1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ U T I L                              --
6--                                                                          --
7--                                 S p e c                                  --
8--                                                                          --
9--          Copyright (C) 1992-2014, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26--  Package containing utility procedures used throughout the semantics
27
28with Einfo;   use Einfo;
29with Exp_Tss; use Exp_Tss;
30with Namet;   use Namet;
31with Snames;  use Snames;
32with Types;   use Types;
33with Uintp;   use Uintp;
34with Urealp;  use Urealp;
35
36package Sem_Util is
37
38   function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
39   --  Given a type that implements interfaces look for its associated
40   --  definition node and return its list of interfaces.
41
42   procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
43   --  Add A to the list of access types to process when expanding the
44   --  freeze node of E.
45
46   procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
47   --  Given a block statement N, generate an internal E_Block label and make
48   --  it the identifier of the block. Id denotes the generated entity. If the
49   --  block already has an identifier, Id returns the entity of its label.
50
51   procedure Add_Contract_Item (Prag : Node_Id; Id : Entity_Id);
52   --  Add pragma Prag to the contract of an entry, a package [body], a
53   --  subprogram [body] or variable denoted by Id. The following are valid
54   --  pragmas:
55   --    Abstract_States
56   --    Async_Readers
57   --    Async_Writers
58   --    Contract_Cases
59   --    Depends
60   --    Effective_Reads
61   --    Effective_Writes
62   --    Global
63   --    Initial_Condition
64   --    Initializes
65   --    Part_Of
66   --    Postcondition
67   --    Precondition
68   --    Refined_Depends
69   --    Refined_Global
70   --    Refined_Post
71   --    Refined_States
72   --    Test_Case
73
74   procedure Add_Global_Declaration (N : Node_Id);
75   --  These procedures adds a declaration N at the library level, to be
76   --  elaborated before any other code in the unit. It is used for example
77   --  for the entity that marks whether a unit has been elaborated. The
78   --  declaration is added to the Declarations list of the Aux_Decls_Node
79   --  for the current unit. The declarations are added in the current scope,
80   --  so the caller should push a new scope as required before the call.
81
82   function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
83   --  Given two types, returns True if we are in Allow_Integer_Address mode
84   --  and one of the types is (a descendent of) System.Address (and this type
85   --  is private), and the other type is any integer type.
86
87   function Addressable (V : Uint) return Boolean;
88   function Addressable (V : Int)  return Boolean;
89   pragma Inline (Addressable);
90   --  Returns True if the value of V is the word size of an addressable
91   --  factor of the word size (typically 8, 16, 32 or 64).
92
93   function Alignment_In_Bits (E : Entity_Id) return Uint;
94   --  If the alignment of the type or object E is currently known to the
95   --  compiler, then this function returns the alignment value in bits.
96   --  Otherwise Uint_0 is returned, indicating that the alignment of the
97   --  entity is not yet known to the compiler.
98
99   procedure Append_Inherited_Subprogram (S : Entity_Id);
100   --  If the parent of the operation is declared in the visible part of
101   --  the current scope, the inherited operation is visible even though the
102   --  derived type that inherits the operation may be completed in the private
103   --  part of the current package.
104
105   procedure Apply_Compile_Time_Constraint_Error
106     (N      : Node_Id;
107      Msg    : String;
108      Reason : RT_Exception_Code;
109      Ent    : Entity_Id  := Empty;
110      Typ    : Entity_Id  := Empty;
111      Loc    : Source_Ptr := No_Location;
112      Rep    : Boolean    := True;
113      Warn   : Boolean    := False);
114   --  N is a subexpression which will raise constraint error when evaluated
115   --  at runtime. Msg is a message that explains the reason for raising the
116   --  exception. The last character is ? if the message is always a warning,
117   --  even in Ada 95, and is not a ? if the message represents an illegality
118   --  (because of violation of static expression rules) in Ada 95 (but not
119   --  in Ada 83). Typically this routine posts all messages at the Sloc of
120   --  node N. However, if Loc /= No_Location, Loc is the Sloc used to output
121   --  the message. After posting the appropriate message, and if the flag
122   --  Rep is set, this routine replaces the expression with an appropriate
123   --  N_Raise_Constraint_Error node using the given Reason code. This node
124   --  is then marked as being static if the original node is static, but
125   --  sets the flag Raises_Constraint_Error, preventing further evaluation.
126   --  The error message may contain a } or & insertion character. This
127   --  normally references Etype (N), unless the Ent argument is given
128   --  explicitly, in which case it is used instead. The type of the raise
129   --  node that is built is normally Etype (N), but if the Typ parameter
130   --  is present, this is used instead. Warn is normally False. If it is
131   --  True then the message is treated as a warning even though it does
132   --  not end with a ? (this is used when the caller wants to parameterize
133   --  whether an error or warning is given).
134
135   function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
136   --  Given the entity of an abstract state or a variable, determine whether
137   --  Id is subject to external property Async_Readers and if it is, the
138   --  related expression evaluates to True.
139
140   function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
141   --  Given the entity of an abstract state or a variable, determine whether
142   --  Id is subject to external property Async_Writers and if it is, the
143   --  related expression evaluates to True.
144
145   function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
146   --  If at the point of declaration an array type has a private or limited
147   --  component, several array operations are not avaiable on the type, and
148   --  the array type is flagged accordingly. If in the immediate scope of
149   --  the array type the component becomes non-private or non-limited, these
150   --  operations become avaiable. This can happen if the scopes of both types
151   --  are open, and the scope of the array is not outside the scope of the
152   --  component.
153
154   procedure Bad_Attribute
155     (N    : Node_Id;
156      Nam  : Name_Id;
157      Warn : Boolean := False);
158   --  Called when node N is expected to contain a valid attribute name, and
159   --  Nam is found instead. If Warn is set True this is a warning, else this
160   --  is an error.
161
162   procedure Bad_Predicated_Subtype_Use
163     (Msg            : String;
164      N              : Node_Id;
165      Typ            : Entity_Id;
166      Suggest_Static : Boolean := False);
167   --  This is called when Typ, a predicated subtype, is used in a context
168   --  which does not allow the use of a predicated subtype. Msg is passed to
169   --  Error_Msg_FE to output an appropriate message using N as the location,
170   --  and Typ as the entity. The caller must set up any insertions other than
171   --  the & for the type itself. Note that if Typ is a generic actual type,
172   --  then the message will be output as a warning, and a raise Program_Error
173   --  is inserted using Insert_Action with node N as the insertion point. Node
174   --  N also supplies the source location for construction of the raise node.
175   --  If Typ does not have any predicates, the call has no effect. Set flag
176   --  Suggest_Static when the context warrants an advice on how to avoid the
177   --  use error.
178
179   function Bad_Unordered_Enumeration_Reference
180     (N : Node_Id;
181      T : Entity_Id) return Boolean;
182   --  Node N contains a potentially dubious reference to type T, either an
183   --  explicit comparison, or an explicit range. This function returns True
184   --  if the type T is an enumeration type for which No pragma Order has been
185   --  given, and the reference N is not in the same extended source unit as
186   --  the declaration of T.
187
188   function Build_Actual_Subtype
189     (T : Entity_Id;
190      N : Node_Or_Entity_Id) return Node_Id;
191   --  Build an anonymous subtype for an entity or expression, using the
192   --  bounds of the entity or the discriminants of the enclosing record.
193   --  T is the type for which the actual subtype is required, and N is either
194   --  a defining identifier, or any subexpression.
195
196   function Build_Actual_Subtype_Of_Component
197     (T : Entity_Id;
198      N : Node_Id) return Node_Id;
199   --  Determine whether a selected component has a type that depends on
200   --  discriminants, and build actual subtype for it if so.
201
202   function Build_Default_Subtype
203     (T : Entity_Id;
204      N : Node_Id) return Entity_Id;
205   --  If T is an unconstrained type with defaulted discriminants, build a
206   --  subtype constrained by the default values, insert the subtype
207   --  declaration in the tree before N, and return the entity of that
208   --  subtype. Otherwise, simply return T.
209
210   function Build_Discriminal_Subtype_Of_Component
211     (T : Entity_Id) return Node_Id;
212   --  Determine whether a record component has a type that depends on
213   --  discriminants, and build actual subtype for it if so.
214
215   procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
216   --  Given a compilation unit node N, allocate an elaboration counter for
217   --  the compilation unit, and install it in the Elaboration_Entity field
218   --  of Spec_Id, the entity for the compilation unit.
219
220   procedure Build_Explicit_Dereference
221     (Expr : Node_Id;
222      Disc : Entity_Id);
223   --  AI05-139: Names with implicit dereference. If the expression N is a
224   --  reference type and the context imposes the corresponding designated
225   --  type, convert N into N.Disc.all. Such expressions are always over-
226   --  loaded with both interpretations, and the dereference interpretation
227   --  carries the name of the reference discriminant.
228
229   function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
230   --  Returns True if the expression cannot possibly raise Constraint_Error.
231   --  The response is conservative in the sense that a result of False does
232   --  not necessarily mean that CE could be raised, but a response of True
233   --  means that for sure CE cannot be raised.
234
235   procedure Check_Dynamically_Tagged_Expression
236     (Expr        : Node_Id;
237      Typ         : Entity_Id;
238      Related_Nod : Node_Id);
239   --  Check wrong use of dynamically tagged expression
240
241   procedure Check_Expression_Against_Static_Predicate
242     (Expr : Node_Id;
243      Typ  : Entity_Id);
244   --  Determine whether an arbitrary expression satisfies the static predicate
245   --  of a type. The routine does nothing if Expr is not known at compile time
246   --  or Typ lacks a static predicate, otherwise it may emit a warning if the
247   --  expression is prohibited by the predicate.
248
249   procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
250   --  Verify that the full declaration of type T has been seen. If not, place
251   --  error message on node N. Used in object declarations, type conversions
252   --  and qualified expressions.
253
254   procedure Check_Function_Writable_Actuals (N : Node_Id);
255   --  (Ada 2012): If the construct N has two or more direct constituents that
256   --  are names or expressions whose evaluation may occur in an arbitrary
257   --  order, at least one of which contains a function call with an in out or
258   --  out parameter, then the construct is legal only if: for each name that
259   --  is passed as a parameter of mode in out or out to some inner function
260   --  call C2 (not including the construct N itself), there is no other name
261   --  anywhere within a direct constituent of the construct C other than
262   --  the one containing C2, that is known to refer to the same object (RM
263   --  6.4.1(6.17/3)).
264
265   procedure Check_Implicit_Dereference (Nam : Node_Id; Typ : Entity_Id);
266   --  AI05-139-2: Accessors and iterators for containers. This procedure
267   --  checks whether T is a reference type, and if so it adds an interprettion
268   --  to Expr whose type is the designated type of the reference_discriminant.
269
270   procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
271   --  Within a protected function, the current object is a constant, and
272   --  internal calls to a procedure or entry are illegal. Similarly, other
273   --  uses of a protected procedure in a renaming or a generic instantiation
274   --  in the context of a protected function are illegal (AI05-0225).
275
276   procedure Check_Later_Vs_Basic_Declarations
277     (Decls          : List_Id;
278      During_Parsing : Boolean);
279   --  If During_Parsing is True, check for misplacement of later vs basic
280   --  declarations in Ada 83. If During_Parsing is False, and the SPARK
281   --  restriction is set, do the same: although SPARK 95 removes the
282   --  distinction between initial and later declarative items, the distinction
283   --  remains in the Examiner (JB01-005). Note that the Examiner does not
284   --  count package declarations in later declarative items.
285
286   procedure Check_Nested_Access (Ent : Entity_Id);
287   --  Check whether Ent denotes an entity declared in an uplevel scope, which
288   --  is accessed inside a nested procedure, and set Has_Up_Level_Access flag
289   --  accordingly. This is currently only enabled for VM_Target /= No_VM.
290
291   procedure Check_No_Hidden_State (Id : Entity_Id);
292   --  Determine whether object or state Id introduces a hidden state. If this
293   --  is the case, emit an error.
294
295   procedure Check_Potentially_Blocking_Operation (N : Node_Id);
296   --  N is one of the statement forms that is a potentially blocking
297   --  operation. If it appears within a protected action, emit warning.
298
299   procedure Check_Result_And_Post_State
300     (Prag        : Node_Id;
301      Result_Seen : in out Boolean);
302   --  Determine whether pragma Prag mentions attribute 'Result and whether
303   --  the pragma contains an expression that evaluates differently in pre-
304   --  and post-state. Prag is a [refined] postcondition or a contract-cases
305   --  pragma. Result_Seen is set when the pragma mentions attribute 'Result.
306
307   procedure Check_SPARK_Mode_In_Generic (N : Node_Id);
308   --  Given a generic package [body] or a generic subprogram [body], inspect
309   --  the aspect specifications (if any) and flag SPARK_Mode as illegal.
310
311   procedure Check_Unprotected_Access
312     (Context : Node_Id;
313      Expr    : Node_Id);
314   --  Check whether the expression is a pointer to a protected component,
315   --  and the context is external to the protected operation, to warn against
316   --  a possible unlocked access to data.
317
318   procedure Check_VMS (Construct : Node_Id);
319   --  Check that this the target is OpenVMS, and if so, return with no effect,
320   --  otherwise post an error noting this can only be used with OpenVMS ports.
321   --  The argument is the construct in question and is used to post the error
322   --  message.
323
324   procedure Collect_Interfaces
325     (T               : Entity_Id;
326      Ifaces_List     : out Elist_Id;
327      Exclude_Parents : Boolean := False;
328      Use_Full_View   : Boolean := True);
329   --  Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
330   --  directly or indirectly implemented by T. Exclude_Parents is used to
331   --  avoid the addition of inherited interfaces to the generated list.
332   --  Use_Full_View is used to collect the interfaces using the full-view
333   --  (if available).
334
335   procedure Collect_Interface_Components
336     (Tagged_Type     : Entity_Id;
337      Components_List : out Elist_Id);
338   --  Ada 2005 (AI-251): Collect all the tag components associated with the
339   --  secondary dispatch tables of a tagged type.
340
341   procedure Collect_Interfaces_Info
342     (T               : Entity_Id;
343      Ifaces_List     : out Elist_Id;
344      Components_List : out Elist_Id;
345      Tags_List       : out Elist_Id);
346   --  Ada 2005 (AI-251): Collect all the interfaces associated with T plus
347   --  the record component and tag associated with each of these interfaces.
348   --  On exit Ifaces_List, Components_List and Tags_List have the same number
349   --  of elements, and elements at the same position on these tables provide
350   --  information on the same interface type.
351
352   procedure Collect_Parents
353     (T             : Entity_Id;
354      List          : out Elist_Id;
355      Use_Full_View : Boolean := True);
356   --  Collect all the parents of Typ. Use_Full_View is used to collect them
357   --  using the full-view of private parents (if available).
358
359   function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
360   --  Called upon type derivation and extension. We scan the declarative part
361   --  in which the type appears, and collect subprograms that have one
362   --  subsidiary subtype of the type. These subprograms can only appear after
363   --  the type itself.
364
365   function Compile_Time_Constraint_Error
366     (N    : Node_Id;
367      Msg  : String;
368      Ent  : Entity_Id  := Empty;
369      Loc  : Source_Ptr := No_Location;
370      Warn : Boolean    := False) return Node_Id;
371   --  This is similar to Apply_Compile_Time_Constraint_Error in that it
372   --  generates a warning (or error) message in the same manner, but it does
373   --  not replace any nodes. For convenience, the function always returns its
374   --  first argument. The message is a warning if the message ends with ?, or
375   --  we are operating in Ada 83 mode, or the Warn parameter is set to True.
376
377   procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
378   --  Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
379   --  Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
380
381   function Contains_Refined_State (Prag : Node_Id) return Boolean;
382   --  Determine whether pragma Prag contains a reference to the entity of an
383   --  abstract state with a visible refinement. Prag must denote one of the
384   --  following pragmas:
385   --    Depends
386   --    Global
387
388   function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
389   --  Utility to create a parameter profile for a new subprogram spec, when
390   --  the subprogram has a body that acts as spec. This is done for some cases
391   --  of inlining, and for private protected ops. Also used to create bodies
392   --  for stubbed subprograms.
393
394   function Copy_Component_List
395     (R_Typ : Entity_Id;
396      Loc   : Source_Ptr) return List_Id;
397   --  Copy components from record type R_Typ that come from source. Used to
398   --  create a new compatible record type. Loc is the source location assigned
399   --  to the created nodes.
400
401   function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
402   --  If a type is a generic actual type, return the corresponding formal in
403   --  the generic parent unit. There is no direct link in the tree for this
404   --  attribute, except in the case of formal private and derived types.
405   --  Possible optimization???
406
407   function Current_Entity (N : Node_Id) return Entity_Id;
408   pragma Inline (Current_Entity);
409   --  Find the currently visible definition for a given identifier, that is to
410   --  say the first entry in the visibility chain for the Chars of N.
411
412   function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
413   --  Find whether there is a previous definition for identifier N in the
414   --  current scope. Because declarations for a scope are not necessarily
415   --  contiguous (e.g. for packages) the first entry on the visibility chain
416   --  for N is not necessarily in the current scope.
417
418   function Current_Scope return Entity_Id;
419   --  Get entity representing current scope
420
421   function Current_Subprogram return Entity_Id;
422   --  Returns current enclosing subprogram. If Current_Scope is a subprogram,
423   --  then that is what is returned, otherwise the Enclosing_Subprogram of the
424   --  Current_Scope is returned. The returned value is Empty if this is called
425   --  from a library package which is not within any subprogram.
426
427   function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
428   --  Same as Type_Access_Level, except that if the type is the type of an Ada
429   --  2012 stand-alone object of an anonymous access type, then return the
430   --  static accesssibility level of the object. In that case, the dynamic
431   --  accessibility level of the object may take on values in a range. The low
432   --  bound of of that range is returned by Type_Access_Level; this function
433   --  yields the high bound of that range. Also differs from Type_Access_Level
434   --  in the case of a descendant of a generic formal type (returns Int'Last
435   --  instead of 0).
436
437   function Defining_Entity (N : Node_Id) return Entity_Id;
438   --  Given a declaration N, returns the associated defining entity. If the
439   --  declaration has a specification, the entity is obtained from the
440   --  specification. If the declaration has a defining unit name, then the
441   --  defining entity is obtained from the defining unit name ignoring any
442   --  child unit prefixes.
443
444   function Denotes_Discriminant
445     (N                : Node_Id;
446      Check_Concurrent : Boolean := False) return Boolean;
447   --  Returns True if node N is an Entity_Name node for a discriminant. If the
448   --  flag Check_Concurrent is true, function also returns true when N denotes
449   --  the discriminal of the discriminant of a concurrent type. This is needed
450   --  to disable some optimizations on private components of protected types,
451   --  and constraint checks on entry families constrained by discriminants.
452
453   function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
454   --  Detect suspicious overlapping between actuals in a call, when both are
455   --  writable (RM 2012 6.4.1(6.4/3))
456
457   function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
458   --  Functions to detect suspicious overlapping between actuals in a call,
459   --  when one of them is writable. The predicates are those proposed in
460   --  AI05-0144, to detect dangerous order dependence in complex calls.
461   --  I would add a parameter Warn which enables more extensive testing of
462   --  cases as we find appropriate when we are only warning ??? Or perhaps
463   --  return an indication of (Error, Warn, OK) ???
464
465   function Denotes_Variable (N : Node_Id) return Boolean;
466   --  Returns True if node N denotes a single variable without parentheses
467
468   function Depends_On_Discriminant (N : Node_Id) return Boolean;
469   --  Returns True if N denotes a discriminant or if N is a range, a subtype
470   --  indication or a scalar subtype where one of the bounds is a
471   --  discriminant.
472
473   function Designate_Same_Unit
474     (Name1 : Node_Id;
475      Name2 : Node_Id) return  Boolean;
476   --  Return true if Name1 and Name2 designate the same unit name; each of
477   --  these names is supposed to be a selected component name, an expanded
478   --  name, a defining program unit name or an identifier.
479
480   function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
481   --  Expr should be an expression of an access type. Builds an integer
482   --  literal except in cases involving anonymous access types where
483   --  accessibility levels are tracked at runtime (access parameters and Ada
484   --  2012 stand-alone objects).
485
486   function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
487   --  Same as Einfo.Extra_Accessibility except thtat object renames
488   --  are looked through.
489
490   function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
491   --  Given the entity of an abstract state or a variable, determine whether
492   --  Id is subject to external property Effective_Reads and if it is, the
493   --  related expression evaluates to True.
494
495   function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
496   --  Given the entity of an abstract state or a variable, determine whether
497   --  Id is subject to external property Effective_Writes and if it is, the
498   --  related expression evaluates to True.
499
500   function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
501   --  Returns the enclosing N_Compilation_Unit Node that is the root of a
502   --  subtree containing N.
503
504   function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
505   --  Returns the closest ancestor of Typ that is a CPP type.
506
507   function Enclosing_Generic_Body
508     (N : Node_Id) return Node_Id;
509   --  Returns the Node_Id associated with the innermost enclosing generic
510   --  body, if any. If none, then returns Empty.
511
512   function Enclosing_Generic_Unit
513     (N : Node_Id) return Node_Id;
514   --  Returns the Node_Id associated with the innermost enclosing generic
515   --  unit, if any. If none, then returns Empty.
516
517   function Enclosing_Lib_Unit_Entity
518     (E : Entity_Id := Current_Scope) return Entity_Id;
519   --  Returns the entity of enclosing library unit node which is the
520   --  root of the current scope (which must not be Standard_Standard, and the
521   --  caller is responsible for ensuring this condition) or other specified
522   --  entity.
523
524   function Enclosing_Package (E : Entity_Id) return Entity_Id;
525   --  Utility function to return the Ada entity of the package enclosing
526   --  the entity E, if any. Returns Empty if no enclosing package.
527
528   function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
529   --  Utility function to return the Ada entity of the subprogram enclosing
530   --  the entity E, if any. Returns Empty if no enclosing subprogram.
531
532   procedure Ensure_Freeze_Node (E : Entity_Id);
533   --  Make sure a freeze node is allocated for entity E. If necessary, build
534   --  and initialize a new freeze node and set Has_Delayed_Freeze True for E.
535
536   procedure Enter_Name (Def_Id : Entity_Id);
537   --  Insert new name in symbol table of current scope with check for
538   --  duplications (error message is issued if a conflict is found).
539   --  Note: Enter_Name is not used for overloadable entities, instead these
540   --  are entered using Sem_Ch6.Enter_Overloadable_Entity.
541
542   function Entity_Of (N : Node_Id) return Entity_Id;
543   --  Return the entity of N or Empty. If N is a renaming, return the entity
544   --  of the root renamed object.
545
546   procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
547   --  This procedure is called after issuing a message complaining about an
548   --  inappropriate use of limited type T. If useful, it adds additional
549   --  continuation lines to the message explaining why type T is limited.
550   --  Messages are placed at node N.
551
552   procedure Find_Actual
553     (N      : Node_Id;
554      Formal : out Entity_Id;
555      Call   : out Node_Id);
556   --  Determines if the node N is an actual parameter of a function of a
557   --  procedure call. If so, then Formal points to the entity for the formal
558   --  (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
559   --  Call is set to the node for the corresponding call. If the node N is not
560   --  an actual parameter then Formal and Call are set to Empty.
561
562   function Find_Body_Discriminal
563     (Spec_Discriminant : Entity_Id) return Entity_Id;
564   --  Given a discriminant of the record type that implements a task or
565   --  protected type, return the discriminal of the corresponding discriminant
566   --  of the actual concurrent type.
567
568   function Find_Corresponding_Discriminant
569     (Id   : Node_Id;
570      Typ  : Entity_Id) return Entity_Id;
571   --  Because discriminants may have different names in a generic unit and in
572   --  an instance, they are resolved positionally when possible. A reference
573   --  to a discriminant carries the discriminant that it denotes when it is
574   --  analyzed. Subsequent uses of this id on a different type denotes the
575   --  discriminant at the same position in this new type.
576
577   function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
578   --  Given an arbitrary entity, try to find the nearest enclosing iterator
579   --  loop. If such a loop is found, return the entity of its identifier (the
580   --  E_Loop scope), otherwise return Empty.
581
582   function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
583   --  Find the nested loop statement in a conditional block. Loops subject to
584   --  attribute 'Loop_Entry are transformed into blocks. Parts of the original
585   --  loop are nested within the block.
586
587   procedure Find_Overlaid_Entity
588     (N   : Node_Id;
589      Ent : out Entity_Id;
590      Off : out Boolean);
591   --  The node N should be an address representation clause. Determines if
592   --  the target expression is the address of an entity with an optional
593   --  offset. If so, set Ent to the entity and, if there is an offset, set
594   --  Off to True, otherwise to False. If N is not an address representation
595   --  clause, or if it is not possible to determine that the address is of
596   --  this form, then set Ent to Empty.
597
598   function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
599   --  Return the type of formal parameter Param as determined by its
600   --  specification.
601
602   --  The following type describes the placement of an arbitrary entity with
603   --  respect to SPARK visible / hidden state space.
604
605   type State_Space_Kind is
606     (Not_In_Package,
607      --  An entity is not in the visible, private or body state space when
608      --  the immediate enclosing construct is not a package.
609
610      Visible_State_Space,
611      --  An entity is in the visible state space when it appears immediately
612      --  within the visible declarations of a package or when it appears in
613      --  the visible state space of a nested package which in turn is declared
614      --  in the visible declarations of an enclosing package:
615
616      --    package Pack is
617      --       Visible_Variable : ...
618      --       package Nested
619      --         with Abstract_State => Visible_State
620      --       is
621      --          Visible_Nested_Variable : ...
622      --       end Nested;
623      --    end Pack;
624
625      --  Entities associated with a package instantiation inherit the state
626      --  space from the instance placement:
627
628      --     generic
629      --     package Gen is
630      --        Generic_Variable : ...
631      --     end Gen;
632
633      --     with Gen;
634      --     package Pack is
635      --        package Inst is new Gen;
636      --        --  Generic_Variable is in the visible state space of Pack
637      --     end Pack;
638
639      Private_State_Space,
640      --  An entity is in the private state space when it appears immediately
641      --  within the private declarations of a package or when it appears in
642      --  the visible state space of a nested package which in turn is declared
643      --  in the private declarations of an enclosing package:
644
645      --    package Pack is
646      --    private
647      --       Private_Variable : ...
648      --       package Nested
649      --         with Abstract_State => Private_State
650      --       is
651      --          Private_Nested_Variable : ...
652      --       end Nested;
653      --    end Pack;
654
655      --  The same placement principle applies to package instantiations
656
657      Body_State_Space);
658      --  An entity is in the body state space when it appears immediately
659      --  within the declarations of a package body or when it appears in the
660      --  visible state space of a nested package which in turn is declared in
661      --  the declarations of an enclosing package body:
662
663      --    package body Pack is
664      --       Body_Variable : ...
665      --       package Nested
666      --         with Abstract_State => Body_State
667      --       is
668      --          Body_Nested_Variable : ...
669      --       end Nested;
670      --    end Pack;
671
672      --  The same placement principle applies to package instantiations
673
674   procedure Find_Placement_In_State_Space
675     (Item_Id   : Entity_Id;
676      Placement : out State_Space_Kind;
677      Pack_Id   : out Entity_Id);
678   --  Determine the state space placement of an item. Item_Id denotes the
679   --  entity of an abstract state, variable or package instantiation.
680   --  Placement captures the precise placement of the item in the enclosing
681   --  state space. If the state space is that of a package, Pack_Id denotes
682   --  its entity, otherwise Pack_Id is Empty.
683
684   function Find_Static_Alternative (N : Node_Id) return Node_Id;
685   --  N is a case statement whose expression is a compile-time value.
686   --  Determine the alternative chosen, so that the code of non-selected
687   --  alternatives, and the warnings that may apply to them, are removed.
688
689   function First_Actual (Node : Node_Id) return Node_Id;
690   --  Node is an N_Function_Call or N_Procedure_Call_Statement node. The
691   --  result returned is the first actual parameter in declaration order
692   --  (not the order of parameters as they appeared in the source, which
693   --  can be quite different as a result of the use of named parameters).
694   --  Empty is returned for a call with no parameters. The procedure for
695   --  iterating through the actuals in declaration order is to use this
696   --  function to find the first actual, and then use Next_Actual to obtain
697   --  the next actual in declaration order. Note that the value returned
698   --  is always the expression (not the N_Parameter_Association nodes,
699   --  even if named association is used).
700
701   procedure Gather_Components
702     (Typ           : Entity_Id;
703      Comp_List     : Node_Id;
704      Governed_By   : List_Id;
705      Into          : Elist_Id;
706      Report_Errors : out Boolean);
707   --  The purpose of this procedure is to gather the valid components in a
708   --  record type according to the values of its discriminants, in order to
709   --  validate the components of a record aggregate.
710   --
711   --    Typ is the type of the aggregate when its constrained discriminants
712   --      need to be collected, otherwise it is Empty.
713   --
714   --    Comp_List is an N_Component_List node.
715   --
716   --    Governed_By is a list of N_Component_Association nodes, where each
717   --     choice list contains the name of a discriminant and the expression
718   --     field gives its value. The values of the discriminants governing
719   --     the (possibly nested) variant parts in Comp_List are found in this
720   --     Component_Association List.
721   --
722   --    Into is the list where the valid components are appended. Note that
723   --     Into need not be an Empty list. If it's not, components are attached
724   --     to its tail.
725   --
726   --    Report_Errors is set to True if the values of the discriminants are
727   --     non-static.
728   --
729   --  This procedure is also used when building a record subtype. If the
730   --  discriminant constraint of the subtype is static, the components of the
731   --  subtype are only those of the variants selected by the values of the
732   --  discriminants. Otherwise all components of the parent must be included
733   --  in the subtype for semantic analysis.
734
735   function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
736   --  Given a node for an expression, obtain the actual subtype of the
737   --  expression. In the case of a parameter where the formal is an
738   --  unconstrained array or discriminated type, this will be the previously
739   --  constructed subtype of the actual. Note that this is not quite the
740   --  "Actual Subtype" of the RM, since it is always a constrained type, i.e.
741   --  it is the subtype of the value of the actual. The actual subtype is also
742   --  returned in other cases where it has already been constructed for an
743   --  object. Otherwise the expression type is returned unchanged, except for
744   --  the case of an unconstrained array type, where an actual subtype is
745   --  created, using Insert_Actions if necessary to insert any associated
746   --  actions.
747
748   function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
749   --  This is like Get_Actual_Subtype, except that it never constructs an
750   --  actual subtype. If an actual subtype is already available, i.e. the
751   --  Actual_Subtype field of the corresponding entity is set, then it is
752   --  returned. Otherwise the Etype of the node is returned.
753
754   function Get_Body_From_Stub (N : Node_Id) return Node_Id;
755   --  Return the body node for a stub (subprogram or package)
756
757   function Get_Cursor_Type
758     (Aspect : Node_Id;
759      Typ    : Entity_Id) return Entity_Id;
760   --  Find Cursor type in scope of formal container Typ, by locating primitive
761   --  operation First. For use in resolving the other primitive operations
762   --  of an Iterable type and expanding loops and quantified expressions
763   --  over formal containers.
764
765   function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
766   --  This is used to construct the string literal node representing a
767   --  default external name, i.e. one that is constructed from the name of an
768   --  entity, or (in the case of extended DEC import/export pragmas, an
769   --  identifier provided as the external name. Letters in the name are
770   --  according to the setting of Opt.External_Name_Default_Casing.
771
772   function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
773   --  If expression N references a part of an object, return this object.
774   --  Otherwise return Empty. Expression N should have been resolved already.
775
776   function Get_Ensures_From_CTC_Pragma (N : Node_Id) return Node_Id;
777   --  Return the Ensures component of Test_Case pragma N, or Empty otherwise
778   --  Bad name now that this no longer applies to Contract_Case ???
779
780   function Get_Generic_Entity (N : Node_Id) return Entity_Id;
781   --  Returns the true generic entity in an instantiation. If the name in the
782   --  instantiation is a renaming, the function returns the renamed generic.
783
784   function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
785   --  Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
786   --  in a child unit a derived type is within the derivation class of an
787   --  ancestor declared in a parent unit, even if there is an intermediate
788   --  derivation that does not see the full view of that ancestor.
789
790   procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
791   --  This procedure assigns to L and H respectively the values of the low and
792   --  high bounds of node N, which must be a range, subtype indication, or the
793   --  name of a scalar subtype. The result in L, H may be set to Error if
794   --  there was an earlier error in the range.
795
796   function Get_Enum_Lit_From_Pos
797     (T   : Entity_Id;
798      Pos : Uint;
799      Loc : Source_Ptr) return Node_Id;
800   --  This function returns an identifier denoting the E_Enumeration_Literal
801   --  entity for the specified value from the enumeration type or subtype T.
802   --  The second argument is the Pos value, which is assumed to be in range.
803   --  The third argument supplies a source location for constructed nodes
804   --  returned by this function.
805
806   function Get_Iterable_Type_Primitive
807     (Typ : Entity_Id;
808      Nam : Name_Id) return Entity_Id;
809   --  Retrieve one of the primitives First, Next, Has_Element, Element from
810   --  the value of the Iterable aspect of a formal type.
811
812   procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
813   --  Retrieve the fully expanded name of the library unit declared by
814   --  Decl_Node into the name buffer.
815
816   function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
817   pragma Inline (Get_Name_Entity_Id);
818   --  An entity value is associated with each name in the name table. The
819   --  Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
820   --  is the innermost visible entity with the given name. See the body of
821   --  Sem_Ch8 for further details on handling of entity visibility.
822
823   function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
824   --  Return the Name component of Test_Case pragma N
825   --  Bad name now that this no longer applies to Contract_Case ???
826
827   function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
828   pragma Inline (Get_Pragma_Id);
829   --  Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
830
831   procedure Get_Reason_String (N : Node_Id);
832   --  Recursive routine to analyze reason argument for pragma Warnings. The
833   --  value of the reason argument is appended to the current string using
834   --  Store_String_Chars. The reason argument is expected to be a string
835   --  literal or concatenation of string literals. An error is given for
836   --  any other form.
837
838   function Get_Referenced_Object (N : Node_Id) return Node_Id;
839   --  Given a node, return the renamed object if the node represents a renamed
840   --  object, otherwise return the node unchanged. The node may represent an
841   --  arbitrary expression.
842
843   function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
844   --  Given an entity for an exception, package, subprogram or generic unit,
845   --  returns the ultimately renamed entity if this is a renaming. If this is
846   --  not a renamed entity, returns its argument. It is an error to call this
847   --  with any other kind of entity.
848
849   function Get_Requires_From_CTC_Pragma (N : Node_Id) return Node_Id;
850   --  Return the Requires component of Test_Case pragma N, or Empty otherwise
851   --  Bad name now that this no longer applies to Contract_Case ???
852
853   function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
854   --  Nod is either a procedure call statement, or a function call, or an
855   --  accept statement node. This procedure finds the Entity_Id of the related
856   --  subprogram or entry and returns it, or if no subprogram can be found,
857   --  returns Empty.
858
859   function Get_Subprogram_Body (E : Entity_Id) return Node_Id;
860   --  Given the entity for a subprogram (E_Function or E_Procedure), return
861   --  the corresponding N_Subprogram_Body node. If the corresponding body
862   --  is missing (as for an imported subprogram), return Empty.
863
864   function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
865   pragma Inline (Get_Task_Body_Procedure);
866   --  Given an entity for a task type or subtype, retrieves the
867   --  Task_Body_Procedure field from the corresponding task type declaration.
868
869   function Has_Access_Values (T : Entity_Id) return Boolean;
870   --  Returns true if type or subtype T is an access type, or has a component
871   --  (at any recursive level) that is an access type. This is a conservative
872   --  predicate, if it is not known whether or not T contains access values
873   --  (happens for generic formals in some cases), then False is returned.
874   --  Note that tagged types return False. Even though the tag is implemented
875   --  as an access type internally, this function tests only for access types
876   --  known to the programmer. See also Has_Tagged_Component.
877
878   type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
879   --  Result of Has_Compatible_Alignment test, description found below. Note
880   --  that the values are arranged in increasing order of problematicness.
881
882   function Has_Compatible_Alignment
883     (Obj  : Entity_Id;
884      Expr : Node_Id) return Alignment_Result;
885   --  Obj is an object entity, and expr is a node for an object reference. If
886   --  the alignment of the object referenced by Expr is known to be compatible
887   --  with the alignment of Obj (i.e. is larger or the same), then the result
888   --  is Known_Compatible. If the alignment of the object referenced by Expr
889   --  is known to be less than the alignment of Obj, then Known_Incompatible
890   --  is returned. If neither condition can be reliably established at compile
891   --  time, then Unknown is returned. This is used to determine if alignment
892   --  checks are required for address clauses, and also whether copies must
893   --  be made when objects are passed by reference.
894   --
895   --  Note: Known_Incompatible does not mean that at run time the alignment
896   --  of Expr is known to be wrong for Obj, just that it can be determined
897   --  that alignments have been explicitly or implicitly specified which are
898   --  incompatible (whereas Unknown means that even this is not known). The
899   --  appropriate reaction of a caller to Known_Incompatible is to treat it as
900   --  Unknown, but issue a warning that there may be an alignment error.
901
902   function Has_Declarations (N : Node_Id) return Boolean;
903   --  Determines if the node can have declarations
904
905   function Has_Denormals (E : Entity_Id) return Boolean;
906   --  Determines if the floating-point type E supports denormal numbers.
907   --  Returns False if E is not a floating-point type.
908
909   function Has_Discriminant_Dependent_Constraint
910     (Comp : Entity_Id) return Boolean;
911   --  Returns True if and only if Comp has a constrained subtype that depends
912   --  on a discriminant.
913
914   function Has_Infinities (E : Entity_Id) return Boolean;
915   --  Determines if the range of the floating-point type E includes
916   --  infinities. Returns False if E is not a floating-point type.
917
918   function Has_Interfaces
919     (T             : Entity_Id;
920      Use_Full_View : Boolean := True) return Boolean;
921   --  Where T is a concurrent type or a record type, returns true if T covers
922   --  any abstract interface types. In case of private types the argument
923   --  Use_Full_View controls if the check is done using its full view (if
924   --  available).
925
926   function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
927   --  This is a simple minded function for determining whether an expression
928   --  has no obvious side effects. It is used only for determining whether
929   --  warnings are needed in certain situations, and is not guaranteed to
930   --  be accurate in either direction. Exceptions may mean an expression
931   --  does in fact have side effects, but this may be ignored and True is
932   --  returned, or a complex expression may in fact be side effect free
933   --  but we don't recognize it here and return False. The Side_Effect_Free
934   --  routine in Remove_Side_Effects is much more extensive and perhaps could
935   --  be shared, so that this routine would be more accurate.
936
937   function Has_Null_Exclusion (N : Node_Id) return Boolean;
938   --  Determine whether node N has a null exclusion
939
940   function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
941   --  Predicate to determine whether a controlled type has a user-defined
942   --  Initialize primitive (and, in Ada 2012, whether that primitive is
943   --  non-null), which causes the type to not have preelaborable
944   --  initialization.
945
946   function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
947   --  Return True iff type E has preelaborable initialization as defined in
948   --  Ada 2005 (see AI-161 for details of the definition of this attribute).
949
950   function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
951   --  Check if a type has a (sub)component of a private type that has not
952   --  yet received a full declaration.
953
954   function Has_Signed_Zeros (E : Entity_Id) return Boolean;
955   --  Determines if the floating-point type E supports signed zeros.
956   --  Returns False if E is not a floating-point type.
957
958   function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
959   --  Return whether an array type has static bounds
960
961   function Has_Stream (T : Entity_Id) return Boolean;
962   --  Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
963   --  case of a composite type, has a component for which this predicate is
964   --  True, and if so returns True. Otherwise a result of False means that
965   --  there is no Stream type in sight. For a private type, the test is
966   --  applied to the underlying type (or returns False if there is no
967   --  underlying type).
968
969   function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
970   --  Returns true if the last character of E is Suffix. Used in Assertions.
971
972   function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
973   --  Returns the name of E adding Suffix
974
975   function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
976   --  Returns the name of E without Suffix
977
978   function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
979   --  Returns True if Typ is a composite type (array or record) which is
980   --  either itself a tagged type, or has a component (recursively) which is
981   --  a tagged type. Returns False for non-composite type, or if no tagged
982   --  component is present. This function is used to check if "=" has to be
983   --  expanded into a bunch component comparisons.
984
985   function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
986   --  Given an arbitrary type, determine whether it contains at least one
987   --  volatile component.
988
989   function Implementation_Kind (Subp : Entity_Id) return Name_Id;
990   --  Subp is a subprogram marked with pragma Implemented. Return the specific
991   --  implementation requirement which the pragma imposes. The return value is
992   --  either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
993
994   function Implements_Interface
995     (Typ_Ent         : Entity_Id;
996      Iface_Ent       : Entity_Id;
997      Exclude_Parents : Boolean := False) return Boolean;
998   --  Returns true if the Typ_Ent implements interface Iface_Ent
999
1000   function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1001   --  Determine whether an arbitrary node appears in a pragma that acts as an
1002   --  assertion expression. See Sem_Prag for the list of qualifying pragmas.
1003
1004   function In_Instance return Boolean;
1005   --  Returns True if the current scope is within a generic instance
1006
1007   function In_Instance_Body return Boolean;
1008   --  Returns True if current scope is within the body of an instance, where
1009   --  several semantic checks (e.g. accessibility checks) are relaxed.
1010
1011   function In_Instance_Not_Visible return Boolean;
1012   --  Returns True if current scope is with the private part or the body of
1013   --  an instance. Other semantic checks are suppressed in this context.
1014
1015   function In_Instance_Visible_Part return Boolean;
1016   --  Returns True if current scope is within the visible part of a package
1017   --  instance, where several additional semantic checks apply.
1018
1019   function In_Package_Body return Boolean;
1020   --  Returns True if current scope is within a package body
1021
1022   function In_Parameter_Specification (N : Node_Id) return Boolean;
1023   --  Returns True if node N belongs to a parameter specification
1024
1025   function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1026   --  Returns true if the expression N occurs within a pragma with name Nam
1027
1028   function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1029   --  Returns True if N denotes a component or subcomponent in a record or
1030   --  array that has Reverse_Storage_Order.
1031
1032   function In_Subprogram_Or_Concurrent_Unit return Boolean;
1033   --  Determines if the current scope is within a subprogram compilation unit
1034   --  (inside a subprogram declaration, subprogram body, or generic subprogram
1035   --  declaration) or within a task or protected body. The test is for
1036   --  appearing anywhere within such a construct (that is it does not need
1037   --  to be directly within).
1038
1039   function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1040   --  Determine whether a declaration occurs within the visible part of a
1041   --  package specification. The package must be on the scope stack, and the
1042   --  corresponding private part must not.
1043
1044   function Incomplete_Or_Private_View (Typ : Entity_Id) return Entity_Id;
1045   --  Given the entity of a type, retrieve the incomplete or private view of
1046   --  the same type. Note that Typ may not have a partial view to begin with,
1047   --  in that case the function returns Empty.
1048
1049   procedure Insert_Explicit_Dereference (N : Node_Id);
1050   --  In a context that requires a composite or subprogram type and where a
1051   --  prefix is an access type, rewrite the access type node N (which is the
1052   --  prefix, e.g. of an indexed component) as an explicit dereference.
1053
1054   procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1055   --  Examine all deferred constants in the declaration list Decls and check
1056   --  whether they have been completed by a full constant declaration or an
1057   --  Import pragma. Emit the error message if that is not the case.
1058
1059   function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1060   --  Determines if N is an actual parameter of out mode in a subprogram call
1061
1062   function Is_Actual_Parameter (N : Node_Id) return Boolean;
1063   --  Determines if N is an actual parameter in a subprogram call
1064
1065   function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1066   --  Determines if N is an actual parameter of a formal of tagged type in a
1067   --  subprogram call.
1068
1069   function Is_Aliased_View (Obj : Node_Id) return Boolean;
1070   --  Determine if Obj is an aliased view, i.e. the name of an object to which
1071   --  'Access or 'Unchecked_Access can apply. Note that this routine uses the
1072   --  rules of the language, it does not take into account the restriction
1073   --  No_Implicit_Aliasing, so it can return True if the restriction is active
1074   --  and Obj violates the restriction. The caller is responsible for calling
1075   --  Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1076   --  requirement for obeying the restriction in the call context.
1077
1078   function Is_Ancestor_Package
1079     (E1 : Entity_Id;
1080      E2 : Entity_Id) return Boolean;
1081   --  Determine whether package E1 is an ancestor of E2
1082
1083   function Is_Atomic_Object (N : Node_Id) return Boolean;
1084   --  Determines if the given node denotes an atomic object in the sense of
1085   --  the legality checks described in RM C.6(12).
1086
1087   function Is_Attribute_Result (N : Node_Id) return Boolean;
1088   --  Determine whether node N denotes attribute 'Result
1089
1090   function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1091   --  Determine whether node N denotes a body or a package declaration
1092
1093   function Is_Bounded_String (T : Entity_Id) return Boolean;
1094   --  True if T is a bounded string type. Used to make sure "=" composes
1095   --  properly for bounded string types.
1096
1097   function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1098   --  Exp is the expression for an array bound. Determines whether the
1099   --  bound is a compile-time known value, or a constant entity, or an
1100   --  enumeration literal, or an expression composed of constant-bound
1101   --  subexpressions which are evaluated by means of standard operators.
1102
1103   function Is_Container_Element (Exp : Node_Id) return Boolean;
1104   --  This routine recognizes expressions that denote an element of one of
1105   --  the predefined containers, when the source only contains an indexing
1106   --  operation and an implicit dereference is inserted by the compiler.
1107   --  In the absence of this optimization, the indexing creates a temporary
1108   --  controlled cursor that sets the tampering bit of the container, and
1109   --  restricts the use of the convenient notation C (X) to contexts that
1110   --  do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1111   --  explicit dereference. The transformation applies when it has the form
1112   --  F (X).Discr.all.
1113
1114   function Is_Controlling_Limited_Procedure
1115     (Proc_Nam : Entity_Id) return Boolean;
1116   --  Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1117   --  of a limited interface with a controlling first parameter.
1118
1119   function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1120   --  Returns True if N is a call to a CPP constructor
1121
1122   function Is_Child_Or_Sibling
1123     (Pack_1 : Entity_Id;
1124      Pack_2 : Entity_Id) return Boolean;
1125   --  Determine the following relations between two arbitrary packages:
1126   --    1) One package is the parent of a child package
1127   --    2) Both packages are siblings and share a common parent
1128
1129   function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1130   --  First determine whether type T is an interface and then check whether
1131   --  it is of protected, synchronized or task kind.
1132
1133   function Is_Delegate (T : Entity_Id) return Boolean;
1134   --  Returns true if type T represents a delegate. A Delegate is the CIL
1135   --  object used to represent access-to-subprogram types. This is only
1136   --  relevant to CIL, will always return false for other targets.
1137
1138   function Is_Dependent_Component_Of_Mutable_Object
1139     (Object : Node_Id) return Boolean;
1140   --  Returns True if Object is the name of a subcomponent that depends on
1141   --  discriminants of a variable whose nominal subtype is unconstrained and
1142   --  not indefinite, and the variable is not aliased. Otherwise returns
1143   --  False. The nodes passed to this function are assumed to denote objects.
1144
1145   function Is_Dereferenced (N : Node_Id) return Boolean;
1146   --  N is a subexpression node of an access type. This function returns true
1147   --  if N appears as the prefix of a node that does a dereference of the
1148   --  access value (selected/indexed component, explicit dereference or a
1149   --  slice), and false otherwise.
1150
1151   function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1152   --  Returns True if type T1 is a descendent of type T2, and false otherwise.
1153   --  This is the RM definition, a type is a descendent of another type if it
1154   --  is the same type or is derived from a descendent of the other type.
1155
1156   function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1157   --  Predicate to determine whether a scope entity comes from a rewritten
1158   --  expression function call, and should be inlined unconditionally. Also
1159   --  used to determine that such a call does not constitute a freeze point.
1160
1161   function Is_False (U : Uint) return Boolean;
1162   pragma Inline (Is_False);
1163   --  The argument is a Uint value which is the Boolean'Pos value of a Boolean
1164   --  operand (i.e. is either 0 for False, or 1 for True). This function tests
1165   --  if it is False (i.e. zero).
1166
1167   function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1168   --  Returns True iff the number U is a model number of the fixed-point type
1169   --  T, i.e. if it is an exact multiple of Small.
1170
1171   function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1172   --  Typ is a type entity. This function returns true if this type is fully
1173   --  initialized, meaning that an object of the type is fully initialized.
1174   --  Note that initialization resulting from use of pragma Normalized_Scalars
1175   --  does not count. Note that this is only used for the purpose of issuing
1176   --  warnings for objects that are potentially referenced uninitialized. This
1177   --  means that the result returned is not crucial, but should err on the
1178   --  side of thinking things are fully initialized if it does not know.
1179
1180   function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1181   --  E is a subprogram. Return True is E is an implicit operation inherited
1182   --  by a derived type declaration.
1183
1184   function Is_Inherited_Operation_For_Type
1185     (E   : Entity_Id;
1186      Typ : Entity_Id) return Boolean;
1187   --  E is a subprogram. Return True is E is an implicit operation inherited
1188   --  by the derived type declaration for type Typ.
1189
1190   function Is_Iterator (Typ : Entity_Id) return Boolean;
1191   --  AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1192   --  Ada.Iterator_Interfaces, or it is derived from one.
1193
1194   function Is_Junk_Name (N : Name_Id) return Boolean;
1195   --  Returns True if the given name contains any of the following substrings
1196   --    discard
1197   --    dummy
1198   --    ignore
1199   --    junk
1200   --    unused
1201   --  Used to suppress warnings on names matching these patterns. The contents
1202   --  of Name_Buffer and Name_Len are desteoyed by this call.
1203
1204   type Is_LHS_Result is (Yes, No, Unknown);
1205   function Is_LHS (N : Node_Id) return Is_LHS_Result;
1206   --  Returns Yes if N is definitely used as Name in an assignment statement.
1207   --  Returns No if N is definitely NOT used as a Name in an assignment
1208   --  statement. Returns Unknown if we can't tell at this stage (happens in
1209   --  the case where we don't know the type of N yet, and we have something
1210   --  like N.A := 3, where this counts as N being used on the left side of
1211   --  an assignment only if N is not an access type. If it is an access type
1212   --  then it is N.all.A that is assigned, not N.
1213
1214   function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1215   --  A library-level declaration is one that is accessible from Standard,
1216   --  i.e. a library unit or an entity declared in a library package.
1217
1218   function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1219   --  Determine whether a given type is a limited class-wide type, in which
1220   --  case it needs a Master_Id, because extensions of its designated type
1221   --  may include task components. A class-wide type that comes from a
1222   --  limited view must be treated in the same way.
1223
1224   function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1225   --  Determines whether Expr is a reference to a variable or IN OUT mode
1226   --  parameter of the current enclosing subprogram.
1227   --  Why are OUT parameters not considered here ???
1228
1229   function Is_Object_Reference (N : Node_Id) return Boolean;
1230   --  Determines if the tree referenced by N represents an object. Both
1231   --  variable and constant objects return True (compare Is_Variable).
1232
1233   function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1234   --  Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1235   --  Note that the Is_Variable function is not quite the right test because
1236   --  this is a case in which conversions whose expression is a variable (in
1237   --  the Is_Variable sense) with a non-tagged type target are considered view
1238   --  conversions and hence variables.
1239
1240   function Is_Partially_Initialized_Type
1241     (Typ              : Entity_Id;
1242      Include_Implicit : Boolean := True) return Boolean;
1243   --  Typ is a type entity. This function returns true if this type is partly
1244   --  initialized, meaning that an object of the type is at least partly
1245   --  initialized (in particular in the record case, that at least one
1246   --  component has an initialization expression). Note that initialization
1247   --  resulting from the use of pragma Normalized_Scalars does not count.
1248   --  Include_Implicit controls whether implicit initialization of access
1249   --  values to null, and of discriminant values, is counted as making the
1250   --  type be partially initialized. For the default setting of True, these
1251   --  implicit cases do count, and discriminated types or types containing
1252   --  access values not explicitly initialized will return True. Otherwise
1253   --  if Include_Implicit is False, these cases do not count as making the
1254   --  type be partially initialized.
1255
1256   function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
1257   --  Predicate to implement definition given in RM 6.1.1 (20/3)
1258
1259   function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1260   --  Determines if type T is a potentially persistent type. A potentially
1261   --  persistent type is defined (recursively) as a scalar type, a non-tagged
1262   --  record whose components are all of a potentially persistent type, or an
1263   --  array with all static constraints whose component type is potentially
1264   --  persistent. A private type is potentially persistent if the full type
1265   --  is potentially persistent.
1266
1267   function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
1268   --  Return True if node N denotes a protected type name which represents
1269   --  the current instance of a protected object according to RM 9.4(21/2).
1270
1271   function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
1272   --  Return True if a compilation unit is the specification or the
1273   --  body of a remote call interface package.
1274
1275   function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
1276   --  Return True if E is a remote access-to-class-wide type
1277
1278   function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
1279   --  Return True if E is a remote access to subprogram type
1280
1281   function Is_Remote_Call (N : Node_Id) return Boolean;
1282   --  Return True if N denotes a potentially remote call
1283
1284   function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1285   --  Return True if Proc_Nam is a procedure renaming of an entry
1286
1287   function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1288   --  AI05-0139-2: Check whether Typ is derived from the predefined interface
1289   --  Ada.Iterator_Interfaces.Reversible_Iterator.
1290
1291   function Is_Selector_Name (N : Node_Id) return Boolean;
1292   --  Given an N_Identifier node N, determines if it is a Selector_Name.
1293   --  As described in Sinfo, Selector_Names are special because they
1294   --  represent use of the N_Identifier node for a true identifier, when
1295   --  normally such nodes represent a direct name.
1296
1297   function Is_SPARK_Initialization_Expr (N : Node_Id) return Boolean;
1298   --  Determines if the tree referenced by N represents an initialization
1299   --  expression in SPARK, suitable for initializing an object in an object
1300   --  declaration.
1301
1302   function Is_SPARK_Object_Reference (N : Node_Id) return Boolean;
1303   --  Determines if the tree referenced by N represents an object in SPARK
1304
1305   function Is_SPARK_Volatile_Object (N : Node_Id) return Boolean;
1306   --  Determine whether an arbitrary node denotes a volatile object reference
1307   --  according to the semantics of SPARK. To qualify as volatile, an object
1308   --  must be subject to aspect/pragma Volatile or Atomic or have a [sub]type
1309   --  subject to the same attributes. Note that volatile components do not
1310   --  render an object volatile.
1311
1312   function Is_Statement (N : Node_Id) return Boolean;
1313   pragma Inline (Is_Statement);
1314   --  Check if the node N is a statement node. Note that this includes
1315   --  the case of procedure call statements (unlike the direct use of
1316   --  the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1317   --  Note that a label is *not* a statement, and will return False.
1318
1319   function Is_Subprogram_Stub_Without_Prior_Declaration
1320     (N : Node_Id) return Boolean;
1321   --  Return True if N is a subprogram stub with no prior subprogram
1322   --  declaration.
1323
1324   function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
1325   --  Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
1326
1327   function Is_Transfer (N : Node_Id) return Boolean;
1328   --  Returns True if the node N is a statement which is known to cause an
1329   --  unconditional transfer of control at runtime, i.e. the following
1330   --  statement definitely will not be executed.
1331
1332   function Is_True (U : Uint) return Boolean;
1333   pragma Inline (Is_True);
1334   --  The argument is a Uint value which is the Boolean'Pos value of a Boolean
1335   --  operand (i.e. is either 0 for False, or 1 for True). This function tests
1336   --  if it is True (i.e. non-zero).
1337
1338   function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
1339   --  Determine whether an arbitrary entity denotes an instance of function
1340   --  Ada.Unchecked_Conversion.
1341
1342   function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
1343   pragma Inline (Is_Universal_Numeric_Type);
1344   --  True if T is Universal_Integer or Universal_Real
1345
1346   function Is_Value_Type (T : Entity_Id) return Boolean;
1347   --  Returns true if type T represents a value type. This is only relevant to
1348   --  CIL, will always return false for other targets. A value type is a CIL
1349   --  object that is accessed directly, as opposed to the other CIL objects
1350   --  that are accessed through managed pointers.
1351
1352   function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
1353   --  Returns true if E has variable size components
1354
1355   function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
1356   --  Returns true if E has variable size components
1357
1358   function Is_VMS_Operator (Op : Entity_Id) return Boolean;
1359   --  Determine whether an operator is one of the intrinsics defined
1360   --  in the DEC system extension.
1361
1362   function Is_Variable
1363     (N                 : Node_Id;
1364      Use_Original_Node : Boolean := True) return Boolean;
1365   --  Determines if the tree referenced by N represents a variable, i.e. can
1366   --  appear on the left side of an assignment. There is one situation (formal
1367   --  parameters) in which non-tagged type conversions are also considered
1368   --  variables, but Is_Variable returns False for such cases, since it has
1369   --  no knowledge of the context. Note that this is the point at which
1370   --  Assignment_OK is checked, and True is returned for any tree thus marked.
1371   --  Use_Original_Node is used to perform the test on Original_Node (N). By
1372   --  default is True since this routine is commonly invoked as part of the
1373   --  semantic analysis and it must not be disturbed by the rewriten nodes.
1374
1375   function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
1376   --  Check whether T is derived from a visibly controlled type. This is true
1377   --  if the root type is declared in Ada.Finalization. If T is derived
1378   --  instead from a private type whose full view is controlled, an explicit
1379   --  Initialize/Adjust/Finalize subprogram does not override the inherited
1380   --  one.
1381
1382   function Is_Volatile_Object (N : Node_Id) return Boolean;
1383   --  Determines if the given node denotes an volatile object in the sense of
1384   --  the legality checks described in RM C.6(12). Note that the test here is
1385   --  for something actually declared as volatile, not for an object that gets
1386   --  treated as volatile (see Einfo.Treat_As_Volatile).
1387
1388   function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
1389   --  Applies to Itypes. True if the Itype is attached to a declaration for
1390   --  the type through its Parent field, which may or not be present in the
1391   --  tree.
1392
1393   procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
1394   --  This procedure is called to clear all constant indications from all
1395   --  entities in the current scope and in any parent scopes if the current
1396   --  scope is a block or a package (and that recursion continues to the top
1397   --  scope that is not a block or a package). This is used when the
1398   --  sequential flow-of-control assumption is violated (occurrence of a
1399   --  label, head of a loop, or start of an exception handler). The effect of
1400   --  the call is to clear the Current_Value field (but we do not need to
1401   --  clear the Is_True_Constant flag, since that only gets reset if there
1402   --  really is an assignment somewhere in the entity scope). This procedure
1403   --  also calls Kill_All_Checks, since this is a special case of needing to
1404   --  forget saved values. This procedure also clears the Is_Known_Null and
1405   --  Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1406   --  parameters since these are also not known to be trustable any more.
1407   --
1408   --  The Last_Assignment_Only flag is set True to clear only Last_Assignment
1409   --  fields and leave other fields unchanged. This is used when we encounter
1410   --  an unconditional flow of control change (return, goto, raise). In such
1411   --  cases we don't need to clear the current values, since it may be that
1412   --  the flow of control change occurs in a conditional context, and if it
1413   --  is not taken, then it is just fine to keep the current values. But the
1414   --  Last_Assignment field is different, if we have a sequence assign-to-v,
1415   --  conditional-return, assign-to-v, we do not want to complain that the
1416   --  second assignment clobbers the first.
1417
1418   procedure Kill_Current_Values
1419     (Ent                  : Entity_Id;
1420      Last_Assignment_Only : Boolean := False);
1421   --  This performs the same processing as described above for the form with
1422   --  no argument, but for the specific entity given. The call has no effect
1423   --  if the entity Ent is not for an object. Last_Assignment_Only has the
1424   --  same meaning as for the call with no Ent.
1425
1426   procedure Kill_Size_Check_Code (E : Entity_Id);
1427   --  Called when an address clause or pragma Import is applied to an entity.
1428   --  If the entity is a variable or a constant, and size check code is
1429   --  present, this size check code is killed, since the object will not be
1430   --  allocated by the program.
1431
1432   function Known_To_Be_Assigned (N : Node_Id) return Boolean;
1433   --  The node N is an entity reference. This function determines whether the
1434   --  reference is for sure an assignment of the entity, returning True if
1435   --  so. This differs from May_Be_Lvalue in that it defaults in the other
1436   --  direction. Cases which may possibly be assignments but are not known to
1437   --  be may return True from May_Be_Lvalue, but False from this function.
1438
1439   function Last_Source_Statement (HSS : Node_Id) return Node_Id;
1440   --  HSS is a handled statement sequence. This function returns the last
1441   --  statement in Statements (HSS) that has Comes_From_Source set. If no
1442   --  such statement exists, Empty is returned.
1443
1444   function Matching_Static_Array_Bounds
1445     (L_Typ : Node_Id;
1446      R_Typ : Node_Id) return Boolean;
1447   --  L_Typ and R_Typ are two array types. Returns True when they have the
1448   --  same number of dimensions, and the same static bounds for each index
1449   --  position.
1450
1451   procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1452   --  Given a node which designates the context of analysis and an origin in
1453   --  the tree, traverse from Root_Nod and mark all allocators as either
1454   --  dynamic or static depending on Context_Nod. Any erroneous marking is
1455   --  cleaned up during resolution.
1456
1457   function May_Be_Lvalue (N : Node_Id) return Boolean;
1458   --  Determines if N could be an lvalue (e.g. an assignment left hand side).
1459   --  An lvalue is defined as any expression which appears in a context where
1460   --  a name is required by the syntax, and the identity, rather than merely
1461   --  the value of the node is needed (for example, the prefix of an Access
1462   --  attribute is in this category). Note that, as implied by the name, this
1463   --  test is conservative. If it cannot be sure that N is NOT an lvalue, then
1464   --  it returns True. It tries hard to get the answer right, but it is hard
1465   --  to guarantee this in all cases. Note that it is more possible to give
1466   --  correct answer if the tree is fully analyzed.
1467
1468   function Must_Inline (Subp : Entity_Id) return Boolean;
1469   --  Return true if Subp must be inlined by the frontend
1470
1471   function Needs_One_Actual (E : Entity_Id) return Boolean;
1472   --  Returns True if a function has defaults for all but its first
1473   --  formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1474   --  results from an indexing of a function call written in prefix form.
1475
1476   function New_Copy_List_Tree (List : List_Id) return List_Id;
1477   --  Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1478   --  below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1479   --  nodes (entities) either directly or indirectly using this function.
1480
1481   function New_Copy_Tree
1482     (Source    : Node_Id;
1483      Map       : Elist_Id   := No_Elist;
1484      New_Sloc  : Source_Ptr := No_Location;
1485      New_Scope : Entity_Id  := Empty) return Node_Id;
1486   --  Given a node that is the root of a subtree, Copy_Tree copies the entire
1487   --  syntactic subtree, including recursively any descendents whose parent
1488   --  field references a copied node (descendents not linked to a copied node
1489   --  by the parent field are not copied, instead the copied tree references
1490   --  the same descendent as the original in this case, which is appropriate
1491   --  for non-syntactic fields such as Etype). The parent pointers in the
1492   --  copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1493   --  The one exception to the rule of not copying semantic fields is that
1494   --  any implicit types attached to the subtree are duplicated, so that
1495   --  the copy contains a distinct set of implicit type entities. Thus this
1496   --  function is used when it is necessary to duplicate an analyzed tree,
1497   --  declared in the same or some other compilation unit. This function is
1498   --  declared here rather than in atree because it uses semantic information
1499   --  in particular concerning the structure of itypes and the generation of
1500   --  public symbols.
1501
1502   --  The Map argument, if set to a non-empty Elist, specifies a set of
1503   --  mappings to be applied to entities in the tree. The map has the form:
1504   --
1505   --     old entity 1
1506   --     new entity to replace references to entity 1
1507   --     old entity 2
1508   --     new entity to replace references to entity 2
1509   --     ...
1510   --
1511   --  The call destroys the contents of Map in this case
1512   --
1513   --  The parameter New_Sloc, if set to a value other than No_Location, is
1514   --  used as the Sloc value for all nodes in the new copy. If New_Sloc is
1515   --  set to its default value No_Location, then the Sloc values of the
1516   --  nodes in the copy are simply copied from the corresponding original.
1517   --
1518   --  The Comes_From_Source indication is unchanged if New_Sloc is set to
1519   --  the default No_Location value, but is reset if New_Sloc is given, since
1520   --  in this case the result clearly is neither a source node or an exact
1521   --  copy of a source node.
1522   --
1523   --  The parameter New_Scope, if set to a value other than Empty, is the
1524   --  value to use as the Scope for any Itypes that are copied. The most
1525   --  typical value for this parameter, if given, is Current_Scope.
1526
1527   function New_External_Entity
1528     (Kind         : Entity_Kind;
1529      Scope_Id     : Entity_Id;
1530      Sloc_Value   : Source_Ptr;
1531      Related_Id   : Entity_Id;
1532      Suffix       : Character;
1533      Suffix_Index : Nat := 0;
1534      Prefix       : Character := ' ') return Entity_Id;
1535   --  This function creates an N_Defining_Identifier node for an internal
1536   --  created entity, such as an implicit type or subtype, or a record
1537   --  initialization procedure. The entity name is constructed with a call
1538   --  to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1539   --  that the generated name may be referenced as a public entry, and the
1540   --  Is_Public flag is set if needed (using Set_Public_Status). If the
1541   --  entity is for a type or subtype, the size/align fields are initialized
1542   --  to unknown (Uint_0).
1543
1544   function New_Internal_Entity
1545     (Kind       : Entity_Kind;
1546      Scope_Id   : Entity_Id;
1547      Sloc_Value : Source_Ptr;
1548      Id_Char    : Character) return Entity_Id;
1549   --  This function is similar to New_External_Entity, except that the
1550   --  name is constructed by New_Internal_Name (Id_Char). This is used
1551   --  when the resulting entity does not have to be referenced as a
1552   --  public entity (and in this case Is_Public is not set).
1553
1554   procedure Next_Actual (Actual_Id : in out Node_Id);
1555   pragma Inline (Next_Actual);
1556   --  Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1557   --  inline this procedural form, but not the functional form that follows.
1558
1559   function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1560   --  Find next actual parameter in declaration order. As described for
1561   --  First_Actual, this is the next actual in the declaration order, not
1562   --  the call order, so this does not correspond to simply taking the
1563   --  next entry of the Parameter_Associations list. The argument is an
1564   --  actual previously returned by a call to First_Actual or Next_Actual.
1565   --  Note that the result produced is always an expression, not a parameter
1566   --  association node, even if named notation was used.
1567
1568   function No_Scalar_Parts (T : Entity_Id) return Boolean;
1569   --  Tests if type T can be determined at compile time to have no scalar
1570   --  parts in the sense of the Valid_Scalars attribute. Returns True if
1571   --  this is the case, meaning that the result of Valid_Scalars is True.
1572
1573   procedure Normalize_Actuals
1574     (N       : Node_Id;
1575      S       : Entity_Id;
1576      Report  : Boolean;
1577      Success : out Boolean);
1578   --  Reorders lists of actuals according to names of formals, value returned
1579   --  in Success indicates success of reordering. For more details, see body.
1580   --  Errors are reported only if Report is set to True.
1581
1582   procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1583   --  This routine is called if the sub-expression N maybe the target of
1584   --  an assignment (e.g. it is the left side of an assignment, used as
1585   --  an out parameters, or used as prefixes of access attributes). It
1586   --  sets May_Be_Modified in the associated entity if there is one,
1587   --  taking into account the rule that in the case of renamed objects,
1588   --  it is the flag in the renamed object that must be set.
1589   --
1590   --  The parameter Sure is set True if the modification is sure to occur
1591   --  (e.g. target of assignment, or out parameter), and to False if the
1592   --  modification is only potential (e.g. address of entity taken).
1593
1594   function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1595   --  [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1596   --  or overrides an inherited dispatching primitive S2, the original
1597   --  corresponding operation of S is the original corresponding operation of
1598   --  S2. Otherwise, it is S itself.
1599
1600   function Object_Access_Level (Obj : Node_Id) return Uint;
1601   --  Return the accessibility level of the view of the object Obj. For
1602   --  convenience, qualified expressions applied to object names are also
1603   --  allowed as actuals for this function.
1604
1605   function Original_Aspect_Name (N : Node_Id) return Name_Id;
1606   --  N is a pragma node or aspect specification node. This function returns
1607   --  the name of the pragma or aspect in original source form, taking into
1608   --  account possible rewrites, and also cases where a pragma comes from an
1609   --  aspect (in such cases, the name can be different from the pragma name,
1610   --  e.g. a Pre aspect generates a Precondition pragma). This also deals with
1611   --  the presence of 'Class, which results in one of the special names
1612   --  Name_uPre, Name_uPost, Name_uInvariant, or Name_uType_Invariant being
1613   --  returned to represent the corresponding aspects with x'Class names.
1614
1615   function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
1616   --  Returns True if the names of both entities correspond with matching
1617   --  primitives. This routine includes support for the case in which one
1618   --  or both entities correspond with entities built by Derive_Subprogram
1619   --  with a special name to avoid being overridden (i.e. return true in case
1620   --  of entities with names "nameP" and "name" or vice versa).
1621
1622   function Private_Component (Type_Id : Entity_Id) return Entity_Id;
1623   --  Returns some private component (if any) of the given Type_Id.
1624   --  Used to enforce the rules on visibility of operations on composite
1625   --  types, that depend on the full view of the component type. For a
1626   --  record type there may be several such components, we just return
1627   --  the first one.
1628
1629   procedure Process_End_Label
1630     (N   : Node_Id;
1631      Typ : Character;
1632      Ent : Entity_Id);
1633   --  N is a node whose End_Label is to be processed, generating all
1634   --  appropriate cross-reference entries, and performing style checks
1635   --  for any identifier references in the end label. Typ is either
1636   --  'e' or 't indicating the type of the cross-reference entity
1637   --  (e for spec, t for body, see Lib.Xref spec for details). The
1638   --  parameter Ent gives the entity to which the End_Label refers,
1639   --  and to which cross-references are to be generated.
1640
1641   function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
1642   --  Determine whether entity Id is referenced within expression Expr
1643
1644   function References_Generic_Formal_Type (N : Node_Id) return Boolean;
1645   --  Returns True if the expression Expr contains any references to a
1646   --  generic type. This can only happen within a generic template.
1647
1648   procedure Remove_Homonym (E : Entity_Id);
1649   --  Removes E from the homonym chain
1650
1651   function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
1652   --  This is used to construct the second argument in a call to Rep_To_Pos
1653   --  which is Standard_True if range checks are enabled (E is an entity to
1654   --  which the Range_Checks_Suppressed test is applied), and Standard_False
1655   --  if range checks are suppressed. Loc is the location for the node that
1656   --  is returned (which is a New_Occurrence of the appropriate entity).
1657   --
1658   --  Note: one might think that it would be fine to always use True and
1659   --  to ignore the suppress in this case, but it is generally better to
1660   --  believe a request to suppress exceptions if possible, and further
1661   --  more there is at least one case in the generated code (the code for
1662   --  array assignment in a loop) that depends on this suppression.
1663
1664   procedure Require_Entity (N : Node_Id);
1665   --  N is a node which should have an entity value if it is an entity name.
1666   --  If not, then check if there were previous errors. If so, just fill
1667   --  in with Any_Id and ignore. Otherwise signal a program error exception.
1668   --  This is used as a defense mechanism against ill-formed trees caused by
1669   --  previous errors (particularly in -gnatq mode).
1670
1671   function Requires_State_Refinement
1672     (Spec_Id : Entity_Id;
1673      Body_Id : Entity_Id) return Boolean;
1674   --  Determine whether a package denoted by its spec and body entities
1675   --  requires refinement of abstract states.
1676
1677   function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
1678   --  Id is a type entity. The result is True when temporaries of this type
1679   --  need to be wrapped in a transient scope to be reclaimed properly when a
1680   --  secondary stack is in use. Examples of types requiring such wrapping are
1681   --  controlled types and variable-sized types including unconstrained
1682   --  arrays.
1683
1684   procedure Reset_Analyzed_Flags (N : Node_Id);
1685   --  Reset the Analyzed flags in all nodes of the tree whose root is N
1686
1687   function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
1688   --  Return true if Subp is a function that returns an unconstrained type
1689
1690   function Safe_To_Capture_Value
1691     (N    : Node_Id;
1692      Ent  : Entity_Id;
1693      Cond : Boolean := False) return Boolean;
1694   --  The caller is interested in capturing a value (either the current value,
1695   --  or an indication that the value is non-null) for the given entity Ent.
1696   --  This value can only be captured if sequential execution semantics can be
1697   --  properly guaranteed so that a subsequent reference will indeed be sure
1698   --  that this current value indication is correct. The node N is the
1699   --  construct which resulted in the possible capture of the value (this
1700   --  is used to check if we are in a conditional).
1701   --
1702   --  Cond is used to skip the test for being inside a conditional. It is used
1703   --  in the case of capturing values from if/while tests, which already do a
1704   --  proper job of handling scoping issues without this help.
1705   --
1706   --  The only entities whose values can be captured are OUT and IN OUT formal
1707   --  parameters, and variables unless Cond is True, in which case we also
1708   --  allow IN formals, loop parameters and constants, where we cannot ever
1709   --  capture actual value information, but we can capture conditional tests.
1710
1711   function Same_Name (N1, N2 : Node_Id) return Boolean;
1712   --  Determine if two (possibly expanded) names are the same name. This is
1713   --  a purely syntactic test, and N1 and N2 need not be analyzed.
1714
1715   function Same_Object (Node1, Node2 : Node_Id) return Boolean;
1716   --  Determine if Node1 and Node2 are known to designate the same object.
1717   --  This is a semantic test and both nodes must be fully analyzed. A result
1718   --  of True is decisively correct. A result of False does not necessarily
1719   --  mean that different objects are designated, just that this could not
1720   --  be reliably determined at compile time.
1721
1722   function Same_Type (T1, T2 : Entity_Id) return Boolean;
1723   --  Determines if T1 and T2 represent exactly the same type. Two types
1724   --  are the same if they are identical, or if one is an unconstrained
1725   --  subtype of the other, or they are both common subtypes of the same
1726   --  type with identical constraints. The result returned is conservative.
1727   --  It is True if the types are known to be the same, but a result of
1728   --  False is indecisive (e.g. the compiler may not be able to tell that
1729   --  two constraints are identical).
1730
1731   function Same_Value (Node1, Node2 : Node_Id) return Boolean;
1732   --  Determines if Node1 and Node2 are known to be the same value, which is
1733   --  true if they are both compile time known values and have the same value,
1734   --  or if they are the same object (in the sense of function Same_Object).
1735   --  A result of False does not necessarily mean they have different values,
1736   --  just that it is not possible to determine they have the same value.
1737
1738   function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
1739   --  Determines if the entity Scope1 is the same as Scope2, or if it is
1740   --  inside it, where both entities represent scopes. Note that scopes
1741   --  are only partially ordered, so Scope_Within_Or_Same (A,B) and
1742   --  Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
1743
1744   function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
1745   --  Like Scope_Within_Or_Same, except that this function returns
1746   --  False in the case where Scope1 and Scope2 are the same scope.
1747
1748   procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
1749   --  Same as Basic_Set_Convention, but with an extra check for access types.
1750   --  In particular, if E is an access-to-subprogram type, and Val is a
1751   --  foreign convention, then we set Can_Use_Internal_Rep to False on E.
1752   --  Also, if the Etype of E is set and is an anonymous access type with
1753   --  no convention set, this anonymous type inherits the convention of E.
1754
1755   procedure Set_Current_Entity (E : Entity_Id);
1756   pragma Inline (Set_Current_Entity);
1757   --  Establish the entity E as the currently visible definition of its
1758   --  associated name (i.e. the Node_Id associated with its name).
1759
1760   procedure Set_Debug_Info_Needed (T : Entity_Id);
1761   --  Sets the Debug_Info_Needed flag on entity T , and also on any entities
1762   --  that are needed by T (for an object, the type of the object is needed,
1763   --  and for a type, various subsidiary types are needed -- see body for
1764   --  details). Never has any effect on T if the Debug_Info_Off flag is set.
1765   --  This routine should always be used instead of Set_Needs_Debug_Info to
1766   --  ensure that subsidiary entities are properly handled.
1767
1768   procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
1769   --  This procedure has the same calling sequence as Set_Entity, but it
1770   --  performs additional checks as follows:
1771   --
1772   --    If Style_Check is set, then it calls a style checking routine which
1773   --    can check identifier spelling style. This procedure also takes care
1774   --    of checking the restriction No_Implementation_Identifiers.
1775   --
1776   --    If restriction No_Abort_Statements is set, then it checks that the
1777   --    entity is not Ada.Task_Identification.Abort_Task.
1778   --
1779   --    If restriction No_Dynamic_Attachment is set, then it checks that the
1780   --    entity is not one of the restricted names for this restriction.
1781   --
1782   --    If restriction No_Implementation_Identifiers is set, then it checks
1783   --    that the entity is not implementation defined.
1784
1785   procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
1786   pragma Inline (Set_Name_Entity_Id);
1787   --  Sets the Entity_Id value associated with the given name, which is the
1788   --  Id of the innermost visible entity with the given name. See the body
1789   --  of package Sem_Ch8 for further details on the handling of visibility.
1790
1791   procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
1792   --  The arguments may be parameter associations, whose descendants
1793   --  are the optional formal name and the actual parameter. Positional
1794   --  parameters are already members of a list, and do not need to be
1795   --  chained separately. See also First_Actual and Next_Actual.
1796
1797   procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
1798   pragma Inline (Set_Optimize_Alignment_Flags);
1799   --  Sets Optimize_Alignment_Space/Time flags in E from current settings
1800
1801   procedure Set_Public_Status (Id : Entity_Id);
1802   --  If an entity (visible or otherwise) is defined in a library
1803   --  package, or a package that is itself public, then this subprogram
1804   --  labels the entity public as well.
1805
1806   procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
1807   --  N is the node for either a left hand side (Out_Param set to False),
1808   --  or an Out or In_Out parameter (Out_Param set to True). If there is
1809   --  an assignable entity being referenced, then the appropriate flag
1810   --  (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
1811   --  if Out_Param is True) is set True, and the other flag set False.
1812
1813   procedure Set_Scope_Is_Transient (V : Boolean := True);
1814   --  Set the flag Is_Transient of the current scope
1815
1816   procedure Set_Size_Info (T1, T2 : Entity_Id);
1817   pragma Inline (Set_Size_Info);
1818   --  Copies the Esize field and Has_Biased_Representation flag from sub(type)
1819   --  entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
1820   --  in the fixed-point and discrete cases, and also copies the alignment
1821   --  value from T2 to T1. It does NOT copy the RM_Size field, which must be
1822   --  separately set if this is required to be copied also.
1823
1824   function Scope_Is_Transient return Boolean;
1825   --  True if the current scope is transient
1826
1827   function Static_Boolean (N : Node_Id) return Uint;
1828   --  This function analyzes the given expression node and then resolves it
1829   --  as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
1830   --  returned corresponding to the value, otherwise an error message is
1831   --  output and No_Uint is returned.
1832
1833   function Static_Integer (N : Node_Id) return Uint;
1834   --  This function analyzes the given expression node and then resolves it
1835   --  as any integer type. If the result is static, then the value of the
1836   --  universal expression is returned, otherwise an error message is output
1837   --  and a value of No_Uint is returned.
1838
1839   function Statically_Different (E1, E2 : Node_Id) return Boolean;
1840   --  Return True if it can be statically determined that the Expressions
1841   --  E1 and E2 refer to different objects
1842
1843   function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
1844   --  Determine whether node N is a loop statement subject to at least one
1845   --  'Loop_Entry attribute.
1846
1847   function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
1848   --  Return the accessibility level of the view denoted by Subp
1849
1850   function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
1851   --  Return True if Typ supports the GCC built-in atomic operations (i.e. if
1852   --  Typ is properly sized and aligned).
1853
1854   procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
1855   --  Print debugging information on entry to each unit being analyzed
1856
1857   procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
1858   --  Move a list of entities from one scope to another, and recompute
1859   --  Is_Public based upon the new scope.
1860
1861   function Type_Access_Level (Typ : Entity_Id) return Uint;
1862   --  Return the accessibility level of Typ
1863
1864   function Type_Without_Stream_Operation
1865     (T  : Entity_Id;
1866      Op : TSS_Name_Type := TSS_Null) return Entity_Id;
1867   --  AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
1868   --  is active then we cannot generate stream subprograms for composite types
1869   --  with elementary subcomponents that lack user-defined stream subprograms.
1870   --  This predicate determines whether a type has such an elementary
1871   --  subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
1872   --  prevents the construction of a composite stream operation. If Op is
1873   --  specified we check only for the given stream operation.
1874
1875   function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
1876   --  Return the entity which represents declaration N, so that different
1877   --  views of the same entity have the same unique defining entity:
1878   --  * package spec and body;
1879   --  * subprogram declaration, subprogram stub and subprogram body;
1880   --  * private view and full view of a type;
1881   --  * private view and full view of a deferred constant.
1882   --  In other cases, return the defining entity for N.
1883
1884   function Unique_Entity (E : Entity_Id) return Entity_Id;
1885   --  Return the unique entity for entity E, which would be returned by
1886   --  Unique_Defining_Entity if applied to the enclosing declaration of E.
1887
1888   function Unique_Name (E : Entity_Id) return String;
1889   --  Return a unique name for entity E, which could be used to identify E
1890   --  across compilation units.
1891
1892   function Unit_Is_Visible (U : Entity_Id) return Boolean;
1893   --  Determine whether a compilation unit is visible in the current context,
1894   --  because there is a with_clause that makes the unit available. Used to
1895   --  provide better messages on common visiblity errors on operators.
1896
1897   function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
1898   --  Yields Universal_Integer or Universal_Real if this is a candidate
1899
1900   function Unqualify (Expr : Node_Id) return Node_Id;
1901   pragma Inline (Unqualify);
1902   --  Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
1903   --  returns X. If Expr is not a qualified expression, returns Expr.
1904
1905   function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
1906   --  [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
1907   --  of a type extension or private extension declaration. If the full-view
1908   --  of private parents and progenitors is available then it is used to
1909   --  generate the list of visible ancestors; otherwise their partial
1910   --  view is added to the resulting list.
1911
1912   function Within_Init_Proc return Boolean;
1913   --  Determines if Current_Scope is within an init proc
1914
1915   function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
1916   --  Returns True if entity Id is declared within scope S
1917
1918   procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
1919   --  Output error message for incorrectly typed expression. Expr is the node
1920   --  for the incorrectly typed construct (Etype (Expr) is the type found),
1921   --  and Expected_Type is the entity for the expected type. Note that Expr
1922   --  does not have to be a subexpression, anything with an Etype field may
1923   --  be used.
1924
1925end Sem_Util;
1926