1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              S E M _ C H 4                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2014, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;  use Aspects;
27with Atree;    use Atree;
28with Debug;    use Debug;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Errout;   use Errout;
32with Exp_Util; use Exp_Util;
33with Fname;    use Fname;
34with Itypes;   use Itypes;
35with Lib;      use Lib;
36with Lib.Xref; use Lib.Xref;
37with Namet;    use Namet;
38with Namet.Sp; use Namet.Sp;
39with Nlists;   use Nlists;
40with Nmake;    use Nmake;
41with Opt;      use Opt;
42with Output;   use Output;
43with Restrict; use Restrict;
44with Rident;   use Rident;
45with Sem;      use Sem;
46with Sem_Aux;  use Sem_Aux;
47with Sem_Case; use Sem_Case;
48with Sem_Cat;  use Sem_Cat;
49with Sem_Ch3;  use Sem_Ch3;
50with Sem_Ch6;  use Sem_Ch6;
51with Sem_Ch8;  use Sem_Ch8;
52with Sem_Dim;  use Sem_Dim;
53with Sem_Disp; use Sem_Disp;
54with Sem_Dist; use Sem_Dist;
55with Sem_Eval; use Sem_Eval;
56with Sem_Res;  use Sem_Res;
57with Sem_Type; use Sem_Type;
58with Sem_Util; use Sem_Util;
59with Sem_Warn; use Sem_Warn;
60with Stand;    use Stand;
61with Sinfo;    use Sinfo;
62with Snames;   use Snames;
63with Tbuild;   use Tbuild;
64with Uintp;    use Uintp;
65
66package body Sem_Ch4 is
67
68   -----------------------
69   -- Local Subprograms --
70   -----------------------
71
72   procedure Analyze_Concatenation_Rest (N : Node_Id);
73   --  Does the "rest" of the work of Analyze_Concatenation, after the left
74   --  operand has been analyzed. See Analyze_Concatenation for details.
75
76   procedure Analyze_Expression (N : Node_Id);
77   --  For expressions that are not names, this is just a call to analyze.
78   --  If the expression is a name, it may be a call to a parameterless
79   --  function, and if so must be converted into an explicit call node
80   --  and analyzed as such. This deproceduring must be done during the first
81   --  pass of overload resolution, because otherwise a procedure call with
82   --  overloaded actuals may fail to resolve.
83
84   procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
85   --  Analyze a call of the form "+"(x, y), etc. The prefix of the call
86   --  is an operator name or an expanded name whose selector is an operator
87   --  name, and one possible interpretation is as a predefined operator.
88
89   procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
90   --  If the prefix of a selected_component is overloaded, the proper
91   --  interpretation that yields a record type with the proper selector
92   --  name must be selected.
93
94   procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
95   --  Procedure to analyze a user defined binary operator, which is resolved
96   --  like a function, but instead of a list of actuals it is presented
97   --  with the left and right operands of an operator node.
98
99   procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
100   --  Procedure to analyze a user defined unary operator, which is resolved
101   --  like a function, but instead of a list of actuals, it is presented with
102   --  the operand of the operator node.
103
104   procedure Ambiguous_Operands (N : Node_Id);
105   --  For equality, membership, and comparison operators with overloaded
106   --  arguments, list possible interpretations.
107
108   procedure Analyze_One_Call
109      (N          : Node_Id;
110       Nam        : Entity_Id;
111       Report     : Boolean;
112       Success    : out Boolean;
113       Skip_First : Boolean := False);
114   --  Check one interpretation of an overloaded subprogram name for
115   --  compatibility with the types of the actuals in a call. If there is a
116   --  single interpretation which does not match, post error if Report is
117   --  set to True.
118   --
119   --  Nam is the entity that provides the formals against which the actuals
120   --  are checked. Nam is either the name of a subprogram, or the internal
121   --  subprogram type constructed for an access_to_subprogram. If the actuals
122   --  are compatible with Nam, then Nam is added to the list of candidate
123   --  interpretations for N, and Success is set to True.
124   --
125   --  The flag Skip_First is used when analyzing a call that was rewritten
126   --  from object notation. In this case the first actual may have to receive
127   --  an explicit dereference, depending on the first formal of the operation
128   --  being called. The caller will have verified that the object is legal
129   --  for the call. If the remaining parameters match, the first parameter
130   --  will rewritten as a dereference if needed, prior to completing analysis.
131
132   procedure Check_Misspelled_Selector
133     (Prefix : Entity_Id;
134      Sel    : Node_Id);
135   --  Give possible misspelling diagnostic if Sel is likely to be a mis-
136   --  spelling of one of the selectors of the Prefix. This is called by
137   --  Analyze_Selected_Component after producing an invalid selector error
138   --  message.
139
140   function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
141   --  Verify that type T is declared in scope S. Used to find interpretations
142   --  for operators given by expanded names. This is abstracted as a separate
143   --  function to handle extensions to System, where S is System, but T is
144   --  declared in the extension.
145
146   procedure Find_Arithmetic_Types
147     (L, R  : Node_Id;
148      Op_Id : Entity_Id;
149      N     : Node_Id);
150   --  L and R are the operands of an arithmetic operator. Find
151   --  consistent pairs of interpretations for L and R that have a
152   --  numeric type consistent with the semantics of the operator.
153
154   procedure Find_Comparison_Types
155     (L, R  : Node_Id;
156      Op_Id : Entity_Id;
157      N     : Node_Id);
158   --  L and R are operands of a comparison operator. Find consistent
159   --  pairs of interpretations for L and R.
160
161   procedure Find_Concatenation_Types
162     (L, R  : Node_Id;
163      Op_Id : Entity_Id;
164      N     : Node_Id);
165   --  For the four varieties of concatenation
166
167   procedure Find_Equality_Types
168     (L, R  : Node_Id;
169      Op_Id : Entity_Id;
170      N     : Node_Id);
171   --  Ditto for equality operators
172
173   procedure Find_Boolean_Types
174     (L, R  : Node_Id;
175      Op_Id : Entity_Id;
176      N     : Node_Id);
177   --  Ditto for binary logical operations
178
179   procedure Find_Negation_Types
180     (R     : Node_Id;
181      Op_Id : Entity_Id;
182      N     : Node_Id);
183   --  Find consistent interpretation for operand of negation operator
184
185   procedure Find_Non_Universal_Interpretations
186     (N     : Node_Id;
187      R     : Node_Id;
188      Op_Id : Entity_Id;
189      T1    : Entity_Id);
190   --  For equality and comparison operators, the result is always boolean,
191   --  and the legality of the operation is determined from the visibility
192   --  of the operand types. If one of the operands has a universal interpre-
193   --  tation,  the legality check uses some compatible non-universal
194   --  interpretation of the other operand. N can be an operator node, or
195   --  a function call whose name is an operator designator. Any_Access, which
196   --  is the initial type of the literal NULL, is a universal type for the
197   --  purpose of this routine.
198
199   function Find_Primitive_Operation (N : Node_Id) return Boolean;
200   --  Find candidate interpretations for the name Obj.Proc when it appears
201   --  in a subprogram renaming declaration.
202
203   procedure Find_Unary_Types
204     (R     : Node_Id;
205      Op_Id : Entity_Id;
206      N     : Node_Id);
207   --  Unary arithmetic types: plus, minus, abs
208
209   procedure Check_Arithmetic_Pair
210     (T1, T2 : Entity_Id;
211      Op_Id  : Entity_Id;
212      N      : Node_Id);
213   --  Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
214   --  types for left and right operand. Determine whether they constitute
215   --  a valid pair for the given operator, and record the corresponding
216   --  interpretation of the operator node. The node N may be an operator
217   --  node (the usual case) or a function call whose prefix is an operator
218   --  designator. In both cases Op_Id is the operator name itself.
219
220   procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
221   --  Give detailed information on overloaded call where none of the
222   --  interpretations match. N is the call node, Nam the designator for
223   --  the overloaded entity being called.
224
225   function Junk_Operand (N : Node_Id) return Boolean;
226   --  Test for an operand that is an inappropriate entity (e.g. a package
227   --  name or a label). If so, issue an error message and return True. If
228   --  the operand is not an inappropriate entity kind, return False.
229
230   procedure Operator_Check (N : Node_Id);
231   --  Verify that an operator has received some valid interpretation. If none
232   --  was found, determine whether a use clause would make the operation
233   --  legal. The variable Candidate_Type (defined in Sem_Type) is set for
234   --  every type compatible with the operator, even if the operator for the
235   --  type is not directly visible. The routine uses this type to emit a more
236   --  informative message.
237
238   function Process_Implicit_Dereference_Prefix
239     (E : Entity_Id;
240      P : Node_Id) return Entity_Id;
241   --  Called when P is the prefix of an implicit dereference, denoting an
242   --  object E. The function returns the designated type of the prefix, taking
243   --  into account that the designated type of an anonymous access type may be
244   --  a limited view, when the non-limited view is visible.
245   --  If in semantics only mode (-gnatc or generic), the function also records
246   --  that the prefix is a reference to E, if any. Normally, such a reference
247   --  is generated only when the implicit dereference is expanded into an
248   --  explicit one, but for consistency we must generate the reference when
249   --  expansion is disabled as well.
250
251   procedure Remove_Abstract_Operations (N : Node_Id);
252   --  Ada 2005: implementation of AI-310. An abstract non-dispatching
253   --  operation is not a candidate interpretation.
254
255   function Try_Container_Indexing
256     (N      : Node_Id;
257      Prefix : Node_Id;
258      Exprs  : List_Id) return Boolean;
259   --  AI05-0139: Generalized indexing to support iterators over containers
260
261   function Try_Indexed_Call
262     (N          : Node_Id;
263      Nam        : Entity_Id;
264      Typ        : Entity_Id;
265      Skip_First : Boolean) return Boolean;
266   --  If a function has defaults for all its actuals, a call to it may in fact
267   --  be an indexing on the result of the call. Try_Indexed_Call attempts the
268   --  interpretation as an indexing, prior to analysis as a call. If both are
269   --  possible, the node is overloaded with both interpretations (same symbol
270   --  but two different types). If the call is written in prefix form, the
271   --  prefix becomes the first parameter in the call, and only the remaining
272   --  actuals must be checked for the presence of defaults.
273
274   function Try_Indirect_Call
275     (N   : Node_Id;
276      Nam : Entity_Id;
277      Typ : Entity_Id) return Boolean;
278   --  Similarly, a function F that needs no actuals can return an access to a
279   --  subprogram, and the call F (X) interpreted as F.all (X). In this case
280   --  the call may be overloaded with both interpretations.
281
282   function Try_Object_Operation
283     (N            : Node_Id;
284      CW_Test_Only : Boolean := False) return Boolean;
285   --  Ada 2005 (AI-252): Support the object.operation notation. If node N
286   --  is a call in this notation, it is transformed into a normal subprogram
287   --  call where the prefix is a parameter, and True is returned. If node
288   --  N is not of this form, it is unchanged, and False is returned. if
289   --  CW_Test_Only is true then N is an N_Selected_Component node which
290   --  is part of a call to an entry or procedure of a tagged concurrent
291   --  type and this routine is invoked to search for class-wide subprograms
292   --  conflicting with the target entity.
293
294   procedure wpo (T : Entity_Id);
295   pragma Warnings (Off, wpo);
296   --  Used for debugging: obtain list of primitive operations even if
297   --  type is not frozen and dispatch table is not built yet.
298
299   ------------------------
300   -- Ambiguous_Operands --
301   ------------------------
302
303   procedure Ambiguous_Operands (N : Node_Id) is
304      procedure List_Operand_Interps (Opnd : Node_Id);
305
306      --------------------------
307      -- List_Operand_Interps --
308      --------------------------
309
310      procedure List_Operand_Interps (Opnd : Node_Id) is
311         Nam   : Node_Id;
312         Err   : Node_Id := N;
313
314      begin
315         if Is_Overloaded (Opnd) then
316            if Nkind (Opnd) in N_Op then
317               Nam := Opnd;
318            elsif Nkind (Opnd) = N_Function_Call then
319               Nam := Name (Opnd);
320            elsif Ada_Version >= Ada_2012 then
321               declare
322                  It : Interp;
323                  I  : Interp_Index;
324
325               begin
326                  Get_First_Interp (Opnd, I, It);
327                  while Present (It.Nam) loop
328                     if Has_Implicit_Dereference (It.Typ) then
329                        Error_Msg_N
330                          ("can be interpreted as implicit dereference", Opnd);
331                        return;
332                     end if;
333
334                     Get_Next_Interp (I, It);
335                  end loop;
336               end;
337
338               return;
339            end if;
340
341         else
342            return;
343         end if;
344
345         if Opnd = Left_Opnd (N) then
346            Error_Msg_N ("\left operand has the following interpretations", N);
347         else
348            Error_Msg_N
349              ("\right operand has the following interpretations", N);
350            Err := Opnd;
351         end if;
352
353         List_Interps (Nam, Err);
354      end List_Operand_Interps;
355
356   --  Start of processing for Ambiguous_Operands
357
358   begin
359      if Nkind (N) in N_Membership_Test then
360         Error_Msg_N ("ambiguous operands for membership",  N);
361
362      elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
363         Error_Msg_N ("ambiguous operands for equality",  N);
364
365      else
366         Error_Msg_N ("ambiguous operands for comparison",  N);
367      end if;
368
369      if All_Errors_Mode then
370         List_Operand_Interps (Left_Opnd  (N));
371         List_Operand_Interps (Right_Opnd (N));
372      else
373         Error_Msg_N ("\use -gnatf switch for details", N);
374      end if;
375   end Ambiguous_Operands;
376
377   -----------------------
378   -- Analyze_Aggregate --
379   -----------------------
380
381   --  Most of the analysis of Aggregates requires that the type be known,
382   --  and is therefore put off until resolution.
383
384   procedure Analyze_Aggregate (N : Node_Id) is
385   begin
386      if No (Etype (N)) then
387         Set_Etype (N, Any_Composite);
388      end if;
389   end Analyze_Aggregate;
390
391   -----------------------
392   -- Analyze_Allocator --
393   -----------------------
394
395   procedure Analyze_Allocator (N : Node_Id) is
396      Loc      : constant Source_Ptr := Sloc (N);
397      Sav_Errs : constant Nat        := Serious_Errors_Detected;
398      E        : Node_Id             := Expression (N);
399      Acc_Type : Entity_Id;
400      Type_Id  : Entity_Id;
401      P        : Node_Id;
402      C        : Node_Id;
403
404   begin
405      Check_SPARK_Restriction ("allocator is not allowed", N);
406
407      --  Deal with allocator restrictions
408
409      --  In accordance with H.4(7), the No_Allocators restriction only applies
410      --  to user-written allocators. The same consideration applies to the
411      --  No_Allocators_Before_Elaboration restriction.
412
413      if Comes_From_Source (N) then
414         Check_Restriction (No_Allocators, N);
415
416         --  Processing for No_Standard_Allocators_After_Elaboration, loop to
417         --  look at enclosing context, checking task/main subprogram case.
418
419         C := N;
420         P := Parent (C);
421         while Present (P) loop
422
423            --  In both cases we need a handled sequence of statements, where
424            --  the occurrence of the allocator is within the statements.
425
426            if Nkind (P) = N_Handled_Sequence_Of_Statements
427              and then Is_List_Member (C)
428              and then List_Containing (C) = Statements (P)
429            then
430               --  Check for allocator within task body, this is a definite
431               --  violation of No_Allocators_After_Elaboration we can detect.
432
433               if Nkind (Original_Node (Parent (P))) = N_Task_Body then
434                  Check_Restriction
435                    (No_Standard_Allocators_After_Elaboration, N);
436                  exit;
437               end if;
438
439               --  The other case is appearance in a subprogram body. This may
440               --  be a violation if this is a library level subprogram, and it
441               --  turns out to be used as the main program, but only the
442               --  binder knows that, so just record the occurrence.
443
444               if Nkind (Original_Node (Parent (P))) = N_Subprogram_Body
445                 and then Nkind (Parent (Parent (P))) = N_Compilation_Unit
446               then
447                  Set_Has_Allocator (Current_Sem_Unit);
448               end if;
449            end if;
450
451            C := P;
452            P := Parent (C);
453         end loop;
454      end if;
455
456      --  Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
457      --  any. The expected type for the name is any type. A non-overloading
458      --  rule then requires it to be of a type descended from
459      --  System.Storage_Pools.Subpools.Subpool_Handle.
460
461      --  This isn't exactly what the AI says, but it seems to be the right
462      --  rule. The AI should be fixed.???
463
464      declare
465         Subpool : constant Node_Id := Subpool_Handle_Name (N);
466
467      begin
468         if Present (Subpool) then
469            Analyze (Subpool);
470
471            if Is_Overloaded (Subpool) then
472               Error_Msg_N ("ambiguous subpool handle", Subpool);
473            end if;
474
475            --  Check that Etype (Subpool) is descended from Subpool_Handle
476
477            Resolve (Subpool);
478         end if;
479      end;
480
481      --  Analyze the qualified expression or subtype indication
482
483      if Nkind (E) = N_Qualified_Expression then
484         Acc_Type := Create_Itype (E_Allocator_Type, N);
485         Set_Etype (Acc_Type, Acc_Type);
486         Find_Type (Subtype_Mark (E));
487
488         --  Analyze the qualified expression, and apply the name resolution
489         --  rule given in  4.7(3).
490
491         Analyze (E);
492         Type_Id := Etype (E);
493         Set_Directly_Designated_Type (Acc_Type, Type_Id);
494
495         Resolve (Expression (E), Type_Id);
496
497         --  Allocators generated by the build-in-place expansion mechanism
498         --  are explicitly marked as coming from source but do not need to be
499         --  checked for limited initialization. To exclude this case, ensure
500         --  that the parent of the allocator is a source node.
501
502         if Is_Limited_Type (Type_Id)
503           and then Comes_From_Source (N)
504           and then Comes_From_Source (Parent (N))
505           and then not In_Instance_Body
506         then
507            if not OK_For_Limited_Init (Type_Id, Expression (E)) then
508               Error_Msg_N ("initialization not allowed for limited types", N);
509               Explain_Limited_Type (Type_Id, N);
510            end if;
511         end if;
512
513         --  A qualified expression requires an exact match of the type,
514         --  class-wide matching is not allowed.
515
516         --  if Is_Class_Wide_Type (Type_Id)
517         --    and then Base_Type
518         --       (Etype (Expression (E))) /= Base_Type (Type_Id)
519         --  then
520         --     Wrong_Type (Expression (E), Type_Id);
521         --  end if;
522
523         Check_Non_Static_Context (Expression (E));
524
525         --  We don't analyze the qualified expression itself because it's
526         --  part of the allocator
527
528         Set_Etype  (E, Type_Id);
529
530      --  Case where allocator has a subtype indication
531
532      else
533         declare
534            Def_Id   : Entity_Id;
535            Base_Typ : Entity_Id;
536
537         begin
538            --  If the allocator includes a N_Subtype_Indication then a
539            --  constraint is present, otherwise the node is a subtype mark.
540            --  Introduce an explicit subtype declaration into the tree
541            --  defining some anonymous subtype and rewrite the allocator to
542            --  use this subtype rather than the subtype indication.
543
544            --  It is important to introduce the explicit subtype declaration
545            --  so that the bounds of the subtype indication are attached to
546            --  the tree in case the allocator is inside a generic unit.
547
548            if Nkind (E) = N_Subtype_Indication then
549
550               --  A constraint is only allowed for a composite type in Ada
551               --  95. In Ada 83, a constraint is also allowed for an
552               --  access-to-composite type, but the constraint is ignored.
553
554               Find_Type (Subtype_Mark (E));
555               Base_Typ := Entity (Subtype_Mark (E));
556
557               if Is_Elementary_Type (Base_Typ) then
558                  if not (Ada_Version = Ada_83
559                           and then Is_Access_Type (Base_Typ))
560                  then
561                     Error_Msg_N ("constraint not allowed here", E);
562
563                     if Nkind (Constraint (E)) =
564                       N_Index_Or_Discriminant_Constraint
565                     then
566                        Error_Msg_N -- CODEFIX
567                          ("\if qualified expression was meant, " &
568                              "use apostrophe", Constraint (E));
569                     end if;
570                  end if;
571
572                  --  Get rid of the bogus constraint:
573
574                  Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
575                  Analyze_Allocator (N);
576                  return;
577               end if;
578
579               if Expander_Active then
580                  Def_Id := Make_Temporary (Loc, 'S');
581
582                  Insert_Action (E,
583                    Make_Subtype_Declaration (Loc,
584                      Defining_Identifier => Def_Id,
585                      Subtype_Indication  => Relocate_Node (E)));
586
587                  if Sav_Errs /= Serious_Errors_Detected
588                    and then Nkind (Constraint (E)) =
589                               N_Index_Or_Discriminant_Constraint
590                  then
591                     Error_Msg_N -- CODEFIX
592                       ("if qualified expression was meant, "
593                        & "use apostrophe!", Constraint (E));
594                  end if;
595
596                  E := New_Occurrence_Of (Def_Id, Loc);
597                  Rewrite (Expression (N), E);
598               end if;
599            end if;
600
601            Type_Id := Process_Subtype (E, N);
602            Acc_Type := Create_Itype (E_Allocator_Type, N);
603            Set_Etype                    (Acc_Type, Acc_Type);
604            Set_Directly_Designated_Type (Acc_Type, Type_Id);
605            Check_Fully_Declared (Type_Id, N);
606
607            --  Ada 2005 (AI-231): If the designated type is itself an access
608            --  type that excludes null, its default initialization will
609            --  be a null object, and we can insert an unconditional raise
610            --  before the allocator.
611
612            --  Ada 2012 (AI-104): A not null indication here is altogether
613            --  illegal.
614
615            if Can_Never_Be_Null (Type_Id) then
616               declare
617                  Not_Null_Check : constant Node_Id :=
618                                     Make_Raise_Constraint_Error (Sloc (E),
619                                       Reason => CE_Null_Not_Allowed);
620
621               begin
622                  if Expander_Active then
623                     Insert_Action (N, Not_Null_Check);
624                     Analyze (Not_Null_Check);
625
626                  elsif Warn_On_Ada_2012_Compatibility then
627                     Error_Msg_N
628                       ("null value not allowed here in Ada 2012?y?", E);
629                  end if;
630               end;
631            end if;
632
633            --  Check restriction against dynamically allocated protected
634            --  objects. Note that when limited aggregates are supported,
635            --  a similar test should be applied to an allocator with a
636            --  qualified expression ???
637
638            if Is_Protected_Type (Type_Id) then
639               Check_Restriction (No_Protected_Type_Allocators, N);
640            end if;
641
642            --  Check for missing initialization. Skip this check if we already
643            --  had errors on analyzing the allocator, since in that case these
644            --  are probably cascaded errors.
645
646            if Is_Indefinite_Subtype (Type_Id)
647              and then Serious_Errors_Detected = Sav_Errs
648            then
649               --  The build-in-place machinery may produce an allocator when
650               --  the designated type is indefinite but the underlying type is
651               --  not. In this case the unknown discriminants are meaningless
652               --  and should not trigger error messages. Check the parent node
653               --  because the allocator is marked as coming from source.
654
655               if Present (Underlying_Type (Type_Id))
656                 and then not Is_Indefinite_Subtype (Underlying_Type (Type_Id))
657                 and then not Comes_From_Source (Parent (N))
658               then
659                  null;
660
661               elsif Is_Class_Wide_Type (Type_Id) then
662                  Error_Msg_N
663                    ("initialization required in class-wide allocation", N);
664
665               else
666                  if Ada_Version < Ada_2005
667                    and then Is_Limited_Type (Type_Id)
668                  then
669                     Error_Msg_N ("unconstrained allocation not allowed", N);
670
671                     if Is_Array_Type (Type_Id) then
672                        Error_Msg_N
673                          ("\constraint with array bounds required", N);
674
675                     elsif Has_Unknown_Discriminants (Type_Id) then
676                        null;
677
678                     else pragma Assert (Has_Discriminants (Type_Id));
679                        Error_Msg_N
680                          ("\constraint with discriminant values required", N);
681                     end if;
682
683                  --  Limited Ada 2005 and general non-limited case
684
685                  else
686                     Error_Msg_N
687                       ("uninitialized unconstrained allocation not allowed",
688                        N);
689
690                     if Is_Array_Type (Type_Id) then
691                        Error_Msg_N
692                          ("\qualified expression or constraint with " &
693                           "array bounds required", N);
694
695                     elsif Has_Unknown_Discriminants (Type_Id) then
696                        Error_Msg_N ("\qualified expression required", N);
697
698                     else pragma Assert (Has_Discriminants (Type_Id));
699                        Error_Msg_N
700                          ("\qualified expression or constraint with " &
701                           "discriminant values required", N);
702                     end if;
703                  end if;
704               end if;
705            end if;
706         end;
707      end if;
708
709      if Is_Abstract_Type (Type_Id) then
710         Error_Msg_N ("cannot allocate abstract object", E);
711      end if;
712
713      if Has_Task (Designated_Type (Acc_Type)) then
714         Check_Restriction (No_Tasking, N);
715         Check_Restriction (Max_Tasks, N);
716         Check_Restriction (No_Task_Allocators, N);
717      end if;
718
719      --  AI05-0013-1: No_Nested_Finalization forbids allocators if the access
720      --  type is nested, and the designated type needs finalization. The rule
721      --  is conservative in that class-wide types need finalization.
722
723      if Needs_Finalization (Designated_Type (Acc_Type))
724        and then not Is_Library_Level_Entity (Acc_Type)
725      then
726         Check_Restriction (No_Nested_Finalization, N);
727      end if;
728
729      --  Check that an allocator of a nested access type doesn't create a
730      --  protected object when restriction No_Local_Protected_Objects applies.
731      --  We don't have an equivalent to Has_Task for protected types, so only
732      --  cases where the designated type itself is a protected type are
733      --  currently checked. ???
734
735      if Is_Protected_Type (Designated_Type (Acc_Type))
736        and then not Is_Library_Level_Entity (Acc_Type)
737      then
738         Check_Restriction (No_Local_Protected_Objects, N);
739      end if;
740
741      --  If the No_Streams restriction is set, check that the type of the
742      --  object is not, and does not contain, any subtype derived from
743      --  Ada.Streams.Root_Stream_Type. Note that we guard the call to
744      --  Has_Stream just for efficiency reasons. There is no point in
745      --  spending time on a Has_Stream check if the restriction is not set.
746
747      if Restriction_Check_Required (No_Streams) then
748         if Has_Stream (Designated_Type (Acc_Type)) then
749            Check_Restriction (No_Streams, N);
750         end if;
751      end if;
752
753      Set_Etype (N, Acc_Type);
754
755      if not Is_Library_Level_Entity (Acc_Type) then
756         Check_Restriction (No_Local_Allocators, N);
757      end if;
758
759      if Serious_Errors_Detected > Sav_Errs then
760         Set_Error_Posted (N);
761         Set_Etype (N, Any_Type);
762      end if;
763   end Analyze_Allocator;
764
765   ---------------------------
766   -- Analyze_Arithmetic_Op --
767   ---------------------------
768
769   procedure Analyze_Arithmetic_Op (N : Node_Id) is
770      L     : constant Node_Id := Left_Opnd (N);
771      R     : constant Node_Id := Right_Opnd (N);
772      Op_Id : Entity_Id;
773
774   begin
775      Candidate_Type := Empty;
776      Analyze_Expression (L);
777      Analyze_Expression (R);
778
779      --  If the entity is already set, the node is the instantiation of a
780      --  generic node with a non-local reference, or was manufactured by a
781      --  call to Make_Op_xxx. In either case the entity is known to be valid,
782      --  and we do not need to collect interpretations, instead we just get
783      --  the single possible interpretation.
784
785      Op_Id := Entity (N);
786
787      if Present (Op_Id) then
788         if Ekind (Op_Id) = E_Operator then
789
790            if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
791              and then Treat_Fixed_As_Integer (N)
792            then
793               null;
794            else
795               Set_Etype (N, Any_Type);
796               Find_Arithmetic_Types (L, R, Op_Id, N);
797            end if;
798
799         else
800            Set_Etype (N, Any_Type);
801            Add_One_Interp (N, Op_Id, Etype (Op_Id));
802         end if;
803
804      --  Entity is not already set, so we do need to collect interpretations
805
806      else
807         Op_Id := Get_Name_Entity_Id (Chars (N));
808         Set_Etype (N, Any_Type);
809
810         while Present (Op_Id) loop
811            if Ekind (Op_Id) = E_Operator
812              and then Present (Next_Entity (First_Entity (Op_Id)))
813            then
814               Find_Arithmetic_Types (L, R, Op_Id, N);
815
816            --  The following may seem superfluous, because an operator cannot
817            --  be generic, but this ignores the cleverness of the author of
818            --  ACVC bc1013a.
819
820            elsif Is_Overloadable (Op_Id) then
821               Analyze_User_Defined_Binary_Op (N, Op_Id);
822            end if;
823
824            Op_Id := Homonym (Op_Id);
825         end loop;
826      end if;
827
828      Operator_Check (N);
829   end Analyze_Arithmetic_Op;
830
831   ------------------
832   -- Analyze_Call --
833   ------------------
834
835   --  Function, procedure, and entry calls are checked here. The Name in
836   --  the call may be overloaded. The actuals have been analyzed and may
837   --  themselves be overloaded. On exit from this procedure, the node N
838   --  may have zero, one or more interpretations. In the first case an
839   --  error message is produced. In the last case, the node is flagged
840   --  as overloaded and the interpretations are collected in All_Interp.
841
842   --  If the name is an Access_To_Subprogram, it cannot be overloaded, but
843   --  the type-checking is similar to that of other calls.
844
845   procedure Analyze_Call (N : Node_Id) is
846      Actuals : constant List_Id := Parameter_Associations (N);
847      Nam     : Node_Id;
848      X       : Interp_Index;
849      It      : Interp;
850      Nam_Ent : Entity_Id;
851      Success : Boolean := False;
852
853      Deref : Boolean := False;
854      --  Flag indicates whether an interpretation of the prefix is a
855      --  parameterless call that returns an access_to_subprogram.
856
857      procedure Check_Ghost_Subprogram_Call;
858      --  Verify the legality of a call to a ghost subprogram. Such calls can
859      --  appear only in assertion expressions except subtype predicates or
860      --  from within another ghost subprogram.
861
862      procedure Check_Mixed_Parameter_And_Named_Associations;
863      --  Check that parameter and named associations are not mixed. This is
864      --  a restriction in SPARK mode.
865
866      function Name_Denotes_Function return Boolean;
867      --  If the type of the name is an access to subprogram, this may be the
868      --  type of a name, or the return type of the function being called. If
869      --  the name is not an entity then it can denote a protected function.
870      --  Until we distinguish Etype from Return_Type, we must use this routine
871      --  to resolve the meaning of the name in the call.
872
873      procedure No_Interpretation;
874      --  Output error message when no valid interpretation exists
875
876      ---------------------------------
877      -- Check_Ghost_Subprogram_Call --
878      ---------------------------------
879
880      procedure Check_Ghost_Subprogram_Call is
881         S : Entity_Id;
882
883      begin
884         --  Do not perform the check while preanalyzing the enclosing context
885         --  because the call is not in its final place. Premature attempts to
886         --  verify the placement lead to bogus errors.
887
888         if In_Spec_Expression then
889            return;
890
891         --  The ghost subprogram appears inside an assertion expression which
892         --  is one of the allowed cases.
893
894         elsif In_Assertion_Expression_Pragma (N) then
895            return;
896
897         --  Otherwise see if it inside another ghost subprogram
898
899         else
900            --  Loop to climb scopes
901
902            S := Current_Scope;
903            while Present (S) and then S /= Standard_Standard loop
904
905               --  The call appears inside another ghost subprogram
906
907               if Is_Ghost_Subprogram (S) then
908                  return;
909               end if;
910
911               S := Scope (S);
912            end loop;
913
914            --  If we fall through the loop it was not within another
915            --  ghost subprogram, so we have bad placement.
916
917            Error_Msg_N
918              ("call to ghost subprogram must appear in assertion expression "
919               & "or another ghost subprogram", N);
920         end if;
921      end Check_Ghost_Subprogram_Call;
922
923      --------------------------------------------------
924      -- Check_Mixed_Parameter_And_Named_Associations --
925      --------------------------------------------------
926
927      procedure Check_Mixed_Parameter_And_Named_Associations is
928         Actual     : Node_Id;
929         Named_Seen : Boolean;
930
931      begin
932         Named_Seen := False;
933
934         Actual := First (Actuals);
935         while Present (Actual) loop
936            case Nkind (Actual) is
937               when N_Parameter_Association =>
938                  if Named_Seen then
939                     Check_SPARK_Restriction
940                       ("named association cannot follow positional one",
941                        Actual);
942                     exit;
943                  end if;
944               when others =>
945                  Named_Seen := True;
946            end case;
947
948            Next (Actual);
949         end loop;
950      end Check_Mixed_Parameter_And_Named_Associations;
951
952      ---------------------------
953      -- Name_Denotes_Function --
954      ---------------------------
955
956      function Name_Denotes_Function return Boolean is
957      begin
958         if Is_Entity_Name (Nam) then
959            return Ekind (Entity (Nam)) = E_Function;
960
961         elsif Nkind (Nam) = N_Selected_Component then
962            return Ekind (Entity (Selector_Name (Nam))) = E_Function;
963
964         else
965            return False;
966         end if;
967      end Name_Denotes_Function;
968
969      -----------------------
970      -- No_Interpretation --
971      -----------------------
972
973      procedure No_Interpretation is
974         L : constant Boolean   := Is_List_Member (N);
975         K : constant Node_Kind := Nkind (Parent (N));
976
977      begin
978         --  If the node is in a list whose parent is not an expression then it
979         --  must be an attempted procedure call.
980
981         if L and then K not in N_Subexpr then
982            if Ekind (Entity (Nam)) = E_Generic_Procedure then
983               Error_Msg_NE
984                 ("must instantiate generic procedure& before call",
985                  Nam, Entity (Nam));
986            else
987               Error_Msg_N
988                 ("procedure or entry name expected", Nam);
989            end if;
990
991         --  Check for tasking cases where only an entry call will do
992
993         elsif not L
994           and then Nkind_In (K, N_Entry_Call_Alternative,
995                                 N_Triggering_Alternative)
996         then
997            Error_Msg_N ("entry name expected", Nam);
998
999         --  Otherwise give general error message
1000
1001         else
1002            Error_Msg_N ("invalid prefix in call", Nam);
1003         end if;
1004      end No_Interpretation;
1005
1006   --  Start of processing for Analyze_Call
1007
1008   begin
1009      if Restriction_Check_Required (SPARK_05) then
1010         Check_Mixed_Parameter_And_Named_Associations;
1011      end if;
1012
1013      --  Initialize the type of the result of the call to the error type,
1014      --  which will be reset if the type is successfully resolved.
1015
1016      Set_Etype (N, Any_Type);
1017
1018      Nam := Name (N);
1019
1020      if not Is_Overloaded (Nam) then
1021
1022         --  Only one interpretation to check
1023
1024         if Ekind (Etype (Nam)) = E_Subprogram_Type then
1025            Nam_Ent := Etype (Nam);
1026
1027         --  If the prefix is an access_to_subprogram, this may be an indirect
1028         --  call. This is the case if the name in the call is not an entity
1029         --  name, or if it is a function name in the context of a procedure
1030         --  call. In this latter case, we have a call to a parameterless
1031         --  function that returns a pointer_to_procedure which is the entity
1032         --  being called. Finally, F (X) may be a call to a parameterless
1033         --  function that returns a pointer to a function with parameters.
1034         --  Note that if F returns an access-to-subprogram whose designated
1035         --  type is an array, F (X) cannot be interpreted as an indirect call
1036         --  through the result of the call to F.
1037
1038         elsif Is_Access_Type (Etype (Nam))
1039           and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
1040           and then
1041             (not Name_Denotes_Function
1042               or else Nkind (N) = N_Procedure_Call_Statement
1043               or else
1044                 (Nkind (Parent (N)) /= N_Explicit_Dereference
1045                   and then Is_Entity_Name (Nam)
1046                   and then No (First_Formal (Entity (Nam)))
1047                   and then not
1048                     Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1049                   and then Present (Actuals)))
1050         then
1051            Nam_Ent := Designated_Type (Etype (Nam));
1052            Insert_Explicit_Dereference (Nam);
1053
1054         --  Selected component case. Simple entry or protected operation,
1055         --  where the entry name is given by the selector name.
1056
1057         elsif Nkind (Nam) = N_Selected_Component then
1058            Nam_Ent := Entity (Selector_Name (Nam));
1059
1060            if not Ekind_In (Nam_Ent, E_Entry,
1061                                      E_Entry_Family,
1062                                      E_Function,
1063                                      E_Procedure)
1064            then
1065               Error_Msg_N ("name in call is not a callable entity", Nam);
1066               Set_Etype (N, Any_Type);
1067               return;
1068            end if;
1069
1070         --  If the name is an Indexed component, it can be a call to a member
1071         --  of an entry family. The prefix must be a selected component whose
1072         --  selector is the entry. Analyze_Procedure_Call normalizes several
1073         --  kinds of call into this form.
1074
1075         elsif Nkind (Nam) = N_Indexed_Component then
1076            if Nkind (Prefix (Nam)) = N_Selected_Component then
1077               Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
1078            else
1079               Error_Msg_N ("name in call is not a callable entity", Nam);
1080               Set_Etype (N, Any_Type);
1081               return;
1082            end if;
1083
1084         elsif not Is_Entity_Name (Nam) then
1085            Error_Msg_N ("name in call is not a callable entity", Nam);
1086            Set_Etype (N, Any_Type);
1087            return;
1088
1089         else
1090            Nam_Ent := Entity (Nam);
1091
1092            --  If not overloadable, this may be a generalized indexing
1093            --  operation with named associations. Rewrite again as an
1094            --  indexed component and analyze as container indexing.
1095
1096            if not Is_Overloadable (Nam_Ent) then
1097               if Present
1098                    (Find_Value_Of_Aspect
1099                       (Etype (Nam_Ent), Aspect_Constant_Indexing))
1100               then
1101                  Replace (N,
1102                    Make_Indexed_Component (Sloc (N),
1103                      Prefix      => Nam,
1104                      Expressions => Parameter_Associations (N)));
1105
1106                  if Try_Container_Indexing (N, Nam, Expressions (N)) then
1107                     return;
1108                  else
1109                     No_Interpretation;
1110                  end if;
1111
1112               else
1113                  No_Interpretation;
1114               end if;
1115
1116               return;
1117            end if;
1118         end if;
1119
1120         --  Operations generated for RACW stub types are called only through
1121         --  dispatching, and can never be the static interpretation of a call.
1122
1123         if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1124            No_Interpretation;
1125            return;
1126         end if;
1127
1128         Analyze_One_Call (N, Nam_Ent, True, Success);
1129
1130         --  If this is an indirect call, the return type of the access_to
1131         --  subprogram may be an incomplete type. At the point of the call,
1132         --  use the full type if available, and at the same time update the
1133         --  return type of the access_to_subprogram.
1134
1135         if Success
1136           and then Nkind (Nam) = N_Explicit_Dereference
1137           and then Ekind (Etype (N)) = E_Incomplete_Type
1138           and then Present (Full_View (Etype (N)))
1139         then
1140            Set_Etype (N, Full_View (Etype (N)));
1141            Set_Etype (Nam_Ent, Etype (N));
1142         end if;
1143
1144      --  Overloaded call
1145
1146      else
1147         --  An overloaded selected component must denote overloaded operations
1148         --  of a concurrent type. The interpretations are attached to the
1149         --  simple name of those operations.
1150
1151         if Nkind (Nam) = N_Selected_Component then
1152            Nam := Selector_Name (Nam);
1153         end if;
1154
1155         Get_First_Interp (Nam, X, It);
1156
1157         while Present (It.Nam) loop
1158            Nam_Ent := It.Nam;
1159            Deref   := False;
1160
1161            --  Name may be call that returns an access to subprogram, or more
1162            --  generally an overloaded expression one of whose interpretations
1163            --  yields an access to subprogram. If the name is an entity, we do
1164            --  not dereference, because the node is a call that returns the
1165            --  access type: note difference between f(x), where the call may
1166            --  return an access subprogram type, and f(x)(y), where the type
1167            --  returned by the call to f is implicitly dereferenced to analyze
1168            --  the outer call.
1169
1170            if Is_Access_Type (Nam_Ent) then
1171               Nam_Ent := Designated_Type (Nam_Ent);
1172
1173            elsif Is_Access_Type (Etype (Nam_Ent))
1174              and then
1175                (not Is_Entity_Name (Nam)
1176                   or else Nkind (N) = N_Procedure_Call_Statement)
1177              and then Ekind (Designated_Type (Etype (Nam_Ent)))
1178                                                          = E_Subprogram_Type
1179            then
1180               Nam_Ent := Designated_Type (Etype (Nam_Ent));
1181
1182               if Is_Entity_Name (Nam) then
1183                  Deref := True;
1184               end if;
1185            end if;
1186
1187            --  If the call has been rewritten from a prefixed call, the first
1188            --  parameter has been analyzed, but may need a subsequent
1189            --  dereference, so skip its analysis now.
1190
1191            if N /= Original_Node (N)
1192              and then Nkind (Original_Node (N)) = Nkind (N)
1193              and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1194              and then Present (Parameter_Associations (N))
1195              and then Present (Etype (First (Parameter_Associations (N))))
1196            then
1197               Analyze_One_Call
1198                 (N, Nam_Ent, False, Success, Skip_First => True);
1199            else
1200               Analyze_One_Call (N, Nam_Ent, False, Success);
1201            end if;
1202
1203            --  If the interpretation succeeds, mark the proper type of the
1204            --  prefix (any valid candidate will do). If not, remove the
1205            --  candidate interpretation. This only needs to be done for
1206            --  overloaded protected operations, for other entities disambi-
1207            --  guation is done directly in Resolve.
1208
1209            if Success then
1210               if Deref
1211                 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1212               then
1213                  Set_Entity (Nam, It.Nam);
1214                  Insert_Explicit_Dereference (Nam);
1215                  Set_Etype (Nam, Nam_Ent);
1216
1217               else
1218                  Set_Etype (Nam, It.Typ);
1219               end if;
1220
1221            elsif Nkind_In (Name (N), N_Selected_Component,
1222                                      N_Function_Call)
1223            then
1224               Remove_Interp (X);
1225            end if;
1226
1227            Get_Next_Interp (X, It);
1228         end loop;
1229
1230         --  If the name is the result of a function call, it can only be a
1231         --  call to a function returning an access to subprogram. Insert
1232         --  explicit dereference.
1233
1234         if Nkind (Nam) = N_Function_Call then
1235            Insert_Explicit_Dereference (Nam);
1236         end if;
1237
1238         if Etype (N) = Any_Type then
1239
1240            --  None of the interpretations is compatible with the actuals
1241
1242            Diagnose_Call (N, Nam);
1243
1244            --  Special checks for uninstantiated put routines
1245
1246            if Nkind (N) = N_Procedure_Call_Statement
1247              and then Is_Entity_Name (Nam)
1248              and then Chars (Nam) = Name_Put
1249              and then List_Length (Actuals) = 1
1250            then
1251               declare
1252                  Arg : constant Node_Id := First (Actuals);
1253                  Typ : Entity_Id;
1254
1255               begin
1256                  if Nkind (Arg) = N_Parameter_Association then
1257                     Typ := Etype (Explicit_Actual_Parameter (Arg));
1258                  else
1259                     Typ := Etype (Arg);
1260                  end if;
1261
1262                  if Is_Signed_Integer_Type (Typ) then
1263                     Error_Msg_N
1264                       ("possible missing instantiation of "
1265                        & "'Text_'I'O.'Integer_'I'O!", Nam);
1266
1267                  elsif Is_Modular_Integer_Type (Typ) then
1268                     Error_Msg_N
1269                       ("possible missing instantiation of "
1270                        & "'Text_'I'O.'Modular_'I'O!", Nam);
1271
1272                  elsif Is_Floating_Point_Type (Typ) then
1273                     Error_Msg_N
1274                       ("possible missing instantiation of "
1275                        & "'Text_'I'O.'Float_'I'O!", Nam);
1276
1277                  elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1278                     Error_Msg_N
1279                       ("possible missing instantiation of "
1280                        & "'Text_'I'O.'Fixed_'I'O!", Nam);
1281
1282                  elsif Is_Decimal_Fixed_Point_Type (Typ) then
1283                     Error_Msg_N
1284                       ("possible missing instantiation of "
1285                        & "'Text_'I'O.'Decimal_'I'O!", Nam);
1286
1287                  elsif Is_Enumeration_Type (Typ) then
1288                     Error_Msg_N
1289                       ("possible missing instantiation of "
1290                        & "'Text_'I'O.'Enumeration_'I'O!", Nam);
1291                  end if;
1292               end;
1293            end if;
1294
1295         elsif not Is_Overloaded (N)
1296           and then Is_Entity_Name (Nam)
1297         then
1298            --  Resolution yields a single interpretation. Verify that the
1299            --  reference has capitalization consistent with the declaration.
1300
1301            Set_Entity_With_Checks (Nam, Entity (Nam));
1302            Generate_Reference (Entity (Nam), Nam);
1303
1304            Set_Etype (Nam, Etype (Entity (Nam)));
1305         else
1306            Remove_Abstract_Operations (N);
1307         end if;
1308
1309         End_Interp_List;
1310      end if;
1311
1312      --  A call to a ghost subprogram is allowed only in assertion expressions
1313      --  excluding subtype predicates or from within another ghost subprogram.
1314
1315      if Is_Ghost_Subprogram (Get_Subprogram_Entity (N)) then
1316         Check_Ghost_Subprogram_Call;
1317      end if;
1318   end Analyze_Call;
1319
1320   -----------------------------
1321   -- Analyze_Case_Expression --
1322   -----------------------------
1323
1324   procedure Analyze_Case_Expression (N : Node_Id) is
1325      function Has_Static_Predicate (Subtyp : Entity_Id) return Boolean;
1326      --  Determine whether subtype Subtyp has aspect Static_Predicate
1327
1328      procedure Non_Static_Choice_Error (Choice : Node_Id);
1329      --  Error routine invoked by the generic instantiation below when
1330      --  the case expression has a non static choice.
1331
1332      package Case_Choices_Analysis is new
1333        Generic_Analyze_Choices
1334          (Process_Associated_Node => No_OP);
1335      use Case_Choices_Analysis;
1336
1337      package Case_Choices_Checking is new
1338        Generic_Check_Choices
1339          (Process_Empty_Choice      => No_OP,
1340           Process_Non_Static_Choice => Non_Static_Choice_Error,
1341           Process_Associated_Node   => No_OP);
1342      use Case_Choices_Checking;
1343
1344      --------------------------
1345      -- Has_Static_Predicate --
1346      --------------------------
1347
1348      function Has_Static_Predicate (Subtyp : Entity_Id) return Boolean is
1349         Item : Node_Id;
1350
1351      begin
1352         Item := First_Rep_Item (Subtyp);
1353         while Present (Item) loop
1354            if Nkind (Item) = N_Aspect_Specification
1355              and then Chars (Identifier (Item)) = Name_Static_Predicate
1356            then
1357               return True;
1358            end if;
1359
1360            Next_Rep_Item (Item);
1361         end loop;
1362
1363         return False;
1364      end Has_Static_Predicate;
1365
1366      -----------------------------
1367      -- Non_Static_Choice_Error --
1368      -----------------------------
1369
1370      procedure Non_Static_Choice_Error (Choice : Node_Id) is
1371      begin
1372         Flag_Non_Static_Expr
1373           ("choice given in case expression is not static!", Choice);
1374      end Non_Static_Choice_Error;
1375
1376      --  Local variables
1377
1378      Expr      : constant Node_Id := Expression (N);
1379      Alt       : Node_Id;
1380      Exp_Type  : Entity_Id;
1381      Exp_Btype : Entity_Id;
1382
1383      FirstX : Node_Id := Empty;
1384      --  First expression in the case for which there is some type information
1385      --  available, i.e. it is not Any_Type, which can happen because of some
1386      --  error, or from the use of e.g. raise Constraint_Error.
1387
1388      Others_Present : Boolean;
1389      --  Indicates if Others was present
1390
1391   --  Start of processing for Analyze_Case_Expression
1392
1393   begin
1394      if Comes_From_Source (N) then
1395         Check_Compiler_Unit (N);
1396      end if;
1397
1398      Analyze_And_Resolve (Expr, Any_Discrete);
1399      Check_Unset_Reference (Expr);
1400      Exp_Type := Etype (Expr);
1401      Exp_Btype := Base_Type (Exp_Type);
1402
1403      Alt := First (Alternatives (N));
1404      while Present (Alt) loop
1405         Analyze (Expression (Alt));
1406
1407         if No (FirstX) and then Etype (Expression (Alt)) /= Any_Type then
1408            FirstX := Expression (Alt);
1409         end if;
1410
1411         Next (Alt);
1412      end loop;
1413
1414      --  Get our initial type from the first expression for which we got some
1415      --  useful type information from the expression.
1416
1417      if not Is_Overloaded (FirstX) then
1418         Set_Etype (N, Etype (FirstX));
1419
1420      else
1421         declare
1422            I  : Interp_Index;
1423            It : Interp;
1424
1425         begin
1426            Set_Etype (N, Any_Type);
1427
1428            Get_First_Interp (FirstX, I, It);
1429            while Present (It.Nam) loop
1430
1431               --  For each interpretation of the first expression, we only
1432               --  add the interpretation if every other expression in the
1433               --  case expression alternatives has a compatible type.
1434
1435               Alt := Next (First (Alternatives (N)));
1436               while Present (Alt) loop
1437                  exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1438                  Next (Alt);
1439               end loop;
1440
1441               if No (Alt) then
1442                  Add_One_Interp (N, It.Typ, It.Typ);
1443               end if;
1444
1445               Get_Next_Interp (I, It);
1446            end loop;
1447         end;
1448      end if;
1449
1450      Exp_Btype := Base_Type (Exp_Type);
1451
1452      --  The expression must be of a discrete type which must be determinable
1453      --  independently of the context in which the expression occurs, but
1454      --  using the fact that the expression must be of a discrete type.
1455      --  Moreover, the type this expression must not be a character literal
1456      --  (which is always ambiguous).
1457
1458      --  If error already reported by Resolve, nothing more to do
1459
1460      if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1461         return;
1462
1463      elsif Exp_Btype = Any_Character then
1464         Error_Msg_N
1465           ("character literal as case expression is ambiguous", Expr);
1466         return;
1467      end if;
1468
1469      --  If the case expression is a formal object of mode in out, then
1470      --  treat it as having a nonstatic subtype by forcing use of the base
1471      --  type (which has to get passed to Check_Case_Choices below).  Also
1472      --  use base type when the case expression is parenthesized.
1473
1474      if Paren_Count (Expr) > 0
1475        or else (Is_Entity_Name (Expr)
1476                  and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1477      then
1478         Exp_Type := Exp_Btype;
1479      end if;
1480
1481      --  The case expression alternatives cover the range of a static subtype
1482      --  subject to aspect Static_Predicate. Do not check the choices when the
1483      --  case expression has not been fully analyzed yet because this may lead
1484      --  to bogus errors.
1485
1486      if Is_Static_Subtype (Exp_Type)
1487        and then Has_Static_Predicate (Exp_Type)
1488        and then In_Spec_Expression
1489      then
1490         null;
1491
1492      --  Call Analyze_Choices and Check_Choices to do the rest of the work
1493
1494      else
1495         Analyze_Choices (Alternatives (N), Exp_Type);
1496         Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1497      end if;
1498
1499      if Exp_Type = Universal_Integer and then not Others_Present then
1500         Error_Msg_N
1501           ("case on universal integer requires OTHERS choice", Expr);
1502      end if;
1503   end Analyze_Case_Expression;
1504
1505   ---------------------------
1506   -- Analyze_Comparison_Op --
1507   ---------------------------
1508
1509   procedure Analyze_Comparison_Op (N : Node_Id) is
1510      L     : constant Node_Id := Left_Opnd (N);
1511      R     : constant Node_Id := Right_Opnd (N);
1512      Op_Id : Entity_Id        := Entity (N);
1513
1514   begin
1515      Set_Etype (N, Any_Type);
1516      Candidate_Type := Empty;
1517
1518      Analyze_Expression (L);
1519      Analyze_Expression (R);
1520
1521      if Present (Op_Id) then
1522         if Ekind (Op_Id) = E_Operator then
1523            Find_Comparison_Types (L, R, Op_Id, N);
1524         else
1525            Add_One_Interp (N, Op_Id, Etype (Op_Id));
1526         end if;
1527
1528         if Is_Overloaded (L) then
1529            Set_Etype (L, Intersect_Types (L, R));
1530         end if;
1531
1532      else
1533         Op_Id := Get_Name_Entity_Id (Chars (N));
1534         while Present (Op_Id) loop
1535            if Ekind (Op_Id) = E_Operator then
1536               Find_Comparison_Types (L, R, Op_Id, N);
1537            else
1538               Analyze_User_Defined_Binary_Op (N, Op_Id);
1539            end if;
1540
1541            Op_Id := Homonym (Op_Id);
1542         end loop;
1543      end if;
1544
1545      Operator_Check (N);
1546   end Analyze_Comparison_Op;
1547
1548   ---------------------------
1549   -- Analyze_Concatenation --
1550   ---------------------------
1551
1552   procedure Analyze_Concatenation (N : Node_Id) is
1553
1554      --  We wish to avoid deep recursion, because concatenations are often
1555      --  deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1556      --  operands nonrecursively until we find something that is not a
1557      --  concatenation (A in this case), or has already been analyzed. We
1558      --  analyze that, and then walk back up the tree following Parent
1559      --  pointers, calling Analyze_Concatenation_Rest to do the rest of the
1560      --  work at each level. The Parent pointers allow us to avoid recursion,
1561      --  and thus avoid running out of memory.
1562
1563      NN : Node_Id := N;
1564      L  : Node_Id;
1565
1566   begin
1567      Candidate_Type := Empty;
1568
1569      --  The following code is equivalent to:
1570
1571      --    Set_Etype (N, Any_Type);
1572      --    Analyze_Expression (Left_Opnd (N));
1573      --    Analyze_Concatenation_Rest (N);
1574
1575      --  where the Analyze_Expression call recurses back here if the left
1576      --  operand is a concatenation.
1577
1578      --  Walk down left operands
1579
1580      loop
1581         Set_Etype (NN, Any_Type);
1582         L := Left_Opnd (NN);
1583         exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1584         NN := L;
1585      end loop;
1586
1587      --  Now (given the above example) NN is A&B and L is A
1588
1589      --  First analyze L ...
1590
1591      Analyze_Expression (L);
1592
1593      --  ... then walk NN back up until we reach N (where we started), calling
1594      --  Analyze_Concatenation_Rest along the way.
1595
1596      loop
1597         Analyze_Concatenation_Rest (NN);
1598         exit when NN = N;
1599         NN := Parent (NN);
1600      end loop;
1601   end Analyze_Concatenation;
1602
1603   --------------------------------
1604   -- Analyze_Concatenation_Rest --
1605   --------------------------------
1606
1607   --  If the only one-dimensional array type in scope is String,
1608   --  this is the resulting type of the operation. Otherwise there
1609   --  will be a concatenation operation defined for each user-defined
1610   --  one-dimensional array.
1611
1612   procedure Analyze_Concatenation_Rest (N : Node_Id) is
1613      L     : constant Node_Id := Left_Opnd (N);
1614      R     : constant Node_Id := Right_Opnd (N);
1615      Op_Id : Entity_Id        := Entity (N);
1616      LT    : Entity_Id;
1617      RT    : Entity_Id;
1618
1619   begin
1620      Analyze_Expression (R);
1621
1622      --  If the entity is present, the node appears in an instance, and
1623      --  denotes a predefined concatenation operation. The resulting type is
1624      --  obtained from the arguments when possible. If the arguments are
1625      --  aggregates, the array type and the concatenation type must be
1626      --  visible.
1627
1628      if Present (Op_Id) then
1629         if Ekind (Op_Id) = E_Operator then
1630            LT := Base_Type (Etype (L));
1631            RT := Base_Type (Etype (R));
1632
1633            if Is_Array_Type (LT)
1634              and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1635            then
1636               Add_One_Interp (N, Op_Id, LT);
1637
1638            elsif Is_Array_Type (RT)
1639              and then LT = Base_Type (Component_Type (RT))
1640            then
1641               Add_One_Interp (N, Op_Id, RT);
1642
1643            --  If one operand is a string type or a user-defined array type,
1644            --  and the other is a literal, result is of the specific type.
1645
1646            elsif
1647              (Root_Type (LT) = Standard_String
1648                 or else Scope (LT) /= Standard_Standard)
1649              and then Etype (R) = Any_String
1650            then
1651               Add_One_Interp (N, Op_Id, LT);
1652
1653            elsif
1654              (Root_Type (RT) = Standard_String
1655                 or else Scope (RT) /= Standard_Standard)
1656              and then Etype (L) = Any_String
1657            then
1658               Add_One_Interp (N, Op_Id, RT);
1659
1660            elsif not Is_Generic_Type (Etype (Op_Id)) then
1661               Add_One_Interp (N, Op_Id, Etype (Op_Id));
1662
1663            else
1664               --  Type and its operations must be visible
1665
1666               Set_Entity (N, Empty);
1667               Analyze_Concatenation (N);
1668            end if;
1669
1670         else
1671            Add_One_Interp (N, Op_Id, Etype (Op_Id));
1672         end if;
1673
1674      else
1675         Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1676         while Present (Op_Id) loop
1677            if Ekind (Op_Id) = E_Operator then
1678
1679               --  Do not consider operators declared in dead code, they can
1680               --  not be part of the resolution.
1681
1682               if Is_Eliminated (Op_Id) then
1683                  null;
1684               else
1685                  Find_Concatenation_Types (L, R, Op_Id, N);
1686               end if;
1687
1688            else
1689               Analyze_User_Defined_Binary_Op (N, Op_Id);
1690            end if;
1691
1692            Op_Id := Homonym (Op_Id);
1693         end loop;
1694      end if;
1695
1696      Operator_Check (N);
1697   end Analyze_Concatenation_Rest;
1698
1699   -------------------------
1700   -- Analyze_Equality_Op --
1701   -------------------------
1702
1703   procedure Analyze_Equality_Op (N : Node_Id) is
1704      Loc   : constant Source_Ptr := Sloc (N);
1705      L     : constant Node_Id := Left_Opnd (N);
1706      R     : constant Node_Id := Right_Opnd (N);
1707      Op_Id : Entity_Id;
1708
1709   begin
1710      Set_Etype (N, Any_Type);
1711      Candidate_Type := Empty;
1712
1713      Analyze_Expression (L);
1714      Analyze_Expression (R);
1715
1716      --  If the entity is set, the node is a generic instance with a non-local
1717      --  reference to the predefined operator or to a user-defined function.
1718      --  It can also be an inequality that is expanded into the negation of a
1719      --  call to a user-defined equality operator.
1720
1721      --  For the predefined case, the result is Boolean, regardless of the
1722      --  type of the  operands. The operands may even be limited, if they are
1723      --  generic actuals. If they are overloaded, label the left argument with
1724      --  the common type that must be present, or with the type of the formal
1725      --  of the user-defined function.
1726
1727      if Present (Entity (N)) then
1728         Op_Id := Entity (N);
1729
1730         if Ekind (Op_Id) = E_Operator then
1731            Add_One_Interp (N, Op_Id, Standard_Boolean);
1732         else
1733            Add_One_Interp (N, Op_Id, Etype (Op_Id));
1734         end if;
1735
1736         if Is_Overloaded (L) then
1737            if Ekind (Op_Id) = E_Operator then
1738               Set_Etype (L, Intersect_Types (L, R));
1739            else
1740               Set_Etype (L, Etype (First_Formal (Op_Id)));
1741            end if;
1742         end if;
1743
1744      else
1745         Op_Id := Get_Name_Entity_Id (Chars (N));
1746         while Present (Op_Id) loop
1747            if Ekind (Op_Id) = E_Operator then
1748               Find_Equality_Types (L, R, Op_Id, N);
1749            else
1750               Analyze_User_Defined_Binary_Op (N, Op_Id);
1751            end if;
1752
1753            Op_Id := Homonym (Op_Id);
1754         end loop;
1755      end if;
1756
1757      --  If there was no match, and the operator is inequality, this may
1758      --  be a case where inequality has not been made explicit, as for
1759      --  tagged types. Analyze the node as the negation of an equality
1760      --  operation. This cannot be done earlier, because before analysis
1761      --  we cannot rule out the presence of an explicit inequality.
1762
1763      if Etype (N) = Any_Type
1764        and then Nkind (N) = N_Op_Ne
1765      then
1766         Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1767         while Present (Op_Id) loop
1768            if Ekind (Op_Id) = E_Operator then
1769               Find_Equality_Types (L, R, Op_Id, N);
1770            else
1771               Analyze_User_Defined_Binary_Op (N, Op_Id);
1772            end if;
1773
1774            Op_Id := Homonym (Op_Id);
1775         end loop;
1776
1777         if Etype (N) /= Any_Type then
1778            Op_Id := Entity (N);
1779
1780            Rewrite (N,
1781              Make_Op_Not (Loc,
1782                Right_Opnd =>
1783                  Make_Op_Eq (Loc,
1784                    Left_Opnd  => Left_Opnd (N),
1785                    Right_Opnd => Right_Opnd (N))));
1786
1787            Set_Entity (Right_Opnd (N), Op_Id);
1788            Analyze (N);
1789         end if;
1790      end if;
1791
1792      Operator_Check (N);
1793   end Analyze_Equality_Op;
1794
1795   ----------------------------------
1796   -- Analyze_Explicit_Dereference --
1797   ----------------------------------
1798
1799   procedure Analyze_Explicit_Dereference (N : Node_Id) is
1800      Loc   : constant Source_Ptr := Sloc (N);
1801      P     : constant Node_Id := Prefix (N);
1802      T     : Entity_Id;
1803      I     : Interp_Index;
1804      It    : Interp;
1805      New_N : Node_Id;
1806
1807      function Is_Function_Type return Boolean;
1808      --  Check whether node may be interpreted as an implicit function call
1809
1810      ----------------------
1811      -- Is_Function_Type --
1812      ----------------------
1813
1814      function Is_Function_Type return Boolean is
1815         I  : Interp_Index;
1816         It : Interp;
1817
1818      begin
1819         if not Is_Overloaded (N) then
1820            return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1821              and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1822
1823         else
1824            Get_First_Interp (N, I, It);
1825            while Present (It.Nam) loop
1826               if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1827                 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1828               then
1829                  return False;
1830               end if;
1831
1832               Get_Next_Interp (I, It);
1833            end loop;
1834
1835            return True;
1836         end if;
1837      end Is_Function_Type;
1838
1839   --  Start of processing for Analyze_Explicit_Dereference
1840
1841   begin
1842      --  If source node, check SPARK restriction. We guard this with the
1843      --  source node check, because ???
1844
1845      if Comes_From_Source (N) then
1846         Check_SPARK_Restriction ("explicit dereference is not allowed", N);
1847      end if;
1848
1849      --  In formal verification mode, keep track of all reads and writes
1850      --  through explicit dereferences.
1851
1852      if GNATprove_Mode then
1853         SPARK_Specific.Generate_Dereference (N);
1854      end if;
1855
1856      Analyze (P);
1857      Set_Etype (N, Any_Type);
1858
1859      --  Test for remote access to subprogram type, and if so return
1860      --  after rewriting the original tree.
1861
1862      if Remote_AST_E_Dereference (P) then
1863         return;
1864      end if;
1865
1866      --  Normal processing for other than remote access to subprogram type
1867
1868      if not Is_Overloaded (P) then
1869         if Is_Access_Type (Etype (P)) then
1870
1871            --  Set the Etype. We need to go through Is_For_Access_Subtypes to
1872            --  avoid other problems caused by the Private_Subtype and it is
1873            --  safe to go to the Base_Type because this is the same as
1874            --  converting the access value to its Base_Type.
1875
1876            declare
1877               DT : Entity_Id := Designated_Type (Etype (P));
1878
1879            begin
1880               if Ekind (DT) = E_Private_Subtype
1881                 and then Is_For_Access_Subtype (DT)
1882               then
1883                  DT := Base_Type (DT);
1884               end if;
1885
1886               --  An explicit dereference is a legal occurrence of an
1887               --  incomplete type imported through a limited_with clause,
1888               --  if the full view is visible.
1889
1890               if From_Limited_With (DT)
1891                 and then not From_Limited_With (Scope (DT))
1892                 and then
1893                   (Is_Immediately_Visible (Scope (DT))
1894                     or else
1895                       (Is_Child_Unit (Scope (DT))
1896                         and then Is_Visible_Lib_Unit (Scope (DT))))
1897               then
1898                  Set_Etype (N, Available_View (DT));
1899
1900               else
1901                  Set_Etype (N, DT);
1902               end if;
1903            end;
1904
1905         elsif Etype (P) /= Any_Type then
1906            Error_Msg_N ("prefix of dereference must be an access type", N);
1907            return;
1908         end if;
1909
1910      else
1911         Get_First_Interp (P, I, It);
1912         while Present (It.Nam) loop
1913            T := It.Typ;
1914
1915            if Is_Access_Type (T) then
1916               Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1917            end if;
1918
1919            Get_Next_Interp (I, It);
1920         end loop;
1921
1922         --  Error if no interpretation of the prefix has an access type
1923
1924         if Etype (N) = Any_Type then
1925            Error_Msg_N
1926              ("access type required in prefix of explicit dereference", P);
1927            Set_Etype (N, Any_Type);
1928            return;
1929         end if;
1930      end if;
1931
1932      if Is_Function_Type
1933        and then Nkind (Parent (N)) /= N_Indexed_Component
1934
1935        and then (Nkind (Parent (N)) /= N_Function_Call
1936                   or else N /= Name (Parent (N)))
1937
1938        and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1939                   or else N /= Name (Parent (N)))
1940
1941        and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1942        and then (Nkind (Parent (N)) /= N_Attribute_Reference
1943                    or else
1944                      (Attribute_Name (Parent (N)) /= Name_Address
1945                        and then
1946                       Attribute_Name (Parent (N)) /= Name_Access))
1947      then
1948         --  Name is a function call with no actuals, in a context that
1949         --  requires deproceduring (including as an actual in an enclosing
1950         --  function or procedure call). There are some pathological cases
1951         --  where the prefix might include functions that return access to
1952         --  subprograms and others that return a regular type. Disambiguation
1953         --  of those has to take place in Resolve.
1954
1955         New_N :=
1956           Make_Function_Call (Loc,
1957           Name => Make_Explicit_Dereference (Loc, P),
1958           Parameter_Associations => New_List);
1959
1960         --  If the prefix is overloaded, remove operations that have formals,
1961         --  we know that this is a parameterless call.
1962
1963         if Is_Overloaded (P) then
1964            Get_First_Interp (P, I, It);
1965            while Present (It.Nam) loop
1966               T := It.Typ;
1967
1968               if No (First_Formal (Base_Type (Designated_Type (T)))) then
1969                  Set_Etype (P, T);
1970               else
1971                  Remove_Interp (I);
1972               end if;
1973
1974               Get_Next_Interp (I, It);
1975            end loop;
1976         end if;
1977
1978         Rewrite (N, New_N);
1979         Analyze (N);
1980
1981      elsif not Is_Function_Type
1982        and then Is_Overloaded (N)
1983      then
1984         --  The prefix may include access to subprograms and other access
1985         --  types. If the context selects the interpretation that is a
1986         --  function call (not a procedure call) we cannot rewrite the node
1987         --  yet, but we include the result of the call interpretation.
1988
1989         Get_First_Interp (N, I, It);
1990         while Present (It.Nam) loop
1991            if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1992               and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1993               and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1994            then
1995               Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1996            end if;
1997
1998            Get_Next_Interp (I, It);
1999         end loop;
2000      end if;
2001
2002      --  A value of remote access-to-class-wide must not be dereferenced
2003      --  (RM E.2.2(16)).
2004
2005      Validate_Remote_Access_To_Class_Wide_Type (N);
2006   end Analyze_Explicit_Dereference;
2007
2008   ------------------------
2009   -- Analyze_Expression --
2010   ------------------------
2011
2012   procedure Analyze_Expression (N : Node_Id) is
2013   begin
2014
2015      --  If the expression is an indexed component that will be rewritten
2016      --  as a container indexing, it has already been analyzed.
2017
2018      if Nkind (N) = N_Indexed_Component
2019        and then Present (Generalized_Indexing (N))
2020      then
2021         null;
2022
2023      else
2024         Analyze (N);
2025         Check_Parameterless_Call (N);
2026      end if;
2027   end Analyze_Expression;
2028
2029   -------------------------------------
2030   -- Analyze_Expression_With_Actions --
2031   -------------------------------------
2032
2033   procedure Analyze_Expression_With_Actions (N : Node_Id) is
2034      A : Node_Id;
2035
2036   begin
2037      A := First (Actions (N));
2038      while Present (A) loop
2039         Analyze (A);
2040         Next (A);
2041      end loop;
2042
2043      --  We currently hijack Expression_With_Actions with a VOID type and
2044      --  a NULL statement in the Expression. This will ultimately be replaced
2045      --  by a proper separate N_Compound_Statement node, at which point the
2046      --  test below can go away???
2047
2048      if Nkind (Expression (N)) = N_Null_Statement then
2049         Set_Etype (N, Standard_Void_Type);
2050      else
2051         Analyze_Expression (Expression (N));
2052         Set_Etype (N, Etype (Expression (N)));
2053      end if;
2054   end Analyze_Expression_With_Actions;
2055
2056   ---------------------------
2057   -- Analyze_If_Expression --
2058   ---------------------------
2059
2060   procedure Analyze_If_Expression (N : Node_Id) is
2061      Condition : constant Node_Id := First (Expressions (N));
2062      Then_Expr : constant Node_Id := Next (Condition);
2063      Else_Expr : Node_Id;
2064
2065   begin
2066      --  Defend against error of missing expressions from previous error
2067
2068      if No (Then_Expr) then
2069         Check_Error_Detected;
2070         return;
2071      end if;
2072
2073      if Comes_From_Source (N) then
2074         Check_SPARK_Restriction ("if expression is not allowed", N);
2075      end if;
2076
2077      Else_Expr := Next (Then_Expr);
2078
2079      if Comes_From_Source (N) then
2080         Check_Compiler_Unit (N);
2081      end if;
2082
2083      Analyze_Expression (Condition);
2084      Analyze_Expression (Then_Expr);
2085
2086      if Present (Else_Expr) then
2087         Analyze_Expression (Else_Expr);
2088      end if;
2089
2090      --  If then expression not overloaded, then that decides the type
2091
2092      if not Is_Overloaded (Then_Expr) then
2093         Set_Etype (N, Etype (Then_Expr));
2094
2095      --  Case where then expression is overloaded
2096
2097      else
2098         declare
2099            I  : Interp_Index;
2100            It : Interp;
2101
2102         begin
2103            Set_Etype (N, Any_Type);
2104
2105            --  Shouldn't the following statement be down in the ELSE of the
2106            --  following loop? ???
2107
2108            Get_First_Interp (Then_Expr, I, It);
2109
2110            --  if no Else_Expression the conditional must be boolean
2111
2112            if No (Else_Expr) then
2113               Set_Etype (N, Standard_Boolean);
2114
2115            --  Else_Expression Present. For each possible intepretation of
2116            --  the Then_Expression, add it only if the Else_Expression has
2117            --  a compatible type.
2118
2119            else
2120               while Present (It.Nam) loop
2121                  if Has_Compatible_Type (Else_Expr, It.Typ) then
2122                     Add_One_Interp (N, It.Typ, It.Typ);
2123                  end if;
2124
2125                  Get_Next_Interp (I, It);
2126               end loop;
2127            end if;
2128         end;
2129      end if;
2130   end Analyze_If_Expression;
2131
2132   ------------------------------------
2133   -- Analyze_Indexed_Component_Form --
2134   ------------------------------------
2135
2136   procedure Analyze_Indexed_Component_Form (N : Node_Id) is
2137      P     : constant Node_Id := Prefix (N);
2138      Exprs : constant List_Id := Expressions (N);
2139      Exp   : Node_Id;
2140      P_T   : Entity_Id;
2141      E     : Node_Id;
2142      U_N   : Entity_Id;
2143
2144      procedure Process_Function_Call;
2145      --  Prefix in indexed component form is an overloadable entity,
2146      --  so the node is a function call. Reformat it as such.
2147
2148      procedure Process_Indexed_Component;
2149      --  Prefix in indexed component form is actually an indexed component.
2150      --  This routine processes it, knowing that the prefix is already
2151      --  resolved.
2152
2153      procedure Process_Indexed_Component_Or_Slice;
2154      --  An indexed component with a single index may designate a slice if
2155      --  the index is a subtype mark. This routine disambiguates these two
2156      --  cases by resolving the prefix to see if it is a subtype mark.
2157
2158      procedure Process_Overloaded_Indexed_Component;
2159      --  If the prefix of an indexed component is overloaded, the proper
2160      --  interpretation is selected by the index types and the context.
2161
2162      ---------------------------
2163      -- Process_Function_Call --
2164      ---------------------------
2165
2166      procedure Process_Function_Call is
2167         Actual : Node_Id;
2168
2169      begin
2170         Change_Node (N, N_Function_Call);
2171         Set_Name (N, P);
2172         Set_Parameter_Associations (N, Exprs);
2173
2174         --  Analyze actuals prior to analyzing the call itself
2175
2176         Actual := First (Parameter_Associations (N));
2177         while Present (Actual) loop
2178            Analyze (Actual);
2179            Check_Parameterless_Call (Actual);
2180
2181            --  Move to next actual. Note that we use Next, not Next_Actual
2182            --  here. The reason for this is a bit subtle. If a function call
2183            --  includes named associations, the parser recognizes the node as
2184            --  a call, and it is analyzed as such. If all associations are
2185            --  positional, the parser builds an indexed_component node, and
2186            --  it is only after analysis of the prefix that the construct
2187            --  is recognized as a call, in which case Process_Function_Call
2188            --  rewrites the node and analyzes the actuals. If the list of
2189            --  actuals is malformed, the parser may leave the node as an
2190            --  indexed component (despite the presence of named associations).
2191            --  The iterator Next_Actual is equivalent to Next if the list is
2192            --  positional, but follows the normalized chain of actuals when
2193            --  named associations are present. In this case normalization has
2194            --  not taken place, and actuals remain unanalyzed, which leads to
2195            --  subsequent crashes or loops if there is an attempt to continue
2196            --  analysis of the program.
2197
2198            Next (Actual);
2199         end loop;
2200
2201         Analyze_Call (N);
2202      end Process_Function_Call;
2203
2204      -------------------------------
2205      -- Process_Indexed_Component --
2206      -------------------------------
2207
2208      procedure Process_Indexed_Component is
2209         Exp        : Node_Id;
2210         Array_Type : Entity_Id;
2211         Index      : Node_Id;
2212         Pent       : Entity_Id := Empty;
2213
2214      begin
2215         Exp := First (Exprs);
2216
2217         if Is_Overloaded (P) then
2218            Process_Overloaded_Indexed_Component;
2219
2220         else
2221            Array_Type := Etype (P);
2222
2223            if Is_Entity_Name (P) then
2224               Pent := Entity (P);
2225            elsif Nkind (P) = N_Selected_Component
2226              and then Is_Entity_Name (Selector_Name (P))
2227            then
2228               Pent := Entity (Selector_Name (P));
2229            end if;
2230
2231            --  Prefix must be appropriate for an array type, taking into
2232            --  account a possible implicit dereference.
2233
2234            if Is_Access_Type (Array_Type) then
2235               Error_Msg_NW
2236                 (Warn_On_Dereference, "?d?implicit dereference", N);
2237               Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
2238            end if;
2239
2240            if Is_Array_Type (Array_Type) then
2241               null;
2242
2243            elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
2244               Analyze (Exp);
2245               Set_Etype (N, Any_Type);
2246
2247               if not Has_Compatible_Type
2248                 (Exp, Entry_Index_Type (Pent))
2249               then
2250                  Error_Msg_N ("invalid index type in entry name", N);
2251
2252               elsif Present (Next (Exp)) then
2253                  Error_Msg_N ("too many subscripts in entry reference", N);
2254
2255               else
2256                  Set_Etype (N,  Etype (P));
2257               end if;
2258
2259               return;
2260
2261            elsif Is_Record_Type (Array_Type)
2262              and then Remote_AST_I_Dereference (P)
2263            then
2264               return;
2265
2266            elsif Try_Container_Indexing (N, P, Exprs) then
2267               return;
2268
2269            elsif Array_Type = Any_Type then
2270               Set_Etype (N, Any_Type);
2271
2272               --  In most cases the analysis of the prefix will have emitted
2273               --  an error already, but if the prefix may be interpreted as a
2274               --  call in prefixed notation, the report is left to the caller.
2275               --  To prevent cascaded errors, report only if no previous ones.
2276
2277               if Serious_Errors_Detected = 0 then
2278                  Error_Msg_N ("invalid prefix in indexed component", P);
2279
2280                  if Nkind (P) = N_Expanded_Name then
2281                     Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2282                  end if;
2283               end if;
2284
2285               return;
2286
2287            --  Here we definitely have a bad indexing
2288
2289            else
2290               if Nkind (Parent (N)) = N_Requeue_Statement
2291                 and then Present (Pent) and then Ekind (Pent) = E_Entry
2292               then
2293                  Error_Msg_N
2294                    ("REQUEUE does not permit parameters", First (Exprs));
2295
2296               elsif Is_Entity_Name (P)
2297                 and then Etype (P) = Standard_Void_Type
2298               then
2299                  Error_Msg_NE ("incorrect use of&", P, Entity (P));
2300
2301               else
2302                  Error_Msg_N ("array type required in indexed component", P);
2303               end if;
2304
2305               Set_Etype (N, Any_Type);
2306               return;
2307            end if;
2308
2309            Index := First_Index (Array_Type);
2310            while Present (Index) and then Present (Exp) loop
2311               if not Has_Compatible_Type (Exp, Etype (Index)) then
2312                  Wrong_Type (Exp, Etype (Index));
2313                  Set_Etype (N, Any_Type);
2314                  return;
2315               end if;
2316
2317               Next_Index (Index);
2318               Next (Exp);
2319            end loop;
2320
2321            Set_Etype (N, Component_Type (Array_Type));
2322            Check_Implicit_Dereference (N, Etype (N));
2323
2324            if Present (Index) then
2325               Error_Msg_N
2326                 ("too few subscripts in array reference", First (Exprs));
2327
2328            elsif Present (Exp) then
2329               Error_Msg_N ("too many subscripts in array reference", Exp);
2330            end if;
2331         end if;
2332      end Process_Indexed_Component;
2333
2334      ----------------------------------------
2335      -- Process_Indexed_Component_Or_Slice --
2336      ----------------------------------------
2337
2338      procedure Process_Indexed_Component_Or_Slice is
2339      begin
2340         Exp := First (Exprs);
2341         while Present (Exp) loop
2342            Analyze_Expression (Exp);
2343            Next (Exp);
2344         end loop;
2345
2346         Exp := First (Exprs);
2347
2348         --  If one index is present, and it is a subtype name, then the
2349         --  node denotes a slice (note that the case of an explicit range
2350         --  for a slice was already built as an N_Slice node in the first
2351         --  place, so that case is not handled here).
2352
2353         --  We use a replace rather than a rewrite here because this is one
2354         --  of the cases in which the tree built by the parser is plain wrong.
2355
2356         if No (Next (Exp))
2357           and then Is_Entity_Name (Exp)
2358           and then Is_Type (Entity (Exp))
2359         then
2360            Replace (N,
2361               Make_Slice (Sloc (N),
2362                 Prefix => P,
2363                 Discrete_Range => New_Copy (Exp)));
2364            Analyze (N);
2365
2366         --  Otherwise (more than one index present, or single index is not
2367         --  a subtype name), then we have the indexed component case.
2368
2369         else
2370            Process_Indexed_Component;
2371         end if;
2372      end Process_Indexed_Component_Or_Slice;
2373
2374      ------------------------------------------
2375      -- Process_Overloaded_Indexed_Component --
2376      ------------------------------------------
2377
2378      procedure Process_Overloaded_Indexed_Component is
2379         Exp   : Node_Id;
2380         I     : Interp_Index;
2381         It    : Interp;
2382         Typ   : Entity_Id;
2383         Index : Node_Id;
2384         Found : Boolean;
2385
2386      begin
2387         Set_Etype (N, Any_Type);
2388
2389         Get_First_Interp (P, I, It);
2390         while Present (It.Nam) loop
2391            Typ := It.Typ;
2392
2393            if Is_Access_Type (Typ) then
2394               Typ := Designated_Type (Typ);
2395               Error_Msg_NW
2396                 (Warn_On_Dereference, "?d?implicit dereference", N);
2397            end if;
2398
2399            if Is_Array_Type (Typ) then
2400
2401               --  Got a candidate: verify that index types are compatible
2402
2403               Index := First_Index (Typ);
2404               Found := True;
2405               Exp := First (Exprs);
2406               while Present (Index) and then Present (Exp) loop
2407                  if Has_Compatible_Type (Exp, Etype (Index)) then
2408                     null;
2409                  else
2410                     Found := False;
2411                     Remove_Interp (I);
2412                     exit;
2413                  end if;
2414
2415                  Next_Index (Index);
2416                  Next (Exp);
2417               end loop;
2418
2419               if Found and then No (Index) and then No (Exp) then
2420                  declare
2421                     CT : constant Entity_Id :=
2422                            Base_Type (Component_Type (Typ));
2423                  begin
2424                     Add_One_Interp (N, CT, CT);
2425                     Check_Implicit_Dereference (N, CT);
2426                  end;
2427               end if;
2428
2429            elsif Try_Container_Indexing (N, P, Exprs) then
2430               return;
2431
2432            end if;
2433
2434            Get_Next_Interp (I, It);
2435         end loop;
2436
2437         if Etype (N) = Any_Type then
2438            Error_Msg_N ("no legal interpretation for indexed component", N);
2439            Set_Is_Overloaded (N, False);
2440         end if;
2441
2442         End_Interp_List;
2443      end Process_Overloaded_Indexed_Component;
2444
2445   --  Start of processing for Analyze_Indexed_Component_Form
2446
2447   begin
2448      --  Get name of array, function or type
2449
2450      Analyze (P);
2451
2452      --  If P is an explicit dereference whose prefix is of a remote access-
2453      --  to-subprogram type, then N has already been rewritten as a subprogram
2454      --  call and analyzed.
2455
2456      if Nkind (N) in N_Subprogram_Call then
2457         return;
2458
2459      --  When the prefix is attribute 'Loop_Entry and the sole expression of
2460      --  the indexed component denotes a loop name, the indexed form is turned
2461      --  into an attribute reference.
2462
2463      elsif Nkind (N) = N_Attribute_Reference
2464        and then Attribute_Name (N) = Name_Loop_Entry
2465      then
2466         return;
2467      end if;
2468
2469      pragma Assert (Nkind (N) = N_Indexed_Component);
2470
2471      P_T := Base_Type (Etype (P));
2472
2473      if Is_Entity_Name (P) and then Present (Entity (P)) then
2474         U_N := Entity (P);
2475
2476         if Is_Type (U_N) then
2477
2478            --  Reformat node as a type conversion
2479
2480            E := Remove_Head (Exprs);
2481
2482            if Present (First (Exprs)) then
2483               Error_Msg_N
2484                ("argument of type conversion must be single expression", N);
2485            end if;
2486
2487            Change_Node (N, N_Type_Conversion);
2488            Set_Subtype_Mark (N, P);
2489            Set_Etype (N, U_N);
2490            Set_Expression (N, E);
2491
2492            --  After changing the node, call for the specific Analysis
2493            --  routine directly, to avoid a double call to the expander.
2494
2495            Analyze_Type_Conversion (N);
2496            return;
2497         end if;
2498
2499         if Is_Overloadable (U_N) then
2500            Process_Function_Call;
2501
2502         elsif Ekind (Etype (P)) = E_Subprogram_Type
2503           or else (Is_Access_Type (Etype (P))
2504                      and then
2505                        Ekind (Designated_Type (Etype (P))) =
2506                                                   E_Subprogram_Type)
2507         then
2508            --  Call to access_to-subprogram with possible implicit dereference
2509
2510            Process_Function_Call;
2511
2512         elsif Is_Generic_Subprogram (U_N) then
2513
2514            --  A common beginner's (or C++ templates fan) error
2515
2516            Error_Msg_N ("generic subprogram cannot be called", N);
2517            Set_Etype (N, Any_Type);
2518            return;
2519
2520         else
2521            Process_Indexed_Component_Or_Slice;
2522         end if;
2523
2524      --  If not an entity name, prefix is an expression that may denote
2525      --  an array or an access-to-subprogram.
2526
2527      else
2528         if Ekind (P_T) = E_Subprogram_Type
2529           or else (Is_Access_Type (P_T)
2530                     and then
2531                       Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
2532         then
2533            Process_Function_Call;
2534
2535         elsif Nkind (P) = N_Selected_Component
2536           and then Present (Entity (Selector_Name (P)))
2537           and then Is_Overloadable (Entity (Selector_Name (P)))
2538         then
2539            Process_Function_Call;
2540
2541         --  In ASIS mode within a generic, a prefixed call is analyzed and
2542         --  partially rewritten but the original indexed component has not
2543         --  yet been rewritten as a call. Perform the replacement now.
2544
2545         elsif Nkind (P) = N_Selected_Component
2546           and then Nkind (Parent (P)) = N_Function_Call
2547           and then ASIS_Mode
2548         then
2549            Rewrite (N, Parent (P));
2550            Analyze (N);
2551
2552         else
2553            --  Indexed component, slice, or a call to a member of a family
2554            --  entry, which will be converted to an entry call later.
2555
2556            Process_Indexed_Component_Or_Slice;
2557         end if;
2558      end if;
2559
2560      Analyze_Dimension (N);
2561   end Analyze_Indexed_Component_Form;
2562
2563   ------------------------
2564   -- Analyze_Logical_Op --
2565   ------------------------
2566
2567   procedure Analyze_Logical_Op (N : Node_Id) is
2568      L     : constant Node_Id := Left_Opnd (N);
2569      R     : constant Node_Id := Right_Opnd (N);
2570      Op_Id : Entity_Id := Entity (N);
2571
2572   begin
2573      Set_Etype (N, Any_Type);
2574      Candidate_Type := Empty;
2575
2576      Analyze_Expression (L);
2577      Analyze_Expression (R);
2578
2579      if Present (Op_Id) then
2580
2581         if Ekind (Op_Id) = E_Operator then
2582            Find_Boolean_Types (L, R, Op_Id, N);
2583         else
2584            Add_One_Interp (N, Op_Id, Etype (Op_Id));
2585         end if;
2586
2587      else
2588         Op_Id := Get_Name_Entity_Id (Chars (N));
2589         while Present (Op_Id) loop
2590            if Ekind (Op_Id) = E_Operator then
2591               Find_Boolean_Types (L, R, Op_Id, N);
2592            else
2593               Analyze_User_Defined_Binary_Op (N, Op_Id);
2594            end if;
2595
2596            Op_Id := Homonym (Op_Id);
2597         end loop;
2598      end if;
2599
2600      Operator_Check (N);
2601   end Analyze_Logical_Op;
2602
2603   ---------------------------
2604   -- Analyze_Membership_Op --
2605   ---------------------------
2606
2607   procedure Analyze_Membership_Op (N : Node_Id) is
2608      Loc   : constant Source_Ptr := Sloc (N);
2609      L     : constant Node_Id    := Left_Opnd (N);
2610      R     : constant Node_Id    := Right_Opnd (N);
2611
2612      Index : Interp_Index;
2613      It    : Interp;
2614      Found : Boolean := False;
2615      I_F   : Interp_Index;
2616      T_F   : Entity_Id;
2617
2618      procedure Try_One_Interp (T1 : Entity_Id);
2619      --  Routine to try one proposed interpretation. Note that the context
2620      --  of the operation plays no role in resolving the arguments, so that
2621      --  if there is more than one interpretation of the operands that is
2622      --  compatible with a membership test, the operation is ambiguous.
2623
2624      --------------------
2625      -- Try_One_Interp --
2626      --------------------
2627
2628      procedure Try_One_Interp (T1 : Entity_Id) is
2629      begin
2630         if Has_Compatible_Type (R, T1) then
2631            if Found
2632              and then Base_Type (T1) /= Base_Type (T_F)
2633            then
2634               It := Disambiguate (L, I_F, Index, Any_Type);
2635
2636               if It = No_Interp then
2637                  Ambiguous_Operands (N);
2638                  Set_Etype (L, Any_Type);
2639                  return;
2640
2641               else
2642                  T_F := It.Typ;
2643               end if;
2644
2645            else
2646               Found := True;
2647               T_F   := T1;
2648               I_F   := Index;
2649            end if;
2650
2651            Set_Etype (L, T_F);
2652         end if;
2653      end Try_One_Interp;
2654
2655      procedure Analyze_Set_Membership;
2656      --  If a set of alternatives is present, analyze each and find the
2657      --  common type to which they must all resolve.
2658
2659      ----------------------------
2660      -- Analyze_Set_Membership --
2661      ----------------------------
2662
2663      procedure Analyze_Set_Membership is
2664         Alt               : Node_Id;
2665         Index             : Interp_Index;
2666         It                : Interp;
2667         Candidate_Interps : Node_Id;
2668         Common_Type       : Entity_Id := Empty;
2669
2670      begin
2671         if Comes_From_Source (N) then
2672            Check_Compiler_Unit (N);
2673         end if;
2674
2675         Analyze (L);
2676         Candidate_Interps := L;
2677
2678         if not Is_Overloaded (L) then
2679            Common_Type := Etype (L);
2680
2681            Alt := First (Alternatives (N));
2682            while Present (Alt) loop
2683               Analyze (Alt);
2684
2685               if not Has_Compatible_Type (Alt, Common_Type) then
2686                  Wrong_Type (Alt, Common_Type);
2687               end if;
2688
2689               Next (Alt);
2690            end loop;
2691
2692         else
2693            Alt := First (Alternatives (N));
2694            while Present (Alt) loop
2695               Analyze (Alt);
2696               if not Is_Overloaded (Alt) then
2697                  Common_Type := Etype (Alt);
2698
2699               else
2700                  Get_First_Interp (Alt, Index, It);
2701                  while Present (It.Typ) loop
2702                     if not
2703                       Has_Compatible_Type (Candidate_Interps, It.Typ)
2704                     then
2705                        Remove_Interp (Index);
2706                     end if;
2707
2708                     Get_Next_Interp (Index, It);
2709                  end loop;
2710
2711                  Get_First_Interp (Alt, Index, It);
2712
2713                  if No (It.Typ) then
2714                     Error_Msg_N ("alternative has no legal type", Alt);
2715                     return;
2716                  end if;
2717
2718                  --  If alternative is not overloaded, we have a unique type
2719                  --  for all of them.
2720
2721                  Set_Etype (Alt, It.Typ);
2722                  Get_Next_Interp (Index, It);
2723
2724                  if No (It.Typ) then
2725                     Set_Is_Overloaded (Alt, False);
2726                     Common_Type := Etype (Alt);
2727                  end if;
2728
2729                  Candidate_Interps := Alt;
2730               end if;
2731
2732               Next (Alt);
2733            end loop;
2734         end if;
2735
2736         Set_Etype (N, Standard_Boolean);
2737
2738         if Present (Common_Type) then
2739            Set_Etype (L, Common_Type);
2740            Set_Is_Overloaded (L, False);
2741
2742         else
2743            Error_Msg_N ("cannot resolve membership operation", N);
2744         end if;
2745      end Analyze_Set_Membership;
2746
2747   --  Start of processing for Analyze_Membership_Op
2748
2749   begin
2750      Analyze_Expression (L);
2751
2752      if No (R) and then Ada_Version >= Ada_2012 then
2753         Analyze_Set_Membership;
2754         return;
2755      end if;
2756
2757      if Nkind (R) = N_Range
2758        or else (Nkind (R) = N_Attribute_Reference
2759                  and then Attribute_Name (R) = Name_Range)
2760      then
2761         Analyze (R);
2762
2763         if not Is_Overloaded (L) then
2764            Try_One_Interp (Etype (L));
2765
2766         else
2767            Get_First_Interp (L, Index, It);
2768            while Present (It.Typ) loop
2769               Try_One_Interp (It.Typ);
2770               Get_Next_Interp (Index, It);
2771            end loop;
2772         end if;
2773
2774      --  If not a range, it can be a subtype mark, or else it is a degenerate
2775      --  membership test with a singleton value, i.e. a test for equality,
2776      --  if the types are compatible.
2777
2778      else
2779         Analyze (R);
2780
2781         if Is_Entity_Name (R)
2782           and then Is_Type (Entity (R))
2783         then
2784            Find_Type (R);
2785            Check_Fully_Declared (Entity (R), R);
2786
2787         elsif Ada_Version >= Ada_2012
2788           and then Has_Compatible_Type (R, Etype (L))
2789         then
2790            if Nkind (N) = N_In then
2791               Rewrite (N,
2792                 Make_Op_Eq (Loc,
2793                   Left_Opnd  => L,
2794                   Right_Opnd => R));
2795            else
2796               Rewrite (N,
2797                 Make_Op_Ne (Loc,
2798                   Left_Opnd  => L,
2799                   Right_Opnd => R));
2800            end if;
2801
2802            Analyze (N);
2803            return;
2804
2805         else
2806            --  In all versions of the language, if we reach this point there
2807            --  is a previous error that will be diagnosed below.
2808
2809            Find_Type (R);
2810         end if;
2811      end if;
2812
2813      --  Compatibility between expression and subtype mark or range is
2814      --  checked during resolution. The result of the operation is Boolean
2815      --  in any case.
2816
2817      Set_Etype (N, Standard_Boolean);
2818
2819      if Comes_From_Source (N)
2820        and then Present (Right_Opnd (N))
2821        and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2822      then
2823         Error_Msg_N ("membership test not applicable to cpp-class types", N);
2824      end if;
2825   end Analyze_Membership_Op;
2826
2827   -----------------
2828   -- Analyze_Mod --
2829   -----------------
2830
2831   procedure Analyze_Mod (N : Node_Id) is
2832   begin
2833      --  A special warning check, if we have an expression of the form:
2834      --    expr mod 2 * literal
2835      --  where literal is 64 or less, then probably what was meant was
2836      --    expr mod 2 ** literal
2837      --  so issue an appropriate warning.
2838
2839      if Warn_On_Suspicious_Modulus_Value
2840        and then Nkind (Right_Opnd (N)) = N_Integer_Literal
2841        and then Intval (Right_Opnd (N)) = Uint_2
2842        and then Nkind (Parent (N)) = N_Op_Multiply
2843        and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
2844        and then Intval (Right_Opnd (Parent (N))) <= Uint_64
2845      then
2846         Error_Msg_N
2847           ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
2848      end if;
2849
2850      --  Remaining processing is same as for other arithmetic operators
2851
2852      Analyze_Arithmetic_Op (N);
2853   end Analyze_Mod;
2854
2855   ----------------------
2856   -- Analyze_Negation --
2857   ----------------------
2858
2859   procedure Analyze_Negation (N : Node_Id) is
2860      R     : constant Node_Id := Right_Opnd (N);
2861      Op_Id : Entity_Id := Entity (N);
2862
2863   begin
2864      Set_Etype (N, Any_Type);
2865      Candidate_Type := Empty;
2866
2867      Analyze_Expression (R);
2868
2869      if Present (Op_Id) then
2870         if Ekind (Op_Id) = E_Operator then
2871            Find_Negation_Types (R, Op_Id, N);
2872         else
2873            Add_One_Interp (N, Op_Id, Etype (Op_Id));
2874         end if;
2875
2876      else
2877         Op_Id := Get_Name_Entity_Id (Chars (N));
2878         while Present (Op_Id) loop
2879            if Ekind (Op_Id) = E_Operator then
2880               Find_Negation_Types (R, Op_Id, N);
2881            else
2882               Analyze_User_Defined_Unary_Op (N, Op_Id);
2883            end if;
2884
2885            Op_Id := Homonym (Op_Id);
2886         end loop;
2887      end if;
2888
2889      Operator_Check (N);
2890   end Analyze_Negation;
2891
2892   ------------------
2893   -- Analyze_Null --
2894   ------------------
2895
2896   procedure Analyze_Null (N : Node_Id) is
2897   begin
2898      Check_SPARK_Restriction ("null is not allowed", N);
2899
2900      Set_Etype (N, Any_Access);
2901   end Analyze_Null;
2902
2903   ----------------------
2904   -- Analyze_One_Call --
2905   ----------------------
2906
2907   procedure Analyze_One_Call
2908      (N          : Node_Id;
2909       Nam        : Entity_Id;
2910       Report     : Boolean;
2911       Success    : out Boolean;
2912       Skip_First : Boolean := False)
2913   is
2914      Actuals : constant List_Id   := Parameter_Associations (N);
2915      Prev_T  : constant Entity_Id := Etype (N);
2916
2917      Must_Skip  : constant Boolean := Skip_First
2918                     or else Nkind (Original_Node (N)) = N_Selected_Component
2919                     or else
2920                       (Nkind (Original_Node (N)) = N_Indexed_Component
2921                          and then Nkind (Prefix (Original_Node (N)))
2922                            = N_Selected_Component);
2923      --  The first formal must be omitted from the match when trying to find
2924      --  a primitive operation that is a possible interpretation, and also
2925      --  after the call has been rewritten, because the corresponding actual
2926      --  is already known to be compatible, and because this may be an
2927      --  indexing of a call with default parameters.
2928
2929      Formal      : Entity_Id;
2930      Actual      : Node_Id;
2931      Is_Indexed  : Boolean := False;
2932      Is_Indirect : Boolean := False;
2933      Subp_Type   : constant Entity_Id := Etype (Nam);
2934      Norm_OK     : Boolean;
2935
2936      function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2937      --  There may be a user-defined operator that hides the current
2938      --  interpretation. We must check for this independently of the
2939      --  analysis of the call with the user-defined operation, because
2940      --  the parameter names may be wrong and yet the hiding takes place.
2941      --  This fixes a problem with ACATS test B34014O.
2942      --
2943      --  When the type Address is a visible integer type, and the DEC
2944      --  system extension is visible, the predefined operator may be
2945      --  hidden as well, by one of the address operations in auxdec.
2946      --  Finally, The abstract operations on address do not hide the
2947      --  predefined operator (this is the purpose of making them abstract).
2948
2949      procedure Indicate_Name_And_Type;
2950      --  If candidate interpretation matches, indicate name and type of
2951      --  result on call node.
2952
2953      ----------------------------
2954      -- Indicate_Name_And_Type --
2955      ----------------------------
2956
2957      procedure Indicate_Name_And_Type is
2958      begin
2959         Add_One_Interp (N, Nam, Etype (Nam));
2960         Check_Implicit_Dereference (N, Etype (Nam));
2961         Success := True;
2962
2963         --  If the prefix of the call is a name, indicate the entity
2964         --  being called. If it is not a name,  it is an expression that
2965         --  denotes an access to subprogram or else an entry or family. In
2966         --  the latter case, the name is a selected component, and the entity
2967         --  being called is noted on the selector.
2968
2969         if not Is_Type (Nam) then
2970            if Is_Entity_Name (Name (N)) then
2971               Set_Entity (Name (N), Nam);
2972
2973            elsif Nkind (Name (N)) = N_Selected_Component then
2974               Set_Entity (Selector_Name (Name (N)),  Nam);
2975            end if;
2976         end if;
2977
2978         if Debug_Flag_E and not Report then
2979            Write_Str (" Overloaded call ");
2980            Write_Int (Int (N));
2981            Write_Str (" compatible with ");
2982            Write_Int (Int (Nam));
2983            Write_Eol;
2984         end if;
2985      end Indicate_Name_And_Type;
2986
2987      ------------------------
2988      -- Operator_Hidden_By --
2989      ------------------------
2990
2991      function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2992         Act1  : constant Node_Id   := First_Actual (N);
2993         Act2  : constant Node_Id   := Next_Actual (Act1);
2994         Form1 : constant Entity_Id := First_Formal (Fun);
2995         Form2 : constant Entity_Id := Next_Formal (Form1);
2996
2997      begin
2998         if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
2999            return False;
3000
3001         elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
3002            return False;
3003
3004         elsif Present (Form2) then
3005            if No (Act2)
3006              or else not Has_Compatible_Type (Act2, Etype (Form2))
3007            then
3008               return False;
3009            end if;
3010
3011         elsif Present (Act2) then
3012            return False;
3013         end if;
3014
3015         --  Now we know that the arity of the operator matches the function,
3016         --  and the function call is a valid interpretation. The function
3017         --  hides the operator if it has the right signature, or if one of
3018         --  its operands is a non-abstract operation on Address when this is
3019         --  a visible integer type.
3020
3021         return Hides_Op (Fun, Nam)
3022           or else Is_Descendent_Of_Address (Etype (Form1))
3023           or else
3024             (Present (Form2)
3025               and then Is_Descendent_Of_Address (Etype (Form2)));
3026      end Operator_Hidden_By;
3027
3028   --  Start of processing for Analyze_One_Call
3029
3030   begin
3031      Success := False;
3032
3033      --  If the subprogram has no formals or if all the formals have defaults,
3034      --  and the return type is an array type, the node may denote an indexing
3035      --  of the result of a parameterless call. In Ada 2005, the subprogram
3036      --  may have one non-defaulted formal, and the call may have been written
3037      --  in prefix notation, so that the rebuilt parameter list has more than
3038      --  one actual.
3039
3040      if not Is_Overloadable (Nam)
3041        and then Ekind (Nam) /= E_Subprogram_Type
3042        and then Ekind (Nam) /= E_Entry_Family
3043      then
3044         return;
3045      end if;
3046
3047      --  An indexing requires at least one actual. The name of the call cannot
3048      --  be an implicit indirect call, so it cannot be a generated explicit
3049      --  dereference.
3050
3051      if not Is_Empty_List (Actuals)
3052        and then
3053          (Needs_No_Actuals (Nam)
3054            or else
3055              (Needs_One_Actual (Nam)
3056                and then Present (Next_Actual (First (Actuals)))))
3057      then
3058         if Is_Array_Type (Subp_Type)
3059           and then
3060            (Nkind (Name (N)) /= N_Explicit_Dereference
3061              or else Comes_From_Source (Name (N)))
3062         then
3063            Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
3064
3065         elsif Is_Access_Type (Subp_Type)
3066           and then Is_Array_Type (Designated_Type (Subp_Type))
3067         then
3068            Is_Indexed :=
3069              Try_Indexed_Call
3070                (N, Nam, Designated_Type (Subp_Type), Must_Skip);
3071
3072         --  The prefix can also be a parameterless function that returns an
3073         --  access to subprogram, in which case this is an indirect call.
3074         --  If this succeeds, an explicit dereference is added later on,
3075         --  in Analyze_Call or Resolve_Call.
3076
3077         elsif Is_Access_Type (Subp_Type)
3078           and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
3079         then
3080            Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
3081         end if;
3082
3083      end if;
3084
3085      --  If the call has been transformed into a slice, it is of the form
3086      --  F (Subtype) where F is parameterless. The node has been rewritten in
3087      --  Try_Indexed_Call and there is nothing else to do.
3088
3089      if Is_Indexed
3090        and then  Nkind (N) = N_Slice
3091      then
3092         return;
3093      end if;
3094
3095      Normalize_Actuals
3096        (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
3097
3098      if not Norm_OK then
3099
3100         --  If an indirect call is a possible interpretation, indicate
3101         --  success to the caller. This may be an indexing of an explicit
3102         --  dereference of a call that returns an access type (see above).
3103
3104         if Is_Indirect
3105           or else (Is_Indexed
3106                     and then Nkind (Name (N)) = N_Explicit_Dereference
3107                     and then Comes_From_Source (Name (N)))
3108         then
3109            Success := True;
3110            return;
3111
3112         --  Mismatch in number or names of parameters
3113
3114         elsif Debug_Flag_E then
3115            Write_Str (" normalization fails in call ");
3116            Write_Int (Int (N));
3117            Write_Str (" with subprogram ");
3118            Write_Int (Int (Nam));
3119            Write_Eol;
3120         end if;
3121
3122      --  If the context expects a function call, discard any interpretation
3123      --  that is a procedure. If the node is not overloaded, leave as is for
3124      --  better error reporting when type mismatch is found.
3125
3126      elsif Nkind (N) = N_Function_Call
3127        and then Is_Overloaded (Name (N))
3128        and then Ekind (Nam) = E_Procedure
3129      then
3130         return;
3131
3132      --  Ditto for function calls in a procedure context
3133
3134      elsif Nkind (N) = N_Procedure_Call_Statement
3135         and then Is_Overloaded (Name (N))
3136         and then Etype (Nam) /= Standard_Void_Type
3137      then
3138         return;
3139
3140      elsif No (Actuals) then
3141
3142         --  If Normalize succeeds, then there are default parameters for
3143         --  all formals.
3144
3145         Indicate_Name_And_Type;
3146
3147      elsif Ekind (Nam) = E_Operator then
3148         if Nkind (N) = N_Procedure_Call_Statement then
3149            return;
3150         end if;
3151
3152         --  This can occur when the prefix of the call is an operator
3153         --  name or an expanded name whose selector is an operator name.
3154
3155         Analyze_Operator_Call (N, Nam);
3156
3157         if Etype (N) /= Prev_T then
3158
3159            --  Check that operator is not hidden by a function interpretation
3160
3161            if Is_Overloaded (Name (N)) then
3162               declare
3163                  I  : Interp_Index;
3164                  It : Interp;
3165
3166               begin
3167                  Get_First_Interp (Name (N), I, It);
3168                  while Present (It.Nam) loop
3169                     if Operator_Hidden_By (It.Nam) then
3170                        Set_Etype (N, Prev_T);
3171                        return;
3172                     end if;
3173
3174                     Get_Next_Interp (I, It);
3175                  end loop;
3176               end;
3177            end if;
3178
3179            --  If operator matches formals, record its name on the call.
3180            --  If the operator is overloaded, Resolve will select the
3181            --  correct one from the list of interpretations. The call
3182            --  node itself carries the first candidate.
3183
3184            Set_Entity (Name (N), Nam);
3185            Success := True;
3186
3187         elsif Report and then Etype (N) = Any_Type then
3188            Error_Msg_N ("incompatible arguments for operator", N);
3189         end if;
3190
3191      else
3192         --  Normalize_Actuals has chained the named associations in the
3193         --  correct order of the formals.
3194
3195         Actual := First_Actual (N);
3196         Formal := First_Formal (Nam);
3197
3198         --  If we are analyzing a call rewritten from object notation, skip
3199         --  first actual, which may be rewritten later as an explicit
3200         --  dereference.
3201
3202         if Must_Skip then
3203            Next_Actual (Actual);
3204            Next_Formal (Formal);
3205         end if;
3206
3207         while Present (Actual) and then Present (Formal) loop
3208            if Nkind (Parent (Actual)) /= N_Parameter_Association
3209              or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
3210            then
3211               --  The actual can be compatible with the formal, but we must
3212               --  also check that the context is not an address type that is
3213               --  visibly an integer type, as is the case in VMS_64. In this
3214               --  case the use of literals is illegal, except in the body of
3215               --  descendents of system, where arithmetic operations on
3216               --  address are of course used.
3217
3218               if Has_Compatible_Type (Actual, Etype (Formal))
3219                 and then
3220                  (Etype (Actual) /= Universal_Integer
3221                    or else not Is_Descendent_Of_Address (Etype (Formal))
3222                    or else
3223                      Is_Predefined_File_Name
3224                        (Unit_File_Name (Get_Source_Unit (N))))
3225               then
3226                  Next_Actual (Actual);
3227                  Next_Formal (Formal);
3228
3229               --  In Allow_Integer_Address mode, we allow an actual integer to
3230               --  match a formal address type and vice versa. We only do this
3231               --  if we are certain that an error will otherwise be issued
3232
3233               elsif Address_Integer_Convert_OK
3234                       (Etype (Actual), Etype (Formal))
3235                 and then (Report and not Is_Indexed and not Is_Indirect)
3236               then
3237                  --  Handle this case by introducing an unchecked conversion
3238
3239                  Rewrite (Actual,
3240                           Unchecked_Convert_To (Etype (Formal),
3241                             Relocate_Node (Actual)));
3242                  Analyze_And_Resolve (Actual, Etype (Formal));
3243                  Next_Actual (Actual);
3244                  Next_Formal (Formal);
3245
3246               else
3247                  if Debug_Flag_E then
3248                     Write_Str (" type checking fails in call ");
3249                     Write_Int (Int (N));
3250                     Write_Str (" with formal ");
3251                     Write_Int (Int (Formal));
3252                     Write_Str (" in subprogram ");
3253                     Write_Int (Int (Nam));
3254                     Write_Eol;
3255                  end if;
3256
3257                  --  Comment needed on the following test???
3258
3259                  if Report and not Is_Indexed and not Is_Indirect then
3260
3261                     --  Ada 2005 (AI-251): Complete the error notification
3262                     --  to help new Ada 2005 users.
3263
3264                     if Is_Class_Wide_Type (Etype (Formal))
3265                       and then Is_Interface (Etype (Etype (Formal)))
3266                       and then not Interface_Present_In_Ancestor
3267                                      (Typ   => Etype (Actual),
3268                                       Iface => Etype (Etype (Formal)))
3269                     then
3270                        Error_Msg_NE
3271                          ("(Ada 2005) does not implement interface }",
3272                           Actual, Etype (Etype (Formal)));
3273                     end if;
3274
3275                     Wrong_Type (Actual, Etype (Formal));
3276
3277                     if Nkind (Actual) = N_Op_Eq
3278                       and then Nkind (Left_Opnd (Actual)) = N_Identifier
3279                     then
3280                        Formal := First_Formal (Nam);
3281                        while Present (Formal) loop
3282                           if Chars (Left_Opnd (Actual)) = Chars (Formal) then
3283                              Error_Msg_N -- CODEFIX
3284                                ("possible misspelling of `='>`!", Actual);
3285                              exit;
3286                           end if;
3287
3288                           Next_Formal (Formal);
3289                        end loop;
3290                     end if;
3291
3292                     if All_Errors_Mode then
3293                        Error_Msg_Sloc := Sloc (Nam);
3294
3295                        if Etype (Formal) = Any_Type then
3296                           Error_Msg_N
3297                             ("there is no legal actual parameter", Actual);
3298                        end if;
3299
3300                        if Is_Overloadable (Nam)
3301                          and then Present (Alias (Nam))
3302                          and then not Comes_From_Source (Nam)
3303                        then
3304                           Error_Msg_NE
3305                             ("\\  =='> in call to inherited operation & #!",
3306                              Actual, Nam);
3307
3308                        elsif Ekind (Nam) = E_Subprogram_Type then
3309                           declare
3310                              Access_To_Subprogram_Typ :
3311                                constant Entity_Id :=
3312                                  Defining_Identifier
3313                                    (Associated_Node_For_Itype (Nam));
3314                           begin
3315                              Error_Msg_NE
3316                                ("\\  =='> in call to dereference of &#!",
3317                                 Actual, Access_To_Subprogram_Typ);
3318                           end;
3319
3320                        else
3321                           Error_Msg_NE
3322                             ("\\  =='> in call to &#!", Actual, Nam);
3323
3324                        end if;
3325                     end if;
3326                  end if;
3327
3328                  return;
3329               end if;
3330
3331            else
3332               --  Normalize_Actuals has verified that a default value exists
3333               --  for this formal. Current actual names a subsequent formal.
3334
3335               Next_Formal (Formal);
3336            end if;
3337         end loop;
3338
3339         --  On exit, all actuals match
3340
3341         Indicate_Name_And_Type;
3342      end if;
3343   end Analyze_One_Call;
3344
3345   ---------------------------
3346   -- Analyze_Operator_Call --
3347   ---------------------------
3348
3349   procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3350      Op_Name : constant Name_Id := Chars (Op_Id);
3351      Act1    : constant Node_Id := First_Actual (N);
3352      Act2    : constant Node_Id := Next_Actual (Act1);
3353
3354   begin
3355      --  Binary operator case
3356
3357      if Present (Act2) then
3358
3359         --  If more than two operands, then not binary operator after all
3360
3361         if Present (Next_Actual (Act2)) then
3362            return;
3363         end if;
3364
3365         --  Otherwise action depends on operator
3366
3367         case Op_Name is
3368            when Name_Op_Add      |
3369                 Name_Op_Subtract |
3370                 Name_Op_Multiply |
3371                 Name_Op_Divide   |
3372                 Name_Op_Mod      |
3373                 Name_Op_Rem      |
3374                 Name_Op_Expon    =>
3375               Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
3376
3377            when Name_Op_And      |
3378                 Name_Op_Or       |
3379                 Name_Op_Xor      =>
3380               Find_Boolean_Types (Act1, Act2, Op_Id, N);
3381
3382            when Name_Op_Lt       |
3383                 Name_Op_Le       |
3384                 Name_Op_Gt       |
3385                 Name_Op_Ge       =>
3386               Find_Comparison_Types (Act1, Act2, Op_Id,  N);
3387
3388            when Name_Op_Eq       |
3389                 Name_Op_Ne       =>
3390               Find_Equality_Types (Act1, Act2, Op_Id,  N);
3391
3392            when Name_Op_Concat   =>
3393               Find_Concatenation_Types (Act1, Act2, Op_Id, N);
3394
3395            --  Is this when others, or should it be an abort???
3396
3397            when others           =>
3398               null;
3399         end case;
3400
3401      --  Unary operator case
3402
3403      else
3404         case Op_Name is
3405            when Name_Op_Subtract |
3406                 Name_Op_Add      |
3407                 Name_Op_Abs      =>
3408               Find_Unary_Types (Act1, Op_Id, N);
3409
3410            when Name_Op_Not      =>
3411               Find_Negation_Types (Act1, Op_Id, N);
3412
3413            --  Is this when others correct, or should it be an abort???
3414
3415            when others           =>
3416               null;
3417         end case;
3418      end if;
3419   end Analyze_Operator_Call;
3420
3421   -------------------------------------------
3422   -- Analyze_Overloaded_Selected_Component --
3423   -------------------------------------------
3424
3425   procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
3426      Nam   : constant Node_Id := Prefix (N);
3427      Sel   : constant Node_Id := Selector_Name (N);
3428      Comp  : Entity_Id;
3429      I     : Interp_Index;
3430      It    : Interp;
3431      T     : Entity_Id;
3432
3433   begin
3434      Set_Etype (Sel, Any_Type);
3435
3436      Get_First_Interp (Nam, I, It);
3437      while Present (It.Typ) loop
3438         if Is_Access_Type (It.Typ) then
3439            T := Designated_Type (It.Typ);
3440            Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
3441         else
3442            T := It.Typ;
3443         end if;
3444
3445         --  Locate the component. For a private prefix the selector can denote
3446         --  a discriminant.
3447
3448         if Is_Record_Type (T) or else Is_Private_Type (T) then
3449
3450            --  If the prefix is a class-wide type, the visible components are
3451            --  those of the base type.
3452
3453            if Is_Class_Wide_Type (T) then
3454               T := Etype (T);
3455            end if;
3456
3457            Comp := First_Entity (T);
3458            while Present (Comp) loop
3459               if Chars (Comp) = Chars (Sel)
3460                 and then Is_Visible_Component (Comp)
3461               then
3462
3463                  --  AI05-105:  if the context is an object renaming with
3464                  --  an anonymous access type, the expected type of the
3465                  --  object must be anonymous. This is a name resolution rule.
3466
3467                  if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3468                    or else No (Access_Definition (Parent (N)))
3469                    or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3470                    or else
3471                      Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3472                  then
3473                     Set_Entity (Sel, Comp);
3474                     Set_Etype (Sel, Etype (Comp));
3475                     Add_One_Interp (N, Etype (Comp), Etype (Comp));
3476                     Check_Implicit_Dereference (N, Etype (Comp));
3477
3478                     --  This also specifies a candidate to resolve the name.
3479                     --  Further overloading will be resolved from context.
3480                     --  The selector name itself does not carry overloading
3481                     --  information.
3482
3483                     Set_Etype (Nam, It.Typ);
3484
3485                  else
3486                     --  Named access type in the context of a renaming
3487                     --  declaration with an access definition. Remove
3488                     --  inapplicable candidate.
3489
3490                     Remove_Interp (I);
3491                  end if;
3492               end if;
3493
3494               Next_Entity (Comp);
3495            end loop;
3496
3497         elsif Is_Concurrent_Type (T) then
3498            Comp := First_Entity (T);
3499            while Present (Comp)
3500              and then Comp /= First_Private_Entity (T)
3501            loop
3502               if Chars (Comp) = Chars (Sel) then
3503                  if Is_Overloadable (Comp) then
3504                     Add_One_Interp (Sel, Comp, Etype (Comp));
3505                  else
3506                     Set_Entity_With_Checks (Sel, Comp);
3507                     Generate_Reference (Comp, Sel);
3508                  end if;
3509
3510                  Set_Etype (Sel, Etype (Comp));
3511                  Set_Etype (N,   Etype (Comp));
3512                  Set_Etype (Nam, It.Typ);
3513
3514                  --  For access type case, introduce explicit dereference for
3515                  --  more uniform treatment of entry calls. Do this only once
3516                  --  if several interpretations yield an access type.
3517
3518                  if Is_Access_Type (Etype (Nam))
3519                    and then Nkind (Nam) /= N_Explicit_Dereference
3520                  then
3521                     Insert_Explicit_Dereference (Nam);
3522                     Error_Msg_NW
3523                       (Warn_On_Dereference, "?d?implicit dereference", N);
3524                  end if;
3525               end if;
3526
3527               Next_Entity (Comp);
3528            end loop;
3529
3530            Set_Is_Overloaded (N, Is_Overloaded (Sel));
3531         end if;
3532
3533         Get_Next_Interp (I, It);
3534      end loop;
3535
3536      if Etype (N) = Any_Type
3537        and then not Try_Object_Operation (N)
3538      then
3539         Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3540         Set_Entity (Sel, Any_Id);
3541         Set_Etype  (Sel, Any_Type);
3542      end if;
3543   end Analyze_Overloaded_Selected_Component;
3544
3545   ----------------------------------
3546   -- Analyze_Qualified_Expression --
3547   ----------------------------------
3548
3549   procedure Analyze_Qualified_Expression (N : Node_Id) is
3550      Mark : constant Entity_Id := Subtype_Mark (N);
3551      Expr : constant Node_Id   := Expression (N);
3552      I    : Interp_Index;
3553      It   : Interp;
3554      T    : Entity_Id;
3555
3556   begin
3557      Analyze_Expression (Expr);
3558
3559      Set_Etype (N, Any_Type);
3560      Find_Type (Mark);
3561      T := Entity (Mark);
3562      Set_Etype (N, T);
3563
3564      if T = Any_Type then
3565         return;
3566      end if;
3567
3568      Check_Fully_Declared (T, N);
3569
3570      --  If expected type is class-wide, check for exact match before
3571      --  expansion, because if the expression is a dispatching call it
3572      --  may be rewritten as explicit dereference with class-wide result.
3573      --  If expression is overloaded, retain only interpretations that
3574      --  will yield exact matches.
3575
3576      if Is_Class_Wide_Type (T) then
3577         if not Is_Overloaded (Expr) then
3578            if  Base_Type (Etype (Expr)) /= Base_Type (T) then
3579               if Nkind (Expr) = N_Aggregate then
3580                  Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3581               else
3582                  Wrong_Type (Expr, T);
3583               end if;
3584            end if;
3585
3586         else
3587            Get_First_Interp (Expr, I, It);
3588
3589            while Present (It.Nam) loop
3590               if Base_Type (It.Typ) /= Base_Type (T) then
3591                  Remove_Interp (I);
3592               end if;
3593
3594               Get_Next_Interp (I, It);
3595            end loop;
3596         end if;
3597      end if;
3598
3599      Set_Etype  (N, T);
3600   end Analyze_Qualified_Expression;
3601
3602   -----------------------------------
3603   -- Analyze_Quantified_Expression --
3604   -----------------------------------
3605
3606   procedure Analyze_Quantified_Expression (N : Node_Id) is
3607      function Is_Empty_Range (Typ : Entity_Id) return Boolean;
3608      --  If the iterator is part of a quantified expression, and the range is
3609      --  known to be statically empty, emit a warning and replace expression
3610      --  with its static value. Returns True if the replacement occurs.
3611
3612      function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
3613      --  Determine whether if expression If_Expr lacks an else part or if it
3614      --  has one, it evaluates to True.
3615
3616      --------------------
3617      -- Is_Empty_Range --
3618      --------------------
3619
3620      function Is_Empty_Range (Typ : Entity_Id) return Boolean is
3621         Loc : constant Source_Ptr := Sloc (N);
3622
3623      begin
3624         if Is_Array_Type (Typ)
3625           and then Compile_Time_Known_Bounds (Typ)
3626           and then
3627             (Expr_Value (Type_Low_Bound  (Etype (First_Index (Typ)))) >
3628              Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
3629         then
3630            Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3631
3632            if All_Present (N) then
3633               Error_Msg_N
3634                 ("??quantified expression with ALL "
3635                  & "over a null range has value True", N);
3636               Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3637
3638            else
3639               Error_Msg_N
3640                 ("??quantified expression with SOME "
3641                  & "over a null range has value False", N);
3642               Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3643            end if;
3644
3645            Analyze (N);
3646            return True;
3647
3648         else
3649            return False;
3650         end if;
3651      end Is_Empty_Range;
3652
3653      -----------------------------
3654      -- No_Else_Or_Trivial_True --
3655      -----------------------------
3656
3657      function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
3658         Else_Expr : constant Node_Id :=
3659                       Next (Next (First (Expressions (If_Expr))));
3660      begin
3661         return
3662           No (Else_Expr)
3663             or else (Compile_Time_Known_Value (Else_Expr)
3664                       and then Is_True (Expr_Value (Else_Expr)));
3665      end No_Else_Or_Trivial_True;
3666
3667      --  Local variables
3668
3669      Cond    : constant Node_Id := Condition (N);
3670      Loop_Id : Entity_Id;
3671      QE_Scop : Entity_Id;
3672
3673   --  Start of processing for Analyze_Quantified_Expression
3674
3675   begin
3676      Check_SPARK_Restriction ("quantified expression is not allowed", N);
3677
3678      --  Create a scope to emulate the loop-like behavior of the quantified
3679      --  expression. The scope is needed to provide proper visibility of the
3680      --  loop variable.
3681
3682      QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
3683      Set_Etype  (QE_Scop, Standard_Void_Type);
3684      Set_Scope  (QE_Scop, Current_Scope);
3685      Set_Parent (QE_Scop, N);
3686
3687      Push_Scope (QE_Scop);
3688
3689      --  All constituents are preanalyzed and resolved to avoid untimely
3690      --  generation of various temporaries and types. Full analysis and
3691      --  expansion is carried out when the quantified expression is
3692      --  transformed into an expression with actions.
3693
3694      if Present (Iterator_Specification (N)) then
3695         Preanalyze (Iterator_Specification (N));
3696
3697         --  Do not proceed with the analysis when the range of iteration is
3698         --  empty. The appropriate error is issued by Is_Empty_Range.
3699
3700         if Is_Entity_Name (Name (Iterator_Specification (N)))
3701           and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
3702         then
3703            return;
3704         end if;
3705
3706      else pragma Assert (Present (Loop_Parameter_Specification (N)));
3707         declare
3708            Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
3709
3710         begin
3711            Preanalyze (Loop_Par);
3712
3713            if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
3714              and then Parent (Loop_Par) /= N
3715            then
3716               --  The parser cannot distinguish between a loop specification
3717               --  and an iterator specification. If after pre-analysis the
3718               --  proper form has been recognized, rewrite the expression to
3719               --  reflect the right kind. This is needed for proper ASIS
3720               --  navigation. If expansion is enabled, the transformation is
3721               --  performed when the expression is rewritten as a loop.
3722
3723               Set_Iterator_Specification (N,
3724                 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
3725
3726               Set_Defining_Identifier (Iterator_Specification (N),
3727                 Relocate_Node (Defining_Identifier (Loop_Par)));
3728               Set_Name (Iterator_Specification (N),
3729                 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
3730               Set_Comes_From_Source (Iterator_Specification (N),
3731                 Comes_From_Source (Loop_Parameter_Specification (N)));
3732               Set_Loop_Parameter_Specification (N, Empty);
3733            end if;
3734         end;
3735      end if;
3736
3737      Preanalyze_And_Resolve (Cond, Standard_Boolean);
3738
3739      End_Scope;
3740      Set_Etype (N, Standard_Boolean);
3741
3742      --  Verify that the loop variable is used within the condition of the
3743      --  quantified expression.
3744
3745      if Present (Iterator_Specification (N)) then
3746         Loop_Id := Defining_Identifier (Iterator_Specification (N));
3747      else
3748         Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
3749      end if;
3750
3751      if Warn_On_Suspicious_Contract
3752        and then not Referenced (Loop_Id, Cond)
3753      then
3754         Error_Msg_N ("?T?unused variable &", Loop_Id);
3755      end if;
3756
3757      --  Diagnose a possible misuse of the SOME existential quantifier. When
3758      --  we have a quantified expression of the form:
3759
3760      --    for some X => (if P then Q [else True])
3761
3762      --  any value for X that makes P False results in the if expression being
3763      --  trivially True, and so also results in the the quantified expression
3764      --  being trivially True.
3765
3766      if Warn_On_Suspicious_Contract
3767        and then not All_Present (N)
3768        and then Nkind (Cond) = N_If_Expression
3769        and then No_Else_Or_Trivial_True (Cond)
3770      then
3771         Error_Msg_N ("?T?suspicious expression", N);
3772         Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
3773         Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
3774      end if;
3775   end Analyze_Quantified_Expression;
3776
3777   -------------------
3778   -- Analyze_Range --
3779   -------------------
3780
3781   procedure Analyze_Range (N : Node_Id) is
3782      L        : constant Node_Id := Low_Bound (N);
3783      H        : constant Node_Id := High_Bound (N);
3784      I1, I2   : Interp_Index;
3785      It1, It2 : Interp;
3786
3787      procedure Check_Common_Type (T1, T2 : Entity_Id);
3788      --  Verify the compatibility of two types,  and choose the
3789      --  non universal one if the other is universal.
3790
3791      procedure Check_High_Bound (T : Entity_Id);
3792      --  Test one interpretation of the low bound against all those
3793      --  of the high bound.
3794
3795      procedure Check_Universal_Expression (N : Node_Id);
3796      --  In Ada 83, reject bounds of a universal range that are not literals
3797      --  or entity names.
3798
3799      -----------------------
3800      -- Check_Common_Type --
3801      -----------------------
3802
3803      procedure Check_Common_Type (T1, T2 : Entity_Id) is
3804      begin
3805         if Covers (T1 => T1, T2 => T2)
3806              or else
3807            Covers (T1 => T2, T2 => T1)
3808         then
3809            if T1 = Universal_Integer
3810              or else T1 = Universal_Real
3811              or else T1 = Any_Character
3812            then
3813               Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3814
3815            elsif T1 = T2 then
3816               Add_One_Interp (N, T1, T1);
3817
3818            else
3819               Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3820            end if;
3821         end if;
3822      end Check_Common_Type;
3823
3824      ----------------------
3825      -- Check_High_Bound --
3826      ----------------------
3827
3828      procedure Check_High_Bound (T : Entity_Id) is
3829      begin
3830         if not Is_Overloaded (H) then
3831            Check_Common_Type (T, Etype (H));
3832         else
3833            Get_First_Interp (H, I2, It2);
3834            while Present (It2.Typ) loop
3835               Check_Common_Type (T, It2.Typ);
3836               Get_Next_Interp (I2, It2);
3837            end loop;
3838         end if;
3839      end Check_High_Bound;
3840
3841      -----------------------------
3842      -- Is_Universal_Expression --
3843      -----------------------------
3844
3845      procedure Check_Universal_Expression (N : Node_Id) is
3846      begin
3847         if Etype (N) = Universal_Integer
3848           and then Nkind (N) /= N_Integer_Literal
3849           and then not Is_Entity_Name (N)
3850           and then Nkind (N) /= N_Attribute_Reference
3851         then
3852            Error_Msg_N ("illegal bound in discrete range", N);
3853         end if;
3854      end Check_Universal_Expression;
3855
3856   --  Start of processing for Analyze_Range
3857
3858   begin
3859      Set_Etype (N, Any_Type);
3860      Analyze_Expression (L);
3861      Analyze_Expression (H);
3862
3863      if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3864         return;
3865
3866      else
3867         if not Is_Overloaded (L) then
3868            Check_High_Bound (Etype (L));
3869         else
3870            Get_First_Interp (L, I1, It1);
3871            while Present (It1.Typ) loop
3872               Check_High_Bound (It1.Typ);
3873               Get_Next_Interp (I1, It1);
3874            end loop;
3875         end if;
3876
3877         --  If result is Any_Type, then we did not find a compatible pair
3878
3879         if Etype (N) = Any_Type then
3880            Error_Msg_N ("incompatible types in range ", N);
3881         end if;
3882      end if;
3883
3884      if Ada_Version = Ada_83
3885        and then
3886          (Nkind (Parent (N)) = N_Loop_Parameter_Specification
3887             or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
3888      then
3889         Check_Universal_Expression (L);
3890         Check_Universal_Expression (H);
3891      end if;
3892
3893      Check_Function_Writable_Actuals (N);
3894   end Analyze_Range;
3895
3896   -----------------------
3897   -- Analyze_Reference --
3898   -----------------------
3899
3900   procedure Analyze_Reference (N : Node_Id) is
3901      P        : constant Node_Id := Prefix (N);
3902      E        : Entity_Id;
3903      T        : Entity_Id;
3904      Acc_Type : Entity_Id;
3905
3906   begin
3907      Analyze (P);
3908
3909      --  An interesting error check, if we take the 'Reference of an object
3910      --  for which a pragma Atomic or Volatile has been given, and the type
3911      --  of the object is not Atomic or Volatile, then we are in trouble. The
3912      --  problem is that no trace of the atomic/volatile status will remain
3913      --  for the backend to respect when it deals with the resulting pointer,
3914      --  since the pointer type will not be marked atomic (it is a pointer to
3915      --  the base type of the object).
3916
3917      --  It is not clear if that can ever occur, but in case it does, we will
3918      --  generate an error message. Not clear if this message can ever be
3919      --  generated, and pretty clear that it represents a bug if it is, still
3920      --  seems worth checking, except in CodePeer mode where we do not really
3921      --  care and don't want to bother the user.
3922
3923      T := Etype (P);
3924
3925      if Is_Entity_Name (P)
3926        and then Is_Object_Reference (P)
3927        and then not CodePeer_Mode
3928      then
3929         E := Entity (P);
3930         T := Etype (P);
3931
3932         if (Has_Atomic_Components   (E)
3933               and then not Has_Atomic_Components   (T))
3934           or else
3935            (Has_Volatile_Components (E)
3936               and then not Has_Volatile_Components (T))
3937           or else (Is_Atomic   (E) and then not Is_Atomic   (T))
3938           or else (Is_Volatile (E) and then not Is_Volatile (T))
3939         then
3940            Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3941         end if;
3942      end if;
3943
3944      --  Carry on with normal processing
3945
3946      Acc_Type := Create_Itype (E_Allocator_Type, N);
3947      Set_Etype (Acc_Type,  Acc_Type);
3948      Set_Directly_Designated_Type (Acc_Type, Etype (P));
3949      Set_Etype (N, Acc_Type);
3950   end Analyze_Reference;
3951
3952   --------------------------------
3953   -- Analyze_Selected_Component --
3954   --------------------------------
3955
3956   --  Prefix is a record type or a task or protected type. In the latter case,
3957   --  the selector must denote a visible entry.
3958
3959   procedure Analyze_Selected_Component (N : Node_Id) is
3960      Name          : constant Node_Id := Prefix (N);
3961      Sel           : constant Node_Id := Selector_Name (N);
3962      Act_Decl      : Node_Id;
3963      Comp          : Entity_Id;
3964      Has_Candidate : Boolean := False;
3965      In_Scope      : Boolean;
3966      Parent_N      : Node_Id;
3967      Pent          : Entity_Id := Empty;
3968      Prefix_Type   : Entity_Id;
3969
3970      Type_To_Use : Entity_Id;
3971      --  In most cases this is the Prefix_Type, but if the Prefix_Type is
3972      --  a class-wide type, we use its root type, whose components are
3973      --  present in the class-wide type.
3974
3975      Is_Single_Concurrent_Object : Boolean;
3976      --  Set True if the prefix is a single task or a single protected object
3977
3978      procedure Find_Component_In_Instance (Rec : Entity_Id);
3979      --  In an instance, a component of a private extension may not be visible
3980      --  while it was visible in the generic. Search candidate scope for a
3981      --  component with the proper identifier. This is only done if all other
3982      --  searches have failed. If a match is found, the Etype of both N and
3983      --  Sel are set from this component, and the entity of Sel is set to
3984      --  reference this component. If no match is found, Entity (Sel) remains
3985      --  unset.
3986
3987      function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3988      --  It is known that the parent of N denotes a subprogram call. Comp
3989      --  is an overloadable component of the concurrent type of the prefix.
3990      --  Determine whether all formals of the parent of N and Comp are mode
3991      --  conformant. If the parent node is not analyzed yet it may be an
3992      --  indexed component rather than a function call.
3993
3994      --------------------------------
3995      -- Find_Component_In_Instance --
3996      --------------------------------
3997
3998      procedure Find_Component_In_Instance (Rec : Entity_Id) is
3999         Comp : Entity_Id;
4000
4001      begin
4002         Comp := First_Component (Rec);
4003         while Present (Comp) loop
4004            if Chars (Comp) = Chars (Sel) then
4005               Set_Entity_With_Checks (Sel, Comp);
4006               Set_Etype (Sel, Etype (Comp));
4007               Set_Etype (N,   Etype (Comp));
4008               return;
4009            end if;
4010
4011            Next_Component (Comp);
4012         end loop;
4013
4014         --  If we fall through, no match, so no changes made
4015
4016         return;
4017      end Find_Component_In_Instance;
4018
4019      ------------------------------
4020      -- Has_Mode_Conformant_Spec --
4021      ------------------------------
4022
4023      function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
4024         Comp_Param : Entity_Id;
4025         Param      : Node_Id;
4026         Param_Typ  : Entity_Id;
4027
4028      begin
4029         Comp_Param := First_Formal (Comp);
4030
4031         if Nkind (Parent (N)) = N_Indexed_Component then
4032            Param := First (Expressions (Parent (N)));
4033         else
4034            Param := First (Parameter_Associations (Parent (N)));
4035         end if;
4036
4037         while Present (Comp_Param)
4038           and then Present (Param)
4039         loop
4040            Param_Typ := Find_Parameter_Type (Param);
4041
4042            if Present (Param_Typ)
4043              and then
4044                not Conforming_Types
4045                     (Etype (Comp_Param), Param_Typ, Mode_Conformant)
4046            then
4047               return False;
4048            end if;
4049
4050            Next_Formal (Comp_Param);
4051            Next (Param);
4052         end loop;
4053
4054         --  One of the specs has additional formals; there is no match, unless
4055         --  this may be an indexing of a parameterless call.
4056
4057         --  Note that when expansion is disabled, the corresponding record
4058         --  type of synchronized types is not constructed, so that there is
4059         --  no point is attempting an interpretation as a prefixed call, as
4060         --  this is bound to fail because the primitive operations will not
4061         --  be properly located.
4062
4063         if Present (Comp_Param) or else Present (Param) then
4064            if Needs_No_Actuals (Comp)
4065              and then Is_Array_Type (Etype (Comp))
4066              and then not Expander_Active
4067            then
4068               return True;
4069            else
4070               return False;
4071            end if;
4072         end if;
4073
4074         return True;
4075      end Has_Mode_Conformant_Spec;
4076
4077   --  Start of processing for Analyze_Selected_Component
4078
4079   begin
4080      Set_Etype (N, Any_Type);
4081
4082      if Is_Overloaded (Name) then
4083         Analyze_Overloaded_Selected_Component (N);
4084         return;
4085
4086      elsif Etype (Name) = Any_Type then
4087         Set_Entity (Sel, Any_Id);
4088         Set_Etype (Sel, Any_Type);
4089         return;
4090
4091      else
4092         Prefix_Type := Etype (Name);
4093      end if;
4094
4095      if Is_Access_Type (Prefix_Type) then
4096
4097         --  A RACW object can never be used as prefix of a selected component
4098         --  since that means it is dereferenced without being a controlling
4099         --  operand of a dispatching operation (RM E.2.2(16/1)). Before
4100         --  reporting an error, we must check whether this is actually a
4101         --  dispatching call in prefix form.
4102
4103         if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
4104           and then Comes_From_Source (N)
4105         then
4106            if Try_Object_Operation (N) then
4107               return;
4108            else
4109               Error_Msg_N
4110                 ("invalid dereference of a remote access-to-class-wide value",
4111                  N);
4112            end if;
4113
4114         --  Normal case of selected component applied to access type
4115
4116         else
4117            Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4118
4119            if Is_Entity_Name (Name) then
4120               Pent := Entity (Name);
4121            elsif Nkind (Name) = N_Selected_Component
4122              and then Is_Entity_Name (Selector_Name (Name))
4123            then
4124               Pent := Entity (Selector_Name (Name));
4125            end if;
4126
4127            Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
4128         end if;
4129
4130      --  If we have an explicit dereference of a remote access-to-class-wide
4131      --  value, then issue an error (see RM-E.2.2(16/1)). However we first
4132      --  have to check for the case of a prefix that is a controlling operand
4133      --  of a prefixed dispatching call, as the dereference is legal in that
4134      --  case. Normally this condition is checked in Validate_Remote_Access_
4135      --  To_Class_Wide_Type, but we have to defer the checking for selected
4136      --  component prefixes because of the prefixed dispatching call case.
4137      --  Note that implicit dereferences are checked for this just above.
4138
4139      elsif Nkind (Name) = N_Explicit_Dereference
4140        and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
4141        and then Comes_From_Source (N)
4142      then
4143         if Try_Object_Operation (N) then
4144            return;
4145         else
4146            Error_Msg_N
4147              ("invalid dereference of a remote access-to-class-wide value",
4148               N);
4149         end if;
4150      end if;
4151
4152      --  (Ada 2005): if the prefix is the limited view of a type, and
4153      --  the context already includes the full view, use the full view
4154      --  in what follows, either to retrieve a component of to find
4155      --  a primitive operation. If the prefix is an explicit dereference,
4156      --  set the type of the prefix to reflect this transformation.
4157      --  If the non-limited view is itself an incomplete type, get the
4158      --  full view if available.
4159
4160      if Is_Incomplete_Type (Prefix_Type)
4161        and then From_Limited_With (Prefix_Type)
4162        and then Present (Non_Limited_View (Prefix_Type))
4163      then
4164         Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
4165
4166         if Nkind (N) = N_Explicit_Dereference then
4167            Set_Etype (Prefix (N), Prefix_Type);
4168         end if;
4169
4170      elsif Ekind (Prefix_Type) = E_Class_Wide_Type
4171        and then From_Limited_With (Prefix_Type)
4172        and then Present (Non_Limited_View (Etype (Prefix_Type)))
4173      then
4174         Prefix_Type :=
4175           Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
4176
4177         if Nkind (N) = N_Explicit_Dereference then
4178            Set_Etype (Prefix (N), Prefix_Type);
4179         end if;
4180      end if;
4181
4182      if Ekind (Prefix_Type) = E_Private_Subtype then
4183         Prefix_Type := Base_Type (Prefix_Type);
4184      end if;
4185
4186      Type_To_Use := Prefix_Type;
4187
4188      --  For class-wide types, use the entity list of the root type. This
4189      --  indirection is specially important for private extensions because
4190      --  only the root type get switched (not the class-wide type).
4191
4192      if Is_Class_Wide_Type (Prefix_Type) then
4193         Type_To_Use := Root_Type (Prefix_Type);
4194      end if;
4195
4196      --  If the prefix is a single concurrent object, use its name in error
4197      --  messages, rather than that of its anonymous type.
4198
4199      Is_Single_Concurrent_Object :=
4200        Is_Concurrent_Type (Prefix_Type)
4201          and then Is_Internal_Name (Chars (Prefix_Type))
4202          and then not Is_Derived_Type (Prefix_Type)
4203          and then Is_Entity_Name (Name);
4204
4205      Comp := First_Entity (Type_To_Use);
4206
4207      --  If the selector has an original discriminant, the node appears in
4208      --  an instance. Replace the discriminant with the corresponding one
4209      --  in the current discriminated type. For nested generics, this must
4210      --  be done transitively, so note the new original discriminant.
4211
4212      if Nkind (Sel) = N_Identifier
4213        and then In_Instance
4214        and then Present (Original_Discriminant (Sel))
4215      then
4216         Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
4217
4218         --  Mark entity before rewriting, for completeness and because
4219         --  subsequent semantic checks might examine the original node.
4220
4221         Set_Entity (Sel, Comp);
4222         Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
4223         Set_Original_Discriminant (Selector_Name (N), Comp);
4224         Set_Etype (N, Etype (Comp));
4225         Check_Implicit_Dereference (N, Etype (Comp));
4226
4227         if Is_Access_Type (Etype (Name)) then
4228            Insert_Explicit_Dereference (Name);
4229            Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4230         end if;
4231
4232      elsif Is_Record_Type (Prefix_Type) then
4233
4234         --  Find component with given name. In an instance, if the node is
4235         --  known as a prefixed call, do not examine components whose
4236         --  visibility may be accidental.
4237
4238         while Present (Comp) and then not Is_Prefixed_Call (N) loop
4239            if Chars (Comp) = Chars (Sel)
4240              and then Is_Visible_Component (Comp, N)
4241            then
4242               Set_Entity_With_Checks (Sel, Comp);
4243               Set_Etype (Sel, Etype (Comp));
4244
4245               if Ekind (Comp) = E_Discriminant then
4246                  if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
4247                     Error_Msg_N
4248                       ("cannot reference discriminant of unchecked union",
4249                        Sel);
4250                  end if;
4251
4252                  if Is_Generic_Type (Prefix_Type)
4253                       or else
4254                     Is_Generic_Type (Root_Type (Prefix_Type))
4255                  then
4256                     Set_Original_Discriminant (Sel, Comp);
4257                  end if;
4258               end if;
4259
4260               --  Resolve the prefix early otherwise it is not possible to
4261               --  build the actual subtype of the component: it may need
4262               --  to duplicate this prefix and duplication is only allowed
4263               --  on fully resolved expressions.
4264
4265               Resolve (Name);
4266
4267               --  Ada 2005 (AI-50217): Check wrong use of incomplete types or
4268               --  subtypes in a package specification.
4269               --  Example:
4270
4271               --    limited with Pkg;
4272               --    package Pkg is
4273               --       type Acc_Inc is access Pkg.T;
4274               --       X : Acc_Inc;
4275               --       N : Natural := X.all.Comp;  --  ERROR, limited view
4276               --    end Pkg;                       --  Comp is not visible
4277
4278               if Nkind (Name) = N_Explicit_Dereference
4279                 and then From_Limited_With (Etype (Prefix (Name)))
4280                 and then not Is_Potentially_Use_Visible (Etype (Name))
4281                 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
4282                            N_Package_Specification
4283               then
4284                  Error_Msg_NE
4285                    ("premature usage of incomplete}", Prefix (Name),
4286                     Etype (Prefix (Name)));
4287               end if;
4288
4289               --  We never need an actual subtype for the case of a selection
4290               --  for a indexed component of a non-packed array, since in
4291               --  this case gigi generates all the checks and can find the
4292               --  necessary bounds information.
4293
4294               --  We also do not need an actual subtype for the case of a
4295               --  first, last, length, or range attribute applied to a
4296               --  non-packed array, since gigi can again get the bounds in
4297               --  these cases (gigi cannot handle the packed case, since it
4298               --  has the bounds of the packed array type, not the original
4299               --  bounds of the type). However, if the prefix is itself a
4300               --  selected component, as in a.b.c (i), gigi may regard a.b.c
4301               --  as a dynamic-sized temporary, so we do generate an actual
4302               --  subtype for this case.
4303
4304               Parent_N := Parent (N);
4305
4306               if not Is_Packed (Etype (Comp))
4307                 and then
4308                   ((Nkind (Parent_N) = N_Indexed_Component
4309                       and then Nkind (Name) /= N_Selected_Component)
4310                     or else
4311                      (Nkind (Parent_N) = N_Attribute_Reference
4312                        and then
4313                          Nam_In (Attribute_Name (Parent_N), Name_First,
4314                                                             Name_Last,
4315                                                             Name_Length,
4316                                                             Name_Range)))
4317               then
4318                  Set_Etype (N, Etype (Comp));
4319
4320               --  If full analysis is not enabled, we do not generate an
4321               --  actual subtype, because in the absence of expansion
4322               --  reference to a formal of a protected type, for example,
4323               --  will not be properly transformed, and will lead to
4324               --  out-of-scope references in gigi.
4325
4326               --  In all other cases, we currently build an actual subtype.
4327               --  It seems likely that many of these cases can be avoided,
4328               --  but right now, the front end makes direct references to the
4329               --  bounds (e.g. in generating a length check), and if we do
4330               --  not make an actual subtype, we end up getting a direct
4331               --  reference to a discriminant, which will not do.
4332
4333               elsif Full_Analysis then
4334                  Act_Decl :=
4335                    Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4336                  Insert_Action (N, Act_Decl);
4337
4338                  if No (Act_Decl) then
4339                     Set_Etype (N, Etype (Comp));
4340
4341                  else
4342                     --  Component type depends on discriminants. Enter the
4343                     --  main attributes of the subtype.
4344
4345                     declare
4346                        Subt : constant Entity_Id :=
4347                                 Defining_Identifier (Act_Decl);
4348
4349                     begin
4350                        Set_Etype (Subt, Base_Type (Etype (Comp)));
4351                        Set_Ekind (Subt, Ekind (Etype (Comp)));
4352                        Set_Etype (N, Subt);
4353                     end;
4354                  end if;
4355
4356               --  If Full_Analysis not enabled, just set the Etype
4357
4358               else
4359                  Set_Etype (N, Etype (Comp));
4360               end if;
4361
4362               Check_Implicit_Dereference (N, Etype (N));
4363               return;
4364            end if;
4365
4366            --  If the prefix is a private extension, check only the visible
4367            --  components of the partial view. This must include the tag,
4368            --  which can appear in expanded code in a tag check.
4369
4370            if Ekind (Type_To_Use) = E_Record_Type_With_Private
4371              and then Chars (Selector_Name (N)) /= Name_uTag
4372            then
4373               exit when Comp = Last_Entity (Type_To_Use);
4374            end if;
4375
4376            Next_Entity (Comp);
4377         end loop;
4378
4379         --  Ada 2005 (AI-252): The selected component can be interpreted as
4380         --  a prefixed view of a subprogram. Depending on the context, this is
4381         --  either a name that can appear in a renaming declaration, or part
4382         --  of an enclosing call given in prefix form.
4383
4384         --  Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4385         --  selected component should resolve to a name.
4386
4387         if Ada_Version >= Ada_2005
4388           and then Is_Tagged_Type (Prefix_Type)
4389           and then not Is_Concurrent_Type (Prefix_Type)
4390         then
4391            if Nkind (Parent (N)) = N_Generic_Association
4392              or else Nkind (Parent (N)) = N_Requeue_Statement
4393              or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4394            then
4395               if Find_Primitive_Operation (N) then
4396                  return;
4397               end if;
4398
4399            elsif Try_Object_Operation (N) then
4400               return;
4401            end if;
4402
4403            --  If the transformation fails, it will be necessary to redo the
4404            --  analysis with all errors enabled, to indicate candidate
4405            --  interpretations and reasons for each failure ???
4406
4407         end if;
4408
4409      elsif Is_Private_Type (Prefix_Type) then
4410
4411         --  Allow access only to discriminants of the type. If the type has
4412         --  no full view, gigi uses the parent type for the components, so we
4413         --  do the same here.
4414
4415         if No (Full_View (Prefix_Type)) then
4416            Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4417            Comp := First_Entity (Type_To_Use);
4418         end if;
4419
4420         while Present (Comp) loop
4421            if Chars (Comp) = Chars (Sel) then
4422               if Ekind (Comp) = E_Discriminant then
4423                  Set_Entity_With_Checks (Sel, Comp);
4424                  Generate_Reference (Comp, Sel);
4425
4426                  Set_Etype (Sel, Etype (Comp));
4427                  Set_Etype (N,   Etype (Comp));
4428                  Check_Implicit_Dereference (N, Etype (N));
4429
4430                  if Is_Generic_Type (Prefix_Type)
4431                    or else Is_Generic_Type (Root_Type (Prefix_Type))
4432                  then
4433                     Set_Original_Discriminant (Sel, Comp);
4434                  end if;
4435
4436               --  Before declaring an error, check whether this is tagged
4437               --  private type and a call to a primitive operation.
4438
4439               elsif Ada_Version >= Ada_2005
4440                 and then Is_Tagged_Type (Prefix_Type)
4441                 and then Try_Object_Operation (N)
4442               then
4443                  return;
4444
4445               else
4446                  Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4447                  Error_Msg_NE ("invisible selector& for }", N, Sel);
4448                  Set_Entity (Sel, Any_Id);
4449                  Set_Etype (N, Any_Type);
4450               end if;
4451
4452               return;
4453            end if;
4454
4455            Next_Entity (Comp);
4456         end loop;
4457
4458      elsif Is_Concurrent_Type (Prefix_Type) then
4459
4460         --  Find visible operation with given name. For a protected type,
4461         --  the possible candidates are discriminants, entries or protected
4462         --  procedures. For a task type, the set can only include entries or
4463         --  discriminants if the task type is not an enclosing scope. If it
4464         --  is an enclosing scope (e.g. in an inner task) then all entities
4465         --  are visible, but the prefix must denote the enclosing scope, i.e.
4466         --  can only be a direct name or an expanded name.
4467
4468         Set_Etype (Sel, Any_Type);
4469         In_Scope := In_Open_Scopes (Prefix_Type);
4470
4471         while Present (Comp) loop
4472            if Chars (Comp) = Chars (Sel) then
4473               if Is_Overloadable (Comp) then
4474                  Add_One_Interp (Sel, Comp, Etype (Comp));
4475
4476                  --  If the prefix is tagged, the correct interpretation may
4477                  --  lie in the primitive or class-wide operations of the
4478                  --  type. Perform a simple conformance check to determine
4479                  --  whether Try_Object_Operation should be invoked even if
4480                  --  a visible entity is found.
4481
4482                  if Is_Tagged_Type (Prefix_Type)
4483                    and then
4484                      Nkind_In (Parent (N), N_Procedure_Call_Statement,
4485                                            N_Function_Call,
4486                                            N_Indexed_Component)
4487                    and then Has_Mode_Conformant_Spec (Comp)
4488                  then
4489                     Has_Candidate := True;
4490                  end if;
4491
4492               --  Note: a selected component may not denote a component of a
4493               --  protected type (4.1.3(7)).
4494
4495               elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
4496                 or else (In_Scope
4497                            and then not Is_Protected_Type (Prefix_Type)
4498                            and then Is_Entity_Name (Name))
4499               then
4500                  Set_Entity_With_Checks (Sel, Comp);
4501                  Generate_Reference (Comp, Sel);
4502
4503                  --  The selector is not overloadable, so we have a candidate
4504                  --  interpretation.
4505
4506                  Has_Candidate := True;
4507
4508               else
4509                  goto Next_Comp;
4510               end if;
4511
4512               Set_Etype (Sel, Etype (Comp));
4513               Set_Etype (N,   Etype (Comp));
4514
4515               if Ekind (Comp) = E_Discriminant then
4516                  Set_Original_Discriminant (Sel, Comp);
4517               end if;
4518
4519               --  For access type case, introduce explicit dereference for
4520               --  more uniform treatment of entry calls.
4521
4522               if Is_Access_Type (Etype (Name)) then
4523                  Insert_Explicit_Dereference (Name);
4524                  Error_Msg_NW
4525                    (Warn_On_Dereference, "?d?implicit dereference", N);
4526               end if;
4527            end if;
4528
4529            <<Next_Comp>>
4530               Next_Entity (Comp);
4531               exit when not In_Scope
4532                 and then
4533                   Comp = First_Private_Entity (Base_Type (Prefix_Type));
4534         end loop;
4535
4536         --  If there is no visible entity with the given name or none of the
4537         --  visible entities are plausible interpretations, check whether
4538         --  there is some other primitive operation with that name.
4539
4540         if Ada_Version >= Ada_2005
4541           and then Is_Tagged_Type (Prefix_Type)
4542         then
4543            if (Etype (N) = Any_Type
4544                  or else not Has_Candidate)
4545              and then Try_Object_Operation (N)
4546            then
4547               return;
4548
4549            --  If the context is not syntactically a procedure call, it
4550            --  may be a call to a primitive function declared outside of
4551            --  the synchronized type.
4552
4553            --  If the context is a procedure call, there might still be
4554            --  an overloading between an entry and a primitive procedure
4555            --  declared outside of the synchronized type, called in prefix
4556            --  notation. This is harder to disambiguate because in one case
4557            --  the controlling formal is implicit ???
4558
4559            elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
4560              and then Nkind (Parent (N)) /= N_Indexed_Component
4561              and then Try_Object_Operation (N)
4562            then
4563               return;
4564            end if;
4565
4566            --  Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4567            --  entry or procedure of a tagged concurrent type we must check
4568            --  if there are class-wide subprograms covering the primitive. If
4569            --  true then Try_Object_Operation reports the error.
4570
4571            if Has_Candidate
4572              and then Is_Concurrent_Type (Prefix_Type)
4573              and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4574
4575               --  Duplicate the call. This is required to avoid problems with
4576               --  the tree transformations performed by Try_Object_Operation.
4577               --  Set properly the parent of the copied call, because it is
4578               --  about to be reanalyzed.
4579
4580            then
4581               declare
4582                  Par : constant Node_Id := New_Copy_Tree (Parent (N));
4583
4584               begin
4585                  Set_Parent (Par, Parent (Parent (N)));
4586
4587                  if Try_Object_Operation
4588                       (Sinfo.Name (Par), CW_Test_Only => True)
4589                  then
4590                     return;
4591                  end if;
4592               end;
4593            end if;
4594         end if;
4595
4596         if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
4597
4598            --  Case of a prefix of a protected type: selector might denote
4599            --  an invisible private component.
4600
4601            Comp := First_Private_Entity (Base_Type (Prefix_Type));
4602            while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4603               Next_Entity (Comp);
4604            end loop;
4605
4606            if Present (Comp) then
4607               if Is_Single_Concurrent_Object then
4608                  Error_Msg_Node_2 := Entity (Name);
4609                  Error_Msg_NE ("invisible selector& for &", N, Sel);
4610
4611               else
4612                  Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4613                  Error_Msg_NE ("invisible selector& for }", N, Sel);
4614               end if;
4615               return;
4616            end if;
4617         end if;
4618
4619         Set_Is_Overloaded (N, Is_Overloaded (Sel));
4620
4621      else
4622         --  Invalid prefix
4623
4624         Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4625      end if;
4626
4627      --  If N still has no type, the component is not defined in the prefix
4628
4629      if Etype (N) = Any_Type then
4630
4631         if Is_Single_Concurrent_Object then
4632            Error_Msg_Node_2 := Entity (Name);
4633            Error_Msg_NE ("no selector& for&", N, Sel);
4634
4635            Check_Misspelled_Selector (Type_To_Use, Sel);
4636
4637         --  If this is a derived formal type, the parent may have different
4638         --  visibility at this point. Try for an inherited component before
4639         --  reporting an error.
4640
4641         elsif Is_Generic_Type (Prefix_Type)
4642           and then Ekind (Prefix_Type) = E_Record_Type_With_Private
4643           and then Prefix_Type /= Etype (Prefix_Type)
4644           and then Is_Record_Type (Etype (Prefix_Type))
4645         then
4646            Set_Etype (Prefix (N), Etype (Prefix_Type));
4647            Analyze_Selected_Component (N);
4648            return;
4649
4650         --  Similarly, if this is the actual for a formal derived type, or
4651         --  a derived type thereof, the component inherited from the generic
4652         --  parent may not be visible in the actual, but the selected
4653         --  component is legal. Climb up the derivation chain of the generic
4654         --  parent type until we find the proper ancestor type.
4655
4656         elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
4657            declare
4658               Par : Entity_Id := Prefix_Type;
4659            begin
4660               --  Climb up derivation chain to generic actual subtype
4661
4662               while not Is_Generic_Actual_Type (Par) loop
4663                  if Ekind (Par) = E_Record_Type then
4664                     Par := Parent_Subtype (Par);
4665                     exit when No (Par);
4666                  else
4667                     exit when Par = Etype (Par);
4668                     Par := Etype (Par);
4669                  end if;
4670               end loop;
4671
4672               if Present (Par) and then Is_Generic_Actual_Type (Par) then
4673                  --  Now look for component in ancestor types
4674
4675                  Par := Generic_Parent_Type (Declaration_Node (Par));
4676                  loop
4677                     Find_Component_In_Instance (Par);
4678                     exit when Present (Entity (Sel))
4679                       or else Par = Etype (Par);
4680                     Par := Etype (Par);
4681                  end loop;
4682               end if;
4683            end;
4684
4685            --  The search above must have eventually succeeded, since the
4686            --  selected component was legal in the generic.
4687
4688            if No (Entity (Sel)) then
4689               raise Program_Error;
4690            end if;
4691            return;
4692
4693         --  Component not found, specialize error message when appropriate
4694
4695         else
4696            if Ekind (Prefix_Type) = E_Record_Subtype then
4697
4698               --  Check whether this is a component of the base type which
4699               --  is absent from a statically constrained subtype. This will
4700               --  raise constraint error at run time, but is not a compile-
4701               --  time error. When the selector is illegal for base type as
4702               --  well fall through and generate a compilation error anyway.
4703
4704               Comp := First_Component (Base_Type (Prefix_Type));
4705               while Present (Comp) loop
4706                  if Chars (Comp) = Chars (Sel)
4707                    and then Is_Visible_Component (Comp)
4708                  then
4709                     Set_Entity_With_Checks (Sel, Comp);
4710                     Generate_Reference (Comp, Sel);
4711                     Set_Etype (Sel, Etype (Comp));
4712                     Set_Etype (N,   Etype (Comp));
4713
4714                     --  Emit appropriate message. The node will be replaced
4715                     --  by an appropriate raise statement.
4716
4717                     --  Note that in SPARK mode, as with all calls to apply a
4718                     --  compile time constraint error, this will be made into
4719                     --  an error to simplify the processing of the formal
4720                     --  verification backend.
4721
4722                     Apply_Compile_Time_Constraint_Error
4723                       (N, "component not present in }??",
4724                        CE_Discriminant_Check_Failed,
4725                        Ent => Prefix_Type, Rep => False);
4726
4727                     Set_Raises_Constraint_Error (N);
4728                     return;
4729                  end if;
4730
4731                  Next_Component (Comp);
4732               end loop;
4733
4734            end if;
4735
4736            Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4737            Error_Msg_NE ("no selector& for}", N, Sel);
4738
4739            --  Add information in the case of an incomplete prefix
4740
4741            if Is_Incomplete_Type (Type_To_Use) then
4742               declare
4743                  Inc : constant Entity_Id := First_Subtype (Type_To_Use);
4744
4745               begin
4746                  if From_Limited_With (Scope (Type_To_Use)) then
4747                     Error_Msg_NE
4748                       ("\limited view of& has no components", N, Inc);
4749
4750                  else
4751                     Error_Msg_NE
4752                       ("\premature usage of incomplete type&", N, Inc);
4753
4754                     if Nkind (Parent (Inc)) =
4755                                          N_Incomplete_Type_Declaration
4756                     then
4757                        --  Record location of premature use in entity so that
4758                        --  a continuation message is generated when the
4759                        --  completion is seen.
4760
4761                        Set_Premature_Use (Parent (Inc), N);
4762                     end if;
4763                  end if;
4764               end;
4765            end if;
4766
4767            Check_Misspelled_Selector (Type_To_Use, Sel);
4768         end if;
4769
4770         Set_Entity (Sel, Any_Id);
4771         Set_Etype (Sel, Any_Type);
4772      end if;
4773   end Analyze_Selected_Component;
4774
4775   ---------------------------
4776   -- Analyze_Short_Circuit --
4777   ---------------------------
4778
4779   procedure Analyze_Short_Circuit (N : Node_Id) is
4780      L   : constant Node_Id := Left_Opnd  (N);
4781      R   : constant Node_Id := Right_Opnd (N);
4782      Ind : Interp_Index;
4783      It  : Interp;
4784
4785   begin
4786      Analyze_Expression (L);
4787      Analyze_Expression (R);
4788      Set_Etype (N, Any_Type);
4789
4790      if not Is_Overloaded (L) then
4791         if Root_Type (Etype (L)) = Standard_Boolean
4792           and then Has_Compatible_Type (R, Etype (L))
4793         then
4794            Add_One_Interp (N, Etype (L), Etype (L));
4795         end if;
4796
4797      else
4798         Get_First_Interp (L, Ind, It);
4799         while Present (It.Typ) loop
4800            if Root_Type (It.Typ) = Standard_Boolean
4801              and then Has_Compatible_Type (R, It.Typ)
4802            then
4803               Add_One_Interp (N, It.Typ, It.Typ);
4804            end if;
4805
4806            Get_Next_Interp (Ind, It);
4807         end loop;
4808      end if;
4809
4810      --  Here we have failed to find an interpretation. Clearly we know that
4811      --  it is not the case that both operands can have an interpretation of
4812      --  Boolean, but this is by far the most likely intended interpretation.
4813      --  So we simply resolve both operands as Booleans, and at least one of
4814      --  these resolutions will generate an error message, and we do not need
4815      --  to give another error message on the short circuit operation itself.
4816
4817      if Etype (N) = Any_Type then
4818         Resolve (L, Standard_Boolean);
4819         Resolve (R, Standard_Boolean);
4820         Set_Etype (N, Standard_Boolean);
4821      end if;
4822   end Analyze_Short_Circuit;
4823
4824   -------------------
4825   -- Analyze_Slice --
4826   -------------------
4827
4828   procedure Analyze_Slice (N : Node_Id) is
4829      D          : constant Node_Id := Discrete_Range (N);
4830      P          : constant Node_Id := Prefix (N);
4831      Array_Type : Entity_Id;
4832      Index_Type : Entity_Id;
4833
4834      procedure Analyze_Overloaded_Slice;
4835      --  If the prefix is overloaded, select those interpretations that
4836      --  yield a one-dimensional array type.
4837
4838      ------------------------------
4839      -- Analyze_Overloaded_Slice --
4840      ------------------------------
4841
4842      procedure Analyze_Overloaded_Slice is
4843         I   : Interp_Index;
4844         It  : Interp;
4845         Typ : Entity_Id;
4846
4847      begin
4848         Set_Etype (N, Any_Type);
4849
4850         Get_First_Interp (P, I, It);
4851         while Present (It.Nam) loop
4852            Typ := It.Typ;
4853
4854            if Is_Access_Type (Typ) then
4855               Typ := Designated_Type (Typ);
4856               Error_Msg_NW
4857                 (Warn_On_Dereference, "?d?implicit dereference", N);
4858            end if;
4859
4860            if Is_Array_Type (Typ)
4861              and then Number_Dimensions (Typ) = 1
4862              and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4863            then
4864               Add_One_Interp (N, Typ, Typ);
4865            end if;
4866
4867            Get_Next_Interp (I, It);
4868         end loop;
4869
4870         if Etype (N) = Any_Type then
4871            Error_Msg_N ("expect array type in prefix of slice",  N);
4872         end if;
4873      end Analyze_Overloaded_Slice;
4874
4875   --  Start of processing for Analyze_Slice
4876
4877   begin
4878      if Comes_From_Source (N) then
4879         Check_SPARK_Restriction ("slice is not allowed", N);
4880      end if;
4881
4882      Analyze (P);
4883      Analyze (D);
4884
4885      if Is_Overloaded (P) then
4886         Analyze_Overloaded_Slice;
4887
4888      else
4889         Array_Type := Etype (P);
4890         Set_Etype (N, Any_Type);
4891
4892         if Is_Access_Type (Array_Type) then
4893            Array_Type := Designated_Type (Array_Type);
4894            Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4895         end if;
4896
4897         if not Is_Array_Type (Array_Type) then
4898            Wrong_Type (P, Any_Array);
4899
4900         elsif Number_Dimensions (Array_Type) > 1 then
4901            Error_Msg_N
4902              ("type is not one-dimensional array in slice prefix", N);
4903
4904         else
4905            if Ekind (Array_Type) = E_String_Literal_Subtype then
4906               Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
4907            else
4908               Index_Type := Etype (First_Index (Array_Type));
4909            end if;
4910
4911            if not Has_Compatible_Type (D, Index_Type) then
4912               Wrong_Type (D, Index_Type);
4913            else
4914               Set_Etype (N, Array_Type);
4915            end if;
4916         end if;
4917      end if;
4918   end Analyze_Slice;
4919
4920   -----------------------------
4921   -- Analyze_Type_Conversion --
4922   -----------------------------
4923
4924   procedure Analyze_Type_Conversion (N : Node_Id) is
4925      Expr : constant Node_Id := Expression (N);
4926      T    : Entity_Id;
4927
4928   begin
4929      --  If Conversion_OK is set, then the Etype is already set, and the
4930      --  only processing required is to analyze the expression. This is
4931      --  used to construct certain "illegal" conversions which are not
4932      --  allowed by Ada semantics, but can be handled OK by Gigi, see
4933      --  Sinfo for further details.
4934
4935      if Conversion_OK (N) then
4936         Analyze (Expr);
4937         return;
4938      end if;
4939
4940      --  Otherwise full type analysis is required, as well as some semantic
4941      --  checks to make sure the argument of the conversion is appropriate.
4942
4943      Find_Type (Subtype_Mark (N));
4944      T := Entity (Subtype_Mark (N));
4945      Set_Etype (N, T);
4946      Check_Fully_Declared (T, N);
4947      Analyze_Expression (Expr);
4948      Validate_Remote_Type_Type_Conversion (N);
4949
4950      --  Only remaining step is validity checks on the argument. These
4951      --  are skipped if the conversion does not come from the source.
4952
4953      if not Comes_From_Source (N) then
4954         return;
4955
4956      --  If there was an error in a generic unit, no need to replicate the
4957      --  error message. Conversely, constant-folding in the generic may
4958      --  transform the argument of a conversion into a string literal, which
4959      --  is legal. Therefore the following tests are not performed in an
4960      --  instance.
4961
4962      elsif In_Instance then
4963         return;
4964
4965      elsif Nkind (Expr) = N_Null then
4966         Error_Msg_N ("argument of conversion cannot be null", N);
4967         Error_Msg_N ("\use qualified expression instead", N);
4968         Set_Etype (N, Any_Type);
4969
4970      elsif Nkind (Expr) = N_Aggregate then
4971         Error_Msg_N ("argument of conversion cannot be aggregate", N);
4972         Error_Msg_N ("\use qualified expression instead", N);
4973
4974      elsif Nkind (Expr) = N_Allocator then
4975         Error_Msg_N ("argument of conversion cannot be an allocator", N);
4976         Error_Msg_N ("\use qualified expression instead", N);
4977
4978      elsif Nkind (Expr) = N_String_Literal then
4979         Error_Msg_N ("argument of conversion cannot be string literal", N);
4980         Error_Msg_N ("\use qualified expression instead", N);
4981
4982      elsif Nkind (Expr) = N_Character_Literal then
4983         if Ada_Version = Ada_83 then
4984            Resolve (Expr, T);
4985         else
4986            Error_Msg_N ("argument of conversion cannot be character literal",
4987              N);
4988            Error_Msg_N ("\use qualified expression instead", N);
4989         end if;
4990
4991      elsif Nkind (Expr) = N_Attribute_Reference
4992        and then
4993          Nam_In (Attribute_Name (Expr), Name_Access,
4994                                         Name_Unchecked_Access,
4995                                         Name_Unrestricted_Access)
4996      then
4997         Error_Msg_N ("argument of conversion cannot be access", N);
4998         Error_Msg_N ("\use qualified expression instead", N);
4999      end if;
5000   end Analyze_Type_Conversion;
5001
5002   ----------------------
5003   -- Analyze_Unary_Op --
5004   ----------------------
5005
5006   procedure Analyze_Unary_Op (N : Node_Id) is
5007      R     : constant Node_Id := Right_Opnd (N);
5008      Op_Id : Entity_Id := Entity (N);
5009
5010   begin
5011      Set_Etype (N, Any_Type);
5012      Candidate_Type := Empty;
5013
5014      Analyze_Expression (R);
5015
5016      if Present (Op_Id) then
5017         if Ekind (Op_Id) = E_Operator then
5018            Find_Unary_Types (R, Op_Id,  N);
5019         else
5020            Add_One_Interp (N, Op_Id, Etype (Op_Id));
5021         end if;
5022
5023      else
5024         Op_Id := Get_Name_Entity_Id (Chars (N));
5025         while Present (Op_Id) loop
5026            if Ekind (Op_Id) = E_Operator then
5027               if No (Next_Entity (First_Entity (Op_Id))) then
5028                  Find_Unary_Types (R, Op_Id,  N);
5029               end if;
5030
5031            elsif Is_Overloadable (Op_Id) then
5032               Analyze_User_Defined_Unary_Op (N, Op_Id);
5033            end if;
5034
5035            Op_Id := Homonym (Op_Id);
5036         end loop;
5037      end if;
5038
5039      Operator_Check (N);
5040   end Analyze_Unary_Op;
5041
5042   ----------------------------------
5043   -- Analyze_Unchecked_Expression --
5044   ----------------------------------
5045
5046   procedure Analyze_Unchecked_Expression (N : Node_Id) is
5047   begin
5048      Analyze (Expression (N), Suppress => All_Checks);
5049      Set_Etype (N, Etype (Expression (N)));
5050      Save_Interps (Expression (N), N);
5051   end Analyze_Unchecked_Expression;
5052
5053   ---------------------------------------
5054   -- Analyze_Unchecked_Type_Conversion --
5055   ---------------------------------------
5056
5057   procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
5058   begin
5059      Find_Type (Subtype_Mark (N));
5060      Analyze_Expression (Expression (N));
5061      Set_Etype (N, Entity (Subtype_Mark (N)));
5062   end Analyze_Unchecked_Type_Conversion;
5063
5064   ------------------------------------
5065   -- Analyze_User_Defined_Binary_Op --
5066   ------------------------------------
5067
5068   procedure Analyze_User_Defined_Binary_Op
5069     (N     : Node_Id;
5070      Op_Id : Entity_Id)
5071   is
5072   begin
5073      --  Only do analysis if the operator Comes_From_Source, since otherwise
5074      --  the operator was generated by the expander, and all such operators
5075      --  always refer to the operators in package Standard.
5076
5077      if Comes_From_Source (N) then
5078         declare
5079            F1 : constant Entity_Id := First_Formal (Op_Id);
5080            F2 : constant Entity_Id := Next_Formal (F1);
5081
5082         begin
5083            --  Verify that Op_Id is a visible binary function. Note that since
5084            --  we know Op_Id is overloaded, potentially use visible means use
5085            --  visible for sure (RM 9.4(11)).
5086
5087            if Ekind (Op_Id) = E_Function
5088              and then Present (F2)
5089              and then (Is_Immediately_Visible (Op_Id)
5090                         or else Is_Potentially_Use_Visible (Op_Id))
5091              and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
5092              and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
5093            then
5094               Add_One_Interp (N, Op_Id, Etype (Op_Id));
5095
5096               --  If the left operand is overloaded, indicate that the current
5097               --  type is a viable candidate. This is redundant in most cases,
5098               --  but for equality and comparison operators where the context
5099               --  does not impose a type on the operands, setting the proper
5100               --  type is necessary to avoid subsequent ambiguities during
5101               --  resolution, when both user-defined and predefined operators
5102               --  may be candidates.
5103
5104               if Is_Overloaded (Left_Opnd (N)) then
5105                  Set_Etype (Left_Opnd (N), Etype (F1));
5106               end if;
5107
5108               if Debug_Flag_E then
5109                  Write_Str ("user defined operator ");
5110                  Write_Name (Chars (Op_Id));
5111                  Write_Str (" on node ");
5112                  Write_Int (Int (N));
5113                  Write_Eol;
5114               end if;
5115            end if;
5116         end;
5117      end if;
5118   end Analyze_User_Defined_Binary_Op;
5119
5120   -----------------------------------
5121   -- Analyze_User_Defined_Unary_Op --
5122   -----------------------------------
5123
5124   procedure Analyze_User_Defined_Unary_Op
5125     (N     : Node_Id;
5126      Op_Id : Entity_Id)
5127   is
5128   begin
5129      --  Only do analysis if the operator Comes_From_Source, since otherwise
5130      --  the operator was generated by the expander, and all such operators
5131      --  always refer to the operators in package Standard.
5132
5133      if Comes_From_Source (N) then
5134         declare
5135            F : constant Entity_Id := First_Formal (Op_Id);
5136
5137         begin
5138            --  Verify that Op_Id is a visible unary function. Note that since
5139            --  we know Op_Id is overloaded, potentially use visible means use
5140            --  visible for sure (RM 9.4(11)).
5141
5142            if Ekind (Op_Id) = E_Function
5143              and then No (Next_Formal (F))
5144              and then (Is_Immediately_Visible (Op_Id)
5145                         or else Is_Potentially_Use_Visible (Op_Id))
5146              and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
5147            then
5148               Add_One_Interp (N, Op_Id, Etype (Op_Id));
5149            end if;
5150         end;
5151      end if;
5152   end Analyze_User_Defined_Unary_Op;
5153
5154   ---------------------------
5155   -- Check_Arithmetic_Pair --
5156   ---------------------------
5157
5158   procedure Check_Arithmetic_Pair
5159     (T1, T2 : Entity_Id;
5160      Op_Id  : Entity_Id;
5161      N      : Node_Id)
5162   is
5163      Op_Name : constant Name_Id := Chars (Op_Id);
5164
5165      function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
5166      --  Check whether the fixed-point type Typ has a user-defined operator
5167      --  (multiplication or division) that should hide the corresponding
5168      --  predefined operator. Used to implement Ada 2005 AI-264, to make
5169      --  such operators more visible and therefore useful.
5170      --
5171      --  If the name of the operation is an expanded name with prefix
5172      --  Standard, the predefined universal fixed operator is available,
5173      --  as specified by AI-420 (RM 4.5.5 (19.1/2)).
5174
5175      function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
5176      --  Get specific type (i.e. non-universal type if there is one)
5177
5178      ------------------
5179      -- Has_Fixed_Op --
5180      ------------------
5181
5182      function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
5183         Bas : constant Entity_Id := Base_Type (Typ);
5184         Ent : Entity_Id;
5185         F1  : Entity_Id;
5186         F2  : Entity_Id;
5187
5188      begin
5189         --  If the universal_fixed operation is given explicitly the rule
5190         --  concerning primitive operations of the type do not apply.
5191
5192         if Nkind (N) = N_Function_Call
5193           and then Nkind (Name (N)) = N_Expanded_Name
5194           and then Entity (Prefix (Name (N))) = Standard_Standard
5195         then
5196            return False;
5197         end if;
5198
5199         --  The operation is treated as primitive if it is declared in the
5200         --  same scope as the type, and therefore on the same entity chain.
5201
5202         Ent := Next_Entity (Typ);
5203         while Present (Ent) loop
5204            if Chars (Ent) = Chars (Op) then
5205               F1 := First_Formal (Ent);
5206               F2 := Next_Formal (F1);
5207
5208               --  The operation counts as primitive if either operand or
5209               --  result are of the given base type, and both operands are
5210               --  fixed point types.
5211
5212               if (Base_Type (Etype (F1)) = Bas
5213                    and then Is_Fixed_Point_Type (Etype (F2)))
5214
5215                 or else
5216                   (Base_Type (Etype (F2)) = Bas
5217                     and then Is_Fixed_Point_Type (Etype (F1)))
5218
5219                 or else
5220                   (Base_Type (Etype (Ent)) = Bas
5221                     and then Is_Fixed_Point_Type (Etype (F1))
5222                     and then Is_Fixed_Point_Type (Etype (F2)))
5223               then
5224                  return True;
5225               end if;
5226            end if;
5227
5228            Next_Entity (Ent);
5229         end loop;
5230
5231         return False;
5232      end Has_Fixed_Op;
5233
5234      -------------------
5235      -- Specific_Type --
5236      -------------------
5237
5238      function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
5239      begin
5240         if T1 = Universal_Integer or else T1 = Universal_Real then
5241            return Base_Type (T2);
5242         else
5243            return Base_Type (T1);
5244         end if;
5245      end Specific_Type;
5246
5247   --  Start of processing for Check_Arithmetic_Pair
5248
5249   begin
5250      if Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
5251         if Is_Numeric_Type (T1)
5252           and then Is_Numeric_Type (T2)
5253           and then (Covers (T1 => T1, T2 => T2)
5254                       or else
5255                     Covers (T1 => T2, T2 => T1))
5256         then
5257            Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5258         end if;
5259
5260      elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide) then
5261         if Is_Fixed_Point_Type (T1)
5262           and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
5263         then
5264            --  If Treat_Fixed_As_Integer is set then the Etype is already set
5265            --  and no further processing is required (this is the case of an
5266            --  operator constructed by Exp_Fixd for a fixed point operation)
5267            --  Otherwise add one interpretation with universal fixed result
5268            --  If the operator is given in  functional notation, it comes
5269            --  from source and Fixed_As_Integer cannot apply.
5270
5271            if (Nkind (N) not in N_Op
5272                 or else not Treat_Fixed_As_Integer (N))
5273              and then
5274                (not Has_Fixed_Op (T1, Op_Id)
5275                  or else Nkind (Parent (N)) = N_Type_Conversion)
5276            then
5277               Add_One_Interp (N, Op_Id, Universal_Fixed);
5278            end if;
5279
5280         elsif Is_Fixed_Point_Type (T2)
5281           and then (Nkind (N) not in N_Op
5282                      or else not Treat_Fixed_As_Integer (N))
5283           and then T1 = Universal_Real
5284           and then
5285             (not Has_Fixed_Op (T1, Op_Id)
5286               or else Nkind (Parent (N)) = N_Type_Conversion)
5287         then
5288            Add_One_Interp (N, Op_Id, Universal_Fixed);
5289
5290         elsif Is_Numeric_Type (T1)
5291           and then Is_Numeric_Type (T2)
5292           and then (Covers (T1 => T1, T2 => T2)
5293                       or else
5294                     Covers (T1 => T2, T2 => T1))
5295         then
5296            Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5297
5298         elsif Is_Fixed_Point_Type (T1)
5299           and then (Base_Type (T2) = Base_Type (Standard_Integer)
5300                      or else T2 = Universal_Integer)
5301         then
5302            Add_One_Interp (N, Op_Id, T1);
5303
5304         elsif T2 = Universal_Real
5305           and then Base_Type (T1) = Base_Type (Standard_Integer)
5306           and then Op_Name = Name_Op_Multiply
5307         then
5308            Add_One_Interp (N, Op_Id, Any_Fixed);
5309
5310         elsif T1 = Universal_Real
5311           and then Base_Type (T2) = Base_Type (Standard_Integer)
5312         then
5313            Add_One_Interp (N, Op_Id, Any_Fixed);
5314
5315         elsif Is_Fixed_Point_Type (T2)
5316           and then (Base_Type (T1) = Base_Type (Standard_Integer)
5317                      or else T1 = Universal_Integer)
5318           and then Op_Name = Name_Op_Multiply
5319         then
5320            Add_One_Interp (N, Op_Id, T2);
5321
5322         elsif T1 = Universal_Real and then T2 = Universal_Integer then
5323            Add_One_Interp (N, Op_Id, T1);
5324
5325         elsif T2 = Universal_Real
5326           and then T1 = Universal_Integer
5327           and then Op_Name = Name_Op_Multiply
5328         then
5329            Add_One_Interp (N, Op_Id, T2);
5330         end if;
5331
5332      elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5333
5334         --  Note: The fixed-point operands case with Treat_Fixed_As_Integer
5335         --  set does not require any special processing, since the Etype is
5336         --  already set (case of operation constructed by Exp_Fixed).
5337
5338         if Is_Integer_Type (T1)
5339           and then (Covers (T1 => T1, T2 => T2)
5340                       or else
5341                     Covers (T1 => T2, T2 => T1))
5342         then
5343            Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5344         end if;
5345
5346      elsif Op_Name = Name_Op_Expon then
5347         if Is_Numeric_Type (T1)
5348           and then not Is_Fixed_Point_Type (T1)
5349           and then (Base_Type (T2) = Base_Type (Standard_Integer)
5350                      or else T2 = Universal_Integer)
5351         then
5352            Add_One_Interp (N, Op_Id, Base_Type (T1));
5353         end if;
5354
5355      else pragma Assert (Nkind (N) in N_Op_Shift);
5356
5357         --  If not one of the predefined operators, the node may be one
5358         --  of the intrinsic functions. Its kind is always specific, and
5359         --  we can use it directly, rather than the name of the operation.
5360
5361         if Is_Integer_Type (T1)
5362           and then (Base_Type (T2) = Base_Type (Standard_Integer)
5363                      or else T2 = Universal_Integer)
5364         then
5365            Add_One_Interp (N, Op_Id, Base_Type (T1));
5366         end if;
5367      end if;
5368   end Check_Arithmetic_Pair;
5369
5370   -------------------------------
5371   -- Check_Misspelled_Selector --
5372   -------------------------------
5373
5374   procedure Check_Misspelled_Selector
5375     (Prefix : Entity_Id;
5376      Sel    : Node_Id)
5377   is
5378      Max_Suggestions   : constant := 2;
5379      Nr_Of_Suggestions : Natural := 0;
5380
5381      Suggestion_1 : Entity_Id := Empty;
5382      Suggestion_2 : Entity_Id := Empty;
5383
5384      Comp : Entity_Id;
5385
5386   begin
5387      --  All the components of the prefix of selector Sel are matched against
5388      --  Sel and a count is maintained of possible misspellings. When at
5389      --  the end of the analysis there are one or two (not more) possible
5390      --  misspellings, these misspellings will be suggested as possible
5391      --  correction.
5392
5393      if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5394
5395         --  Concurrent types should be handled as well ???
5396
5397         return;
5398      end if;
5399
5400      Comp  := First_Entity (Prefix);
5401      while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5402         if Is_Visible_Component (Comp) then
5403            if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5404               Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5405
5406               case Nr_Of_Suggestions is
5407                  when 1      => Suggestion_1 := Comp;
5408                  when 2      => Suggestion_2 := Comp;
5409                  when others => exit;
5410               end case;
5411            end if;
5412         end if;
5413
5414         Comp := Next_Entity (Comp);
5415      end loop;
5416
5417      --  Report at most two suggestions
5418
5419      if Nr_Of_Suggestions = 1 then
5420         Error_Msg_NE -- CODEFIX
5421           ("\possible misspelling of&", Sel, Suggestion_1);
5422
5423      elsif Nr_Of_Suggestions = 2 then
5424         Error_Msg_Node_2 := Suggestion_2;
5425         Error_Msg_NE -- CODEFIX
5426           ("\possible misspelling of& or&", Sel, Suggestion_1);
5427      end if;
5428   end Check_Misspelled_Selector;
5429
5430   ----------------------
5431   -- Defined_In_Scope --
5432   ----------------------
5433
5434   function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5435   is
5436      S1 : constant Entity_Id := Scope (Base_Type (T));
5437   begin
5438      return S1 = S
5439        or else (S1 = System_Aux_Id and then S = Scope (S1));
5440   end Defined_In_Scope;
5441
5442   -------------------
5443   -- Diagnose_Call --
5444   -------------------
5445
5446   procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
5447      Actual           : Node_Id;
5448      X                : Interp_Index;
5449      It               : Interp;
5450      Err_Mode         : Boolean;
5451      New_Nam          : Node_Id;
5452      Void_Interp_Seen : Boolean := False;
5453
5454      Success : Boolean;
5455      pragma Warnings (Off, Boolean);
5456
5457   begin
5458      if Ada_Version >= Ada_2005 then
5459         Actual := First_Actual (N);
5460         while Present (Actual) loop
5461
5462            --  Ada 2005 (AI-50217): Post an error in case of premature
5463            --  usage of an entity from the limited view.
5464
5465            if not Analyzed (Etype (Actual))
5466             and then From_Limited_With (Etype (Actual))
5467            then
5468               Error_Msg_Qual_Level := 1;
5469               Error_Msg_NE
5470                ("missing with_clause for scope of imported type&",
5471                  Actual, Etype (Actual));
5472               Error_Msg_Qual_Level := 0;
5473            end if;
5474
5475            Next_Actual (Actual);
5476         end loop;
5477      end if;
5478
5479      --   Analyze each candidate call again, with full error reporting
5480      --   for each.
5481
5482      Error_Msg_N
5483        ("no candidate interpretations match the actuals:!", Nam);
5484      Err_Mode := All_Errors_Mode;
5485      All_Errors_Mode := True;
5486
5487      --  If this is a call to an operation of a concurrent type,
5488      --  the failed interpretations have been removed from the
5489      --  name. Recover them to provide full diagnostics.
5490
5491      if Nkind (Parent (Nam)) = N_Selected_Component then
5492         Set_Entity (Nam, Empty);
5493         New_Nam := New_Copy_Tree (Parent (Nam));
5494         Set_Is_Overloaded (New_Nam, False);
5495         Set_Is_Overloaded (Selector_Name (New_Nam), False);
5496         Set_Parent (New_Nam, Parent (Parent (Nam)));
5497         Analyze_Selected_Component (New_Nam);
5498         Get_First_Interp (Selector_Name (New_Nam), X, It);
5499      else
5500         Get_First_Interp (Nam, X, It);
5501      end if;
5502
5503      while Present (It.Nam) loop
5504         if Etype (It.Nam) = Standard_Void_Type then
5505            Void_Interp_Seen := True;
5506         end if;
5507
5508         Analyze_One_Call (N, It.Nam, True, Success);
5509         Get_Next_Interp (X, It);
5510      end loop;
5511
5512      if Nkind (N) = N_Function_Call then
5513         Get_First_Interp (Nam, X, It);
5514         while Present (It.Nam) loop
5515            if Ekind_In (It.Nam, E_Function, E_Operator) then
5516               return;
5517            else
5518               Get_Next_Interp (X, It);
5519            end if;
5520         end loop;
5521
5522         --  If all interpretations are procedures, this deserves a
5523         --  more precise message. Ditto if this appears as the prefix
5524         --  of a selected component, which may be a lexical error.
5525
5526         Error_Msg_N
5527           ("\context requires function call, found procedure name", Nam);
5528
5529         if Nkind (Parent (N)) = N_Selected_Component
5530           and then N = Prefix (Parent (N))
5531         then
5532            Error_Msg_N -- CODEFIX
5533              ("\period should probably be semicolon", Parent (N));
5534         end if;
5535
5536      elsif Nkind (N) = N_Procedure_Call_Statement
5537        and then not Void_Interp_Seen
5538      then
5539         Error_Msg_N (
5540         "\function name found in procedure call", Nam);
5541      end if;
5542
5543      All_Errors_Mode := Err_Mode;
5544   end Diagnose_Call;
5545
5546   ---------------------------
5547   -- Find_Arithmetic_Types --
5548   ---------------------------
5549
5550   procedure Find_Arithmetic_Types
5551     (L, R  : Node_Id;
5552      Op_Id : Entity_Id;
5553      N     : Node_Id)
5554   is
5555      Index1 : Interp_Index;
5556      Index2 : Interp_Index;
5557      It1    : Interp;
5558      It2    : Interp;
5559
5560      procedure Check_Right_Argument (T : Entity_Id);
5561      --  Check right operand of operator
5562
5563      --------------------------
5564      -- Check_Right_Argument --
5565      --------------------------
5566
5567      procedure Check_Right_Argument (T : Entity_Id) is
5568      begin
5569         if not Is_Overloaded (R) then
5570            Check_Arithmetic_Pair (T, Etype (R), Op_Id,  N);
5571         else
5572            Get_First_Interp (R, Index2, It2);
5573            while Present (It2.Typ) loop
5574               Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5575               Get_Next_Interp (Index2, It2);
5576            end loop;
5577         end if;
5578      end Check_Right_Argument;
5579
5580   --  Start of processing for Find_Arithmetic_Types
5581
5582   begin
5583      if not Is_Overloaded (L) then
5584         Check_Right_Argument (Etype (L));
5585
5586      else
5587         Get_First_Interp (L, Index1, It1);
5588         while Present (It1.Typ) loop
5589            Check_Right_Argument (It1.Typ);
5590            Get_Next_Interp (Index1, It1);
5591         end loop;
5592      end if;
5593
5594   end Find_Arithmetic_Types;
5595
5596   ------------------------
5597   -- Find_Boolean_Types --
5598   ------------------------
5599
5600   procedure Find_Boolean_Types
5601     (L, R  : Node_Id;
5602      Op_Id : Entity_Id;
5603      N     : Node_Id)
5604   is
5605      Index : Interp_Index;
5606      It    : Interp;
5607
5608      procedure Check_Numeric_Argument (T : Entity_Id);
5609      --  Special case for logical operations one of whose operands is an
5610      --  integer literal. If both are literal the result is any modular type.
5611
5612      ----------------------------
5613      -- Check_Numeric_Argument --
5614      ----------------------------
5615
5616      procedure Check_Numeric_Argument (T : Entity_Id) is
5617      begin
5618         if T = Universal_Integer then
5619            Add_One_Interp (N, Op_Id, Any_Modular);
5620
5621         elsif Is_Modular_Integer_Type (T) then
5622            Add_One_Interp (N, Op_Id, T);
5623         end if;
5624      end Check_Numeric_Argument;
5625
5626   --  Start of processing for Find_Boolean_Types
5627
5628   begin
5629      if not Is_Overloaded (L) then
5630         if Etype (L) = Universal_Integer
5631           or else Etype (L) = Any_Modular
5632         then
5633            if not Is_Overloaded (R) then
5634               Check_Numeric_Argument (Etype (R));
5635
5636            else
5637               Get_First_Interp (R, Index, It);
5638               while Present (It.Typ) loop
5639                  Check_Numeric_Argument (It.Typ);
5640                  Get_Next_Interp (Index, It);
5641               end loop;
5642            end if;
5643
5644         --  If operands are aggregates, we must assume that they may be
5645         --  boolean arrays, and leave disambiguation for the second pass.
5646         --  If only one is an aggregate, verify that the other one has an
5647         --  interpretation as a boolean array
5648
5649         elsif Nkind (L) = N_Aggregate then
5650            if Nkind (R) = N_Aggregate then
5651               Add_One_Interp (N, Op_Id, Etype (L));
5652
5653            elsif not Is_Overloaded (R) then
5654               if Valid_Boolean_Arg (Etype (R)) then
5655                  Add_One_Interp (N, Op_Id, Etype (R));
5656               end if;
5657
5658            else
5659               Get_First_Interp (R, Index, It);
5660               while Present (It.Typ) loop
5661                  if Valid_Boolean_Arg (It.Typ) then
5662                     Add_One_Interp (N, Op_Id, It.Typ);
5663                  end if;
5664
5665                  Get_Next_Interp (Index, It);
5666               end loop;
5667            end if;
5668
5669         elsif Valid_Boolean_Arg (Etype (L))
5670           and then Has_Compatible_Type (R, Etype (L))
5671         then
5672            Add_One_Interp (N, Op_Id, Etype (L));
5673         end if;
5674
5675      else
5676         Get_First_Interp (L, Index, It);
5677         while Present (It.Typ) loop
5678            if Valid_Boolean_Arg (It.Typ)
5679              and then Has_Compatible_Type (R, It.Typ)
5680            then
5681               Add_One_Interp (N, Op_Id, It.Typ);
5682            end if;
5683
5684            Get_Next_Interp (Index, It);
5685         end loop;
5686      end if;
5687   end Find_Boolean_Types;
5688
5689   ---------------------------
5690   -- Find_Comparison_Types --
5691   ---------------------------
5692
5693   procedure Find_Comparison_Types
5694     (L, R  : Node_Id;
5695      Op_Id : Entity_Id;
5696      N     : Node_Id)
5697   is
5698      Index : Interp_Index;
5699      It    : Interp;
5700      Found : Boolean := False;
5701      I_F   : Interp_Index;
5702      T_F   : Entity_Id;
5703      Scop  : Entity_Id := Empty;
5704
5705      procedure Try_One_Interp (T1 : Entity_Id);
5706      --  Routine to try one proposed interpretation. Note that the context
5707      --  of the operator plays no role in resolving the arguments, so that
5708      --  if there is more than one interpretation of the operands that is
5709      --  compatible with comparison, the operation is ambiguous.
5710
5711      --------------------
5712      -- Try_One_Interp --
5713      --------------------
5714
5715      procedure Try_One_Interp (T1 : Entity_Id) is
5716      begin
5717
5718         --  If the operator is an expanded name, then the type of the operand
5719         --  must be defined in the corresponding scope. If the type is
5720         --  universal, the context will impose the correct type.
5721
5722         if Present (Scop)
5723           and then not Defined_In_Scope (T1, Scop)
5724           and then T1 /= Universal_Integer
5725           and then T1 /= Universal_Real
5726           and then T1 /= Any_String
5727           and then T1 /= Any_Composite
5728         then
5729            return;
5730         end if;
5731
5732         if Valid_Comparison_Arg (T1) and then Has_Compatible_Type (R, T1) then
5733            if Found and then Base_Type (T1) /= Base_Type (T_F) then
5734               It := Disambiguate (L, I_F, Index, Any_Type);
5735
5736               if It = No_Interp then
5737                  Ambiguous_Operands (N);
5738                  Set_Etype (L, Any_Type);
5739                  return;
5740
5741               else
5742                  T_F := It.Typ;
5743               end if;
5744
5745            else
5746               Found := True;
5747               T_F   := T1;
5748               I_F   := Index;
5749            end if;
5750
5751            Set_Etype (L, T_F);
5752            Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5753
5754         end if;
5755      end Try_One_Interp;
5756
5757   --  Start of processing for Find_Comparison_Types
5758
5759   begin
5760      --  If left operand is aggregate, the right operand has to
5761      --  provide a usable type for it.
5762
5763      if Nkind (L) = N_Aggregate and then Nkind (R) /= N_Aggregate then
5764         Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
5765         return;
5766      end if;
5767
5768      if Nkind (N) = N_Function_Call
5769         and then Nkind (Name (N)) = N_Expanded_Name
5770      then
5771         Scop := Entity (Prefix (Name (N)));
5772
5773         --  The prefix may be a package renaming, and the subsequent test
5774         --  requires the original package.
5775
5776         if Ekind (Scop) = E_Package
5777           and then Present (Renamed_Entity (Scop))
5778         then
5779            Scop := Renamed_Entity (Scop);
5780            Set_Entity (Prefix (Name (N)), Scop);
5781         end if;
5782      end if;
5783
5784      if not Is_Overloaded (L) then
5785         Try_One_Interp (Etype (L));
5786
5787      else
5788         Get_First_Interp (L, Index, It);
5789         while Present (It.Typ) loop
5790            Try_One_Interp (It.Typ);
5791            Get_Next_Interp (Index, It);
5792         end loop;
5793      end if;
5794   end Find_Comparison_Types;
5795
5796   ----------------------------------------
5797   -- Find_Non_Universal_Interpretations --
5798   ----------------------------------------
5799
5800   procedure Find_Non_Universal_Interpretations
5801     (N     : Node_Id;
5802      R     : Node_Id;
5803      Op_Id : Entity_Id;
5804      T1    : Entity_Id)
5805   is
5806      Index : Interp_Index;
5807      It    : Interp;
5808
5809   begin
5810      if T1 = Universal_Integer or else T1 = Universal_Real
5811
5812        --  If the left operand of an equality operator is null, the visibility
5813        --  of the operator must be determined from the interpretation of the
5814        --  right operand. This processing must be done for Any_Access, which
5815        --  is the internal representation of the type of the literal null.
5816
5817        or else T1 = Any_Access
5818      then
5819         if not Is_Overloaded (R) then
5820            Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
5821         else
5822            Get_First_Interp (R, Index, It);
5823            while Present (It.Typ) loop
5824               if Covers (It.Typ, T1) then
5825                  Add_One_Interp
5826                    (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5827               end if;
5828
5829               Get_Next_Interp (Index, It);
5830            end loop;
5831         end if;
5832      else
5833         Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5834      end if;
5835   end Find_Non_Universal_Interpretations;
5836
5837   ------------------------------
5838   -- Find_Concatenation_Types --
5839   ------------------------------
5840
5841   procedure Find_Concatenation_Types
5842     (L, R  : Node_Id;
5843      Op_Id : Entity_Id;
5844      N     : Node_Id)
5845   is
5846      Op_Type : constant Entity_Id := Etype (Op_Id);
5847
5848   begin
5849      if Is_Array_Type (Op_Type)
5850        and then not Is_Limited_Type (Op_Type)
5851
5852        and then (Has_Compatible_Type (L, Op_Type)
5853                    or else
5854                  Has_Compatible_Type (L, Component_Type (Op_Type)))
5855
5856        and then (Has_Compatible_Type (R, Op_Type)
5857                    or else
5858                  Has_Compatible_Type (R, Component_Type (Op_Type)))
5859      then
5860         Add_One_Interp (N, Op_Id, Op_Type);
5861      end if;
5862   end Find_Concatenation_Types;
5863
5864   -------------------------
5865   -- Find_Equality_Types --
5866   -------------------------
5867
5868   procedure Find_Equality_Types
5869     (L, R  : Node_Id;
5870      Op_Id : Entity_Id;
5871      N     : Node_Id)
5872   is
5873      Index : Interp_Index;
5874      It    : Interp;
5875      Found : Boolean := False;
5876      I_F   : Interp_Index;
5877      T_F   : Entity_Id;
5878      Scop  : Entity_Id := Empty;
5879
5880      procedure Try_One_Interp (T1 : Entity_Id);
5881      --  The context of the equality operator plays no role in resolving the
5882      --  arguments, so that if there is more than one interpretation of the
5883      --  operands that is compatible with equality, the construct is ambiguous
5884      --  and an error can be emitted now, after trying to disambiguate, i.e.
5885      --  applying preference rules.
5886
5887      --------------------
5888      -- Try_One_Interp --
5889      --------------------
5890
5891      procedure Try_One_Interp (T1 : Entity_Id) is
5892         Bas : constant Entity_Id := Base_Type (T1);
5893
5894      begin
5895         --  If the operator is an expanded name, then the type of the operand
5896         --  must be defined in the corresponding scope. If the type is
5897         --  universal, the context will impose the correct type. An anonymous
5898         --  type for a 'Access reference is also universal in this sense, as
5899         --  the actual type is obtained from context.
5900
5901         --  In Ada 2005, the equality operator for anonymous access types
5902         --  is declared in Standard, and preference rules apply to it.
5903
5904         if Present (Scop) then
5905            if Defined_In_Scope (T1, Scop)
5906              or else T1 = Universal_Integer
5907              or else T1 = Universal_Real
5908              or else T1 = Any_Access
5909              or else T1 = Any_String
5910              or else T1 = Any_Composite
5911              or else (Ekind (T1) = E_Access_Subprogram_Type
5912                        and then not Comes_From_Source (T1))
5913            then
5914               null;
5915
5916            elsif Ekind (T1) = E_Anonymous_Access_Type
5917              and then Scop = Standard_Standard
5918            then
5919               null;
5920
5921            else
5922               --  The scope does not contain an operator for the type
5923
5924               return;
5925            end if;
5926
5927         --  If we have infix notation, the operator must be usable. Within
5928         --  an instance, if the type is already established we know it is
5929         --  correct. If an operand is universal it is compatible with any
5930         --  numeric type.
5931
5932         elsif In_Open_Scopes (Scope (Bas))
5933           or else Is_Potentially_Use_Visible (Bas)
5934           or else In_Use (Bas)
5935           or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
5936
5937            --  In an instance, the type may have been immediately visible.
5938            --  Either the types are compatible, or one operand is universal
5939            --  (numeric or null).
5940
5941           or else (In_Instance
5942                     and then
5943                       (First_Subtype (T1) = First_Subtype (Etype (R))
5944                         or else Nkind (R) = N_Null
5945                         or else
5946                           (Is_Numeric_Type (T1)
5947                             and then Is_Universal_Numeric_Type (Etype (R)))))
5948
5949           --  In Ada 2005, the equality on anonymous access types is declared
5950           --  in Standard, and is always visible.
5951
5952           or else Ekind (T1) = E_Anonymous_Access_Type
5953         then
5954            null;
5955
5956         else
5957            --  Save candidate type for subsequent error message, if any
5958
5959            if not Is_Limited_Type (T1) then
5960               Candidate_Type := T1;
5961            end if;
5962
5963            return;
5964         end if;
5965
5966         --  Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5967         --  Do not allow anonymous access types in equality operators.
5968
5969         if Ada_Version < Ada_2005
5970           and then Ekind (T1) = E_Anonymous_Access_Type
5971         then
5972            return;
5973         end if;
5974
5975         --  If the right operand has a type compatible with T1, check for an
5976         --  acceptable interpretation, unless T1 is limited (no predefined
5977         --  equality available), or this is use of a "/=" for a tagged type.
5978         --  In the latter case, possible interpretations of equality need
5979         --  to be considered, we don't want the default inequality declared
5980         --  in Standard to be chosen, and the "/=" will be rewritten as a
5981         --  negation of "=" (see the end of Analyze_Equality_Op). This ensures
5982         --  that that rewriting happens during analysis rather than being
5983         --  delayed until expansion (this is needed for ASIS, which only sees
5984         --  the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
5985         --  is Name_Op_Eq then we still proceed with the interpretation,
5986         --  because that indicates the potential rewriting case where the
5987         --  interpretation to consider is actually "=" and the node may be
5988         --  about to be rewritten by Analyze_Equality_Op.
5989
5990         if T1 /= Standard_Void_Type
5991           and then Has_Compatible_Type (R, T1)
5992
5993           and then
5994             ((not Is_Limited_Type (T1)
5995                and then not Is_Limited_Composite (T1))
5996
5997               or else
5998                 (Is_Array_Type (T1)
5999                   and then not Is_Limited_Type (Component_Type (T1))
6000                   and then Available_Full_View_Of_Component (T1)))
6001
6002           and then
6003             (Nkind (N) /= N_Op_Ne
6004               or else not Is_Tagged_Type (T1)
6005               or else Chars (Op_Id) = Name_Op_Eq)
6006         then
6007            if Found
6008              and then Base_Type (T1) /= Base_Type (T_F)
6009            then
6010               It := Disambiguate (L, I_F, Index, Any_Type);
6011
6012               if It = No_Interp then
6013                  Ambiguous_Operands (N);
6014                  Set_Etype (L, Any_Type);
6015                  return;
6016
6017               else
6018                  T_F := It.Typ;
6019               end if;
6020
6021            else
6022               Found := True;
6023               T_F   := T1;
6024               I_F   := Index;
6025            end if;
6026
6027            if not Analyzed (L) then
6028               Set_Etype (L, T_F);
6029            end if;
6030
6031            Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6032
6033            --  Case of operator was not visible, Etype still set to Any_Type
6034
6035            if Etype (N) = Any_Type then
6036               Found := False;
6037            end if;
6038
6039         elsif Scop = Standard_Standard
6040           and then Ekind (T1) = E_Anonymous_Access_Type
6041         then
6042            Found := True;
6043         end if;
6044      end Try_One_Interp;
6045
6046   --  Start of processing for Find_Equality_Types
6047
6048   begin
6049      --  If left operand is aggregate, the right operand has to
6050      --  provide a usable type for it.
6051
6052      if Nkind (L) = N_Aggregate
6053        and then Nkind (R) /= N_Aggregate
6054      then
6055         Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
6056         return;
6057      end if;
6058
6059      if Nkind (N) = N_Function_Call
6060         and then Nkind (Name (N)) = N_Expanded_Name
6061      then
6062         Scop := Entity (Prefix (Name (N)));
6063
6064         --  The prefix may be a package renaming, and the subsequent test
6065         --  requires the original package.
6066
6067         if Ekind (Scop) = E_Package
6068           and then Present (Renamed_Entity (Scop))
6069         then
6070            Scop := Renamed_Entity (Scop);
6071            Set_Entity (Prefix (Name (N)), Scop);
6072         end if;
6073      end if;
6074
6075      if not Is_Overloaded (L) then
6076         Try_One_Interp (Etype (L));
6077
6078      else
6079         Get_First_Interp (L, Index, It);
6080         while Present (It.Typ) loop
6081            Try_One_Interp (It.Typ);
6082            Get_Next_Interp (Index, It);
6083         end loop;
6084      end if;
6085   end Find_Equality_Types;
6086
6087   -------------------------
6088   -- Find_Negation_Types --
6089   -------------------------
6090
6091   procedure Find_Negation_Types
6092     (R     : Node_Id;
6093      Op_Id : Entity_Id;
6094      N     : Node_Id)
6095   is
6096      Index : Interp_Index;
6097      It    : Interp;
6098
6099   begin
6100      if not Is_Overloaded (R) then
6101         if Etype (R) = Universal_Integer then
6102            Add_One_Interp (N, Op_Id, Any_Modular);
6103         elsif Valid_Boolean_Arg (Etype (R)) then
6104            Add_One_Interp (N, Op_Id, Etype (R));
6105         end if;
6106
6107      else
6108         Get_First_Interp (R, Index, It);
6109         while Present (It.Typ) loop
6110            if Valid_Boolean_Arg (It.Typ) then
6111               Add_One_Interp (N, Op_Id, It.Typ);
6112            end if;
6113
6114            Get_Next_Interp (Index, It);
6115         end loop;
6116      end if;
6117   end Find_Negation_Types;
6118
6119   ------------------------------
6120   -- Find_Primitive_Operation --
6121   ------------------------------
6122
6123   function Find_Primitive_Operation (N : Node_Id) return Boolean is
6124      Obj : constant Node_Id := Prefix (N);
6125      Op  : constant Node_Id := Selector_Name (N);
6126
6127      Prim  : Elmt_Id;
6128      Prims : Elist_Id;
6129      Typ   : Entity_Id;
6130
6131   begin
6132      Set_Etype (Op, Any_Type);
6133
6134      if Is_Access_Type (Etype (Obj)) then
6135         Typ := Designated_Type (Etype (Obj));
6136      else
6137         Typ := Etype (Obj);
6138      end if;
6139
6140      if Is_Class_Wide_Type (Typ) then
6141         Typ := Root_Type (Typ);
6142      end if;
6143
6144      Prims := Primitive_Operations (Typ);
6145
6146      Prim := First_Elmt (Prims);
6147      while Present (Prim) loop
6148         if Chars (Node (Prim)) = Chars (Op) then
6149            Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
6150            Set_Etype (N, Etype (Node (Prim)));
6151         end if;
6152
6153         Next_Elmt (Prim);
6154      end loop;
6155
6156      --  Now look for class-wide operations of the type or any of its
6157      --  ancestors by iterating over the homonyms of the selector.
6158
6159      declare
6160         Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
6161         Hom      : Entity_Id;
6162
6163      begin
6164         Hom := Current_Entity (Op);
6165         while Present (Hom) loop
6166            if (Ekind (Hom) = E_Procedure
6167                  or else
6168                Ekind (Hom) = E_Function)
6169              and then Scope (Hom) = Scope (Typ)
6170              and then Present (First_Formal (Hom))
6171              and then
6172                (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6173                  or else
6174                    (Is_Access_Type (Etype (First_Formal (Hom)))
6175                      and then
6176                        Ekind (Etype (First_Formal (Hom))) =
6177                          E_Anonymous_Access_Type
6178                      and then
6179                        Base_Type
6180                          (Designated_Type (Etype (First_Formal (Hom)))) =
6181                                                                Cls_Type))
6182            then
6183               Add_One_Interp (Op, Hom, Etype (Hom));
6184               Set_Etype (N, Etype (Hom));
6185            end if;
6186
6187            Hom := Homonym (Hom);
6188         end loop;
6189      end;
6190
6191      return Etype (Op) /= Any_Type;
6192   end Find_Primitive_Operation;
6193
6194   ----------------------
6195   -- Find_Unary_Types --
6196   ----------------------
6197
6198   procedure Find_Unary_Types
6199     (R     : Node_Id;
6200      Op_Id : Entity_Id;
6201      N     : Node_Id)
6202   is
6203      Index : Interp_Index;
6204      It    : Interp;
6205
6206   begin
6207      if not Is_Overloaded (R) then
6208         if Is_Numeric_Type (Etype (R)) then
6209
6210            --  In an instance a generic actual may be a numeric type even if
6211            --  the formal in the generic unit was not. In that case, the
6212            --  predefined operator was not a possible interpretation in the
6213            --  generic, and cannot be one in the instance, unless the operator
6214            --  is an actual of an instance.
6215
6216            if In_Instance
6217              and then
6218                not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
6219            then
6220               null;
6221            else
6222               Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
6223            end if;
6224         end if;
6225
6226      else
6227         Get_First_Interp (R, Index, It);
6228         while Present (It.Typ) loop
6229            if Is_Numeric_Type (It.Typ) then
6230               if In_Instance
6231                 and then
6232                   not Is_Numeric_Type
6233                     (Corresponding_Generic_Type (Etype (It.Typ)))
6234               then
6235                  null;
6236
6237               else
6238                  Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
6239               end if;
6240            end if;
6241
6242            Get_Next_Interp (Index, It);
6243         end loop;
6244      end if;
6245   end Find_Unary_Types;
6246
6247   ------------------
6248   -- Junk_Operand --
6249   ------------------
6250
6251   function Junk_Operand (N : Node_Id) return Boolean is
6252      Enode : Node_Id;
6253
6254   begin
6255      if Error_Posted (N) then
6256         return False;
6257      end if;
6258
6259      --  Get entity to be tested
6260
6261      if Is_Entity_Name (N)
6262        and then Present (Entity (N))
6263      then
6264         Enode := N;
6265
6266      --  An odd case, a procedure name gets converted to a very peculiar
6267      --  function call, and here is where we detect this happening.
6268
6269      elsif Nkind (N) = N_Function_Call
6270        and then Is_Entity_Name (Name (N))
6271        and then Present (Entity (Name (N)))
6272      then
6273         Enode := Name (N);
6274
6275      --  Another odd case, there are at least some cases of selected
6276      --  components where the selected component is not marked as having
6277      --  an entity, even though the selector does have an entity
6278
6279      elsif Nkind (N) = N_Selected_Component
6280        and then Present (Entity (Selector_Name (N)))
6281      then
6282         Enode := Selector_Name (N);
6283
6284      else
6285         return False;
6286      end if;
6287
6288      --  Now test the entity we got to see if it is a bad case
6289
6290      case Ekind (Entity (Enode)) is
6291
6292         when E_Package =>
6293            Error_Msg_N
6294              ("package name cannot be used as operand", Enode);
6295
6296         when Generic_Unit_Kind =>
6297            Error_Msg_N
6298              ("generic unit name cannot be used as operand", Enode);
6299
6300         when Type_Kind =>
6301            Error_Msg_N
6302              ("subtype name cannot be used as operand", Enode);
6303
6304         when Entry_Kind =>
6305            Error_Msg_N
6306              ("entry name cannot be used as operand", Enode);
6307
6308         when E_Procedure =>
6309            Error_Msg_N
6310              ("procedure name cannot be used as operand", Enode);
6311
6312         when E_Exception =>
6313            Error_Msg_N
6314              ("exception name cannot be used as operand", Enode);
6315
6316         when E_Block | E_Label | E_Loop =>
6317            Error_Msg_N
6318              ("label name cannot be used as operand", Enode);
6319
6320         when others =>
6321            return False;
6322
6323      end case;
6324
6325      return True;
6326   end Junk_Operand;
6327
6328   --------------------
6329   -- Operator_Check --
6330   --------------------
6331
6332   procedure Operator_Check (N : Node_Id) is
6333   begin
6334      Remove_Abstract_Operations (N);
6335
6336      --  Test for case of no interpretation found for operator
6337
6338      if Etype (N) = Any_Type then
6339         declare
6340            L     : Node_Id;
6341            R     : Node_Id;
6342            Op_Id : Entity_Id := Empty;
6343
6344         begin
6345            R := Right_Opnd (N);
6346
6347            if Nkind (N) in N_Binary_Op then
6348               L := Left_Opnd (N);
6349            else
6350               L := Empty;
6351            end if;
6352
6353            --  If either operand has no type, then don't complain further,
6354            --  since this simply means that we have a propagated error.
6355
6356            if R = Error
6357              or else Etype (R) = Any_Type
6358              or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
6359            then
6360               --  For the rather unusual case where one of the operands is
6361               --  a Raise_Expression, whose initial type is Any_Type, use
6362               --  the type of the other operand.
6363
6364               if Nkind (L) = N_Raise_Expression then
6365                  Set_Etype (L, Etype (R));
6366                  Set_Etype (N, Etype (R));
6367
6368               elsif Nkind (R) = N_Raise_Expression then
6369                  Set_Etype (R, Etype (L));
6370                  Set_Etype (N, Etype (L));
6371               end if;
6372
6373               return;
6374
6375            --  We explicitly check for the case of concatenation of component
6376            --  with component to avoid reporting spurious matching array types
6377            --  that might happen to be lurking in distant packages (such as
6378            --  run-time packages). This also prevents inconsistencies in the
6379            --  messages for certain ACVC B tests, which can vary depending on
6380            --  types declared in run-time interfaces. Another improvement when
6381            --  aggregates are present is to look for a well-typed operand.
6382
6383            elsif Present (Candidate_Type)
6384              and then (Nkind (N) /= N_Op_Concat
6385                         or else Is_Array_Type (Etype (L))
6386                         or else Is_Array_Type (Etype (R)))
6387            then
6388               if Nkind (N) = N_Op_Concat then
6389                  if Etype (L) /= Any_Composite
6390                    and then Is_Array_Type (Etype (L))
6391                  then
6392                     Candidate_Type := Etype (L);
6393
6394                  elsif Etype (R) /= Any_Composite
6395                    and then Is_Array_Type (Etype (R))
6396                  then
6397                     Candidate_Type := Etype (R);
6398                  end if;
6399               end if;
6400
6401               Error_Msg_NE -- CODEFIX
6402                 ("operator for} is not directly visible!",
6403                  N, First_Subtype (Candidate_Type));
6404
6405               declare
6406                  U : constant Node_Id :=
6407                        Cunit (Get_Source_Unit (Candidate_Type));
6408               begin
6409                  if Unit_Is_Visible (U) then
6410                     Error_Msg_N -- CODEFIX
6411                       ("use clause would make operation legal!",  N);
6412                  else
6413                     Error_Msg_NE  --  CODEFIX
6414                       ("add with_clause and use_clause for&!",
6415                        N, Defining_Entity (Unit (U)));
6416                  end if;
6417               end;
6418               return;
6419
6420            --  If either operand is a junk operand (e.g. package name), then
6421            --  post appropriate error messages, but do not complain further.
6422
6423            --  Note that the use of OR in this test instead of OR ELSE is
6424            --  quite deliberate, we may as well check both operands in the
6425            --  binary operator case.
6426
6427            elsif Junk_Operand (R)
6428              or  -- really mean OR here and not OR ELSE, see above
6429                (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
6430            then
6431               return;
6432
6433            --  If we have a logical operator, one of whose operands is
6434            --  Boolean, then we know that the other operand cannot resolve to
6435            --  Boolean (since we got no interpretations), but in that case we
6436            --  pretty much know that the other operand should be Boolean, so
6437            --  resolve it that way (generating an error)
6438
6439            elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
6440               if Etype (L) = Standard_Boolean then
6441                  Resolve (R, Standard_Boolean);
6442                  return;
6443               elsif Etype (R) = Standard_Boolean then
6444                  Resolve (L, Standard_Boolean);
6445                  return;
6446               end if;
6447
6448            --  For an arithmetic operator or comparison operator, if one
6449            --  of the operands is numeric, then we know the other operand
6450            --  is not the same numeric type. If it is a non-numeric type,
6451            --  then probably it is intended to match the other operand.
6452
6453            elsif Nkind_In (N, N_Op_Add,
6454                               N_Op_Divide,
6455                               N_Op_Ge,
6456                               N_Op_Gt,
6457                               N_Op_Le)
6458              or else
6459                  Nkind_In (N, N_Op_Lt,
6460                               N_Op_Mod,
6461                               N_Op_Multiply,
6462                               N_Op_Rem,
6463                               N_Op_Subtract)
6464            then
6465               --  If Allow_Integer_Address is active, check whether the
6466               --  operation becomes legal after converting an operand.
6467
6468               if Is_Numeric_Type (Etype (L))
6469                 and then not Is_Numeric_Type (Etype (R))
6470               then
6471                  if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6472                     Rewrite (R,
6473                       Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6474                     Analyze_Arithmetic_Op (N);
6475
6476                  else
6477                     Resolve (R, Etype (L));
6478                  end if;
6479                  return;
6480
6481               elsif Is_Numeric_Type (Etype (R))
6482                 and then not Is_Numeric_Type (Etype (L))
6483               then
6484                  if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
6485                     Rewrite (L,
6486                       Unchecked_Convert_To (Etype (R), Relocate_Node (L)));
6487                     Analyze_Arithmetic_Op (N);
6488                     return;
6489
6490                  else
6491                     Resolve (L, Etype (R));
6492                  end if;
6493
6494                  return;
6495
6496               elsif Allow_Integer_Address
6497                 and then Is_Descendent_Of_Address (Etype (L))
6498                 and then Is_Descendent_Of_Address (Etype (R))
6499                 and then not Error_Posted (N)
6500               then
6501                  declare
6502                     Addr_Type : constant Entity_Id := Etype (L);
6503
6504                  begin
6505                     Rewrite (L,
6506                       Unchecked_Convert_To (
6507                         Standard_Integer, Relocate_Node (L)));
6508                     Rewrite (R,
6509                       Unchecked_Convert_To (
6510                         Standard_Integer, Relocate_Node (R)));
6511                     Analyze_Arithmetic_Op (N);
6512
6513                     --  If this is an operand in an enclosing arithmetic
6514                     --  operation, Convert the result as an address so that
6515                     --  arithmetic folding of address can continue.
6516
6517                     if Nkind (Parent (N)) in N_Op then
6518                        Rewrite (N,
6519                          Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
6520                     end if;
6521
6522                     return;
6523                  end;
6524               end if;
6525
6526            --  Comparisons on A'Access are common enough to deserve a
6527            --  special message.
6528
6529            elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
6530               and then Ekind (Etype (L)) = E_Access_Attribute_Type
6531               and then Ekind (Etype (R)) = E_Access_Attribute_Type
6532            then
6533               Error_Msg_N
6534                 ("two access attributes cannot be compared directly", N);
6535               Error_Msg_N
6536                 ("\use qualified expression for one of the operands",
6537                   N);
6538               return;
6539
6540            --  Another one for C programmers
6541
6542            elsif Nkind (N) = N_Op_Concat
6543              and then Valid_Boolean_Arg (Etype (L))
6544              and then Valid_Boolean_Arg (Etype (R))
6545            then
6546               Error_Msg_N ("invalid operands for concatenation", N);
6547               Error_Msg_N -- CODEFIX
6548                 ("\maybe AND was meant", N);
6549               return;
6550
6551            --  A special case for comparison of access parameter with null
6552
6553            elsif Nkind (N) = N_Op_Eq
6554              and then Is_Entity_Name (L)
6555              and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6556              and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6557                                                  N_Access_Definition
6558              and then Nkind (R) = N_Null
6559            then
6560               Error_Msg_N ("access parameter is not allowed to be null", L);
6561               Error_Msg_N ("\(call would raise Constraint_Error)", L);
6562               return;
6563
6564            --  Another special case for exponentiation, where the right
6565            --  operand must be Natural, independently of the base.
6566
6567            elsif Nkind (N) = N_Op_Expon
6568              and then Is_Numeric_Type (Etype (L))
6569              and then not Is_Overloaded (R)
6570              and then
6571                First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
6572              and then Base_Type (Etype (R)) /= Universal_Integer
6573            then
6574               if Ada_Version >= Ada_2012
6575                 and then Has_Dimension_System (Etype (L))
6576               then
6577                  Error_Msg_NE
6578                    ("exponent for dimensioned type must be a rational" &
6579                     ", found}", R, Etype (R));
6580               else
6581                  Error_Msg_NE
6582                    ("exponent must be of type Natural, found}", R, Etype (R));
6583               end if;
6584
6585               return;
6586            end if;
6587
6588            --  If we fall through then just give general message. Note that in
6589            --  the following messages, if the operand is overloaded we choose
6590            --  an arbitrary type to complain about, but that is probably more
6591            --  useful than not giving a type at all.
6592
6593            if Nkind (N) in N_Unary_Op then
6594               Error_Msg_Node_2 := Etype (R);
6595               Error_Msg_N ("operator& not defined for}", N);
6596               return;
6597
6598            else
6599               if Nkind (N) in N_Binary_Op then
6600                  if not Is_Overloaded (L)
6601                    and then not Is_Overloaded (R)
6602                    and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6603                  then
6604                     Error_Msg_Node_2 := First_Subtype (Etype (R));
6605                     Error_Msg_N ("there is no applicable operator& for}", N);
6606
6607                  else
6608                     --  Another attempt to find a fix: one of the candidate
6609                     --  interpretations may not be use-visible. This has
6610                     --  already been checked for predefined operators, so
6611                     --  we examine only user-defined functions.
6612
6613                     Op_Id := Get_Name_Entity_Id (Chars (N));
6614
6615                     while Present (Op_Id) loop
6616                        if Ekind (Op_Id) /= E_Operator
6617                          and then Is_Overloadable (Op_Id)
6618                        then
6619                           if not Is_Immediately_Visible (Op_Id)
6620                             and then not In_Use (Scope (Op_Id))
6621                             and then not Is_Abstract_Subprogram (Op_Id)
6622                             and then not Is_Hidden (Op_Id)
6623                             and then Ekind (Scope (Op_Id)) = E_Package
6624                             and then
6625                               Has_Compatible_Type
6626                                 (L, Etype (First_Formal (Op_Id)))
6627                             and then Present
6628                              (Next_Formal (First_Formal (Op_Id)))
6629                             and then
6630                               Has_Compatible_Type
6631                                 (R,
6632                                  Etype (Next_Formal (First_Formal (Op_Id))))
6633                           then
6634                              Error_Msg_N
6635                                ("No legal interpretation for operator&", N);
6636                              Error_Msg_NE
6637                                ("\use clause on& would make operation legal",
6638                                 N, Scope (Op_Id));
6639                              exit;
6640                           end if;
6641                        end if;
6642
6643                        Op_Id := Homonym (Op_Id);
6644                     end loop;
6645
6646                     if No (Op_Id) then
6647                        Error_Msg_N ("invalid operand types for operator&", N);
6648
6649                        if Nkind (N) /= N_Op_Concat then
6650                           Error_Msg_NE ("\left operand has}!",  N, Etype (L));
6651                           Error_Msg_NE ("\right operand has}!", N, Etype (R));
6652
6653                        --  For concatenation operators it is more difficult to
6654                        --  determine which is the wrong operand. It is worth
6655                        --  flagging explicitly an access type, for those who
6656                        --  might think that a dereference happens here.
6657
6658                        elsif Is_Access_Type (Etype (L)) then
6659                           Error_Msg_N ("\left operand is access type", N);
6660
6661                        elsif Is_Access_Type (Etype (R)) then
6662                           Error_Msg_N ("\right operand is access type", N);
6663                        end if;
6664                     end if;
6665                  end if;
6666               end if;
6667            end if;
6668         end;
6669      end if;
6670   end Operator_Check;
6671
6672   -----------------------------------------
6673   -- Process_Implicit_Dereference_Prefix --
6674   -----------------------------------------
6675
6676   function Process_Implicit_Dereference_Prefix
6677     (E : Entity_Id;
6678      P : Entity_Id) return Entity_Id
6679   is
6680      Ref : Node_Id;
6681      Typ : constant Entity_Id := Designated_Type (Etype (P));
6682
6683   begin
6684      if Present (E)
6685        and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6686      then
6687         --  We create a dummy reference to E to ensure that the reference is
6688         --  not considered as part of an assignment (an implicit dereference
6689         --  can never assign to its prefix). The Comes_From_Source attribute
6690         --  needs to be propagated for accurate warnings.
6691
6692         Ref := New_Occurrence_Of (E, Sloc (P));
6693         Set_Comes_From_Source (Ref, Comes_From_Source (P));
6694         Generate_Reference (E, Ref);
6695      end if;
6696
6697      --  An implicit dereference is a legal occurrence of an incomplete type
6698      --  imported through a limited_with clause, if the full view is visible.
6699
6700      if From_Limited_With (Typ)
6701        and then not From_Limited_With (Scope (Typ))
6702        and then
6703          (Is_Immediately_Visible (Scope (Typ))
6704            or else
6705              (Is_Child_Unit (Scope (Typ))
6706                and then Is_Visible_Lib_Unit (Scope (Typ))))
6707      then
6708         return Available_View (Typ);
6709      else
6710         return Typ;
6711      end if;
6712   end Process_Implicit_Dereference_Prefix;
6713
6714   --------------------------------
6715   -- Remove_Abstract_Operations --
6716   --------------------------------
6717
6718   procedure Remove_Abstract_Operations (N : Node_Id) is
6719      Abstract_Op    : Entity_Id := Empty;
6720      Address_Kludge : Boolean := False;
6721      I              : Interp_Index;
6722      It             : Interp;
6723
6724      --  AI-310: If overloaded, remove abstract non-dispatching operations. We
6725      --  activate this if either extensions are enabled, or if the abstract
6726      --  operation in question comes from a predefined file. This latter test
6727      --  allows us to use abstract to make operations invisible to users. In
6728      --  particular, if type Address is non-private and abstract subprograms
6729      --  are used to hide its operators, they will be truly hidden.
6730
6731      type Operand_Position is (First_Op, Second_Op);
6732      Univ_Type : constant Entity_Id := Universal_Interpretation (N);
6733
6734      procedure Remove_Address_Interpretations (Op : Operand_Position);
6735      --  Ambiguities may arise when the operands are literal and the address
6736      --  operations in s-auxdec are visible. In that case, remove the
6737      --  interpretation of a literal as Address, to retain the semantics
6738      --  of Address as a private type.
6739
6740      ------------------------------------
6741      -- Remove_Address_Interpretations --
6742      ------------------------------------
6743
6744      procedure Remove_Address_Interpretations (Op : Operand_Position) is
6745         Formal : Entity_Id;
6746
6747      begin
6748         if Is_Overloaded (N) then
6749            Get_First_Interp (N, I, It);
6750            while Present (It.Nam) loop
6751               Formal := First_Entity (It.Nam);
6752
6753               if Op = Second_Op then
6754                  Formal := Next_Entity (Formal);
6755               end if;
6756
6757               if Is_Descendent_Of_Address (Etype (Formal)) then
6758                  Address_Kludge := True;
6759                  Remove_Interp (I);
6760               end if;
6761
6762               Get_Next_Interp (I, It);
6763            end loop;
6764         end if;
6765      end Remove_Address_Interpretations;
6766
6767   --  Start of processing for Remove_Abstract_Operations
6768
6769   begin
6770      if Is_Overloaded (N) then
6771         if Debug_Flag_V then
6772            Write_Str ("Remove_Abstract_Operations: ");
6773            Write_Overloads (N);
6774         end if;
6775
6776         Get_First_Interp (N, I, It);
6777
6778         while Present (It.Nam) loop
6779            if Is_Overloadable (It.Nam)
6780              and then Is_Abstract_Subprogram (It.Nam)
6781              and then not Is_Dispatching_Operation (It.Nam)
6782            then
6783               Abstract_Op := It.Nam;
6784
6785               if Is_Descendent_Of_Address (It.Typ) then
6786                  Address_Kludge := True;
6787                  Remove_Interp (I);
6788                  exit;
6789
6790               --  In Ada 2005, this operation does not participate in overload
6791               --  resolution. If the operation is defined in a predefined
6792               --  unit, it is one of the operations declared abstract in some
6793               --  variants of System, and it must be removed as well.
6794
6795               elsif Ada_Version >= Ada_2005
6796                 or else Is_Predefined_File_Name
6797                           (Unit_File_Name (Get_Source_Unit (It.Nam)))
6798               then
6799                  Remove_Interp (I);
6800                  exit;
6801               end if;
6802            end if;
6803
6804            Get_Next_Interp (I, It);
6805         end loop;
6806
6807         if No (Abstract_Op) then
6808
6809            --  If some interpretation yields an integer type, it is still
6810            --  possible that there are address interpretations. Remove them
6811            --  if one operand is a literal, to avoid spurious ambiguities
6812            --  on systems where Address is a visible integer type.
6813
6814            if Is_Overloaded (N)
6815              and then Nkind (N) in N_Op
6816              and then Is_Integer_Type (Etype (N))
6817            then
6818               if Nkind (N) in N_Binary_Op then
6819                  if Nkind (Right_Opnd (N)) = N_Integer_Literal then
6820                     Remove_Address_Interpretations (Second_Op);
6821
6822                  elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
6823                     Remove_Address_Interpretations (First_Op);
6824                  end if;
6825               end if;
6826            end if;
6827
6828         elsif Nkind (N) in N_Op then
6829
6830            --  Remove interpretations that treat literals as addresses. This
6831            --  is never appropriate, even when Address is defined as a visible
6832            --  Integer type. The reason is that we would really prefer Address
6833            --  to behave as a private type, even in this case, which is there
6834            --  only to accommodate oddities of VMS address sizes. If Address
6835            --  is a visible integer type, we get lots of overload ambiguities.
6836
6837            if Nkind (N) in N_Binary_Op then
6838               declare
6839                  U1 : constant Boolean :=
6840                         Present (Universal_Interpretation (Right_Opnd (N)));
6841                  U2 : constant Boolean :=
6842                         Present (Universal_Interpretation (Left_Opnd (N)));
6843
6844               begin
6845                  if U1 then
6846                     Remove_Address_Interpretations (Second_Op);
6847                  end if;
6848
6849                  if U2 then
6850                     Remove_Address_Interpretations (First_Op);
6851                  end if;
6852
6853                  if not (U1 and U2) then
6854
6855                     --  Remove corresponding predefined operator, which is
6856                     --  always added to the overload set.
6857
6858                     Get_First_Interp (N, I, It);
6859                     while Present (It.Nam) loop
6860                        if Scope (It.Nam) = Standard_Standard
6861                          and then Base_Type (It.Typ) =
6862                                   Base_Type (Etype (Abstract_Op))
6863                        then
6864                           Remove_Interp (I);
6865                        end if;
6866
6867                        Get_Next_Interp (I, It);
6868                     end loop;
6869
6870                  elsif Is_Overloaded (N)
6871                    and then Present (Univ_Type)
6872                  then
6873                     --  If both operands have a universal interpretation,
6874                     --  it is still necessary to remove interpretations that
6875                     --  yield Address. Any remaining ambiguities will be
6876                     --  removed in Disambiguate.
6877
6878                     Get_First_Interp (N, I, It);
6879                     while Present (It.Nam) loop
6880                        if Is_Descendent_Of_Address (It.Typ) then
6881                           Remove_Interp (I);
6882
6883                        elsif not Is_Type (It.Nam) then
6884                           Set_Entity (N, It.Nam);
6885                        end if;
6886
6887                        Get_Next_Interp (I, It);
6888                     end loop;
6889                  end if;
6890               end;
6891            end if;
6892
6893         elsif Nkind (N) = N_Function_Call
6894           and then
6895             (Nkind (Name (N)) = N_Operator_Symbol
6896                or else
6897                  (Nkind (Name (N)) = N_Expanded_Name
6898                     and then
6899                       Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
6900         then
6901
6902            declare
6903               Arg1 : constant Node_Id := First (Parameter_Associations (N));
6904               U1   : constant Boolean :=
6905                        Present (Universal_Interpretation (Arg1));
6906               U2   : constant Boolean :=
6907                        Present (Next (Arg1)) and then
6908                        Present (Universal_Interpretation (Next (Arg1)));
6909
6910            begin
6911               if U1 then
6912                  Remove_Address_Interpretations (First_Op);
6913               end if;
6914
6915               if U2 then
6916                  Remove_Address_Interpretations (Second_Op);
6917               end if;
6918
6919               if not (U1 and U2) then
6920                  Get_First_Interp (N, I, It);
6921                  while Present (It.Nam) loop
6922                     if Scope (It.Nam) = Standard_Standard
6923                       and then It.Typ = Base_Type (Etype (Abstract_Op))
6924                     then
6925                        Remove_Interp (I);
6926                     end if;
6927
6928                     Get_Next_Interp (I, It);
6929                  end loop;
6930               end if;
6931            end;
6932         end if;
6933
6934         --  If the removal has left no valid interpretations, emit an error
6935         --  message now and label node as illegal.
6936
6937         if Present (Abstract_Op) then
6938            Get_First_Interp (N, I, It);
6939
6940            if No (It.Nam) then
6941
6942               --  Removal of abstract operation left no viable candidate
6943
6944               Set_Etype (N, Any_Type);
6945               Error_Msg_Sloc := Sloc (Abstract_Op);
6946               Error_Msg_NE
6947                 ("cannot call abstract operation& declared#", N, Abstract_Op);
6948
6949            --  In Ada 2005, an abstract operation may disable predefined
6950            --  operators. Since the context is not yet known, we mark the
6951            --  predefined operators as potentially hidden. Do not include
6952            --  predefined operators when addresses are involved since this
6953            --  case is handled separately.
6954
6955            elsif Ada_Version >= Ada_2005
6956              and then not Address_Kludge
6957            then
6958               while Present (It.Nam) loop
6959                  if Is_Numeric_Type (It.Typ)
6960                    and then Scope (It.Typ) = Standard_Standard
6961                  then
6962                     Set_Abstract_Op (I, Abstract_Op);
6963                  end if;
6964
6965                  Get_Next_Interp (I, It);
6966               end loop;
6967            end if;
6968         end if;
6969
6970         if Debug_Flag_V then
6971            Write_Str ("Remove_Abstract_Operations done: ");
6972            Write_Overloads (N);
6973         end if;
6974      end if;
6975   end Remove_Abstract_Operations;
6976
6977   ----------------------------
6978   -- Try_Container_Indexing --
6979   ----------------------------
6980
6981   function Try_Container_Indexing
6982     (N      : Node_Id;
6983      Prefix : Node_Id;
6984      Exprs  : List_Id) return Boolean
6985   is
6986      Loc       : constant Source_Ptr := Sloc (N);
6987      Assoc     : List_Id;
6988      Disc      : Entity_Id;
6989      Func      : Entity_Id;
6990      Func_Name : Node_Id;
6991      Indexing  : Node_Id;
6992
6993   begin
6994
6995      --  Check whether type has a specified indexing aspect
6996
6997      Func_Name := Empty;
6998
6999      if Is_Variable (Prefix) then
7000         Func_Name :=
7001           Find_Value_Of_Aspect (Etype (Prefix), Aspect_Variable_Indexing);
7002      end if;
7003
7004      if No (Func_Name) then
7005         Func_Name :=
7006           Find_Value_Of_Aspect (Etype (Prefix), Aspect_Constant_Indexing);
7007      end if;
7008
7009      --  If aspect does not exist the expression is illegal. Error is
7010      --  diagnosed in caller.
7011
7012      if No (Func_Name) then
7013
7014         --  The prefix itself may be an indexing of a container: rewrite
7015         --  as such and re-analyze.
7016
7017         if Has_Implicit_Dereference (Etype (Prefix)) then
7018            Build_Explicit_Dereference
7019              (Prefix, First_Discriminant (Etype (Prefix)));
7020            return Try_Container_Indexing (N, Prefix, Exprs);
7021
7022         else
7023            return False;
7024         end if;
7025      end if;
7026
7027      Assoc := New_List (Relocate_Node (Prefix));
7028
7029      --  A generalized indexing may have nore than one index expression, so
7030      --  transfer all of them to the argument list to be used in the call.
7031      --  Note that there may be named associations, in which case the node
7032      --  was rewritten earlier as a call, and has been transformed back into
7033      --  an indexed expression to share the following processing.
7034
7035      --  The generalized indexing node is the one on which analysis and
7036      --  resolution take place. Before expansion the original node is replaced
7037      --  with the generalized indexing node, which is a call, possibly with
7038      --  a dereference operation.
7039
7040      if Comes_From_Source (N) then
7041         Check_Compiler_Unit (N);
7042      end if;
7043
7044      declare
7045         Arg : Node_Id;
7046      begin
7047         Arg := First (Exprs);
7048         while Present (Arg) loop
7049            Append (Relocate_Node (Arg), Assoc);
7050            Next (Arg);
7051         end loop;
7052      end;
7053
7054      if not Is_Overloaded (Func_Name) then
7055         Func := Entity (Func_Name);
7056         Indexing :=
7057           Make_Function_Call (Loc,
7058             Name                   => New_Occurrence_Of (Func, Loc),
7059             Parameter_Associations => Assoc);
7060         Set_Parent (Indexing, Parent (N));
7061         Set_Generalized_Indexing (N, Indexing);
7062         Analyze (Indexing);
7063         Set_Etype (N, Etype (Indexing));
7064
7065         --  If the return type of the indexing function is a reference type,
7066         --  add the dereference as a possible interpretation. Note that the
7067         --  indexing aspect may be a function that returns the element type
7068         --  with no intervening implicit dereference, and that the reference
7069         --  discriminant is not the first discriminant.
7070
7071         if Has_Discriminants (Etype (Func)) then
7072            Disc := First_Discriminant (Etype (Func));
7073            while Present (Disc) loop
7074               declare
7075                  Elmt_Type : Entity_Id;
7076               begin
7077                  if Has_Implicit_Dereference (Disc) then
7078                     Elmt_Type := Designated_Type (Etype (Disc));
7079                     Add_One_Interp (Indexing, Disc, Elmt_Type);
7080                     Add_One_Interp (N, Disc, Elmt_Type);
7081                     exit;
7082                  end if;
7083               end;
7084
7085               Next_Discriminant (Disc);
7086            end loop;
7087         end if;
7088
7089      else
7090         Indexing :=
7091           Make_Function_Call (Loc,
7092             Name => Make_Identifier (Loc, Chars (Func_Name)),
7093             Parameter_Associations => Assoc);
7094
7095         Set_Parent (Indexing, Parent (N));
7096         Set_Generalized_Indexing (N, Indexing);
7097
7098         declare
7099            I       : Interp_Index;
7100            It      : Interp;
7101            Success : Boolean;
7102
7103         begin
7104            Get_First_Interp (Func_Name, I, It);
7105            Set_Etype (Indexing, Any_Type);
7106            while Present (It.Nam) loop
7107               Analyze_One_Call (Indexing, It.Nam, False, Success);
7108
7109               if Success then
7110                  Set_Etype (Name (Indexing), It.Typ);
7111                  Set_Entity (Name (Indexing), It.Nam);
7112                  Set_Etype (N, Etype (Indexing));
7113
7114                  --  Add implicit dereference interpretation
7115
7116                  if Has_Discriminants (Etype (It.Nam)) then
7117                     Disc := First_Discriminant (Etype (It.Nam));
7118                     while Present (Disc) loop
7119                        if Has_Implicit_Dereference (Disc) then
7120                           Add_One_Interp
7121                             (Indexing, Disc, Designated_Type (Etype (Disc)));
7122                           Add_One_Interp
7123                             (N, Disc, Designated_Type (Etype (Disc)));
7124                           exit;
7125                        end if;
7126
7127                        Next_Discriminant (Disc);
7128                     end loop;
7129                  end if;
7130
7131                  exit;
7132               end if;
7133
7134               Get_Next_Interp (I, It);
7135            end loop;
7136         end;
7137      end if;
7138
7139      if Etype (Indexing) = Any_Type then
7140         Error_Msg_NE
7141           ("container cannot be indexed with&", N, Etype (First (Exprs)));
7142         Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
7143      end if;
7144
7145      return True;
7146   end Try_Container_Indexing;
7147
7148   -----------------------
7149   -- Try_Indirect_Call --
7150   -----------------------
7151
7152   function Try_Indirect_Call
7153     (N   : Node_Id;
7154      Nam : Entity_Id;
7155      Typ : Entity_Id) return Boolean
7156   is
7157      Actual : Node_Id;
7158      Formal : Entity_Id;
7159
7160      Call_OK : Boolean;
7161      pragma Warnings (Off, Call_OK);
7162
7163   begin
7164      Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
7165
7166      Actual := First_Actual (N);
7167      Formal := First_Formal (Designated_Type (Typ));
7168      while Present (Actual) and then Present (Formal) loop
7169         if not Has_Compatible_Type (Actual, Etype (Formal)) then
7170            return False;
7171         end if;
7172
7173         Next (Actual);
7174         Next_Formal (Formal);
7175      end loop;
7176
7177      if No (Actual) and then No (Formal) then
7178         Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
7179
7180         --  Nam is a candidate interpretation for the name in the call,
7181         --  if it is not an indirect call.
7182
7183         if not Is_Type (Nam)
7184            and then Is_Entity_Name (Name (N))
7185         then
7186            Set_Entity (Name (N), Nam);
7187         end if;
7188
7189         return True;
7190
7191      else
7192         return False;
7193      end if;
7194   end Try_Indirect_Call;
7195
7196   ----------------------
7197   -- Try_Indexed_Call --
7198   ----------------------
7199
7200   function Try_Indexed_Call
7201     (N          : Node_Id;
7202      Nam        : Entity_Id;
7203      Typ        : Entity_Id;
7204      Skip_First : Boolean) return Boolean
7205   is
7206      Loc     : constant Source_Ptr := Sloc (N);
7207      Actuals : constant List_Id    := Parameter_Associations (N);
7208      Actual  : Node_Id;
7209      Index   : Entity_Id;
7210
7211   begin
7212      Actual := First (Actuals);
7213
7214      --  If the call was originally written in prefix form, skip the first
7215      --  actual, which is obviously not defaulted.
7216
7217      if Skip_First then
7218         Next (Actual);
7219      end if;
7220
7221      Index := First_Index (Typ);
7222      while Present (Actual) and then Present (Index) loop
7223
7224         --  If the parameter list has a named association, the expression
7225         --  is definitely a call and not an indexed component.
7226
7227         if Nkind (Actual) = N_Parameter_Association then
7228            return False;
7229         end if;
7230
7231         if Is_Entity_Name (Actual)
7232           and then Is_Type (Entity (Actual))
7233           and then No (Next (Actual))
7234         then
7235            --  A single actual that is a type name indicates a slice if the
7236            --  type is discrete, and an error otherwise.
7237
7238            if Is_Discrete_Type (Entity (Actual)) then
7239               Rewrite (N,
7240                 Make_Slice (Loc,
7241                   Prefix =>
7242                     Make_Function_Call (Loc,
7243                       Name => Relocate_Node (Name (N))),
7244                   Discrete_Range =>
7245                     New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
7246
7247               Analyze (N);
7248
7249            else
7250               Error_Msg_N ("invalid use of type in expression", Actual);
7251               Set_Etype (N, Any_Type);
7252            end if;
7253
7254            return True;
7255
7256         elsif not Has_Compatible_Type (Actual, Etype (Index)) then
7257            return False;
7258         end if;
7259
7260         Next (Actual);
7261         Next_Index (Index);
7262      end loop;
7263
7264      if No (Actual) and then No (Index) then
7265         Add_One_Interp (N, Nam, Component_Type (Typ));
7266
7267         --  Nam is a candidate interpretation for the name in the call,
7268         --  if it is not an indirect call.
7269
7270         if not Is_Type (Nam)
7271            and then Is_Entity_Name (Name (N))
7272         then
7273            Set_Entity (Name (N), Nam);
7274         end if;
7275
7276         return True;
7277      else
7278         return False;
7279      end if;
7280   end Try_Indexed_Call;
7281
7282   --------------------------
7283   -- Try_Object_Operation --
7284   --------------------------
7285
7286   function Try_Object_Operation
7287     (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
7288   is
7289      K              : constant Node_Kind  := Nkind (Parent (N));
7290      Is_Subprg_Call : constant Boolean    := K in N_Subprogram_Call;
7291      Loc            : constant Source_Ptr := Sloc (N);
7292      Obj            : constant Node_Id    := Prefix (N);
7293
7294      Subprog : constant Node_Id    :=
7295                  Make_Identifier (Sloc (Selector_Name (N)),
7296                    Chars => Chars (Selector_Name (N)));
7297      --  Identifier on which possible interpretations will be collected
7298
7299      Report_Error : Boolean := False;
7300      --  If no candidate interpretation matches the context, redo analysis
7301      --  with Report_Error True to provide additional information.
7302
7303      Actual          : Node_Id;
7304      Candidate       : Entity_Id := Empty;
7305      New_Call_Node   : Node_Id := Empty;
7306      Node_To_Replace : Node_Id;
7307      Obj_Type        : Entity_Id := Etype (Obj);
7308      Success         : Boolean := False;
7309
7310      function Valid_Candidate
7311        (Success : Boolean;
7312         Call    : Node_Id;
7313         Subp    : Entity_Id) return Entity_Id;
7314      --  If the subprogram is a valid interpretation, record it, and add
7315      --  to the list of interpretations of Subprog. Otherwise return Empty.
7316
7317      procedure Complete_Object_Operation
7318        (Call_Node       : Node_Id;
7319         Node_To_Replace : Node_Id);
7320      --  Make Subprog the name of Call_Node, replace Node_To_Replace with
7321      --  Call_Node, insert the object (or its dereference) as the first actual
7322      --  in the call, and complete the analysis of the call.
7323
7324      procedure Report_Ambiguity (Op : Entity_Id);
7325      --  If a prefixed procedure call is ambiguous, indicate whether the
7326      --  call includes an implicit dereference or an implicit 'Access.
7327
7328      procedure Transform_Object_Operation
7329        (Call_Node       : out Node_Id;
7330         Node_To_Replace : out Node_Id);
7331      --  Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
7332      --  Call_Node is the resulting subprogram call, Node_To_Replace is
7333      --  either N or the parent of N, and Subprog is a reference to the
7334      --  subprogram we are trying to match.
7335
7336      function Try_Class_Wide_Operation
7337        (Call_Node       : Node_Id;
7338         Node_To_Replace : Node_Id) return Boolean;
7339      --  Traverse all ancestor types looking for a class-wide subprogram
7340      --  for which the current operation is a valid non-dispatching call.
7341
7342      procedure Try_One_Prefix_Interpretation (T : Entity_Id);
7343      --  If prefix is overloaded, its interpretation may include different
7344      --  tagged types, and we must examine the primitive operations and
7345      --  the class-wide operations of each in order to find candidate
7346      --  interpretations for the call as a whole.
7347
7348      function Try_Primitive_Operation
7349        (Call_Node       : Node_Id;
7350         Node_To_Replace : Node_Id) return Boolean;
7351      --  Traverse the list of primitive subprograms looking for a dispatching
7352      --  operation for which the current node is a valid call .
7353
7354      ---------------------
7355      -- Valid_Candidate --
7356      ---------------------
7357
7358      function Valid_Candidate
7359        (Success : Boolean;
7360         Call    : Node_Id;
7361         Subp    : Entity_Id) return Entity_Id
7362      is
7363         Arr_Type  : Entity_Id;
7364         Comp_Type : Entity_Id;
7365
7366      begin
7367         --  If the subprogram is a valid interpretation, record it in global
7368         --  variable Subprog, to collect all possible overloadings.
7369
7370         if Success then
7371            if Subp /= Entity (Subprog) then
7372               Add_One_Interp (Subprog, Subp, Etype (Subp));
7373            end if;
7374         end if;
7375
7376         --  If the call may be an indexed call, retrieve component type of
7377         --  resulting expression, and add possible interpretation.
7378
7379         Arr_Type  := Empty;
7380         Comp_Type := Empty;
7381
7382         if Nkind (Call) = N_Function_Call
7383           and then Nkind (Parent (N)) = N_Indexed_Component
7384           and then Needs_One_Actual (Subp)
7385         then
7386            if Is_Array_Type (Etype (Subp)) then
7387               Arr_Type := Etype (Subp);
7388
7389            elsif Is_Access_Type (Etype (Subp))
7390              and then Is_Array_Type (Designated_Type (Etype (Subp)))
7391            then
7392               Arr_Type := Designated_Type (Etype (Subp));
7393            end if;
7394         end if;
7395
7396         if Present (Arr_Type) then
7397
7398            --  Verify that the actuals (excluding the object) match the types
7399            --  of the indexes.
7400
7401            declare
7402               Actual : Node_Id;
7403               Index  : Node_Id;
7404
7405            begin
7406               Actual := Next (First_Actual (Call));
7407               Index  := First_Index (Arr_Type);
7408               while Present (Actual) and then Present (Index) loop
7409                  if not Has_Compatible_Type (Actual, Etype (Index)) then
7410                     Arr_Type := Empty;
7411                     exit;
7412                  end if;
7413
7414                  Next_Actual (Actual);
7415                  Next_Index  (Index);
7416               end loop;
7417
7418               if No (Actual)
7419                  and then No (Index)
7420                  and then Present (Arr_Type)
7421               then
7422                  Comp_Type := Component_Type (Arr_Type);
7423               end if;
7424            end;
7425
7426            if Present (Comp_Type)
7427              and then Etype (Subprog) /= Comp_Type
7428            then
7429               Add_One_Interp (Subprog, Subp, Comp_Type);
7430            end if;
7431         end if;
7432
7433         if Etype (Call) /= Any_Type then
7434            return Subp;
7435         else
7436            return Empty;
7437         end if;
7438      end Valid_Candidate;
7439
7440      -------------------------------
7441      -- Complete_Object_Operation --
7442      -------------------------------
7443
7444      procedure Complete_Object_Operation
7445        (Call_Node       : Node_Id;
7446         Node_To_Replace : Node_Id)
7447      is
7448         Control      : constant Entity_Id := First_Formal (Entity (Subprog));
7449         Formal_Type  : constant Entity_Id := Etype (Control);
7450         First_Actual : Node_Id;
7451
7452      begin
7453         --  Place the name of the operation, with its interpretations,
7454         --  on the rewritten call.
7455
7456         Set_Name (Call_Node, Subprog);
7457
7458         First_Actual := First (Parameter_Associations (Call_Node));
7459
7460         --  For cross-reference purposes, treat the new node as being in the
7461         --  source if the original one is. Set entity and type, even though
7462         --  they may be overwritten during resolution if overloaded.
7463
7464         Set_Comes_From_Source (Subprog, Comes_From_Source (N));
7465         Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
7466
7467         if Nkind (N) = N_Selected_Component
7468           and then not Inside_A_Generic
7469         then
7470            Set_Entity (Selector_Name (N), Entity (Subprog));
7471            Set_Etype  (Selector_Name (N), Etype (Entity (Subprog)));
7472         end if;
7473
7474         --  If need be, rewrite first actual as an explicit dereference. If
7475         --  the call is overloaded, the rewriting can only be done once the
7476         --  primitive operation is identified.
7477
7478         if Is_Overloaded (Subprog) then
7479
7480            --  The prefix itself may be overloaded, and its interpretations
7481            --  must be propagated to the new actual in the call.
7482
7483            if Is_Overloaded (Obj) then
7484               Save_Interps (Obj, First_Actual);
7485            end if;
7486
7487            Rewrite (First_Actual, Obj);
7488
7489         elsif not Is_Access_Type (Formal_Type)
7490           and then Is_Access_Type (Etype (Obj))
7491         then
7492            Rewrite (First_Actual,
7493              Make_Explicit_Dereference (Sloc (Obj), Obj));
7494            Analyze (First_Actual);
7495
7496            --  If we need to introduce an explicit dereference, verify that
7497            --  the resulting actual is compatible with the mode of the formal.
7498
7499            if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
7500              and then Is_Access_Constant (Etype (Obj))
7501            then
7502               Error_Msg_NE
7503                 ("expect variable in call to&", Prefix (N), Entity (Subprog));
7504            end if;
7505
7506         --  Conversely, if the formal is an access parameter and the object
7507         --  is not, replace the actual with a 'Access reference. Its analysis
7508         --  will check that the object is aliased.
7509
7510         elsif Is_Access_Type (Formal_Type)
7511           and then not Is_Access_Type (Etype (Obj))
7512         then
7513            --  A special case: A.all'access is illegal if A is an access to a
7514            --  constant and the context requires an access to a variable.
7515
7516            if not Is_Access_Constant (Formal_Type) then
7517               if (Nkind (Obj) = N_Explicit_Dereference
7518                    and then Is_Access_Constant (Etype (Prefix (Obj))))
7519                 or else not Is_Variable (Obj)
7520               then
7521                  Error_Msg_NE
7522                    ("actual for& must be a variable", Obj, Control);
7523               end if;
7524            end if;
7525
7526            Rewrite (First_Actual,
7527              Make_Attribute_Reference (Loc,
7528                Attribute_Name => Name_Access,
7529                Prefix => Relocate_Node (Obj)));
7530
7531            if not Is_Aliased_View (Obj) then
7532               Error_Msg_NE
7533                 ("object in prefixed call to& must be aliased"
7534                      & " (RM-2005 4.3.1 (13))",
7535                 Prefix (First_Actual), Subprog);
7536            end if;
7537
7538            Analyze (First_Actual);
7539
7540         else
7541            if Is_Overloaded (Obj) then
7542               Save_Interps (Obj, First_Actual);
7543            end if;
7544
7545            Rewrite (First_Actual, Obj);
7546         end if;
7547
7548         Rewrite (Node_To_Replace, Call_Node);
7549
7550         --  Propagate the interpretations collected in subprog to the new
7551         --  function call node, to be resolved from context.
7552
7553         if Is_Overloaded (Subprog) then
7554            Save_Interps (Subprog, Node_To_Replace);
7555
7556         else
7557            Analyze (Node_To_Replace);
7558
7559            --  If the operation has been rewritten into a call, which may get
7560            --  subsequently an explicit dereference, preserve the type on the
7561            --  original node (selected component or indexed component) for
7562            --  subsequent legality tests, e.g. Is_Variable. which examines
7563            --  the original node.
7564
7565            if Nkind (Node_To_Replace) = N_Function_Call then
7566               Set_Etype
7567                 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
7568            end if;
7569         end if;
7570      end Complete_Object_Operation;
7571
7572      ----------------------
7573      -- Report_Ambiguity --
7574      ----------------------
7575
7576      procedure Report_Ambiguity (Op : Entity_Id) is
7577         Access_Actual : constant Boolean :=
7578                           Is_Access_Type (Etype (Prefix (N)));
7579         Access_Formal : Boolean := False;
7580
7581      begin
7582         Error_Msg_Sloc := Sloc (Op);
7583
7584         if Present (First_Formal (Op)) then
7585            Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
7586         end if;
7587
7588         if Access_Formal and then not Access_Actual then
7589            if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7590               Error_Msg_N
7591                 ("\possible interpretation "
7592                  & "(inherited, with implicit 'Access) #", N);
7593            else
7594               Error_Msg_N
7595                 ("\possible interpretation (with implicit 'Access) #", N);
7596            end if;
7597
7598         elsif not Access_Formal and then Access_Actual then
7599            if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7600               Error_Msg_N
7601                 ("\possible interpretation "
7602                  & "( inherited, with implicit dereference) #", N);
7603            else
7604               Error_Msg_N
7605                 ("\possible interpretation (with implicit dereference) #", N);
7606            end if;
7607
7608         else
7609            if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7610               Error_Msg_N ("\possible interpretation (inherited)#", N);
7611            else
7612               Error_Msg_N -- CODEFIX
7613                 ("\possible interpretation#", N);
7614            end if;
7615         end if;
7616      end Report_Ambiguity;
7617
7618      --------------------------------
7619      -- Transform_Object_Operation --
7620      --------------------------------
7621
7622      procedure Transform_Object_Operation
7623        (Call_Node       : out Node_Id;
7624         Node_To_Replace : out Node_Id)
7625      is
7626         Dummy : constant Node_Id := New_Copy (Obj);
7627         --  Placeholder used as a first parameter in the call, replaced
7628         --  eventually by the proper object.
7629
7630         Parent_Node : constant Node_Id := Parent (N);
7631
7632         Actual  : Node_Id;
7633         Actuals : List_Id;
7634
7635      begin
7636         --  Common case covering 1) Call to a procedure and 2) Call to a
7637         --  function that has some additional actuals.
7638
7639         if Nkind (Parent_Node) in N_Subprogram_Call
7640
7641            --  N is a selected component node containing the name of the
7642            --  subprogram. If N is not the name of the parent node we must
7643            --  not replace the parent node by the new construct. This case
7644            --  occurs when N is a parameterless call to a subprogram that
7645            --  is an actual parameter of a call to another subprogram. For
7646            --  example:
7647            --            Some_Subprogram (..., Obj.Operation, ...)
7648
7649            and then Name (Parent_Node) = N
7650         then
7651            Node_To_Replace := Parent_Node;
7652
7653            Actuals := Parameter_Associations (Parent_Node);
7654
7655            if Present (Actuals) then
7656               Prepend (Dummy, Actuals);
7657            else
7658               Actuals := New_List (Dummy);
7659            end if;
7660
7661            if Nkind (Parent_Node) = N_Procedure_Call_Statement then
7662               Call_Node :=
7663                 Make_Procedure_Call_Statement (Loc,
7664                   Name => New_Copy (Subprog),
7665                   Parameter_Associations => Actuals);
7666
7667            else
7668               Call_Node :=
7669                 Make_Function_Call (Loc,
7670                   Name                   => New_Copy (Subprog),
7671                   Parameter_Associations => Actuals);
7672            end if;
7673
7674         --  Before analysis, a function call appears as an indexed component
7675         --  if there are no named associations.
7676
7677         elsif Nkind (Parent_Node) =  N_Indexed_Component
7678           and then N = Prefix (Parent_Node)
7679         then
7680            Node_To_Replace := Parent_Node;
7681            Actuals := Expressions (Parent_Node);
7682
7683            Actual := First (Actuals);
7684            while Present (Actual) loop
7685               Analyze (Actual);
7686               Next (Actual);
7687            end loop;
7688
7689            Prepend (Dummy, Actuals);
7690
7691            Call_Node :=
7692               Make_Function_Call (Loc,
7693                 Name                   => New_Copy (Subprog),
7694                 Parameter_Associations => Actuals);
7695
7696         --  Parameterless call: Obj.F is rewritten as F (Obj)
7697
7698         else
7699            Node_To_Replace := N;
7700
7701            Call_Node :=
7702               Make_Function_Call (Loc,
7703                 Name                   => New_Copy (Subprog),
7704                 Parameter_Associations => New_List (Dummy));
7705         end if;
7706      end Transform_Object_Operation;
7707
7708      ------------------------------
7709      -- Try_Class_Wide_Operation --
7710      ------------------------------
7711
7712      function Try_Class_Wide_Operation
7713        (Call_Node       : Node_Id;
7714         Node_To_Replace : Node_Id) return Boolean
7715      is
7716         Anc_Type    : Entity_Id;
7717         Matching_Op : Entity_Id := Empty;
7718         Error       : Boolean;
7719
7720         procedure Traverse_Homonyms
7721           (Anc_Type : Entity_Id;
7722            Error    : out Boolean);
7723         --  Traverse the homonym chain of the subprogram searching for those
7724         --  homonyms whose first formal has the Anc_Type's class-wide type,
7725         --  or an anonymous access type designating the class-wide type. If
7726         --  an ambiguity is detected, then Error is set to True.
7727
7728         procedure Traverse_Interfaces
7729           (Anc_Type : Entity_Id;
7730            Error    : out Boolean);
7731         --  Traverse the list of interfaces, if any, associated with Anc_Type
7732         --  and search for acceptable class-wide homonyms associated with each
7733         --  interface. If an ambiguity is detected, then Error is set to True.
7734
7735         -----------------------
7736         -- Traverse_Homonyms --
7737         -----------------------
7738
7739         procedure Traverse_Homonyms
7740           (Anc_Type : Entity_Id;
7741            Error    : out Boolean)
7742         is
7743            Cls_Type    : Entity_Id;
7744            Hom         : Entity_Id;
7745            Hom_Ref     : Node_Id;
7746            Success     : Boolean;
7747
7748         begin
7749            Error := False;
7750
7751            Cls_Type := Class_Wide_Type (Anc_Type);
7752
7753            Hom := Current_Entity (Subprog);
7754
7755            --  Find a non-hidden operation whose first parameter is of the
7756            --  class-wide type, a subtype thereof, or an anonymous access
7757            --  to same. If in an instance, the operation can be considered
7758            --  even if hidden (it may be hidden because the instantiation
7759            --  is expanded after the containing package has been analyzed).
7760
7761            while Present (Hom) loop
7762               if Ekind_In (Hom, E_Procedure, E_Function)
7763                 and then (not Is_Hidden (Hom) or else In_Instance)
7764                 and then Scope (Hom) = Scope (Anc_Type)
7765                 and then Present (First_Formal (Hom))
7766                 and then
7767                   (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
7768                     or else
7769                       (Is_Access_Type (Etype (First_Formal (Hom)))
7770                         and then
7771                           Ekind (Etype (First_Formal (Hom))) =
7772                             E_Anonymous_Access_Type
7773                         and then
7774                           Base_Type
7775                             (Designated_Type (Etype (First_Formal (Hom)))) =
7776                                                                   Cls_Type))
7777               then
7778                  --  If the context is a procedure call, ignore functions
7779                  --  in the name of the call.
7780
7781                  if Ekind (Hom) = E_Function
7782                    and then Nkind (Parent (N)) = N_Procedure_Call_Statement
7783                    and then N = Name (Parent (N))
7784                  then
7785                     goto Next_Hom;
7786
7787                  --  If the context is a function call, ignore procedures
7788                  --  in the name of the call.
7789
7790                  elsif Ekind (Hom) = E_Procedure
7791                    and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
7792                  then
7793                     goto Next_Hom;
7794                  end if;
7795
7796                  Set_Etype (Call_Node, Any_Type);
7797                  Set_Is_Overloaded (Call_Node, False);
7798                  Success := False;
7799
7800                  if No (Matching_Op) then
7801                     Hom_Ref := New_Occurrence_Of (Hom, Sloc (Subprog));
7802                     Set_Etype (Call_Node, Any_Type);
7803                     Set_Parent (Call_Node, Parent (Node_To_Replace));
7804
7805                     Set_Name (Call_Node, Hom_Ref);
7806
7807                     Analyze_One_Call
7808                       (N          => Call_Node,
7809                        Nam        => Hom,
7810                        Report     => Report_Error,
7811                        Success    => Success,
7812                        Skip_First => True);
7813
7814                     Matching_Op :=
7815                       Valid_Candidate (Success, Call_Node, Hom);
7816
7817                  else
7818                     Analyze_One_Call
7819                       (N          => Call_Node,
7820                        Nam        => Hom,
7821                        Report     => Report_Error,
7822                        Success    => Success,
7823                        Skip_First => True);
7824
7825                     if Present (Valid_Candidate (Success, Call_Node, Hom))
7826                       and then Nkind (Call_Node) /= N_Function_Call
7827                     then
7828                        Error_Msg_NE ("ambiguous call to&", N, Hom);
7829                        Report_Ambiguity (Matching_Op);
7830                        Report_Ambiguity (Hom);
7831                        Error := True;
7832                        return;
7833                     end if;
7834                  end if;
7835               end if;
7836
7837               <<Next_Hom>>
7838                  Hom := Homonym (Hom);
7839            end loop;
7840         end Traverse_Homonyms;
7841
7842         -------------------------
7843         -- Traverse_Interfaces --
7844         -------------------------
7845
7846         procedure Traverse_Interfaces
7847           (Anc_Type : Entity_Id;
7848            Error    : out Boolean)
7849         is
7850            Intface_List : constant List_Id :=
7851                             Abstract_Interface_List (Anc_Type);
7852            Intface      : Node_Id;
7853
7854         begin
7855            Error := False;
7856
7857            if Is_Non_Empty_List (Intface_List) then
7858               Intface := First (Intface_List);
7859               while Present (Intface) loop
7860
7861                  --  Look for acceptable class-wide homonyms associated with
7862                  --  the interface.
7863
7864                  Traverse_Homonyms (Etype (Intface), Error);
7865
7866                  if Error then
7867                     return;
7868                  end if;
7869
7870                  --  Continue the search by looking at each of the interface's
7871                  --  associated interface ancestors.
7872
7873                  Traverse_Interfaces (Etype (Intface), Error);
7874
7875                  if Error then
7876                     return;
7877                  end if;
7878
7879                  Next (Intface);
7880               end loop;
7881            end if;
7882         end Traverse_Interfaces;
7883
7884      --  Start of processing for Try_Class_Wide_Operation
7885
7886      begin
7887         --  If we are searching only for conflicting class-wide subprograms
7888         --  then initialize directly Matching_Op with the target entity.
7889
7890         if CW_Test_Only then
7891            Matching_Op := Entity (Selector_Name (N));
7892         end if;
7893
7894         --  Loop through ancestor types (including interfaces), traversing
7895         --  the homonym chain of the subprogram, trying out those homonyms
7896         --  whose first formal has the class-wide type of the ancestor, or
7897         --  an anonymous access type designating the class-wide type.
7898
7899         Anc_Type := Obj_Type;
7900         loop
7901            --  Look for a match among homonyms associated with the ancestor
7902
7903            Traverse_Homonyms (Anc_Type, Error);
7904
7905            if Error then
7906               return True;
7907            end if;
7908
7909            --  Continue the search for matches among homonyms associated with
7910            --  any interfaces implemented by the ancestor.
7911
7912            Traverse_Interfaces (Anc_Type, Error);
7913
7914            if Error then
7915               return True;
7916            end if;
7917
7918            exit when Etype (Anc_Type) = Anc_Type;
7919            Anc_Type := Etype (Anc_Type);
7920         end loop;
7921
7922         if Present (Matching_Op) then
7923            Set_Etype (Call_Node, Etype (Matching_Op));
7924         end if;
7925
7926         return Present (Matching_Op);
7927      end Try_Class_Wide_Operation;
7928
7929      -----------------------------------
7930      -- Try_One_Prefix_Interpretation --
7931      -----------------------------------
7932
7933      procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
7934      begin
7935         Obj_Type := T;
7936
7937         if Is_Access_Type (Obj_Type) then
7938            Obj_Type := Designated_Type (Obj_Type);
7939         end if;
7940
7941         if Ekind (Obj_Type) = E_Private_Subtype then
7942            Obj_Type := Base_Type (Obj_Type);
7943         end if;
7944
7945         if Is_Class_Wide_Type (Obj_Type) then
7946            Obj_Type := Etype (Class_Wide_Type (Obj_Type));
7947         end if;
7948
7949         --  The type may have be obtained through a limited_with clause,
7950         --  in which case the primitive operations are available on its
7951         --  non-limited view. If still incomplete, retrieve full view.
7952
7953         if Ekind (Obj_Type) = E_Incomplete_Type
7954           and then From_Limited_With (Obj_Type)
7955         then
7956            Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
7957         end if;
7958
7959         --  If the object is not tagged, or the type is still an incomplete
7960         --  type, this is not a prefixed call.
7961
7962         if not Is_Tagged_Type (Obj_Type)
7963           or else Is_Incomplete_Type (Obj_Type)
7964         then
7965            return;
7966         end if;
7967
7968         declare
7969            Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
7970            CW_Result     : Boolean;
7971            Prim_Result   : Boolean;
7972            pragma Unreferenced (CW_Result);
7973
7974         begin
7975            if not CW_Test_Only then
7976               Prim_Result :=
7977                  Try_Primitive_Operation
7978                   (Call_Node       => New_Call_Node,
7979                    Node_To_Replace => Node_To_Replace);
7980            end if;
7981
7982            --  Check if there is a class-wide subprogram covering the
7983            --  primitive. This check must be done even if a candidate
7984            --  was found in order to report ambiguous calls.
7985
7986            if not (Prim_Result) then
7987               CW_Result :=
7988                 Try_Class_Wide_Operation
7989                   (Call_Node       => New_Call_Node,
7990                    Node_To_Replace => Node_To_Replace);
7991
7992            --  If we found a primitive we search for class-wide subprograms
7993            --  using a duplicate of the call node (done to avoid missing its
7994            --  decoration if there is no ambiguity).
7995
7996            else
7997               CW_Result :=
7998                 Try_Class_Wide_Operation
7999                   (Call_Node       => Dup_Call_Node,
8000                    Node_To_Replace => Node_To_Replace);
8001            end if;
8002         end;
8003      end Try_One_Prefix_Interpretation;
8004
8005      -----------------------------
8006      -- Try_Primitive_Operation --
8007      -----------------------------
8008
8009      function Try_Primitive_Operation
8010        (Call_Node       : Node_Id;
8011         Node_To_Replace : Node_Id) return Boolean
8012      is
8013         Elmt        : Elmt_Id;
8014         Prim_Op     : Entity_Id;
8015         Matching_Op : Entity_Id := Empty;
8016         Prim_Op_Ref : Node_Id   := Empty;
8017
8018         Corr_Type : Entity_Id := Empty;
8019         --  If the prefix is a synchronized type, the controlling type of
8020         --  the primitive operation is the corresponding record type, else
8021         --  this is the object type itself.
8022
8023         Success : Boolean   := False;
8024
8025         function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
8026         --  For tagged types the candidate interpretations are found in
8027         --  the list of primitive operations of the type and its ancestors.
8028         --  For formal tagged types we have to find the operations declared
8029         --  in the same scope as the type (including in the generic formal
8030         --  part) because the type itself carries no primitive operations,
8031         --  except for formal derived types that inherit the operations of
8032         --  the parent and progenitors.
8033         --
8034         --  If the context is a generic subprogram body, the generic formals
8035         --  are visible by name, but are not in the entity list of the
8036         --  subprogram because that list starts with the subprogram formals.
8037         --  We retrieve the candidate operations from the generic declaration.
8038
8039         function Is_Private_Overriding (Op : Entity_Id) return Boolean;
8040         --  An operation that overrides an inherited operation in the private
8041         --  part of its package may be hidden, but if the inherited operation
8042         --  is visible a direct call to it will dispatch to the private one,
8043         --  which is therefore a valid candidate.
8044
8045         function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
8046         --  Verify that the prefix, dereferenced if need be, is a valid
8047         --  controlling argument in a call to Op. The remaining actuals
8048         --  are checked in the subsequent call to Analyze_One_Call.
8049
8050         ------------------------------
8051         -- Collect_Generic_Type_Ops --
8052         ------------------------------
8053
8054         function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
8055            Bas        : constant Entity_Id := Base_Type (T);
8056            Candidates : constant Elist_Id := New_Elmt_List;
8057            Subp       : Entity_Id;
8058            Formal     : Entity_Id;
8059
8060            procedure Check_Candidate;
8061            --  The operation is a candidate if its first parameter is a
8062            --  controlling operand of the desired type.
8063
8064            -----------------------
8065            --  Check_Candidate; --
8066            -----------------------
8067
8068            procedure Check_Candidate is
8069            begin
8070               Formal := First_Formal (Subp);
8071
8072               if Present (Formal)
8073                 and then Is_Controlling_Formal (Formal)
8074                 and then
8075                   (Base_Type (Etype (Formal)) = Bas
8076                     or else
8077                       (Is_Access_Type (Etype (Formal))
8078                         and then Designated_Type (Etype (Formal)) = Bas))
8079               then
8080                  Append_Elmt (Subp, Candidates);
8081               end if;
8082            end Check_Candidate;
8083
8084         --  Start of processing for Collect_Generic_Type_Ops
8085
8086         begin
8087            if Is_Derived_Type (T) then
8088               return Primitive_Operations (T);
8089
8090            elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
8091
8092               --  Scan the list of generic formals to find subprograms
8093               --  that may have a first controlling formal of the type.
8094
8095               if Nkind (Unit_Declaration_Node (Scope (T))) =
8096                                         N_Generic_Subprogram_Declaration
8097               then
8098                  declare
8099                     Decl : Node_Id;
8100
8101                  begin
8102                     Decl :=
8103                       First (Generic_Formal_Declarations
8104                               (Unit_Declaration_Node (Scope (T))));
8105                     while Present (Decl) loop
8106                        if Nkind (Decl) in N_Formal_Subprogram_Declaration then
8107                           Subp := Defining_Entity (Decl);
8108                           Check_Candidate;
8109                        end if;
8110
8111                        Next (Decl);
8112                     end loop;
8113                  end;
8114               end if;
8115               return Candidates;
8116
8117            else
8118               --  Scan the list of entities declared in the same scope as
8119               --  the type. In general this will be an open scope, given that
8120               --  the call we are analyzing can only appear within a generic
8121               --  declaration or body (either the one that declares T, or a
8122               --  child unit).
8123
8124               --  For a subtype representing a generic actual type, go to the
8125               --  base type.
8126
8127               if Is_Generic_Actual_Type (T) then
8128                  Subp := First_Entity (Scope (Base_Type (T)));
8129               else
8130                  Subp := First_Entity (Scope (T));
8131               end if;
8132
8133               while Present (Subp) loop
8134                  if Is_Overloadable (Subp) then
8135                     Check_Candidate;
8136                  end if;
8137
8138                  Next_Entity (Subp);
8139               end loop;
8140
8141               return Candidates;
8142            end if;
8143         end Collect_Generic_Type_Ops;
8144
8145         ---------------------------
8146         -- Is_Private_Overriding --
8147         ---------------------------
8148
8149         function Is_Private_Overriding (Op : Entity_Id) return Boolean is
8150            Visible_Op : constant Entity_Id := Homonym (Op);
8151
8152         begin
8153            return Present (Visible_Op)
8154              and then Scope (Op) = Scope (Visible_Op)
8155              and then not Comes_From_Source (Visible_Op)
8156              and then Alias (Visible_Op) = Op
8157              and then not Is_Hidden (Visible_Op);
8158         end Is_Private_Overriding;
8159
8160         -----------------------------
8161         -- Valid_First_Argument_Of --
8162         -----------------------------
8163
8164         function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
8165            Typ : Entity_Id := Etype (First_Formal (Op));
8166
8167         begin
8168            if Is_Concurrent_Type (Typ)
8169              and then Present (Corresponding_Record_Type (Typ))
8170            then
8171               Typ := Corresponding_Record_Type (Typ);
8172            end if;
8173
8174            --  Simple case. Object may be a subtype of the tagged type or
8175            --  may be the corresponding record of a synchronized type.
8176
8177            return Obj_Type = Typ
8178              or else Base_Type (Obj_Type) = Typ
8179              or else Corr_Type = Typ
8180
8181               --  Prefix can be dereferenced
8182
8183              or else
8184                (Is_Access_Type (Corr_Type)
8185                  and then Designated_Type (Corr_Type) = Typ)
8186
8187               --  Formal is an access parameter, for which the object
8188               --  can provide an access.
8189
8190              or else
8191                (Ekind (Typ) = E_Anonymous_Access_Type
8192                  and then
8193                    Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
8194         end Valid_First_Argument_Of;
8195
8196      --  Start of processing for Try_Primitive_Operation
8197
8198      begin
8199         --  Look for subprograms in the list of primitive operations. The name
8200         --  must be identical, and the kind of call indicates the expected
8201         --  kind of operation (function or procedure). If the type is a
8202         --  (tagged) synchronized type, the primitive ops are attached to the
8203         --  corresponding record (base) type.
8204
8205         if Is_Concurrent_Type (Obj_Type) then
8206            if Present (Corresponding_Record_Type (Obj_Type)) then
8207               Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
8208               Elmt := First_Elmt (Primitive_Operations (Corr_Type));
8209            else
8210               Corr_Type := Obj_Type;
8211               Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
8212            end if;
8213
8214         elsif not Is_Generic_Type (Obj_Type) then
8215            Corr_Type := Obj_Type;
8216            Elmt := First_Elmt (Primitive_Operations (Obj_Type));
8217
8218         else
8219            Corr_Type := Obj_Type;
8220            Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
8221         end if;
8222
8223         while Present (Elmt) loop
8224            Prim_Op := Node (Elmt);
8225
8226            if Chars (Prim_Op) = Chars (Subprog)
8227              and then Present (First_Formal (Prim_Op))
8228              and then Valid_First_Argument_Of (Prim_Op)
8229              and then
8230                (Nkind (Call_Node) = N_Function_Call)
8231                    =
8232                (Ekind (Prim_Op) = E_Function)
8233            then
8234               --  Ada 2005 (AI-251): If this primitive operation corresponds
8235               --  to an immediate ancestor interface there is no need to add
8236               --  it to the list of interpretations; the corresponding aliased
8237               --  primitive is also in this list of primitive operations and
8238               --  will be used instead.
8239
8240               if (Present (Interface_Alias (Prim_Op))
8241                    and then Is_Ancestor (Find_Dispatching_Type
8242                                            (Alias (Prim_Op)), Corr_Type))
8243
8244                 --  Do not consider hidden primitives unless the type is in an
8245                 --  open scope or we are within an instance, where visibility
8246                 --  is known to be correct, or else if this is an overriding
8247                 --  operation in the private part for an inherited operation.
8248
8249                 or else (Is_Hidden (Prim_Op)
8250                           and then not Is_Immediately_Visible (Obj_Type)
8251                           and then not In_Instance
8252                           and then not Is_Private_Overriding (Prim_Op))
8253               then
8254                  goto Continue;
8255               end if;
8256
8257               Set_Etype (Call_Node, Any_Type);
8258               Set_Is_Overloaded (Call_Node, False);
8259
8260               if No (Matching_Op) then
8261                  Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
8262                  Candidate := Prim_Op;
8263
8264                  Set_Parent (Call_Node, Parent (Node_To_Replace));
8265
8266                  Set_Name (Call_Node, Prim_Op_Ref);
8267                  Success := False;
8268
8269                  Analyze_One_Call
8270                    (N          => Call_Node,
8271                     Nam        => Prim_Op,
8272                     Report     => Report_Error,
8273                     Success    => Success,
8274                     Skip_First => True);
8275
8276                  Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
8277
8278               --  More than one interpretation, collect for subsequent
8279               --  disambiguation. If this is a procedure call and there
8280               --  is another match, report ambiguity now.
8281
8282               else
8283                  Analyze_One_Call
8284                    (N          => Call_Node,
8285                     Nam        => Prim_Op,
8286                     Report     => Report_Error,
8287                     Success    => Success,
8288                     Skip_First => True);
8289
8290                  if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
8291                    and then Nkind (Call_Node) /= N_Function_Call
8292                  then
8293                     Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
8294                     Report_Ambiguity (Matching_Op);
8295                     Report_Ambiguity (Prim_Op);
8296                     return True;
8297                  end if;
8298               end if;
8299            end if;
8300
8301            <<Continue>>
8302            Next_Elmt (Elmt);
8303         end loop;
8304
8305         if Present (Matching_Op) then
8306            Set_Etype (Call_Node, Etype (Matching_Op));
8307         end if;
8308
8309         return Present (Matching_Op);
8310      end Try_Primitive_Operation;
8311
8312   --  Start of processing for Try_Object_Operation
8313
8314   begin
8315      Analyze_Expression (Obj);
8316
8317      --  Analyze the actuals if node is known to be a subprogram call
8318
8319      if Is_Subprg_Call and then N = Name (Parent (N)) then
8320         Actual := First (Parameter_Associations (Parent (N)));
8321         while Present (Actual) loop
8322            Analyze_Expression (Actual);
8323            Next (Actual);
8324         end loop;
8325      end if;
8326
8327      --  Build a subprogram call node, using a copy of Obj as its first
8328      --  actual. This is a placeholder, to be replaced by an explicit
8329      --  dereference when needed.
8330
8331      Transform_Object_Operation
8332        (Call_Node       => New_Call_Node,
8333         Node_To_Replace => Node_To_Replace);
8334
8335      Set_Etype (New_Call_Node, Any_Type);
8336      Set_Etype (Subprog, Any_Type);
8337      Set_Parent (New_Call_Node, Parent (Node_To_Replace));
8338
8339      if not Is_Overloaded (Obj) then
8340         Try_One_Prefix_Interpretation (Obj_Type);
8341
8342      else
8343         declare
8344            I  : Interp_Index;
8345            It : Interp;
8346         begin
8347            Get_First_Interp (Obj, I, It);
8348            while Present (It.Nam) loop
8349               Try_One_Prefix_Interpretation (It.Typ);
8350               Get_Next_Interp (I, It);
8351            end loop;
8352         end;
8353      end if;
8354
8355      if Etype (New_Call_Node) /= Any_Type then
8356
8357         --  No need to complete the tree transformations if we are only
8358         --  searching for conflicting class-wide subprograms
8359
8360         if CW_Test_Only then
8361            return False;
8362         else
8363            Complete_Object_Operation
8364              (Call_Node       => New_Call_Node,
8365               Node_To_Replace => Node_To_Replace);
8366            return True;
8367         end if;
8368
8369      elsif Present (Candidate) then
8370
8371         --  The argument list is not type correct. Re-analyze with error
8372         --  reporting enabled, and use one of the possible candidates.
8373         --  In All_Errors_Mode, re-analyze all failed interpretations.
8374
8375         if All_Errors_Mode then
8376            Report_Error := True;
8377            if Try_Primitive_Operation
8378                 (Call_Node       => New_Call_Node,
8379                  Node_To_Replace => Node_To_Replace)
8380
8381              or else
8382                Try_Class_Wide_Operation
8383                  (Call_Node       => New_Call_Node,
8384                   Node_To_Replace => Node_To_Replace)
8385            then
8386               null;
8387            end if;
8388
8389         else
8390            Analyze_One_Call
8391              (N          => New_Call_Node,
8392               Nam        => Candidate,
8393               Report     => True,
8394               Success    => Success,
8395               Skip_First => True);
8396         end if;
8397
8398         --  No need for further errors
8399
8400         return True;
8401
8402      else
8403         --  There was no candidate operation, so report it as an error
8404         --  in the caller: Analyze_Selected_Component.
8405
8406         return False;
8407      end if;
8408   end Try_Object_Operation;
8409
8410   ---------
8411   -- wpo --
8412   ---------
8413
8414   procedure wpo (T : Entity_Id) is
8415      Op : Entity_Id;
8416      E  : Elmt_Id;
8417
8418   begin
8419      if not Is_Tagged_Type (T) then
8420         return;
8421      end if;
8422
8423      E := First_Elmt (Primitive_Operations (Base_Type (T)));
8424      while Present (E) loop
8425         Op := Node (E);
8426         Write_Int (Int (Op));
8427         Write_Str (" === ");
8428         Write_Name (Chars (Op));
8429         Write_Str (" in ");
8430         Write_Name (Chars (Scope (Op)));
8431         Next_Elmt (E);
8432         Write_Eol;
8433      end loop;
8434   end wpo;
8435
8436end Sem_Ch4;
8437