1 /* Calculate branch probabilities, and basic block execution counts.
2    Copyright (C) 1990-2014 Free Software Foundation, Inc.
3    Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
4    based on some ideas from Dain Samples of UC Berkeley.
5    Further mangling by Bob Manson, Cygnus Support.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13 
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 /* Generate basic block profile instrumentation and auxiliary files.
24    Profile generation is optimized, so that not all arcs in the basic
25    block graph need instrumenting. First, the BB graph is closed with
26    one entry (function start), and one exit (function exit).  Any
27    ABNORMAL_EDGE cannot be instrumented (because there is no control
28    path to place the code). We close the graph by inserting fake
29    EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal
30    edges that do not go to the exit_block. We ignore such abnormal
31    edges.  Naturally these fake edges are never directly traversed,
32    and so *cannot* be directly instrumented.  Some other graph
33    massaging is done. To optimize the instrumentation we generate the
34    BB minimal span tree, only edges that are not on the span tree
35    (plus the entry point) need instrumenting. From that information
36    all other edge counts can be deduced.  By construction all fake
37    edges must be on the spanning tree. We also attempt to place
38    EDGE_CRITICAL edges on the spanning tree.
39 
40    The auxiliary files generated are <dumpbase>.gcno (at compile time)
41    and <dumpbase>.gcda (at run time).  The format is
42    described in full in gcov-io.h.  */
43 
44 /* ??? Register allocation should use basic block execution counts to
45    give preference to the most commonly executed blocks.  */
46 
47 /* ??? Should calculate branch probabilities before instrumenting code, since
48    then we can use arc counts to help decide which arcs to instrument.  */
49 
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "rtl.h"
55 #include "flags.h"
56 #include "regs.h"
57 #include "expr.h"
58 #include "function.h"
59 #include "basic-block.h"
60 #include "diagnostic-core.h"
61 #include "coverage.h"
62 #include "value-prof.h"
63 #include "tree.h"
64 #include "tree-ssa-alias.h"
65 #include "internal-fn.h"
66 #include "gimple-expr.h"
67 #include "is-a.h"
68 #include "gimple.h"
69 #include "gimple-iterator.h"
70 #include "tree-cfg.h"
71 #include "cfgloop.h"
72 #include "dumpfile.h"
73 #include "cgraph.h"
74 
75 #include "profile.h"
76 
77 struct bb_info {
78   unsigned int count_valid : 1;
79 
80   /* Number of successor and predecessor edges.  */
81   gcov_type succ_count;
82   gcov_type pred_count;
83 };
84 
85 #define BB_INFO(b)  ((struct bb_info *) (b)->aux)
86 
87 
88 /* Counter summary from the last set of coverage counts read.  */
89 
90 const struct gcov_ctr_summary *profile_info;
91 
92 /* Counter working set information computed from the current counter
93    summary. Not initialized unless profile_info summary is non-NULL.  */
94 static gcov_working_set_t gcov_working_sets[NUM_GCOV_WORKING_SETS];
95 
96 /* Collect statistics on the performance of this pass for the entire source
97    file.  */
98 
99 static int total_num_blocks;
100 static int total_num_edges;
101 static int total_num_edges_ignored;
102 static int total_num_edges_instrumented;
103 static int total_num_blocks_created;
104 static int total_num_passes;
105 static int total_num_times_called;
106 static int total_hist_br_prob[20];
107 static int total_num_branches;
108 
109 /* Forward declarations.  */
110 static void find_spanning_tree (struct edge_list *);
111 
112 /* Add edge instrumentation code to the entire insn chain.
113 
114    F is the first insn of the chain.
115    NUM_BLOCKS is the number of basic blocks found in F.  */
116 
117 static unsigned
instrument_edges(struct edge_list * el)118 instrument_edges (struct edge_list *el)
119 {
120   unsigned num_instr_edges = 0;
121   int num_edges = NUM_EDGES (el);
122   basic_block bb;
123 
124   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
125     {
126       edge e;
127       edge_iterator ei;
128 
129       FOR_EACH_EDGE (e, ei, bb->succs)
130 	{
131 	  struct edge_info *inf = EDGE_INFO (e);
132 
133 	  if (!inf->ignore && !inf->on_tree)
134 	    {
135 	      gcc_assert (!(e->flags & EDGE_ABNORMAL));
136 	      if (dump_file)
137 		fprintf (dump_file, "Edge %d to %d instrumented%s\n",
138 			 e->src->index, e->dest->index,
139 			 EDGE_CRITICAL_P (e) ? " (and split)" : "");
140 	      gimple_gen_edge_profiler (num_instr_edges++, e);
141 	    }
142 	}
143     }
144 
145   total_num_blocks_created += num_edges;
146   if (dump_file)
147     fprintf (dump_file, "%d edges instrumented\n", num_instr_edges);
148   return num_instr_edges;
149 }
150 
151 /* Add code to measure histograms for values in list VALUES.  */
152 static void
instrument_values(histogram_values values)153 instrument_values (histogram_values values)
154 {
155   unsigned i;
156 
157   /* Emit code to generate the histograms before the insns.  */
158 
159   for (i = 0; i < values.length (); i++)
160     {
161       histogram_value hist = values[i];
162       unsigned t = COUNTER_FOR_HIST_TYPE (hist->type);
163 
164       if (!coverage_counter_alloc (t, hist->n_counters))
165 	continue;
166 
167       switch (hist->type)
168 	{
169 	case HIST_TYPE_INTERVAL:
170 	  gimple_gen_interval_profiler (hist, t, 0);
171 	  break;
172 
173 	case HIST_TYPE_POW2:
174 	  gimple_gen_pow2_profiler (hist, t, 0);
175 	  break;
176 
177 	case HIST_TYPE_SINGLE_VALUE:
178 	  gimple_gen_one_value_profiler (hist, t, 0);
179 	  break;
180 
181 	case HIST_TYPE_CONST_DELTA:
182 	  gimple_gen_const_delta_profiler (hist, t, 0);
183 	  break;
184 
185  	case HIST_TYPE_INDIR_CALL:
186  	  gimple_gen_ic_profiler (hist, t, 0);
187   	  break;
188 
189 	case HIST_TYPE_AVERAGE:
190 	  gimple_gen_average_profiler (hist, t, 0);
191 	  break;
192 
193 	case HIST_TYPE_IOR:
194 	  gimple_gen_ior_profiler (hist, t, 0);
195 	  break;
196 
197   case HIST_TYPE_TIME_PROFILE:
198     {
199       basic_block bb =
200      split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
201       gimple_stmt_iterator gsi = gsi_start_bb (bb);
202 
203       gimple_gen_time_profiler (t, 0, gsi);
204       break;
205     }
206 
207 	default:
208 	  gcc_unreachable ();
209 	}
210     }
211 }
212 
213 
214 /* Fill the working set information into the profile_info structure.  */
215 
216 void
get_working_sets(void)217 get_working_sets (void)
218 {
219   unsigned ws_ix, pctinc, pct;
220   gcov_working_set_t *ws_info;
221 
222   if (!profile_info)
223     return;
224 
225   compute_working_sets (profile_info, gcov_working_sets);
226 
227   if (dump_file)
228     {
229       fprintf (dump_file, "Counter working sets:\n");
230       /* Multiply the percentage by 100 to avoid float.  */
231       pctinc = 100 * 100 / NUM_GCOV_WORKING_SETS;
232       for (ws_ix = 0, pct = pctinc; ws_ix < NUM_GCOV_WORKING_SETS;
233            ws_ix++, pct += pctinc)
234         {
235           if (ws_ix == NUM_GCOV_WORKING_SETS - 1)
236             pct = 9990;
237           ws_info = &gcov_working_sets[ws_ix];
238           /* Print out the percentage using int arithmatic to avoid float.  */
239           fprintf (dump_file, "\t\t%u.%02u%%: num counts=%u, min counter="
240                    HOST_WIDEST_INT_PRINT_DEC "\n",
241                    pct / 100, pct - (pct / 100 * 100),
242                    ws_info->num_counters,
243                    (HOST_WIDEST_INT)ws_info->min_counter);
244         }
245     }
246 }
247 
248 /* Given a the desired percentage of the full profile (sum_all from the
249    summary), multiplied by 10 to avoid float in PCT_TIMES_10, returns
250    the corresponding working set information. If an exact match for
251    the percentage isn't found, the closest value is used.  */
252 
253 gcov_working_set_t *
find_working_set(unsigned pct_times_10)254 find_working_set (unsigned pct_times_10)
255 {
256   unsigned i;
257   if (!profile_info)
258     return NULL;
259   gcc_assert (pct_times_10 <= 1000);
260   if (pct_times_10 >= 999)
261     return &gcov_working_sets[NUM_GCOV_WORKING_SETS - 1];
262   i = pct_times_10 * NUM_GCOV_WORKING_SETS / 1000;
263   if (!i)
264     return &gcov_working_sets[0];
265   return &gcov_working_sets[i - 1];
266 }
267 
268 /* Computes hybrid profile for all matching entries in da_file.
269 
270    CFG_CHECKSUM is the precomputed checksum for the CFG.  */
271 
272 static gcov_type *
get_exec_counts(unsigned cfg_checksum,unsigned lineno_checksum)273 get_exec_counts (unsigned cfg_checksum, unsigned lineno_checksum)
274 {
275   unsigned num_edges = 0;
276   basic_block bb;
277   gcov_type *counts;
278 
279   /* Count the edges to be (possibly) instrumented.  */
280   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
281     {
282       edge e;
283       edge_iterator ei;
284 
285       FOR_EACH_EDGE (e, ei, bb->succs)
286 	if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
287 	  num_edges++;
288     }
289 
290   counts = get_coverage_counts (GCOV_COUNTER_ARCS, num_edges, cfg_checksum,
291 				lineno_checksum, &profile_info);
292   if (!counts)
293     return NULL;
294 
295   get_working_sets ();
296 
297   if (dump_file && profile_info)
298     fprintf (dump_file, "Merged %u profiles with maximal count %u.\n",
299 	     profile_info->runs, (unsigned) profile_info->sum_max);
300 
301   return counts;
302 }
303 
304 
305 static bool
is_edge_inconsistent(vec<edge,va_gc> * edges)306 is_edge_inconsistent (vec<edge, va_gc> *edges)
307 {
308   edge e;
309   edge_iterator ei;
310   FOR_EACH_EDGE (e, ei, edges)
311     {
312       if (!EDGE_INFO (e)->ignore)
313         {
314           if (e->count < 0
315 	      && (!(e->flags & EDGE_FAKE)
316 	          || !block_ends_with_call_p (e->src)))
317 	    {
318 	      if (dump_file)
319 		{
320 		  fprintf (dump_file,
321 		  	   "Edge %i->%i is inconsistent, count" HOST_WIDEST_INT_PRINT_DEC,
322 			   e->src->index, e->dest->index, e->count);
323 		  dump_bb (dump_file, e->src, 0, TDF_DETAILS);
324 		  dump_bb (dump_file, e->dest, 0, TDF_DETAILS);
325 		}
326               return true;
327 	    }
328         }
329     }
330   return false;
331 }
332 
333 static void
correct_negative_edge_counts(void)334 correct_negative_edge_counts (void)
335 {
336   basic_block bb;
337   edge e;
338   edge_iterator ei;
339 
340   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
341     {
342       FOR_EACH_EDGE (e, ei, bb->succs)
343         {
344            if (e->count < 0)
345              e->count = 0;
346         }
347     }
348 }
349 
350 /* Check consistency.
351    Return true if inconsistency is found.  */
352 static bool
is_inconsistent(void)353 is_inconsistent (void)
354 {
355   basic_block bb;
356   bool inconsistent = false;
357   FOR_EACH_BB_FN (bb, cfun)
358     {
359       inconsistent |= is_edge_inconsistent (bb->preds);
360       if (!dump_file && inconsistent)
361 	return true;
362       inconsistent |= is_edge_inconsistent (bb->succs);
363       if (!dump_file && inconsistent)
364 	return true;
365       if (bb->count < 0)
366         {
367 	  if (dump_file)
368 	    {
369 	      fprintf (dump_file, "BB %i count is negative "
370 		       HOST_WIDEST_INT_PRINT_DEC,
371 		       bb->index,
372 		       bb->count);
373 	      dump_bb (dump_file, bb, 0, TDF_DETAILS);
374 	    }
375 	  inconsistent = true;
376 	}
377       if (bb->count != sum_edge_counts (bb->preds))
378         {
379 	  if (dump_file)
380 	    {
381 	      fprintf (dump_file, "BB %i count does not match sum of incoming edges "
382 		       HOST_WIDEST_INT_PRINT_DEC " should be " HOST_WIDEST_INT_PRINT_DEC,
383 		       bb->index,
384 		       bb->count,
385 		       sum_edge_counts (bb->preds));
386 	      dump_bb (dump_file, bb, 0, TDF_DETAILS);
387 	    }
388 	  inconsistent = true;
389 	}
390       if (bb->count != sum_edge_counts (bb->succs) &&
391 	  ! (find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)) != NULL
392 	     && block_ends_with_call_p (bb)))
393 	{
394 	  if (dump_file)
395 	    {
396 	      fprintf (dump_file, "BB %i count does not match sum of outgoing edges "
397 		       HOST_WIDEST_INT_PRINT_DEC " should be " HOST_WIDEST_INT_PRINT_DEC,
398 		       bb->index,
399 		       bb->count,
400 		       sum_edge_counts (bb->succs));
401 	      dump_bb (dump_file, bb, 0, TDF_DETAILS);
402 	    }
403 	  inconsistent = true;
404 	}
405       if (!dump_file && inconsistent)
406 	return true;
407     }
408 
409   return inconsistent;
410 }
411 
412 /* Set each basic block count to the sum of its outgoing edge counts */
413 static void
set_bb_counts(void)414 set_bb_counts (void)
415 {
416   basic_block bb;
417   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
418     {
419       bb->count = sum_edge_counts (bb->succs);
420       gcc_assert (bb->count >= 0);
421     }
422 }
423 
424 /* Reads profile data and returns total number of edge counts read */
425 static int
read_profile_edge_counts(gcov_type * exec_counts)426 read_profile_edge_counts (gcov_type *exec_counts)
427 {
428   basic_block bb;
429   int num_edges = 0;
430   int exec_counts_pos = 0;
431   /* For each edge not on the spanning tree, set its execution count from
432      the .da file.  */
433   /* The first count in the .da file is the number of times that the function
434      was entered.  This is the exec_count for block zero.  */
435 
436   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
437     {
438       edge e;
439       edge_iterator ei;
440 
441       FOR_EACH_EDGE (e, ei, bb->succs)
442 	if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
443 	  {
444 	    num_edges++;
445 	    if (exec_counts)
446 	      {
447 		e->count = exec_counts[exec_counts_pos++];
448 		if (e->count > profile_info->sum_max)
449 		  {
450 		    if (flag_profile_correction)
451 		      {
452 			static bool informed = 0;
453 			if (dump_enabled_p () && !informed)
454 		          dump_printf_loc (MSG_NOTE, input_location,
455                                            "corrupted profile info: edge count"
456                                            " exceeds maximal count\n");
457 			informed = 1;
458 		      }
459 		    else
460 		      error ("corrupted profile info: edge from %i to %i exceeds maximal count",
461 			     bb->index, e->dest->index);
462 		  }
463 	      }
464 	    else
465 	      e->count = 0;
466 
467 	    EDGE_INFO (e)->count_valid = 1;
468 	    BB_INFO (bb)->succ_count--;
469 	    BB_INFO (e->dest)->pred_count--;
470 	    if (dump_file)
471 	      {
472 		fprintf (dump_file, "\nRead edge from %i to %i, count:",
473 			 bb->index, e->dest->index);
474 		fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
475 			 (HOST_WIDEST_INT) e->count);
476 	      }
477 	  }
478     }
479 
480     return num_edges;
481 }
482 
483 #define OVERLAP_BASE 10000
484 
485 /* Compare the static estimated profile to the actual profile, and
486    return the "degree of overlap" measure between them.
487 
488    Degree of overlap is a number between 0 and OVERLAP_BASE. It is
489    the sum of each basic block's minimum relative weights between
490    two profiles. And overlap of OVERLAP_BASE means two profiles are
491    identical.  */
492 
493 static int
compute_frequency_overlap(void)494 compute_frequency_overlap (void)
495 {
496   gcov_type count_total = 0, freq_total = 0;
497   int overlap = 0;
498   basic_block bb;
499 
500   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
501     {
502       count_total += bb->count;
503       freq_total += bb->frequency;
504     }
505 
506   if (count_total == 0 || freq_total == 0)
507     return 0;
508 
509   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
510     overlap += MIN (bb->count * OVERLAP_BASE / count_total,
511 		    bb->frequency * OVERLAP_BASE / freq_total);
512 
513   return overlap;
514 }
515 
516 /* Compute the branch probabilities for the various branches.
517    Annotate them accordingly.
518 
519    CFG_CHECKSUM is the precomputed checksum for the CFG.  */
520 
521 static void
compute_branch_probabilities(unsigned cfg_checksum,unsigned lineno_checksum)522 compute_branch_probabilities (unsigned cfg_checksum, unsigned lineno_checksum)
523 {
524   basic_block bb;
525   int i;
526   int num_edges = 0;
527   int changes;
528   int passes;
529   int hist_br_prob[20];
530   int num_branches;
531   gcov_type *exec_counts = get_exec_counts (cfg_checksum, lineno_checksum);
532   int inconsistent = 0;
533 
534   /* Very simple sanity checks so we catch bugs in our profiling code.  */
535   if (!profile_info)
536     return;
537 
538   if (profile_info->sum_all < profile_info->sum_max)
539     {
540       error ("corrupted profile info: sum_all is smaller than sum_max");
541       exec_counts = NULL;
542     }
543 
544   /* Attach extra info block to each bb.  */
545   alloc_aux_for_blocks (sizeof (struct bb_info));
546   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
547     {
548       edge e;
549       edge_iterator ei;
550 
551       FOR_EACH_EDGE (e, ei, bb->succs)
552 	if (!EDGE_INFO (e)->ignore)
553 	  BB_INFO (bb)->succ_count++;
554       FOR_EACH_EDGE (e, ei, bb->preds)
555 	if (!EDGE_INFO (e)->ignore)
556 	  BB_INFO (bb)->pred_count++;
557     }
558 
559   /* Avoid predicting entry on exit nodes.  */
560   BB_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->succ_count = 2;
561   BB_INFO (ENTRY_BLOCK_PTR_FOR_FN (cfun))->pred_count = 2;
562 
563   num_edges = read_profile_edge_counts (exec_counts);
564 
565   if (dump_file)
566     fprintf (dump_file, "\n%d edge counts read\n", num_edges);
567 
568   /* For every block in the file,
569      - if every exit/entrance edge has a known count, then set the block count
570      - if the block count is known, and every exit/entrance edge but one has
571      a known execution count, then set the count of the remaining edge
572 
573      As edge counts are set, decrement the succ/pred count, but don't delete
574      the edge, that way we can easily tell when all edges are known, or only
575      one edge is unknown.  */
576 
577   /* The order that the basic blocks are iterated through is important.
578      Since the code that finds spanning trees starts with block 0, low numbered
579      edges are put on the spanning tree in preference to high numbered edges.
580      Hence, most instrumented edges are at the end.  Graph solving works much
581      faster if we propagate numbers from the end to the start.
582 
583      This takes an average of slightly more than 3 passes.  */
584 
585   changes = 1;
586   passes = 0;
587   while (changes)
588     {
589       passes++;
590       changes = 0;
591       FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), NULL, prev_bb)
592 	{
593 	  struct bb_info *bi = BB_INFO (bb);
594 	  if (! bi->count_valid)
595 	    {
596 	      if (bi->succ_count == 0)
597 		{
598 		  edge e;
599 		  edge_iterator ei;
600 		  gcov_type total = 0;
601 
602 		  FOR_EACH_EDGE (e, ei, bb->succs)
603 		    total += e->count;
604 		  bb->count = total;
605 		  bi->count_valid = 1;
606 		  changes = 1;
607 		}
608 	      else if (bi->pred_count == 0)
609 		{
610 		  edge e;
611 		  edge_iterator ei;
612 		  gcov_type total = 0;
613 
614 		  FOR_EACH_EDGE (e, ei, bb->preds)
615 		    total += e->count;
616 		  bb->count = total;
617 		  bi->count_valid = 1;
618 		  changes = 1;
619 		}
620 	    }
621 	  if (bi->count_valid)
622 	    {
623 	      if (bi->succ_count == 1)
624 		{
625 		  edge e;
626 		  edge_iterator ei;
627 		  gcov_type total = 0;
628 
629 		  /* One of the counts will be invalid, but it is zero,
630 		     so adding it in also doesn't hurt.  */
631 		  FOR_EACH_EDGE (e, ei, bb->succs)
632 		    total += e->count;
633 
634 		  /* Search for the invalid edge, and set its count.  */
635 		  FOR_EACH_EDGE (e, ei, bb->succs)
636 		    if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore)
637 		      break;
638 
639 		  /* Calculate count for remaining edge by conservation.  */
640 		  total = bb->count - total;
641 
642 		  gcc_assert (e);
643 		  EDGE_INFO (e)->count_valid = 1;
644 		  e->count = total;
645 		  bi->succ_count--;
646 
647 		  BB_INFO (e->dest)->pred_count--;
648 		  changes = 1;
649 		}
650 	      if (bi->pred_count == 1)
651 		{
652 		  edge e;
653 		  edge_iterator ei;
654 		  gcov_type total = 0;
655 
656 		  /* One of the counts will be invalid, but it is zero,
657 		     so adding it in also doesn't hurt.  */
658 		  FOR_EACH_EDGE (e, ei, bb->preds)
659 		    total += e->count;
660 
661 		  /* Search for the invalid edge, and set its count.  */
662 		  FOR_EACH_EDGE (e, ei, bb->preds)
663 		    if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore)
664 		      break;
665 
666 		  /* Calculate count for remaining edge by conservation.  */
667 		  total = bb->count - total + e->count;
668 
669 		  gcc_assert (e);
670 		  EDGE_INFO (e)->count_valid = 1;
671 		  e->count = total;
672 		  bi->pred_count--;
673 
674 		  BB_INFO (e->src)->succ_count--;
675 		  changes = 1;
676 		}
677 	    }
678 	}
679     }
680   if (dump_file)
681     {
682       int overlap = compute_frequency_overlap ();
683       gimple_dump_cfg (dump_file, dump_flags);
684       fprintf (dump_file, "Static profile overlap: %d.%d%%\n",
685 	       overlap / (OVERLAP_BASE / 100),
686 	       overlap % (OVERLAP_BASE / 100));
687     }
688 
689   total_num_passes += passes;
690   if (dump_file)
691     fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
692 
693   /* If the graph has been correctly solved, every block will have a
694      succ and pred count of zero.  */
695   FOR_EACH_BB_FN (bb, cfun)
696     {
697       gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count);
698     }
699 
700   /* Check for inconsistent basic block counts */
701   inconsistent = is_inconsistent ();
702 
703   if (inconsistent)
704    {
705      if (flag_profile_correction)
706        {
707          /* Inconsistency detected. Make it flow-consistent. */
708          static int informed = 0;
709          if (dump_enabled_p () && informed == 0)
710            {
711              informed = 1;
712              dump_printf_loc (MSG_NOTE, input_location,
713                               "correcting inconsistent profile data\n");
714            }
715          correct_negative_edge_counts ();
716          /* Set bb counts to the sum of the outgoing edge counts */
717          set_bb_counts ();
718          if (dump_file)
719            fprintf (dump_file, "\nCalling mcf_smooth_cfg\n");
720          mcf_smooth_cfg ();
721        }
722      else
723        error ("corrupted profile info: profile data is not flow-consistent");
724    }
725 
726   /* For every edge, calculate its branch probability and add a reg_note
727      to the branch insn to indicate this.  */
728 
729   for (i = 0; i < 20; i++)
730     hist_br_prob[i] = 0;
731   num_branches = 0;
732 
733   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
734     {
735       edge e;
736       edge_iterator ei;
737 
738       if (bb->count < 0)
739 	{
740 	  error ("corrupted profile info: number of iterations for basic block %d thought to be %i",
741 		 bb->index, (int)bb->count);
742 	  bb->count = 0;
743 	}
744       FOR_EACH_EDGE (e, ei, bb->succs)
745 	{
746 	  /* Function may return twice in the cased the called function is
747 	     setjmp or calls fork, but we can't represent this by extra
748 	     edge from the entry, since extra edge from the exit is
749 	     already present.  We get negative frequency from the entry
750 	     point.  */
751 	  if ((e->count < 0
752 	       && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
753 	      || (e->count > bb->count
754 		  && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
755 	    {
756 	      if (block_ends_with_call_p (bb))
757 		e->count = e->count < 0 ? 0 : bb->count;
758 	    }
759 	  if (e->count < 0 || e->count > bb->count)
760 	    {
761 	      error ("corrupted profile info: number of executions for edge %d-%d thought to be %i",
762 		     e->src->index, e->dest->index,
763 		     (int)e->count);
764 	      e->count = bb->count / 2;
765 	    }
766 	}
767       if (bb->count)
768 	{
769 	  FOR_EACH_EDGE (e, ei, bb->succs)
770 	    e->probability = GCOV_COMPUTE_SCALE (e->count, bb->count);
771 	  if (bb->index >= NUM_FIXED_BLOCKS
772 	      && block_ends_with_condjump_p (bb)
773 	      && EDGE_COUNT (bb->succs) >= 2)
774 	    {
775 	      int prob;
776 	      edge e;
777 	      int index;
778 
779 	      /* Find the branch edge.  It is possible that we do have fake
780 		 edges here.  */
781 	      FOR_EACH_EDGE (e, ei, bb->succs)
782 		if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU)))
783 		  break;
784 
785 	      prob = e->probability;
786 	      index = prob * 20 / REG_BR_PROB_BASE;
787 
788 	      if (index == 20)
789 		index = 19;
790 	      hist_br_prob[index]++;
791 
792 	      num_branches++;
793 	    }
794 	}
795       /* As a last resort, distribute the probabilities evenly.
796 	 Use simple heuristics that if there are normal edges,
797 	 give all abnormals frequency of 0, otherwise distribute the
798 	 frequency over abnormals (this is the case of noreturn
799 	 calls).  */
800       else if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
801 	{
802 	  int total = 0;
803 
804 	  FOR_EACH_EDGE (e, ei, bb->succs)
805 	    if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
806 	      total ++;
807 	  if (total)
808 	    {
809 	      FOR_EACH_EDGE (e, ei, bb->succs)
810 		if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
811 		  e->probability = REG_BR_PROB_BASE / total;
812 		else
813 		  e->probability = 0;
814 	    }
815 	  else
816 	    {
817 	      total += EDGE_COUNT (bb->succs);
818 	      FOR_EACH_EDGE (e, ei, bb->succs)
819 		e->probability = REG_BR_PROB_BASE / total;
820 	    }
821 	  if (bb->index >= NUM_FIXED_BLOCKS
822 	      && block_ends_with_condjump_p (bb)
823 	      && EDGE_COUNT (bb->succs) >= 2)
824 	    num_branches++;
825 	}
826     }
827   counts_to_freqs ();
828   profile_status_for_fn (cfun) = PROFILE_READ;
829   compute_function_frequency ();
830 
831   if (dump_file)
832     {
833       fprintf (dump_file, "%d branches\n", num_branches);
834       if (num_branches)
835 	for (i = 0; i < 10; i++)
836 	  fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
837 		   (hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches,
838 		   5 * i, 5 * i + 5);
839 
840       total_num_branches += num_branches;
841       for (i = 0; i < 20; i++)
842 	total_hist_br_prob[i] += hist_br_prob[i];
843 
844       fputc ('\n', dump_file);
845       fputc ('\n', dump_file);
846     }
847 
848   free_aux_for_blocks ();
849 }
850 
851 /* Load value histograms values whose description is stored in VALUES array
852    from .gcda file.
853 
854    CFG_CHECKSUM is the precomputed checksum for the CFG.  */
855 
856 static void
compute_value_histograms(histogram_values values,unsigned cfg_checksum,unsigned lineno_checksum)857 compute_value_histograms (histogram_values values, unsigned cfg_checksum,
858                           unsigned lineno_checksum)
859 {
860   unsigned i, j, t, any;
861   unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS];
862   gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
863   gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
864   gcov_type *aact_count;
865   struct cgraph_node *node;
866 
867   for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
868     n_histogram_counters[t] = 0;
869 
870   for (i = 0; i < values.length (); i++)
871     {
872       histogram_value hist = values[i];
873       n_histogram_counters[(int) hist->type] += hist->n_counters;
874     }
875 
876   any = 0;
877   for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
878     {
879       if (!n_histogram_counters[t])
880 	{
881 	  histogram_counts[t] = NULL;
882 	  continue;
883 	}
884 
885       histogram_counts[t] =
886 	get_coverage_counts (COUNTER_FOR_HIST_TYPE (t),
887 			     n_histogram_counters[t], cfg_checksum,
888 			     lineno_checksum, NULL);
889       if (histogram_counts[t])
890 	any = 1;
891       act_count[t] = histogram_counts[t];
892     }
893   if (!any)
894     return;
895 
896   for (i = 0; i < values.length (); i++)
897     {
898       histogram_value hist = values[i];
899       gimple stmt = hist->hvalue.stmt;
900 
901       t = (int) hist->type;
902 
903       aact_count = act_count[t];
904 
905       if (act_count[t])
906         act_count[t] += hist->n_counters;
907 
908       gimple_add_histogram_value (cfun, stmt, hist);
909       hist->hvalue.counters =  XNEWVEC (gcov_type, hist->n_counters);
910       for (j = 0; j < hist->n_counters; j++)
911         if (aact_count)
912           hist->hvalue.counters[j] = aact_count[j];
913         else
914           hist->hvalue.counters[j] = 0;
915 
916       /* Time profiler counter is not related to any statement,
917          so that we have to read the counter and set the value to
918          the corresponding call graph node.  */
919       if (hist->type == HIST_TYPE_TIME_PROFILE)
920         {
921           node = cgraph_get_node (hist->fun->decl);
922 
923           node->tp_first_run = hist->hvalue.counters[0];
924 
925           if (dump_file)
926             fprintf (dump_file, "Read tp_first_run: %d\n", node->tp_first_run);
927         }
928     }
929 
930   for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
931     free (histogram_counts[t]);
932 }
933 
934 /* When passed NULL as file_name, initialize.
935    When passed something else, output the necessary commands to change
936    line to LINE and offset to FILE_NAME.  */
937 static void
output_location(char const * file_name,int line,gcov_position_t * offset,basic_block bb)938 output_location (char const *file_name, int line,
939 		 gcov_position_t *offset, basic_block bb)
940 {
941   static char const *prev_file_name;
942   static int prev_line;
943   bool name_differs, line_differs;
944 
945   if (!file_name)
946     {
947       prev_file_name = NULL;
948       prev_line = -1;
949       return;
950     }
951 
952   name_differs = !prev_file_name || filename_cmp (file_name, prev_file_name);
953   line_differs = prev_line != line;
954 
955   if (name_differs || line_differs)
956     {
957       if (!*offset)
958 	{
959 	  *offset = gcov_write_tag (GCOV_TAG_LINES);
960 	  gcov_write_unsigned (bb->index);
961 	  name_differs = line_differs=true;
962 	}
963 
964       /* If this is a new source file, then output the
965 	 file's name to the .bb file.  */
966       if (name_differs)
967 	{
968 	  prev_file_name = file_name;
969 	  gcov_write_unsigned (0);
970 	  gcov_write_string (prev_file_name);
971 	}
972       if (line_differs)
973 	{
974 	  gcov_write_unsigned (line);
975 	  prev_line = line;
976 	}
977      }
978 }
979 
980 /* Instrument and/or analyze program behavior based on program the CFG.
981 
982    This function creates a representation of the control flow graph (of
983    the function being compiled) that is suitable for the instrumentation
984    of edges and/or converting measured edge counts to counts on the
985    complete CFG.
986 
987    When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in
988    the flow graph that are needed to reconstruct the dynamic behavior of the
989    flow graph.  This data is written to the gcno file for gcov.
990 
991    When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
992    information from the gcda file containing edge count information from
993    previous executions of the function being compiled.  In this case, the
994    control flow graph is annotated with actual execution counts by
995    compute_branch_probabilities().
996 
997    Main entry point of this file.  */
998 
999 void
branch_prob(void)1000 branch_prob (void)
1001 {
1002   basic_block bb;
1003   unsigned i;
1004   unsigned num_edges, ignored_edges;
1005   unsigned num_instrumented;
1006   struct edge_list *el;
1007   histogram_values values = histogram_values ();
1008   unsigned cfg_checksum, lineno_checksum;
1009 
1010   total_num_times_called++;
1011 
1012   flow_call_edges_add (NULL);
1013   add_noreturn_fake_exit_edges ();
1014 
1015   /* We can't handle cyclic regions constructed using abnormal edges.
1016      To avoid these we replace every source of abnormal edge by a fake
1017      edge from entry node and every destination by fake edge to exit.
1018      This keeps graph acyclic and our calculation exact for all normal
1019      edges except for exit and entrance ones.
1020 
1021      We also add fake exit edges for each call and asm statement in the
1022      basic, since it may not return.  */
1023 
1024   FOR_EACH_BB_FN (bb, cfun)
1025     {
1026       int need_exit_edge = 0, need_entry_edge = 0;
1027       int have_exit_edge = 0, have_entry_edge = 0;
1028       edge e;
1029       edge_iterator ei;
1030 
1031       /* Functions returning multiple times are not handled by extra edges.
1032          Instead we simply allow negative counts on edges from exit to the
1033          block past call and corresponding probabilities.  We can't go
1034          with the extra edges because that would result in flowgraph that
1035 	 needs to have fake edges outside the spanning tree.  */
1036 
1037       FOR_EACH_EDGE (e, ei, bb->succs)
1038 	{
1039 	  gimple_stmt_iterator gsi;
1040 	  gimple last = NULL;
1041 
1042 	  /* It may happen that there are compiler generated statements
1043 	     without a locus at all.  Go through the basic block from the
1044 	     last to the first statement looking for a locus.  */
1045 	  for (gsi = gsi_last_nondebug_bb (bb);
1046 	       !gsi_end_p (gsi);
1047 	       gsi_prev_nondebug (&gsi))
1048 	    {
1049 	      last = gsi_stmt (gsi);
1050 	      if (gimple_has_location (last))
1051 		break;
1052 	    }
1053 
1054 	  /* Edge with goto locus might get wrong coverage info unless
1055 	     it is the only edge out of BB.
1056 	     Don't do that when the locuses match, so
1057 	     if (blah) goto something;
1058 	     is not computed twice.  */
1059 	  if (last
1060 	      && gimple_has_location (last)
1061 	      && LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
1062 	      && !single_succ_p (bb)
1063 	      && (LOCATION_FILE (e->goto_locus)
1064 	          != LOCATION_FILE (gimple_location (last))
1065 		  || (LOCATION_LINE (e->goto_locus)
1066 		      != LOCATION_LINE (gimple_location (last)))))
1067 	    {
1068 	      basic_block new_bb = split_edge (e);
1069 	      edge ne = single_succ_edge (new_bb);
1070 	      ne->goto_locus = e->goto_locus;
1071 	    }
1072 	  if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1073 	       && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1074 	    need_exit_edge = 1;
1075 	  if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1076 	    have_exit_edge = 1;
1077 	}
1078       FOR_EACH_EDGE (e, ei, bb->preds)
1079 	{
1080 	  if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1081 	       && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1082 	    need_entry_edge = 1;
1083 	  if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1084 	    have_entry_edge = 1;
1085 	}
1086 
1087       if (need_exit_edge && !have_exit_edge)
1088 	{
1089 	  if (dump_file)
1090 	    fprintf (dump_file, "Adding fake exit edge to bb %i\n",
1091 		     bb->index);
1092 	  make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
1093 	}
1094       if (need_entry_edge && !have_entry_edge)
1095 	{
1096 	  if (dump_file)
1097 	    fprintf (dump_file, "Adding fake entry edge to bb %i\n",
1098 		     bb->index);
1099 	  make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb, EDGE_FAKE);
1100 	  /* Avoid bbs that have both fake entry edge and also some
1101 	     exit edge.  One of those edges wouldn't be added to the
1102 	     spanning tree, but we can't instrument any of them.  */
1103 	  if (have_exit_edge || need_exit_edge)
1104 	    {
1105 	      gimple_stmt_iterator gsi;
1106 	      gimple first;
1107 
1108 	      gsi = gsi_start_nondebug_after_labels_bb (bb);
1109 	      gcc_checking_assert (!gsi_end_p (gsi));
1110 	      first = gsi_stmt (gsi);
1111 	      /* Don't split the bbs containing __builtin_setjmp_receiver
1112 		 or ABNORMAL_DISPATCHER calls.  These are very
1113 		 special and don't expect anything to be inserted before
1114 		 them.  */
1115 	      if (is_gimple_call (first)
1116 		  && (gimple_call_builtin_p (first, BUILT_IN_SETJMP_RECEIVER)
1117 		      || (gimple_call_flags (first) & ECF_RETURNS_TWICE)
1118 		      || (gimple_call_internal_p (first)
1119 			  && (gimple_call_internal_fn (first)
1120 			      == IFN_ABNORMAL_DISPATCHER))))
1121 		continue;
1122 
1123 	      if (dump_file)
1124 		fprintf (dump_file, "Splitting bb %i after labels\n",
1125 			 bb->index);
1126 	      split_block_after_labels (bb);
1127 	    }
1128 	}
1129     }
1130 
1131   el = create_edge_list ();
1132   num_edges = NUM_EDGES (el);
1133   alloc_aux_for_edges (sizeof (struct edge_info));
1134 
1135   /* The basic blocks are expected to be numbered sequentially.  */
1136   compact_blocks ();
1137 
1138   ignored_edges = 0;
1139   for (i = 0 ; i < num_edges ; i++)
1140     {
1141       edge e = INDEX_EDGE (el, i);
1142       e->count = 0;
1143 
1144       /* Mark edges we've replaced by fake edges above as ignored.  */
1145       if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1146 	  && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1147 	  && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1148 	{
1149 	  EDGE_INFO (e)->ignore = 1;
1150 	  ignored_edges++;
1151 	}
1152     }
1153 
1154   /* Create spanning tree from basic block graph, mark each edge that is
1155      on the spanning tree.  We insert as many abnormal and critical edges
1156      as possible to minimize number of edge splits necessary.  */
1157 
1158   find_spanning_tree (el);
1159 
1160   /* Fake edges that are not on the tree will not be instrumented, so
1161      mark them ignored.  */
1162   for (num_instrumented = i = 0; i < num_edges; i++)
1163     {
1164       edge e = INDEX_EDGE (el, i);
1165       struct edge_info *inf = EDGE_INFO (e);
1166 
1167       if (inf->ignore || inf->on_tree)
1168 	/*NOP*/;
1169       else if (e->flags & EDGE_FAKE)
1170 	{
1171 	  inf->ignore = 1;
1172 	  ignored_edges++;
1173 	}
1174       else
1175 	num_instrumented++;
1176     }
1177 
1178   total_num_blocks += n_basic_blocks_for_fn (cfun);
1179   if (dump_file)
1180     fprintf (dump_file, "%d basic blocks\n", n_basic_blocks_for_fn (cfun));
1181 
1182   total_num_edges += num_edges;
1183   if (dump_file)
1184     fprintf (dump_file, "%d edges\n", num_edges);
1185 
1186   total_num_edges_ignored += ignored_edges;
1187   if (dump_file)
1188     fprintf (dump_file, "%d ignored edges\n", ignored_edges);
1189 
1190   total_num_edges_instrumented += num_instrumented;
1191   if (dump_file)
1192     fprintf (dump_file, "%d instrumentation edges\n", num_instrumented);
1193 
1194   /* Compute two different checksums. Note that we want to compute
1195      the checksum in only once place, since it depends on the shape
1196      of the control flow which can change during
1197      various transformations.  */
1198   cfg_checksum = coverage_compute_cfg_checksum ();
1199   lineno_checksum = coverage_compute_lineno_checksum ();
1200 
1201   /* Write the data from which gcov can reconstruct the basic block
1202      graph and function line numbers (the gcno file).  */
1203   if (coverage_begin_function (lineno_checksum, cfg_checksum))
1204     {
1205       gcov_position_t offset;
1206 
1207       /* Basic block flags */
1208       offset = gcov_write_tag (GCOV_TAG_BLOCKS);
1209       for (i = 0; i != (unsigned) (n_basic_blocks_for_fn (cfun)); i++)
1210 	gcov_write_unsigned (0);
1211       gcov_write_length (offset);
1212 
1213       /* Arcs */
1214       FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
1215 		      EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1216 	{
1217 	  edge e;
1218 	  edge_iterator ei;
1219 
1220 	  offset = gcov_write_tag (GCOV_TAG_ARCS);
1221 	  gcov_write_unsigned (bb->index);
1222 
1223 	  FOR_EACH_EDGE (e, ei, bb->succs)
1224 	    {
1225 	      struct edge_info *i = EDGE_INFO (e);
1226 	      if (!i->ignore)
1227 		{
1228 		  unsigned flag_bits = 0;
1229 
1230 		  if (i->on_tree)
1231 		    flag_bits |= GCOV_ARC_ON_TREE;
1232 		  if (e->flags & EDGE_FAKE)
1233 		    flag_bits |= GCOV_ARC_FAKE;
1234 		  if (e->flags & EDGE_FALLTHRU)
1235 		    flag_bits |= GCOV_ARC_FALLTHROUGH;
1236 		  /* On trees we don't have fallthru flags, but we can
1237 		     recompute them from CFG shape.  */
1238 		  if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
1239 		      && e->src->next_bb == e->dest)
1240 		    flag_bits |= GCOV_ARC_FALLTHROUGH;
1241 
1242 		  gcov_write_unsigned (e->dest->index);
1243 		  gcov_write_unsigned (flag_bits);
1244 	        }
1245 	    }
1246 
1247 	  gcov_write_length (offset);
1248 	}
1249 
1250       /* Line numbers.  */
1251       /* Initialize the output.  */
1252       output_location (NULL, 0, NULL, NULL);
1253 
1254       FOR_EACH_BB_FN (bb, cfun)
1255 	{
1256 	  gimple_stmt_iterator gsi;
1257 	  gcov_position_t offset = 0;
1258 
1259 	  if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
1260 	    {
1261 	      expanded_location curr_location =
1262 		expand_location (DECL_SOURCE_LOCATION (current_function_decl));
1263 	      output_location (curr_location.file, curr_location.line,
1264 			       &offset, bb);
1265 	    }
1266 
1267 	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1268 	    {
1269 	      gimple stmt = gsi_stmt (gsi);
1270 	      if (gimple_has_location (stmt))
1271 		output_location (gimple_filename (stmt), gimple_lineno (stmt),
1272 				 &offset, bb);
1273 	    }
1274 
1275 	  /* Notice GOTO expressions eliminated while constructing the CFG.  */
1276 	  if (single_succ_p (bb)
1277 	      && LOCATION_LOCUS (single_succ_edge (bb)->goto_locus)
1278 		 != UNKNOWN_LOCATION)
1279 	    {
1280 	      expanded_location curr_location
1281 		= expand_location (single_succ_edge (bb)->goto_locus);
1282 	      output_location (curr_location.file, curr_location.line,
1283 			       &offset, bb);
1284 	    }
1285 
1286 	  if (offset)
1287 	    {
1288 	      /* A file of NULL indicates the end of run.  */
1289 	      gcov_write_unsigned (0);
1290 	      gcov_write_string (NULL);
1291 	      gcov_write_length (offset);
1292 	    }
1293 	}
1294     }
1295 
1296   if (flag_profile_values)
1297     gimple_find_values_to_profile (&values);
1298 
1299   if (flag_branch_probabilities)
1300     {
1301       compute_branch_probabilities (cfg_checksum, lineno_checksum);
1302       if (flag_profile_values)
1303 	compute_value_histograms (values, cfg_checksum, lineno_checksum);
1304     }
1305 
1306   remove_fake_edges ();
1307 
1308   /* For each edge not on the spanning tree, add counting code.  */
1309   if (profile_arc_flag
1310       && coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented))
1311     {
1312       unsigned n_instrumented;
1313 
1314       gimple_init_edge_profiler ();
1315 
1316       n_instrumented = instrument_edges (el);
1317 
1318       gcc_assert (n_instrumented == num_instrumented);
1319 
1320       if (flag_profile_values)
1321 	instrument_values (values);
1322 
1323       /* Commit changes done by instrumentation.  */
1324       gsi_commit_edge_inserts ();
1325     }
1326 
1327   free_aux_for_edges ();
1328 
1329   values.release ();
1330   free_edge_list (el);
1331   coverage_end_function (lineno_checksum, cfg_checksum);
1332 }
1333 
1334 /* Union find algorithm implementation for the basic blocks using
1335    aux fields.  */
1336 
1337 static basic_block
find_group(basic_block bb)1338 find_group (basic_block bb)
1339 {
1340   basic_block group = bb, bb1;
1341 
1342   while ((basic_block) group->aux != group)
1343     group = (basic_block) group->aux;
1344 
1345   /* Compress path.  */
1346   while ((basic_block) bb->aux != group)
1347     {
1348       bb1 = (basic_block) bb->aux;
1349       bb->aux = (void *) group;
1350       bb = bb1;
1351     }
1352   return group;
1353 }
1354 
1355 static void
union_groups(basic_block bb1,basic_block bb2)1356 union_groups (basic_block bb1, basic_block bb2)
1357 {
1358   basic_block bb1g = find_group (bb1);
1359   basic_block bb2g = find_group (bb2);
1360 
1361   /* ??? I don't have a place for the rank field.  OK.  Lets go w/o it,
1362      this code is unlikely going to be performance problem anyway.  */
1363   gcc_assert (bb1g != bb2g);
1364 
1365   bb1g->aux = bb2g;
1366 }
1367 
1368 /* This function searches all of the edges in the program flow graph, and puts
1369    as many bad edges as possible onto the spanning tree.  Bad edges include
1370    abnormals edges, which can't be instrumented at the moment.  Since it is
1371    possible for fake edges to form a cycle, we will have to develop some
1372    better way in the future.  Also put critical edges to the tree, since they
1373    are more expensive to instrument.  */
1374 
1375 static void
find_spanning_tree(struct edge_list * el)1376 find_spanning_tree (struct edge_list *el)
1377 {
1378   int i;
1379   int num_edges = NUM_EDGES (el);
1380   basic_block bb;
1381 
1382   /* We use aux field for standard union-find algorithm.  */
1383   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
1384     bb->aux = bb;
1385 
1386   /* Add fake edge exit to entry we can't instrument.  */
1387   union_groups (EXIT_BLOCK_PTR_FOR_FN (cfun), ENTRY_BLOCK_PTR_FOR_FN (cfun));
1388 
1389   /* First add all abnormal edges to the tree unless they form a cycle. Also
1390      add all edges to the exit block to avoid inserting profiling code behind
1391      setting return value from function.  */
1392   for (i = 0; i < num_edges; i++)
1393     {
1394       edge e = INDEX_EDGE (el, i);
1395       if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE))
1396 	   || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1397 	  && !EDGE_INFO (e)->ignore
1398 	  && (find_group (e->src) != find_group (e->dest)))
1399 	{
1400 	  if (dump_file)
1401 	    fprintf (dump_file, "Abnormal edge %d to %d put to tree\n",
1402 		     e->src->index, e->dest->index);
1403 	  EDGE_INFO (e)->on_tree = 1;
1404 	  union_groups (e->src, e->dest);
1405 	}
1406     }
1407 
1408   /* Now insert all critical edges to the tree unless they form a cycle.  */
1409   for (i = 0; i < num_edges; i++)
1410     {
1411       edge e = INDEX_EDGE (el, i);
1412       if (EDGE_CRITICAL_P (e) && !EDGE_INFO (e)->ignore
1413 	  && find_group (e->src) != find_group (e->dest))
1414 	{
1415 	  if (dump_file)
1416 	    fprintf (dump_file, "Critical edge %d to %d put to tree\n",
1417 		     e->src->index, e->dest->index);
1418 	  EDGE_INFO (e)->on_tree = 1;
1419 	  union_groups (e->src, e->dest);
1420 	}
1421     }
1422 
1423   /* And now the rest.  */
1424   for (i = 0; i < num_edges; i++)
1425     {
1426       edge e = INDEX_EDGE (el, i);
1427       if (!EDGE_INFO (e)->ignore
1428 	  && find_group (e->src) != find_group (e->dest))
1429 	{
1430 	  if (dump_file)
1431 	    fprintf (dump_file, "Normal edge %d to %d put to tree\n",
1432 		     e->src->index, e->dest->index);
1433 	  EDGE_INFO (e)->on_tree = 1;
1434 	  union_groups (e->src, e->dest);
1435 	}
1436     }
1437 
1438   clear_aux_for_blocks ();
1439 }
1440 
1441 /* Perform file-level initialization for branch-prob processing.  */
1442 
1443 void
init_branch_prob(void)1444 init_branch_prob (void)
1445 {
1446   int i;
1447 
1448   total_num_blocks = 0;
1449   total_num_edges = 0;
1450   total_num_edges_ignored = 0;
1451   total_num_edges_instrumented = 0;
1452   total_num_blocks_created = 0;
1453   total_num_passes = 0;
1454   total_num_times_called = 0;
1455   total_num_branches = 0;
1456   for (i = 0; i < 20; i++)
1457     total_hist_br_prob[i] = 0;
1458 }
1459 
1460 /* Performs file-level cleanup after branch-prob processing
1461    is completed.  */
1462 
1463 void
end_branch_prob(void)1464 end_branch_prob (void)
1465 {
1466   if (dump_file)
1467     {
1468       fprintf (dump_file, "\n");
1469       fprintf (dump_file, "Total number of blocks: %d\n",
1470 	       total_num_blocks);
1471       fprintf (dump_file, "Total number of edges: %d\n", total_num_edges);
1472       fprintf (dump_file, "Total number of ignored edges: %d\n",
1473 	       total_num_edges_ignored);
1474       fprintf (dump_file, "Total number of instrumented edges: %d\n",
1475 	       total_num_edges_instrumented);
1476       fprintf (dump_file, "Total number of blocks created: %d\n",
1477 	       total_num_blocks_created);
1478       fprintf (dump_file, "Total number of graph solution passes: %d\n",
1479 	       total_num_passes);
1480       if (total_num_times_called != 0)
1481 	fprintf (dump_file, "Average number of graph solution passes: %d\n",
1482 		 (total_num_passes + (total_num_times_called  >> 1))
1483 		 / total_num_times_called);
1484       fprintf (dump_file, "Total number of branches: %d\n",
1485 	       total_num_branches);
1486       if (total_num_branches)
1487 	{
1488 	  int i;
1489 
1490 	  for (i = 0; i < 10; i++)
1491 	    fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1492 		     (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
1493 		     / total_num_branches, 5*i, 5*i+5);
1494 	}
1495     }
1496 }
1497