1/* Definitions of x86 tunable features.
2   Copyright (C) 2013-2014 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 3, or (at your option)
9any later version.
10
11GCC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License and
17a copy of the GCC Runtime Library Exception along with this program;
18see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
19<http://www.gnu.org/licenses/>.  */
20
21/* Tuning for a given CPU XXXX consists of:
22    - adding new CPU into:
23	- adding PROCESSOR_XXX to processor_type (in i386.h)
24	- possibly adding XXX into CPU attribute in i386.md
25	- adding XXX to processor_alias_table (in i386.c)
26    - introducing ix86_XXX_cost in i386.c
27	- Stringop generation table can be build based on test_stringop
28	- script (once rest of tuning is complete)
29    - designing a scheduler model in
30	- XXXX.md file
31	- Updating ix86_issue_rate and ix86_adjust_cost in i386.md
32	- possibly updating ia32_multipass_dfa_lookahead, ix86_sched_reorder
33	  and ix86_sched_init_global if those tricks are needed.
34    - Tunning the flags bellow. Those are split into sections and each
35      section is very roughly ordered by importance.  */
36
37/*****************************************************************************/
38/* Scheduling flags. 					                     */
39/*****************************************************************************/
40
41/* X86_TUNE_SCHEDULE: Enable scheduling.  */
42DEF_TUNE (X86_TUNE_SCHEDULE, "schedule",
43          m_PENT | m_PPRO | m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_INTEL
44	  | m_K6_GEODE | m_AMD_MULTIPLE | m_GENERIC)
45
46/* X86_TUNE_PARTIAL_REG_DEPENDENCY: Enable more register renaming
47   on modern chips.  Preffer stores affecting whole integer register
48   over partial stores.  For example preffer MOVZBL or MOVQ to load 8bit
49   value over movb.  */
50DEF_TUNE (X86_TUNE_PARTIAL_REG_DEPENDENCY, "partial_reg_dependency",
51          m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_INTEL
52	  | m_AMD_MULTIPLE | m_GENERIC)
53
54/* X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY: This knob promotes all store
55   destinations to be 128bit to allow register renaming on 128bit SSE units,
56   but usually results in one extra microop on 64bit SSE units.
57   Experimental results shows that disabling this option on P4 brings over 20%
58   SPECfp regression, while enabling it on K8 brings roughly 2.4% regression
59   that can be partly masked by careful scheduling of moves.  */
60DEF_TUNE (X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY, "sse_partial_reg_dependency",
61          m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
62	  | m_INTEL | m_AMDFAM10 | m_BDVER | m_GENERIC)
63
64/* X86_TUNE_SSE_SPLIT_REGS: Set for machines where the type and dependencies
65   are resolved on SSE register parts instead of whole registers, so we may
66   maintain just lower part of scalar values in proper format leaving the
67   upper part undefined.  */
68DEF_TUNE (X86_TUNE_SSE_SPLIT_REGS, "sse_split_regs", m_ATHLON_K8)
69
70/* X86_TUNE_PARTIAL_FLAG_REG_STALL: this flag disables use of of flags
71   set by instructions affecting just some flags (in particular shifts).
72   This is because Core2 resolves dependencies on whole flags register
73   and such sequences introduce false dependency on previous instruction
74   setting full flags.
75
76   The flags does not affect generation of INC and DEC that is controlled
77   by X86_TUNE_USE_INCDEC.
78
79   This flag may be dropped from generic once core2-corei5 machines are
80   rare enough.  */
81DEF_TUNE (X86_TUNE_PARTIAL_FLAG_REG_STALL, "partial_flag_reg_stall",
82          m_CORE2 | m_GENERIC)
83
84/* X86_TUNE_MOVX: Enable to zero extend integer registers to avoid
85   partial dependencies.  */
86DEF_TUNE (X86_TUNE_MOVX, "movx",
87          m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
88	  | m_INTEL | m_GEODE | m_AMD_MULTIPLE  | m_GENERIC)
89
90/* X86_TUNE_MEMORY_MISMATCH_STALL: Avoid partial stores that are followed by
91   full sized loads.  */
92DEF_TUNE (X86_TUNE_MEMORY_MISMATCH_STALL, "memory_mismatch_stall",
93          m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_INTEL
94	  | m_AMD_MULTIPLE | m_GENERIC)
95
96/* X86_TUNE_FUSE_CMP_AND_BRANCH_32: Fuse compare with a subsequent
97   conditional jump instruction for 32 bit TARGET.
98   FIXME: revisit for generic.  */
99DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_32, "fuse_cmp_and_branch_32",
100          m_CORE_ALL | m_BDVER)
101
102/* X86_TUNE_FUSE_CMP_AND_BRANCH_64: Fuse compare with a subsequent
103   conditional jump instruction for TARGET_64BIT.
104   FIXME: revisit for generic.  */
105DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_64, "fuse_cmp_and_branch_64",
106          m_NEHALEM | m_SANDYBRIDGE | m_HASWELL | m_BDVER)
107
108/* X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS: Fuse compare with a
109   subsequent conditional jump instruction when the condition jump
110   check sign flag (SF) or overflow flag (OF).  */
111DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS, "fuse_cmp_and_branch_soflags",
112          m_NEHALEM | m_SANDYBRIDGE | m_HASWELL | m_BDVER)
113
114/* X86_TUNE_FUSE_ALU_AND_BRANCH: Fuse alu with a subsequent conditional
115   jump instruction when the alu instruction produces the CCFLAG consumed by
116   the conditional jump instruction. */
117DEF_TUNE (X86_TUNE_FUSE_ALU_AND_BRANCH, "fuse_alu_and_branch",
118          m_SANDYBRIDGE | m_HASWELL)
119
120/* X86_TUNE_REASSOC_INT_TO_PARALLEL: Try to produce parallel computations
121   during reassociation of integer computation.  */
122DEF_TUNE (X86_TUNE_REASSOC_INT_TO_PARALLEL, "reassoc_int_to_parallel",
123          m_BONNELL)
124
125/* X86_TUNE_REASSOC_FP_TO_PARALLEL: Try to produce parallel computations
126   during reassociation of fp computation.  */
127DEF_TUNE (X86_TUNE_REASSOC_FP_TO_PARALLEL, "reassoc_fp_to_parallel",
128          m_BONNELL | m_SILVERMONT | m_HASWELL | m_INTEL | m_BDVER1
129	  | m_BDVER2 | m_GENERIC)
130
131/*****************************************************************************/
132/* Function prologue, epilogue and function calling sequences.               */
133/*****************************************************************************/
134
135/* X86_TUNE_ACCUMULATE_OUTGOING_ARGS: Allocate stack space for outgoing
136   arguments in prologue/epilogue instead of separately for each call
137   by push/pop instructions.
138   This increase code size by about 5% in 32bit mode, less so in 64bit mode
139   because parameters are passed in registers.  It is considerable
140   win for targets without stack engine that prevents multple push operations
141   to happen in parallel.
142
143   FIXME: the flags is incorrectly enabled for amdfam10, Bulldozer,
144   Bobcat and Generic.  This is because disabling it causes large
145   regression on mgrid due to IRA limitation leading to unecessary
146   use of the frame pointer in 32bit mode.  */
147DEF_TUNE (X86_TUNE_ACCUMULATE_OUTGOING_ARGS, "accumulate_outgoing_args",
148	  m_PPRO | m_P4_NOCONA | m_BONNELL | m_SILVERMONT | m_INTEL
149	  | m_ATHLON_K8)
150
151/* X86_TUNE_PROLOGUE_USING_MOVE: Do not use push/pop in prologues that are
152   considered on critical path.  */
153DEF_TUNE (X86_TUNE_PROLOGUE_USING_MOVE, "prologue_using_move",
154          m_PPRO | m_ATHLON_K8)
155
156/* X86_TUNE_PROLOGUE_USING_MOVE: Do not use push/pop in epilogues that are
157   considered on critical path.  */
158DEF_TUNE (X86_TUNE_EPILOGUE_USING_MOVE, "epilogue_using_move",
159          m_PPRO | m_ATHLON_K8)
160
161/* X86_TUNE_USE_LEAVE: Use "leave" instruction in epilogues where it fits.  */
162DEF_TUNE (X86_TUNE_USE_LEAVE, "use_leave",
163	  m_386 | m_CORE_ALL | m_K6_GEODE | m_AMD_MULTIPLE | m_GENERIC)
164
165/* X86_TUNE_PUSH_MEMORY: Enable generation of "push mem" instructions.
166   Some chips, like 486 and Pentium works faster with separate load
167   and push instructions.  */
168DEF_TUNE (X86_TUNE_PUSH_MEMORY, "push_memory",
169          m_386 | m_P4_NOCONA | m_CORE_ALL | m_K6_GEODE | m_AMD_MULTIPLE
170          | m_GENERIC)
171
172/* X86_TUNE_SINGLE_PUSH: Enable if single push insn is preferred
173   over esp subtraction.  */
174DEF_TUNE (X86_TUNE_SINGLE_PUSH, "single_push", m_386 | m_486 | m_PENT
175          | m_K6_GEODE)
176
177/* X86_TUNE_DOUBLE_PUSH. Enable if double push insn is preferred
178   over esp subtraction.  */
179DEF_TUNE (X86_TUNE_DOUBLE_PUSH, "double_push", m_PENT | m_K6_GEODE)
180
181/* X86_TUNE_SINGLE_POP: Enable if single pop insn is preferred
182   over esp addition.  */
183DEF_TUNE (X86_TUNE_SINGLE_POP, "single_pop", m_386 | m_486 | m_PENT | m_PPRO)
184
185/* X86_TUNE_DOUBLE_POP: Enable if double pop insn is preferred
186   over esp addition.  */
187DEF_TUNE (X86_TUNE_DOUBLE_POP, "double_pop", m_PENT)
188
189/*****************************************************************************/
190/* Branch predictor tuning  		                                     */
191/*****************************************************************************/
192
193/* X86_TUNE_PAD_SHORT_FUNCTION: Make every function to be at least 4
194   instructions long.  */
195DEF_TUNE (X86_TUNE_PAD_SHORT_FUNCTION, "pad_short_function", m_BONNELL)
196
197/* X86_TUNE_PAD_RETURNS: Place NOP before every RET that is a destination
198   of conditional jump or directly preceded by other jump instruction.
199   This is important for AND K8-AMDFAM10 because the branch prediction
200   architecture expect at most one jump per 2 byte window.  Failing to
201   pad returns leads to misaligned return stack.  */
202DEF_TUNE (X86_TUNE_PAD_RETURNS, "pad_returns",
203          m_ATHLON_K8 | m_AMDFAM10 | m_GENERIC)
204
205/* X86_TUNE_FOUR_JUMP_LIMIT: Some CPU cores are not able to predict more
206   than 4 branch instructions in the 16 byte window.  */
207DEF_TUNE (X86_TUNE_FOUR_JUMP_LIMIT, "four_jump_limit",
208          m_PPRO | m_P4_NOCONA | m_BONNELL | m_SILVERMONT | m_INTEL |
209	  m_ATHLON_K8 | m_AMDFAM10)
210
211/*****************************************************************************/
212/* Integer instruction selection tuning                                      */
213/*****************************************************************************/
214
215/* X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL: Enable software prefetching
216   at -O3.  For the moment, the prefetching seems badly tuned for Intel
217   chips.  */
218DEF_TUNE (X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL, "software_prefetching_beneficial",
219          m_K6_GEODE | m_AMD_MULTIPLE)
220
221/* X86_TUNE_LCP_STALL: Avoid an expensive length-changing prefix stall
222   on 16-bit immediate moves into memory on Core2 and Corei7.  */
223DEF_TUNE (X86_TUNE_LCP_STALL, "lcp_stall", m_CORE_ALL | m_GENERIC)
224
225/* X86_TUNE_READ_MODIFY: Enable use of read-modify instructions such
226   as "add mem, reg".  */
227DEF_TUNE (X86_TUNE_READ_MODIFY, "read_modify", ~(m_PENT | m_PPRO))
228
229/* X86_TUNE_USE_INCDEC: Enable use of inc/dec instructions.   */
230DEF_TUNE (X86_TUNE_USE_INCDEC, "use_incdec",
231          ~(m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_INTEL
232	    | m_GENERIC))
233
234/* X86_TUNE_INTEGER_DFMODE_MOVES: Enable if integer moves are preferred
235   for DFmode copies */
236DEF_TUNE (X86_TUNE_INTEGER_DFMODE_MOVES, "integer_dfmode_moves",
237          ~(m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
238	    | m_INTEL | m_GEODE | m_AMD_MULTIPLE | m_GENERIC))
239
240/* X86_TUNE_OPT_AGU: Optimize for Address Generation Unit. This flag
241   will impact LEA instruction selection. */
242DEF_TUNE (X86_TUNE_OPT_AGU, "opt_agu", m_BONNELL | m_SILVERMONT | m_INTEL)
243
244/* X86_TUNE_AVOID_LEA_FOR_ADDR: Avoid lea for address computation.  */
245DEF_TUNE (X86_TUNE_AVOID_LEA_FOR_ADDR, "avoid_lea_for_addr",
246	  m_BONNELL | m_SILVERMONT)
247
248/* X86_TUNE_SLOW_IMUL_IMM32_MEM: Imul of 32-bit constant and memory is
249   vector path on AMD machines.
250   FIXME: Do we need to enable this for core? */
251DEF_TUNE (X86_TUNE_SLOW_IMUL_IMM32_MEM, "slow_imul_imm32_mem",
252          m_K8 | m_AMDFAM10)
253
254/* X86_TUNE_SLOW_IMUL_IMM8: Imul of 8-bit constant is vector path on AMD
255   machines.
256   FIXME: Do we need to enable this for core? */
257DEF_TUNE (X86_TUNE_SLOW_IMUL_IMM8, "slow_imul_imm8",
258          m_K8 | m_AMDFAM10)
259
260/* X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE: Try to avoid memory operands for
261   a conditional move.  */
262DEF_TUNE (X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE, "avoid_mem_opnd_for_cmove",
263	  m_BONNELL | m_SILVERMONT | m_INTEL)
264
265/* X86_TUNE_SINGLE_STRINGOP: Enable use of single string operations, such
266   as MOVS and STOS (without a REP prefix) to move/set sequences of bytes.  */
267DEF_TUNE (X86_TUNE_SINGLE_STRINGOP, "single_stringop", m_386 | m_P4_NOCONA)
268
269/* X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES: Enable generation of
270   compact prologues and epilogues by issuing a misaligned moves.  This
271   requires target to handle misaligned moves and partial memory stalls
272   reasonably well.
273   FIXME: This may actualy be a win on more targets than listed here.  */
274DEF_TUNE (X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES,
275	  "misaligned_move_string_pro_epilogues",
276	  m_386 | m_486 | m_CORE_ALL | m_AMD_MULTIPLE | m_GENERIC)
277
278/* X86_TUNE_USE_SAHF: Controls use of SAHF.  */
279DEF_TUNE (X86_TUNE_USE_SAHF, "use_sahf",
280          m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
281	  | m_INTEL | m_K6_GEODE | m_K8 | m_AMDFAM10 | m_BDVER | m_BTVER
282	  | m_GENERIC)
283
284/* X86_TUNE_USE_CLTD: Controls use of CLTD and CTQO instructions.  */
285DEF_TUNE (X86_TUNE_USE_CLTD, "use_cltd",
286	  ~(m_PENT | m_BONNELL | m_SILVERMONT | m_INTEL  | m_K6))
287
288/* X86_TUNE_USE_BT: Enable use of BT (bit test) instructions.  */
289DEF_TUNE (X86_TUNE_USE_BT, "use_bt",
290          m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_INTEL | m_AMD_MULTIPLE
291	  | m_GENERIC)
292
293/*****************************************************************************/
294/* 387 instruction selection tuning                                          */
295/*****************************************************************************/
296
297/* X86_TUNE_USE_HIMODE_FIOP: Enables use of x87 instructions with 16bit
298   integer operand.
299   FIXME: Why this is disabled for modern chips?  */
300DEF_TUNE (X86_TUNE_USE_HIMODE_FIOP, "use_himode_fiop",
301          m_386 | m_486 | m_K6_GEODE)
302
303/* X86_TUNE_USE_SIMODE_FIOP: Enables use of x87 instructions with 32bit
304   integer operand.  */
305DEF_TUNE (X86_TUNE_USE_SIMODE_FIOP, "use_simode_fiop",
306          ~(m_PENT | m_PPRO | m_CORE_ALL | m_BONNELL | m_SILVERMONT
307	    | m_INTEL | m_AMD_MULTIPLE | m_GENERIC))
308
309/* X86_TUNE_USE_FFREEP: Use freep instruction instead of fstp.  */
310DEF_TUNE (X86_TUNE_USE_FFREEP, "use_ffreep", m_AMD_MULTIPLE)
311
312/* X86_TUNE_EXT_80387_CONSTANTS: Use fancy 80387 constants, such as PI.  */
313DEF_TUNE (X86_TUNE_EXT_80387_CONSTANTS, "ext_80387_constants",
314          m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
315	  | m_INTEL | m_K6_GEODE | m_ATHLON_K8 | m_GENERIC)
316
317/*****************************************************************************/
318/* SSE instruction selection tuning                                          */
319/*****************************************************************************/
320
321/* X86_TUNE_VECTORIZE_DOUBLE: Enable double precision vector
322   instructions.  */
323DEF_TUNE (X86_TUNE_VECTORIZE_DOUBLE, "vectorize_double", ~m_BONNELL)
324
325/* X86_TUNE_GENERAL_REGS_SSE_SPILL: Try to spill general regs to SSE
326   regs instead of memory.  */
327DEF_TUNE (X86_TUNE_GENERAL_REGS_SSE_SPILL, "general_regs_sse_spill",
328          m_CORE_ALL)
329
330/* X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL: Use movups for misaligned loads instead
331   of a sequence loading registers by parts.  */
332DEF_TUNE (X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL, "sse_unaligned_load_optimal",
333          m_NEHALEM | m_SANDYBRIDGE | m_HASWELL | m_AMDFAM10 | m_BDVER
334	  | m_BTVER | m_SILVERMONT | m_INTEL | m_GENERIC)
335
336/* X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL: Use movups for misaligned stores instead
337   of a sequence loading registers by parts.  */
338DEF_TUNE (X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL, "sse_unaligned_store_optimal",
339          m_NEHALEM | m_SANDYBRIDGE | m_HASWELL | m_BDVER | m_SILVERMONT
340	  | m_INTEL | m_GENERIC)
341
342/* Use packed single precision instructions where posisble.  I.e. movups instead
343   of movupd.  */
344DEF_TUNE (X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL, "sse_packed_single_insn_optimal",
345          m_BDVER)
346
347/* X86_TUNE_SSE_TYPELESS_STORES: Always movaps/movups for 128bit stores.   */
348DEF_TUNE (X86_TUNE_SSE_TYPELESS_STORES, "sse_typeless_stores",
349	  m_AMD_MULTIPLE | m_CORE_ALL | m_GENERIC)
350
351/* X86_TUNE_SSE_LOAD0_BY_PXOR: Always use pxor to load0 as opposed to
352   xorps/xorpd and other variants.  */
353DEF_TUNE (X86_TUNE_SSE_LOAD0_BY_PXOR, "sse_load0_by_pxor",
354	  m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BDVER | m_BTVER | m_GENERIC)
355
356/* X86_TUNE_INTER_UNIT_MOVES_TO_VEC: Enable moves in from integer
357   to SSE registers.  If disabled, the moves will be done by storing
358   the value to memory and reloading.  */
359DEF_TUNE (X86_TUNE_INTER_UNIT_MOVES_TO_VEC, "inter_unit_moves_to_vec",
360          ~(m_AMD_MULTIPLE | m_GENERIC))
361
362/* X86_TUNE_INTER_UNIT_MOVES_TO_VEC: Enable moves in from SSE
363   to integer registers.  If disabled, the moves will be done by storing
364   the value to memory and reloading.  */
365DEF_TUNE (X86_TUNE_INTER_UNIT_MOVES_FROM_VEC, "inter_unit_moves_from_vec",
366          ~m_ATHLON_K8)
367
368/* X86_TUNE_INTER_UNIT_CONVERSIONS: Enable float<->integer conversions
369   to use both SSE and integer registers at a same time.
370   FIXME: revisit importance of this for generic.  */
371DEF_TUNE (X86_TUNE_INTER_UNIT_CONVERSIONS, "inter_unit_conversions",
372          ~(m_AMDFAM10 | m_BDVER))
373
374/* X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS: Try to split memory operand for
375   fp converts to destination register.  */
376DEF_TUNE (X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS, "split_mem_opnd_for_fp_converts",
377          m_SILVERMONT | m_INTEL)
378
379/* X86_TUNE_USE_VECTOR_FP_CONVERTS: Prefer vector packed SSE conversion
380   from FP to FP.  This form of instructions avoids partial write to the
381   destination.  */
382DEF_TUNE (X86_TUNE_USE_VECTOR_FP_CONVERTS, "use_vector_fp_converts",
383          m_AMDFAM10)
384
385/* X86_TUNE_USE_VECTOR_CONVERTS: Prefer vector packed SSE conversion
386   from integer to FP. */
387DEF_TUNE (X86_TUNE_USE_VECTOR_CONVERTS, "use_vector_converts", m_AMDFAM10)
388
389/*****************************************************************************/
390/* AVX instruction selection tuning (some of SSE flags affects AVX, too)     */
391/*****************************************************************************/
392
393/* X86_TUNE_AVX256_UNALIGNED_LOAD_OPTIMAL: if false, unaligned loads are
394   split.  */
395DEF_TUNE (X86_TUNE_AVX256_UNALIGNED_LOAD_OPTIMAL, "256_unaligned_load_optimal",
396          ~(m_NEHALEM | m_SANDYBRIDGE | m_GENERIC))
397
398/* X86_TUNE_AVX256_UNALIGNED_STORE_OPTIMAL: if false, unaligned stores are
399   split.  */
400DEF_TUNE (X86_TUNE_AVX256_UNALIGNED_STORE_OPTIMAL, "256_unaligned_store_optimal",
401          ~(m_NEHALEM | m_SANDYBRIDGE | m_BDVER | m_GENERIC))
402
403/* X86_TUNE_AVX128_OPTIMAL: Enable 128-bit AVX instruction generation for
404   the auto-vectorizer.  */
405DEF_TUNE (X86_TUNE_AVX128_OPTIMAL, "avx128_optimal", m_BDVER | m_BTVER2)
406
407/*****************************************************************************/
408/* Historical relics: tuning flags that helps a specific old CPU designs     */
409/*****************************************************************************/
410
411/* X86_TUNE_DOUBLE_WITH_ADD: Use add instead of sal to double value in
412   an integer register.  */
413DEF_TUNE (X86_TUNE_DOUBLE_WITH_ADD, "double_with_add", ~m_386)
414
415/* X86_TUNE_ALWAYS_FANCY_MATH_387: controls use of fancy 387 operations,
416   such as fsqrt, fprem, fsin, fcos, fsincos etc.
417   Should be enabled for all targets that always has coprocesor.  */
418DEF_TUNE (X86_TUNE_ALWAYS_FANCY_MATH_387, "always_fancy_math_387",
419          ~(m_386 | m_486))
420
421/* X86_TUNE_UNROLL_STRLEN: Produce (quite lame) unrolled sequence for
422   inline strlen.  This affects only -minline-all-stringops mode. By
423   default we always dispatch to a library since our internal strlen
424   is bad.  */
425DEF_TUNE (X86_TUNE_UNROLL_STRLEN, "unroll_strlen", ~m_386)
426
427/* X86_TUNE_SHIFT1: Enables use of short encoding of "sal reg" instead of
428   longer "sal $1, reg".  */
429DEF_TUNE (X86_TUNE_SHIFT1, "shift1", ~m_486)
430
431/* X86_TUNE_ZERO_EXTEND_WITH_AND: Use AND instruction instead
432   of mozbl/movwl.  */
433DEF_TUNE (X86_TUNE_ZERO_EXTEND_WITH_AND, "zero_extend_with_and",  m_486 | m_PENT)
434
435/* X86_TUNE_PROMOTE_HIMODE_IMUL: Modern CPUs have same latency for HImode
436   and SImode multiply, but 386 and 486 do HImode multiply faster.  */
437DEF_TUNE (X86_TUNE_PROMOTE_HIMODE_IMUL, "promote_himode_imul",
438          ~(m_386 | m_486))
439
440/* X86_TUNE_FAST_PREFIX: Enable demoting some 32bit or 64bit arithmetic
441   into 16bit/8bit when resulting sequence is shorter.  For example
442   for "and $-65536, reg" to 16bit store of 0.  */
443DEF_TUNE (X86_TUNE_FAST_PREFIX, "fast_prefix", ~(m_386 | m_486 | m_PENT))
444
445/* X86_TUNE_READ_MODIFY_WRITE: Enable use of read modify write instructions
446   such as "add $1, mem".  */
447DEF_TUNE (X86_TUNE_READ_MODIFY_WRITE, "read_modify_write", ~m_PENT)
448
449/* X86_TUNE_MOVE_M1_VIA_OR: On pentiums, it is faster to load -1 via OR
450   than a MOV.  */
451DEF_TUNE (X86_TUNE_MOVE_M1_VIA_OR, "move_m1_via_or", m_PENT)
452
453/* X86_TUNE_NOT_UNPAIRABLE: NOT is not pairable on Pentium, while XOR is,
454   but one byte longer.  */
455DEF_TUNE (X86_TUNE_NOT_UNPAIRABLE, "not_unpairable", m_PENT)
456
457/* X86_TUNE_PARTIAL_REG_STALL: Pentium pro, unlike later chips, handled
458   use of partial registers by renaming.  This improved performance of 16bit
459   code where upper halves of registers are not used.  It also leads to
460   an penalty whenever a 16bit store is followed by 32bit use.  This flag
461   disables production of such sequences in common cases.
462   See also X86_TUNE_HIMODE_MATH.
463
464   In current implementation the partial register stalls are not eliminated
465   very well - they can be introduced via subregs synthesized by combine
466   and can happen in caller/callee saving sequences.  */
467DEF_TUNE (X86_TUNE_PARTIAL_REG_STALL, "partial_reg_stall", m_PPRO)
468
469/* X86_TUNE_PROMOTE_QIMODE: When it is cheap, turn 8bit arithmetic to
470   corresponding 32bit arithmetic.  */
471DEF_TUNE (X86_TUNE_PROMOTE_QIMODE, "promote_qimode",
472	  ~m_PPRO)
473
474/* X86_TUNE_PROMOTE_HI_REGS: Same, but for 16bit artihmetic.  Again we avoid
475   partial register stalls on PentiumPro targets. */
476DEF_TUNE (X86_TUNE_PROMOTE_HI_REGS, "promote_hi_regs", m_PPRO)
477
478/* X86_TUNE_HIMODE_MATH: Enable use of 16bit arithmetic.
479   On PPro this flag is meant to avoid partial register stalls.  */
480DEF_TUNE (X86_TUNE_HIMODE_MATH, "himode_math", ~m_PPRO)
481
482/* X86_TUNE_SPLIT_LONG_MOVES: Avoid instructions moving immediates
483   directly to memory.  */
484DEF_TUNE (X86_TUNE_SPLIT_LONG_MOVES, "split_long_moves", m_PPRO)
485
486/* X86_TUNE_USE_XCHGB: Use xchgb %rh,%rl instead of rolw/rorw $8,rx.  */
487DEF_TUNE (X86_TUNE_USE_XCHGB, "use_xchgb", m_PENT4)
488
489/* X86_TUNE_USE_MOV0: Use "mov $0, reg" instead of "xor reg, reg" to clear
490   integer register.  */
491DEF_TUNE (X86_TUNE_USE_MOV0, "use_mov0", m_K6)
492
493/* X86_TUNE_NOT_VECTORMODE: On AMD K6, NOT is vector decoded with memory
494   operand that cannot be represented using a modRM byte.  The XOR
495   replacement is long decoded, so this split helps here as well.  */
496DEF_TUNE (X86_TUNE_NOT_VECTORMODE, "not_vectormode", m_K6)
497
498/* X86_TUNE_AVOID_VECTOR_DECODE: Enable splitters that avoid vector decoded
499   forms of instructions on K8 targets.  */
500DEF_TUNE (X86_TUNE_AVOID_VECTOR_DECODE, "avoid_vector_decode",
501          m_K8)
502
503/* X86_TUNE_AVOID_FALSE_DEP_FOR_BMI: Avoid false dependency
504   for bit-manipulation instructions.  */
505DEF_TUNE (X86_TUNE_AVOID_FALSE_DEP_FOR_BMI, "avoid_false_dep_for_bmi",
506	  m_SANDYBRIDGE | m_HASWELL | m_INTEL | m_GENERIC)
507
508/*****************************************************************************/
509/* This never worked well before.                                            */
510/*****************************************************************************/
511
512/* X86_TUNE_BRANCH_PREDICTION_HINTS: Branch hints were put in P4 based
513   on simulation result. But after P4 was made, no performance benefit
514   was observed with branch hints.  It also increases the code size.
515   As a result, icc never generates branch hints.  */
516DEF_TUNE (X86_TUNE_BRANCH_PREDICTION_HINTS, "branch_prediction_hints", 0)
517
518/* X86_TUNE_QIMODE_MATH: Enable use of 8bit arithmetic.  */
519DEF_TUNE (X86_TUNE_QIMODE_MATH, "qimode_math", ~0)
520
521/* X86_TUNE_PROMOTE_QI_REGS: This enables generic code that promotes all 8bit
522   arithmetic to 32bit via PROMOTE_MODE macro.  This code generation scheme
523   is usually used for RISC targets.  */
524DEF_TUNE (X86_TUNE_PROMOTE_QI_REGS, "promote_qi_regs", 0)
525
526/* X86_TUNE_ADJUST_UNROLL: This enables adjusting the unroll factor based
527   on hardware capabilities. Bdver3 hardware has a loop buffer which makes
528   unrolling small loop less important. For, such architectures we adjust
529   the unroll factor so that the unrolled loop fits the loop buffer.  */
530DEF_TUNE (X86_TUNE_ADJUST_UNROLL, "adjust_unroll_factor", m_BDVER3 | m_BDVER4)
531