1 /* High-level loop manipulation functions.
2    Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "tree-ssa-alias.h"
28 #include "internal-fn.h"
29 #include "gimple-expr.h"
30 #include "is-a.h"
31 #include "gimple.h"
32 #include "gimplify.h"
33 #include "gimple-iterator.h"
34 #include "gimplify-me.h"
35 #include "gimple-ssa.h"
36 #include "tree-cfg.h"
37 #include "tree-phinodes.h"
38 #include "ssa-iterators.h"
39 #include "stringpool.h"
40 #include "tree-ssanames.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "tree-into-ssa.h"
46 #include "tree-ssa.h"
47 #include "dumpfile.h"
48 #include "gimple-pretty-print.h"
49 #include "cfgloop.h"
50 #include "tree-pass.h"	/* ??? for TODO_update_ssa but this isn't a pass.  */
51 #include "tree-scalar-evolution.h"
52 #include "params.h"
53 #include "tree-inline.h"
54 #include "langhooks.h"
55 
56 /* All bitmaps for rewriting into loop-closed SSA go on this obstack,
57    so that we can free them all at once.  */
58 static bitmap_obstack loop_renamer_obstack;
59 
60 /* Creates an induction variable with value BASE + STEP * iteration in LOOP.
61    It is expected that neither BASE nor STEP are shared with other expressions
62    (unless the sharing rules allow this).  Use VAR as a base var_decl for it
63    (if NULL, a new temporary will be created).  The increment will occur at
64    INCR_POS (after it if AFTER is true, before it otherwise).  INCR_POS and
65    AFTER can be computed using standard_iv_increment_position.  The ssa versions
66    of the variable before and after increment will be stored in VAR_BEFORE and
67    VAR_AFTER (unless they are NULL).  */
68 
69 void
create_iv(tree base,tree step,tree var,struct loop * loop,gimple_stmt_iterator * incr_pos,bool after,tree * var_before,tree * var_after)70 create_iv (tree base, tree step, tree var, struct loop *loop,
71 	   gimple_stmt_iterator *incr_pos, bool after,
72 	   tree *var_before, tree *var_after)
73 {
74   gimple stmt;
75   tree initial, step1;
76   gimple_seq stmts;
77   tree vb, va;
78   enum tree_code incr_op = PLUS_EXPR;
79   edge pe = loop_preheader_edge (loop);
80 
81   if (var != NULL_TREE)
82     {
83       vb = make_ssa_name (var, NULL);
84       va = make_ssa_name (var, NULL);
85     }
86   else
87     {
88       vb = make_temp_ssa_name (TREE_TYPE (base), NULL, "ivtmp");
89       va = make_temp_ssa_name (TREE_TYPE (base), NULL, "ivtmp");
90     }
91   if (var_before)
92     *var_before = vb;
93   if (var_after)
94     *var_after = va;
95 
96   /* For easier readability of the created code, produce MINUS_EXPRs
97      when suitable.  */
98   if (TREE_CODE (step) == INTEGER_CST)
99     {
100       if (TYPE_UNSIGNED (TREE_TYPE (step)))
101 	{
102 	  step1 = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
103 	  if (tree_int_cst_lt (step1, step))
104 	    {
105 	      incr_op = MINUS_EXPR;
106 	      step = step1;
107 	    }
108 	}
109       else
110 	{
111 	  bool ovf;
112 
113 	  if (!tree_expr_nonnegative_warnv_p (step, &ovf)
114 	      && may_negate_without_overflow_p (step))
115 	    {
116 	      incr_op = MINUS_EXPR;
117 	      step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
118 	    }
119 	}
120     }
121   if (POINTER_TYPE_P (TREE_TYPE (base)))
122     {
123       if (TREE_CODE (base) == ADDR_EXPR)
124 	mark_addressable (TREE_OPERAND (base, 0));
125       step = convert_to_ptrofftype (step);
126       if (incr_op == MINUS_EXPR)
127 	step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
128       incr_op = POINTER_PLUS_EXPR;
129     }
130   /* Gimplify the step if necessary.  We put the computations in front of the
131      loop (i.e. the step should be loop invariant).  */
132   step = force_gimple_operand (step, &stmts, true, NULL_TREE);
133   if (stmts)
134     gsi_insert_seq_on_edge_immediate (pe, stmts);
135 
136   stmt = gimple_build_assign_with_ops (incr_op, va, vb, step);
137   if (after)
138     gsi_insert_after (incr_pos, stmt, GSI_NEW_STMT);
139   else
140     gsi_insert_before (incr_pos, stmt, GSI_NEW_STMT);
141 
142   initial = force_gimple_operand (base, &stmts, true, var);
143   if (stmts)
144     gsi_insert_seq_on_edge_immediate (pe, stmts);
145 
146   stmt = create_phi_node (vb, loop->header);
147   add_phi_arg (stmt, initial, loop_preheader_edge (loop), UNKNOWN_LOCATION);
148   add_phi_arg (stmt, va, loop_latch_edge (loop), UNKNOWN_LOCATION);
149 }
150 
151 /* Return the innermost superloop LOOP of USE_LOOP that is a superloop of
152    both DEF_LOOP and USE_LOOP.  */
153 
154 static inline struct loop *
find_sibling_superloop(struct loop * use_loop,struct loop * def_loop)155 find_sibling_superloop (struct loop *use_loop, struct loop *def_loop)
156 {
157   unsigned ud = loop_depth (use_loop);
158   unsigned dd = loop_depth (def_loop);
159   gcc_assert (ud > 0 && dd > 0);
160   if (ud > dd)
161     use_loop = superloop_at_depth (use_loop, dd);
162   if (ud < dd)
163     def_loop = superloop_at_depth (def_loop, ud);
164   while (loop_outer (use_loop) != loop_outer (def_loop))
165     {
166       use_loop = loop_outer (use_loop);
167       def_loop = loop_outer (def_loop);
168       gcc_assert (use_loop && def_loop);
169     }
170   return use_loop;
171 }
172 
173 /* DEF_BB is a basic block containing a DEF that needs rewriting into
174    loop-closed SSA form.  USE_BLOCKS is the set of basic blocks containing
175    uses of DEF that "escape" from the loop containing DEF_BB (i.e. blocks in
176    USE_BLOCKS are dominated by DEF_BB but not in the loop father of DEF_B).
177    ALL_EXITS[I] is the set of all basic blocks that exit loop I.
178 
179    Compute the subset of LOOP_EXITS that exit the loop containing DEF_BB
180    or one of its loop fathers, in which DEF is live.  This set is returned
181    in the bitmap LIVE_EXITS.
182 
183    Instead of computing the complete livein set of the def, we use the loop
184    nesting tree as a form of poor man's structure analysis.  This greatly
185    speeds up the analysis, which is important because this function may be
186    called on all SSA names that need rewriting, one at a time.  */
187 
188 static void
compute_live_loop_exits(bitmap live_exits,bitmap use_blocks,bitmap * loop_exits,basic_block def_bb)189 compute_live_loop_exits (bitmap live_exits, bitmap use_blocks,
190 			 bitmap *loop_exits, basic_block def_bb)
191 {
192   unsigned i;
193   bitmap_iterator bi;
194   struct loop *def_loop = def_bb->loop_father;
195   unsigned def_loop_depth = loop_depth (def_loop);
196   bitmap def_loop_exits;
197 
198   /* Normally the work list size is bounded by the number of basic
199      blocks in the largest loop.  We don't know this number, but we
200      can be fairly sure that it will be relatively small.  */
201   auto_vec<basic_block> worklist (MAX (8, n_basic_blocks_for_fn (cfun) / 128));
202 
203   EXECUTE_IF_SET_IN_BITMAP (use_blocks, 0, i, bi)
204     {
205       basic_block use_bb = BASIC_BLOCK_FOR_FN (cfun, i);
206       struct loop *use_loop = use_bb->loop_father;
207       gcc_checking_assert (def_loop != use_loop
208 			   && ! flow_loop_nested_p (def_loop, use_loop));
209       if (! flow_loop_nested_p (use_loop, def_loop))
210 	use_bb = find_sibling_superloop (use_loop, def_loop)->header;
211       if (bitmap_set_bit (live_exits, use_bb->index))
212 	worklist.safe_push (use_bb);
213     }
214 
215   /* Iterate until the worklist is empty.  */
216   while (! worklist.is_empty ())
217     {
218       edge e;
219       edge_iterator ei;
220 
221       /* Pull a block off the worklist.  */
222       basic_block bb = worklist.pop ();
223 
224       /* Make sure we have at least enough room in the work list
225 	 for all predecessors of this block.  */
226       worklist.reserve (EDGE_COUNT (bb->preds));
227 
228       /* For each predecessor block.  */
229       FOR_EACH_EDGE (e, ei, bb->preds)
230 	{
231 	  basic_block pred = e->src;
232 	  struct loop *pred_loop = pred->loop_father;
233 	  unsigned pred_loop_depth = loop_depth (pred_loop);
234 	  bool pred_visited;
235 
236 	  /* We should have met DEF_BB along the way.  */
237 	  gcc_assert (pred != ENTRY_BLOCK_PTR_FOR_FN (cfun));
238 
239 	  if (pred_loop_depth >= def_loop_depth)
240 	    {
241 	      if (pred_loop_depth > def_loop_depth)
242 		pred_loop = superloop_at_depth (pred_loop, def_loop_depth);
243 	      /* If we've reached DEF_LOOP, our train ends here.  */
244 	      if (pred_loop == def_loop)
245 		continue;
246 	    }
247 	  else if (! flow_loop_nested_p (pred_loop, def_loop))
248 	    pred = find_sibling_superloop (pred_loop, def_loop)->header;
249 
250 	  /* Add PRED to the LIVEIN set.  PRED_VISITED is true if
251 	     we had already added PRED to LIVEIN before.  */
252 	  pred_visited = !bitmap_set_bit (live_exits, pred->index);
253 
254 	  /* If we have visited PRED before, don't add it to the worklist.
255 	     If BB dominates PRED, then we're probably looking at a loop.
256 	     We're only interested in looking up in the dominance tree
257 	     because DEF_BB dominates all the uses.  */
258 	  if (pred_visited || dominated_by_p (CDI_DOMINATORS, pred, bb))
259 	    continue;
260 
261 	  worklist.quick_push (pred);
262 	}
263     }
264 
265   def_loop_exits = BITMAP_ALLOC (&loop_renamer_obstack);
266   for (struct loop *loop = def_loop;
267        loop != current_loops->tree_root;
268        loop = loop_outer (loop))
269     bitmap_ior_into (def_loop_exits, loop_exits[loop->num]);
270   bitmap_and_into (live_exits, def_loop_exits);
271   BITMAP_FREE (def_loop_exits);
272 }
273 
274 /* Add a loop-closing PHI for VAR in basic block EXIT.  */
275 
276 static void
add_exit_phi(basic_block exit,tree var)277 add_exit_phi (basic_block exit, tree var)
278 {
279   gimple phi;
280   edge e;
281   edge_iterator ei;
282 
283 #ifdef ENABLE_CHECKING
284   /* Check that at least one of the edges entering the EXIT block exits
285      the loop, or a superloop of that loop, that VAR is defined in.  */
286   gimple def_stmt = SSA_NAME_DEF_STMT (var);
287   basic_block def_bb = gimple_bb (def_stmt);
288   FOR_EACH_EDGE (e, ei, exit->preds)
289     {
290       struct loop *aloop = find_common_loop (def_bb->loop_father,
291 					     e->src->loop_father);
292       if (!flow_bb_inside_loop_p (aloop, e->dest))
293 	break;
294     }
295 
296   gcc_checking_assert (e);
297 #endif
298 
299   phi = create_phi_node (NULL_TREE, exit);
300   create_new_def_for (var, phi, gimple_phi_result_ptr (phi));
301   FOR_EACH_EDGE (e, ei, exit->preds)
302     add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
303 
304   if (dump_file && (dump_flags & TDF_DETAILS))
305     {
306       fprintf (dump_file, ";; Created LCSSA PHI: ");
307       print_gimple_stmt (dump_file, phi, 0, dump_flags);
308     }
309 }
310 
311 /* Add exit phis for VAR that is used in LIVEIN.
312    Exits of the loops are stored in LOOP_EXITS.  */
313 
314 static void
add_exit_phis_var(tree var,bitmap use_blocks,bitmap * loop_exits)315 add_exit_phis_var (tree var, bitmap use_blocks, bitmap *loop_exits)
316 {
317   unsigned index;
318   bitmap_iterator bi;
319   basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
320   bitmap live_exits = BITMAP_ALLOC (&loop_renamer_obstack);
321 
322   gcc_checking_assert (! bitmap_bit_p (use_blocks, def_bb->index));
323 
324   compute_live_loop_exits (live_exits, use_blocks, loop_exits, def_bb);
325 
326   EXECUTE_IF_SET_IN_BITMAP (live_exits, 0, index, bi)
327     {
328       add_exit_phi (BASIC_BLOCK_FOR_FN (cfun, index), var);
329     }
330 
331   BITMAP_FREE (live_exits);
332 }
333 
334 /* Add exit phis for the names marked in NAMES_TO_RENAME.
335    Exits of the loops are stored in EXITS.  Sets of blocks where the ssa
336    names are used are stored in USE_BLOCKS.  */
337 
338 static void
add_exit_phis(bitmap names_to_rename,bitmap * use_blocks,bitmap * loop_exits)339 add_exit_phis (bitmap names_to_rename, bitmap *use_blocks, bitmap *loop_exits)
340 {
341   unsigned i;
342   bitmap_iterator bi;
343 
344   EXECUTE_IF_SET_IN_BITMAP (names_to_rename, 0, i, bi)
345     {
346       add_exit_phis_var (ssa_name (i), use_blocks[i], loop_exits);
347     }
348 }
349 
350 /* Fill the array of bitmaps LOOP_EXITS with all loop exit edge targets.  */
351 
352 static void
get_loops_exits(bitmap * loop_exits)353 get_loops_exits (bitmap *loop_exits)
354 {
355   struct loop *loop;
356   unsigned j;
357   edge e;
358 
359   FOR_EACH_LOOP (loop, 0)
360     {
361       vec<edge> exit_edges = get_loop_exit_edges (loop);
362       loop_exits[loop->num] = BITMAP_ALLOC (&loop_renamer_obstack);
363       FOR_EACH_VEC_ELT (exit_edges, j, e)
364         bitmap_set_bit (loop_exits[loop->num], e->dest->index);
365       exit_edges.release ();
366     }
367 }
368 
369 /* For USE in BB, if it is used outside of the loop it is defined in,
370    mark it for rewrite.  Record basic block BB where it is used
371    to USE_BLOCKS.  Record the ssa name index to NEED_PHIS bitmap.  */
372 
373 static void
find_uses_to_rename_use(basic_block bb,tree use,bitmap * use_blocks,bitmap need_phis)374 find_uses_to_rename_use (basic_block bb, tree use, bitmap *use_blocks,
375 			 bitmap need_phis)
376 {
377   unsigned ver;
378   basic_block def_bb;
379   struct loop *def_loop;
380 
381   if (TREE_CODE (use) != SSA_NAME)
382     return;
383 
384   ver = SSA_NAME_VERSION (use);
385   def_bb = gimple_bb (SSA_NAME_DEF_STMT (use));
386   if (!def_bb)
387     return;
388   def_loop = def_bb->loop_father;
389 
390   /* If the definition is not inside a loop, it is not interesting.  */
391   if (!loop_outer (def_loop))
392     return;
393 
394   /* If the use is not outside of the loop it is defined in, it is not
395      interesting.  */
396   if (flow_bb_inside_loop_p (def_loop, bb))
397     return;
398 
399   /* If we're seeing VER for the first time, we still have to allocate
400      a bitmap for its uses.  */
401   if (bitmap_set_bit (need_phis, ver))
402     use_blocks[ver] = BITMAP_ALLOC (&loop_renamer_obstack);
403   bitmap_set_bit (use_blocks[ver], bb->index);
404 }
405 
406 /* For uses in STMT, mark names that are used outside of the loop they are
407    defined to rewrite.  Record the set of blocks in that the ssa
408    names are defined to USE_BLOCKS and the ssa names themselves to
409    NEED_PHIS.  */
410 
411 static void
find_uses_to_rename_stmt(gimple stmt,bitmap * use_blocks,bitmap need_phis)412 find_uses_to_rename_stmt (gimple stmt, bitmap *use_blocks, bitmap need_phis)
413 {
414   ssa_op_iter iter;
415   tree var;
416   basic_block bb = gimple_bb (stmt);
417 
418   if (is_gimple_debug (stmt))
419     return;
420 
421   FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
422     find_uses_to_rename_use (bb, var, use_blocks, need_phis);
423 }
424 
425 /* Marks names that are used in BB and outside of the loop they are
426    defined in for rewrite.  Records the set of blocks in that the ssa
427    names are defined to USE_BLOCKS.  Record the SSA names that will
428    need exit PHIs in NEED_PHIS.  */
429 
430 static void
find_uses_to_rename_bb(basic_block bb,bitmap * use_blocks,bitmap need_phis)431 find_uses_to_rename_bb (basic_block bb, bitmap *use_blocks, bitmap need_phis)
432 {
433   gimple_stmt_iterator bsi;
434   edge e;
435   edge_iterator ei;
436 
437   FOR_EACH_EDGE (e, ei, bb->succs)
438     for (bsi = gsi_start_phis (e->dest); !gsi_end_p (bsi); gsi_next (&bsi))
439       {
440         gimple phi = gsi_stmt (bsi);
441 	if (! virtual_operand_p (gimple_phi_result (phi)))
442 	  find_uses_to_rename_use (bb, PHI_ARG_DEF_FROM_EDGE (phi, e),
443 				   use_blocks, need_phis);
444       }
445 
446   for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
447     find_uses_to_rename_stmt (gsi_stmt (bsi), use_blocks, need_phis);
448 }
449 
450 /* Marks names that are used outside of the loop they are defined in
451    for rewrite.  Records the set of blocks in that the ssa
452    names are defined to USE_BLOCKS.  If CHANGED_BBS is not NULL,
453    scan only blocks in this set.  */
454 
455 static void
find_uses_to_rename(bitmap changed_bbs,bitmap * use_blocks,bitmap need_phis)456 find_uses_to_rename (bitmap changed_bbs, bitmap *use_blocks, bitmap need_phis)
457 {
458   basic_block bb;
459   unsigned index;
460   bitmap_iterator bi;
461 
462   if (changed_bbs)
463     EXECUTE_IF_SET_IN_BITMAP (changed_bbs, 0, index, bi)
464       find_uses_to_rename_bb (BASIC_BLOCK_FOR_FN (cfun, index), use_blocks, need_phis);
465   else
466     FOR_EACH_BB_FN (bb, cfun)
467       find_uses_to_rename_bb (bb, use_blocks, need_phis);
468 }
469 
470 /* Rewrites the program into a loop closed ssa form -- i.e. inserts extra
471    phi nodes to ensure that no variable is used outside the loop it is
472    defined in.
473 
474    This strengthening of the basic ssa form has several advantages:
475 
476    1) Updating it during unrolling/peeling/versioning is trivial, since
477       we do not need to care about the uses outside of the loop.
478       The same applies to virtual operands which are also rewritten into
479       loop closed SSA form.  Note that virtual operands are always live
480       until function exit.
481    2) The behavior of all uses of an induction variable is the same.
482       Without this, you need to distinguish the case when the variable
483       is used outside of the loop it is defined in, for example
484 
485       for (i = 0; i < 100; i++)
486 	{
487 	  for (j = 0; j < 100; j++)
488 	    {
489 	      k = i + j;
490 	      use1 (k);
491 	    }
492 	  use2 (k);
493 	}
494 
495       Looking from the outer loop with the normal SSA form, the first use of k
496       is not well-behaved, while the second one is an induction variable with
497       base 99 and step 1.
498 
499       If CHANGED_BBS is not NULL, we look for uses outside loops only in
500       the basic blocks in this set.
501 
502       UPDATE_FLAG is used in the call to update_ssa.  See
503       TODO_update_ssa* for documentation.  */
504 
505 void
rewrite_into_loop_closed_ssa(bitmap changed_bbs,unsigned update_flag)506 rewrite_into_loop_closed_ssa (bitmap changed_bbs, unsigned update_flag)
507 {
508   bitmap *use_blocks;
509   bitmap names_to_rename;
510 
511   loops_state_set (LOOP_CLOSED_SSA);
512   if (number_of_loops (cfun) <= 1)
513     return;
514 
515   /* If the pass has caused the SSA form to be out-of-date, update it
516      now.  */
517   update_ssa (update_flag);
518 
519   bitmap_obstack_initialize (&loop_renamer_obstack);
520 
521   names_to_rename = BITMAP_ALLOC (&loop_renamer_obstack);
522 
523   /* Uses of names to rename.  We don't have to initialize this array,
524      because we know that we will only have entries for the SSA names
525      in NAMES_TO_RENAME.  */
526   use_blocks = XNEWVEC (bitmap, num_ssa_names);
527 
528   /* Find the uses outside loops.  */
529   find_uses_to_rename (changed_bbs, use_blocks, names_to_rename);
530 
531   if (!bitmap_empty_p (names_to_rename))
532     {
533       /* An array of bitmaps where LOOP_EXITS[I] is the set of basic blocks
534 	 that are the destination of an edge exiting loop number I.  */
535       bitmap *loop_exits = XNEWVEC (bitmap, number_of_loops (cfun));
536       get_loops_exits (loop_exits);
537 
538       /* Add the PHI nodes on exits of the loops for the names we need to
539 	 rewrite.  */
540       add_exit_phis (names_to_rename, use_blocks, loop_exits);
541 
542       free (loop_exits);
543 
544       /* Fix up all the names found to be used outside their original
545 	 loops.  */
546       update_ssa (TODO_update_ssa);
547     }
548 
549   bitmap_obstack_release (&loop_renamer_obstack);
550   free (use_blocks);
551 }
552 
553 /* Check invariants of the loop closed ssa form for the USE in BB.  */
554 
555 static void
check_loop_closed_ssa_use(basic_block bb,tree use)556 check_loop_closed_ssa_use (basic_block bb, tree use)
557 {
558   gimple def;
559   basic_block def_bb;
560 
561   if (TREE_CODE (use) != SSA_NAME || virtual_operand_p (use))
562     return;
563 
564   def = SSA_NAME_DEF_STMT (use);
565   def_bb = gimple_bb (def);
566   gcc_assert (!def_bb
567 	      || flow_bb_inside_loop_p (def_bb->loop_father, bb));
568 }
569 
570 /* Checks invariants of loop closed ssa form in statement STMT in BB.  */
571 
572 static void
check_loop_closed_ssa_stmt(basic_block bb,gimple stmt)573 check_loop_closed_ssa_stmt (basic_block bb, gimple stmt)
574 {
575   ssa_op_iter iter;
576   tree var;
577 
578   if (is_gimple_debug (stmt))
579     return;
580 
581   FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
582     check_loop_closed_ssa_use (bb, var);
583 }
584 
585 /* Checks that invariants of the loop closed ssa form are preserved.
586    Call verify_ssa when VERIFY_SSA_P is true.  */
587 
588 DEBUG_FUNCTION void
verify_loop_closed_ssa(bool verify_ssa_p)589 verify_loop_closed_ssa (bool verify_ssa_p)
590 {
591   basic_block bb;
592   gimple_stmt_iterator bsi;
593   gimple phi;
594   edge e;
595   edge_iterator ei;
596 
597   if (number_of_loops (cfun) <= 1)
598     return;
599 
600   if (verify_ssa_p)
601     verify_ssa (false);
602 
603   timevar_push (TV_VERIFY_LOOP_CLOSED);
604 
605   FOR_EACH_BB_FN (bb, cfun)
606     {
607       for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
608 	{
609 	  phi = gsi_stmt (bsi);
610 	  FOR_EACH_EDGE (e, ei, bb->preds)
611 	    check_loop_closed_ssa_use (e->src,
612 				       PHI_ARG_DEF_FROM_EDGE (phi, e));
613 	}
614 
615       for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
616 	check_loop_closed_ssa_stmt (bb, gsi_stmt (bsi));
617     }
618 
619   timevar_pop (TV_VERIFY_LOOP_CLOSED);
620 }
621 
622 /* Split loop exit edge EXIT.  The things are a bit complicated by a need to
623    preserve the loop closed ssa form.  The newly created block is returned.  */
624 
625 basic_block
split_loop_exit_edge(edge exit)626 split_loop_exit_edge (edge exit)
627 {
628   basic_block dest = exit->dest;
629   basic_block bb = split_edge (exit);
630   gimple phi, new_phi;
631   tree new_name, name;
632   use_operand_p op_p;
633   gimple_stmt_iterator psi;
634   source_location locus;
635 
636   for (psi = gsi_start_phis (dest); !gsi_end_p (psi); gsi_next (&psi))
637     {
638       phi = gsi_stmt (psi);
639       op_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, single_succ_edge (bb));
640       locus = gimple_phi_arg_location_from_edge (phi, single_succ_edge (bb));
641 
642       name = USE_FROM_PTR (op_p);
643 
644       /* If the argument of the PHI node is a constant, we do not need
645 	 to keep it inside loop.  */
646       if (TREE_CODE (name) != SSA_NAME)
647 	continue;
648 
649       /* Otherwise create an auxiliary phi node that will copy the value
650 	 of the SSA name out of the loop.  */
651       new_name = duplicate_ssa_name (name, NULL);
652       new_phi = create_phi_node (new_name, bb);
653       add_phi_arg (new_phi, name, exit, locus);
654       SET_USE (op_p, new_name);
655     }
656 
657   return bb;
658 }
659 
660 /* Returns the basic block in that statements should be emitted for induction
661    variables incremented at the end of the LOOP.  */
662 
663 basic_block
ip_end_pos(struct loop * loop)664 ip_end_pos (struct loop *loop)
665 {
666   return loop->latch;
667 }
668 
669 /* Returns the basic block in that statements should be emitted for induction
670    variables incremented just before exit condition of a LOOP.  */
671 
672 basic_block
ip_normal_pos(struct loop * loop)673 ip_normal_pos (struct loop *loop)
674 {
675   gimple last;
676   basic_block bb;
677   edge exit;
678 
679   if (!single_pred_p (loop->latch))
680     return NULL;
681 
682   bb = single_pred (loop->latch);
683   last = last_stmt (bb);
684   if (!last
685       || gimple_code (last) != GIMPLE_COND)
686     return NULL;
687 
688   exit = EDGE_SUCC (bb, 0);
689   if (exit->dest == loop->latch)
690     exit = EDGE_SUCC (bb, 1);
691 
692   if (flow_bb_inside_loop_p (loop, exit->dest))
693     return NULL;
694 
695   return bb;
696 }
697 
698 /* Stores the standard position for induction variable increment in LOOP
699    (just before the exit condition if it is available and latch block is empty,
700    end of the latch block otherwise) to BSI.  INSERT_AFTER is set to true if
701    the increment should be inserted after *BSI.  */
702 
703 void
standard_iv_increment_position(struct loop * loop,gimple_stmt_iterator * bsi,bool * insert_after)704 standard_iv_increment_position (struct loop *loop, gimple_stmt_iterator *bsi,
705 				bool *insert_after)
706 {
707   basic_block bb = ip_normal_pos (loop), latch = ip_end_pos (loop);
708   gimple last = last_stmt (latch);
709 
710   if (!bb
711       || (last && gimple_code (last) != GIMPLE_LABEL))
712     {
713       *bsi = gsi_last_bb (latch);
714       *insert_after = true;
715     }
716   else
717     {
718       *bsi = gsi_last_bb (bb);
719       *insert_after = false;
720     }
721 }
722 
723 /* Copies phi node arguments for duplicated blocks.  The index of the first
724    duplicated block is FIRST_NEW_BLOCK.  */
725 
726 static void
copy_phi_node_args(unsigned first_new_block)727 copy_phi_node_args (unsigned first_new_block)
728 {
729   unsigned i;
730 
731   for (i = first_new_block; i < (unsigned) last_basic_block_for_fn (cfun); i++)
732     BASIC_BLOCK_FOR_FN (cfun, i)->flags |= BB_DUPLICATED;
733 
734   for (i = first_new_block; i < (unsigned) last_basic_block_for_fn (cfun); i++)
735     add_phi_args_after_copy_bb (BASIC_BLOCK_FOR_FN (cfun, i));
736 
737   for (i = first_new_block; i < (unsigned) last_basic_block_for_fn (cfun); i++)
738     BASIC_BLOCK_FOR_FN (cfun, i)->flags &= ~BB_DUPLICATED;
739 }
740 
741 
742 /* The same as cfgloopmanip.c:duplicate_loop_to_header_edge, but also
743    updates the PHI nodes at start of the copied region.  In order to
744    achieve this, only loops whose exits all lead to the same location
745    are handled.
746 
747    Notice that we do not completely update the SSA web after
748    duplication.  The caller is responsible for calling update_ssa
749    after the loop has been duplicated.  */
750 
751 bool
gimple_duplicate_loop_to_header_edge(struct loop * loop,edge e,unsigned int ndupl,sbitmap wont_exit,edge orig,vec<edge> * to_remove,int flags)752 gimple_duplicate_loop_to_header_edge (struct loop *loop, edge e,
753 				    unsigned int ndupl, sbitmap wont_exit,
754 				    edge orig, vec<edge> *to_remove,
755 				    int flags)
756 {
757   unsigned first_new_block;
758 
759   if (!loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
760     return false;
761   if (!loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
762     return false;
763 
764 #ifdef ENABLE_CHECKING
765   /* ???  This forces needless update_ssa calls after processing each
766      loop instead of just once after processing all loops.  We should
767      instead verify that loop-closed SSA form is up-to-date for LOOP
768      only (and possibly SSA form).  For now just skip verifying if
769      there are to-be renamed variables.  */
770   if (!need_ssa_update_p (cfun)
771       && loops_state_satisfies_p (LOOP_CLOSED_SSA))
772     verify_loop_closed_ssa (true);
773 #endif
774 
775   first_new_block = last_basic_block_for_fn (cfun);
776   if (!duplicate_loop_to_header_edge (loop, e, ndupl, wont_exit,
777 				      orig, to_remove, flags))
778     return false;
779 
780   /* Readd the removed phi args for e.  */
781   flush_pending_stmts (e);
782 
783   /* Copy the phi node arguments.  */
784   copy_phi_node_args (first_new_block);
785 
786   scev_reset ();
787 
788   return true;
789 }
790 
791 /* Returns true if we can unroll LOOP FACTOR times.  Number
792    of iterations of the loop is returned in NITER.  */
793 
794 bool
can_unroll_loop_p(struct loop * loop,unsigned factor,struct tree_niter_desc * niter)795 can_unroll_loop_p (struct loop *loop, unsigned factor,
796 		   struct tree_niter_desc *niter)
797 {
798   edge exit;
799 
800   /* Check whether unrolling is possible.  We only want to unroll loops
801      for that we are able to determine number of iterations.  We also
802      want to split the extra iterations of the loop from its end,
803      therefore we require that the loop has precisely one
804      exit.  */
805 
806   exit = single_dom_exit (loop);
807   if (!exit)
808     return false;
809 
810   if (!number_of_iterations_exit (loop, exit, niter, false)
811       || niter->cmp == ERROR_MARK
812       /* Scalar evolutions analysis might have copy propagated
813 	 the abnormal ssa names into these expressions, hence
814 	 emitting the computations based on them during loop
815 	 unrolling might create overlapping life ranges for
816 	 them, and failures in out-of-ssa.  */
817       || contains_abnormal_ssa_name_p (niter->may_be_zero)
818       || contains_abnormal_ssa_name_p (niter->control.base)
819       || contains_abnormal_ssa_name_p (niter->control.step)
820       || contains_abnormal_ssa_name_p (niter->bound))
821     return false;
822 
823   /* And of course, we must be able to duplicate the loop.  */
824   if (!can_duplicate_loop_p (loop))
825     return false;
826 
827   /* The final loop should be small enough.  */
828   if (tree_num_loop_insns (loop, &eni_size_weights) * factor
829       > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS))
830     return false;
831 
832   return true;
833 }
834 
835 /* Determines the conditions that control execution of LOOP unrolled FACTOR
836    times.  DESC is number of iterations of LOOP.  ENTER_COND is set to
837    condition that must be true if the main loop can be entered.
838    EXIT_BASE, EXIT_STEP, EXIT_CMP and EXIT_BOUND are set to values describing
839    how the exit from the unrolled loop should be controlled.  */
840 
841 static void
determine_exit_conditions(struct loop * loop,struct tree_niter_desc * desc,unsigned factor,tree * enter_cond,tree * exit_base,tree * exit_step,enum tree_code * exit_cmp,tree * exit_bound)842 determine_exit_conditions (struct loop *loop, struct tree_niter_desc *desc,
843 			   unsigned factor, tree *enter_cond,
844 			   tree *exit_base, tree *exit_step,
845 			   enum tree_code *exit_cmp, tree *exit_bound)
846 {
847   gimple_seq stmts;
848   tree base = desc->control.base;
849   tree step = desc->control.step;
850   tree bound = desc->bound;
851   tree type = TREE_TYPE (step);
852   tree bigstep, delta;
853   tree min = lower_bound_in_type (type, type);
854   tree max = upper_bound_in_type (type, type);
855   enum tree_code cmp = desc->cmp;
856   tree cond = boolean_true_node, assum;
857 
858   /* For pointers, do the arithmetics in the type of step.  */
859   base = fold_convert (type, base);
860   bound = fold_convert (type, bound);
861 
862   *enter_cond = boolean_false_node;
863   *exit_base = NULL_TREE;
864   *exit_step = NULL_TREE;
865   *exit_cmp = ERROR_MARK;
866   *exit_bound = NULL_TREE;
867   gcc_assert (cmp != ERROR_MARK);
868 
869   /* We only need to be correct when we answer question
870      "Do at least FACTOR more iterations remain?" in the unrolled loop.
871      Thus, transforming BASE + STEP * i <> BOUND to
872      BASE + STEP * i < BOUND is ok.  */
873   if (cmp == NE_EXPR)
874     {
875       if (tree_int_cst_sign_bit (step))
876 	cmp = GT_EXPR;
877       else
878 	cmp = LT_EXPR;
879     }
880   else if (cmp == LT_EXPR)
881     {
882       gcc_assert (!tree_int_cst_sign_bit (step));
883     }
884   else if (cmp == GT_EXPR)
885     {
886       gcc_assert (tree_int_cst_sign_bit (step));
887     }
888   else
889     gcc_unreachable ();
890 
891   /* The main body of the loop may be entered iff:
892 
893      1) desc->may_be_zero is false.
894      2) it is possible to check that there are at least FACTOR iterations
895 	of the loop, i.e., BOUND - step * FACTOR does not overflow.
896      3) # of iterations is at least FACTOR  */
897 
898   if (!integer_zerop (desc->may_be_zero))
899     cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
900 			invert_truthvalue (desc->may_be_zero),
901 			cond);
902 
903   bigstep = fold_build2 (MULT_EXPR, type, step,
904 			 build_int_cst_type (type, factor));
905   delta = fold_build2 (MINUS_EXPR, type, bigstep, step);
906   if (cmp == LT_EXPR)
907     assum = fold_build2 (GE_EXPR, boolean_type_node,
908 			 bound,
909 			 fold_build2 (PLUS_EXPR, type, min, delta));
910   else
911     assum = fold_build2 (LE_EXPR, boolean_type_node,
912 			 bound,
913 			 fold_build2 (PLUS_EXPR, type, max, delta));
914   cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
915 
916   bound = fold_build2 (MINUS_EXPR, type, bound, delta);
917   assum = fold_build2 (cmp, boolean_type_node, base, bound);
918   cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
919 
920   cond = force_gimple_operand (unshare_expr (cond), &stmts, false, NULL_TREE);
921   if (stmts)
922     gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
923   /* cond now may be a gimple comparison, which would be OK, but also any
924      other gimple rhs (say a && b).  In this case we need to force it to
925      operand.  */
926   if (!is_gimple_condexpr (cond))
927     {
928       cond = force_gimple_operand (cond, &stmts, true, NULL_TREE);
929       if (stmts)
930 	gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
931     }
932   *enter_cond = cond;
933 
934   base = force_gimple_operand (unshare_expr (base), &stmts, true, NULL_TREE);
935   if (stmts)
936     gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
937   bound = force_gimple_operand (unshare_expr (bound), &stmts, true, NULL_TREE);
938   if (stmts)
939     gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
940 
941   *exit_base = base;
942   *exit_step = bigstep;
943   *exit_cmp = cmp;
944   *exit_bound = bound;
945 }
946 
947 /* Scales the frequencies of all basic blocks in LOOP that are strictly
948    dominated by BB by NUM/DEN.  */
949 
950 static void
scale_dominated_blocks_in_loop(struct loop * loop,basic_block bb,int num,int den)951 scale_dominated_blocks_in_loop (struct loop *loop, basic_block bb,
952 				int num, int den)
953 {
954   basic_block son;
955 
956   if (den == 0)
957     return;
958 
959   for (son = first_dom_son (CDI_DOMINATORS, bb);
960        son;
961        son = next_dom_son (CDI_DOMINATORS, son))
962     {
963       if (!flow_bb_inside_loop_p (loop, son))
964 	continue;
965       scale_bbs_frequencies_int (&son, 1, num, den);
966       scale_dominated_blocks_in_loop (loop, son, num, den);
967     }
968 }
969 
970 /* Unroll LOOP FACTOR times.  DESC describes number of iterations of LOOP.
971    EXIT is the exit of the loop to that DESC corresponds.
972 
973    If N is number of iterations of the loop and MAY_BE_ZERO is the condition
974    under that loop exits in the first iteration even if N != 0,
975 
976    while (1)
977      {
978        x = phi (init, next);
979 
980        pre;
981        if (st)
982          break;
983        post;
984      }
985 
986    becomes (with possibly the exit conditions formulated a bit differently,
987    avoiding the need to create a new iv):
988 
989    if (MAY_BE_ZERO || N < FACTOR)
990      goto rest;
991 
992    do
993      {
994        x = phi (init, next);
995 
996        pre;
997        post;
998        pre;
999        post;
1000        ...
1001        pre;
1002        post;
1003        N -= FACTOR;
1004 
1005      } while (N >= FACTOR);
1006 
1007    rest:
1008      init' = phi (init, x);
1009 
1010    while (1)
1011      {
1012        x = phi (init', next);
1013 
1014        pre;
1015        if (st)
1016          break;
1017        post;
1018      }
1019 
1020    Before the loop is unrolled, TRANSFORM is called for it (only for the
1021    unrolled loop, but not for its versioned copy).  DATA is passed to
1022    TRANSFORM.  */
1023 
1024 /* Probability in % that the unrolled loop is entered.  Just a guess.  */
1025 #define PROB_UNROLLED_LOOP_ENTERED 90
1026 
1027 void
tree_transform_and_unroll_loop(struct loop * loop,unsigned factor,edge exit,struct tree_niter_desc * desc,transform_callback transform,void * data)1028 tree_transform_and_unroll_loop (struct loop *loop, unsigned factor,
1029 				edge exit, struct tree_niter_desc *desc,
1030 				transform_callback transform,
1031 				void *data)
1032 {
1033   gimple exit_if;
1034   tree ctr_before, ctr_after;
1035   tree enter_main_cond, exit_base, exit_step, exit_bound;
1036   enum tree_code exit_cmp;
1037   gimple phi_old_loop, phi_new_loop, phi_rest;
1038   gimple_stmt_iterator psi_old_loop, psi_new_loop;
1039   tree init, next, new_init;
1040   struct loop *new_loop;
1041   basic_block rest, exit_bb;
1042   edge old_entry, new_entry, old_latch, precond_edge, new_exit;
1043   edge new_nonexit, e;
1044   gimple_stmt_iterator bsi;
1045   use_operand_p op;
1046   bool ok;
1047   unsigned est_niter, prob_entry, scale_unrolled, scale_rest, freq_e, freq_h;
1048   unsigned new_est_niter, i, prob;
1049   unsigned irr = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
1050   sbitmap wont_exit;
1051   auto_vec<edge> to_remove;
1052 
1053   est_niter = expected_loop_iterations (loop);
1054   determine_exit_conditions (loop, desc, factor,
1055 			     &enter_main_cond, &exit_base, &exit_step,
1056 			     &exit_cmp, &exit_bound);
1057 
1058   /* Let us assume that the unrolled loop is quite likely to be entered.  */
1059   if (integer_nonzerop (enter_main_cond))
1060     prob_entry = REG_BR_PROB_BASE;
1061   else
1062     prob_entry = PROB_UNROLLED_LOOP_ENTERED * REG_BR_PROB_BASE / 100;
1063 
1064   /* The values for scales should keep profile consistent, and somewhat close
1065      to correct.
1066 
1067      TODO: The current value of SCALE_REST makes it appear that the loop that
1068      is created by splitting the remaining iterations of the unrolled loop is
1069      executed the same number of times as the original loop, and with the same
1070      frequencies, which is obviously wrong.  This does not appear to cause
1071      problems, so we do not bother with fixing it for now.  To make the profile
1072      correct, we would need to change the probability of the exit edge of the
1073      loop, and recompute the distribution of frequencies in its body because
1074      of this change (scale the frequencies of blocks before and after the exit
1075      by appropriate factors).  */
1076   scale_unrolled = prob_entry;
1077   scale_rest = REG_BR_PROB_BASE;
1078 
1079   new_loop = loop_version (loop, enter_main_cond, NULL,
1080 			   prob_entry, scale_unrolled, scale_rest, true);
1081   gcc_assert (new_loop != NULL);
1082   update_ssa (TODO_update_ssa);
1083 
1084   /* Determine the probability of the exit edge of the unrolled loop.  */
1085   new_est_niter = est_niter / factor;
1086 
1087   /* Without profile feedback, loops for that we do not know a better estimate
1088      are assumed to roll 10 times.  When we unroll such loop, it appears to
1089      roll too little, and it may even seem to be cold.  To avoid this, we
1090      ensure that the created loop appears to roll at least 5 times (but at
1091      most as many times as before unrolling).  */
1092   if (new_est_niter < 5)
1093     {
1094       if (est_niter < 5)
1095 	new_est_niter = est_niter;
1096       else
1097 	new_est_niter = 5;
1098     }
1099 
1100   /* Prepare the cfg and update the phi nodes.  Move the loop exit to the
1101      loop latch (and make its condition dummy, for the moment).  */
1102   rest = loop_preheader_edge (new_loop)->src;
1103   precond_edge = single_pred_edge (rest);
1104   split_edge (loop_latch_edge (loop));
1105   exit_bb = single_pred (loop->latch);
1106 
1107   /* Since the exit edge will be removed, the frequency of all the blocks
1108      in the loop that are dominated by it must be scaled by
1109      1 / (1 - exit->probability).  */
1110   scale_dominated_blocks_in_loop (loop, exit->src,
1111 				  REG_BR_PROB_BASE,
1112 				  REG_BR_PROB_BASE - exit->probability);
1113 
1114   bsi = gsi_last_bb (exit_bb);
1115   exit_if = gimple_build_cond (EQ_EXPR, integer_zero_node,
1116 			       integer_zero_node,
1117 			       NULL_TREE, NULL_TREE);
1118 
1119   gsi_insert_after (&bsi, exit_if, GSI_NEW_STMT);
1120   new_exit = make_edge (exit_bb, rest, EDGE_FALSE_VALUE | irr);
1121   rescan_loop_exit (new_exit, true, false);
1122 
1123   /* Set the probability of new exit to the same of the old one.  Fix
1124      the frequency of the latch block, by scaling it back by
1125      1 - exit->probability.  */
1126   new_exit->count = exit->count;
1127   new_exit->probability = exit->probability;
1128   new_nonexit = single_pred_edge (loop->latch);
1129   new_nonexit->probability = REG_BR_PROB_BASE - exit->probability;
1130   new_nonexit->flags = EDGE_TRUE_VALUE;
1131   new_nonexit->count -= exit->count;
1132   if (new_nonexit->count < 0)
1133     new_nonexit->count = 0;
1134   scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
1135 			     REG_BR_PROB_BASE);
1136 
1137   old_entry = loop_preheader_edge (loop);
1138   new_entry = loop_preheader_edge (new_loop);
1139   old_latch = loop_latch_edge (loop);
1140   for (psi_old_loop = gsi_start_phis (loop->header),
1141        psi_new_loop = gsi_start_phis (new_loop->header);
1142        !gsi_end_p (psi_old_loop);
1143        gsi_next (&psi_old_loop), gsi_next (&psi_new_loop))
1144     {
1145       phi_old_loop = gsi_stmt (psi_old_loop);
1146       phi_new_loop = gsi_stmt (psi_new_loop);
1147 
1148       init = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_entry);
1149       op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_new_loop, new_entry);
1150       gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
1151       next = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_latch);
1152 
1153       /* Prefer using original variable as a base for the new ssa name.
1154 	 This is necessary for virtual ops, and useful in order to avoid
1155 	 losing debug info for real ops.  */
1156       if (TREE_CODE (next) == SSA_NAME
1157 	  && useless_type_conversion_p (TREE_TYPE (next),
1158 					TREE_TYPE (init)))
1159 	new_init = copy_ssa_name (next, NULL);
1160       else if (TREE_CODE (init) == SSA_NAME
1161 	       && useless_type_conversion_p (TREE_TYPE (init),
1162 					     TREE_TYPE (next)))
1163 	new_init = copy_ssa_name (init, NULL);
1164       else if (useless_type_conversion_p (TREE_TYPE (next), TREE_TYPE (init)))
1165 	new_init = make_temp_ssa_name (TREE_TYPE (next), NULL, "unrinittmp");
1166       else
1167 	new_init = make_temp_ssa_name (TREE_TYPE (init), NULL, "unrinittmp");
1168 
1169       phi_rest = create_phi_node (new_init, rest);
1170 
1171       add_phi_arg (phi_rest, init, precond_edge, UNKNOWN_LOCATION);
1172       add_phi_arg (phi_rest, next, new_exit, UNKNOWN_LOCATION);
1173       SET_USE (op, new_init);
1174     }
1175 
1176   remove_path (exit);
1177 
1178   /* Transform the loop.  */
1179   if (transform)
1180     (*transform) (loop, data);
1181 
1182   /* Unroll the loop and remove the exits in all iterations except for the
1183      last one.  */
1184   wont_exit = sbitmap_alloc (factor);
1185   bitmap_ones (wont_exit);
1186   bitmap_clear_bit (wont_exit, factor - 1);
1187 
1188   ok = gimple_duplicate_loop_to_header_edge
1189 	  (loop, loop_latch_edge (loop), factor - 1,
1190 	   wont_exit, new_exit, &to_remove, DLTHE_FLAG_UPDATE_FREQ);
1191   free (wont_exit);
1192   gcc_assert (ok);
1193 
1194   FOR_EACH_VEC_ELT (to_remove, i, e)
1195     {
1196       ok = remove_path (e);
1197       gcc_assert (ok);
1198     }
1199   update_ssa (TODO_update_ssa);
1200 
1201   /* Ensure that the frequencies in the loop match the new estimated
1202      number of iterations, and change the probability of the new
1203      exit edge.  */
1204   freq_h = loop->header->frequency;
1205   freq_e = EDGE_FREQUENCY (loop_preheader_edge (loop));
1206   if (freq_h != 0)
1207     scale_loop_frequencies (loop, freq_e * (new_est_niter + 1), freq_h);
1208 
1209   exit_bb = single_pred (loop->latch);
1210   new_exit = find_edge (exit_bb, rest);
1211   new_exit->count = loop_preheader_edge (loop)->count;
1212   new_exit->probability = REG_BR_PROB_BASE / (new_est_niter + 1);
1213 
1214   rest->count += new_exit->count;
1215   rest->frequency += EDGE_FREQUENCY (new_exit);
1216 
1217   new_nonexit = single_pred_edge (loop->latch);
1218   prob = new_nonexit->probability;
1219   new_nonexit->probability = REG_BR_PROB_BASE - new_exit->probability;
1220   new_nonexit->count = exit_bb->count - new_exit->count;
1221   if (new_nonexit->count < 0)
1222     new_nonexit->count = 0;
1223   if (prob > 0)
1224     scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
1225 			       prob);
1226 
1227   /* Finally create the new counter for number of iterations and add the new
1228      exit instruction.  */
1229   bsi = gsi_last_nondebug_bb (exit_bb);
1230   exit_if = gsi_stmt (bsi);
1231   create_iv (exit_base, exit_step, NULL_TREE, loop,
1232 	     &bsi, false, &ctr_before, &ctr_after);
1233   gimple_cond_set_code (exit_if, exit_cmp);
1234   gimple_cond_set_lhs (exit_if, ctr_after);
1235   gimple_cond_set_rhs (exit_if, exit_bound);
1236   update_stmt (exit_if);
1237 
1238 #ifdef ENABLE_CHECKING
1239   verify_flow_info ();
1240   verify_loop_structure ();
1241   verify_loop_closed_ssa (true);
1242 #endif
1243 }
1244 
1245 /* Wrapper over tree_transform_and_unroll_loop for case we do not
1246    want to transform the loop before unrolling.  The meaning
1247    of the arguments is the same as for tree_transform_and_unroll_loop.  */
1248 
1249 void
tree_unroll_loop(struct loop * loop,unsigned factor,edge exit,struct tree_niter_desc * desc)1250 tree_unroll_loop (struct loop *loop, unsigned factor,
1251 		  edge exit, struct tree_niter_desc *desc)
1252 {
1253   tree_transform_and_unroll_loop (loop, factor, exit, desc,
1254 				  NULL, NULL);
1255 }
1256 
1257 /* Rewrite the phi node at position PSI in function of the main
1258    induction variable MAIN_IV and insert the generated code at GSI.  */
1259 
1260 static void
rewrite_phi_with_iv(loop_p loop,gimple_stmt_iterator * psi,gimple_stmt_iterator * gsi,tree main_iv)1261 rewrite_phi_with_iv (loop_p loop,
1262 		     gimple_stmt_iterator *psi,
1263 		     gimple_stmt_iterator *gsi,
1264 		     tree main_iv)
1265 {
1266   affine_iv iv;
1267   gimple stmt, phi = gsi_stmt (*psi);
1268   tree atype, mtype, val, res = PHI_RESULT (phi);
1269 
1270   if (virtual_operand_p (res) || res == main_iv)
1271     {
1272       gsi_next (psi);
1273       return;
1274     }
1275 
1276   if (!simple_iv (loop, loop, res, &iv, true))
1277     {
1278       gsi_next (psi);
1279       return;
1280     }
1281 
1282   remove_phi_node (psi, false);
1283 
1284   atype = TREE_TYPE (res);
1285   mtype = POINTER_TYPE_P (atype) ? sizetype : atype;
1286   val = fold_build2 (MULT_EXPR, mtype, unshare_expr (iv.step),
1287 		     fold_convert (mtype, main_iv));
1288   val = fold_build2 (POINTER_TYPE_P (atype)
1289 		     ? POINTER_PLUS_EXPR : PLUS_EXPR,
1290 		     atype, unshare_expr (iv.base), val);
1291   val = force_gimple_operand_gsi (gsi, val, false, NULL_TREE, true,
1292 				  GSI_SAME_STMT);
1293   stmt = gimple_build_assign (res, val);
1294   gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1295 }
1296 
1297 /* Rewrite all the phi nodes of LOOP in function of the main induction
1298    variable MAIN_IV.  */
1299 
1300 static void
rewrite_all_phi_nodes_with_iv(loop_p loop,tree main_iv)1301 rewrite_all_phi_nodes_with_iv (loop_p loop, tree main_iv)
1302 {
1303   unsigned i;
1304   basic_block *bbs = get_loop_body_in_dom_order (loop);
1305   gimple_stmt_iterator psi;
1306 
1307   for (i = 0; i < loop->num_nodes; i++)
1308     {
1309       basic_block bb = bbs[i];
1310       gimple_stmt_iterator gsi = gsi_after_labels (bb);
1311 
1312       if (bb->loop_father != loop)
1313 	continue;
1314 
1315       for (psi = gsi_start_phis (bb); !gsi_end_p (psi); )
1316 	rewrite_phi_with_iv (loop, &psi, &gsi, main_iv);
1317     }
1318 
1319   free (bbs);
1320 }
1321 
1322 /* Bases all the induction variables in LOOP on a single induction
1323    variable (unsigned with base 0 and step 1), whose final value is
1324    compared with *NIT.  When the IV type precision has to be larger
1325    than *NIT type precision, *NIT is converted to the larger type, the
1326    conversion code is inserted before the loop, and *NIT is updated to
1327    the new definition.  When BUMP_IN_LATCH is true, the induction
1328    variable is incremented in the loop latch, otherwise it is
1329    incremented in the loop header.  Return the induction variable that
1330    was created.  */
1331 
1332 tree
canonicalize_loop_ivs(struct loop * loop,tree * nit,bool bump_in_latch)1333 canonicalize_loop_ivs (struct loop *loop, tree *nit, bool bump_in_latch)
1334 {
1335   unsigned precision = TYPE_PRECISION (TREE_TYPE (*nit));
1336   unsigned original_precision = precision;
1337   tree type, var_before;
1338   gimple_stmt_iterator gsi, psi;
1339   gimple stmt;
1340   edge exit = single_dom_exit (loop);
1341   gimple_seq stmts;
1342   enum machine_mode mode;
1343   bool unsigned_p = false;
1344 
1345   for (psi = gsi_start_phis (loop->header);
1346        !gsi_end_p (psi); gsi_next (&psi))
1347     {
1348       gimple phi = gsi_stmt (psi);
1349       tree res = PHI_RESULT (phi);
1350       bool uns;
1351 
1352       type = TREE_TYPE (res);
1353       if (virtual_operand_p (res)
1354 	  || (!INTEGRAL_TYPE_P (type)
1355 	      && !POINTER_TYPE_P (type))
1356 	  || TYPE_PRECISION (type) < precision)
1357 	continue;
1358 
1359       uns = POINTER_TYPE_P (type) | TYPE_UNSIGNED (type);
1360 
1361       if (TYPE_PRECISION (type) > precision)
1362 	unsigned_p = uns;
1363       else
1364 	unsigned_p |= uns;
1365 
1366       precision = TYPE_PRECISION (type);
1367     }
1368 
1369   mode = smallest_mode_for_size (precision, MODE_INT);
1370   precision = GET_MODE_PRECISION (mode);
1371   type = build_nonstandard_integer_type (precision, unsigned_p);
1372 
1373   if (original_precision != precision)
1374     {
1375       *nit = fold_convert (type, *nit);
1376       *nit = force_gimple_operand (*nit, &stmts, true, NULL_TREE);
1377       if (stmts)
1378 	gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1379     }
1380 
1381   if (bump_in_latch)
1382     gsi = gsi_last_bb (loop->latch);
1383   else
1384     gsi = gsi_last_nondebug_bb (loop->header);
1385   create_iv (build_int_cst_type (type, 0), build_int_cst (type, 1), NULL_TREE,
1386 	     loop, &gsi, bump_in_latch, &var_before, NULL);
1387 
1388   rewrite_all_phi_nodes_with_iv (loop, var_before);
1389 
1390   stmt = last_stmt (exit->src);
1391   /* Make the loop exit if the control condition is not satisfied.  */
1392   if (exit->flags & EDGE_TRUE_VALUE)
1393     {
1394       edge te, fe;
1395 
1396       extract_true_false_edges_from_block (exit->src, &te, &fe);
1397       te->flags = EDGE_FALSE_VALUE;
1398       fe->flags = EDGE_TRUE_VALUE;
1399     }
1400   gimple_cond_set_code (stmt, LT_EXPR);
1401   gimple_cond_set_lhs (stmt, var_before);
1402   gimple_cond_set_rhs (stmt, *nit);
1403   update_stmt (stmt);
1404 
1405   return var_before;
1406 }
1407