1 /* Building internal representation for IRA.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "target.h"
28 #include "regs.h"
29 #include "flags.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "diagnostic-core.h"
35 #include "params.h"
36 #include "df.h"
37 #include "reload.h"
38 #include "sparseset.h"
39 #include "ira-int.h"
40 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
41
42 static ira_copy_t find_allocno_copy (ira_allocno_t, ira_allocno_t, rtx,
43 ira_loop_tree_node_t);
44
45 /* The root of the loop tree corresponding to the all function. */
46 ira_loop_tree_node_t ira_loop_tree_root;
47
48 /* Height of the loop tree. */
49 int ira_loop_tree_height;
50
51 /* All nodes representing basic blocks are referred through the
52 following array. We can not use basic block member `aux' for this
53 because it is used for insertion of insns on edges. */
54 ira_loop_tree_node_t ira_bb_nodes;
55
56 /* All nodes representing loops are referred through the following
57 array. */
58 ira_loop_tree_node_t ira_loop_nodes;
59
60 /* And size of the ira_loop_nodes array. */
61 unsigned int ira_loop_nodes_count;
62
63 /* Map regno -> allocnos with given regno (see comments for
64 allocno member `next_regno_allocno'). */
65 ira_allocno_t *ira_regno_allocno_map;
66
67 /* Array of references to all allocnos. The order number of the
68 allocno corresponds to the index in the array. Removed allocnos
69 have NULL element value. */
70 ira_allocno_t *ira_allocnos;
71
72 /* Sizes of the previous array. */
73 int ira_allocnos_num;
74
75 /* Count of conflict record structures we've created, used when creating
76 a new conflict id. */
77 int ira_objects_num;
78
79 /* Map a conflict id to its conflict record. */
80 ira_object_t *ira_object_id_map;
81
82 /* Array of references to all allocno preferences. The order number
83 of the preference corresponds to the index in the array. */
84 ira_pref_t *ira_prefs;
85
86 /* Size of the previous array. */
87 int ira_prefs_num;
88
89 /* Array of references to all copies. The order number of the copy
90 corresponds to the index in the array. Removed copies have NULL
91 element value. */
92 ira_copy_t *ira_copies;
93
94 /* Size of the previous array. */
95 int ira_copies_num;
96
97
98
99 /* LAST_BASIC_BLOCK before generating additional insns because of live
100 range splitting. Emitting insns on a critical edge creates a new
101 basic block. */
102 static int last_basic_block_before_change;
103
104 /* Initialize some members in loop tree node NODE. Use LOOP_NUM for
105 the member loop_num. */
106 static void
init_loop_tree_node(struct ira_loop_tree_node * node,int loop_num)107 init_loop_tree_node (struct ira_loop_tree_node *node, int loop_num)
108 {
109 int max_regno = max_reg_num ();
110
111 node->regno_allocno_map
112 = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) * max_regno);
113 memset (node->regno_allocno_map, 0, sizeof (ira_allocno_t) * max_regno);
114 memset (node->reg_pressure, 0, sizeof (node->reg_pressure));
115 node->all_allocnos = ira_allocate_bitmap ();
116 node->modified_regnos = ira_allocate_bitmap ();
117 node->border_allocnos = ira_allocate_bitmap ();
118 node->local_copies = ira_allocate_bitmap ();
119 node->loop_num = loop_num;
120 node->children = NULL;
121 node->subloops = NULL;
122 }
123
124
125 /* The following function allocates the loop tree nodes. If
126 CURRENT_LOOPS is NULL, the nodes corresponding to the loops (except
127 the root which corresponds the all function) will be not allocated
128 but nodes will still be allocated for basic blocks. */
129 static void
create_loop_tree_nodes(void)130 create_loop_tree_nodes (void)
131 {
132 unsigned int i, j;
133 bool skip_p;
134 edge_iterator ei;
135 edge e;
136 vec<edge> edges;
137 loop_p loop;
138
139 ira_bb_nodes
140 = ((struct ira_loop_tree_node *)
141 ira_allocate (sizeof (struct ira_loop_tree_node)
142 * last_basic_block_for_fn (cfun)));
143 last_basic_block_before_change = last_basic_block_for_fn (cfun);
144 for (i = 0; i < (unsigned int) last_basic_block_for_fn (cfun); i++)
145 {
146 ira_bb_nodes[i].regno_allocno_map = NULL;
147 memset (ira_bb_nodes[i].reg_pressure, 0,
148 sizeof (ira_bb_nodes[i].reg_pressure));
149 ira_bb_nodes[i].all_allocnos = NULL;
150 ira_bb_nodes[i].modified_regnos = NULL;
151 ira_bb_nodes[i].border_allocnos = NULL;
152 ira_bb_nodes[i].local_copies = NULL;
153 }
154 if (current_loops == NULL)
155 {
156 ira_loop_nodes_count = 1;
157 ira_loop_nodes = ((struct ira_loop_tree_node *)
158 ira_allocate (sizeof (struct ira_loop_tree_node)));
159 init_loop_tree_node (ira_loop_nodes, 0);
160 return;
161 }
162 ira_loop_nodes_count = number_of_loops (cfun);
163 ira_loop_nodes = ((struct ira_loop_tree_node *)
164 ira_allocate (sizeof (struct ira_loop_tree_node)
165 * ira_loop_nodes_count));
166 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
167 {
168 if (loop_outer (loop) != NULL)
169 {
170 ira_loop_nodes[i].regno_allocno_map = NULL;
171 skip_p = false;
172 FOR_EACH_EDGE (e, ei, loop->header->preds)
173 if (e->src != loop->latch
174 && (e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
175 {
176 skip_p = true;
177 break;
178 }
179 if (skip_p)
180 continue;
181 edges = get_loop_exit_edges (loop);
182 FOR_EACH_VEC_ELT (edges, j, e)
183 if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
184 {
185 skip_p = true;
186 break;
187 }
188 edges.release ();
189 if (skip_p)
190 continue;
191 }
192 init_loop_tree_node (&ira_loop_nodes[i], loop->num);
193 }
194 }
195
196 /* The function returns TRUE if there are more one allocation
197 region. */
198 static bool
more_one_region_p(void)199 more_one_region_p (void)
200 {
201 unsigned int i;
202 loop_p loop;
203
204 if (current_loops != NULL)
205 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
206 if (ira_loop_nodes[i].regno_allocno_map != NULL
207 && ira_loop_tree_root != &ira_loop_nodes[i])
208 return true;
209 return false;
210 }
211
212 /* Free the loop tree node of a loop. */
213 static void
finish_loop_tree_node(ira_loop_tree_node_t loop)214 finish_loop_tree_node (ira_loop_tree_node_t loop)
215 {
216 if (loop->regno_allocno_map != NULL)
217 {
218 ira_assert (loop->bb == NULL);
219 ira_free_bitmap (loop->local_copies);
220 ira_free_bitmap (loop->border_allocnos);
221 ira_free_bitmap (loop->modified_regnos);
222 ira_free_bitmap (loop->all_allocnos);
223 ira_free (loop->regno_allocno_map);
224 loop->regno_allocno_map = NULL;
225 }
226 }
227
228 /* Free the loop tree nodes. */
229 static void
finish_loop_tree_nodes(void)230 finish_loop_tree_nodes (void)
231 {
232 unsigned int i;
233
234 for (i = 0; i < ira_loop_nodes_count; i++)
235 finish_loop_tree_node (&ira_loop_nodes[i]);
236 ira_free (ira_loop_nodes);
237 for (i = 0; i < (unsigned int) last_basic_block_before_change; i++)
238 {
239 if (ira_bb_nodes[i].local_copies != NULL)
240 ira_free_bitmap (ira_bb_nodes[i].local_copies);
241 if (ira_bb_nodes[i].border_allocnos != NULL)
242 ira_free_bitmap (ira_bb_nodes[i].border_allocnos);
243 if (ira_bb_nodes[i].modified_regnos != NULL)
244 ira_free_bitmap (ira_bb_nodes[i].modified_regnos);
245 if (ira_bb_nodes[i].all_allocnos != NULL)
246 ira_free_bitmap (ira_bb_nodes[i].all_allocnos);
247 if (ira_bb_nodes[i].regno_allocno_map != NULL)
248 ira_free (ira_bb_nodes[i].regno_allocno_map);
249 }
250 ira_free (ira_bb_nodes);
251 }
252
253
254
255 /* The following recursive function adds LOOP to the loop tree
256 hierarchy. LOOP is added only once. If LOOP is NULL we adding
257 loop designating the whole function when CFG loops are not
258 built. */
259 static void
add_loop_to_tree(struct loop * loop)260 add_loop_to_tree (struct loop *loop)
261 {
262 int loop_num;
263 struct loop *parent;
264 ira_loop_tree_node_t loop_node, parent_node;
265
266 /* We can not use loop node access macros here because of potential
267 checking and because the nodes are not initialized enough
268 yet. */
269 if (loop != NULL && loop_outer (loop) != NULL)
270 add_loop_to_tree (loop_outer (loop));
271 loop_num = loop != NULL ? loop->num : 0;
272 if (ira_loop_nodes[loop_num].regno_allocno_map != NULL
273 && ira_loop_nodes[loop_num].children == NULL)
274 {
275 /* We have not added loop node to the tree yet. */
276 loop_node = &ira_loop_nodes[loop_num];
277 loop_node->loop = loop;
278 loop_node->bb = NULL;
279 if (loop == NULL)
280 parent = NULL;
281 else
282 {
283 for (parent = loop_outer (loop);
284 parent != NULL;
285 parent = loop_outer (parent))
286 if (ira_loop_nodes[parent->num].regno_allocno_map != NULL)
287 break;
288 }
289 if (parent == NULL)
290 {
291 loop_node->next = NULL;
292 loop_node->subloop_next = NULL;
293 loop_node->parent = NULL;
294 }
295 else
296 {
297 parent_node = &ira_loop_nodes[parent->num];
298 loop_node->next = parent_node->children;
299 parent_node->children = loop_node;
300 loop_node->subloop_next = parent_node->subloops;
301 parent_node->subloops = loop_node;
302 loop_node->parent = parent_node;
303 }
304 }
305 }
306
307 /* The following recursive function sets up levels of nodes of the
308 tree given its root LOOP_NODE. The enumeration starts with LEVEL.
309 The function returns maximal value of level in the tree + 1. */
310 static int
setup_loop_tree_level(ira_loop_tree_node_t loop_node,int level)311 setup_loop_tree_level (ira_loop_tree_node_t loop_node, int level)
312 {
313 int height, max_height;
314 ira_loop_tree_node_t subloop_node;
315
316 ira_assert (loop_node->bb == NULL);
317 loop_node->level = level;
318 max_height = level + 1;
319 for (subloop_node = loop_node->subloops;
320 subloop_node != NULL;
321 subloop_node = subloop_node->subloop_next)
322 {
323 ira_assert (subloop_node->bb == NULL);
324 height = setup_loop_tree_level (subloop_node, level + 1);
325 if (height > max_height)
326 max_height = height;
327 }
328 return max_height;
329 }
330
331 /* Create the loop tree. The algorithm is designed to provide correct
332 order of loops (they are ordered by their last loop BB) and basic
333 blocks in the chain formed by member next. */
334 static void
form_loop_tree(void)335 form_loop_tree (void)
336 {
337 basic_block bb;
338 struct loop *parent;
339 ira_loop_tree_node_t bb_node, loop_node;
340
341 /* We can not use loop/bb node access macros because of potential
342 checking and because the nodes are not initialized enough
343 yet. */
344 FOR_EACH_BB_FN (bb, cfun)
345 {
346 bb_node = &ira_bb_nodes[bb->index];
347 bb_node->bb = bb;
348 bb_node->loop = NULL;
349 bb_node->subloops = NULL;
350 bb_node->children = NULL;
351 bb_node->subloop_next = NULL;
352 bb_node->next = NULL;
353 if (current_loops == NULL)
354 parent = NULL;
355 else
356 {
357 for (parent = bb->loop_father;
358 parent != NULL;
359 parent = loop_outer (parent))
360 if (ira_loop_nodes[parent->num].regno_allocno_map != NULL)
361 break;
362 }
363 add_loop_to_tree (parent);
364 loop_node = &ira_loop_nodes[parent == NULL ? 0 : parent->num];
365 bb_node->next = loop_node->children;
366 bb_node->parent = loop_node;
367 loop_node->children = bb_node;
368 }
369 ira_loop_tree_root = IRA_LOOP_NODE_BY_INDEX (0);
370 ira_loop_tree_height = setup_loop_tree_level (ira_loop_tree_root, 0);
371 ira_assert (ira_loop_tree_root->regno_allocno_map != NULL);
372 }
373
374
375
376 /* Rebuild IRA_REGNO_ALLOCNO_MAP and REGNO_ALLOCNO_MAPs of the loop
377 tree nodes. */
378 static void
rebuild_regno_allocno_maps(void)379 rebuild_regno_allocno_maps (void)
380 {
381 unsigned int l;
382 int max_regno, regno;
383 ira_allocno_t a;
384 ira_loop_tree_node_t loop_tree_node;
385 loop_p loop;
386 ira_allocno_iterator ai;
387
388 ira_assert (current_loops != NULL);
389 max_regno = max_reg_num ();
390 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), l, loop)
391 if (ira_loop_nodes[l].regno_allocno_map != NULL)
392 {
393 ira_free (ira_loop_nodes[l].regno_allocno_map);
394 ira_loop_nodes[l].regno_allocno_map
395 = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
396 * max_regno);
397 memset (ira_loop_nodes[l].regno_allocno_map, 0,
398 sizeof (ira_allocno_t) * max_regno);
399 }
400 ira_free (ira_regno_allocno_map);
401 ira_regno_allocno_map
402 = (ira_allocno_t *) ira_allocate (max_regno * sizeof (ira_allocno_t));
403 memset (ira_regno_allocno_map, 0, max_regno * sizeof (ira_allocno_t));
404 FOR_EACH_ALLOCNO (a, ai)
405 {
406 if (ALLOCNO_CAP_MEMBER (a) != NULL)
407 /* Caps are not in the regno allocno maps. */
408 continue;
409 regno = ALLOCNO_REGNO (a);
410 loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
411 ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno];
412 ira_regno_allocno_map[regno] = a;
413 if (loop_tree_node->regno_allocno_map[regno] == NULL)
414 /* Remember that we can create temporary allocnos to break
415 cycles in register shuffle. */
416 loop_tree_node->regno_allocno_map[regno] = a;
417 }
418 }
419
420
421 /* Pools for allocnos, allocno live ranges and objects. */
422 static alloc_pool allocno_pool, live_range_pool, object_pool;
423
424 /* Vec containing references to all created allocnos. It is a
425 container of array allocnos. */
426 static vec<ira_allocno_t> allocno_vec;
427
428 /* Vec containing references to all created ira_objects. It is a
429 container of ira_object_id_map. */
430 static vec<ira_object_t> ira_object_id_map_vec;
431
432 /* Initialize data concerning allocnos. */
433 static void
initiate_allocnos(void)434 initiate_allocnos (void)
435 {
436 live_range_pool
437 = create_alloc_pool ("live ranges",
438 sizeof (struct live_range), 100);
439 allocno_pool
440 = create_alloc_pool ("allocnos", sizeof (struct ira_allocno), 100);
441 object_pool
442 = create_alloc_pool ("objects", sizeof (struct ira_object), 100);
443 allocno_vec.create (max_reg_num () * 2);
444 ira_allocnos = NULL;
445 ira_allocnos_num = 0;
446 ira_objects_num = 0;
447 ira_object_id_map_vec.create (max_reg_num () * 2);
448 ira_object_id_map = NULL;
449 ira_regno_allocno_map
450 = (ira_allocno_t *) ira_allocate (max_reg_num ()
451 * sizeof (ira_allocno_t));
452 memset (ira_regno_allocno_map, 0, max_reg_num () * sizeof (ira_allocno_t));
453 }
454
455 /* Create and return an object corresponding to a new allocno A. */
456 static ira_object_t
ira_create_object(ira_allocno_t a,int subword)457 ira_create_object (ira_allocno_t a, int subword)
458 {
459 enum reg_class aclass = ALLOCNO_CLASS (a);
460 ira_object_t obj = (ira_object_t) pool_alloc (object_pool);
461
462 OBJECT_ALLOCNO (obj) = a;
463 OBJECT_SUBWORD (obj) = subword;
464 OBJECT_CONFLICT_ID (obj) = ira_objects_num;
465 OBJECT_CONFLICT_VEC_P (obj) = false;
466 OBJECT_CONFLICT_ARRAY (obj) = NULL;
467 OBJECT_NUM_CONFLICTS (obj) = 0;
468 COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs);
469 COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs);
470 IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
471 reg_class_contents[aclass]);
472 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
473 reg_class_contents[aclass]);
474 OBJECT_MIN (obj) = INT_MAX;
475 OBJECT_MAX (obj) = -1;
476 OBJECT_LIVE_RANGES (obj) = NULL;
477
478 ira_object_id_map_vec.safe_push (obj);
479 ira_object_id_map
480 = ira_object_id_map_vec.address ();
481 ira_objects_num = ira_object_id_map_vec.length ();
482
483 return obj;
484 }
485
486 /* Create and return the allocno corresponding to REGNO in
487 LOOP_TREE_NODE. Add the allocno to the list of allocnos with the
488 same regno if CAP_P is FALSE. */
489 ira_allocno_t
ira_create_allocno(int regno,bool cap_p,ira_loop_tree_node_t loop_tree_node)490 ira_create_allocno (int regno, bool cap_p,
491 ira_loop_tree_node_t loop_tree_node)
492 {
493 ira_allocno_t a;
494
495 a = (ira_allocno_t) pool_alloc (allocno_pool);
496 ALLOCNO_REGNO (a) = regno;
497 ALLOCNO_LOOP_TREE_NODE (a) = loop_tree_node;
498 if (! cap_p)
499 {
500 ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno];
501 ira_regno_allocno_map[regno] = a;
502 if (loop_tree_node->regno_allocno_map[regno] == NULL)
503 /* Remember that we can create temporary allocnos to break
504 cycles in register shuffle on region borders (see
505 ira-emit.c). */
506 loop_tree_node->regno_allocno_map[regno] = a;
507 }
508 ALLOCNO_CAP (a) = NULL;
509 ALLOCNO_CAP_MEMBER (a) = NULL;
510 ALLOCNO_NUM (a) = ira_allocnos_num;
511 bitmap_set_bit (loop_tree_node->all_allocnos, ALLOCNO_NUM (a));
512 ALLOCNO_NREFS (a) = 0;
513 ALLOCNO_FREQ (a) = 0;
514 ALLOCNO_HARD_REGNO (a) = -1;
515 ALLOCNO_CALL_FREQ (a) = 0;
516 ALLOCNO_CALLS_CROSSED_NUM (a) = 0;
517 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a) = 0;
518 #ifdef STACK_REGS
519 ALLOCNO_NO_STACK_REG_P (a) = false;
520 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = false;
521 #endif
522 ALLOCNO_DONT_REASSIGN_P (a) = false;
523 ALLOCNO_BAD_SPILL_P (a) = false;
524 ALLOCNO_ASSIGNED_P (a) = false;
525 ALLOCNO_MODE (a) = (regno < 0 ? VOIDmode : PSEUDO_REGNO_MODE (regno));
526 ALLOCNO_PREFS (a) = NULL;
527 ALLOCNO_COPIES (a) = NULL;
528 ALLOCNO_HARD_REG_COSTS (a) = NULL;
529 ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL;
530 ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
531 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
532 ALLOCNO_CLASS (a) = NO_REGS;
533 ALLOCNO_UPDATED_CLASS_COST (a) = 0;
534 ALLOCNO_CLASS_COST (a) = 0;
535 ALLOCNO_MEMORY_COST (a) = 0;
536 ALLOCNO_UPDATED_MEMORY_COST (a) = 0;
537 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) = 0;
538 ALLOCNO_NUM_OBJECTS (a) = 0;
539
540 ALLOCNO_ADD_DATA (a) = NULL;
541 allocno_vec.safe_push (a);
542 ira_allocnos = allocno_vec.address ();
543 ira_allocnos_num = allocno_vec.length ();
544
545 return a;
546 }
547
548 /* Set up register class for A and update its conflict hard
549 registers. */
550 void
ira_set_allocno_class(ira_allocno_t a,enum reg_class aclass)551 ira_set_allocno_class (ira_allocno_t a, enum reg_class aclass)
552 {
553 ira_allocno_object_iterator oi;
554 ira_object_t obj;
555
556 ALLOCNO_CLASS (a) = aclass;
557 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
558 {
559 IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
560 reg_class_contents[aclass]);
561 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
562 reg_class_contents[aclass]);
563 }
564 }
565
566 /* Determine the number of objects we should associate with allocno A
567 and allocate them. */
568 void
ira_create_allocno_objects(ira_allocno_t a)569 ira_create_allocno_objects (ira_allocno_t a)
570 {
571 enum machine_mode mode = ALLOCNO_MODE (a);
572 enum reg_class aclass = ALLOCNO_CLASS (a);
573 int n = ira_reg_class_max_nregs[aclass][mode];
574 int i;
575
576 if (GET_MODE_SIZE (mode) != 2 * UNITS_PER_WORD || n != 2)
577 n = 1;
578
579 ALLOCNO_NUM_OBJECTS (a) = n;
580 for (i = 0; i < n; i++)
581 ALLOCNO_OBJECT (a, i) = ira_create_object (a, i);
582 }
583
584 /* For each allocno, set ALLOCNO_NUM_OBJECTS and create the
585 ALLOCNO_OBJECT structures. This must be called after the allocno
586 classes are known. */
587 static void
create_allocno_objects(void)588 create_allocno_objects (void)
589 {
590 ira_allocno_t a;
591 ira_allocno_iterator ai;
592
593 FOR_EACH_ALLOCNO (a, ai)
594 ira_create_allocno_objects (a);
595 }
596
597 /* Merge hard register conflict information for all objects associated with
598 allocno TO into the corresponding objects associated with FROM.
599 If TOTAL_ONLY is true, we only merge OBJECT_TOTAL_CONFLICT_HARD_REGS. */
600 static void
merge_hard_reg_conflicts(ira_allocno_t from,ira_allocno_t to,bool total_only)601 merge_hard_reg_conflicts (ira_allocno_t from, ira_allocno_t to,
602 bool total_only)
603 {
604 int i;
605 gcc_assert (ALLOCNO_NUM_OBJECTS (to) == ALLOCNO_NUM_OBJECTS (from));
606 for (i = 0; i < ALLOCNO_NUM_OBJECTS (to); i++)
607 {
608 ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
609 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
610
611 if (!total_only)
612 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (to_obj),
613 OBJECT_CONFLICT_HARD_REGS (from_obj));
614 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (to_obj),
615 OBJECT_TOTAL_CONFLICT_HARD_REGS (from_obj));
616 }
617 #ifdef STACK_REGS
618 if (!total_only && ALLOCNO_NO_STACK_REG_P (from))
619 ALLOCNO_NO_STACK_REG_P (to) = true;
620 if (ALLOCNO_TOTAL_NO_STACK_REG_P (from))
621 ALLOCNO_TOTAL_NO_STACK_REG_P (to) = true;
622 #endif
623 }
624
625 /* Update hard register conflict information for all objects associated with
626 A to include the regs in SET. */
627 void
ior_hard_reg_conflicts(ira_allocno_t a,HARD_REG_SET * set)628 ior_hard_reg_conflicts (ira_allocno_t a, HARD_REG_SET *set)
629 {
630 ira_allocno_object_iterator i;
631 ira_object_t obj;
632
633 FOR_EACH_ALLOCNO_OBJECT (a, obj, i)
634 {
635 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), *set);
636 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), *set);
637 }
638 }
639
640 /* Return TRUE if a conflict vector with NUM elements is more
641 profitable than a conflict bit vector for OBJ. */
642 bool
ira_conflict_vector_profitable_p(ira_object_t obj,int num)643 ira_conflict_vector_profitable_p (ira_object_t obj, int num)
644 {
645 int nw;
646 int max = OBJECT_MAX (obj);
647 int min = OBJECT_MIN (obj);
648
649 if (max < min)
650 /* We prefer a bit vector in such case because it does not result
651 in allocation. */
652 return false;
653
654 nw = (max - min + IRA_INT_BITS) / IRA_INT_BITS;
655 return (2 * sizeof (ira_object_t) * (num + 1)
656 < 3 * nw * sizeof (IRA_INT_TYPE));
657 }
658
659 /* Allocates and initialize the conflict vector of OBJ for NUM
660 conflicting objects. */
661 void
ira_allocate_conflict_vec(ira_object_t obj,int num)662 ira_allocate_conflict_vec (ira_object_t obj, int num)
663 {
664 int size;
665 ira_object_t *vec;
666
667 ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL);
668 num++; /* for NULL end marker */
669 size = sizeof (ira_object_t) * num;
670 OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size);
671 vec = (ira_object_t *) OBJECT_CONFLICT_ARRAY (obj);
672 vec[0] = NULL;
673 OBJECT_NUM_CONFLICTS (obj) = 0;
674 OBJECT_CONFLICT_ARRAY_SIZE (obj) = size;
675 OBJECT_CONFLICT_VEC_P (obj) = true;
676 }
677
678 /* Allocate and initialize the conflict bit vector of OBJ. */
679 static void
allocate_conflict_bit_vec(ira_object_t obj)680 allocate_conflict_bit_vec (ira_object_t obj)
681 {
682 unsigned int size;
683
684 ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL);
685 size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj) + IRA_INT_BITS)
686 / IRA_INT_BITS * sizeof (IRA_INT_TYPE));
687 OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size);
688 memset (OBJECT_CONFLICT_ARRAY (obj), 0, size);
689 OBJECT_CONFLICT_ARRAY_SIZE (obj) = size;
690 OBJECT_CONFLICT_VEC_P (obj) = false;
691 }
692
693 /* Allocate and initialize the conflict vector or conflict bit vector
694 of OBJ for NUM conflicting allocnos whatever is more profitable. */
695 void
ira_allocate_object_conflicts(ira_object_t obj,int num)696 ira_allocate_object_conflicts (ira_object_t obj, int num)
697 {
698 if (ira_conflict_vector_profitable_p (obj, num))
699 ira_allocate_conflict_vec (obj, num);
700 else
701 allocate_conflict_bit_vec (obj);
702 }
703
704 /* Add OBJ2 to the conflicts of OBJ1. */
705 static void
add_to_conflicts(ira_object_t obj1,ira_object_t obj2)706 add_to_conflicts (ira_object_t obj1, ira_object_t obj2)
707 {
708 int num;
709 unsigned int size;
710
711 if (OBJECT_CONFLICT_VEC_P (obj1))
712 {
713 ira_object_t *vec = OBJECT_CONFLICT_VEC (obj1);
714 int curr_num = OBJECT_NUM_CONFLICTS (obj1);
715 num = curr_num + 2;
716 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < num * sizeof (ira_object_t))
717 {
718 ira_object_t *newvec;
719 size = (3 * num / 2 + 1) * sizeof (ira_allocno_t);
720 newvec = (ira_object_t *) ira_allocate (size);
721 memcpy (newvec, vec, curr_num * sizeof (ira_object_t));
722 ira_free (vec);
723 vec = newvec;
724 OBJECT_CONFLICT_ARRAY (obj1) = vec;
725 OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
726 }
727 vec[num - 2] = obj2;
728 vec[num - 1] = NULL;
729 OBJECT_NUM_CONFLICTS (obj1)++;
730 }
731 else
732 {
733 int nw, added_head_nw, id;
734 IRA_INT_TYPE *vec = OBJECT_CONFLICT_BITVEC (obj1);
735
736 id = OBJECT_CONFLICT_ID (obj2);
737 if (OBJECT_MIN (obj1) > id)
738 {
739 /* Expand head of the bit vector. */
740 added_head_nw = (OBJECT_MIN (obj1) - id - 1) / IRA_INT_BITS + 1;
741 nw = (OBJECT_MAX (obj1) - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1;
742 size = (nw + added_head_nw) * sizeof (IRA_INT_TYPE);
743 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) >= size)
744 {
745 memmove ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE),
746 vec, nw * sizeof (IRA_INT_TYPE));
747 memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE));
748 }
749 else
750 {
751 size
752 = (3 * (nw + added_head_nw) / 2 + 1) * sizeof (IRA_INT_TYPE);
753 vec = (IRA_INT_TYPE *) ira_allocate (size);
754 memcpy ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE),
755 OBJECT_CONFLICT_ARRAY (obj1), nw * sizeof (IRA_INT_TYPE));
756 memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE));
757 memset ((char *) vec
758 + (nw + added_head_nw) * sizeof (IRA_INT_TYPE),
759 0, size - (nw + added_head_nw) * sizeof (IRA_INT_TYPE));
760 ira_free (OBJECT_CONFLICT_ARRAY (obj1));
761 OBJECT_CONFLICT_ARRAY (obj1) = vec;
762 OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
763 }
764 OBJECT_MIN (obj1) -= added_head_nw * IRA_INT_BITS;
765 }
766 else if (OBJECT_MAX (obj1) < id)
767 {
768 nw = (id - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1;
769 size = nw * sizeof (IRA_INT_TYPE);
770 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < size)
771 {
772 /* Expand tail of the bit vector. */
773 size = (3 * nw / 2 + 1) * sizeof (IRA_INT_TYPE);
774 vec = (IRA_INT_TYPE *) ira_allocate (size);
775 memcpy (vec, OBJECT_CONFLICT_ARRAY (obj1), OBJECT_CONFLICT_ARRAY_SIZE (obj1));
776 memset ((char *) vec + OBJECT_CONFLICT_ARRAY_SIZE (obj1),
777 0, size - OBJECT_CONFLICT_ARRAY_SIZE (obj1));
778 ira_free (OBJECT_CONFLICT_ARRAY (obj1));
779 OBJECT_CONFLICT_ARRAY (obj1) = vec;
780 OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
781 }
782 OBJECT_MAX (obj1) = id;
783 }
784 SET_MINMAX_SET_BIT (vec, id, OBJECT_MIN (obj1), OBJECT_MAX (obj1));
785 }
786 }
787
788 /* Add OBJ1 to the conflicts of OBJ2 and vice versa. */
789 static void
ira_add_conflict(ira_object_t obj1,ira_object_t obj2)790 ira_add_conflict (ira_object_t obj1, ira_object_t obj2)
791 {
792 add_to_conflicts (obj1, obj2);
793 add_to_conflicts (obj2, obj1);
794 }
795
796 /* Clear all conflicts of OBJ. */
797 static void
clear_conflicts(ira_object_t obj)798 clear_conflicts (ira_object_t obj)
799 {
800 if (OBJECT_CONFLICT_VEC_P (obj))
801 {
802 OBJECT_NUM_CONFLICTS (obj) = 0;
803 OBJECT_CONFLICT_VEC (obj)[0] = NULL;
804 }
805 else if (OBJECT_CONFLICT_ARRAY_SIZE (obj) != 0)
806 {
807 int nw;
808
809 nw = (OBJECT_MAX (obj) - OBJECT_MIN (obj)) / IRA_INT_BITS + 1;
810 memset (OBJECT_CONFLICT_BITVEC (obj), 0, nw * sizeof (IRA_INT_TYPE));
811 }
812 }
813
814 /* The array used to find duplications in conflict vectors of
815 allocnos. */
816 static int *conflict_check;
817
818 /* The value used to mark allocation presence in conflict vector of
819 the current allocno. */
820 static int curr_conflict_check_tick;
821
822 /* Remove duplications in conflict vector of OBJ. */
823 static void
compress_conflict_vec(ira_object_t obj)824 compress_conflict_vec (ira_object_t obj)
825 {
826 ira_object_t *vec, conflict_obj;
827 int i, j;
828
829 ira_assert (OBJECT_CONFLICT_VEC_P (obj));
830 vec = OBJECT_CONFLICT_VEC (obj);
831 curr_conflict_check_tick++;
832 for (i = j = 0; (conflict_obj = vec[i]) != NULL; i++)
833 {
834 int id = OBJECT_CONFLICT_ID (conflict_obj);
835 if (conflict_check[id] != curr_conflict_check_tick)
836 {
837 conflict_check[id] = curr_conflict_check_tick;
838 vec[j++] = conflict_obj;
839 }
840 }
841 OBJECT_NUM_CONFLICTS (obj) = j;
842 vec[j] = NULL;
843 }
844
845 /* Remove duplications in conflict vectors of all allocnos. */
846 static void
compress_conflict_vecs(void)847 compress_conflict_vecs (void)
848 {
849 ira_object_t obj;
850 ira_object_iterator oi;
851
852 conflict_check = (int *) ira_allocate (sizeof (int) * ira_objects_num);
853 memset (conflict_check, 0, sizeof (int) * ira_objects_num);
854 curr_conflict_check_tick = 0;
855 FOR_EACH_OBJECT (obj, oi)
856 {
857 if (OBJECT_CONFLICT_VEC_P (obj))
858 compress_conflict_vec (obj);
859 }
860 ira_free (conflict_check);
861 }
862
863 /* This recursive function outputs allocno A and if it is a cap the
864 function outputs its members. */
865 void
ira_print_expanded_allocno(ira_allocno_t a)866 ira_print_expanded_allocno (ira_allocno_t a)
867 {
868 basic_block bb;
869
870 fprintf (ira_dump_file, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
871 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
872 fprintf (ira_dump_file, ",b%d", bb->index);
873 else
874 fprintf (ira_dump_file, ",l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
875 if (ALLOCNO_CAP_MEMBER (a) != NULL)
876 {
877 fprintf (ira_dump_file, ":");
878 ira_print_expanded_allocno (ALLOCNO_CAP_MEMBER (a));
879 }
880 fprintf (ira_dump_file, ")");
881 }
882
883 /* Create and return the cap representing allocno A in the
884 parent loop. */
885 static ira_allocno_t
create_cap_allocno(ira_allocno_t a)886 create_cap_allocno (ira_allocno_t a)
887 {
888 ira_allocno_t cap;
889 ira_loop_tree_node_t parent;
890 enum reg_class aclass;
891
892 parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
893 cap = ira_create_allocno (ALLOCNO_REGNO (a), true, parent);
894 ALLOCNO_MODE (cap) = ALLOCNO_MODE (a);
895 aclass = ALLOCNO_CLASS (a);
896 ira_set_allocno_class (cap, aclass);
897 ira_create_allocno_objects (cap);
898 ALLOCNO_CAP_MEMBER (cap) = a;
899 ALLOCNO_CAP (a) = cap;
900 ALLOCNO_CLASS_COST (cap) = ALLOCNO_CLASS_COST (a);
901 ALLOCNO_MEMORY_COST (cap) = ALLOCNO_MEMORY_COST (a);
902 ira_allocate_and_copy_costs
903 (&ALLOCNO_HARD_REG_COSTS (cap), aclass, ALLOCNO_HARD_REG_COSTS (a));
904 ira_allocate_and_copy_costs
905 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (cap), aclass,
906 ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
907 ALLOCNO_BAD_SPILL_P (cap) = ALLOCNO_BAD_SPILL_P (a);
908 ALLOCNO_NREFS (cap) = ALLOCNO_NREFS (a);
909 ALLOCNO_FREQ (cap) = ALLOCNO_FREQ (a);
910 ALLOCNO_CALL_FREQ (cap) = ALLOCNO_CALL_FREQ (a);
911
912 merge_hard_reg_conflicts (a, cap, false);
913
914 ALLOCNO_CALLS_CROSSED_NUM (cap) = ALLOCNO_CALLS_CROSSED_NUM (a);
915 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (cap) = ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
916 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
917 {
918 fprintf (ira_dump_file, " Creating cap ");
919 ira_print_expanded_allocno (cap);
920 fprintf (ira_dump_file, "\n");
921 }
922 return cap;
923 }
924
925 /* Create and return a live range for OBJECT with given attributes. */
926 live_range_t
ira_create_live_range(ira_object_t obj,int start,int finish,live_range_t next)927 ira_create_live_range (ira_object_t obj, int start, int finish,
928 live_range_t next)
929 {
930 live_range_t p;
931
932 p = (live_range_t) pool_alloc (live_range_pool);
933 p->object = obj;
934 p->start = start;
935 p->finish = finish;
936 p->next = next;
937 return p;
938 }
939
940 /* Create a new live range for OBJECT and queue it at the head of its
941 live range list. */
942 void
ira_add_live_range_to_object(ira_object_t object,int start,int finish)943 ira_add_live_range_to_object (ira_object_t object, int start, int finish)
944 {
945 live_range_t p;
946 p = ira_create_live_range (object, start, finish,
947 OBJECT_LIVE_RANGES (object));
948 OBJECT_LIVE_RANGES (object) = p;
949 }
950
951 /* Copy allocno live range R and return the result. */
952 static live_range_t
copy_live_range(live_range_t r)953 copy_live_range (live_range_t r)
954 {
955 live_range_t p;
956
957 p = (live_range_t) pool_alloc (live_range_pool);
958 *p = *r;
959 return p;
960 }
961
962 /* Copy allocno live range list given by its head R and return the
963 result. */
964 live_range_t
ira_copy_live_range_list(live_range_t r)965 ira_copy_live_range_list (live_range_t r)
966 {
967 live_range_t p, first, last;
968
969 if (r == NULL)
970 return NULL;
971 for (first = last = NULL; r != NULL; r = r->next)
972 {
973 p = copy_live_range (r);
974 if (first == NULL)
975 first = p;
976 else
977 last->next = p;
978 last = p;
979 }
980 return first;
981 }
982
983 /* Merge ranges R1 and R2 and returns the result. The function
984 maintains the order of ranges and tries to minimize number of the
985 result ranges. */
986 live_range_t
ira_merge_live_ranges(live_range_t r1,live_range_t r2)987 ira_merge_live_ranges (live_range_t r1, live_range_t r2)
988 {
989 live_range_t first, last, temp;
990
991 if (r1 == NULL)
992 return r2;
993 if (r2 == NULL)
994 return r1;
995 for (first = last = NULL; r1 != NULL && r2 != NULL;)
996 {
997 if (r1->start < r2->start)
998 {
999 temp = r1;
1000 r1 = r2;
1001 r2 = temp;
1002 }
1003 if (r1->start <= r2->finish + 1)
1004 {
1005 /* Intersected ranges: merge r1 and r2 into r1. */
1006 r1->start = r2->start;
1007 if (r1->finish < r2->finish)
1008 r1->finish = r2->finish;
1009 temp = r2;
1010 r2 = r2->next;
1011 ira_finish_live_range (temp);
1012 if (r2 == NULL)
1013 {
1014 /* To try to merge with subsequent ranges in r1. */
1015 r2 = r1->next;
1016 r1->next = NULL;
1017 }
1018 }
1019 else
1020 {
1021 /* Add r1 to the result. */
1022 if (first == NULL)
1023 first = last = r1;
1024 else
1025 {
1026 last->next = r1;
1027 last = r1;
1028 }
1029 r1 = r1->next;
1030 if (r1 == NULL)
1031 {
1032 /* To try to merge with subsequent ranges in r2. */
1033 r1 = r2->next;
1034 r2->next = NULL;
1035 }
1036 }
1037 }
1038 if (r1 != NULL)
1039 {
1040 if (first == NULL)
1041 first = r1;
1042 else
1043 last->next = r1;
1044 ira_assert (r1->next == NULL);
1045 }
1046 else if (r2 != NULL)
1047 {
1048 if (first == NULL)
1049 first = r2;
1050 else
1051 last->next = r2;
1052 ira_assert (r2->next == NULL);
1053 }
1054 else
1055 {
1056 ira_assert (last->next == NULL);
1057 }
1058 return first;
1059 }
1060
1061 /* Return TRUE if live ranges R1 and R2 intersect. */
1062 bool
ira_live_ranges_intersect_p(live_range_t r1,live_range_t r2)1063 ira_live_ranges_intersect_p (live_range_t r1, live_range_t r2)
1064 {
1065 /* Remember the live ranges are always kept ordered. */
1066 while (r1 != NULL && r2 != NULL)
1067 {
1068 if (r1->start > r2->finish)
1069 r1 = r1->next;
1070 else if (r2->start > r1->finish)
1071 r2 = r2->next;
1072 else
1073 return true;
1074 }
1075 return false;
1076 }
1077
1078 /* Free allocno live range R. */
1079 void
ira_finish_live_range(live_range_t r)1080 ira_finish_live_range (live_range_t r)
1081 {
1082 pool_free (live_range_pool, r);
1083 }
1084
1085 /* Free list of allocno live ranges starting with R. */
1086 void
ira_finish_live_range_list(live_range_t r)1087 ira_finish_live_range_list (live_range_t r)
1088 {
1089 live_range_t next_r;
1090
1091 for (; r != NULL; r = next_r)
1092 {
1093 next_r = r->next;
1094 ira_finish_live_range (r);
1095 }
1096 }
1097
1098 /* Free updated register costs of allocno A. */
1099 void
ira_free_allocno_updated_costs(ira_allocno_t a)1100 ira_free_allocno_updated_costs (ira_allocno_t a)
1101 {
1102 enum reg_class aclass;
1103
1104 aclass = ALLOCNO_CLASS (a);
1105 if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL)
1106 ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass);
1107 ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
1108 if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL)
1109 ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
1110 aclass);
1111 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
1112 }
1113
1114 /* Free and nullify all cost vectors allocated earlier for allocno
1115 A. */
1116 static void
ira_free_allocno_costs(ira_allocno_t a)1117 ira_free_allocno_costs (ira_allocno_t a)
1118 {
1119 enum reg_class aclass = ALLOCNO_CLASS (a);
1120 ira_object_t obj;
1121 ira_allocno_object_iterator oi;
1122
1123 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
1124 {
1125 ira_finish_live_range_list (OBJECT_LIVE_RANGES (obj));
1126 ira_object_id_map[OBJECT_CONFLICT_ID (obj)] = NULL;
1127 if (OBJECT_CONFLICT_ARRAY (obj) != NULL)
1128 ira_free (OBJECT_CONFLICT_ARRAY (obj));
1129 pool_free (object_pool, obj);
1130 }
1131
1132 ira_allocnos[ALLOCNO_NUM (a)] = NULL;
1133 if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1134 ira_free_cost_vector (ALLOCNO_HARD_REG_COSTS (a), aclass);
1135 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL)
1136 ira_free_cost_vector (ALLOCNO_CONFLICT_HARD_REG_COSTS (a), aclass);
1137 if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL)
1138 ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass);
1139 if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL)
1140 ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
1141 aclass);
1142 ALLOCNO_HARD_REG_COSTS (a) = NULL;
1143 ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL;
1144 ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
1145 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
1146 }
1147
1148 /* Free the memory allocated for allocno A. */
1149 static void
finish_allocno(ira_allocno_t a)1150 finish_allocno (ira_allocno_t a)
1151 {
1152 ira_free_allocno_costs (a);
1153 pool_free (allocno_pool, a);
1154 }
1155
1156 /* Free the memory allocated for all allocnos. */
1157 static void
finish_allocnos(void)1158 finish_allocnos (void)
1159 {
1160 ira_allocno_t a;
1161 ira_allocno_iterator ai;
1162
1163 FOR_EACH_ALLOCNO (a, ai)
1164 finish_allocno (a);
1165 ira_free (ira_regno_allocno_map);
1166 ira_object_id_map_vec.release ();
1167 allocno_vec.release ();
1168 free_alloc_pool (allocno_pool);
1169 free_alloc_pool (object_pool);
1170 free_alloc_pool (live_range_pool);
1171 }
1172
1173
1174
1175 /* Pools for allocno preferences. */
1176 static alloc_pool pref_pool;
1177
1178 /* Vec containing references to all created preferences. It is a
1179 container of array ira_prefs. */
1180 static vec<ira_pref_t> pref_vec;
1181
1182 /* The function initializes data concerning allocno prefs. */
1183 static void
initiate_prefs(void)1184 initiate_prefs (void)
1185 {
1186 pref_pool
1187 = create_alloc_pool ("prefs", sizeof (struct ira_allocno_pref), 100);
1188 pref_vec.create (get_max_uid ());
1189 ira_prefs = NULL;
1190 ira_prefs_num = 0;
1191 }
1192
1193 /* Return pref for A and HARD_REGNO if any. */
1194 static ira_pref_t
find_allocno_pref(ira_allocno_t a,int hard_regno)1195 find_allocno_pref (ira_allocno_t a, int hard_regno)
1196 {
1197 ira_pref_t pref;
1198
1199 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
1200 if (pref->allocno == a && pref->hard_regno == hard_regno)
1201 return pref;
1202 return NULL;
1203 }
1204
1205 /* Create and return pref with given attributes A, HARD_REGNO, and FREQ. */
1206 ira_pref_t
ira_create_pref(ira_allocno_t a,int hard_regno,int freq)1207 ira_create_pref (ira_allocno_t a, int hard_regno, int freq)
1208 {
1209 ira_pref_t pref;
1210
1211 pref = (ira_pref_t) pool_alloc (pref_pool);
1212 pref->num = ira_prefs_num;
1213 pref->allocno = a;
1214 pref->hard_regno = hard_regno;
1215 pref->freq = freq;
1216 pref_vec.safe_push (pref);
1217 ira_prefs = pref_vec.address ();
1218 ira_prefs_num = pref_vec.length ();
1219 return pref;
1220 }
1221
1222 /* Attach a pref PREF to the cooresponding allocno. */
1223 static void
add_allocno_pref_to_list(ira_pref_t pref)1224 add_allocno_pref_to_list (ira_pref_t pref)
1225 {
1226 ira_allocno_t a = pref->allocno;
1227
1228 pref->next_pref = ALLOCNO_PREFS (a);
1229 ALLOCNO_PREFS (a) = pref;
1230 }
1231
1232 /* Create (or update frequency if the pref already exists) the pref of
1233 allocnos A preferring HARD_REGNO with frequency FREQ. */
1234 void
ira_add_allocno_pref(ira_allocno_t a,int hard_regno,int freq)1235 ira_add_allocno_pref (ira_allocno_t a, int hard_regno, int freq)
1236 {
1237 ira_pref_t pref;
1238
1239 if (freq <= 0)
1240 return;
1241 if ((pref = find_allocno_pref (a, hard_regno)) != NULL)
1242 {
1243 pref->freq += freq;
1244 return;
1245 }
1246 pref = ira_create_pref (a, hard_regno, freq);
1247 ira_assert (a != NULL);
1248 add_allocno_pref_to_list (pref);
1249 }
1250
1251 /* Print info about PREF into file F. */
1252 static void
print_pref(FILE * f,ira_pref_t pref)1253 print_pref (FILE *f, ira_pref_t pref)
1254 {
1255 fprintf (f, " pref%d:a%d(r%d)<-hr%d@%d\n", pref->num,
1256 ALLOCNO_NUM (pref->allocno), ALLOCNO_REGNO (pref->allocno),
1257 pref->hard_regno, pref->freq);
1258 }
1259
1260 /* Print info about PREF into stderr. */
1261 void
ira_debug_pref(ira_pref_t pref)1262 ira_debug_pref (ira_pref_t pref)
1263 {
1264 print_pref (stderr, pref);
1265 }
1266
1267 /* Print info about all prefs into file F. */
1268 static void
print_prefs(FILE * f)1269 print_prefs (FILE *f)
1270 {
1271 ira_pref_t pref;
1272 ira_pref_iterator pi;
1273
1274 FOR_EACH_PREF (pref, pi)
1275 print_pref (f, pref);
1276 }
1277
1278 /* Print info about all prefs into stderr. */
1279 void
ira_debug_prefs(void)1280 ira_debug_prefs (void)
1281 {
1282 print_prefs (stderr);
1283 }
1284
1285 /* Print info about prefs involving allocno A into file F. */
1286 static void
print_allocno_prefs(FILE * f,ira_allocno_t a)1287 print_allocno_prefs (FILE *f, ira_allocno_t a)
1288 {
1289 ira_pref_t pref;
1290
1291 fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1292 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
1293 fprintf (f, " pref%d:hr%d@%d", pref->num, pref->hard_regno, pref->freq);
1294 fprintf (f, "\n");
1295 }
1296
1297 /* Print info about prefs involving allocno A into stderr. */
1298 void
ira_debug_allocno_prefs(ira_allocno_t a)1299 ira_debug_allocno_prefs (ira_allocno_t a)
1300 {
1301 print_allocno_prefs (stderr, a);
1302 }
1303
1304 /* The function frees memory allocated for PREF. */
1305 static void
finish_pref(ira_pref_t pref)1306 finish_pref (ira_pref_t pref)
1307 {
1308 ira_prefs[pref->num] = NULL;
1309 pool_free (pref_pool, pref);
1310 }
1311
1312 /* Remove PREF from the list of allocno prefs and free memory for
1313 it. */
1314 void
ira_remove_pref(ira_pref_t pref)1315 ira_remove_pref (ira_pref_t pref)
1316 {
1317 ira_pref_t cpref, prev;
1318
1319 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1320 fprintf (ira_dump_file, " Removing pref%d:hr%d@%d\n",
1321 pref->num, pref->hard_regno, pref->freq);
1322 for (prev = NULL, cpref = ALLOCNO_PREFS (pref->allocno);
1323 cpref != NULL;
1324 prev = cpref, cpref = cpref->next_pref)
1325 if (cpref == pref)
1326 break;
1327 ira_assert (cpref != NULL);
1328 if (prev == NULL)
1329 ALLOCNO_PREFS (pref->allocno) = pref->next_pref;
1330 else
1331 prev->next_pref = pref->next_pref;
1332 finish_pref (pref);
1333 }
1334
1335 /* Remove all prefs of allocno A. */
1336 void
ira_remove_allocno_prefs(ira_allocno_t a)1337 ira_remove_allocno_prefs (ira_allocno_t a)
1338 {
1339 ira_pref_t pref, next_pref;
1340
1341 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = next_pref)
1342 {
1343 next_pref = pref->next_pref;
1344 finish_pref (pref);
1345 }
1346 ALLOCNO_PREFS (a) = NULL;
1347 }
1348
1349 /* Free memory allocated for all prefs. */
1350 static void
finish_prefs(void)1351 finish_prefs (void)
1352 {
1353 ira_pref_t pref;
1354 ira_pref_iterator pi;
1355
1356 FOR_EACH_PREF (pref, pi)
1357 finish_pref (pref);
1358 pref_vec.release ();
1359 free_alloc_pool (pref_pool);
1360 }
1361
1362
1363
1364 /* Pools for copies. */
1365 static alloc_pool copy_pool;
1366
1367 /* Vec containing references to all created copies. It is a
1368 container of array ira_copies. */
1369 static vec<ira_copy_t> copy_vec;
1370
1371 /* The function initializes data concerning allocno copies. */
1372 static void
initiate_copies(void)1373 initiate_copies (void)
1374 {
1375 copy_pool
1376 = create_alloc_pool ("copies", sizeof (struct ira_allocno_copy), 100);
1377 copy_vec.create (get_max_uid ());
1378 ira_copies = NULL;
1379 ira_copies_num = 0;
1380 }
1381
1382 /* Return copy connecting A1 and A2 and originated from INSN of
1383 LOOP_TREE_NODE if any. */
1384 static ira_copy_t
find_allocno_copy(ira_allocno_t a1,ira_allocno_t a2,rtx insn,ira_loop_tree_node_t loop_tree_node)1385 find_allocno_copy (ira_allocno_t a1, ira_allocno_t a2, rtx insn,
1386 ira_loop_tree_node_t loop_tree_node)
1387 {
1388 ira_copy_t cp, next_cp;
1389 ira_allocno_t another_a;
1390
1391 for (cp = ALLOCNO_COPIES (a1); cp != NULL; cp = next_cp)
1392 {
1393 if (cp->first == a1)
1394 {
1395 next_cp = cp->next_first_allocno_copy;
1396 another_a = cp->second;
1397 }
1398 else if (cp->second == a1)
1399 {
1400 next_cp = cp->next_second_allocno_copy;
1401 another_a = cp->first;
1402 }
1403 else
1404 gcc_unreachable ();
1405 if (another_a == a2 && cp->insn == insn
1406 && cp->loop_tree_node == loop_tree_node)
1407 return cp;
1408 }
1409 return NULL;
1410 }
1411
1412 /* Create and return copy with given attributes LOOP_TREE_NODE, FIRST,
1413 SECOND, FREQ, CONSTRAINT_P, and INSN. */
1414 ira_copy_t
ira_create_copy(ira_allocno_t first,ira_allocno_t second,int freq,bool constraint_p,rtx insn,ira_loop_tree_node_t loop_tree_node)1415 ira_create_copy (ira_allocno_t first, ira_allocno_t second, int freq,
1416 bool constraint_p, rtx insn,
1417 ira_loop_tree_node_t loop_tree_node)
1418 {
1419 ira_copy_t cp;
1420
1421 cp = (ira_copy_t) pool_alloc (copy_pool);
1422 cp->num = ira_copies_num;
1423 cp->first = first;
1424 cp->second = second;
1425 cp->freq = freq;
1426 cp->constraint_p = constraint_p;
1427 cp->insn = insn;
1428 cp->loop_tree_node = loop_tree_node;
1429 copy_vec.safe_push (cp);
1430 ira_copies = copy_vec.address ();
1431 ira_copies_num = copy_vec.length ();
1432 return cp;
1433 }
1434
1435 /* Attach a copy CP to allocnos involved into the copy. */
1436 static void
add_allocno_copy_to_list(ira_copy_t cp)1437 add_allocno_copy_to_list (ira_copy_t cp)
1438 {
1439 ira_allocno_t first = cp->first, second = cp->second;
1440
1441 cp->prev_first_allocno_copy = NULL;
1442 cp->prev_second_allocno_copy = NULL;
1443 cp->next_first_allocno_copy = ALLOCNO_COPIES (first);
1444 if (cp->next_first_allocno_copy != NULL)
1445 {
1446 if (cp->next_first_allocno_copy->first == first)
1447 cp->next_first_allocno_copy->prev_first_allocno_copy = cp;
1448 else
1449 cp->next_first_allocno_copy->prev_second_allocno_copy = cp;
1450 }
1451 cp->next_second_allocno_copy = ALLOCNO_COPIES (second);
1452 if (cp->next_second_allocno_copy != NULL)
1453 {
1454 if (cp->next_second_allocno_copy->second == second)
1455 cp->next_second_allocno_copy->prev_second_allocno_copy = cp;
1456 else
1457 cp->next_second_allocno_copy->prev_first_allocno_copy = cp;
1458 }
1459 ALLOCNO_COPIES (first) = cp;
1460 ALLOCNO_COPIES (second) = cp;
1461 }
1462
1463 /* Make a copy CP a canonical copy where number of the
1464 first allocno is less than the second one. */
1465 static void
swap_allocno_copy_ends_if_necessary(ira_copy_t cp)1466 swap_allocno_copy_ends_if_necessary (ira_copy_t cp)
1467 {
1468 ira_allocno_t temp;
1469 ira_copy_t temp_cp;
1470
1471 if (ALLOCNO_NUM (cp->first) <= ALLOCNO_NUM (cp->second))
1472 return;
1473
1474 temp = cp->first;
1475 cp->first = cp->second;
1476 cp->second = temp;
1477
1478 temp_cp = cp->prev_first_allocno_copy;
1479 cp->prev_first_allocno_copy = cp->prev_second_allocno_copy;
1480 cp->prev_second_allocno_copy = temp_cp;
1481
1482 temp_cp = cp->next_first_allocno_copy;
1483 cp->next_first_allocno_copy = cp->next_second_allocno_copy;
1484 cp->next_second_allocno_copy = temp_cp;
1485 }
1486
1487 /* Create (or update frequency if the copy already exists) and return
1488 the copy of allocnos FIRST and SECOND with frequency FREQ
1489 corresponding to move insn INSN (if any) and originated from
1490 LOOP_TREE_NODE. */
1491 ira_copy_t
ira_add_allocno_copy(ira_allocno_t first,ira_allocno_t second,int freq,bool constraint_p,rtx insn,ira_loop_tree_node_t loop_tree_node)1492 ira_add_allocno_copy (ira_allocno_t first, ira_allocno_t second, int freq,
1493 bool constraint_p, rtx insn,
1494 ira_loop_tree_node_t loop_tree_node)
1495 {
1496 ira_copy_t cp;
1497
1498 if ((cp = find_allocno_copy (first, second, insn, loop_tree_node)) != NULL)
1499 {
1500 cp->freq += freq;
1501 return cp;
1502 }
1503 cp = ira_create_copy (first, second, freq, constraint_p, insn,
1504 loop_tree_node);
1505 ira_assert (first != NULL && second != NULL);
1506 add_allocno_copy_to_list (cp);
1507 swap_allocno_copy_ends_if_necessary (cp);
1508 return cp;
1509 }
1510
1511 /* Print info about copy CP into file F. */
1512 static void
print_copy(FILE * f,ira_copy_t cp)1513 print_copy (FILE *f, ira_copy_t cp)
1514 {
1515 fprintf (f, " cp%d:a%d(r%d)<->a%d(r%d)@%d:%s\n", cp->num,
1516 ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
1517 ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second), cp->freq,
1518 cp->insn != NULL
1519 ? "move" : cp->constraint_p ? "constraint" : "shuffle");
1520 }
1521
1522 DEBUG_FUNCTION void
debug(ira_allocno_copy & ref)1523 debug (ira_allocno_copy &ref)
1524 {
1525 print_copy (stderr, &ref);
1526 }
1527
1528 DEBUG_FUNCTION void
debug(ira_allocno_copy * ptr)1529 debug (ira_allocno_copy *ptr)
1530 {
1531 if (ptr)
1532 debug (*ptr);
1533 else
1534 fprintf (stderr, "<nil>\n");
1535 }
1536
1537 /* Print info about copy CP into stderr. */
1538 void
ira_debug_copy(ira_copy_t cp)1539 ira_debug_copy (ira_copy_t cp)
1540 {
1541 print_copy (stderr, cp);
1542 }
1543
1544 /* Print info about all copies into file F. */
1545 static void
print_copies(FILE * f)1546 print_copies (FILE *f)
1547 {
1548 ira_copy_t cp;
1549 ira_copy_iterator ci;
1550
1551 FOR_EACH_COPY (cp, ci)
1552 print_copy (f, cp);
1553 }
1554
1555 /* Print info about all copies into stderr. */
1556 void
ira_debug_copies(void)1557 ira_debug_copies (void)
1558 {
1559 print_copies (stderr);
1560 }
1561
1562 /* Print info about copies involving allocno A into file F. */
1563 static void
print_allocno_copies(FILE * f,ira_allocno_t a)1564 print_allocno_copies (FILE *f, ira_allocno_t a)
1565 {
1566 ira_allocno_t another_a;
1567 ira_copy_t cp, next_cp;
1568
1569 fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1570 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
1571 {
1572 if (cp->first == a)
1573 {
1574 next_cp = cp->next_first_allocno_copy;
1575 another_a = cp->second;
1576 }
1577 else if (cp->second == a)
1578 {
1579 next_cp = cp->next_second_allocno_copy;
1580 another_a = cp->first;
1581 }
1582 else
1583 gcc_unreachable ();
1584 fprintf (f, " cp%d:a%d(r%d)@%d", cp->num,
1585 ALLOCNO_NUM (another_a), ALLOCNO_REGNO (another_a), cp->freq);
1586 }
1587 fprintf (f, "\n");
1588 }
1589
1590 DEBUG_FUNCTION void
debug(ira_allocno & ref)1591 debug (ira_allocno &ref)
1592 {
1593 print_allocno_copies (stderr, &ref);
1594 }
1595
1596 DEBUG_FUNCTION void
debug(ira_allocno * ptr)1597 debug (ira_allocno *ptr)
1598 {
1599 if (ptr)
1600 debug (*ptr);
1601 else
1602 fprintf (stderr, "<nil>\n");
1603 }
1604
1605
1606 /* Print info about copies involving allocno A into stderr. */
1607 void
ira_debug_allocno_copies(ira_allocno_t a)1608 ira_debug_allocno_copies (ira_allocno_t a)
1609 {
1610 print_allocno_copies (stderr, a);
1611 }
1612
1613 /* The function frees memory allocated for copy CP. */
1614 static void
finish_copy(ira_copy_t cp)1615 finish_copy (ira_copy_t cp)
1616 {
1617 pool_free (copy_pool, cp);
1618 }
1619
1620
1621 /* Free memory allocated for all copies. */
1622 static void
finish_copies(void)1623 finish_copies (void)
1624 {
1625 ira_copy_t cp;
1626 ira_copy_iterator ci;
1627
1628 FOR_EACH_COPY (cp, ci)
1629 finish_copy (cp);
1630 copy_vec.release ();
1631 free_alloc_pool (copy_pool);
1632 }
1633
1634
1635
1636 /* Pools for cost vectors. It is defined only for allocno classes. */
1637 static alloc_pool cost_vector_pool[N_REG_CLASSES];
1638
1639 /* The function initiates work with hard register cost vectors. It
1640 creates allocation pool for each allocno class. */
1641 static void
initiate_cost_vectors(void)1642 initiate_cost_vectors (void)
1643 {
1644 int i;
1645 enum reg_class aclass;
1646
1647 for (i = 0; i < ira_allocno_classes_num; i++)
1648 {
1649 aclass = ira_allocno_classes[i];
1650 cost_vector_pool[aclass]
1651 = create_alloc_pool ("cost vectors",
1652 sizeof (int) * ira_class_hard_regs_num[aclass],
1653 100);
1654 }
1655 }
1656
1657 /* Allocate and return a cost vector VEC for ACLASS. */
1658 int *
ira_allocate_cost_vector(reg_class_t aclass)1659 ira_allocate_cost_vector (reg_class_t aclass)
1660 {
1661 return (int *) pool_alloc (cost_vector_pool[(int) aclass]);
1662 }
1663
1664 /* Free a cost vector VEC for ACLASS. */
1665 void
ira_free_cost_vector(int * vec,reg_class_t aclass)1666 ira_free_cost_vector (int *vec, reg_class_t aclass)
1667 {
1668 ira_assert (vec != NULL);
1669 pool_free (cost_vector_pool[(int) aclass], vec);
1670 }
1671
1672 /* Finish work with hard register cost vectors. Release allocation
1673 pool for each allocno class. */
1674 static void
finish_cost_vectors(void)1675 finish_cost_vectors (void)
1676 {
1677 int i;
1678 enum reg_class aclass;
1679
1680 for (i = 0; i < ira_allocno_classes_num; i++)
1681 {
1682 aclass = ira_allocno_classes[i];
1683 free_alloc_pool (cost_vector_pool[aclass]);
1684 }
1685 }
1686
1687
1688
1689 /* Compute a post-ordering of the reverse control flow of the loop body
1690 designated by the children nodes of LOOP_NODE, whose body nodes in
1691 pre-order are input as LOOP_PREORDER. Return a VEC with a post-order
1692 of the reverse loop body.
1693
1694 For the post-order of the reverse CFG, we visit the basic blocks in
1695 LOOP_PREORDER array in the reverse order of where they appear.
1696 This is important: We do not just want to compute a post-order of
1697 the reverse CFG, we want to make a best-guess for a visiting order that
1698 minimizes the number of chain elements per allocno live range. If the
1699 blocks would be visited in a different order, we would still compute a
1700 correct post-ordering but it would be less likely that two nodes
1701 connected by an edge in the CFG are neighbours in the topsort. */
1702
1703 static vec<ira_loop_tree_node_t>
ira_loop_tree_body_rev_postorder(ira_loop_tree_node_t loop_node ATTRIBUTE_UNUSED,vec<ira_loop_tree_node_t> loop_preorder)1704 ira_loop_tree_body_rev_postorder (ira_loop_tree_node_t loop_node ATTRIBUTE_UNUSED,
1705 vec<ira_loop_tree_node_t> loop_preorder)
1706 {
1707 vec<ira_loop_tree_node_t> topsort_nodes = vNULL;
1708 unsigned int n_loop_preorder;
1709
1710 n_loop_preorder = loop_preorder.length ();
1711 if (n_loop_preorder != 0)
1712 {
1713 ira_loop_tree_node_t subloop_node;
1714 unsigned int i;
1715 auto_vec<ira_loop_tree_node_t> dfs_stack;
1716
1717 /* This is a bit of strange abuse of the BB_VISITED flag: We use
1718 the flag to mark blocks we still have to visit to add them to
1719 our post-order. Define an alias to avoid confusion. */
1720 #define BB_TO_VISIT BB_VISITED
1721
1722 FOR_EACH_VEC_ELT (loop_preorder, i, subloop_node)
1723 {
1724 gcc_checking_assert (! (subloop_node->bb->flags & BB_TO_VISIT));
1725 subloop_node->bb->flags |= BB_TO_VISIT;
1726 }
1727
1728 topsort_nodes.create (n_loop_preorder);
1729 dfs_stack.create (n_loop_preorder);
1730
1731 FOR_EACH_VEC_ELT_REVERSE (loop_preorder, i, subloop_node)
1732 {
1733 if (! (subloop_node->bb->flags & BB_TO_VISIT))
1734 continue;
1735
1736 subloop_node->bb->flags &= ~BB_TO_VISIT;
1737 dfs_stack.quick_push (subloop_node);
1738 while (! dfs_stack.is_empty ())
1739 {
1740 edge e;
1741 edge_iterator ei;
1742
1743 ira_loop_tree_node_t n = dfs_stack.last ();
1744 FOR_EACH_EDGE (e, ei, n->bb->preds)
1745 {
1746 ira_loop_tree_node_t pred_node;
1747 basic_block pred_bb = e->src;
1748
1749 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1750 continue;
1751
1752 pred_node = IRA_BB_NODE_BY_INDEX (pred_bb->index);
1753 if (pred_node != n
1754 && (pred_node->bb->flags & BB_TO_VISIT))
1755 {
1756 pred_node->bb->flags &= ~BB_TO_VISIT;
1757 dfs_stack.quick_push (pred_node);
1758 }
1759 }
1760 if (n == dfs_stack.last ())
1761 {
1762 dfs_stack.pop ();
1763 topsort_nodes.quick_push (n);
1764 }
1765 }
1766 }
1767
1768 #undef BB_TO_VISIT
1769 }
1770
1771 gcc_assert (topsort_nodes.length () == n_loop_preorder);
1772 return topsort_nodes;
1773 }
1774
1775 /* The current loop tree node and its regno allocno map. */
1776 ira_loop_tree_node_t ira_curr_loop_tree_node;
1777 ira_allocno_t *ira_curr_regno_allocno_map;
1778
1779 /* This recursive function traverses loop tree with root LOOP_NODE
1780 calling non-null functions PREORDER_FUNC and POSTORDER_FUNC
1781 correspondingly in preorder and postorder. The function sets up
1782 IRA_CURR_LOOP_TREE_NODE and IRA_CURR_REGNO_ALLOCNO_MAP. If BB_P,
1783 basic block nodes of LOOP_NODE is also processed (before its
1784 subloop nodes).
1785
1786 If BB_P is set and POSTORDER_FUNC is given, the basic blocks in
1787 the loop are passed in the *reverse* post-order of the *reverse*
1788 CFG. This is only used by ira_create_allocno_live_ranges, which
1789 wants to visit basic blocks in this order to minimize the number
1790 of elements per live range chain.
1791 Note that the loop tree nodes are still visited in the normal,
1792 forward post-order of the loop tree. */
1793
1794 void
ira_traverse_loop_tree(bool bb_p,ira_loop_tree_node_t loop_node,void (* preorder_func)(ira_loop_tree_node_t),void (* postorder_func)(ira_loop_tree_node_t))1795 ira_traverse_loop_tree (bool bb_p, ira_loop_tree_node_t loop_node,
1796 void (*preorder_func) (ira_loop_tree_node_t),
1797 void (*postorder_func) (ira_loop_tree_node_t))
1798 {
1799 ira_loop_tree_node_t subloop_node;
1800
1801 ira_assert (loop_node->bb == NULL);
1802 ira_curr_loop_tree_node = loop_node;
1803 ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map;
1804
1805 if (preorder_func != NULL)
1806 (*preorder_func) (loop_node);
1807
1808 if (bb_p)
1809 {
1810 auto_vec<ira_loop_tree_node_t> loop_preorder;
1811 unsigned int i;
1812
1813 /* Add all nodes to the set of nodes to visit. The IRA loop tree
1814 is set up such that nodes in the loop body appear in a pre-order
1815 of their place in the CFG. */
1816 for (subloop_node = loop_node->children;
1817 subloop_node != NULL;
1818 subloop_node = subloop_node->next)
1819 if (subloop_node->bb != NULL)
1820 loop_preorder.safe_push (subloop_node);
1821
1822 if (preorder_func != NULL)
1823 FOR_EACH_VEC_ELT (loop_preorder, i, subloop_node)
1824 (*preorder_func) (subloop_node);
1825
1826 if (postorder_func != NULL)
1827 {
1828 vec<ira_loop_tree_node_t> loop_rev_postorder =
1829 ira_loop_tree_body_rev_postorder (loop_node, loop_preorder);
1830 FOR_EACH_VEC_ELT_REVERSE (loop_rev_postorder, i, subloop_node)
1831 (*postorder_func) (subloop_node);
1832 loop_rev_postorder.release ();
1833 }
1834 }
1835
1836 for (subloop_node = loop_node->subloops;
1837 subloop_node != NULL;
1838 subloop_node = subloop_node->subloop_next)
1839 {
1840 ira_assert (subloop_node->bb == NULL);
1841 ira_traverse_loop_tree (bb_p, subloop_node,
1842 preorder_func, postorder_func);
1843 }
1844
1845 ira_curr_loop_tree_node = loop_node;
1846 ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map;
1847
1848 if (postorder_func != NULL)
1849 (*postorder_func) (loop_node);
1850 }
1851
1852
1853
1854 /* The basic block currently being processed. */
1855 static basic_block curr_bb;
1856
1857 /* This recursive function creates allocnos corresponding to
1858 pseudo-registers containing in X. True OUTPUT_P means that X is
1859 a lvalue. */
1860 static void
create_insn_allocnos(rtx x,bool output_p)1861 create_insn_allocnos (rtx x, bool output_p)
1862 {
1863 int i, j;
1864 const char *fmt;
1865 enum rtx_code code = GET_CODE (x);
1866
1867 if (code == REG)
1868 {
1869 int regno;
1870
1871 if ((regno = REGNO (x)) >= FIRST_PSEUDO_REGISTER)
1872 {
1873 ira_allocno_t a;
1874
1875 if ((a = ira_curr_regno_allocno_map[regno]) == NULL)
1876 a = ira_create_allocno (regno, false, ira_curr_loop_tree_node);
1877
1878 ALLOCNO_NREFS (a)++;
1879 ALLOCNO_FREQ (a) += REG_FREQ_FROM_BB (curr_bb);
1880 if (output_p)
1881 bitmap_set_bit (ira_curr_loop_tree_node->modified_regnos, regno);
1882 }
1883 return;
1884 }
1885 else if (code == SET)
1886 {
1887 create_insn_allocnos (SET_DEST (x), true);
1888 create_insn_allocnos (SET_SRC (x), false);
1889 return;
1890 }
1891 else if (code == CLOBBER)
1892 {
1893 create_insn_allocnos (XEXP (x, 0), true);
1894 return;
1895 }
1896 else if (code == MEM)
1897 {
1898 create_insn_allocnos (XEXP (x, 0), false);
1899 return;
1900 }
1901 else if (code == PRE_DEC || code == POST_DEC || code == PRE_INC ||
1902 code == POST_INC || code == POST_MODIFY || code == PRE_MODIFY)
1903 {
1904 create_insn_allocnos (XEXP (x, 0), true);
1905 create_insn_allocnos (XEXP (x, 0), false);
1906 return;
1907 }
1908
1909 fmt = GET_RTX_FORMAT (code);
1910 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1911 {
1912 if (fmt[i] == 'e')
1913 create_insn_allocnos (XEXP (x, i), output_p);
1914 else if (fmt[i] == 'E')
1915 for (j = 0; j < XVECLEN (x, i); j++)
1916 create_insn_allocnos (XVECEXP (x, i, j), output_p);
1917 }
1918 }
1919
1920 /* Create allocnos corresponding to pseudo-registers living in the
1921 basic block represented by the corresponding loop tree node
1922 BB_NODE. */
1923 static void
create_bb_allocnos(ira_loop_tree_node_t bb_node)1924 create_bb_allocnos (ira_loop_tree_node_t bb_node)
1925 {
1926 basic_block bb;
1927 rtx insn;
1928 unsigned int i;
1929 bitmap_iterator bi;
1930
1931 curr_bb = bb = bb_node->bb;
1932 ira_assert (bb != NULL);
1933 FOR_BB_INSNS_REVERSE (bb, insn)
1934 if (NONDEBUG_INSN_P (insn))
1935 create_insn_allocnos (PATTERN (insn), false);
1936 /* It might be a allocno living through from one subloop to
1937 another. */
1938 EXECUTE_IF_SET_IN_REG_SET (df_get_live_in (bb), FIRST_PSEUDO_REGISTER, i, bi)
1939 if (ira_curr_regno_allocno_map[i] == NULL)
1940 ira_create_allocno (i, false, ira_curr_loop_tree_node);
1941 }
1942
1943 /* Create allocnos corresponding to pseudo-registers living on edge E
1944 (a loop entry or exit). Also mark the allocnos as living on the
1945 loop border. */
1946 static void
create_loop_allocnos(edge e)1947 create_loop_allocnos (edge e)
1948 {
1949 unsigned int i;
1950 bitmap live_in_regs, border_allocnos;
1951 bitmap_iterator bi;
1952 ira_loop_tree_node_t parent;
1953
1954 live_in_regs = df_get_live_in (e->dest);
1955 border_allocnos = ira_curr_loop_tree_node->border_allocnos;
1956 EXECUTE_IF_SET_IN_REG_SET (df_get_live_out (e->src),
1957 FIRST_PSEUDO_REGISTER, i, bi)
1958 if (bitmap_bit_p (live_in_regs, i))
1959 {
1960 if (ira_curr_regno_allocno_map[i] == NULL)
1961 {
1962 /* The order of creations is important for right
1963 ira_regno_allocno_map. */
1964 if ((parent = ira_curr_loop_tree_node->parent) != NULL
1965 && parent->regno_allocno_map[i] == NULL)
1966 ira_create_allocno (i, false, parent);
1967 ira_create_allocno (i, false, ira_curr_loop_tree_node);
1968 }
1969 bitmap_set_bit (border_allocnos,
1970 ALLOCNO_NUM (ira_curr_regno_allocno_map[i]));
1971 }
1972 }
1973
1974 /* Create allocnos corresponding to pseudo-registers living in loop
1975 represented by the corresponding loop tree node LOOP_NODE. This
1976 function is called by ira_traverse_loop_tree. */
1977 static void
create_loop_tree_node_allocnos(ira_loop_tree_node_t loop_node)1978 create_loop_tree_node_allocnos (ira_loop_tree_node_t loop_node)
1979 {
1980 if (loop_node->bb != NULL)
1981 create_bb_allocnos (loop_node);
1982 else if (loop_node != ira_loop_tree_root)
1983 {
1984 int i;
1985 edge_iterator ei;
1986 edge e;
1987 vec<edge> edges;
1988
1989 ira_assert (current_loops != NULL);
1990 FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds)
1991 if (e->src != loop_node->loop->latch)
1992 create_loop_allocnos (e);
1993
1994 edges = get_loop_exit_edges (loop_node->loop);
1995 FOR_EACH_VEC_ELT (edges, i, e)
1996 create_loop_allocnos (e);
1997 edges.release ();
1998 }
1999 }
2000
2001 /* Propagate information about allocnos modified inside the loop given
2002 by its LOOP_TREE_NODE to its parent. */
2003 static void
propagate_modified_regnos(ira_loop_tree_node_t loop_tree_node)2004 propagate_modified_regnos (ira_loop_tree_node_t loop_tree_node)
2005 {
2006 if (loop_tree_node == ira_loop_tree_root)
2007 return;
2008 ira_assert (loop_tree_node->bb == NULL);
2009 bitmap_ior_into (loop_tree_node->parent->modified_regnos,
2010 loop_tree_node->modified_regnos);
2011 }
2012
2013 /* Propagate new info about allocno A (see comments about accumulated
2014 info in allocno definition) to the corresponding allocno on upper
2015 loop tree level. So allocnos on upper levels accumulate
2016 information about the corresponding allocnos in nested regions.
2017 The new info means allocno info finally calculated in this
2018 file. */
2019 static void
propagate_allocno_info(void)2020 propagate_allocno_info (void)
2021 {
2022 int i;
2023 ira_allocno_t a, parent_a;
2024 ira_loop_tree_node_t parent;
2025 enum reg_class aclass;
2026
2027 if (flag_ira_region != IRA_REGION_ALL
2028 && flag_ira_region != IRA_REGION_MIXED)
2029 return;
2030 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
2031 for (a = ira_regno_allocno_map[i];
2032 a != NULL;
2033 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2034 if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
2035 && (parent_a = parent->regno_allocno_map[i]) != NULL
2036 /* There are no caps yet at this point. So use
2037 border_allocnos to find allocnos for the propagation. */
2038 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE (a)->border_allocnos,
2039 ALLOCNO_NUM (a)))
2040 {
2041 if (! ALLOCNO_BAD_SPILL_P (a))
2042 ALLOCNO_BAD_SPILL_P (parent_a) = false;
2043 ALLOCNO_NREFS (parent_a) += ALLOCNO_NREFS (a);
2044 ALLOCNO_FREQ (parent_a) += ALLOCNO_FREQ (a);
2045 ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a);
2046 merge_hard_reg_conflicts (a, parent_a, true);
2047 ALLOCNO_CALLS_CROSSED_NUM (parent_a)
2048 += ALLOCNO_CALLS_CROSSED_NUM (a);
2049 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
2050 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
2051 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
2052 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
2053 aclass = ALLOCNO_CLASS (a);
2054 ira_assert (aclass == ALLOCNO_CLASS (parent_a));
2055 ira_allocate_and_accumulate_costs
2056 (&ALLOCNO_HARD_REG_COSTS (parent_a), aclass,
2057 ALLOCNO_HARD_REG_COSTS (a));
2058 ira_allocate_and_accumulate_costs
2059 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a),
2060 aclass,
2061 ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
2062 ALLOCNO_CLASS_COST (parent_a)
2063 += ALLOCNO_CLASS_COST (a);
2064 ALLOCNO_MEMORY_COST (parent_a) += ALLOCNO_MEMORY_COST (a);
2065 }
2066 }
2067
2068 /* Create allocnos corresponding to pseudo-registers in the current
2069 function. Traverse the loop tree for this. */
2070 static void
create_allocnos(void)2071 create_allocnos (void)
2072 {
2073 /* We need to process BB first to correctly link allocnos by member
2074 next_regno_allocno. */
2075 ira_traverse_loop_tree (true, ira_loop_tree_root,
2076 create_loop_tree_node_allocnos, NULL);
2077 if (optimize)
2078 ira_traverse_loop_tree (false, ira_loop_tree_root, NULL,
2079 propagate_modified_regnos);
2080 }
2081
2082
2083
2084 /* The page contains function to remove some regions from a separate
2085 register allocation. We remove regions whose separate allocation
2086 will hardly improve the result. As a result we speed up regional
2087 register allocation. */
2088
2089 /* The function changes the object in range list given by R to OBJ. */
2090 static void
change_object_in_range_list(live_range_t r,ira_object_t obj)2091 change_object_in_range_list (live_range_t r, ira_object_t obj)
2092 {
2093 for (; r != NULL; r = r->next)
2094 r->object = obj;
2095 }
2096
2097 /* Move all live ranges associated with allocno FROM to allocno TO. */
2098 static void
move_allocno_live_ranges(ira_allocno_t from,ira_allocno_t to)2099 move_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to)
2100 {
2101 int i;
2102 int n = ALLOCNO_NUM_OBJECTS (from);
2103
2104 gcc_assert (n == ALLOCNO_NUM_OBJECTS (to));
2105
2106 for (i = 0; i < n; i++)
2107 {
2108 ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
2109 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
2110 live_range_t lr = OBJECT_LIVE_RANGES (from_obj);
2111
2112 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
2113 {
2114 fprintf (ira_dump_file,
2115 " Moving ranges of a%dr%d to a%dr%d: ",
2116 ALLOCNO_NUM (from), ALLOCNO_REGNO (from),
2117 ALLOCNO_NUM (to), ALLOCNO_REGNO (to));
2118 ira_print_live_range_list (ira_dump_file, lr);
2119 }
2120 change_object_in_range_list (lr, to_obj);
2121 OBJECT_LIVE_RANGES (to_obj)
2122 = ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj));
2123 OBJECT_LIVE_RANGES (from_obj) = NULL;
2124 }
2125 }
2126
2127 static void
copy_allocno_live_ranges(ira_allocno_t from,ira_allocno_t to)2128 copy_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to)
2129 {
2130 int i;
2131 int n = ALLOCNO_NUM_OBJECTS (from);
2132
2133 gcc_assert (n == ALLOCNO_NUM_OBJECTS (to));
2134
2135 for (i = 0; i < n; i++)
2136 {
2137 ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
2138 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
2139 live_range_t lr = OBJECT_LIVE_RANGES (from_obj);
2140
2141 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
2142 {
2143 fprintf (ira_dump_file, " Copying ranges of a%dr%d to a%dr%d: ",
2144 ALLOCNO_NUM (from), ALLOCNO_REGNO (from),
2145 ALLOCNO_NUM (to), ALLOCNO_REGNO (to));
2146 ira_print_live_range_list (ira_dump_file, lr);
2147 }
2148 lr = ira_copy_live_range_list (lr);
2149 change_object_in_range_list (lr, to_obj);
2150 OBJECT_LIVE_RANGES (to_obj)
2151 = ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj));
2152 }
2153 }
2154
2155 /* Return TRUE if NODE represents a loop with low register
2156 pressure. */
2157 static bool
low_pressure_loop_node_p(ira_loop_tree_node_t node)2158 low_pressure_loop_node_p (ira_loop_tree_node_t node)
2159 {
2160 int i;
2161 enum reg_class pclass;
2162
2163 if (node->bb != NULL)
2164 return false;
2165
2166 for (i = 0; i < ira_pressure_classes_num; i++)
2167 {
2168 pclass = ira_pressure_classes[i];
2169 if (node->reg_pressure[pclass] > ira_class_hard_regs_num[pclass]
2170 && ira_class_hard_regs_num[pclass] > 1)
2171 return false;
2172 }
2173 return true;
2174 }
2175
2176 #ifdef STACK_REGS
2177 /* Return TRUE if LOOP has a complex enter or exit edge. We don't
2178 form a region from such loop if the target use stack register
2179 because reg-stack.c can not deal with such edges. */
2180 static bool
loop_with_complex_edge_p(struct loop * loop)2181 loop_with_complex_edge_p (struct loop *loop)
2182 {
2183 int i;
2184 edge_iterator ei;
2185 edge e;
2186 vec<edge> edges;
2187 bool res;
2188
2189 FOR_EACH_EDGE (e, ei, loop->header->preds)
2190 if (e->flags & EDGE_EH)
2191 return true;
2192 edges = get_loop_exit_edges (loop);
2193 res = false;
2194 FOR_EACH_VEC_ELT (edges, i, e)
2195 if (e->flags & EDGE_COMPLEX)
2196 {
2197 res = true;
2198 break;
2199 }
2200 edges.release ();
2201 return res;
2202 }
2203 #endif
2204
2205 /* Sort loops for marking them for removal. We put already marked
2206 loops first, then less frequent loops next, and then outer loops
2207 next. */
2208 static int
loop_compare_func(const void * v1p,const void * v2p)2209 loop_compare_func (const void *v1p, const void *v2p)
2210 {
2211 int diff;
2212 ira_loop_tree_node_t l1 = *(const ira_loop_tree_node_t *) v1p;
2213 ira_loop_tree_node_t l2 = *(const ira_loop_tree_node_t *) v2p;
2214
2215 ira_assert (l1->parent != NULL && l2->parent != NULL);
2216 if (l1->to_remove_p && ! l2->to_remove_p)
2217 return -1;
2218 if (! l1->to_remove_p && l2->to_remove_p)
2219 return 1;
2220 if ((diff = l1->loop->header->frequency - l2->loop->header->frequency) != 0)
2221 return diff;
2222 if ((diff = (int) loop_depth (l1->loop) - (int) loop_depth (l2->loop)) != 0)
2223 return diff;
2224 /* Make sorting stable. */
2225 return l1->loop_num - l2->loop_num;
2226 }
2227
2228 /* Mark loops which should be removed from regional allocation. We
2229 remove a loop with low register pressure inside another loop with
2230 register pressure. In this case a separate allocation of the loop
2231 hardly helps (for irregular register file architecture it could
2232 help by choosing a better hard register in the loop but we prefer
2233 faster allocation even in this case). We also remove cheap loops
2234 if there are more than IRA_MAX_LOOPS_NUM of them. Loop with EH
2235 exit or enter edges are removed too because the allocation might
2236 require put pseudo moves on the EH edges (we could still do this
2237 for pseudos with caller saved hard registers in some cases but it
2238 is impossible to say here or during top-down allocation pass what
2239 hard register the pseudos get finally). */
2240 static void
mark_loops_for_removal(void)2241 mark_loops_for_removal (void)
2242 {
2243 int i, n;
2244 ira_loop_tree_node_t *sorted_loops;
2245 loop_p loop;
2246
2247 ira_assert (current_loops != NULL);
2248 sorted_loops
2249 = (ira_loop_tree_node_t *) ira_allocate (sizeof (ira_loop_tree_node_t)
2250 * number_of_loops (cfun));
2251 for (n = i = 0; vec_safe_iterate (get_loops (cfun), i, &loop); i++)
2252 if (ira_loop_nodes[i].regno_allocno_map != NULL)
2253 {
2254 if (ira_loop_nodes[i].parent == NULL)
2255 {
2256 /* Don't remove the root. */
2257 ira_loop_nodes[i].to_remove_p = false;
2258 continue;
2259 }
2260 sorted_loops[n++] = &ira_loop_nodes[i];
2261 ira_loop_nodes[i].to_remove_p
2262 = ((low_pressure_loop_node_p (ira_loop_nodes[i].parent)
2263 && low_pressure_loop_node_p (&ira_loop_nodes[i]))
2264 #ifdef STACK_REGS
2265 || loop_with_complex_edge_p (ira_loop_nodes[i].loop)
2266 #endif
2267 );
2268 }
2269 qsort (sorted_loops, n, sizeof (ira_loop_tree_node_t), loop_compare_func);
2270 for (i = 0; n - i + 1 > IRA_MAX_LOOPS_NUM; i++)
2271 {
2272 sorted_loops[i]->to_remove_p = true;
2273 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
2274 fprintf
2275 (ira_dump_file,
2276 " Mark loop %d (header %d, freq %d, depth %d) for removal (%s)\n",
2277 sorted_loops[i]->loop_num, sorted_loops[i]->loop->header->index,
2278 sorted_loops[i]->loop->header->frequency,
2279 loop_depth (sorted_loops[i]->loop),
2280 low_pressure_loop_node_p (sorted_loops[i]->parent)
2281 && low_pressure_loop_node_p (sorted_loops[i])
2282 ? "low pressure" : "cheap loop");
2283 }
2284 ira_free (sorted_loops);
2285 }
2286
2287 /* Mark all loops but root for removing. */
2288 static void
mark_all_loops_for_removal(void)2289 mark_all_loops_for_removal (void)
2290 {
2291 int i;
2292 loop_p loop;
2293
2294 ira_assert (current_loops != NULL);
2295 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
2296 if (ira_loop_nodes[i].regno_allocno_map != NULL)
2297 {
2298 if (ira_loop_nodes[i].parent == NULL)
2299 {
2300 /* Don't remove the root. */
2301 ira_loop_nodes[i].to_remove_p = false;
2302 continue;
2303 }
2304 ira_loop_nodes[i].to_remove_p = true;
2305 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
2306 fprintf
2307 (ira_dump_file,
2308 " Mark loop %d (header %d, freq %d, depth %d) for removal\n",
2309 ira_loop_nodes[i].loop_num,
2310 ira_loop_nodes[i].loop->header->index,
2311 ira_loop_nodes[i].loop->header->frequency,
2312 loop_depth (ira_loop_nodes[i].loop));
2313 }
2314 }
2315
2316 /* Definition of vector of loop tree nodes. */
2317
2318 /* Vec containing references to all removed loop tree nodes. */
2319 static vec<ira_loop_tree_node_t> removed_loop_vec;
2320
2321 /* Vec containing references to all children of loop tree nodes. */
2322 static vec<ira_loop_tree_node_t> children_vec;
2323
2324 /* Remove subregions of NODE if their separate allocation will not
2325 improve the result. */
2326 static void
remove_uneccesary_loop_nodes_from_loop_tree(ira_loop_tree_node_t node)2327 remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_node_t node)
2328 {
2329 unsigned int start;
2330 bool remove_p;
2331 ira_loop_tree_node_t subnode;
2332
2333 remove_p = node->to_remove_p;
2334 if (! remove_p)
2335 children_vec.safe_push (node);
2336 start = children_vec.length ();
2337 for (subnode = node->children; subnode != NULL; subnode = subnode->next)
2338 if (subnode->bb == NULL)
2339 remove_uneccesary_loop_nodes_from_loop_tree (subnode);
2340 else
2341 children_vec.safe_push (subnode);
2342 node->children = node->subloops = NULL;
2343 if (remove_p)
2344 {
2345 removed_loop_vec.safe_push (node);
2346 return;
2347 }
2348 while (children_vec.length () > start)
2349 {
2350 subnode = children_vec.pop ();
2351 subnode->parent = node;
2352 subnode->next = node->children;
2353 node->children = subnode;
2354 if (subnode->bb == NULL)
2355 {
2356 subnode->subloop_next = node->subloops;
2357 node->subloops = subnode;
2358 }
2359 }
2360 }
2361
2362 /* Return TRUE if NODE is inside PARENT. */
2363 static bool
loop_is_inside_p(ira_loop_tree_node_t node,ira_loop_tree_node_t parent)2364 loop_is_inside_p (ira_loop_tree_node_t node, ira_loop_tree_node_t parent)
2365 {
2366 for (node = node->parent; node != NULL; node = node->parent)
2367 if (node == parent)
2368 return true;
2369 return false;
2370 }
2371
2372 /* Sort allocnos according to their order in regno allocno list. */
2373 static int
regno_allocno_order_compare_func(const void * v1p,const void * v2p)2374 regno_allocno_order_compare_func (const void *v1p, const void *v2p)
2375 {
2376 ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
2377 ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
2378 ira_loop_tree_node_t n1 = ALLOCNO_LOOP_TREE_NODE (a1);
2379 ira_loop_tree_node_t n2 = ALLOCNO_LOOP_TREE_NODE (a2);
2380
2381 if (loop_is_inside_p (n1, n2))
2382 return -1;
2383 else if (loop_is_inside_p (n2, n1))
2384 return 1;
2385 /* If allocnos are equally good, sort by allocno numbers, so that
2386 the results of qsort leave nothing to chance. We put allocnos
2387 with higher number first in the list because it is the original
2388 order for allocnos from loops on the same levels. */
2389 return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1);
2390 }
2391
2392 /* This array is used to sort allocnos to restore allocno order in
2393 the regno allocno list. */
2394 static ira_allocno_t *regno_allocnos;
2395
2396 /* Restore allocno order for REGNO in the regno allocno list. */
2397 static void
ira_rebuild_regno_allocno_list(int regno)2398 ira_rebuild_regno_allocno_list (int regno)
2399 {
2400 int i, n;
2401 ira_allocno_t a;
2402
2403 for (n = 0, a = ira_regno_allocno_map[regno];
2404 a != NULL;
2405 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2406 regno_allocnos[n++] = a;
2407 ira_assert (n > 0);
2408 qsort (regno_allocnos, n, sizeof (ira_allocno_t),
2409 regno_allocno_order_compare_func);
2410 for (i = 1; i < n; i++)
2411 ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[i - 1]) = regno_allocnos[i];
2412 ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[n - 1]) = NULL;
2413 ira_regno_allocno_map[regno] = regno_allocnos[0];
2414 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
2415 fprintf (ira_dump_file, " Rebuilding regno allocno list for %d\n", regno);
2416 }
2417
2418 /* Propagate info from allocno FROM_A to allocno A. */
2419 static void
propagate_some_info_from_allocno(ira_allocno_t a,ira_allocno_t from_a)2420 propagate_some_info_from_allocno (ira_allocno_t a, ira_allocno_t from_a)
2421 {
2422 enum reg_class aclass;
2423
2424 merge_hard_reg_conflicts (from_a, a, false);
2425 ALLOCNO_NREFS (a) += ALLOCNO_NREFS (from_a);
2426 ALLOCNO_FREQ (a) += ALLOCNO_FREQ (from_a);
2427 ALLOCNO_CALL_FREQ (a) += ALLOCNO_CALL_FREQ (from_a);
2428 ALLOCNO_CALLS_CROSSED_NUM (a) += ALLOCNO_CALLS_CROSSED_NUM (from_a);
2429 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)
2430 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (from_a);
2431 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a)
2432 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (from_a);
2433 if (! ALLOCNO_BAD_SPILL_P (from_a))
2434 ALLOCNO_BAD_SPILL_P (a) = false;
2435 aclass = ALLOCNO_CLASS (from_a);
2436 ira_assert (aclass == ALLOCNO_CLASS (a));
2437 ira_allocate_and_accumulate_costs (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2438 ALLOCNO_HARD_REG_COSTS (from_a));
2439 ira_allocate_and_accumulate_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2440 aclass,
2441 ALLOCNO_CONFLICT_HARD_REG_COSTS (from_a));
2442 ALLOCNO_CLASS_COST (a) += ALLOCNO_CLASS_COST (from_a);
2443 ALLOCNO_MEMORY_COST (a) += ALLOCNO_MEMORY_COST (from_a);
2444 }
2445
2446 /* Remove allocnos from loops removed from the allocation
2447 consideration. */
2448 static void
remove_unnecessary_allocnos(void)2449 remove_unnecessary_allocnos (void)
2450 {
2451 int regno;
2452 bool merged_p, rebuild_p;
2453 ira_allocno_t a, prev_a, next_a, parent_a;
2454 ira_loop_tree_node_t a_node, parent;
2455
2456 merged_p = false;
2457 regno_allocnos = NULL;
2458 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
2459 {
2460 rebuild_p = false;
2461 for (prev_a = NULL, a = ira_regno_allocno_map[regno];
2462 a != NULL;
2463 a = next_a)
2464 {
2465 next_a = ALLOCNO_NEXT_REGNO_ALLOCNO (a);
2466 a_node = ALLOCNO_LOOP_TREE_NODE (a);
2467 if (! a_node->to_remove_p)
2468 prev_a = a;
2469 else
2470 {
2471 for (parent = a_node->parent;
2472 (parent_a = parent->regno_allocno_map[regno]) == NULL
2473 && parent->to_remove_p;
2474 parent = parent->parent)
2475 ;
2476 if (parent_a == NULL)
2477 {
2478 /* There are no allocnos with the same regno in
2479 upper region -- just move the allocno to the
2480 upper region. */
2481 prev_a = a;
2482 ALLOCNO_LOOP_TREE_NODE (a) = parent;
2483 parent->regno_allocno_map[regno] = a;
2484 bitmap_set_bit (parent->all_allocnos, ALLOCNO_NUM (a));
2485 rebuild_p = true;
2486 }
2487 else
2488 {
2489 /* Remove the allocno and update info of allocno in
2490 the upper region. */
2491 if (prev_a == NULL)
2492 ira_regno_allocno_map[regno] = next_a;
2493 else
2494 ALLOCNO_NEXT_REGNO_ALLOCNO (prev_a) = next_a;
2495 move_allocno_live_ranges (a, parent_a);
2496 merged_p = true;
2497 propagate_some_info_from_allocno (parent_a, a);
2498 /* Remove it from the corresponding regno allocno
2499 map to avoid info propagation of subsequent
2500 allocno into this already removed allocno. */
2501 a_node->regno_allocno_map[regno] = NULL;
2502 ira_remove_allocno_prefs (a);
2503 finish_allocno (a);
2504 }
2505 }
2506 }
2507 if (rebuild_p)
2508 /* We need to restore the order in regno allocno list. */
2509 {
2510 if (regno_allocnos == NULL)
2511 regno_allocnos
2512 = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
2513 * ira_allocnos_num);
2514 ira_rebuild_regno_allocno_list (regno);
2515 }
2516 }
2517 if (merged_p)
2518 ira_rebuild_start_finish_chains ();
2519 if (regno_allocnos != NULL)
2520 ira_free (regno_allocnos);
2521 }
2522
2523 /* Remove allocnos from all loops but the root. */
2524 static void
remove_low_level_allocnos(void)2525 remove_low_level_allocnos (void)
2526 {
2527 int regno;
2528 bool merged_p, propagate_p;
2529 ira_allocno_t a, top_a;
2530 ira_loop_tree_node_t a_node, parent;
2531 ira_allocno_iterator ai;
2532
2533 merged_p = false;
2534 FOR_EACH_ALLOCNO (a, ai)
2535 {
2536 a_node = ALLOCNO_LOOP_TREE_NODE (a);
2537 if (a_node == ira_loop_tree_root || ALLOCNO_CAP_MEMBER (a) != NULL)
2538 continue;
2539 regno = ALLOCNO_REGNO (a);
2540 if ((top_a = ira_loop_tree_root->regno_allocno_map[regno]) == NULL)
2541 {
2542 ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root;
2543 ira_loop_tree_root->regno_allocno_map[regno] = a;
2544 continue;
2545 }
2546 propagate_p = a_node->parent->regno_allocno_map[regno] == NULL;
2547 /* Remove the allocno and update info of allocno in the upper
2548 region. */
2549 move_allocno_live_ranges (a, top_a);
2550 merged_p = true;
2551 if (propagate_p)
2552 propagate_some_info_from_allocno (top_a, a);
2553 }
2554 FOR_EACH_ALLOCNO (a, ai)
2555 {
2556 a_node = ALLOCNO_LOOP_TREE_NODE (a);
2557 if (a_node == ira_loop_tree_root)
2558 continue;
2559 parent = a_node->parent;
2560 regno = ALLOCNO_REGNO (a);
2561 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2562 ira_assert (ALLOCNO_CAP (a) != NULL);
2563 else if (ALLOCNO_CAP (a) == NULL)
2564 ira_assert (parent->regno_allocno_map[regno] != NULL);
2565 }
2566 FOR_EACH_ALLOCNO (a, ai)
2567 {
2568 regno = ALLOCNO_REGNO (a);
2569 if (ira_loop_tree_root->regno_allocno_map[regno] == a)
2570 {
2571 ira_object_t obj;
2572 ira_allocno_object_iterator oi;
2573
2574 ira_regno_allocno_map[regno] = a;
2575 ALLOCNO_NEXT_REGNO_ALLOCNO (a) = NULL;
2576 ALLOCNO_CAP_MEMBER (a) = NULL;
2577 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2578 COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
2579 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
2580 #ifdef STACK_REGS
2581 if (ALLOCNO_TOTAL_NO_STACK_REG_P (a))
2582 ALLOCNO_NO_STACK_REG_P (a) = true;
2583 #endif
2584 }
2585 else
2586 {
2587 ira_remove_allocno_prefs (a);
2588 finish_allocno (a);
2589 }
2590 }
2591 if (merged_p)
2592 ira_rebuild_start_finish_chains ();
2593 }
2594
2595 /* Remove loops from consideration. We remove all loops except for
2596 root if ALL_P or loops for which a separate allocation will not
2597 improve the result. We have to do this after allocno creation and
2598 their costs and allocno class evaluation because only after that
2599 the register pressure can be known and is calculated. */
2600 static void
remove_unnecessary_regions(bool all_p)2601 remove_unnecessary_regions (bool all_p)
2602 {
2603 if (current_loops == NULL)
2604 return;
2605 if (all_p)
2606 mark_all_loops_for_removal ();
2607 else
2608 mark_loops_for_removal ();
2609 children_vec.create (last_basic_block_for_fn (cfun)
2610 + number_of_loops (cfun));
2611 removed_loop_vec.create (last_basic_block_for_fn (cfun)
2612 + number_of_loops (cfun));
2613 remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_root);
2614 children_vec.release ();
2615 if (all_p)
2616 remove_low_level_allocnos ();
2617 else
2618 remove_unnecessary_allocnos ();
2619 while (removed_loop_vec.length () > 0)
2620 finish_loop_tree_node (removed_loop_vec.pop ());
2621 removed_loop_vec.release ();
2622 }
2623
2624
2625
2626 /* At this point true value of allocno attribute bad_spill_p means
2627 that there is an insn where allocno occurs and where the allocno
2628 can not be used as memory. The function updates the attribute, now
2629 it can be true only for allocnos which can not be used as memory in
2630 an insn and in whose live ranges there is other allocno deaths.
2631 Spilling allocnos with true value will not improve the code because
2632 it will not make other allocnos colorable and additional reloads
2633 for the corresponding pseudo will be generated in reload pass for
2634 each insn it occurs.
2635
2636 This is a trick mentioned in one classic article of Chaitin etc
2637 which is frequently omitted in other implementations of RA based on
2638 graph coloring. */
2639 static void
update_bad_spill_attribute(void)2640 update_bad_spill_attribute (void)
2641 {
2642 int i;
2643 ira_allocno_t a;
2644 ira_allocno_iterator ai;
2645 ira_allocno_object_iterator aoi;
2646 ira_object_t obj;
2647 live_range_t r;
2648 enum reg_class aclass;
2649 bitmap_head dead_points[N_REG_CLASSES];
2650
2651 for (i = 0; i < ira_allocno_classes_num; i++)
2652 {
2653 aclass = ira_allocno_classes[i];
2654 bitmap_initialize (&dead_points[aclass], ®_obstack);
2655 }
2656 FOR_EACH_ALLOCNO (a, ai)
2657 {
2658 aclass = ALLOCNO_CLASS (a);
2659 if (aclass == NO_REGS)
2660 continue;
2661 FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi)
2662 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
2663 bitmap_set_bit (&dead_points[aclass], r->finish);
2664 }
2665 FOR_EACH_ALLOCNO (a, ai)
2666 {
2667 aclass = ALLOCNO_CLASS (a);
2668 if (aclass == NO_REGS)
2669 continue;
2670 if (! ALLOCNO_BAD_SPILL_P (a))
2671 continue;
2672 FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi)
2673 {
2674 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
2675 {
2676 for (i = r->start + 1; i < r->finish; i++)
2677 if (bitmap_bit_p (&dead_points[aclass], i))
2678 break;
2679 if (i < r->finish)
2680 break;
2681 }
2682 if (r != NULL)
2683 {
2684 ALLOCNO_BAD_SPILL_P (a) = false;
2685 break;
2686 }
2687 }
2688 }
2689 for (i = 0; i < ira_allocno_classes_num; i++)
2690 {
2691 aclass = ira_allocno_classes[i];
2692 bitmap_clear (&dead_points[aclass]);
2693 }
2694 }
2695
2696
2697
2698 /* Set up minimal and maximal live range points for allocnos. */
2699 static void
setup_min_max_allocno_live_range_point(void)2700 setup_min_max_allocno_live_range_point (void)
2701 {
2702 int i;
2703 ira_allocno_t a, parent_a, cap;
2704 ira_allocno_iterator ai;
2705 #ifdef ENABLE_IRA_CHECKING
2706 ira_object_iterator oi;
2707 ira_object_t obj;
2708 #endif
2709 live_range_t r;
2710 ira_loop_tree_node_t parent;
2711
2712 FOR_EACH_ALLOCNO (a, ai)
2713 {
2714 int n = ALLOCNO_NUM_OBJECTS (a);
2715
2716 for (i = 0; i < n; i++)
2717 {
2718 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2719 r = OBJECT_LIVE_RANGES (obj);
2720 if (r == NULL)
2721 continue;
2722 OBJECT_MAX (obj) = r->finish;
2723 for (; r->next != NULL; r = r->next)
2724 ;
2725 OBJECT_MIN (obj) = r->start;
2726 }
2727 }
2728 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
2729 for (a = ira_regno_allocno_map[i];
2730 a != NULL;
2731 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2732 {
2733 int j;
2734 int n = ALLOCNO_NUM_OBJECTS (a);
2735
2736 for (j = 0; j < n; j++)
2737 {
2738 ira_object_t obj = ALLOCNO_OBJECT (a, j);
2739 ira_object_t parent_obj;
2740
2741 if (OBJECT_MAX (obj) < 0)
2742 continue;
2743 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2744 /* Accumulation of range info. */
2745 if (ALLOCNO_CAP (a) != NULL)
2746 {
2747 for (cap = ALLOCNO_CAP (a); cap != NULL; cap = ALLOCNO_CAP (cap))
2748 {
2749 ira_object_t cap_obj = ALLOCNO_OBJECT (cap, j);
2750 if (OBJECT_MAX (cap_obj) < OBJECT_MAX (obj))
2751 OBJECT_MAX (cap_obj) = OBJECT_MAX (obj);
2752 if (OBJECT_MIN (cap_obj) > OBJECT_MIN (obj))
2753 OBJECT_MIN (cap_obj) = OBJECT_MIN (obj);
2754 }
2755 continue;
2756 }
2757 if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL)
2758 continue;
2759 parent_a = parent->regno_allocno_map[i];
2760 parent_obj = ALLOCNO_OBJECT (parent_a, j);
2761 if (OBJECT_MAX (parent_obj) < OBJECT_MAX (obj))
2762 OBJECT_MAX (parent_obj) = OBJECT_MAX (obj);
2763 if (OBJECT_MIN (parent_obj) > OBJECT_MIN (obj))
2764 OBJECT_MIN (parent_obj) = OBJECT_MIN (obj);
2765 }
2766 }
2767 #ifdef ENABLE_IRA_CHECKING
2768 FOR_EACH_OBJECT (obj, oi)
2769 {
2770 if ((0 <= OBJECT_MIN (obj) && OBJECT_MIN (obj) <= ira_max_point)
2771 && (0 <= OBJECT_MAX (obj) && OBJECT_MAX (obj) <= ira_max_point))
2772 continue;
2773 gcc_unreachable ();
2774 }
2775 #endif
2776 }
2777
2778 /* Sort allocnos according to their live ranges. Allocnos with
2779 smaller allocno class are put first unless we use priority
2780 coloring. Allocnos with the same class are ordered according
2781 their start (min). Allocnos with the same start are ordered
2782 according their finish (max). */
2783 static int
object_range_compare_func(const void * v1p,const void * v2p)2784 object_range_compare_func (const void *v1p, const void *v2p)
2785 {
2786 int diff;
2787 ira_object_t obj1 = *(const ira_object_t *) v1p;
2788 ira_object_t obj2 = *(const ira_object_t *) v2p;
2789 ira_allocno_t a1 = OBJECT_ALLOCNO (obj1);
2790 ira_allocno_t a2 = OBJECT_ALLOCNO (obj2);
2791
2792 if ((diff = OBJECT_MIN (obj1) - OBJECT_MIN (obj2)) != 0)
2793 return diff;
2794 if ((diff = OBJECT_MAX (obj1) - OBJECT_MAX (obj2)) != 0)
2795 return diff;
2796 return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
2797 }
2798
2799 /* Sort ira_object_id_map and set up conflict id of allocnos. */
2800 static void
sort_conflict_id_map(void)2801 sort_conflict_id_map (void)
2802 {
2803 int i, num;
2804 ira_allocno_t a;
2805 ira_allocno_iterator ai;
2806
2807 num = 0;
2808 FOR_EACH_ALLOCNO (a, ai)
2809 {
2810 ira_allocno_object_iterator oi;
2811 ira_object_t obj;
2812
2813 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2814 ira_object_id_map[num++] = obj;
2815 }
2816 qsort (ira_object_id_map, num, sizeof (ira_object_t),
2817 object_range_compare_func);
2818 for (i = 0; i < num; i++)
2819 {
2820 ira_object_t obj = ira_object_id_map[i];
2821
2822 gcc_assert (obj != NULL);
2823 OBJECT_CONFLICT_ID (obj) = i;
2824 }
2825 for (i = num; i < ira_objects_num; i++)
2826 ira_object_id_map[i] = NULL;
2827 }
2828
2829 /* Set up minimal and maximal conflict ids of allocnos with which
2830 given allocno can conflict. */
2831 static void
setup_min_max_conflict_allocno_ids(void)2832 setup_min_max_conflict_allocno_ids (void)
2833 {
2834 int aclass;
2835 int i, j, min, max, start, finish, first_not_finished, filled_area_start;
2836 int *live_range_min, *last_lived;
2837 int word0_min, word0_max;
2838 ira_allocno_t a;
2839 ira_allocno_iterator ai;
2840
2841 live_range_min = (int *) ira_allocate (sizeof (int) * ira_objects_num);
2842 aclass = -1;
2843 first_not_finished = -1;
2844 for (i = 0; i < ira_objects_num; i++)
2845 {
2846 ira_object_t obj = ira_object_id_map[i];
2847
2848 if (obj == NULL)
2849 continue;
2850
2851 a = OBJECT_ALLOCNO (obj);
2852
2853 if (aclass < 0)
2854 {
2855 aclass = ALLOCNO_CLASS (a);
2856 min = i;
2857 first_not_finished = i;
2858 }
2859 else
2860 {
2861 start = OBJECT_MIN (obj);
2862 /* If we skip an allocno, the allocno with smaller ids will
2863 be also skipped because of the secondary sorting the
2864 range finishes (see function
2865 object_range_compare_func). */
2866 while (first_not_finished < i
2867 && start > OBJECT_MAX (ira_object_id_map
2868 [first_not_finished]))
2869 first_not_finished++;
2870 min = first_not_finished;
2871 }
2872 if (min == i)
2873 /* We could increase min further in this case but it is good
2874 enough. */
2875 min++;
2876 live_range_min[i] = OBJECT_MIN (obj);
2877 OBJECT_MIN (obj) = min;
2878 }
2879 last_lived = (int *) ira_allocate (sizeof (int) * ira_max_point);
2880 aclass = -1;
2881 filled_area_start = -1;
2882 for (i = ira_objects_num - 1; i >= 0; i--)
2883 {
2884 ira_object_t obj = ira_object_id_map[i];
2885
2886 if (obj == NULL)
2887 continue;
2888
2889 a = OBJECT_ALLOCNO (obj);
2890 if (aclass < 0)
2891 {
2892 aclass = ALLOCNO_CLASS (a);
2893 for (j = 0; j < ira_max_point; j++)
2894 last_lived[j] = -1;
2895 filled_area_start = ira_max_point;
2896 }
2897 min = live_range_min[i];
2898 finish = OBJECT_MAX (obj);
2899 max = last_lived[finish];
2900 if (max < 0)
2901 /* We could decrease max further in this case but it is good
2902 enough. */
2903 max = OBJECT_CONFLICT_ID (obj) - 1;
2904 OBJECT_MAX (obj) = max;
2905 /* In filling, we can go further A range finish to recognize
2906 intersection quickly because if the finish of subsequently
2907 processed allocno (it has smaller conflict id) range is
2908 further A range finish than they are definitely intersected
2909 (the reason for this is the allocnos with bigger conflict id
2910 have their range starts not smaller than allocnos with
2911 smaller ids. */
2912 for (j = min; j < filled_area_start; j++)
2913 last_lived[j] = i;
2914 filled_area_start = min;
2915 }
2916 ira_free (last_lived);
2917 ira_free (live_range_min);
2918
2919 /* For allocnos with more than one object, we may later record extra conflicts in
2920 subobject 0 that we cannot really know about here.
2921 For now, simply widen the min/max range of these subobjects. */
2922
2923 word0_min = INT_MAX;
2924 word0_max = INT_MIN;
2925
2926 FOR_EACH_ALLOCNO (a, ai)
2927 {
2928 int n = ALLOCNO_NUM_OBJECTS (a);
2929 ira_object_t obj0;
2930
2931 if (n < 2)
2932 continue;
2933 obj0 = ALLOCNO_OBJECT (a, 0);
2934 if (OBJECT_CONFLICT_ID (obj0) < word0_min)
2935 word0_min = OBJECT_CONFLICT_ID (obj0);
2936 if (OBJECT_CONFLICT_ID (obj0) > word0_max)
2937 word0_max = OBJECT_CONFLICT_ID (obj0);
2938 }
2939 FOR_EACH_ALLOCNO (a, ai)
2940 {
2941 int n = ALLOCNO_NUM_OBJECTS (a);
2942 ira_object_t obj0;
2943
2944 if (n < 2)
2945 continue;
2946 obj0 = ALLOCNO_OBJECT (a, 0);
2947 if (OBJECT_MIN (obj0) > word0_min)
2948 OBJECT_MIN (obj0) = word0_min;
2949 if (OBJECT_MAX (obj0) < word0_max)
2950 OBJECT_MAX (obj0) = word0_max;
2951 }
2952 }
2953
2954
2955
2956 static void
create_caps(void)2957 create_caps (void)
2958 {
2959 ira_allocno_t a;
2960 ira_allocno_iterator ai;
2961 ira_loop_tree_node_t loop_tree_node;
2962
2963 FOR_EACH_ALLOCNO (a, ai)
2964 {
2965 if (ALLOCNO_LOOP_TREE_NODE (a) == ira_loop_tree_root)
2966 continue;
2967 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2968 create_cap_allocno (a);
2969 else if (ALLOCNO_CAP (a) == NULL)
2970 {
2971 loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2972 if (!bitmap_bit_p (loop_tree_node->border_allocnos, ALLOCNO_NUM (a)))
2973 create_cap_allocno (a);
2974 }
2975 }
2976 }
2977
2978
2979
2980 /* The page contains code transforming more one region internal
2981 representation (IR) to one region IR which is necessary for reload.
2982 This transformation is called IR flattening. We might just rebuild
2983 the IR for one region but we don't do it because it takes a lot of
2984 time. */
2985
2986 /* Map: regno -> allocnos which will finally represent the regno for
2987 IR with one region. */
2988 static ira_allocno_t *regno_top_level_allocno_map;
2989
2990 /* Find the allocno that corresponds to A at a level one higher up in the
2991 loop tree. Returns NULL if A is a cap, or if it has no parent. */
2992 ira_allocno_t
ira_parent_allocno(ira_allocno_t a)2993 ira_parent_allocno (ira_allocno_t a)
2994 {
2995 ira_loop_tree_node_t parent;
2996
2997 if (ALLOCNO_CAP (a) != NULL)
2998 return NULL;
2999
3000 parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
3001 if (parent == NULL)
3002 return NULL;
3003
3004 return parent->regno_allocno_map[ALLOCNO_REGNO (a)];
3005 }
3006
3007 /* Find the allocno that corresponds to A at a level one higher up in the
3008 loop tree. If ALLOCNO_CAP is set for A, return that. */
3009 ira_allocno_t
ira_parent_or_cap_allocno(ira_allocno_t a)3010 ira_parent_or_cap_allocno (ira_allocno_t a)
3011 {
3012 if (ALLOCNO_CAP (a) != NULL)
3013 return ALLOCNO_CAP (a);
3014
3015 return ira_parent_allocno (a);
3016 }
3017
3018 /* Process all allocnos originated from pseudo REGNO and copy live
3019 ranges, hard reg conflicts, and allocno stack reg attributes from
3020 low level allocnos to final allocnos which are destinations of
3021 removed stores at a loop exit. Return true if we copied live
3022 ranges. */
3023 static bool
copy_info_to_removed_store_destinations(int regno)3024 copy_info_to_removed_store_destinations (int regno)
3025 {
3026 ira_allocno_t a;
3027 ira_allocno_t parent_a = NULL;
3028 ira_loop_tree_node_t parent;
3029 bool merged_p;
3030
3031 merged_p = false;
3032 for (a = ira_regno_allocno_map[regno];
3033 a != NULL;
3034 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
3035 {
3036 if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))])
3037 /* This allocno will be removed. */
3038 continue;
3039
3040 /* Caps will be removed. */
3041 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
3042 for (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
3043 parent != NULL;
3044 parent = parent->parent)
3045 if ((parent_a = parent->regno_allocno_map[regno]) == NULL
3046 || (parent_a
3047 == regno_top_level_allocno_map[REGNO
3048 (allocno_emit_reg (parent_a))]
3049 && ALLOCNO_EMIT_DATA (parent_a)->mem_optimized_dest_p))
3050 break;
3051 if (parent == NULL || parent_a == NULL)
3052 continue;
3053
3054 copy_allocno_live_ranges (a, parent_a);
3055 merge_hard_reg_conflicts (a, parent_a, true);
3056
3057 ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a);
3058 ALLOCNO_CALLS_CROSSED_NUM (parent_a)
3059 += ALLOCNO_CALLS_CROSSED_NUM (a);
3060 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
3061 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
3062 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
3063 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
3064 merged_p = true;
3065 }
3066 return merged_p;
3067 }
3068
3069 /* Flatten the IR. In other words, this function transforms IR as if
3070 it were built with one region (without loops). We could make it
3071 much simpler by rebuilding IR with one region, but unfortunately it
3072 takes a lot of time. MAX_REGNO_BEFORE_EMIT and
3073 IRA_MAX_POINT_BEFORE_EMIT are correspondingly MAX_REG_NUM () and
3074 IRA_MAX_POINT before emitting insns on the loop borders. */
3075 void
ira_flattening(int max_regno_before_emit,int ira_max_point_before_emit)3076 ira_flattening (int max_regno_before_emit, int ira_max_point_before_emit)
3077 {
3078 int i, j;
3079 bool keep_p;
3080 int hard_regs_num;
3081 bool new_pseudos_p, merged_p, mem_dest_p;
3082 unsigned int n;
3083 enum reg_class aclass;
3084 ira_allocno_t a, parent_a, first, second, node_first, node_second;
3085 ira_copy_t cp;
3086 ira_loop_tree_node_t node;
3087 live_range_t r;
3088 ira_allocno_iterator ai;
3089 ira_copy_iterator ci;
3090
3091 regno_top_level_allocno_map
3092 = (ira_allocno_t *) ira_allocate (max_reg_num ()
3093 * sizeof (ira_allocno_t));
3094 memset (regno_top_level_allocno_map, 0,
3095 max_reg_num () * sizeof (ira_allocno_t));
3096 new_pseudos_p = merged_p = false;
3097 FOR_EACH_ALLOCNO (a, ai)
3098 {
3099 ira_allocno_object_iterator oi;
3100 ira_object_t obj;
3101
3102 if (ALLOCNO_CAP_MEMBER (a) != NULL)
3103 /* Caps are not in the regno allocno maps and they are never
3104 will be transformed into allocnos existing after IR
3105 flattening. */
3106 continue;
3107 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
3108 COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
3109 OBJECT_CONFLICT_HARD_REGS (obj));
3110 #ifdef STACK_REGS
3111 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = ALLOCNO_NO_STACK_REG_P (a);
3112 #endif
3113 }
3114 /* Fix final allocno attributes. */
3115 for (i = max_regno_before_emit - 1; i >= FIRST_PSEUDO_REGISTER; i--)
3116 {
3117 mem_dest_p = false;
3118 for (a = ira_regno_allocno_map[i];
3119 a != NULL;
3120 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
3121 {
3122 ira_emit_data_t parent_data, data = ALLOCNO_EMIT_DATA (a);
3123
3124 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
3125 if (data->somewhere_renamed_p)
3126 new_pseudos_p = true;
3127 parent_a = ira_parent_allocno (a);
3128 if (parent_a == NULL)
3129 {
3130 ALLOCNO_COPIES (a) = NULL;
3131 regno_top_level_allocno_map[REGNO (data->reg)] = a;
3132 continue;
3133 }
3134 ira_assert (ALLOCNO_CAP_MEMBER (parent_a) == NULL);
3135
3136 if (data->mem_optimized_dest != NULL)
3137 mem_dest_p = true;
3138 parent_data = ALLOCNO_EMIT_DATA (parent_a);
3139 if (REGNO (data->reg) == REGNO (parent_data->reg))
3140 {
3141 merge_hard_reg_conflicts (a, parent_a, true);
3142 move_allocno_live_ranges (a, parent_a);
3143 merged_p = true;
3144 parent_data->mem_optimized_dest_p
3145 = (parent_data->mem_optimized_dest_p
3146 || data->mem_optimized_dest_p);
3147 continue;
3148 }
3149 new_pseudos_p = true;
3150 for (;;)
3151 {
3152 ALLOCNO_NREFS (parent_a) -= ALLOCNO_NREFS (a);
3153 ALLOCNO_FREQ (parent_a) -= ALLOCNO_FREQ (a);
3154 ALLOCNO_CALL_FREQ (parent_a) -= ALLOCNO_CALL_FREQ (a);
3155 ALLOCNO_CALLS_CROSSED_NUM (parent_a)
3156 -= ALLOCNO_CALLS_CROSSED_NUM (a);
3157 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
3158 -= ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
3159 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
3160 -= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
3161 ira_assert (ALLOCNO_CALLS_CROSSED_NUM (parent_a) >= 0
3162 && ALLOCNO_NREFS (parent_a) >= 0
3163 && ALLOCNO_FREQ (parent_a) >= 0);
3164 aclass = ALLOCNO_CLASS (parent_a);
3165 hard_regs_num = ira_class_hard_regs_num[aclass];
3166 if (ALLOCNO_HARD_REG_COSTS (a) != NULL
3167 && ALLOCNO_HARD_REG_COSTS (parent_a) != NULL)
3168 for (j = 0; j < hard_regs_num; j++)
3169 ALLOCNO_HARD_REG_COSTS (parent_a)[j]
3170 -= ALLOCNO_HARD_REG_COSTS (a)[j];
3171 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL
3172 && ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a) != NULL)
3173 for (j = 0; j < hard_regs_num; j++)
3174 ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a)[j]
3175 -= ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[j];
3176 ALLOCNO_CLASS_COST (parent_a)
3177 -= ALLOCNO_CLASS_COST (a);
3178 ALLOCNO_MEMORY_COST (parent_a) -= ALLOCNO_MEMORY_COST (a);
3179 parent_a = ira_parent_allocno (parent_a);
3180 if (parent_a == NULL)
3181 break;
3182 }
3183 ALLOCNO_COPIES (a) = NULL;
3184 regno_top_level_allocno_map[REGNO (data->reg)] = a;
3185 }
3186 if (mem_dest_p && copy_info_to_removed_store_destinations (i))
3187 merged_p = true;
3188 }
3189 ira_assert (new_pseudos_p || ira_max_point_before_emit == ira_max_point);
3190 if (merged_p || ira_max_point_before_emit != ira_max_point)
3191 ira_rebuild_start_finish_chains ();
3192 if (new_pseudos_p)
3193 {
3194 sparseset objects_live;
3195
3196 /* Rebuild conflicts. */
3197 FOR_EACH_ALLOCNO (a, ai)
3198 {
3199 ira_allocno_object_iterator oi;
3200 ira_object_t obj;
3201
3202 if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
3203 || ALLOCNO_CAP_MEMBER (a) != NULL)
3204 continue;
3205 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
3206 {
3207 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
3208 ira_assert (r->object == obj);
3209 clear_conflicts (obj);
3210 }
3211 }
3212 objects_live = sparseset_alloc (ira_objects_num);
3213 for (i = 0; i < ira_max_point; i++)
3214 {
3215 for (r = ira_start_point_ranges[i]; r != NULL; r = r->start_next)
3216 {
3217 ira_object_t obj = r->object;
3218
3219 a = OBJECT_ALLOCNO (obj);
3220 if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
3221 || ALLOCNO_CAP_MEMBER (a) != NULL)
3222 continue;
3223
3224 aclass = ALLOCNO_CLASS (a);
3225 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
3226 EXECUTE_IF_SET_IN_SPARSESET (objects_live, n)
3227 {
3228 ira_object_t live_obj = ira_object_id_map[n];
3229 ira_allocno_t live_a = OBJECT_ALLOCNO (live_obj);
3230 enum reg_class live_aclass = ALLOCNO_CLASS (live_a);
3231
3232 if (ira_reg_classes_intersect_p[aclass][live_aclass]
3233 /* Don't set up conflict for the allocno with itself. */
3234 && live_a != a)
3235 ira_add_conflict (obj, live_obj);
3236 }
3237 }
3238
3239 for (r = ira_finish_point_ranges[i]; r != NULL; r = r->finish_next)
3240 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (r->object));
3241 }
3242 sparseset_free (objects_live);
3243 compress_conflict_vecs ();
3244 }
3245 /* Mark some copies for removing and change allocnos in the rest
3246 copies. */
3247 FOR_EACH_COPY (cp, ci)
3248 {
3249 if (ALLOCNO_CAP_MEMBER (cp->first) != NULL
3250 || ALLOCNO_CAP_MEMBER (cp->second) != NULL)
3251 {
3252 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
3253 fprintf
3254 (ira_dump_file, " Remove cp%d:%c%dr%d-%c%dr%d\n",
3255 cp->num, ALLOCNO_CAP_MEMBER (cp->first) != NULL ? 'c' : 'a',
3256 ALLOCNO_NUM (cp->first),
3257 REGNO (allocno_emit_reg (cp->first)),
3258 ALLOCNO_CAP_MEMBER (cp->second) != NULL ? 'c' : 'a',
3259 ALLOCNO_NUM (cp->second),
3260 REGNO (allocno_emit_reg (cp->second)));
3261 cp->loop_tree_node = NULL;
3262 continue;
3263 }
3264 first
3265 = regno_top_level_allocno_map[REGNO (allocno_emit_reg (cp->first))];
3266 second
3267 = regno_top_level_allocno_map[REGNO (allocno_emit_reg (cp->second))];
3268 node = cp->loop_tree_node;
3269 if (node == NULL)
3270 keep_p = true; /* It copy generated in ira-emit.c. */
3271 else
3272 {
3273 /* Check that the copy was not propagated from level on
3274 which we will have different pseudos. */
3275 node_first = node->regno_allocno_map[ALLOCNO_REGNO (cp->first)];
3276 node_second = node->regno_allocno_map[ALLOCNO_REGNO (cp->second)];
3277 keep_p = ((REGNO (allocno_emit_reg (first))
3278 == REGNO (allocno_emit_reg (node_first)))
3279 && (REGNO (allocno_emit_reg (second))
3280 == REGNO (allocno_emit_reg (node_second))));
3281 }
3282 if (keep_p)
3283 {
3284 cp->loop_tree_node = ira_loop_tree_root;
3285 cp->first = first;
3286 cp->second = second;
3287 }
3288 else
3289 {
3290 cp->loop_tree_node = NULL;
3291 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
3292 fprintf (ira_dump_file, " Remove cp%d:a%dr%d-a%dr%d\n",
3293 cp->num, ALLOCNO_NUM (cp->first),
3294 REGNO (allocno_emit_reg (cp->first)),
3295 ALLOCNO_NUM (cp->second),
3296 REGNO (allocno_emit_reg (cp->second)));
3297 }
3298 }
3299 /* Remove unnecessary allocnos on lower levels of the loop tree. */
3300 FOR_EACH_ALLOCNO (a, ai)
3301 {
3302 if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
3303 || ALLOCNO_CAP_MEMBER (a) != NULL)
3304 {
3305 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
3306 fprintf (ira_dump_file, " Remove a%dr%d\n",
3307 ALLOCNO_NUM (a), REGNO (allocno_emit_reg (a)));
3308 ira_remove_allocno_prefs (a);
3309 finish_allocno (a);
3310 continue;
3311 }
3312 ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root;
3313 ALLOCNO_REGNO (a) = REGNO (allocno_emit_reg (a));
3314 ALLOCNO_CAP (a) = NULL;
3315 /* Restore updated costs for assignments from reload. */
3316 ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a);
3317 ALLOCNO_UPDATED_CLASS_COST (a) = ALLOCNO_CLASS_COST (a);
3318 if (! ALLOCNO_ASSIGNED_P (a))
3319 ira_free_allocno_updated_costs (a);
3320 ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
3321 ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
3322 }
3323 /* Remove unnecessary copies. */
3324 FOR_EACH_COPY (cp, ci)
3325 {
3326 if (cp->loop_tree_node == NULL)
3327 {
3328 ira_copies[cp->num] = NULL;
3329 finish_copy (cp);
3330 continue;
3331 }
3332 ira_assert
3333 (ALLOCNO_LOOP_TREE_NODE (cp->first) == ira_loop_tree_root
3334 && ALLOCNO_LOOP_TREE_NODE (cp->second) == ira_loop_tree_root);
3335 add_allocno_copy_to_list (cp);
3336 swap_allocno_copy_ends_if_necessary (cp);
3337 }
3338 rebuild_regno_allocno_maps ();
3339 if (ira_max_point != ira_max_point_before_emit)
3340 ira_compress_allocno_live_ranges ();
3341 ira_free (regno_top_level_allocno_map);
3342 }
3343
3344
3345
3346 #ifdef ENABLE_IRA_CHECKING
3347 /* Check creation of all allocnos. Allocnos on lower levels should
3348 have allocnos or caps on all upper levels. */
3349 static void
check_allocno_creation(void)3350 check_allocno_creation (void)
3351 {
3352 ira_allocno_t a;
3353 ira_allocno_iterator ai;
3354 ira_loop_tree_node_t loop_tree_node;
3355
3356 FOR_EACH_ALLOCNO (a, ai)
3357 {
3358 loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
3359 ira_assert (bitmap_bit_p (loop_tree_node->all_allocnos,
3360 ALLOCNO_NUM (a)));
3361 if (loop_tree_node == ira_loop_tree_root)
3362 continue;
3363 if (ALLOCNO_CAP_MEMBER (a) != NULL)
3364 ira_assert (ALLOCNO_CAP (a) != NULL);
3365 else if (ALLOCNO_CAP (a) == NULL)
3366 ira_assert (loop_tree_node->parent
3367 ->regno_allocno_map[ALLOCNO_REGNO (a)] != NULL
3368 && bitmap_bit_p (loop_tree_node->border_allocnos,
3369 ALLOCNO_NUM (a)));
3370 }
3371 }
3372 #endif
3373
3374 /* Identify allocnos which prefer a register class with a single hard register.
3375 Adjust ALLOCNO_CONFLICT_HARD_REG_COSTS so that conflicting allocnos are
3376 less likely to use the preferred singleton register. */
3377 static void
update_conflict_hard_reg_costs(void)3378 update_conflict_hard_reg_costs (void)
3379 {
3380 ira_allocno_t a;
3381 ira_allocno_iterator ai;
3382 int i, index, min;
3383
3384 FOR_EACH_ALLOCNO (a, ai)
3385 {
3386 reg_class_t aclass = ALLOCNO_CLASS (a);
3387 reg_class_t pref = reg_preferred_class (ALLOCNO_REGNO (a));
3388 int singleton = ira_class_singleton[pref][ALLOCNO_MODE (a)];
3389 if (singleton < 0)
3390 continue;
3391 index = ira_class_hard_reg_index[(int) aclass][singleton];
3392 if (index < 0)
3393 continue;
3394 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) == NULL
3395 || ALLOCNO_HARD_REG_COSTS (a) == NULL)
3396 continue;
3397 min = INT_MAX;
3398 for (i = ira_class_hard_regs_num[(int) aclass] - 1; i >= 0; i--)
3399 if (ALLOCNO_HARD_REG_COSTS (a)[i] > ALLOCNO_CLASS_COST (a)
3400 && min > ALLOCNO_HARD_REG_COSTS (a)[i])
3401 min = ALLOCNO_HARD_REG_COSTS (a)[i];
3402 if (min == INT_MAX)
3403 continue;
3404 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
3405 aclass, 0);
3406 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[index]
3407 -= min - ALLOCNO_CLASS_COST (a);
3408 }
3409 }
3410
3411 /* Create a internal representation (IR) for IRA (allocnos, copies,
3412 loop tree nodes). The function returns TRUE if we generate loop
3413 structure (besides nodes representing all function and the basic
3414 blocks) for regional allocation. A true return means that we
3415 really need to flatten IR before the reload. */
3416 bool
ira_build(void)3417 ira_build (void)
3418 {
3419 bool loops_p;
3420
3421 df_analyze ();
3422 initiate_cost_vectors ();
3423 initiate_allocnos ();
3424 initiate_prefs ();
3425 initiate_copies ();
3426 create_loop_tree_nodes ();
3427 form_loop_tree ();
3428 create_allocnos ();
3429 ira_costs ();
3430 create_allocno_objects ();
3431 ira_create_allocno_live_ranges ();
3432 remove_unnecessary_regions (false);
3433 ira_compress_allocno_live_ranges ();
3434 update_bad_spill_attribute ();
3435 loops_p = more_one_region_p ();
3436 if (loops_p)
3437 {
3438 propagate_allocno_info ();
3439 create_caps ();
3440 }
3441 ira_tune_allocno_costs ();
3442 #ifdef ENABLE_IRA_CHECKING
3443 check_allocno_creation ();
3444 #endif
3445 setup_min_max_allocno_live_range_point ();
3446 sort_conflict_id_map ();
3447 setup_min_max_conflict_allocno_ids ();
3448 ira_build_conflicts ();
3449 update_conflict_hard_reg_costs ();
3450 if (! ira_conflicts_p)
3451 {
3452 ira_allocno_t a;
3453 ira_allocno_iterator ai;
3454
3455 /* Remove all regions but root one. */
3456 if (loops_p)
3457 {
3458 remove_unnecessary_regions (true);
3459 loops_p = false;
3460 }
3461 /* We don't save hard registers around calls for fast allocation
3462 -- add caller clobbered registers as conflicting ones to
3463 allocno crossing calls. */
3464 FOR_EACH_ALLOCNO (a, ai)
3465 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
3466 ior_hard_reg_conflicts (a, &call_used_reg_set);
3467 }
3468 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
3469 print_copies (ira_dump_file);
3470 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
3471 print_prefs (ira_dump_file);
3472 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3473 {
3474 int n, nr, nr_big;
3475 ira_allocno_t a;
3476 live_range_t r;
3477 ira_allocno_iterator ai;
3478
3479 n = 0;
3480 nr = 0;
3481 nr_big = 0;
3482 FOR_EACH_ALLOCNO (a, ai)
3483 {
3484 int j, nobj = ALLOCNO_NUM_OBJECTS (a);
3485
3486 if (nobj > 1)
3487 nr_big++;
3488 for (j = 0; j < nobj; j++)
3489 {
3490 ira_object_t obj = ALLOCNO_OBJECT (a, j);
3491 n += OBJECT_NUM_CONFLICTS (obj);
3492 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
3493 nr++;
3494 }
3495 }
3496 fprintf (ira_dump_file, " regions=%d, blocks=%d, points=%d\n",
3497 current_loops == NULL ? 1 : number_of_loops (cfun),
3498 n_basic_blocks_for_fn (cfun), ira_max_point);
3499 fprintf (ira_dump_file,
3500 " allocnos=%d (big %d), copies=%d, conflicts=%d, ranges=%d\n",
3501 ira_allocnos_num, nr_big, ira_copies_num, n, nr);
3502 }
3503 return loops_p;
3504 }
3505
3506 /* Release the data created by function ira_build. */
3507 void
ira_destroy(void)3508 ira_destroy (void)
3509 {
3510 finish_loop_tree_nodes ();
3511 finish_prefs ();
3512 finish_copies ();
3513 finish_allocnos ();
3514 finish_cost_vectors ();
3515 ira_finish_allocno_live_ranges ();
3516 }
3517