1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ A T T R                              --
6--                                                                          --
7--                                 S p e c                                  --
8--                                                                          --
9--          Copyright (C) 1992-2012, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- You should have received a copy of the GNU General Public License along  --
19-- with this program; see file COPYING3.  If not see                        --
20-- <http://www.gnu.org/licenses/>.                                          --
21--                                                                          --
22-- GNAT was originally developed  by the GNAT team at  New York University. --
23-- Extensive contributions were provided by Ada Core Technologies Inc.      --
24--                                                                          --
25------------------------------------------------------------------------------
26
27--  Attribute handling is isolated in a separate package to ease the addition
28--  of implementation defined attributes. Logically this processing belongs
29--  in chapter 4. See Sem_Ch4 for a description of the relation of the
30--  Analyze and Resolve routines for expression components.
31
32--  This spec also documents all GNAT implementation defined pragmas
33
34with Exp_Tss; use Exp_Tss;
35with Namet;   use Namet;
36with Snames;  use Snames;
37with Types;   use Types;
38
39package Sem_Attr is
40
41   -----------------------------------------
42   -- Implementation Dependent Attributes --
43   -----------------------------------------
44
45   --  This section describes the implementation dependent attributes
46   --  provided in GNAT, as well as constructing an array of flags
47   --  indicating which attributes these are.
48
49   Attribute_Impl_Def : Attribute_Class_Array := Attribute_Class_Array'(
50
51      ------------------
52      -- Abort_Signal --
53      ------------------
54
55      Attribute_Abort_Signal => True,
56      --  Standard'Abort_Signal (Standard is the only allowed prefix) provides
57      --  the entity for the special exception used to signal task abort or
58      --  asynchronous transfer of control. Normally this attribute should only
59      --  be used in the tasking runtime (it is highly peculiar, and completely
60      --  outside the normal semantics of Ada, for a user program to intercept
61      --  the abort exception).
62
63      ------------------
64      -- Address_Size --
65      ------------------
66
67      Attribute_Address_Size => True,
68      --  Standard'Address_Size (Standard is the only allowed prefix) is
69      --  a static constant giving the number of bits in an Address. It
70      --  is used primarily for constructing the definition of Memory_Size
71      --  in package Standard, but may be freely used in user programs.
72      --  This is a static attribute.
73
74      ---------------
75      -- Asm_Input --
76      ---------------
77
78      Attribute_Asm_Input => True,
79      --  Used only in conjunction with the Asm subprograms in package
80      --  Machine_Code to construct machine instructions. See documentation
81      --  in package Machine_Code in file s-maccod.ads.
82
83      ----------------
84      -- Asm_Output --
85      ----------------
86
87      Attribute_Asm_Output => True,
88      --  Used only in conjunction with the Asm subprograms in package
89      --  Machine_Code to construct machine instructions. See documentation
90      --  in package Machine_Code in file s-maccod.ads.
91
92      ---------------
93      -- AST_Entry --
94      ---------------
95
96      Attribute_AST_Entry => True,
97      --  E'Ast_Entry, where E is a task entry, yields a value of the
98      --  predefined type System.DEC.AST_Handler, that enables the given
99      --  entry to be called when an AST occurs. If the name to which the
100      --  attribute applies has not been specified with the pragma AST_Entry,
101      --  the attribute returns the value No_Ast_Handler, and no AST occurs.
102      --  If the entry is for a task that is not callable (T'Callable False),
103      --  the exception program error is raised. If an AST occurs for an
104      --  entry of a task that is terminated, the program is erroneous.
105      --
106      --  The attribute AST_Entry is supported only in OpenVMS versions
107      --  of GNAT. It will be rejected as illegal in other GNAT versions.
108
109      ---------
110      -- Bit --
111      ---------
112
113      Attribute_Bit => True,
114      --  Obj'Bit, where Obj is any object, yields the bit offset within the
115      --  storage unit (byte) that contains the first bit of storage allocated
116      --  for the object. The attribute value is of type Universal_Integer,
117      --  and is always a non-negative number not exceeding the value of
118      --  System.Storage_Unit.
119      --
120      --  For an object that is a variable or a constant allocated in a
121      --  register, the value is zero. (The use of this attribute does not
122      --  force the allocation of a variable to memory).
123      --
124      --  For an object that is a formal parameter, this attribute applies to
125      --  either the matching actual parameter or to a copy of the matching
126      --  actual parameter.
127      --
128      --  For an access object the value is zero. Note that Obj.all'Bit is
129      --  subject to an Access_Check for the designated object. Similarly
130      --  for a record component X.C'Bit is subject to a discriminant check
131      --  and X(I).Bit and X(I1..I2)'Bit are subject to index checks.
132      --
133      --  This attribute is designed to be compatible with the DEC Ada
134      --  definition and implementation of the Bit attribute.
135
136      ------------------
137      -- Code_Address --
138      ------------------
139
140      Attribute_Code_Address => True,
141      --  The reference subp'Code_Address, where subp is a subprogram entity,
142      --  gives the address of the first generated instruction for the sub-
143      --  program. This is often, but not always the same as the 'Address
144      --  value, which is the address to be used in a call. The differences
145      --  occur in the case of a nested procedure (where Address yields the
146      --  address of the trampoline code used to load the static link), and on
147      --  some systems which use procedure descriptors (in which case Address
148      --  yields the address of the descriptor).
149
150      -----------------------
151      -- Default_Bit_Order --
152      -----------------------
153
154      Attribute_Default_Bit_Order => True,
155      --  Standard'Default_Bit_Order (Standard is the only permissible prefix),
156      --  provides the value System.Default_Bit_Order as a Pos value (0 for
157      --  High_Order_First, 1 for Low_Order_First). This is used to construct
158      --  the definition of Default_Bit_Order in package System. This is a
159      --  static attribute.
160
161      ---------------
162      -- Elab_Body --
163      ---------------
164
165      Attribute_Elab_Body => True,
166      --  This attribute can only be applied to a program unit name. It returns
167      --  the entity for the corresponding elaboration procedure for elabor-
168      --  ating the body of the referenced unit. This is used in the main
169      --  generated elaboration procedure by the binder, and is not normally
170      --  used in any other context, but there may be specialized situations in
171      --  which it is useful to be able to call this elaboration procedure from
172      --  Ada code, e.g. if it is necessary to do selective reelaboration to
173      --  fix some error.
174
175      --------------------
176      -- Elab_Subp_Body --
177      --------------------
178
179      Attribute_Elab_Subp_Body => True,
180      --  This attribute can only be applied to a library level subprogram
181      --  name and is only relevant in CodePeer mode. It returns the entity
182      --  for the corresponding elaboration procedure for elaborating the body
183      --  of the referenced subprogram unit. This is used in the main generated
184      --  elaboration procedure by the binder in CodePeer mode only.
185
186      ---------------
187      -- Elab_Spec --
188      ---------------
189
190      Attribute_Elab_Spec => True,
191      --  This attribute can only be applied to a program unit name. It
192      --  returns the entity for the corresponding elaboration procedure
193      --  for elaborating the spec of the referenced unit. This is used
194      --  in the main generated elaboration procedure by the binder, and
195      --  is not normally used in any other context, but there may be
196      --  specialized situations in which it is useful to be able to
197      --  call this elaboration procedure from Ada code, e.g. if it
198      --  is necessary to do selective reelaboration to fix some error.
199
200      ----------------
201      -- Elaborated --
202      ----------------
203
204      Attribute_Elaborated => True,
205      --  Lunit'Elaborated, where Lunit is a library unit, yields a boolean
206      --  value indicating whether or not the body of the designated library
207      --  unit has been elaborated yet.
208
209      --------------
210      -- Enum_Rep --
211      --------------
212
213      Attribute_Enum_Rep => True,
214      --  For every enumeration subtype S, S'Enum_Rep denotes a function
215      --  with the following specification:
216      --
217      --    function S'Enum_Rep (Arg : S'Base) return universal_integer;
218      --
219      --  The function returns the representation value for the given
220      --  enumeration value. This will be equal to the 'Pos value in the
221      --  absence of an enumeration representation clause. This is a static
222      --  attribute (i.e. the result is static if the argument is static).
223
224      --------------
225      -- Enum_Val --
226      --------------
227
228      Attribute_Enum_Val => True,
229      --  For every enumeration subtype S, S'Enum_Val denotes a function
230      --  with the following specification:
231      --
232      --    function S'Enum_Val (Arg : universal_integer) return S'Base;
233      --
234      --  This function performs the inverse transformation to Enum_Rep. Given
235      --  a representation value for the type, it returns the corresponding
236      --  enumeration value. Constraint_Error is raised if no value of the
237      --  enumeration type corresponds to the given integer value.
238
239      -----------------
240      -- Fixed_Value --
241      -----------------
242
243      Attribute_Fixed_Value => True,
244      --  For every fixed-point type S, S'Fixed_Value denotes a function
245      --  with the following specification:
246      --
247      --    function S'Fixed_Value (Arg : universal_integer) return S;
248      --
249      --  The value returned is the fixed-point value V such that
250      --
251      --    V = Arg * S'Small
252      --
253      --  The effect is thus equivalent to first converting the argument to
254      --  the integer type used to represent S, and then doing an unchecked
255      --  conversion to the fixed-point type. This attribute is primarily
256      --  intended for use in implementation of the input-output functions for
257      --  fixed-point values.
258
259      -----------------------
260      -- Has_Discriminants --
261      -----------------------
262
263      Attribute_Has_Discriminants => True,
264      --  Gtyp'Has_Discriminants, where Gtyp is a generic formal type, yields
265      --  a Boolean value indicating whether or not the actual instantiation
266      --  type has discriminants.
267
268      ---------
269      -- Img --
270      ---------
271
272      Attribute_Img => True,
273      --  The 'Img function is defined for any prefix, P, that denotes an
274      --  object of scalar type T. P'Img is equivalent to T'Image (P). This
275      --  is convenient for debugging. For example:
276      --
277      --     Put_Line ("X = " & X'Img);
278      --
279      --  has the same meaning as the more verbose:
280      --
281      --     Put_Line ("X = " & Temperature_Type'Image (X));
282      --
283      --  where Temperature_Type is the subtype of the object X.
284
285      -------------------
286      -- Integer_Value --
287      -------------------
288
289      Attribute_Integer_Value => True,
290      --  For every integer type S, S'Integer_Value denotes a function
291      --  with the following specification:
292      --
293      --    function S'Integer_Value (Arg : universal_fixed) return S;
294      --
295      --  The value returned is the integer value V, such that
296      --
297      --    Arg = V * fixed-type'Small
298      --
299      --  The effect is thus equivalent to first doing an unchecked convert
300      --  from the fixed-point type to its corresponding implementation type,
301      --  and then converting the result to the target integer type. This
302      --  attribute is primarily intended for use in implementation of the
303      --  standard input-output functions for fixed-point values.
304
305      Attribute_Invalid_Value => True,
306      --  For every scalar type, S'Invalid_Value designates an undefined value
307      --  of the type. If possible this value is an invalid value, and in fact
308      --  is identical to the value that would be set if Initialize_Scalars
309      --  mode were in effect (including the behavior of its value on
310      --  environment variables or binder switches). The intended use is
311      --  to set a value where initialization is required (e.g. as a result of
312      --  the coding standards in use), but logically no initialization is
313      --  needed, and the value should never be accessed.
314
315      Attribute_Loop_Entry => True,
316      --  For every object of a non-limited type, S'Loop_Entry [(Loop_Name)]
317      --  denotes the constant value of prefix S at the point of entry into the
318      --  related loop. The type of the attribute is the type of the prefix.
319
320      ------------------
321      -- Machine_Size --
322      ------------------
323
324      Attribute_Machine_Size => True,
325      --  This attribute is identical to the Object_Size attribute. It is
326      --  provided for compatibility with the DEC attribute of this name.
327
328      -----------------------
329      -- Maximum_Alignment --
330      -----------------------
331
332      Attribute_Maximum_Alignment => True,
333      --  Standard'Maximum_Alignment (Standard is the only permissible prefix)
334      --  provides the maximum useful alignment value for the target. This
335      --  is a static value that can be used to specify the alignment for an
336      --  object, guaranteeing that it is properly aligned in all cases. The
337      --  time this is useful is when an external object is imported and its
338      --  alignment requirements are unknown. This is a static attribute.
339
340      --------------------
341      -- Mechanism_Code --
342      --------------------
343
344      Attribute_Mechanism_Code => True,
345      --  function'Mechanism_Code yields an integer code for the mechanism
346      --  used for the result of function, and subprogram'Mechanism_Code (n)
347      --  yields the mechanism used for formal parameter number n (a static
348      --  integer value, 1 = first parameter). The code returned is:
349      --
350      --     1 = by copy (value)
351      --     2 = by reference
352      --     3 = by descriptor (default descriptor type)
353      --     4 = by descriptor (UBS  unaligned bit string)
354      --     5 = by descriptor (UBSB aligned bit string with arbitrary bounds)
355      --     6 = by descriptor (UBA  unaligned bit array)
356      --     7 = by descriptor (S    string, also scalar access type parameter)
357      --     8 = by descriptor (SB   string with arbitrary bounds)
358      --     9 = by descriptor (A    contiguous array)
359      --    10 = by descriptor (NCA  non-contiguous array)
360
361      --------------------
362      -- Null_Parameter --
363      --------------------
364
365      Attribute_Null_Parameter => True,
366      --  A reference T'Null_Parameter denotes an (imaginary) object of type or
367      --  subtype T allocated at (machine) address zero. The attribute is
368      --  allowed only as the default expression of a formal parameter, or as
369      --  an actual expression of a subprogram call. In either case, the
370      --  subprogram must be imported.
371      --
372      --  The identity of the object is represented by the address zero in the
373      --  argument list, independent of the passing mechanism (explicit or
374      --  default).
375      --
376      --  The reason that this capability is needed is that for a record or
377      --  other composite object passed by reference, there is no other way of
378      --  specifying that a zero address should be passed.
379
380      -----------------
381      -- Object_Size --
382      -----------------
383
384      Attribute_Object_Size => True,
385      --  Type'Object_Size is the same as Type'Size for all types except
386      --  fixed-point types and discrete types. For fixed-point types and
387      --  discrete types, this attribute gives the size used for default
388      --  allocation of objects and components of the size. See section in
389      --  Einfo ("Handling of type'Size values") for further details.
390
391      -------------------------
392      -- Passed_By_Reference --
393      -------------------------
394
395      Attribute_Passed_By_Reference => True,
396      --  T'Passed_By_Reference for any subtype T returns a boolean value that
397      --  is true if the type is normally passed by reference and false if the
398      --  type is normally passed by copy in calls. For scalar types, the
399      --  result is always False and is static. For non-scalar types, the
400      --  result is non-static (since it is computed by Gigi).
401
402      ------------------
403      -- Range_Length --
404      ------------------
405
406      Attribute_Range_Length => True,
407      --  T'Range_Length for any discrete type T yields the number of values
408      --  represented by the subtype (zero for a null range). The result is
409      --  static for static subtypes. Note that Range_Length applied to the
410      --  index subtype of a one dimensional array always gives the same result
411      --  as Range applied to the array itself. The result is of type universal
412      --  integer.
413
414      ---------
415      -- Ref --
416      ---------
417
418      Attribute_Ref => True,
419      --  System.Address'Ref (Address is the only permissible prefix) is
420      --  equivalent to System'To_Address, provided for compatibility with
421      --  other compilers.
422
423      ------------------
424      -- Storage_Unit --
425      ------------------
426
427      Attribute_Storage_Unit => True,
428      --  Standard'Storage_Unit (Standard is the only permissible prefix)
429      --  provides the value System.Storage_Unit, and is intended primarily
430      --  for constructing this definition in package System (see note above
431      --  in Default_Bit_Order description). The is a static attribute.
432
433      ---------------
434      -- Stub_Type --
435      ---------------
436
437      Attribute_Stub_Type => True,
438      --  The GNAT implementation of remote access-to-classwide types is
439      --  organised as described in AARM E.4(20.t): a value of an RACW type
440      --  (designating a remote object) is represented as a normal access
441      --  value, pointing to a "stub" object which in turn contains the
442      --  necessary information to contact the designated remote object. A
443      --  call on any dispatching operation of such a stub object does the
444      --  remote call, if necessary, using the information in the stub object
445      --  to locate the target partition, etc.
446      --
447      --  For a prefix T that denotes a remote access-to-classwide type,
448      --  T'Stub_Type denotes the type of the corresponding stub objects.
449      --
450      --  By construction, the layout of T'Stub_Type is identical to that of
451      --  System.Partition_Interface.RACW_Stub_Type (see implementation notes
452      --  in body of Exp_Dist).
453
454      -----------------
455      -- Target_Name --
456      -----------------
457
458      Attribute_Target_Name => True,
459      --  Standard'Target_Name yields the string identifying the target for the
460      --  compilation, taken from Sdefault.Target_Name.
461
462      ----------------
463      -- To_Address --
464      ----------------
465
466      Attribute_To_Address => True,
467      --  System'To_Address (System is the only permissible prefix) is a
468      --  function that takes any integer value, and converts it into an
469      --  address value. The semantics is to first convert the integer value to
470      --  type Integer_Address according to normal conversion rules, and then
471      --  to convert this to an address using the same semantics as the
472      --  System.Storage_Elements.To_Address function. The important difference
473      --  is that this is a static attribute so it can be used in
474      --  initializations in preelaborate packages.
475
476      ----------------
477      -- Type_Class --
478      ----------------
479
480      Attribute_Type_Class => True,
481      --  T'Type_Class for any type or subtype T yields the value of the type
482      --  class for the full type of T. If T is a generic formal type, then the
483      --  value is the value for the corresponding actual subtype. The value of
484      --  this attribute is of type System.Aux_DEC.Type_Class, which has the
485      --  following definition:
486      --
487      --    type Type_Class is
488      --      (Type_Class_Enumeration,
489      --       Type_Class_Integer,
490      --       Type_Class_Fixed_Point,
491      --       Type_Class_Floating_Point,
492      --       Type_Class_Array,
493      --       Type_Class_Record,
494      --       Type_Class_Access,
495      --       Type_Class_Task,
496      --       Type_Class_Address);
497      --
498      --  Protected types yield the value Type_Class_Task, which thus applies
499      --  to all concurrent types. This attribute is designed to be compatible
500      --  with the DEC Ada attribute of the same name.
501      --
502      --  Note: if pragma Extend_System is used to merge the definitions of
503      --  Aux_DEC into System, then the type Type_Class can be referenced
504      --  as an entity within System, as can its enumeration literals.
505
506      -----------------
507      -- UET_Address --
508      -----------------
509
510      Attribute_UET_Address => True,
511      --  Unit'UET_Address, where Unit is a program unit, yields the address
512      --  of the unit exception table for the specified unit. This is only
513      --  used in the internal implementation of exception handling. See the
514      --  implementation of unit Ada.Exceptions for details on its use.
515
516      ------------------------------
517      -- Universal_Literal_String --
518      ------------------------------
519
520      Attribute_Universal_Literal_String => True,
521      --  The prefix of 'Universal_Literal_String must be a named number.
522      --  The static result is the string consisting of the characters of
523      --  the number as defined in the original source. This allows the
524      --  user program to access the actual text of named numbers without
525      --  intermediate conversions and without the need to enclose the
526      --  strings in quotes (which would preclude their use as numbers).
527
528      -------------------------
529      -- Unrestricted_Access --
530      -------------------------
531
532      Attribute_Unrestricted_Access => True,
533      --  The Unrestricted_Access attribute is similar to Access except that
534      --  all accessibility and aliased view checks are omitted. This is very
535      --  much a user-beware attribute. Basically its status is very similar
536      --  to Address, for which it is a desirable replacement where the value
537      --  desired is an access type. In other words, its effect is identical
538      --  to first taking 'Address and then doing an unchecked conversion to
539      --  a desired access type. Note that in GNAT, but not necessarily in
540      --  other implementations, the use of static chains for inner level
541      --  subprograms means that Unrestricted_Access applied to a subprogram
542      --  yields a value that can be called as long as the subprogram is in
543      --  scope (normal Ada 95 accessibility rules restrict this usage).
544
545      ---------------
546      -- VADS_Size --
547      ---------------
548
549      Attribute_VADS_Size => True,
550      --  Typ'VADS_Size yields the Size value typically yielded by some Ada 83
551      --  compilers. The differences between VADS_Size and Size is that for
552      --  scalar types for which no Size has been specified, VADS_Size yields
553      --  the Object_Size rather than the Value_Size. For example, while
554      --  Natural'Size is typically 31, the value of Natural'VADS_Size is 32.
555      --  For all other types, Size and VADS_Size yield the same value.
556
557      -------------------
558      -- Valid_Scalars --
559      -------------------
560
561      Attribute_Valid_Scalars => True,
562      --  Obj'Valid_Scalars can be applied to any object. The result depends
563      --  on the type of the object:
564      --
565      --    For a scalar type, the result is the same as obj'Valid
566      --
567      --    For an array object, the result is True if the result of applying
568      --    Valid_Scalars to every component is True. For an empty array the
569      --    result is True.
570      --
571      --    For a record object, the result is True if the result of applying
572      --    Valid_Scalars to every component is True. For class-wide types,
573      --    only the components of the base type are checked. For variant
574      --    records, only the components actually present are checked. The
575      --    discriminants, if any, are also checked. If there are no components
576      --    or discriminants, the result is True.
577      --
578      --    For any other type that has discriminants, the result is True if
579      --    the result of applying Valid_Scalars to each discriminant is True.
580      --
581      --    For all other types, the result is always True
582      --
583      --  A warning is given for a trivially True result, when the attribute
584      --  is applied to an object that is not of scalar, array, or record
585      --  type, or in the composite case if no scalar subcomponents exist. For
586      --  a variant record, the warning is given only if none of the variants
587      --  have scalar subcomponents. In addition, the warning is suppressed
588      --  for private types, or generic formal types in an instance.
589
590      ----------------
591      -- Value_Size --
592      ----------------
593
594      Attribute_Value_Size => True,
595      --  Type'Value_Size is the number of bits required to represent value of
596      --  the given subtype. It is the same as Type'Size, but, unlike Size, may
597      --  be set for non-first subtypes. See section in Einfo ("Handling of
598      --  type'Size values") for further details.
599
600      ---------------
601      -- Word_Size --
602      ---------------
603
604      Attribute_Word_Size => True,
605      --  Standard'Word_Size (Standard is the only permissible prefix)
606      --  provides the value System.Word_Size, and is intended primarily
607      --  for constructing this definition in package System (see note above
608      --  in Default_Bit_Order description). This is a static attribute.
609
610      others => False);
611
612   -----------------
613   -- Subprograms --
614   -----------------
615
616   procedure Analyze_Attribute (N : Node_Id);
617   --  Performs bottom up semantic analysis of an attribute. Note that the
618   --  parser has already checked that type returning attributes appear only
619   --  in appropriate contexts (i.e. in subtype marks, or as prefixes for
620   --  other attributes).
621
622   function Name_Implies_Lvalue_Prefix (Nam : Name_Id) return Boolean;
623   --  Determine whether the name of an attribute reference categorizes its
624   --  prefix as an lvalue. The following attributes fall under this bracket
625   --  by directly or indirectly modifying their prefixes.
626   --     Access
627   --     Address
628   --     Input
629   --     Read
630   --     Unchecked_Access
631   --     Unrestricted_Access
632
633   procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id);
634   --  Performs type resolution of attribute. If the attribute yields a
635   --  universal value, mark its type as that of the context. On the other
636   --  hand, if the context itself is universal (as in T'Val (T'Pos (X)), mark
637   --  the type as being the largest type of that class that can be used at
638   --  run-time. This is correct since either the value gets folded (in which
639   --  case it doesn't matter what type of the class we give if, since the
640   --  folding uses universal arithmetic anyway) or it doesn't get folded (in
641   --  which case it is going to be dealt with at runtime, and the largest type
642   --  is right).
643
644   function Stream_Attribute_Available
645     (Typ          : Entity_Id;
646      Nam          : TSS_Name_Type;
647      Partial_View : Entity_Id := Empty) return Boolean;
648   --  For a limited type Typ, return True if and only if the given attribute
649   --  is available. For Ada 2005, availability is defined by 13.13.2(36/1).
650   --  For Ada 95, an attribute is considered to be available if it has been
651   --  specified using an attribute definition clause for the type, or for its
652   --  full view, or for an ancestor of either. Parameter Partial_View is used
653   --  only internally, when checking for an attribute definition clause that
654   --  is not visible (Ada 95 only).
655
656end Sem_Attr;
657