNAT was originally developed  by the GNAT team at  New York University. --
28-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29--                                                                          --
30------------------------------------------------------------------------------
31
32--  This is the OpenVMS/IA64 version
33
34with System; use System;
35
36with System.IO;
37
38with System.Machine_Code;
39with System.Parameters;
40
41with System.Tasking;
42with System.Tasking.Rendezvous;
43with System.Tasking.Initialization;
44with System.Tasking.Utilities;
45
46with System.Task_Primitives;
47with System.Task_Primitives.Operations;
48with System.Task_Primitives.Operations.DEC;
49
50with Ada.Finalization;
51with Ada.Task_Attributes;
52
53with Ada.Exceptions; use Ada.Exceptions;
54
55with Ada.Unchecked_Conversion;
56with Ada.Unchecked_Deallocation;
57
58package body System.AST_Handling is
59
60   package ATID renames Ada.Task_Identification;
61
62   package SP   renames System.Parameters;
63   package ST   renames System.Tasking;
64   package STR  renames System.Tasking.Rendezvous;
65   package STI  renames System.Tasking.Initialization;
66   package STU  renames System.Tasking.Utilities;
67
68   package STPO renames System.Task_Primitives.Operations;
69   package STPOD renames System.Task_Primitives.Operations.DEC;
70
71   AST_Lock : aliased System.Task_Primitives.RTS_Lock;
72   --  This is a global lock; it is used to execute in mutual exclusion
73   --  from all other AST tasks.  It is only used by Lock_AST and
74   --  Unlock_AST.
75
76   procedure Lock_AST (Self_ID : ST.Task_Id);
77   --  Locks out other AST tasks. Preceding a section of code by Lock_AST and
78   --  following it by Unlock_AST creates a critical region.
79
80   procedure Unlock_AST (Self_ID : ST.Task_Id);
81   --  Releases lock previously set by call to Lock_AST.
82   --  All nested locks must be released before other tasks competing for the
83   --  tasking lock are released.
84
85   --------------
86   -- Lock_AST --
87   --------------
88
89   procedure Lock_AST (Self_ID : ST.Task_Id) is
90   begin
91      STI.Defer_Abort_Nestable (Self_ID);
92      STPO.Write_Lock (AST_Lock'Access, Global_Lock => True);
93   end Lock_AST;
94
95   ----------------
96   -- Unlock_AST --
97   ----------------
98
99   procedure Unlock_AST (Self_ID : ST.Task_Id) is
100   begin
101      STPO.Unlock (AST_Lock'Access, Global_Lock => True);
102      STI.Undefer_Abort_Nestable (Self_ID);
103   end Unlock_AST;
104
105   ---------------------------------
106   -- AST_Handler Data Structures --
107   ---------------------------------
108
109   --  As noted in the private part of the spec of System.Aux_DEC, the
110   --  AST_Handler type is simply a pointer to a procedure that takes
111   --  a single 64bit parameter. The following is a local copy
112   --  of that definition.
113
114   --  We need our own copy because we need to get our hands on this
115   --  and we cannot see the private part of System.Aux_DEC. We don't
116   --  want to be a child of Aux_Dec because of complications resulting
117   --  from the use of pragma Extend_System. We will use unchecked
118   --  conversions between the two versions of the declarations.
119
120   type AST_Handler is access procedure (Param : Long_Integer);
121
122   --  However, this declaration is somewhat misleading, since the values
123   --  referenced by AST_Handler values (all produced in this package by
124   --  calls to Create_AST_Handler) are highly stylized.
125
126   --  The first point is that in VMS/I64, procedure pointers do not in
127   --  fact point to code, but rather to a procedure descriptor.
128   --  So a value of type AST_Handler is in fact a pointer to one of
129   --  descriptors.
130
131   type Descriptor_Type is
132   record
133      Entry_Point : System.Address;
134      GP_Value    : System.Address;
135   end record;
136   for  Descriptor_Type'Alignment use Standard'Maximum_Alignment;
137   --  pragma Warnings (Off, Descriptor_Type);
138   --  Suppress harmless warnings about alignment.
139   --  Should explain why this warning is harmless ???
140
141   type Descriptor_Ref is access all Descriptor_Type;
142
143   --  Normally, there is only one such descriptor for a given procedure, but
144   --  it works fine to make a copy of the single allocated descriptor, and
145   --  use the copy itself, and we take advantage of this in the design here.
146   --  The idea is that AST_Handler values will all point to a record with the
147   --  following structure:
148
149   --  Note: When we say it works fine, there is one delicate point, which
150   --  is that the code for the AST procedure itself requires the original
151   --  descriptor address.  We handle this by saving the orignal descriptor
152   --  address in this structure and restoring in Process_AST.
153
154   type AST_Handler_Data is record
155      Descriptor              : Descriptor_Type;
156      Original_Descriptor_Ref : Descriptor_Ref;
157      Taskid                  : ATID.Task_Id;
158      Entryno                 : Natural;
159   end record;
160
161   type AST_Handler_Data_Ref is access all AST_Handler_Data;
162
163   function To_AST_Handler is new Ada.Unchecked_Conversion
164     (AST_Handler_Data_Ref, System.Aux_DEC.AST_Handler);
165
166   --  Each time Create_AST_Handler is called, a new value of this record
167   --  type is created, containing a copy of the procedure descriptor for
168   --  the routine used to handle all AST's (Process_AST), and the Task_Id
169   --  and entry number parameters identifying the task entry involved.
170
171   --  The AST_Handler value returned is a pointer to this record. Since
172   --  the record starts with the procedure descriptor, it can be used
173   --  by the system in the normal way to call the procedure. But now
174   --  when the procedure gets control, it can determine the address of
175   --  the procedure descriptor used to call it (since the ABI specifies
176   --  that this is left sitting in register r27 on entry), and then use
177   --  that address to retrieve the Task_Id and entry number so that it
178   --  knows on which entry to queue the AST request.
179
180   --  The next issue is where are these records placed. Since we intend
181   --  to pass pointers to these records to asynchronous system service
182   --  routines, they have to be on the heap, which means we have to worry
183   --  about when to allocate them and deallocate them.
184
185   --  We solve this problem by introducing a task attribute that points to
186   --  a vector, indexed by the entry number, of AST_Handler_Data records
187   --  for a given task. The pointer itself is a controlled object allowing
188   --  us to write a finalization routine that frees the referenced vector.
189
190   --  An entry in this vector is either initialized (Entryno non-zero) and
191   --  can be used for any subsequent reference to the same entry, or it is
192   --  unused, marked by the Entryno value being zero.
193
194   type AST_Handler_Vector is array (Natural range <>) of AST_Handler_Data;
195   type AST_Handler_Vector_Ref is access all AST_Handler_Vector;
196
197   type AST_Vector_Ptr is new Ada.Finalization.Controlled with record
198      Vector : AST_Handler_Vector_Ref;
199   end record;
200
201   procedure Finalize (Obj : in out AST_Vector_Ptr);
202   --  Override Finalize so that the AST Vector gets freed.
203
204   procedure Finalize (Obj : in out AST_Vector_Ptr) is
205      procedure Free is new
206       Ada.Unchecked_Deallocation (AST_Handler_Vector, AST_Handler_Vector_Ref);
207   begin
208      if Obj.Vector /= null then
209         Free (Obj.Vector);
210      end if;
211   end Finalize;
212
213   AST_Vector_Init : AST_Vector_Ptr;
214   --  Initial value, treated as constant, Vector will be null
215
216   package AST_Attribute is new Ada.Task_Attributes
217     (Attribute     => AST_Vector_Ptr,
218      Initial_Value => AST_Vector_Init);
219
220   use AST_Attribute;
221
222   -----------------------
223   -- AST Service Queue --
224   -----------------------
225
226   --  The following global data structures are used to queue pending
227   --  AST requests. When an AST is signalled, the AST service routine
228   --  Process_AST is called, and it makes an entry in this structure.
229
230   type AST_Instance is record
231      Taskid  : ATID.Task_Id;
232      Entryno : Natural;
233      Param   : Long_Integer;
234   end record;
235   --  The Taskid and Entryno indicate the entry on which this AST is to
236   --  be queued, and Param is the parameter provided from the AST itself.
237
238   AST_Service_Queue_Size  : constant := 256;
239   AST_Service_Queue_Limit : constant := 250;
240   type AST_Service_Queue_Index is mod AST_Service_Queue_Size;
241   --  Index used to refer to entries in the circular buffer which holds
242   --  active AST_Instance values. The upper bound reflects the maximum
243   --  number of AST instances that can be stored in the buffer. Since
244   --  these entries are immediately serviced by the high priority server
245   --  task that does the actual entry queuing, it is very unusual to have
246   --  any significant number of entries simulaneously queued.
247
248   AST_Service_Queue : array (AST_Service_Queue_Index) of AST_Instance;
249   pragma Volatile_Components (AST_Service_Queue);
250   --  The circular buffer used to store active AST requests
251
252   AST_Service_Queue_Put : AST_Service_Queue_Index := 0;
253   AST_Service_Queue_Get : AST_Service_Queue_Index := 0;
254   pragma Atomic (AST_Service_Queue_Put);
255   pragma Atomic (AST_Service_Queue_Get);
256   --  These two variables point to the next slots in the AST_Service_Queue
257   --  to be used for putting a new entry in and taking an entry out. This
258   --  is a circular buffer, so these pointers wrap around. If the two values
259   --  are equal the buffer is currently empty. The pointers are atomic to
260   --  ensure proper synchronization between the single producer (namely the
261   --  Process_AST procedure), and the single consumer (the AST_Service_Task).
262
263   --------------------------------
264   -- AST Server Task Structures --
265   --------------------------------
266
267   --  The basic approach is that when an AST comes in, a call is made to
268   --  the Process_AST procedure. It queues the request in the service queue
269   --  and then wakes up an AST server task to perform the actual call to the
270   --  required entry. We use this intermediate server task, since the AST
271   --  procedure itself cannot wait to return, and we need some caller for
272   --  the rendezvous so that we can use the normal rendezvous mechanism.
273
274   --  It would work to have only one AST server task, but then we would lose
275   --  all overlap in AST processing, and furthermore, we could get priority
276   --  inversion effects resulting in starvation of AST requests.
277
278   --  We therefore maintain a small pool of AST server tasks. We adjust
279   --  the size of the pool dynamically to reflect traffic, so that we have
280   --  a sufficient number of server tasks to avoid starvation.
281
282   Max_AST_Servers : constant Natural := 16;
283   --  Maximum number of AST server tasks that can be allocated
284
285   Num_AST_Servers : Natural := 0;
286   --  Number of AST server tasks currently active
287
288   Num_Waiting_AST_Servers : Natural := 0;
289   --  This is the number of AST server tasks that are either waiting for
290   --  work, or just about to go to sleep and wait for work.
291
292   Is_Waiting : array (1 .. Max_AST_Servers) of Boolean := (others => False);
293   --  An array of flags showing which AST server tasks are currently waiting
294
295   AST_Task_Ids : array (1 .. Max_AST_Servers) of ST.Task_Id;
296   --  Task Id's of allocated AST server tasks
297
298   task type AST_Server_Task (Num : Natural) is
299      pragma Priority (Priority'Last);
300   end AST_Server_Task;
301   --  Declaration for AST server task. This task has no entries, it is
302   --  controlled by sleep and wakeup calls at the task primitives level.
303
304   type AST_Server_Task_Ptr is access all AST_Server_Task;
305   --  Type used to allocate server tasks
306
307   -----------------------
308   -- Local Subprograms --
309   -----------------------
310
311   procedure Allocate_New_AST_Server;
312   --  Allocate an additional AST server task
313
314   procedure Process_AST (Param : Long_Integer);
315   --  This is the central routine for processing all AST's, it is referenced
316   --  as the code address of all created AST_Handler values. See detailed
317   --  description in body to understand how it works to have a single such
318   --  procedure for all AST's even though it does not get any indication of
319   --  the entry involved passed as an explicit parameter. The single explicit
320   --  parameter Param is the parameter passed by the system with the AST.
321
322   -----------------------------
323   -- Allocate_New_AST_Server --
324   -----------------------------
325
326   procedure Allocate_New_AST_Server is
327      Dummy : AST_Server_Task_Ptr;
328      pragma Unreferenced (Dummy);
329
330   begin
331      if Num_AST_Servers = Max_AST_Servers then
332         return;
333
334      else
335         --  Note: it is safe to increment Num_AST_Servers immediately, since
336         --  no one will try to activate this task until it indicates that it
337         --  is sleeping by setting its entry in Is_Waiting to True.
338
339         Num_AST_Servers := Num_AST_Servers + 1;
340         Dummy := new AST_Server_Task (Num_AST_Servers);
341      end if;
342   end Allocate_New_AST_Server;
343
344   ---------------------
345   -- AST_Server_Task --
346   ---------------------
347
348   task body AST_Server_Task is
349      Taskid  : ATID.Task_Id;
350      Entryno : Natural;
351      Param   : aliased Long_Integer;
352      Self_Id : constant ST.Task_Id := ST.Self;
353
354      pragma Volatile (Param);
355
356   begin
357      --  By making this task independent of master, when the environment
358      --  task is finalizing, the AST_Server_Task will be notified that it
359      --  should terminate.
360
361      STU.Make_Independent;
362
363      --  Record our task Id for access by Process_AST
364
365      AST_Task_Ids (Num) := Self_Id;
366
367      --  Note: this entire task operates with the main task lock set, except
368      --  when it is sleeping waiting for work, or busy doing a rendezvous
369      --  with an AST server. This lock protects the data structures that
370      --  are shared by multiple instances of the server task.
371
372      Lock_AST (Self_Id);
373
374      --  This is the main infinite loop of the task. We go to sleep and
375      --  wait to be woken up by Process_AST when there is some work to do.
376
377      loop
378         Num_Waiting_AST_Servers := Num_Waiting_AST_Servers + 1;
379
380         Unlock_AST (Self_Id);
381
382         STI.Defer_Abort (Self_Id);
383
384         if SP.Single_Lock then
385            STPO.Lock_RTS;
386         end if;
387
388         STPO.Write_Lock (Self_Id);
389
390         Is_Waiting (Num) := True;
391
392         Self_Id.Common.State := ST.AST_Server_Sleep;
393         STPO.Sleep (Self_Id, ST.AST_Server_Sleep);
394         Self_Id.Common.State := ST.Runnable;
395
396         STPO.Unlock (Self_Id);
397
398         if SP.Single_Lock then
399            STPO.Unlock_RTS;
400         end if;
401
402         --  If the process is finalizing, Undefer_Abort will simply end
403         --  this task.
404
405         STI.Undefer_Abort (Self_Id);
406
407         --  We are awake, there is something to do
408
409         Lock_AST (Self_Id);
410         Num_Waiting_AST_Servers := Num_Waiting_AST_Servers - 1;
411
412         --  Loop here to service outstanding requests. We are always
413         --  locked on entry to this loop.
414
415         while AST_Service_Queue_Get /= AST_Service_Queue_Put loop
416            Taskid  := AST_Service_Queue (AST_Service_Queue_Get).Taskid;
417            Entryno := AST_Service_Queue (AST_Service_Queue_Get).Entryno;
418            Param   := AST_Service_Queue (AST_Service_Queue_Get).Param;
419
420            AST_Service_Queue_Get := AST_Service_Queue_Get + 1;
421
422            --  This is a manual expansion of the normal call simple code
423
424            declare
425               type AA is access all Long_Integer;
426               P : AA := Param'Unrestricted_Access;
427
428               function To_ST_Task_Id is new Ada.Unchecked_Conversion
429                 (ATID.Task_Id, ST.Task_Id);
430
431            begin
432               Unlock_AST (Self_Id);
433               STR.Call_Simple
434                 (Acceptor           => To_ST_Task_Id (Taskid),
435                  E                  => ST.Task_Entry_Index (Entryno),
436                  Uninterpreted_Data => P'Address);
437
438            exception
439               when E : others =>
440                  System.IO.Put_Line ("%Debugging event");
441                  System.IO.Put_Line (Exception_Name (E) &
442                    " raised when trying to deliver an AST.");
443
444                  if Exception_Message (E)'Length /= 0 then
445                     System.IO.Put_Line (Exception_Message (E));
446                  end if;
447
448                  System.IO.Put_Line ("Task type is " & "Receiver_Type");
449                  System.IO.Put_Line ("Task id is " & ATID.Image (Taskid));
450            end;
451
452            Lock_AST (Self_Id);
453         end loop;
454      end loop;
455   end AST_Server_Task;
456
457   ------------------------
458   -- Create_AST_Handler --
459   ------------------------
460
461   function Create_AST_Handler
462     (Taskid  : ATID.Task_Id;
463      Entryno : Natural) return System.Aux_DEC.AST_Handler
464   is
465      Attr_Ref : Attribute_Handle;
466
467      Process_AST_Ptr : constant AST_Handler := Process_AST'Access;
468      --  Reference to standard procedure descriptor for Process_AST
469
470      function To_Descriptor_Ref is new Ada.Unchecked_Conversion
471        (AST_Handler, Descriptor_Ref);
472
473      Original_Descriptor_Ref : constant Descriptor_Ref :=
474                                  To_Descriptor_Ref (Process_AST_Ptr);
475
476   begin
477      if ATID.Is_Terminated (Taskid) then
478         raise Program_Error;
479      end if;
480
481      Attr_Ref := Reference (Taskid);
482
483      --  Allocate another server if supply is getting low
484
485      if Num_Waiting_AST_Servers < 2 then
486         Allocate_New_AST_Server;
487      end if;
488
489      --  No point in creating more if we have zillions waiting to
490      --  be serviced.
491
492      while AST_Service_Queue_Put - AST_Service_Queue_Get
493         > AST_Service_Queue_Limit
494      loop
495         delay 0.01;
496      end loop;
497
498      --  If no AST vector allocated, or the one we have is too short, then
499      --  allocate one of right size and initialize all entries except the
500      --  one we will use to unused. Note that the assignment automatically
501      --  frees the old allocated table if there is one.
502
503      if Attr_Ref.Vector = null
504        or else Attr_Ref.Vector'Length < Entryno
505      then
506         Attr_Ref.Vector := new AST_Handler_Vector (1 .. Entryno);
507
508         for E in 1 .. Entryno loop
509            Attr_Ref.Vector (E).Descriptor.Entry_Point :=
510              Original_Descriptor_Ref.Entry_Point;
511            Attr_Ref.Vector (E).Descriptor.GP_Value :=
512              Attr_Ref.Vector (E)'Address;
513            Attr_Ref.Vector (E).Original_Descriptor_Ref :=
514              Original_Descriptor_Ref;
515            Attr_Ref.Vector (E).Taskid  := Taskid;
516            Attr_Ref.Vector (E).Entryno := E;
517         end loop;
518      end if;
519
520      return To_AST_Handler (Attr_Ref.Vector (Entryno)'Unrestricted_Access);
521   end Create_AST_Handler;
522
523   ----------------------------
524   -- Expand_AST_Packet_Pool --
525   ----------------------------
526
527   procedure Expand_AST_Packet_Pool
528     (Requested_Packets : Natural;
529      Actual_Number     : out Natural;
530      Total_Number      : out Natural)
531   is
532      pragma Unreferenced (Requested_Packets);
533   begin
534      --  The AST implementation of GNAT does not permit dynamic expansion
535      --  of the pool, so we simply add no entries and return the total. If
536      --  it is necessary to expand the allocation, then this package body
537      --  must be recompiled with a larger value for AST_Service_Queue_Size.
538
539      Actual_Number := 0;
540      Total_Number := AST_Service_Queue_Size;
541   end Expand_AST_Packet_Pool;
542
543   -----------------
544   -- Process_AST --
545   -----------------
546
547   procedure Process_AST (Param : Long_Integer) is
548
549      Handler_Data_Ptr : AST_Handler_Data_Ref;
550      --  This variable is set to the address of the descriptor through
551      --  which Process_AST is called. Since the descriptor is part of
552      --  an AST_Handler value, this is also the address of this value,
553      --  from which we can obtain the task and entry number information.
554
555      function To_Address is new Ada.Unchecked_Conversion
556        (ST.Task_Id, System.Task_Primitives.Task_Address);
557
558   begin
559      --  Move the contrived GP into place so Taskid and Entryno
560      --  become available, then restore the true GP.
561
562      System.Machine_Code.Asm
563        (Template => "mov %0 = r1",
564         Outputs  => AST_Handler_Data_Ref'Asm_Output
565          ("=r", Handler_Data_Ptr),
566         Volatile => True);
567
568      System.Machine_Code.Asm
569        (Template => "ld8 r1 = %0;;",
570         Inputs => System.Address'Asm_Input
571           ("m", Handler_Data_Ptr.Original_Descriptor_Ref.GP_Value),
572         Volatile => True);
573
574      AST_Service_Queue (AST_Service_Queue_Put) := AST_Instance'
575        (Taskid  => Handler_Data_Ptr.Taskid,
576         Entryno => Handler_Data_Ptr.Entryno,
577         Param   => Param);
578
579      --  OpenVMS Programming Concepts manual, chapter 8.2.3:
580      --  "Implicit synchronization can be achieved for data that is shared
581      --   for write by using only AST routines to write the data, since only
582      --   one AST can be running at any one time."
583
584      --  This subprogram runs at AST level so is guaranteed to be
585      --  called sequentially at a given access level.
586
587      AST_Service_Queue_Put := AST_Service_Queue_Put + 1;
588
589      --  Need to wake up processing task. If there is no waiting server
590      --  then we have temporarily run out, but things should still be
591      --  OK, since one of the active ones will eventually pick up the
592      --  service request queued in the AST_Service_Queue.
593
594      for J in 1 .. Num_AST_Servers loop
595         if Is_Waiting (J) then
596            Is_Waiting (J) := False;
597
598            --  Sleeps are handled by ASTs on VMS, so don't call Wakeup
599
600            STPOD.Interrupt_AST_Handler (To_Address (AST_Task_Ids (J)));
601            exit;
602         end if;
603      end loop;
604   end Process_AST;
605
606begin
607   STPO.Initialize_Lock (AST_Lock'Access, STPO.Global_Task_Level);
608end System.AST_Handling;
609