1 /* Timing variables for measuring compiler performance.
2    Copyright (C) 2000-2014 Free Software Foundation, Inc.
3    Contributed by Alex Samuel <samuel@codesourcery.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "timevar.h"
24 
25 #ifndef HAVE_CLOCK_T
26 typedef int clock_t;
27 #endif
28 
29 #ifndef HAVE_STRUCT_TMS
30 struct tms
31 {
32   clock_t tms_utime;
33   clock_t tms_stime;
34   clock_t tms_cutime;
35   clock_t tms_cstime;
36 };
37 #endif
38 
39 #ifndef RUSAGE_SELF
40 # define RUSAGE_SELF 0
41 #endif
42 
43 /* Calculation of scale factor to convert ticks to microseconds.
44    We mustn't use CLOCKS_PER_SEC except with clock().  */
45 #if HAVE_SYSCONF && defined _SC_CLK_TCK
46 # define TICKS_PER_SECOND sysconf (_SC_CLK_TCK) /* POSIX 1003.1-1996 */
47 #else
48 # ifdef CLK_TCK
49 #  define TICKS_PER_SECOND CLK_TCK /* POSIX 1003.1-1988; obsolescent */
50 # else
51 #  ifdef HZ
52 #   define TICKS_PER_SECOND HZ  /* traditional UNIX */
53 #  else
54 #   define TICKS_PER_SECOND 100 /* often the correct value */
55 #  endif
56 # endif
57 #endif
58 
59 /* Prefer times to getrusage to clock (each gives successively less
60    information).  */
61 #ifdef HAVE_TIMES
62 # if defined HAVE_DECL_TIMES && !HAVE_DECL_TIMES
63   extern clock_t times (struct tms *);
64 # endif
65 # define USE_TIMES
66 # define HAVE_USER_TIME
67 # define HAVE_SYS_TIME
68 # define HAVE_WALL_TIME
69 #else
70 #ifdef HAVE_GETRUSAGE
71 # if defined HAVE_DECL_GETRUSAGE && !HAVE_DECL_GETRUSAGE
72   extern int getrusage (int, struct rusage *);
73 # endif
74 # define USE_GETRUSAGE
75 # define HAVE_USER_TIME
76 # define HAVE_SYS_TIME
77 #else
78 #ifdef HAVE_CLOCK
79 # if defined HAVE_DECL_CLOCK && !HAVE_DECL_CLOCK
80   extern clock_t clock (void);
81 # endif
82 # define USE_CLOCK
83 # define HAVE_USER_TIME
84 #endif
85 #endif
86 #endif
87 
88 /* libc is very likely to have snuck a call to sysconf() into one of
89    the underlying constants, and that can be very slow, so we have to
90    precompute them.  Whose wonderful idea was it to make all those
91    _constants_ variable at run time, anyway?  */
92 #ifdef USE_TIMES
93 static double ticks_to_msec;
94 #define TICKS_TO_MSEC (1 / (double)TICKS_PER_SECOND)
95 #endif
96 
97 #ifdef USE_CLOCK
98 static double clocks_to_msec;
99 #define CLOCKS_TO_MSEC (1 / (double)CLOCKS_PER_SEC)
100 #endif
101 
102 /* True if timevars should be used.  In GCC, this happens with
103    the -ftime-report flag.  */
104 
105 bool timevar_enable;
106 
107 /* Total amount of memory allocated by garbage collector.  */
108 
109 size_t timevar_ggc_mem_total;
110 
111 /* The amount of memory that will cause us to report the timevar even
112    if the time spent is not significant.  */
113 
114 #define GGC_MEM_BOUND (1 << 20)
115 
116 /* See timevar.h for an explanation of timing variables.  */
117 
118 /* A timing variable.  */
119 
120 struct timevar_def
121 {
122   /* Elapsed time for this variable.  */
123   struct timevar_time_def elapsed;
124 
125   /* If this variable is timed independently of the timing stack,
126      using timevar_start, this contains the start time.  */
127   struct timevar_time_def start_time;
128 
129   /* The name of this timing variable.  */
130   const char *name;
131 
132   /* Nonzero if this timing variable is running as a standalone
133      timer.  */
134   unsigned standalone : 1;
135 
136   /* Nonzero if this timing variable was ever started or pushed onto
137      the timing stack.  */
138   unsigned used : 1;
139 };
140 
141 /* An element on the timing stack.  Elapsed time is attributed to the
142    topmost timing variable on the stack.  */
143 
144 struct timevar_stack_def
145 {
146   /* The timing variable at this stack level.  */
147   struct timevar_def *timevar;
148 
149   /* The next lower timing variable context in the stack.  */
150   struct timevar_stack_def *next;
151 };
152 
153 /* Declared timing variables.  Constructed from the contents of
154    timevar.def.  */
155 static struct timevar_def timevars[TIMEVAR_LAST];
156 
157 /* The top of the timing stack.  */
158 static struct timevar_stack_def *stack;
159 
160 /* A list of unused (i.e. allocated and subsequently popped)
161    timevar_stack_def instances.  */
162 static struct timevar_stack_def *unused_stack_instances;
163 
164 /* The time at which the topmost element on the timing stack was
165    pushed.  Time elapsed since then is attributed to the topmost
166    element.  */
167 static struct timevar_time_def start_time;
168 
169 static void get_time (struct timevar_time_def *);
170 static void timevar_accumulate (struct timevar_time_def *,
171 				struct timevar_time_def *,
172 				struct timevar_time_def *);
173 
174 /* Fill the current times into TIME.  The definition of this function
175    also defines any or all of the HAVE_USER_TIME, HAVE_SYS_TIME, and
176    HAVE_WALL_TIME macros.  */
177 
178 static void
get_time(struct timevar_time_def * now)179 get_time (struct timevar_time_def *now)
180 {
181   now->user = 0;
182   now->sys  = 0;
183   now->wall = 0;
184   now->ggc_mem = timevar_ggc_mem_total;
185 
186   if (!timevar_enable)
187     return;
188 
189   {
190 #ifdef USE_TIMES
191     struct tms tms;
192     now->wall = times (&tms)  * ticks_to_msec;
193     now->user = tms.tms_utime * ticks_to_msec;
194     now->sys  = tms.tms_stime * ticks_to_msec;
195 #endif
196 #ifdef USE_GETRUSAGE
197     struct rusage rusage;
198     getrusage (RUSAGE_SELF, &rusage);
199     now->user = rusage.ru_utime.tv_sec + rusage.ru_utime.tv_usec * 1e-6;
200     now->sys  = rusage.ru_stime.tv_sec + rusage.ru_stime.tv_usec * 1e-6;
201 #endif
202 #ifdef USE_CLOCK
203     now->user = clock () * clocks_to_msec;
204 #endif
205   }
206 }
207 
208 /* Add the difference between STOP_TIME and START_TIME to TIMER.  */
209 
210 static void
timevar_accumulate(struct timevar_time_def * timer,struct timevar_time_def * start_time,struct timevar_time_def * stop_time)211 timevar_accumulate (struct timevar_time_def *timer,
212 		    struct timevar_time_def *start_time,
213 		    struct timevar_time_def *stop_time)
214 {
215   timer->user += stop_time->user - start_time->user;
216   timer->sys += stop_time->sys - start_time->sys;
217   timer->wall += stop_time->wall - start_time->wall;
218   timer->ggc_mem += stop_time->ggc_mem - start_time->ggc_mem;
219 }
220 
221 /* Initialize timing variables.  */
222 
223 void
timevar_init(void)224 timevar_init (void)
225 {
226   timevar_enable = true;
227 
228   /* Zero all elapsed times.  */
229   memset (timevars, 0, sizeof (timevars));
230 
231   /* Initialize the names of timing variables.  */
232 #define DEFTIMEVAR(identifier__, name__) \
233   timevars[identifier__].name = name__;
234 #include "timevar.def"
235 #undef DEFTIMEVAR
236 
237 #ifdef USE_TIMES
238   ticks_to_msec = TICKS_TO_MSEC;
239 #endif
240 #ifdef USE_CLOCK
241   clocks_to_msec = CLOCKS_TO_MSEC;
242 #endif
243 }
244 
245 /* Push TIMEVAR onto the timing stack.  No further elapsed time is
246    attributed to the previous topmost timing variable on the stack;
247    subsequent elapsed time is attributed to TIMEVAR, until it is
248    popped or another element is pushed on top.
249 
250    TIMEVAR cannot be running as a standalone timer.  */
251 
252 void
timevar_push_1(timevar_id_t timevar)253 timevar_push_1 (timevar_id_t timevar)
254 {
255   struct timevar_def *tv = &timevars[timevar];
256   struct timevar_stack_def *context;
257   struct timevar_time_def now;
258 
259   /* Mark this timing variable as used.  */
260   tv->used = 1;
261 
262   /* Can't push a standalone timer.  */
263   gcc_assert (!tv->standalone);
264 
265   /* What time is it?  */
266   get_time (&now);
267 
268   /* If the stack isn't empty, attribute the current elapsed time to
269      the old topmost element.  */
270   if (stack)
271     timevar_accumulate (&stack->timevar->elapsed, &start_time, &now);
272 
273   /* Reset the start time; from now on, time is attributed to
274      TIMEVAR.  */
275   start_time = now;
276 
277   /* See if we have a previously-allocated stack instance.  If so,
278      take it off the list.  If not, malloc a new one.  */
279   if (unused_stack_instances != NULL)
280     {
281       context = unused_stack_instances;
282       unused_stack_instances = unused_stack_instances->next;
283     }
284   else
285     context = XNEW (struct timevar_stack_def);
286 
287   /* Fill it in and put it on the stack.  */
288   context->timevar = tv;
289   context->next = stack;
290   stack = context;
291 }
292 
293 /* Pop the topmost timing variable element off the timing stack.  The
294    popped variable must be TIMEVAR.  Elapsed time since the that
295    element was pushed on, or since it was last exposed on top of the
296    stack when the element above it was popped off, is credited to that
297    timing variable.  */
298 
299 void
timevar_pop_1(timevar_id_t timevar)300 timevar_pop_1 (timevar_id_t timevar)
301 {
302   struct timevar_time_def now;
303   struct timevar_stack_def *popped = stack;
304 
305   gcc_assert (&timevars[timevar] == stack->timevar);
306 
307   /* What time is it?  */
308   get_time (&now);
309 
310   /* Attribute the elapsed time to the element we're popping.  */
311   timevar_accumulate (&popped->timevar->elapsed, &start_time, &now);
312 
313   /* Reset the start time; from now on, time is attributed to the
314      element just exposed on the stack.  */
315   start_time = now;
316 
317   /* Take the item off the stack.  */
318   stack = stack->next;
319 
320   /* Don't delete the stack element; instead, add it to the list of
321      unused elements for later use.  */
322   popped->next = unused_stack_instances;
323   unused_stack_instances = popped;
324 }
325 
326 /* Start timing TIMEVAR independently of the timing stack.  Elapsed
327    time until timevar_stop is called for the same timing variable is
328    attributed to TIMEVAR.  */
329 
330 void
timevar_start(timevar_id_t timevar)331 timevar_start (timevar_id_t timevar)
332 {
333   struct timevar_def *tv = &timevars[timevar];
334 
335   if (!timevar_enable)
336     return;
337 
338   /* Mark this timing variable as used.  */
339   tv->used = 1;
340 
341   /* Don't allow the same timing variable to be started more than
342      once.  */
343   gcc_assert (!tv->standalone);
344   tv->standalone = 1;
345 
346   get_time (&tv->start_time);
347 }
348 
349 /* Stop timing TIMEVAR.  Time elapsed since timevar_start was called
350    is attributed to it.  */
351 
352 void
timevar_stop(timevar_id_t timevar)353 timevar_stop (timevar_id_t timevar)
354 {
355   struct timevar_def *tv = &timevars[timevar];
356   struct timevar_time_def now;
357 
358   if (!timevar_enable)
359     return;
360 
361   /* TIMEVAR must have been started via timevar_start.  */
362   gcc_assert (tv->standalone);
363   tv->standalone = 0; /* Enable a restart.  */
364 
365   get_time (&now);
366   timevar_accumulate (&tv->elapsed, &tv->start_time, &now);
367 }
368 
369 
370 /* Conditionally start timing TIMEVAR independently of the timing stack.
371    If the timer is already running, leave it running and return true.
372    Otherwise, start the timer and return false.
373    Elapsed time until the corresponding timevar_cond_stop
374    is called for the same timing variable is attributed to TIMEVAR.  */
375 
376 bool
timevar_cond_start(timevar_id_t timevar)377 timevar_cond_start (timevar_id_t timevar)
378 {
379   struct timevar_def *tv = &timevars[timevar];
380 
381   if (!timevar_enable)
382     return false;
383 
384   /* Mark this timing variable as used.  */
385   tv->used = 1;
386 
387   if (tv->standalone)
388     return true;  /* The timevar is already running.  */
389 
390   /* Don't allow the same timing variable
391      to be unconditionally started more than once.  */
392   tv->standalone = 1;
393 
394   get_time (&tv->start_time);
395   return false;  /* The timevar was not already running.  */
396 }
397 
398 /* Conditionally stop timing TIMEVAR.  The RUNNING parameter must come
399    from the return value of a dynamically matching timevar_cond_start.
400    If the timer had already been RUNNING, do nothing.  Otherwise, time
401    elapsed since timevar_cond_start was called is attributed to it.  */
402 
403 void
timevar_cond_stop(timevar_id_t timevar,bool running)404 timevar_cond_stop (timevar_id_t timevar, bool running)
405 {
406   struct timevar_def *tv;
407   struct timevar_time_def now;
408 
409   if (!timevar_enable || running)
410     return;
411 
412   tv = &timevars[timevar];
413 
414   /* TIMEVAR must have been started via timevar_cond_start.  */
415   gcc_assert (tv->standalone);
416   tv->standalone = 0; /* Enable a restart.  */
417 
418   get_time (&now);
419   timevar_accumulate (&tv->elapsed, &tv->start_time, &now);
420 }
421 
422 
423 /* Validate that phase times are consistent.  */
424 
425 static void
validate_phases(FILE * fp)426 validate_phases (FILE *fp)
427 {
428   unsigned int /* timevar_id_t */ id;
429   struct timevar_time_def *total = &timevars[TV_TOTAL].elapsed;
430   double phase_user = 0.0;
431   double phase_sys = 0.0;
432   double phase_wall = 0.0;
433   size_t phase_ggc_mem = 0;
434   static char phase_prefix[] = "phase ";
435   const double tolerance = 1.000001;  /* One part in a million.  */
436 
437   for (id = 0; id < (unsigned int) TIMEVAR_LAST; ++id)
438     {
439       struct timevar_def *tv = &timevars[(timevar_id_t) id];
440 
441       /* Don't evaluate timing variables that were never used.  */
442       if (!tv->used)
443 	continue;
444 
445       if (strncmp (tv->name, phase_prefix, sizeof phase_prefix - 1) == 0)
446 	{
447 	  phase_user += tv->elapsed.user;
448 	  phase_sys += tv->elapsed.sys;
449 	  phase_wall += tv->elapsed.wall;
450 	  phase_ggc_mem += tv->elapsed.ggc_mem;
451 	}
452     }
453 
454   if (phase_user > total->user * tolerance
455       || phase_sys > total->sys * tolerance
456       || phase_wall > total->wall * tolerance
457       || phase_ggc_mem > total->ggc_mem * tolerance)
458     {
459 
460       fprintf (fp, "Timing error: total of phase timers exceeds total time.\n");
461       if (phase_user > total->user)
462 	fprintf (fp, "user    %24.18e > %24.18e\n", phase_user, total->user);
463       if (phase_sys > total->sys)
464 	fprintf (fp, "sys     %24.18e > %24.18e\n", phase_sys, total->sys);
465       if (phase_wall > total->wall)
466 	fprintf (fp, "wall    %24.18e > %24.18e\n", phase_wall, total->wall);
467       if (phase_ggc_mem > total->ggc_mem)
468 	fprintf (fp, "ggc_mem %24lu > %24lu\n", (unsigned long)phase_ggc_mem,
469 		 (unsigned long)total->ggc_mem);
470       gcc_unreachable ();
471     }
472 }
473 
474 
475 /* Summarize timing variables to FP.  The timing variable TV_TOTAL has
476    a special meaning -- it's considered to be the total elapsed time,
477    for normalizing the others, and is displayed last.  */
478 
479 void
timevar_print(FILE * fp)480 timevar_print (FILE *fp)
481 {
482   /* Only print stuff if we have some sort of time information.  */
483 #if defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME) || defined (HAVE_WALL_TIME)
484   unsigned int /* timevar_id_t */ id;
485   struct timevar_time_def *total = &timevars[TV_TOTAL].elapsed;
486   struct timevar_time_def now;
487 
488   if (!timevar_enable)
489     return;
490 
491   /* Update timing information in case we're calling this from GDB.  */
492 
493   if (fp == 0)
494     fp = stderr;
495 
496   /* What time is it?  */
497   get_time (&now);
498 
499   /* If the stack isn't empty, attribute the current elapsed time to
500      the old topmost element.  */
501   if (stack)
502     timevar_accumulate (&stack->timevar->elapsed, &start_time, &now);
503 
504   /* Reset the start time; from now on, time is attributed to
505      TIMEVAR.  */
506   start_time = now;
507 
508   fputs ("\nExecution times (seconds)\n", fp);
509   for (id = 0; id < (unsigned int) TIMEVAR_LAST; ++id)
510     {
511       struct timevar_def *tv = &timevars[(timevar_id_t) id];
512       const double tiny = 5e-3;
513 
514       /* Don't print the total execution time here; that goes at the
515 	 end.  */
516       if ((timevar_id_t) id == TV_TOTAL)
517 	continue;
518 
519       /* Don't print timing variables that were never used.  */
520       if (!tv->used)
521 	continue;
522 
523       /* Don't print timing variables if we're going to get a row of
524          zeroes.  */
525       if (tv->elapsed.user < tiny
526 	  && tv->elapsed.sys < tiny
527 	  && tv->elapsed.wall < tiny
528 	  && tv->elapsed.ggc_mem < GGC_MEM_BOUND)
529 	continue;
530 
531       /* The timing variable name.  */
532       fprintf (fp, " %-24s:", tv->name);
533 
534 #ifdef HAVE_USER_TIME
535       /* Print user-mode time for this process.  */
536       fprintf (fp, "%7.2f (%2.0f%%) usr",
537 	       tv->elapsed.user,
538 	       (total->user == 0 ? 0 : tv->elapsed.user / total->user) * 100);
539 #endif /* HAVE_USER_TIME */
540 
541 #ifdef HAVE_SYS_TIME
542       /* Print system-mode time for this process.  */
543       fprintf (fp, "%7.2f (%2.0f%%) sys",
544 	       tv->elapsed.sys,
545 	       (total->sys == 0 ? 0 : tv->elapsed.sys / total->sys) * 100);
546 #endif /* HAVE_SYS_TIME */
547 
548 #ifdef HAVE_WALL_TIME
549       /* Print wall clock time elapsed.  */
550       fprintf (fp, "%7.2f (%2.0f%%) wall",
551 	       tv->elapsed.wall,
552 	       (total->wall == 0 ? 0 : tv->elapsed.wall / total->wall) * 100);
553 #endif /* HAVE_WALL_TIME */
554 
555       /* Print the amount of ggc memory allocated.  */
556       fprintf (fp, "%8u kB (%2.0f%%) ggc",
557 	       (unsigned) (tv->elapsed.ggc_mem >> 10),
558 	       (total->ggc_mem == 0
559 		? 0
560 		: (float) tv->elapsed.ggc_mem / total->ggc_mem) * 100);
561 
562       putc ('\n', fp);
563     }
564 
565   /* Print total time.  */
566   fputs (" TOTAL                 :", fp);
567 #ifdef HAVE_USER_TIME
568   fprintf (fp, "%7.2f          ", total->user);
569 #endif
570 #ifdef HAVE_SYS_TIME
571   fprintf (fp, "%7.2f          ", total->sys);
572 #endif
573 #ifdef HAVE_WALL_TIME
574   fprintf (fp, "%7.2f           ", total->wall);
575 #endif
576   fprintf (fp, "%8u kB\n", (unsigned) (total->ggc_mem >> 10));
577 
578 #ifdef ENABLE_CHECKING
579   fprintf (fp, "Extra diagnostic checks enabled; compiler may run slowly.\n");
580   fprintf (fp, "Configure with --enable-checking=release to disable checks.\n");
581 #endif
582 #ifndef ENABLE_ASSERT_CHECKING
583   fprintf (fp, "Internal checks disabled; compiler is not suited for release.\n");
584   fprintf (fp, "Configure with --enable-checking=release to enable checks.\n");
585 #endif
586 
587 #endif /* defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME)
588 	  || defined (HAVE_WALL_TIME) */
589 
590   validate_phases (fp);
591 }
592 
593 /* Prints a message to stderr stating that time elapsed in STR is
594    TOTAL (given in microseconds).  */
595 
596 void
print_time(const char * str,long total)597 print_time (const char *str, long total)
598 {
599   long all_time = get_run_time ();
600   fprintf (stderr,
601 	   "time in %s: %ld.%06ld (%ld%%)\n",
602 	   str, total / 1000000, total % 1000000,
603 	   all_time == 0 ? 0
604 	   : (long) (((100.0 * (double) total) / (double) all_time) + .5));
605 }
606