1 /* Routines to implement minimum-cost maximal flow algorithm used to smooth
2    basic block and edge frequency counts.
3    Copyright (C) 2008-2014 Free Software Foundation, Inc.
4    Contributed by Paul Yuan (yingbo.com@gmail.com) and
5                   Vinodha Ramasamy (vinodha@google.com).
6 
7 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* References:
23    [1] "Feedback-directed Optimizations in GCC with Estimated Edge Profiles
24         from Hardware Event Sampling", Vinodha Ramasamy, Paul Yuan, Dehao Chen,
25         and Robert Hundt; GCC Summit 2008.
26    [2] "Complementing Missing and Inaccurate Profiling Using a Minimum Cost
27         Circulation Algorithm", Roy Levin, Ilan Newman and Gadi Haber;
28         HiPEAC '08.
29 
30    Algorithm to smooth basic block and edge counts:
31    1. create_fixup_graph: Create fixup graph by translating function CFG into
32       a graph that satisfies MCF algorithm requirements.
33    2. find_max_flow: Find maximal flow.
34    3. compute_residual_flow: Form residual network.
35    4. Repeat:
36       cancel_negative_cycle: While G contains a negative cost cycle C, reverse
37       the flow on the found cycle by the minimum residual capacity in that
38       cycle.
39    5. Form the minimal cost flow
40       f(u,v) = rf(v, u).
41    6. adjust_cfg_counts: Update initial edge weights with corrected weights.
42       delta(u.v) = f(u,v) -f(v,u).
43       w*(u,v) = w(u,v) + delta(u,v).  */
44 
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "basic-block.h"
49 #include "gcov-io.h"
50 #include "profile.h"
51 #include "dumpfile.h"
52 
53 /* CAP_INFINITY: Constant to represent infinite capacity.  */
54 #define CAP_INFINITY INTTYPE_MAXIMUM (HOST_WIDEST_INT)
55 
56 /* COST FUNCTION.  */
57 #define K_POS(b)        ((b))
58 #define K_NEG(b)        (50 * (b))
59 #define COST(k, w)      ((k) / mcf_ln ((w) + 2))
60 /* Limit the number of iterations for cancel_negative_cycles() to ensure
61    reasonable compile time.  */
62 #define MAX_ITER(n, e)  10 + (1000000 / ((n) * (e)))
63 typedef enum
64 {
65   INVALID_EDGE,
66   VERTEX_SPLIT_EDGE,	    /* Edge to represent vertex with w(e) = w(v).  */
67   REDIRECT_EDGE,	    /* Edge after vertex transformation.  */
68   REVERSE_EDGE,
69   SOURCE_CONNECT_EDGE,	    /* Single edge connecting to single source.  */
70   SINK_CONNECT_EDGE,	    /* Single edge connecting to single sink.  */
71   BALANCE_EDGE,		    /* Edge connecting with source/sink: cp(e) = 0.  */
72   REDIRECT_NORMALIZED_EDGE, /* Normalized edge for a redirect edge.  */
73   REVERSE_NORMALIZED_EDGE   /* Normalized edge for a reverse edge.  */
74 } edge_type;
75 
76 /* Structure to represent an edge in the fixup graph.  */
77 typedef struct fixup_edge_d
78 {
79   int src;
80   int dest;
81   /* Flag denoting type of edge and attributes for the flow field.  */
82   edge_type type;
83   bool is_rflow_valid;
84   /* Index to the normalization vertex added for this edge.  */
85   int norm_vertex_index;
86   /* Flow for this edge.  */
87   gcov_type flow;
88   /* Residual flow for this edge - used during negative cycle canceling.  */
89   gcov_type rflow;
90   gcov_type weight;
91   gcov_type cost;
92   gcov_type max_capacity;
93 } fixup_edge_type;
94 
95 typedef fixup_edge_type *fixup_edge_p;
96 
97 
98 /* Structure to represent a vertex in the fixup graph.  */
99 typedef struct fixup_vertex_d
100 {
101   vec<fixup_edge_p> succ_edges;
102 } fixup_vertex_type;
103 
104 typedef fixup_vertex_type *fixup_vertex_p;
105 
106 /* Fixup graph used in the MCF algorithm.  */
107 typedef struct fixup_graph_d
108 {
109   /* Current number of vertices for the graph.  */
110   int num_vertices;
111   /* Current number of edges for the graph.  */
112   int num_edges;
113   /* Index of new entry vertex.  */
114   int new_entry_index;
115   /* Index of new exit vertex.  */
116   int new_exit_index;
117   /* Fixup vertex list. Adjacency list for fixup graph.  */
118   fixup_vertex_p vertex_list;
119   /* Fixup edge list.  */
120   fixup_edge_p edge_list;
121 } fixup_graph_type;
122 
123 typedef struct queue_d
124 {
125   int *queue;
126   int head;
127   int tail;
128   int size;
129 } queue_type;
130 
131 /* Structure used in the maximal flow routines to find augmenting path.  */
132 typedef struct augmenting_path_d
133 {
134   /* Queue used to hold vertex indices.  */
135   queue_type queue_list;
136   /* Vector to hold chain of pred vertex indices in augmenting path.  */
137   int *bb_pred;
138   /* Vector that indicates if basic block i has been visited.  */
139   int *is_visited;
140 } augmenting_path_type;
141 
142 
143 /* Function definitions.  */
144 
145 /* Dump routines to aid debugging.  */
146 
147 /* Print basic block with index N for FIXUP_GRAPH in n' and n'' format.  */
148 
149 static void
print_basic_block(FILE * file,fixup_graph_type * fixup_graph,int n)150 print_basic_block (FILE *file, fixup_graph_type *fixup_graph, int n)
151 {
152   if (n == ENTRY_BLOCK)
153     fputs ("ENTRY", file);
154   else if (n == ENTRY_BLOCK + 1)
155     fputs ("ENTRY''", file);
156   else if (n == 2 * EXIT_BLOCK)
157     fputs ("EXIT", file);
158   else if (n == 2 * EXIT_BLOCK + 1)
159     fputs ("EXIT''", file);
160   else if (n == fixup_graph->new_exit_index)
161     fputs ("NEW_EXIT", file);
162   else if (n == fixup_graph->new_entry_index)
163     fputs ("NEW_ENTRY", file);
164   else
165     {
166       fprintf (file, "%d", n / 2);
167       if (n % 2)
168 	fputs ("''", file);
169       else
170 	fputs ("'", file);
171     }
172 }
173 
174 
175 /* Print edge S->D for given fixup_graph with n' and n'' format.
176    PARAMETERS:
177    S is the index of the source vertex of the edge (input) and
178    D is the index of the destination vertex of the edge (input) for the given
179    fixup_graph (input).  */
180 
181 static void
print_edge(FILE * file,fixup_graph_type * fixup_graph,int s,int d)182 print_edge (FILE *file, fixup_graph_type *fixup_graph, int s, int d)
183 {
184   print_basic_block (file, fixup_graph, s);
185   fputs ("->", file);
186   print_basic_block (file, fixup_graph, d);
187 }
188 
189 
190 /* Dump out the attributes of a given edge FEDGE in the fixup_graph to a
191    file.  */
192 static void
dump_fixup_edge(FILE * file,fixup_graph_type * fixup_graph,fixup_edge_p fedge)193 dump_fixup_edge (FILE *file, fixup_graph_type *fixup_graph, fixup_edge_p fedge)
194 {
195   if (!fedge)
196     {
197       fputs ("NULL fixup graph edge.\n", file);
198       return;
199     }
200 
201   print_edge (file, fixup_graph, fedge->src, fedge->dest);
202   fputs (": ", file);
203 
204   if (fedge->type)
205     {
206       fprintf (file, "flow/capacity=" HOST_WIDEST_INT_PRINT_DEC "/",
207 	       fedge->flow);
208       if (fedge->max_capacity == CAP_INFINITY)
209 	fputs ("+oo,", file);
210       else
211 	fprintf (file, "" HOST_WIDEST_INT_PRINT_DEC ",", fedge->max_capacity);
212     }
213 
214   if (fedge->is_rflow_valid)
215     {
216       if (fedge->rflow == CAP_INFINITY)
217 	fputs (" rflow=+oo.", file);
218       else
219 	fprintf (file, " rflow=" HOST_WIDEST_INT_PRINT_DEC ",", fedge->rflow);
220     }
221 
222   fprintf (file, " cost=" HOST_WIDEST_INT_PRINT_DEC ".", fedge->cost);
223 
224   fprintf (file, "\t(%d->%d)", fedge->src, fedge->dest);
225 
226   if (fedge->type)
227     {
228       switch (fedge->type)
229 	{
230 	case VERTEX_SPLIT_EDGE:
231 	  fputs (" @VERTEX_SPLIT_EDGE", file);
232 	  break;
233 
234 	case REDIRECT_EDGE:
235 	  fputs (" @REDIRECT_EDGE", file);
236 	  break;
237 
238 	case SOURCE_CONNECT_EDGE:
239 	  fputs (" @SOURCE_CONNECT_EDGE", file);
240 	  break;
241 
242 	case SINK_CONNECT_EDGE:
243 	  fputs (" @SINK_CONNECT_EDGE", file);
244 	  break;
245 
246 	case REVERSE_EDGE:
247 	  fputs (" @REVERSE_EDGE", file);
248 	  break;
249 
250 	case BALANCE_EDGE:
251 	  fputs (" @BALANCE_EDGE", file);
252 	  break;
253 
254 	case REDIRECT_NORMALIZED_EDGE:
255 	case REVERSE_NORMALIZED_EDGE:
256 	  fputs ("  @NORMALIZED_EDGE", file);
257 	  break;
258 
259 	default:
260 	  fputs (" @INVALID_EDGE", file);
261 	  break;
262 	}
263     }
264   fputs ("\n", file);
265 }
266 
267 
268 /* Print out the edges and vertices of the given FIXUP_GRAPH, into the dump
269    file. The input string MSG is printed out as a heading.  */
270 
271 static void
dump_fixup_graph(FILE * file,fixup_graph_type * fixup_graph,const char * msg)272 dump_fixup_graph (FILE *file, fixup_graph_type *fixup_graph, const char *msg)
273 {
274   int i, j;
275   int fnum_vertices, fnum_edges;
276 
277   fixup_vertex_p fvertex_list, pfvertex;
278   fixup_edge_p pfedge;
279 
280   gcc_assert (fixup_graph);
281   fvertex_list = fixup_graph->vertex_list;
282   fnum_vertices = fixup_graph->num_vertices;
283   fnum_edges = fixup_graph->num_edges;
284 
285   fprintf (file, "\nDump fixup graph for %s(): %s.\n",
286 	   current_function_name (), msg);
287   fprintf (file,
288 	   "There are %d vertices and %d edges. new_exit_index is %d.\n\n",
289 	   fnum_vertices, fnum_edges, fixup_graph->new_exit_index);
290 
291   for (i = 0; i < fnum_vertices; i++)
292     {
293       pfvertex = fvertex_list + i;
294       fprintf (file, "vertex_list[%d]: %d succ fixup edges.\n",
295 	       i, pfvertex->succ_edges.length ());
296 
297       for (j = 0; pfvertex->succ_edges.iterate (j, &pfedge);
298 	   j++)
299 	{
300 	  /* Distinguish forward edges and backward edges in the residual flow
301              network.  */
302 	  if (pfedge->type)
303 	    fputs ("(f) ", file);
304 	  else if (pfedge->is_rflow_valid)
305 	    fputs ("(b) ", file);
306 	  dump_fixup_edge (file, fixup_graph, pfedge);
307 	}
308     }
309 
310   fputs ("\n", file);
311 }
312 
313 
314 /* Utility routines.  */
315 /* ln() implementation: approximate calculation. Returns ln of X.  */
316 
317 static double
mcf_ln(double x)318 mcf_ln (double x)
319 {
320 #define E       2.71828
321   int l = 1;
322   double m = E;
323 
324   gcc_assert (x >= 0);
325 
326   while (m < x)
327     {
328       m *= E;
329       l++;
330     }
331 
332   return l;
333 }
334 
335 
336 /* sqrt() implementation: based on open source QUAKE3 code (magic sqrt
337    implementation) by John Carmack.  Returns sqrt of X.  */
338 
339 static double
mcf_sqrt(double x)340 mcf_sqrt (double x)
341 {
342 #define MAGIC_CONST1    0x1fbcf800
343 #define MAGIC_CONST2    0x5f3759df
344   union {
345     int intPart;
346     float floatPart;
347   } convertor, convertor2;
348 
349   gcc_assert (x >= 0);
350 
351   convertor.floatPart = x;
352   convertor2.floatPart = x;
353   convertor.intPart = MAGIC_CONST1 + (convertor.intPart >> 1);
354   convertor2.intPart = MAGIC_CONST2 - (convertor2.intPart >> 1);
355 
356   return 0.5f * (convertor.floatPart + (x * convertor2.floatPart));
357 }
358 
359 
360 /* Common code shared between add_fixup_edge and add_rfixup_edge. Adds an edge
361    (SRC->DEST) to the edge_list maintained in FIXUP_GRAPH with cost of the edge
362    added set to COST.  */
363 
364 static fixup_edge_p
add_edge(fixup_graph_type * fixup_graph,int src,int dest,gcov_type cost)365 add_edge (fixup_graph_type *fixup_graph, int src, int dest, gcov_type cost)
366 {
367   fixup_vertex_p curr_vertex = fixup_graph->vertex_list + src;
368   fixup_edge_p curr_edge = fixup_graph->edge_list + fixup_graph->num_edges;
369   curr_edge->src = src;
370   curr_edge->dest = dest;
371   curr_edge->cost = cost;
372   fixup_graph->num_edges++;
373   if (dump_file)
374     dump_fixup_edge (dump_file, fixup_graph, curr_edge);
375   curr_vertex->succ_edges.safe_push (curr_edge);
376   return curr_edge;
377 }
378 
379 
380 /* Add a fixup edge (src->dest) with attributes TYPE, WEIGHT, COST and
381    MAX_CAPACITY to the edge_list in the fixup graph.  */
382 
383 static void
add_fixup_edge(fixup_graph_type * fixup_graph,int src,int dest,edge_type type,gcov_type weight,gcov_type cost,gcov_type max_capacity)384 add_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest,
385 		edge_type type, gcov_type weight, gcov_type cost,
386 		gcov_type max_capacity)
387 {
388   fixup_edge_p curr_edge = add_edge (fixup_graph, src, dest, cost);
389   curr_edge->type = type;
390   curr_edge->weight = weight;
391   curr_edge->max_capacity = max_capacity;
392 }
393 
394 
395 /* Add a residual edge (SRC->DEST) with attributes RFLOW and COST
396    to the fixup graph.  */
397 
398 static void
add_rfixup_edge(fixup_graph_type * fixup_graph,int src,int dest,gcov_type rflow,gcov_type cost)399 add_rfixup_edge (fixup_graph_type *fixup_graph, int src, int dest,
400 		 gcov_type rflow, gcov_type cost)
401 {
402   fixup_edge_p curr_edge = add_edge (fixup_graph, src, dest, cost);
403   curr_edge->rflow = rflow;
404   curr_edge->is_rflow_valid = true;
405   /* This edge is not a valid edge - merely used to hold residual flow.  */
406   curr_edge->type = INVALID_EDGE;
407 }
408 
409 
410 /* Return the pointer to fixup edge SRC->DEST or NULL if edge does not
411    exist in the FIXUP_GRAPH.  */
412 
413 static fixup_edge_p
find_fixup_edge(fixup_graph_type * fixup_graph,int src,int dest)414 find_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest)
415 {
416   int j;
417   fixup_edge_p pfedge;
418   fixup_vertex_p pfvertex;
419 
420   gcc_assert (src < fixup_graph->num_vertices);
421 
422   pfvertex = fixup_graph->vertex_list + src;
423 
424   for (j = 0; pfvertex->succ_edges.iterate (j, &pfedge);
425        j++)
426     if (pfedge->dest == dest)
427       return pfedge;
428 
429   return NULL;
430 }
431 
432 
433 /* Cleanup routine to free structures in FIXUP_GRAPH.  */
434 
435 static void
delete_fixup_graph(fixup_graph_type * fixup_graph)436 delete_fixup_graph (fixup_graph_type *fixup_graph)
437 {
438   int i;
439   int fnum_vertices = fixup_graph->num_vertices;
440   fixup_vertex_p pfvertex = fixup_graph->vertex_list;
441 
442   for (i = 0; i < fnum_vertices; i++, pfvertex++)
443     pfvertex->succ_edges.release ();
444 
445   free (fixup_graph->vertex_list);
446   free (fixup_graph->edge_list);
447 }
448 
449 
450 /* Creates a fixup graph FIXUP_GRAPH from the function CFG.  */
451 
452 static void
create_fixup_graph(fixup_graph_type * fixup_graph)453 create_fixup_graph (fixup_graph_type *fixup_graph)
454 {
455   double sqrt_avg_vertex_weight = 0;
456   double total_vertex_weight = 0;
457   double k_pos = 0;
458   double k_neg = 0;
459   /* Vector to hold D(v) = sum_out_edges(v) - sum_in_edges(v).  */
460   gcov_type *diff_out_in = NULL;
461   gcov_type supply_value = 1, demand_value = 0;
462   gcov_type fcost = 0;
463   int new_entry_index = 0, new_exit_index = 0;
464   int i = 0, j = 0;
465   int new_index = 0;
466   basic_block bb;
467   edge e;
468   edge_iterator ei;
469   fixup_edge_p pfedge, r_pfedge;
470   fixup_edge_p fedge_list;
471   int fnum_edges;
472 
473   /* Each basic_block will be split into 2 during vertex transformation.  */
474   int fnum_vertices_after_transform =  2 * n_basic_blocks_for_fn (cfun);
475   int fnum_edges_after_transform =
476     n_edges_for_fn (cfun) + n_basic_blocks_for_fn (cfun);
477 
478   /* Count the new SOURCE and EXIT vertices to be added.  */
479   int fmax_num_vertices =
480     (fnum_vertices_after_transform + n_edges_for_fn (cfun)
481      + n_basic_blocks_for_fn (cfun) + 2);
482 
483   /* In create_fixup_graph: Each basic block and edge can be split into 3
484      edges. Number of balance edges = n_basic_blocks. So after
485      create_fixup_graph:
486      max_edges = 4 * n_basic_blocks + 3 * n_edges
487      Accounting for residual flow edges
488      max_edges = 2 * (4 * n_basic_blocks + 3 * n_edges)
489      = 8 * n_basic_blocks + 6 * n_edges
490      < 8 * n_basic_blocks + 8 * n_edges.  */
491   int fmax_num_edges = 8 * (n_basic_blocks_for_fn (cfun) +
492 			    n_edges_for_fn (cfun));
493 
494   /* Initial num of vertices in the fixup graph.  */
495   fixup_graph->num_vertices = n_basic_blocks_for_fn (cfun);
496 
497   /* Fixup graph vertex list.  */
498   fixup_graph->vertex_list =
499     (fixup_vertex_p) xcalloc (fmax_num_vertices, sizeof (fixup_vertex_type));
500 
501   /* Fixup graph edge list.  */
502   fixup_graph->edge_list =
503     (fixup_edge_p) xcalloc (fmax_num_edges, sizeof (fixup_edge_type));
504 
505   diff_out_in =
506     (gcov_type *) xcalloc (1 + fnum_vertices_after_transform,
507 			   sizeof (gcov_type));
508 
509   /* Compute constants b, k_pos, k_neg used in the cost function calculation.
510      b = sqrt(avg_vertex_weight(cfg)); k_pos = b; k_neg = 50b.  */
511   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
512     total_vertex_weight += bb->count;
513 
514   sqrt_avg_vertex_weight = mcf_sqrt (total_vertex_weight /
515 				     n_basic_blocks_for_fn (cfun));
516 
517   k_pos = K_POS (sqrt_avg_vertex_weight);
518   k_neg = K_NEG (sqrt_avg_vertex_weight);
519 
520   /* 1. Vertex Transformation: Split each vertex v into two vertices v' and v'',
521      connected by an edge e from v' to v''. w(e) = w(v).  */
522 
523   if (dump_file)
524     fprintf (dump_file, "\nVertex transformation:\n");
525 
526   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
527   {
528     /* v'->v'': index1->(index1+1).  */
529     i = 2 * bb->index;
530     fcost = (gcov_type) COST (k_pos, bb->count);
531     add_fixup_edge (fixup_graph, i, i + 1, VERTEX_SPLIT_EDGE, bb->count,
532                     fcost, CAP_INFINITY);
533     fixup_graph->num_vertices++;
534 
535     FOR_EACH_EDGE (e, ei, bb->succs)
536     {
537       /* Edges with ignore attribute set should be treated like they don't
538          exist.  */
539       if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
540         continue;
541       j = 2 * e->dest->index;
542       fcost = (gcov_type) COST (k_pos, e->count);
543       add_fixup_edge (fixup_graph, i + 1, j, REDIRECT_EDGE, e->count, fcost,
544                       CAP_INFINITY);
545     }
546   }
547 
548   /* After vertex transformation.  */
549   gcc_assert (fixup_graph->num_vertices == fnum_vertices_after_transform);
550   /* Redirect edges are not added for edges with ignore attribute.  */
551   gcc_assert (fixup_graph->num_edges <= fnum_edges_after_transform);
552 
553   fnum_edges_after_transform = fixup_graph->num_edges;
554 
555   /* 2. Initialize D(v).  */
556   for (i = 0; i < fnum_edges_after_transform; i++)
557     {
558       pfedge = fixup_graph->edge_list + i;
559       diff_out_in[pfedge->src] += pfedge->weight;
560       diff_out_in[pfedge->dest] -= pfedge->weight;
561     }
562 
563   /* Entry block - vertex indices 0, 1; EXIT block - vertex indices 2, 3.  */
564   for (i = 0; i <= 3; i++)
565     diff_out_in[i] = 0;
566 
567   /* 3. Add reverse edges: needed to decrease counts during smoothing.  */
568   if (dump_file)
569     fprintf (dump_file, "\nReverse edges:\n");
570   for (i = 0; i < fnum_edges_after_transform; i++)
571     {
572       pfedge = fixup_graph->edge_list + i;
573       if ((pfedge->src == 0) || (pfedge->src == 2))
574         continue;
575       r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src);
576       if (!r_pfedge && pfedge->weight)
577 	{
578 	  /* Skip adding reverse edges for edges with w(e) = 0, as its maximum
579 	     capacity is 0.  */
580 	  fcost = (gcov_type) COST (k_neg, pfedge->weight);
581 	  add_fixup_edge (fixup_graph, pfedge->dest, pfedge->src,
582 			  REVERSE_EDGE, 0, fcost, pfedge->weight);
583 	}
584     }
585 
586   /* 4. Create single source and sink. Connect new source vertex s' to function
587      entry block. Connect sink vertex t' to function exit.  */
588   if (dump_file)
589     fprintf (dump_file, "\ns'->S, T->t':\n");
590 
591   new_entry_index = fixup_graph->new_entry_index = fixup_graph->num_vertices;
592   fixup_graph->num_vertices++;
593   /* Set supply_value to 1 to avoid zero count function ENTRY.  */
594   add_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK, SOURCE_CONNECT_EDGE,
595 		  1 /* supply_value */, 0, 1 /* supply_value */);
596 
597   /* Create new exit with EXIT_BLOCK as single pred.  */
598   new_exit_index = fixup_graph->new_exit_index = fixup_graph->num_vertices;
599   fixup_graph->num_vertices++;
600   add_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index,
601                   SINK_CONNECT_EDGE,
602                   0 /* demand_value */, 0, 0 /* demand_value */);
603 
604   /* Connect vertices with unbalanced D(v) to source/sink.  */
605   if (dump_file)
606     fprintf (dump_file, "\nD(v) balance:\n");
607   /* Skip vertices for ENTRY (0, 1) and EXIT (2,3) blocks, so start with i = 4.
608      diff_out_in[v''] will be 0, so skip v'' vertices, hence i += 2.  */
609   for (i = 4; i < new_entry_index; i += 2)
610     {
611       if (diff_out_in[i] > 0)
612 	{
613 	  add_fixup_edge (fixup_graph, i, new_exit_index, BALANCE_EDGE, 0, 0,
614 			  diff_out_in[i]);
615 	  demand_value += diff_out_in[i];
616 	}
617       else if (diff_out_in[i] < 0)
618 	{
619 	  add_fixup_edge (fixup_graph, new_entry_index, i, BALANCE_EDGE, 0, 0,
620 			  -diff_out_in[i]);
621 	  supply_value -= diff_out_in[i];
622 	}
623     }
624 
625   /* Set supply = demand.  */
626   if (dump_file)
627     {
628       fprintf (dump_file, "\nAdjust supply and demand:\n");
629       fprintf (dump_file, "supply_value=" HOST_WIDEST_INT_PRINT_DEC "\n",
630 	       supply_value);
631       fprintf (dump_file, "demand_value=" HOST_WIDEST_INT_PRINT_DEC "\n",
632 	       demand_value);
633     }
634 
635   if (demand_value > supply_value)
636     {
637       pfedge = find_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK);
638       pfedge->max_capacity += (demand_value - supply_value);
639     }
640   else
641     {
642       pfedge = find_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index);
643       pfedge->max_capacity += (supply_value - demand_value);
644     }
645 
646   /* 6. Normalize edges: remove anti-parallel edges. Anti-parallel edges are
647      created by the vertex transformation step from self-edges in the original
648      CFG and by the reverse edges added earlier.  */
649   if (dump_file)
650     fprintf (dump_file, "\nNormalize edges:\n");
651 
652   fnum_edges = fixup_graph->num_edges;
653   fedge_list = fixup_graph->edge_list;
654 
655   for (i = 0; i < fnum_edges; i++)
656     {
657       pfedge = fedge_list + i;
658       r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src);
659       if (((pfedge->type == VERTEX_SPLIT_EDGE)
660 	   || (pfedge->type == REDIRECT_EDGE)) && r_pfedge)
661 	{
662 	  new_index = fixup_graph->num_vertices;
663 	  fixup_graph->num_vertices++;
664 
665 	  if (dump_file)
666 	    {
667 	      fprintf (dump_file, "\nAnti-parallel edge:\n");
668 	      dump_fixup_edge (dump_file, fixup_graph, pfedge);
669 	      dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
670 	      fprintf (dump_file, "New vertex is %d.\n", new_index);
671 	      fprintf (dump_file, "------------------\n");
672 	    }
673 
674 	  pfedge->cost /= 2;
675 	  pfedge->norm_vertex_index = new_index;
676 	  if (dump_file)
677 	    {
678 	      fprintf (dump_file, "After normalization:\n");
679 	      dump_fixup_edge (dump_file, fixup_graph, pfedge);
680 	    }
681 
682 	  /* Add a new fixup edge: new_index->src.  */
683 	  add_fixup_edge (fixup_graph, new_index, pfedge->src,
684 			  REVERSE_NORMALIZED_EDGE, 0, r_pfedge->cost,
685 			  r_pfedge->max_capacity);
686 	  gcc_assert (fixup_graph->num_vertices <= fmax_num_vertices);
687 
688 	  /* Edge: r_pfedge->src -> r_pfedge->dest
689              ==> r_pfedge->src -> new_index.  */
690 	  r_pfedge->dest = new_index;
691 	  r_pfedge->type = REVERSE_NORMALIZED_EDGE;
692 	  r_pfedge->cost = pfedge->cost;
693 	  r_pfedge->max_capacity = pfedge->max_capacity;
694 	  if (dump_file)
695 	    dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
696 	}
697     }
698 
699   if (dump_file)
700     dump_fixup_graph (dump_file, fixup_graph, "After create_fixup_graph()");
701 
702   /* Cleanup.  */
703   free (diff_out_in);
704 }
705 
706 
707 /* Allocates space for the structures in AUGMENTING_PATH.  The space needed is
708    proportional to the number of nodes in the graph, which is given by
709    GRAPH_SIZE.  */
710 
711 static void
init_augmenting_path(augmenting_path_type * augmenting_path,int graph_size)712 init_augmenting_path (augmenting_path_type *augmenting_path, int graph_size)
713 {
714   augmenting_path->queue_list.queue = (int *)
715     xcalloc (graph_size + 2, sizeof (int));
716   augmenting_path->queue_list.size = graph_size + 2;
717   augmenting_path->bb_pred = (int *) xcalloc (graph_size, sizeof (int));
718   augmenting_path->is_visited = (int *) xcalloc (graph_size, sizeof (int));
719 }
720 
721 /* Free the structures in AUGMENTING_PATH.  */
722 static void
free_augmenting_path(augmenting_path_type * augmenting_path)723 free_augmenting_path (augmenting_path_type *augmenting_path)
724 {
725   free (augmenting_path->queue_list.queue);
726   free (augmenting_path->bb_pred);
727   free (augmenting_path->is_visited);
728 }
729 
730 
731 /* Queue routines. Assumes queue will never overflow.  */
732 
733 static void
init_queue(queue_type * queue_list)734 init_queue (queue_type *queue_list)
735 {
736   gcc_assert (queue_list);
737   queue_list->head = 0;
738   queue_list->tail = 0;
739 }
740 
741 /* Return true if QUEUE_LIST is empty.  */
742 static bool
is_empty(queue_type * queue_list)743 is_empty (queue_type *queue_list)
744 {
745   return (queue_list->head == queue_list->tail);
746 }
747 
748 /* Insert element X into QUEUE_LIST.  */
749 static void
enqueue(queue_type * queue_list,int x)750 enqueue (queue_type *queue_list, int x)
751 {
752   gcc_assert (queue_list->tail < queue_list->size);
753   queue_list->queue[queue_list->tail] = x;
754   (queue_list->tail)++;
755 }
756 
757 /* Return the first element in QUEUE_LIST.  */
758 static int
dequeue(queue_type * queue_list)759 dequeue (queue_type *queue_list)
760 {
761   int x;
762   gcc_assert (queue_list->head >= 0);
763   x = queue_list->queue[queue_list->head];
764   (queue_list->head)++;
765   return x;
766 }
767 
768 
769 /* Finds a negative cycle in the residual network using
770    the Bellman-Ford algorithm. The flow on the found cycle is reversed by the
771    minimum residual capacity of that cycle. ENTRY and EXIT vertices are not
772    considered.
773 
774 Parameters:
775    FIXUP_GRAPH - Residual graph  (input/output)
776    The following are allocated/freed by the caller:
777    PI - Vector to hold predecessors in path  (pi = pred index)
778    D - D[I] holds minimum cost of path from i to sink
779    CYCLE - Vector to hold the minimum cost cycle
780 
781 Return:
782    true if a negative cycle was found, false otherwise.  */
783 
784 static bool
cancel_negative_cycle(fixup_graph_type * fixup_graph,int * pi,gcov_type * d,int * cycle)785 cancel_negative_cycle (fixup_graph_type *fixup_graph,
786 		       int *pi, gcov_type *d, int *cycle)
787 {
788   int i, j, k;
789   int fnum_vertices, fnum_edges;
790   fixup_edge_p fedge_list, pfedge, r_pfedge;
791   bool found_cycle = false;
792   int cycle_start = 0, cycle_end = 0;
793   gcov_type sum_cost = 0, cycle_flow = 0;
794   int new_entry_index;
795   bool propagated = false;
796 
797   gcc_assert (fixup_graph);
798   fnum_vertices = fixup_graph->num_vertices;
799   fnum_edges = fixup_graph->num_edges;
800   fedge_list = fixup_graph->edge_list;
801   new_entry_index = fixup_graph->new_entry_index;
802 
803   /* Initialize.  */
804   /* Skip ENTRY.  */
805   for (i = 1; i < fnum_vertices; i++)
806     {
807       d[i] = CAP_INFINITY;
808       pi[i] = -1;
809       cycle[i] = -1;
810     }
811   d[ENTRY_BLOCK] = 0;
812 
813   /* Relax.  */
814   for (k = 1; k < fnum_vertices; k++)
815   {
816     propagated = false;
817     for (i = 0; i < fnum_edges; i++)
818       {
819 	pfedge = fedge_list + i;
820 	if (pfedge->src == new_entry_index)
821 	  continue;
822 	if (pfedge->is_rflow_valid && pfedge->rflow
823             && d[pfedge->src] != CAP_INFINITY
824 	    && (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
825 	  {
826 	    d[pfedge->dest] = d[pfedge->src] + pfedge->cost;
827 	    pi[pfedge->dest] = pfedge->src;
828             propagated = true;
829 	  }
830       }
831     if (!propagated)
832       break;
833   }
834 
835   if (!propagated)
836   /* No negative cycles exist.  */
837     return 0;
838 
839   /* Detect.  */
840   for (i = 0; i < fnum_edges; i++)
841     {
842       pfedge = fedge_list + i;
843       if (pfedge->src == new_entry_index)
844 	continue;
845       if (pfedge->is_rflow_valid && pfedge->rflow
846           && d[pfedge->src] != CAP_INFINITY
847 	  && (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
848 	{
849 	  found_cycle = true;
850 	  break;
851 	}
852     }
853 
854   if (!found_cycle)
855     return 0;
856 
857   /* Augment the cycle with the cycle's minimum residual capacity.  */
858   found_cycle = false;
859   cycle[0] = pfedge->dest;
860   j = pfedge->dest;
861 
862   for (i = 1; i < fnum_vertices; i++)
863     {
864       j = pi[j];
865       cycle[i] = j;
866       for (k = 0; k < i; k++)
867 	{
868 	  if (cycle[k] == j)
869 	    {
870 	      /* cycle[k] -> ... -> cycle[i].  */
871 	      cycle_start = k;
872 	      cycle_end = i;
873 	      found_cycle = true;
874 	      break;
875 	    }
876 	}
877       if (found_cycle)
878 	break;
879     }
880 
881   gcc_assert (cycle[cycle_start] == cycle[cycle_end]);
882   if (dump_file)
883     fprintf (dump_file, "\nNegative cycle length is %d:\n",
884 	     cycle_end - cycle_start);
885 
886   sum_cost = 0;
887   cycle_flow = CAP_INFINITY;
888   for (k = cycle_start; k < cycle_end; k++)
889     {
890       pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
891       cycle_flow = MIN (cycle_flow, pfedge->rflow);
892       sum_cost += pfedge->cost;
893       if (dump_file)
894 	fprintf (dump_file, "%d ", cycle[k]);
895     }
896 
897   if (dump_file)
898     {
899       fprintf (dump_file, "%d", cycle[k]);
900       fprintf (dump_file,
901 	       ": (" HOST_WIDEST_INT_PRINT_DEC ", " HOST_WIDEST_INT_PRINT_DEC
902 	       ")\n", sum_cost, cycle_flow);
903       fprintf (dump_file,
904 	       "Augment cycle with " HOST_WIDEST_INT_PRINT_DEC "\n",
905 	       cycle_flow);
906     }
907 
908   for (k = cycle_start; k < cycle_end; k++)
909     {
910       pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
911       r_pfedge = find_fixup_edge (fixup_graph, cycle[k], cycle[k + 1]);
912       pfedge->rflow -= cycle_flow;
913       if (pfedge->type)
914 	pfedge->flow += cycle_flow;
915       r_pfedge->rflow += cycle_flow;
916       if (r_pfedge->type)
917 	r_pfedge->flow -= cycle_flow;
918     }
919 
920   return true;
921 }
922 
923 
924 /* Computes the residual flow for FIXUP_GRAPH by setting the rflow field of
925    the edges. ENTRY and EXIT vertices should not be considered.  */
926 
927 static void
compute_residual_flow(fixup_graph_type * fixup_graph)928 compute_residual_flow (fixup_graph_type *fixup_graph)
929 {
930   int i;
931   int fnum_edges;
932   fixup_edge_p fedge_list, pfedge;
933 
934   gcc_assert (fixup_graph);
935 
936   if (dump_file)
937     fputs ("\ncompute_residual_flow():\n", dump_file);
938 
939   fnum_edges = fixup_graph->num_edges;
940   fedge_list = fixup_graph->edge_list;
941 
942   for (i = 0; i < fnum_edges; i++)
943     {
944       pfedge = fedge_list + i;
945       pfedge->rflow = pfedge->max_capacity - pfedge->flow;
946       pfedge->is_rflow_valid = true;
947       add_rfixup_edge (fixup_graph, pfedge->dest, pfedge->src, pfedge->flow,
948 		       -pfedge->cost);
949     }
950 }
951 
952 
953 /* Uses Edmonds-Karp algorithm - BFS to find augmenting path from SOURCE to
954    SINK. The fields in the edge vector in the FIXUP_GRAPH are not modified by
955    this routine. The vector bb_pred in the AUGMENTING_PATH structure is updated
956    to reflect the path found.
957    Returns: 0 if no augmenting path is found, 1 otherwise.  */
958 
959 static int
find_augmenting_path(fixup_graph_type * fixup_graph,augmenting_path_type * augmenting_path,int source,int sink)960 find_augmenting_path (fixup_graph_type *fixup_graph,
961 		      augmenting_path_type *augmenting_path, int source,
962 		      int sink)
963 {
964   int u = 0;
965   int i;
966   fixup_vertex_p fvertex_list, pfvertex;
967   fixup_edge_p pfedge;
968   int *bb_pred, *is_visited;
969   queue_type *queue_list;
970 
971   gcc_assert (augmenting_path);
972   bb_pred = augmenting_path->bb_pred;
973   gcc_assert (bb_pred);
974   is_visited = augmenting_path->is_visited;
975   gcc_assert (is_visited);
976   queue_list = &(augmenting_path->queue_list);
977 
978   gcc_assert (fixup_graph);
979 
980   fvertex_list = fixup_graph->vertex_list;
981 
982   for (u = 0; u < fixup_graph->num_vertices; u++)
983     is_visited[u] = 0;
984 
985   init_queue (queue_list);
986   enqueue (queue_list, source);
987   bb_pred[source] = -1;
988 
989   while (!is_empty (queue_list))
990     {
991       u = dequeue (queue_list);
992       is_visited[u] = 1;
993       pfvertex = fvertex_list + u;
994       for (i = 0; pfvertex->succ_edges.iterate (i, &pfedge);
995 	   i++)
996 	{
997 	  int dest = pfedge->dest;
998 	  if ((pfedge->rflow > 0) && (is_visited[dest] == 0))
999 	    {
1000 	      enqueue (queue_list, dest);
1001 	      bb_pred[dest] = u;
1002 	      is_visited[dest] = 1;
1003 	      if (dest == sink)
1004 		return 1;
1005 	    }
1006 	}
1007     }
1008 
1009   return 0;
1010 }
1011 
1012 
1013 /* Routine to find the maximal flow:
1014    Algorithm:
1015    1. Initialize flow to 0
1016    2. Find an augmenting path form source to sink.
1017    3. Send flow equal to the path's residual capacity along the edges of this path.
1018    4. Repeat steps 2 and 3 until no new augmenting path is found.
1019 
1020 Parameters:
1021 SOURCE: index of source vertex (input)
1022 SINK: index of sink vertex    (input)
1023 FIXUP_GRAPH: adjacency matrix representing the graph. The flow of the edges will be
1024              set to have a valid maximal flow by this routine. (input)
1025 Return: Maximum flow possible.  */
1026 
1027 static gcov_type
find_max_flow(fixup_graph_type * fixup_graph,int source,int sink)1028 find_max_flow (fixup_graph_type *fixup_graph, int source, int sink)
1029 {
1030   int fnum_edges;
1031   augmenting_path_type augmenting_path;
1032   int *bb_pred;
1033   gcov_type max_flow = 0;
1034   int i, u;
1035   fixup_edge_p fedge_list, pfedge, r_pfedge;
1036 
1037   gcc_assert (fixup_graph);
1038 
1039   fnum_edges = fixup_graph->num_edges;
1040   fedge_list = fixup_graph->edge_list;
1041 
1042   /* Initialize flow to 0.  */
1043   for (i = 0; i < fnum_edges; i++)
1044     {
1045       pfedge = fedge_list + i;
1046       pfedge->flow = 0;
1047     }
1048 
1049   compute_residual_flow (fixup_graph);
1050 
1051   init_augmenting_path (&augmenting_path, fixup_graph->num_vertices);
1052 
1053   bb_pred = augmenting_path.bb_pred;
1054   while (find_augmenting_path (fixup_graph, &augmenting_path, source, sink))
1055     {
1056       /* Determine the amount by which we can increment the flow.  */
1057       gcov_type increment = CAP_INFINITY;
1058       for (u = sink; u != source; u = bb_pred[u])
1059 	{
1060 	  pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
1061 	  increment = MIN (increment, pfedge->rflow);
1062 	}
1063       max_flow += increment;
1064 
1065       /* Now increment the flow. EXIT vertex index is 1.  */
1066       for (u = sink; u != source; u = bb_pred[u])
1067 	{
1068 	  pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
1069 	  r_pfedge = find_fixup_edge (fixup_graph, u, bb_pred[u]);
1070 	  if (pfedge->type)
1071 	    {
1072 	      /* forward edge.  */
1073 	      pfedge->flow += increment;
1074 	      pfedge->rflow -= increment;
1075 	      r_pfedge->rflow += increment;
1076 	    }
1077 	  else
1078 	    {
1079 	      /* backward edge.  */
1080 	      gcc_assert (r_pfedge->type);
1081 	      r_pfedge->rflow += increment;
1082 	      r_pfedge->flow -= increment;
1083 	      pfedge->rflow -= increment;
1084 	    }
1085 	}
1086 
1087       if (dump_file)
1088 	{
1089 	  fprintf (dump_file, "\nDump augmenting path:\n");
1090 	  for (u = sink; u != source; u = bb_pred[u])
1091 	    {
1092 	      print_basic_block (dump_file, fixup_graph, u);
1093 	      fprintf (dump_file, "<-");
1094 	    }
1095 	  fprintf (dump_file,
1096 		   "ENTRY  (path_capacity=" HOST_WIDEST_INT_PRINT_DEC ")\n",
1097 		   increment);
1098 	  fprintf (dump_file,
1099 		   "Network flow is " HOST_WIDEST_INT_PRINT_DEC ".\n",
1100 		   max_flow);
1101 	}
1102     }
1103 
1104   free_augmenting_path (&augmenting_path);
1105   if (dump_file)
1106     dump_fixup_graph (dump_file, fixup_graph, "After find_max_flow()");
1107   return max_flow;
1108 }
1109 
1110 
1111 /* Computes the corrected edge and basic block weights using FIXUP_GRAPH
1112    after applying the find_minimum_cost_flow() routine.  */
1113 
1114 static void
adjust_cfg_counts(fixup_graph_type * fixup_graph)1115 adjust_cfg_counts (fixup_graph_type *fixup_graph)
1116 {
1117   basic_block bb;
1118   edge e;
1119   edge_iterator ei;
1120   int i, j;
1121   fixup_edge_p pfedge, pfedge_n;
1122 
1123   gcc_assert (fixup_graph);
1124 
1125   if (dump_file)
1126     fprintf (dump_file, "\nadjust_cfg_counts():\n");
1127 
1128   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
1129 		  EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1130     {
1131       i = 2 * bb->index;
1132 
1133       /* Fixup BB.  */
1134       if (dump_file)
1135         fprintf (dump_file,
1136                  "BB%d: " HOST_WIDEST_INT_PRINT_DEC "", bb->index, bb->count);
1137 
1138       pfedge = find_fixup_edge (fixup_graph, i, i + 1);
1139       if (pfedge->flow)
1140         {
1141           bb->count += pfedge->flow;
1142 	  if (dump_file)
1143 	    {
1144 	      fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(",
1145 	               pfedge->flow);
1146 	      print_edge (dump_file, fixup_graph, i, i + 1);
1147 	      fprintf (dump_file, ")");
1148 	    }
1149         }
1150 
1151       pfedge_n =
1152         find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index);
1153       /* Deduct flow from normalized reverse edge.  */
1154       if (pfedge->norm_vertex_index && pfedge_n->flow)
1155         {
1156           bb->count -= pfedge_n->flow;
1157 	  if (dump_file)
1158 	    {
1159 	      fprintf (dump_file, " - " HOST_WIDEST_INT_PRINT_DEC "(",
1160 		       pfedge_n->flow);
1161 	      print_edge (dump_file, fixup_graph, i + 1,
1162 			  pfedge->norm_vertex_index);
1163 	      fprintf (dump_file, ")");
1164 	    }
1165         }
1166       if (dump_file)
1167         fprintf (dump_file, " = " HOST_WIDEST_INT_PRINT_DEC "\n", bb->count);
1168 
1169       /* Fixup edge.  */
1170       FOR_EACH_EDGE (e, ei, bb->succs)
1171         {
1172           /* Treat edges with ignore attribute set as if they don't exist.  */
1173           if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
1174 	    continue;
1175 
1176           j = 2 * e->dest->index;
1177           if (dump_file)
1178 	    fprintf (dump_file, "%d->%d: " HOST_WIDEST_INT_PRINT_DEC "",
1179 		     bb->index, e->dest->index, e->count);
1180 
1181           pfedge = find_fixup_edge (fixup_graph, i + 1, j);
1182 
1183           if (bb->index != e->dest->index)
1184 	    {
1185 	      /* Non-self edge.  */
1186 	      if (pfedge->flow)
1187 	        {
1188 	          e->count += pfedge->flow;
1189 	          if (dump_file)
1190 		    {
1191 		      fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(",
1192 			       pfedge->flow);
1193 		      print_edge (dump_file, fixup_graph, i + 1, j);
1194 		      fprintf (dump_file, ")");
1195 		    }
1196 	        }
1197 
1198 	      pfedge_n =
1199 	        find_fixup_edge (fixup_graph, j, pfedge->norm_vertex_index);
1200 	      /* Deduct flow from normalized reverse edge.  */
1201 	      if (pfedge->norm_vertex_index && pfedge_n->flow)
1202 	        {
1203 	          e->count -= pfedge_n->flow;
1204 	          if (dump_file)
1205 		    {
1206 		      fprintf (dump_file, " - " HOST_WIDEST_INT_PRINT_DEC "(",
1207 			       pfedge_n->flow);
1208 		      print_edge (dump_file, fixup_graph, j,
1209 			          pfedge->norm_vertex_index);
1210 		      fprintf (dump_file, ")");
1211 		    }
1212 	        }
1213 	    }
1214           else
1215 	    {
1216 	      /* Handle self edges. Self edge is split with a normalization
1217                  vertex. Here i=j.  */
1218 	      pfedge = find_fixup_edge (fixup_graph, j, i + 1);
1219 	      pfedge_n =
1220 	        find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index);
1221 	      e->count += pfedge_n->flow;
1222 	      bb->count += pfedge_n->flow;
1223 	      if (dump_file)
1224 	        {
1225 	          fprintf (dump_file, "(self edge)");
1226 	          fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(",
1227 		           pfedge_n->flow);
1228 	          print_edge (dump_file, fixup_graph, i + 1,
1229 			      pfedge->norm_vertex_index);
1230 	          fprintf (dump_file, ")");
1231 	        }
1232 	    }
1233 
1234           if (bb->count)
1235 	    e->probability = REG_BR_PROB_BASE * e->count / bb->count;
1236           if (dump_file)
1237 	    fprintf (dump_file, " = " HOST_WIDEST_INT_PRINT_DEC "\t(%.1f%%)\n",
1238 		     e->count, e->probability * 100.0 / REG_BR_PROB_BASE);
1239         }
1240     }
1241 
1242   ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
1243 		     sum_edge_counts (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
1244   EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
1245 		     sum_edge_counts (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
1246 
1247   /* Compute edge probabilities.  */
1248   FOR_ALL_BB_FN (bb, cfun)
1249     {
1250       if (bb->count)
1251         {
1252           FOR_EACH_EDGE (e, ei, bb->succs)
1253             e->probability = REG_BR_PROB_BASE * e->count / bb->count;
1254         }
1255       else
1256         {
1257           int total = 0;
1258           FOR_EACH_EDGE (e, ei, bb->succs)
1259             if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
1260               total++;
1261           if (total)
1262             {
1263               FOR_EACH_EDGE (e, ei, bb->succs)
1264                 {
1265                   if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
1266                     e->probability = REG_BR_PROB_BASE / total;
1267                   else
1268                     e->probability = 0;
1269                 }
1270             }
1271           else
1272             {
1273               total += EDGE_COUNT (bb->succs);
1274               FOR_EACH_EDGE (e, ei, bb->succs)
1275                   e->probability = REG_BR_PROB_BASE / total;
1276             }
1277         }
1278     }
1279 
1280   if (dump_file)
1281     {
1282       fprintf (dump_file, "\nCheck %s() CFG flow conservation:\n",
1283 	       current_function_name ());
1284       FOR_EACH_BB_FN (bb, cfun)
1285         {
1286           if ((bb->count != sum_edge_counts (bb->preds))
1287                || (bb->count != sum_edge_counts (bb->succs)))
1288             {
1289               fprintf (dump_file,
1290                        "BB%d(" HOST_WIDEST_INT_PRINT_DEC ")  **INVALID**: ",
1291                        bb->index, bb->count);
1292               fprintf (stderr,
1293                        "******** BB%d(" HOST_WIDEST_INT_PRINT_DEC
1294                        ")  **INVALID**: \n", bb->index, bb->count);
1295               fprintf (dump_file, "in_edges=" HOST_WIDEST_INT_PRINT_DEC " ",
1296                        sum_edge_counts (bb->preds));
1297               fprintf (dump_file, "out_edges=" HOST_WIDEST_INT_PRINT_DEC "\n",
1298                        sum_edge_counts (bb->succs));
1299             }
1300          }
1301     }
1302 }
1303 
1304 
1305 /* Implements the negative cycle canceling algorithm to compute a minimum cost
1306    flow.
1307 Algorithm:
1308 1. Find maximal flow.
1309 2. Form residual network
1310 3. Repeat:
1311   While G contains a negative cost cycle C, reverse the flow on the found cycle
1312   by the minimum residual capacity in that cycle.
1313 4. Form the minimal cost flow
1314   f(u,v) = rf(v, u)
1315 Input:
1316   FIXUP_GRAPH - Initial fixup graph.
1317   The flow field is modified to represent the minimum cost flow.  */
1318 
1319 static void
find_minimum_cost_flow(fixup_graph_type * fixup_graph)1320 find_minimum_cost_flow (fixup_graph_type *fixup_graph)
1321 {
1322   /* Holds the index of predecessor in path.  */
1323   int *pred;
1324   /* Used to hold the minimum cost cycle.  */
1325   int *cycle;
1326   /* Used to record the number of iterations of cancel_negative_cycle.  */
1327   int iteration;
1328   /* Vector d[i] holds the minimum cost of path from i to sink.  */
1329   gcov_type *d;
1330   int fnum_vertices;
1331   int new_exit_index;
1332   int new_entry_index;
1333 
1334   gcc_assert (fixup_graph);
1335   fnum_vertices = fixup_graph->num_vertices;
1336   new_exit_index = fixup_graph->new_exit_index;
1337   new_entry_index = fixup_graph->new_entry_index;
1338 
1339   find_max_flow (fixup_graph, new_entry_index, new_exit_index);
1340 
1341   /* Initialize the structures for find_negative_cycle().  */
1342   pred = (int *) xcalloc (fnum_vertices, sizeof (int));
1343   d = (gcov_type *) xcalloc (fnum_vertices, sizeof (gcov_type));
1344   cycle = (int *) xcalloc (fnum_vertices, sizeof (int));
1345 
1346   /* Repeatedly find and cancel negative cost cycles, until
1347      no more negative cycles exist. This also updates the flow field
1348      to represent the minimum cost flow so far.  */
1349   iteration = 0;
1350   while (cancel_negative_cycle (fixup_graph, pred, d, cycle))
1351     {
1352       iteration++;
1353       if (iteration > MAX_ITER (fixup_graph->num_vertices,
1354                                 fixup_graph->num_edges))
1355         break;
1356     }
1357 
1358   if (dump_file)
1359     dump_fixup_graph (dump_file, fixup_graph,
1360 		      "After find_minimum_cost_flow()");
1361 
1362   /* Cleanup structures.  */
1363   free (pred);
1364   free (d);
1365   free (cycle);
1366 }
1367 
1368 
1369 /* Compute the sum of the edge counts in TO_EDGES.  */
1370 
1371 gcov_type
sum_edge_counts(vec<edge,va_gc> * to_edges)1372 sum_edge_counts (vec<edge, va_gc> *to_edges)
1373 {
1374   gcov_type sum = 0;
1375   edge e;
1376   edge_iterator ei;
1377 
1378   FOR_EACH_EDGE (e, ei, to_edges)
1379     {
1380       if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
1381         continue;
1382       sum += e->count;
1383     }
1384   return sum;
1385 }
1386 
1387 
1388 /* Main routine. Smoothes the initial assigned basic block and edge counts using
1389    a minimum cost flow algorithm, to ensure that the flow consistency rule is
1390    obeyed: sum of outgoing edges = sum of incoming edges for each basic
1391    block.  */
1392 
1393 void
mcf_smooth_cfg(void)1394 mcf_smooth_cfg (void)
1395 {
1396   fixup_graph_type fixup_graph;
1397   memset (&fixup_graph, 0, sizeof (fixup_graph));
1398   create_fixup_graph (&fixup_graph);
1399   find_minimum_cost_flow (&fixup_graph);
1400   adjust_cfg_counts (&fixup_graph);
1401   delete_fixup_graph (&fixup_graph);
1402 }
1403