1 /* Tail call optimization on trees.
2    Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "stor-layout.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "function.h"
29 #include "tree-ssa-alias.h"
30 #include "internal-fn.h"
31 #include "gimple-expr.h"
32 #include "is-a.h"
33 #include "gimple.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "gimple-ssa.h"
37 #include "tree-cfg.h"
38 #include "tree-phinodes.h"
39 #include "stringpool.h"
40 #include "tree-ssanames.h"
41 #include "tree-into-ssa.h"
42 #include "expr.h"
43 #include "tree-dfa.h"
44 #include "gimple-pretty-print.h"
45 #include "except.h"
46 #include "tree-pass.h"
47 #include "flags.h"
48 #include "langhooks.h"
49 #include "dbgcnt.h"
50 #include "target.h"
51 #include "cfgloop.h"
52 #include "common/common-target.h"
53 #include "ipa-utils.h"
54 
55 /* The file implements the tail recursion elimination.  It is also used to
56    analyze the tail calls in general, passing the results to the rtl level
57    where they are used for sibcall optimization.
58 
59    In addition to the standard tail recursion elimination, we handle the most
60    trivial cases of making the call tail recursive by creating accumulators.
61    For example the following function
62 
63    int sum (int n)
64    {
65      if (n > 0)
66        return n + sum (n - 1);
67      else
68        return 0;
69    }
70 
71    is transformed into
72 
73    int sum (int n)
74    {
75      int acc = 0;
76 
77      while (n > 0)
78        acc += n--;
79 
80      return acc;
81    }
82 
83    To do this, we maintain two accumulators (a_acc and m_acc) that indicate
84    when we reach the return x statement, we should return a_acc + x * m_acc
85    instead.  They are initially initialized to 0 and 1, respectively,
86    so the semantics of the function is obviously preserved.  If we are
87    guaranteed that the value of the accumulator never change, we
88    omit the accumulator.
89 
90    There are three cases how the function may exit.  The first one is
91    handled in adjust_return_value, the other two in adjust_accumulator_values
92    (the second case is actually a special case of the third one and we
93    present it separately just for clarity):
94 
95    1) Just return x, where x is not in any of the remaining special shapes.
96       We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
97 
98    2) return f (...), where f is the current function, is rewritten in a
99       classical tail-recursion elimination way, into assignment of arguments
100       and jump to the start of the function.  Values of the accumulators
101       are unchanged.
102 
103    3) return a + m * f(...), where a and m do not depend on call to f.
104       To preserve the semantics described before we want this to be rewritten
105       in such a way that we finally return
106 
107       a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
108 
109       I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
110       eliminate the tail call to f.  Special cases when the value is just
111       added or just multiplied are obtained by setting a = 0 or m = 1.
112 
113    TODO -- it is possible to do similar tricks for other operations.  */
114 
115 /* A structure that describes the tailcall.  */
116 
117 struct tailcall
118 {
119   /* The iterator pointing to the call statement.  */
120   gimple_stmt_iterator call_gsi;
121 
122   /* True if it is a call to the current function.  */
123   bool tail_recursion;
124 
125   /* The return value of the caller is mult * f + add, where f is the return
126      value of the call.  */
127   tree mult, add;
128 
129   /* Next tailcall in the chain.  */
130   struct tailcall *next;
131 };
132 
133 /* The variables holding the value of multiplicative and additive
134    accumulator.  */
135 static tree m_acc, a_acc;
136 
137 static bool suitable_for_tail_opt_p (void);
138 static bool optimize_tail_call (struct tailcall *, bool);
139 static void eliminate_tail_call (struct tailcall *);
140 static void find_tail_calls (basic_block, struct tailcall **);
141 
142 /* Returns false when the function is not suitable for tail call optimization
143    from some reason (e.g. if it takes variable number of arguments).  */
144 
145 static bool
suitable_for_tail_opt_p(void)146 suitable_for_tail_opt_p (void)
147 {
148   if (cfun->stdarg)
149     return false;
150 
151   return true;
152 }
153 /* Returns false when the function is not suitable for tail call optimization
154    from some reason (e.g. if it takes variable number of arguments).
155    This test must pass in addition to suitable_for_tail_opt_p in order to make
156    tail call discovery happen.  */
157 
158 static bool
suitable_for_tail_call_opt_p(void)159 suitable_for_tail_call_opt_p (void)
160 {
161   tree param;
162 
163   /* alloca (until we have stack slot life analysis) inhibits
164      sibling call optimizations, but not tail recursion.  */
165   if (cfun->calls_alloca)
166     return false;
167 
168   /* If we are using sjlj exceptions, we may need to add a call to
169      _Unwind_SjLj_Unregister at exit of the function.  Which means
170      that we cannot do any sibcall transformations.  */
171   if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ
172       && current_function_has_exception_handlers ())
173     return false;
174 
175   /* Any function that calls setjmp might have longjmp called from
176      any called function.  ??? We really should represent this
177      properly in the CFG so that this needn't be special cased.  */
178   if (cfun->calls_setjmp)
179     return false;
180 
181   /* ??? It is OK if the argument of a function is taken in some cases,
182      but not in all cases.  See PR15387 and PR19616.  Revisit for 4.1.  */
183   for (param = DECL_ARGUMENTS (current_function_decl);
184        param;
185        param = DECL_CHAIN (param))
186     if (TREE_ADDRESSABLE (param))
187       return false;
188 
189   return true;
190 }
191 
192 /* Checks whether the expression EXPR in stmt AT is independent of the
193    statement pointed to by GSI (in a sense that we already know EXPR's value
194    at GSI).  We use the fact that we are only called from the chain of
195    basic blocks that have only single successor.  Returns the expression
196    containing the value of EXPR at GSI.  */
197 
198 static tree
independent_of_stmt_p(tree expr,gimple at,gimple_stmt_iterator gsi)199 independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
200 {
201   basic_block bb, call_bb, at_bb;
202   edge e;
203   edge_iterator ei;
204 
205   if (is_gimple_min_invariant (expr))
206     return expr;
207 
208   if (TREE_CODE (expr) != SSA_NAME)
209     return NULL_TREE;
210 
211   /* Mark the blocks in the chain leading to the end.  */
212   at_bb = gimple_bb (at);
213   call_bb = gimple_bb (gsi_stmt (gsi));
214   for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
215     bb->aux = &bb->aux;
216   bb->aux = &bb->aux;
217 
218   while (1)
219     {
220       at = SSA_NAME_DEF_STMT (expr);
221       bb = gimple_bb (at);
222 
223       /* The default definition or defined before the chain.  */
224       if (!bb || !bb->aux)
225 	break;
226 
227       if (bb == call_bb)
228 	{
229 	  for (; !gsi_end_p (gsi); gsi_next (&gsi))
230 	    if (gsi_stmt (gsi) == at)
231 	      break;
232 
233 	  if (!gsi_end_p (gsi))
234 	    expr = NULL_TREE;
235 	  break;
236 	}
237 
238       if (gimple_code (at) != GIMPLE_PHI)
239 	{
240 	  expr = NULL_TREE;
241 	  break;
242 	}
243 
244       FOR_EACH_EDGE (e, ei, bb->preds)
245 	if (e->src->aux)
246 	  break;
247       gcc_assert (e);
248 
249       expr = PHI_ARG_DEF_FROM_EDGE (at, e);
250       if (TREE_CODE (expr) != SSA_NAME)
251 	{
252 	  /* The value is a constant.  */
253 	  break;
254 	}
255     }
256 
257   /* Unmark the blocks.  */
258   for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
259     bb->aux = NULL;
260   bb->aux = NULL;
261 
262   return expr;
263 }
264 
265 /* Simulates the effect of an assignment STMT on the return value of the tail
266    recursive CALL passed in ASS_VAR.  M and A are the multiplicative and the
267    additive factor for the real return value.  */
268 
269 static bool
process_assignment(gimple stmt,gimple_stmt_iterator call,tree * m,tree * a,tree * ass_var)270 process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
271 		    tree *a, tree *ass_var)
272 {
273   tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE;
274   tree dest = gimple_assign_lhs (stmt);
275   enum tree_code code = gimple_assign_rhs_code (stmt);
276   enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
277   tree src_var = gimple_assign_rhs1 (stmt);
278 
279   /* See if this is a simple copy operation of an SSA name to the function
280      result.  In that case we may have a simple tail call.  Ignore type
281      conversions that can never produce extra code between the function
282      call and the function return.  */
283   if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
284       && (TREE_CODE (src_var) == SSA_NAME))
285     {
286       /* Reject a tailcall if the type conversion might need
287 	 additional code.  */
288       if (gimple_assign_cast_p (stmt))
289 	{
290 	  if (TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
291 	    return false;
292 
293 	  /* Even if the type modes are the same, if the precision of the
294 	     type is smaller than mode's precision,
295 	     reduce_to_bit_field_precision would generate additional code.  */
296 	  if (INTEGRAL_TYPE_P (TREE_TYPE (dest))
297 	      && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (dest)))
298 		  > TYPE_PRECISION (TREE_TYPE (dest))))
299 	    return false;
300 	}
301 
302       if (src_var != *ass_var)
303 	return false;
304 
305       *ass_var = dest;
306       return true;
307     }
308 
309   switch (rhs_class)
310     {
311     case GIMPLE_BINARY_RHS:
312       op1 = gimple_assign_rhs2 (stmt);
313 
314       /* Fall through.  */
315 
316     case GIMPLE_UNARY_RHS:
317       op0 = gimple_assign_rhs1 (stmt);
318       break;
319 
320     default:
321       return false;
322     }
323 
324   /* Accumulator optimizations will reverse the order of operations.
325      We can only do that for floating-point types if we're assuming
326      that addition and multiplication are associative.  */
327   if (!flag_associative_math)
328     if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
329       return false;
330 
331   if (rhs_class == GIMPLE_UNARY_RHS)
332     ;
333   else if (op0 == *ass_var
334 	   && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
335     ;
336   else if (op1 == *ass_var
337 	   && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
338     ;
339   else
340     return false;
341 
342   switch (code)
343     {
344     case PLUS_EXPR:
345       *a = non_ass_var;
346       *ass_var = dest;
347       return true;
348 
349     case POINTER_PLUS_EXPR:
350       if (op0 != *ass_var)
351 	return false;
352       *a = non_ass_var;
353       *ass_var = dest;
354       return true;
355 
356     case MULT_EXPR:
357       *m = non_ass_var;
358       *ass_var = dest;
359       return true;
360 
361     case NEGATE_EXPR:
362       *m = build_minus_one_cst (TREE_TYPE (op0));
363       *ass_var = dest;
364       return true;
365 
366     case MINUS_EXPR:
367       if (*ass_var == op0)
368         *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
369       else
370         {
371 	  *m = build_minus_one_cst (TREE_TYPE (non_ass_var));
372           *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
373         }
374 
375       *ass_var = dest;
376       return true;
377 
378       /* TODO -- Handle POINTER_PLUS_EXPR.  */
379 
380     default:
381       return false;
382     }
383 }
384 
385 /* Propagate VAR through phis on edge E.  */
386 
387 static tree
propagate_through_phis(tree var,edge e)388 propagate_through_phis (tree var, edge e)
389 {
390   basic_block dest = e->dest;
391   gimple_stmt_iterator gsi;
392 
393   for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
394     {
395       gimple phi = gsi_stmt (gsi);
396       if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
397         return PHI_RESULT (phi);
398     }
399   return var;
400 }
401 
402 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
403    added to the start of RET.  */
404 
405 static void
find_tail_calls(basic_block bb,struct tailcall ** ret)406 find_tail_calls (basic_block bb, struct tailcall **ret)
407 {
408   tree ass_var = NULL_TREE, ret_var, func, param;
409   gimple stmt, call = NULL;
410   gimple_stmt_iterator gsi, agsi;
411   bool tail_recursion;
412   struct tailcall *nw;
413   edge e;
414   tree m, a;
415   basic_block abb;
416   size_t idx;
417   tree var;
418 
419   if (!single_succ_p (bb))
420     return;
421 
422   for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
423     {
424       stmt = gsi_stmt (gsi);
425 
426       /* Ignore labels, returns, clobbers and debug stmts.  */
427       if (gimple_code (stmt) == GIMPLE_LABEL
428 	  || gimple_code (stmt) == GIMPLE_RETURN
429 	  || gimple_clobber_p (stmt)
430 	  || is_gimple_debug (stmt))
431 	continue;
432 
433       /* Check for a call.  */
434       if (is_gimple_call (stmt))
435 	{
436 	  call = stmt;
437 	  ass_var = gimple_call_lhs (stmt);
438 	  break;
439 	}
440 
441       /* If the statement references memory or volatile operands, fail.  */
442       if (gimple_references_memory_p (stmt)
443 	  || gimple_has_volatile_ops (stmt))
444 	return;
445     }
446 
447   if (gsi_end_p (gsi))
448     {
449       edge_iterator ei;
450       /* Recurse to the predecessors.  */
451       FOR_EACH_EDGE (e, ei, bb->preds)
452 	find_tail_calls (e->src, ret);
453 
454       return;
455     }
456 
457   /* If the LHS of our call is not just a simple register, we can't
458      transform this into a tail or sibling call.  This situation happens,
459      in (e.g.) "*p = foo()" where foo returns a struct.  In this case
460      we won't have a temporary here, but we need to carry out the side
461      effect anyway, so tailcall is impossible.
462 
463      ??? In some situations (when the struct is returned in memory via
464      invisible argument) we could deal with this, e.g. by passing 'p'
465      itself as that argument to foo, but it's too early to do this here,
466      and expand_call() will not handle it anyway.  If it ever can, then
467      we need to revisit this here, to allow that situation.  */
468   if (ass_var && !is_gimple_reg (ass_var))
469     return;
470 
471   /* We found the call, check whether it is suitable.  */
472   tail_recursion = false;
473   func = gimple_call_fndecl (call);
474   if (func
475       && !DECL_BUILT_IN (func)
476       && recursive_call_p (current_function_decl, func))
477     {
478       tree arg;
479 
480       for (param = DECL_ARGUMENTS (func), idx = 0;
481 	   param && idx < gimple_call_num_args (call);
482 	   param = DECL_CHAIN (param), idx ++)
483 	{
484 	  arg = gimple_call_arg (call, idx);
485 	  if (param != arg)
486 	    {
487 	      /* Make sure there are no problems with copying.  The parameter
488 	         have a copyable type and the two arguments must have reasonably
489 	         equivalent types.  The latter requirement could be relaxed if
490 	         we emitted a suitable type conversion statement.  */
491 	      if (!is_gimple_reg_type (TREE_TYPE (param))
492 		  || !useless_type_conversion_p (TREE_TYPE (param),
493 					         TREE_TYPE (arg)))
494 		break;
495 
496 	      /* The parameter should be a real operand, so that phi node
497 		 created for it at the start of the function has the meaning
498 		 of copying the value.  This test implies is_gimple_reg_type
499 		 from the previous condition, however this one could be
500 		 relaxed by being more careful with copying the new value
501 		 of the parameter (emitting appropriate GIMPLE_ASSIGN and
502 		 updating the virtual operands).  */
503 	      if (!is_gimple_reg (param))
504 		break;
505 	    }
506 	}
507       if (idx == gimple_call_num_args (call) && !param)
508 	tail_recursion = true;
509     }
510 
511   /* Make sure the tail invocation of this function does not refer
512      to local variables.  */
513   FOR_EACH_LOCAL_DECL (cfun, idx, var)
514     {
515       if (TREE_CODE (var) != PARM_DECL
516 	  && auto_var_in_fn_p (var, cfun->decl)
517 	  && (ref_maybe_used_by_stmt_p (call, var)
518 	      || call_may_clobber_ref_p (call, var)))
519 	return;
520     }
521 
522   /* Now check the statements after the call.  None of them has virtual
523      operands, so they may only depend on the call through its return
524      value.  The return value should also be dependent on each of them,
525      since we are running after dce.  */
526   m = NULL_TREE;
527   a = NULL_TREE;
528 
529   abb = bb;
530   agsi = gsi;
531   while (1)
532     {
533       tree tmp_a = NULL_TREE;
534       tree tmp_m = NULL_TREE;
535       gsi_next (&agsi);
536 
537       while (gsi_end_p (agsi))
538 	{
539 	  ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
540 	  abb = single_succ (abb);
541 	  agsi = gsi_start_bb (abb);
542 	}
543 
544       stmt = gsi_stmt (agsi);
545 
546       if (gimple_code (stmt) == GIMPLE_LABEL)
547 	continue;
548 
549       if (gimple_code (stmt) == GIMPLE_RETURN)
550 	break;
551 
552       if (gimple_clobber_p (stmt))
553 	continue;
554 
555       if (is_gimple_debug (stmt))
556 	continue;
557 
558       if (gimple_code (stmt) != GIMPLE_ASSIGN)
559 	return;
560 
561       /* This is a gimple assign. */
562       if (! process_assignment (stmt, gsi, &tmp_m, &tmp_a, &ass_var))
563 	return;
564 
565       if (tmp_a)
566 	{
567 	  tree type = TREE_TYPE (tmp_a);
568 	  if (a)
569 	    a = fold_build2 (PLUS_EXPR, type, fold_convert (type, a), tmp_a);
570 	  else
571 	    a = tmp_a;
572 	}
573       if (tmp_m)
574 	{
575 	  tree type = TREE_TYPE (tmp_m);
576 	  if (m)
577 	    m = fold_build2 (MULT_EXPR, type, fold_convert (type, m), tmp_m);
578 	  else
579 	    m = tmp_m;
580 
581 	  if (a)
582 	    a = fold_build2 (MULT_EXPR, type, fold_convert (type, a), tmp_m);
583 	}
584     }
585 
586   /* See if this is a tail call we can handle.  */
587   ret_var = gimple_return_retval (stmt);
588 
589   /* We may proceed if there either is no return value, or the return value
590      is identical to the call's return.  */
591   if (ret_var
592       && (ret_var != ass_var))
593     return;
594 
595   /* If this is not a tail recursive call, we cannot handle addends or
596      multiplicands.  */
597   if (!tail_recursion && (m || a))
598     return;
599 
600   /* For pointers only allow additions.  */
601   if (m && POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
602     return;
603 
604   nw = XNEW (struct tailcall);
605 
606   nw->call_gsi = gsi;
607 
608   nw->tail_recursion = tail_recursion;
609 
610   nw->mult = m;
611   nw->add = a;
612 
613   nw->next = *ret;
614   *ret = nw;
615 }
616 
617 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E.  */
618 
619 static void
add_successor_phi_arg(edge e,tree var,tree phi_arg)620 add_successor_phi_arg (edge e, tree var, tree phi_arg)
621 {
622   gimple_stmt_iterator gsi;
623 
624   for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
625     if (PHI_RESULT (gsi_stmt (gsi)) == var)
626       break;
627 
628   gcc_assert (!gsi_end_p (gsi));
629   add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION);
630 }
631 
632 /* Creates a GIMPLE statement which computes the operation specified by
633    CODE, ACC and OP1 to a new variable with name LABEL and inserts the
634    statement in the position specified by GSI.  Returns the
635    tree node of the statement's result.  */
636 
637 static tree
adjust_return_value_with_ops(enum tree_code code,const char * label,tree acc,tree op1,gimple_stmt_iterator gsi)638 adjust_return_value_with_ops (enum tree_code code, const char *label,
639 			      tree acc, tree op1, gimple_stmt_iterator gsi)
640 {
641 
642   tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
643   tree result = make_temp_ssa_name (ret_type, NULL, label);
644   gimple stmt;
645 
646   if (POINTER_TYPE_P (ret_type))
647     {
648       gcc_assert (code == PLUS_EXPR && TREE_TYPE (acc) == sizetype);
649       code = POINTER_PLUS_EXPR;
650     }
651   if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1))
652       && code != POINTER_PLUS_EXPR)
653     stmt = gimple_build_assign_with_ops (code, result, acc, op1);
654   else
655     {
656       tree tem;
657       if (code == POINTER_PLUS_EXPR)
658 	tem = fold_build2 (code, TREE_TYPE (op1), op1, acc);
659       else
660 	tem = fold_build2 (code, TREE_TYPE (op1),
661 			   fold_convert (TREE_TYPE (op1), acc), op1);
662       tree rhs = fold_convert (ret_type, tem);
663       rhs = force_gimple_operand_gsi (&gsi, rhs,
664 				      false, NULL, true, GSI_SAME_STMT);
665       stmt = gimple_build_assign (result, rhs);
666     }
667 
668   gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
669   return result;
670 }
671 
672 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
673    the computation specified by CODE and OP1 and insert the statement
674    at the position specified by GSI as a new statement.  Returns new SSA name
675    of updated accumulator.  */
676 
677 static tree
update_accumulator_with_ops(enum tree_code code,tree acc,tree op1,gimple_stmt_iterator gsi)678 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
679 			     gimple_stmt_iterator gsi)
680 {
681   gimple stmt;
682   tree var = copy_ssa_name (acc, NULL);
683   if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
684     stmt = gimple_build_assign_with_ops (code, var, acc, op1);
685   else
686     {
687       tree rhs = fold_convert (TREE_TYPE (acc),
688 			       fold_build2 (code,
689 					    TREE_TYPE (op1),
690 					    fold_convert (TREE_TYPE (op1), acc),
691 					    op1));
692       rhs = force_gimple_operand_gsi (&gsi, rhs,
693 				      false, NULL, false, GSI_CONTINUE_LINKING);
694       stmt = gimple_build_assign (var, rhs);
695     }
696   gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
697   return var;
698 }
699 
700 /* Adjust the accumulator values according to A and M after GSI, and update
701    the phi nodes on edge BACK.  */
702 
703 static void
adjust_accumulator_values(gimple_stmt_iterator gsi,tree m,tree a,edge back)704 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
705 {
706   tree var, a_acc_arg, m_acc_arg;
707 
708   if (m)
709     m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
710   if (a)
711     a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
712 
713   a_acc_arg = a_acc;
714   m_acc_arg = m_acc;
715   if (a)
716     {
717       if (m_acc)
718 	{
719 	  if (integer_onep (a))
720 	    var = m_acc;
721 	  else
722 	    var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
723 						a, gsi);
724 	}
725       else
726 	var = a;
727 
728       a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
729     }
730 
731   if (m)
732     m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
733 
734   if (a_acc)
735     add_successor_phi_arg (back, a_acc, a_acc_arg);
736 
737   if (m_acc)
738     add_successor_phi_arg (back, m_acc, m_acc_arg);
739 }
740 
741 /* Adjust value of the return at the end of BB according to M and A
742    accumulators.  */
743 
744 static void
adjust_return_value(basic_block bb,tree m,tree a)745 adjust_return_value (basic_block bb, tree m, tree a)
746 {
747   tree retval;
748   gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
749   gimple_stmt_iterator gsi = gsi_last_bb (bb);
750 
751   gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
752 
753   retval = gimple_return_retval (ret_stmt);
754   if (!retval || retval == error_mark_node)
755     return;
756 
757   if (m)
758     retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
759 					   gsi);
760   if (a)
761     retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
762 					   gsi);
763   gimple_return_set_retval (ret_stmt, retval);
764   update_stmt (ret_stmt);
765 }
766 
767 /* Subtract COUNT and FREQUENCY from the basic block and it's
768    outgoing edge.  */
769 static void
decrease_profile(basic_block bb,gcov_type count,int frequency)770 decrease_profile (basic_block bb, gcov_type count, int frequency)
771 {
772   edge e;
773   bb->count -= count;
774   if (bb->count < 0)
775     bb->count = 0;
776   bb->frequency -= frequency;
777   if (bb->frequency < 0)
778     bb->frequency = 0;
779   if (!single_succ_p (bb))
780     {
781       gcc_assert (!EDGE_COUNT (bb->succs));
782       return;
783     }
784   e = single_succ_edge (bb);
785   e->count -= count;
786   if (e->count < 0)
787     e->count = 0;
788 }
789 
790 /* Returns true if argument PARAM of the tail recursive call needs to be copied
791    when the call is eliminated.  */
792 
793 static bool
arg_needs_copy_p(tree param)794 arg_needs_copy_p (tree param)
795 {
796   tree def;
797 
798   if (!is_gimple_reg (param))
799     return false;
800 
801   /* Parameters that are only defined but never used need not be copied.  */
802   def = ssa_default_def (cfun, param);
803   if (!def)
804     return false;
805 
806   return true;
807 }
808 
809 /* Eliminates tail call described by T.  TMP_VARS is a list of
810    temporary variables used to copy the function arguments.  */
811 
812 static void
eliminate_tail_call(struct tailcall * t)813 eliminate_tail_call (struct tailcall *t)
814 {
815   tree param, rslt;
816   gimple stmt, call;
817   tree arg;
818   size_t idx;
819   basic_block bb, first;
820   edge e;
821   gimple phi;
822   gimple_stmt_iterator gsi;
823   gimple orig_stmt;
824 
825   stmt = orig_stmt = gsi_stmt (t->call_gsi);
826   bb = gsi_bb (t->call_gsi);
827 
828   if (dump_file && (dump_flags & TDF_DETAILS))
829     {
830       fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
831 	       bb->index);
832       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
833       fprintf (dump_file, "\n");
834     }
835 
836   gcc_assert (is_gimple_call (stmt));
837 
838   first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
839 
840   /* Remove the code after call_gsi that will become unreachable.  The
841      possibly unreachable code in other blocks is removed later in
842      cfg cleanup.  */
843   gsi = t->call_gsi;
844   gsi_next (&gsi);
845   while (!gsi_end_p (gsi))
846     {
847       gimple t = gsi_stmt (gsi);
848       /* Do not remove the return statement, so that redirect_edge_and_branch
849 	 sees how the block ends.  */
850       if (gimple_code (t) == GIMPLE_RETURN)
851 	break;
852 
853       gsi_remove (&gsi, true);
854       release_defs (t);
855     }
856 
857   /* Number of executions of function has reduced by the tailcall.  */
858   e = single_succ_edge (gsi_bb (t->call_gsi));
859   decrease_profile (EXIT_BLOCK_PTR_FOR_FN (cfun), e->count, EDGE_FREQUENCY (e));
860   decrease_profile (ENTRY_BLOCK_PTR_FOR_FN (cfun), e->count,
861 		    EDGE_FREQUENCY (e));
862   if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
863     decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
864 
865   /* Replace the call by a jump to the start of function.  */
866   e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
867 				first);
868   gcc_assert (e);
869   PENDING_STMT (e) = NULL;
870 
871   /* Add phi node entries for arguments.  The ordering of the phi nodes should
872      be the same as the ordering of the arguments.  */
873   for (param = DECL_ARGUMENTS (current_function_decl),
874 	 idx = 0, gsi = gsi_start_phis (first);
875        param;
876        param = DECL_CHAIN (param), idx++)
877     {
878       if (!arg_needs_copy_p (param))
879 	continue;
880 
881       arg = gimple_call_arg (stmt, idx);
882       phi = gsi_stmt (gsi);
883       gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
884 
885       add_phi_arg (phi, arg, e, gimple_location (stmt));
886       gsi_next (&gsi);
887     }
888 
889   /* Update the values of accumulators.  */
890   adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
891 
892   call = gsi_stmt (t->call_gsi);
893   rslt = gimple_call_lhs (call);
894   if (rslt != NULL_TREE)
895     {
896       /* Result of the call will no longer be defined.  So adjust the
897 	 SSA_NAME_DEF_STMT accordingly.  */
898       SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
899     }
900 
901   gsi_remove (&t->call_gsi, true);
902   release_defs (call);
903 }
904 
905 /* Optimizes the tailcall described by T.  If OPT_TAILCALLS is true, also
906    mark the tailcalls for the sibcall optimization.  */
907 
908 static bool
optimize_tail_call(struct tailcall * t,bool opt_tailcalls)909 optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
910 {
911   if (t->tail_recursion)
912     {
913       eliminate_tail_call (t);
914       return true;
915     }
916 
917   if (opt_tailcalls)
918     {
919       gimple stmt = gsi_stmt (t->call_gsi);
920 
921       gimple_call_set_tail (stmt, true);
922       cfun->tail_call_marked = true;
923       if (dump_file && (dump_flags & TDF_DETAILS))
924         {
925 	  fprintf (dump_file, "Found tail call ");
926 	  print_gimple_stmt (dump_file, stmt, 0, dump_flags);
927 	  fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
928 	}
929     }
930 
931   return false;
932 }
933 
934 /* Creates a tail-call accumulator of the same type as the return type of the
935    current function.  LABEL is the name used to creating the temporary
936    variable for the accumulator.  The accumulator will be inserted in the
937    phis of a basic block BB with single predecessor with an initial value
938    INIT converted to the current function return type.  */
939 
940 static tree
create_tailcall_accumulator(const char * label,basic_block bb,tree init)941 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
942 {
943   tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
944   if (POINTER_TYPE_P (ret_type))
945     ret_type = sizetype;
946 
947   tree tmp = make_temp_ssa_name (ret_type, NULL, label);
948   gimple phi;
949 
950   phi = create_phi_node (tmp, bb);
951   /* RET_TYPE can be a float when -ffast-maths is enabled.  */
952   add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
953 	       UNKNOWN_LOCATION);
954   return PHI_RESULT (phi);
955 }
956 
957 /* Optimizes tail calls in the function, turning the tail recursion
958    into iteration.  */
959 
960 static unsigned int
tree_optimize_tail_calls_1(bool opt_tailcalls)961 tree_optimize_tail_calls_1 (bool opt_tailcalls)
962 {
963   edge e;
964   bool phis_constructed = false;
965   struct tailcall *tailcalls = NULL, *act, *next;
966   bool changed = false;
967   basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
968   tree param;
969   gimple stmt;
970   edge_iterator ei;
971 
972   if (!suitable_for_tail_opt_p ())
973     return 0;
974   if (opt_tailcalls)
975     opt_tailcalls = suitable_for_tail_call_opt_p ();
976 
977   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
978     {
979       /* Only traverse the normal exits, i.e. those that end with return
980 	 statement.  */
981       stmt = last_stmt (e->src);
982 
983       if (stmt
984 	  && gimple_code (stmt) == GIMPLE_RETURN)
985 	find_tail_calls (e->src, &tailcalls);
986     }
987 
988   /* Construct the phi nodes and accumulators if necessary.  */
989   a_acc = m_acc = NULL_TREE;
990   for (act = tailcalls; act; act = act->next)
991     {
992       if (!act->tail_recursion)
993 	continue;
994 
995       if (!phis_constructed)
996 	{
997 	  /* Ensure that there is only one predecessor of the block
998 	     or if there are existing degenerate PHI nodes.  */
999 	  if (!single_pred_p (first)
1000 	      || !gimple_seq_empty_p (phi_nodes (first)))
1001 	    first =
1002 	      split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1003 
1004 	  /* Copy the args if needed.  */
1005 	  for (param = DECL_ARGUMENTS (current_function_decl);
1006 	       param;
1007 	       param = DECL_CHAIN (param))
1008 	    if (arg_needs_copy_p (param))
1009 	      {
1010 		tree name = ssa_default_def (cfun, param);
1011 		tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
1012 		gimple phi;
1013 
1014 		set_ssa_default_def (cfun, param, new_name);
1015 		phi = create_phi_node (name, first);
1016 		add_phi_arg (phi, new_name, single_pred_edge (first),
1017 			     EXPR_LOCATION (param));
1018 	      }
1019 	  phis_constructed = true;
1020 	}
1021 
1022       if (act->add && !a_acc)
1023 	a_acc = create_tailcall_accumulator ("add_acc", first,
1024 					     integer_zero_node);
1025 
1026       if (act->mult && !m_acc)
1027 	m_acc = create_tailcall_accumulator ("mult_acc", first,
1028 					     integer_one_node);
1029     }
1030 
1031   if (a_acc || m_acc)
1032     {
1033       /* When the tail call elimination using accumulators is performed,
1034 	 statements adding the accumulated value are inserted at all exits.
1035 	 This turns all other tail calls to non-tail ones.  */
1036       opt_tailcalls = false;
1037     }
1038 
1039   for (; tailcalls; tailcalls = next)
1040     {
1041       next = tailcalls->next;
1042       changed |= optimize_tail_call (tailcalls, opt_tailcalls);
1043       free (tailcalls);
1044     }
1045 
1046   if (a_acc || m_acc)
1047     {
1048       /* Modify the remaining return statements.  */
1049       FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1050 	{
1051 	  stmt = last_stmt (e->src);
1052 
1053 	  if (stmt
1054 	      && gimple_code (stmt) == GIMPLE_RETURN)
1055 	    adjust_return_value (e->src, m_acc, a_acc);
1056 	}
1057     }
1058 
1059   if (changed)
1060     {
1061       /* We may have created new loops.  Make them magically appear.  */
1062       if (current_loops)
1063 	loops_state_set (LOOPS_NEED_FIXUP);
1064       free_dominance_info (CDI_DOMINATORS);
1065     }
1066 
1067   /* Add phi nodes for the virtual operands defined in the function to the
1068      header of the loop created by tail recursion elimination.  Do so
1069      by triggering the SSA renamer.  */
1070   if (phis_constructed)
1071     mark_virtual_operands_for_renaming (cfun);
1072 
1073   if (changed)
1074     return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1075   return 0;
1076 }
1077 
1078 static unsigned int
execute_tail_recursion(void)1079 execute_tail_recursion (void)
1080 {
1081   return tree_optimize_tail_calls_1 (false);
1082 }
1083 
1084 static bool
gate_tail_calls(void)1085 gate_tail_calls (void)
1086 {
1087   return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
1088 }
1089 
1090 static unsigned int
execute_tail_calls(void)1091 execute_tail_calls (void)
1092 {
1093   return tree_optimize_tail_calls_1 (true);
1094 }
1095 
1096 namespace {
1097 
1098 const pass_data pass_data_tail_recursion =
1099 {
1100   GIMPLE_PASS, /* type */
1101   "tailr", /* name */
1102   OPTGROUP_NONE, /* optinfo_flags */
1103   true, /* has_gate */
1104   true, /* has_execute */
1105   TV_NONE, /* tv_id */
1106   ( PROP_cfg | PROP_ssa ), /* properties_required */
1107   0, /* properties_provided */
1108   0, /* properties_destroyed */
1109   0, /* todo_flags_start */
1110   TODO_verify_ssa, /* todo_flags_finish */
1111 };
1112 
1113 class pass_tail_recursion : public gimple_opt_pass
1114 {
1115 public:
pass_tail_recursion(gcc::context * ctxt)1116   pass_tail_recursion (gcc::context *ctxt)
1117     : gimple_opt_pass (pass_data_tail_recursion, ctxt)
1118   {}
1119 
1120   /* opt_pass methods: */
clone()1121   opt_pass * clone () { return new pass_tail_recursion (m_ctxt); }
gate()1122   bool gate () { return gate_tail_calls (); }
execute()1123   unsigned int execute () { return execute_tail_recursion (); }
1124 
1125 }; // class pass_tail_recursion
1126 
1127 } // anon namespace
1128 
1129 gimple_opt_pass *
make_pass_tail_recursion(gcc::context * ctxt)1130 make_pass_tail_recursion (gcc::context *ctxt)
1131 {
1132   return new pass_tail_recursion (ctxt);
1133 }
1134 
1135 namespace {
1136 
1137 const pass_data pass_data_tail_calls =
1138 {
1139   GIMPLE_PASS, /* type */
1140   "tailc", /* name */
1141   OPTGROUP_NONE, /* optinfo_flags */
1142   true, /* has_gate */
1143   true, /* has_execute */
1144   TV_NONE, /* tv_id */
1145   ( PROP_cfg | PROP_ssa ), /* properties_required */
1146   0, /* properties_provided */
1147   0, /* properties_destroyed */
1148   0, /* todo_flags_start */
1149   TODO_verify_ssa, /* todo_flags_finish */
1150 };
1151 
1152 class pass_tail_calls : public gimple_opt_pass
1153 {
1154 public:
pass_tail_calls(gcc::context * ctxt)1155   pass_tail_calls (gcc::context *ctxt)
1156     : gimple_opt_pass (pass_data_tail_calls, ctxt)
1157   {}
1158 
1159   /* opt_pass methods: */
gate()1160   bool gate () { return gate_tail_calls (); }
execute()1161   unsigned int execute () { return execute_tail_calls (); }
1162 
1163 }; // class pass_tail_calls
1164 
1165 } // anon namespace
1166 
1167 gimple_opt_pass *
make_pass_tail_calls(gcc::context * ctxt)1168 make_pass_tail_calls (gcc::context *ctxt)
1169 {
1170   return new pass_tail_calls (ctxt);
1171 }
1172