1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package parse builds parse trees for templates as defined by text/template
6// and html/template. Clients should use those packages to construct templates
7// rather than this one, which provides shared internal data structures not
8// intended for general use.
9package parse
10
11import (
12	"bytes"
13	"fmt"
14	"runtime"
15	"strconv"
16	"strings"
17)
18
19// Tree is the representation of a single parsed template.
20type Tree struct {
21	Name      string    // name of the template represented by the tree.
22	ParseName string    // name of the top-level template during parsing, for error messages.
23	Root      *ListNode // top-level root of the tree.
24	text      string    // text parsed to create the template (or its parent)
25	// Parsing only; cleared after parse.
26	funcs     []map[string]interface{}
27	lex       *lexer
28	token     [3]item // three-token lookahead for parser.
29	peekCount int
30	vars      []string // variables defined at the moment.
31}
32
33// Copy returns a copy of the Tree. Any parsing state is discarded.
34func (t *Tree) Copy() *Tree {
35	if t == nil {
36		return nil
37	}
38	return &Tree{
39		Name:      t.Name,
40		ParseName: t.ParseName,
41		Root:      t.Root.CopyList(),
42		text:      t.text,
43	}
44}
45
46// Parse returns a map from template name to parse.Tree, created by parsing the
47// templates described in the argument string. The top-level template will be
48// given the specified name. If an error is encountered, parsing stops and an
49// empty map is returned with the error.
50func Parse(name, text, leftDelim, rightDelim string, funcs ...map[string]interface{}) (treeSet map[string]*Tree, err error) {
51	treeSet = make(map[string]*Tree)
52	t := New(name)
53	t.text = text
54	_, err = t.Parse(text, leftDelim, rightDelim, treeSet, funcs...)
55	return
56}
57
58// next returns the next token.
59func (t *Tree) next() item {
60	if t.peekCount > 0 {
61		t.peekCount--
62	} else {
63		t.token[0] = t.lex.nextItem()
64	}
65	return t.token[t.peekCount]
66}
67
68// backup backs the input stream up one token.
69func (t *Tree) backup() {
70	t.peekCount++
71}
72
73// backup2 backs the input stream up two tokens.
74// The zeroth token is already there.
75func (t *Tree) backup2(t1 item) {
76	t.token[1] = t1
77	t.peekCount = 2
78}
79
80// backup3 backs the input stream up three tokens
81// The zeroth token is already there.
82func (t *Tree) backup3(t2, t1 item) { // Reverse order: we're pushing back.
83	t.token[1] = t1
84	t.token[2] = t2
85	t.peekCount = 3
86}
87
88// peek returns but does not consume the next token.
89func (t *Tree) peek() item {
90	if t.peekCount > 0 {
91		return t.token[t.peekCount-1]
92	}
93	t.peekCount = 1
94	t.token[0] = t.lex.nextItem()
95	return t.token[0]
96}
97
98// nextNonSpace returns the next non-space token.
99func (t *Tree) nextNonSpace() (token item) {
100	for {
101		token = t.next()
102		if token.typ != itemSpace {
103			break
104		}
105	}
106	return token
107}
108
109// peekNonSpace returns but does not consume the next non-space token.
110func (t *Tree) peekNonSpace() (token item) {
111	for {
112		token = t.next()
113		if token.typ != itemSpace {
114			break
115		}
116	}
117	t.backup()
118	return token
119}
120
121// Parsing.
122
123// New allocates a new parse tree with the given name.
124func New(name string, funcs ...map[string]interface{}) *Tree {
125	return &Tree{
126		Name:  name,
127		funcs: funcs,
128	}
129}
130
131// ErrorContext returns a textual representation of the location of the node in the input text.
132func (t *Tree) ErrorContext(n Node) (location, context string) {
133	pos := int(n.Position())
134	text := t.text[:pos]
135	byteNum := strings.LastIndex(text, "\n")
136	if byteNum == -1 {
137		byteNum = pos // On first line.
138	} else {
139		byteNum++ // After the newline.
140		byteNum = pos - byteNum
141	}
142	lineNum := 1 + strings.Count(text, "\n")
143	context = n.String()
144	if len(context) > 20 {
145		context = fmt.Sprintf("%.20s...", context)
146	}
147	return fmt.Sprintf("%s:%d:%d", t.ParseName, lineNum, byteNum), context
148}
149
150// errorf formats the error and terminates processing.
151func (t *Tree) errorf(format string, args ...interface{}) {
152	t.Root = nil
153	format = fmt.Sprintf("template: %s:%d: %s", t.ParseName, t.lex.lineNumber(), format)
154	panic(fmt.Errorf(format, args...))
155}
156
157// error terminates processing.
158func (t *Tree) error(err error) {
159	t.errorf("%s", err)
160}
161
162// expect consumes the next token and guarantees it has the required type.
163func (t *Tree) expect(expected itemType, context string) item {
164	token := t.nextNonSpace()
165	if token.typ != expected {
166		t.unexpected(token, context)
167	}
168	return token
169}
170
171// expectOneOf consumes the next token and guarantees it has one of the required types.
172func (t *Tree) expectOneOf(expected1, expected2 itemType, context string) item {
173	token := t.nextNonSpace()
174	if token.typ != expected1 && token.typ != expected2 {
175		t.unexpected(token, context)
176	}
177	return token
178}
179
180// unexpected complains about the token and terminates processing.
181func (t *Tree) unexpected(token item, context string) {
182	t.errorf("unexpected %s in %s", token, context)
183}
184
185// recover is the handler that turns panics into returns from the top level of Parse.
186func (t *Tree) recover(errp *error) {
187	e := recover()
188	if e != nil {
189		if _, ok := e.(runtime.Error); ok {
190			panic(e)
191		}
192		if t != nil {
193			t.stopParse()
194		}
195		*errp = e.(error)
196	}
197	return
198}
199
200// startParse initializes the parser, using the lexer.
201func (t *Tree) startParse(funcs []map[string]interface{}, lex *lexer) {
202	t.Root = nil
203	t.lex = lex
204	t.vars = []string{"$"}
205	t.funcs = funcs
206}
207
208// stopParse terminates parsing.
209func (t *Tree) stopParse() {
210	t.lex = nil
211	t.vars = nil
212	t.funcs = nil
213}
214
215// Parse parses the template definition string to construct a representation of
216// the template for execution. If either action delimiter string is empty, the
217// default ("{{" or "}}") is used. Embedded template definitions are added to
218// the treeSet map.
219func (t *Tree) Parse(text, leftDelim, rightDelim string, treeSet map[string]*Tree, funcs ...map[string]interface{}) (tree *Tree, err error) {
220	defer t.recover(&err)
221	t.ParseName = t.Name
222	t.startParse(funcs, lex(t.Name, text, leftDelim, rightDelim))
223	t.text = text
224	t.parse(treeSet)
225	t.add(treeSet)
226	t.stopParse()
227	return t, nil
228}
229
230// add adds tree to the treeSet.
231func (t *Tree) add(treeSet map[string]*Tree) {
232	tree := treeSet[t.Name]
233	if tree == nil || IsEmptyTree(tree.Root) {
234		treeSet[t.Name] = t
235		return
236	}
237	if !IsEmptyTree(t.Root) {
238		t.errorf("template: multiple definition of template %q", t.Name)
239	}
240}
241
242// IsEmptyTree reports whether this tree (node) is empty of everything but space.
243func IsEmptyTree(n Node) bool {
244	switch n := n.(type) {
245	case nil:
246		return true
247	case *ActionNode:
248	case *IfNode:
249	case *ListNode:
250		for _, node := range n.Nodes {
251			if !IsEmptyTree(node) {
252				return false
253			}
254		}
255		return true
256	case *RangeNode:
257	case *TemplateNode:
258	case *TextNode:
259		return len(bytes.TrimSpace(n.Text)) == 0
260	case *WithNode:
261	default:
262		panic("unknown node: " + n.String())
263	}
264	return false
265}
266
267// parse is the top-level parser for a template, essentially the same
268// as itemList except it also parses {{define}} actions.
269// It runs to EOF.
270func (t *Tree) parse(treeSet map[string]*Tree) (next Node) {
271	t.Root = newList(t.peek().pos)
272	for t.peek().typ != itemEOF {
273		if t.peek().typ == itemLeftDelim {
274			delim := t.next()
275			if t.nextNonSpace().typ == itemDefine {
276				newT := New("definition") // name will be updated once we know it.
277				newT.text = t.text
278				newT.ParseName = t.ParseName
279				newT.startParse(t.funcs, t.lex)
280				newT.parseDefinition(treeSet)
281				continue
282			}
283			t.backup2(delim)
284		}
285		n := t.textOrAction()
286		if n.Type() == nodeEnd {
287			t.errorf("unexpected %s", n)
288		}
289		t.Root.append(n)
290	}
291	return nil
292}
293
294// parseDefinition parses a {{define}} ...  {{end}} template definition and
295// installs the definition in the treeSet map.  The "define" keyword has already
296// been scanned.
297func (t *Tree) parseDefinition(treeSet map[string]*Tree) {
298	const context = "define clause"
299	name := t.expectOneOf(itemString, itemRawString, context)
300	var err error
301	t.Name, err = strconv.Unquote(name.val)
302	if err != nil {
303		t.error(err)
304	}
305	t.expect(itemRightDelim, context)
306	var end Node
307	t.Root, end = t.itemList()
308	if end.Type() != nodeEnd {
309		t.errorf("unexpected %s in %s", end, context)
310	}
311	t.add(treeSet)
312	t.stopParse()
313}
314
315// itemList:
316//	textOrAction*
317// Terminates at {{end}} or {{else}}, returned separately.
318func (t *Tree) itemList() (list *ListNode, next Node) {
319	list = newList(t.peekNonSpace().pos)
320	for t.peekNonSpace().typ != itemEOF {
321		n := t.textOrAction()
322		switch n.Type() {
323		case nodeEnd, nodeElse:
324			return list, n
325		}
326		list.append(n)
327	}
328	t.errorf("unexpected EOF")
329	return
330}
331
332// textOrAction:
333//	text | action
334func (t *Tree) textOrAction() Node {
335	switch token := t.nextNonSpace(); token.typ {
336	case itemText:
337		return newText(token.pos, token.val)
338	case itemLeftDelim:
339		return t.action()
340	default:
341		t.unexpected(token, "input")
342	}
343	return nil
344}
345
346// Action:
347//	control
348//	command ("|" command)*
349// Left delim is past. Now get actions.
350// First word could be a keyword such as range.
351func (t *Tree) action() (n Node) {
352	switch token := t.nextNonSpace(); token.typ {
353	case itemElse:
354		return t.elseControl()
355	case itemEnd:
356		return t.endControl()
357	case itemIf:
358		return t.ifControl()
359	case itemRange:
360		return t.rangeControl()
361	case itemTemplate:
362		return t.templateControl()
363	case itemWith:
364		return t.withControl()
365	}
366	t.backup()
367	// Do not pop variables; they persist until "end".
368	return newAction(t.peek().pos, t.lex.lineNumber(), t.pipeline("command"))
369}
370
371// Pipeline:
372//	declarations? command ('|' command)*
373func (t *Tree) pipeline(context string) (pipe *PipeNode) {
374	var decl []*VariableNode
375	pos := t.peekNonSpace().pos
376	// Are there declarations?
377	for {
378		if v := t.peekNonSpace(); v.typ == itemVariable {
379			t.next()
380			// Since space is a token, we need 3-token look-ahead here in the worst case:
381			// in "$x foo" we need to read "foo" (as opposed to ":=") to know that $x is an
382			// argument variable rather than a declaration. So remember the token
383			// adjacent to the variable so we can push it back if necessary.
384			tokenAfterVariable := t.peek()
385			if next := t.peekNonSpace(); next.typ == itemColonEquals || (next.typ == itemChar && next.val == ",") {
386				t.nextNonSpace()
387				variable := newVariable(v.pos, v.val)
388				decl = append(decl, variable)
389				t.vars = append(t.vars, v.val)
390				if next.typ == itemChar && next.val == "," {
391					if context == "range" && len(decl) < 2 {
392						continue
393					}
394					t.errorf("too many declarations in %s", context)
395				}
396			} else if tokenAfterVariable.typ == itemSpace {
397				t.backup3(v, tokenAfterVariable)
398			} else {
399				t.backup2(v)
400			}
401		}
402		break
403	}
404	pipe = newPipeline(pos, t.lex.lineNumber(), decl)
405	for {
406		switch token := t.nextNonSpace(); token.typ {
407		case itemRightDelim, itemRightParen:
408			if len(pipe.Cmds) == 0 {
409				t.errorf("missing value for %s", context)
410			}
411			if token.typ == itemRightParen {
412				t.backup()
413			}
414			return
415		case itemBool, itemCharConstant, itemComplex, itemDot, itemField, itemIdentifier,
416			itemNumber, itemNil, itemRawString, itemString, itemVariable, itemLeftParen:
417			t.backup()
418			pipe.append(t.command())
419		default:
420			t.unexpected(token, context)
421		}
422	}
423}
424
425func (t *Tree) parseControl(allowElseIf bool, context string) (pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) {
426	defer t.popVars(len(t.vars))
427	line = t.lex.lineNumber()
428	pipe = t.pipeline(context)
429	var next Node
430	list, next = t.itemList()
431	switch next.Type() {
432	case nodeEnd: //done
433	case nodeElse:
434		if allowElseIf {
435			// Special case for "else if". If the "else" is followed immediately by an "if",
436			// the elseControl will have left the "if" token pending. Treat
437			//	{{if a}}_{{else if b}}_{{end}}
438			// as
439			//	{{if a}}_{{else}}{{if b}}_{{end}}{{end}}.
440			// To do this, parse the if as usual and stop at it {{end}}; the subsequent{{end}}
441			// is assumed. This technique works even for long if-else-if chains.
442			// TODO: Should we allow else-if in with and range?
443			if t.peek().typ == itemIf {
444				t.next() // Consume the "if" token.
445				elseList = newList(next.Position())
446				elseList.append(t.ifControl())
447				// Do not consume the next item - only one {{end}} required.
448				break
449			}
450		}
451		elseList, next = t.itemList()
452		if next.Type() != nodeEnd {
453			t.errorf("expected end; found %s", next)
454		}
455	}
456	return pipe.Position(), line, pipe, list, elseList
457}
458
459// If:
460//	{{if pipeline}} itemList {{end}}
461//	{{if pipeline}} itemList {{else}} itemList {{end}}
462// If keyword is past.
463func (t *Tree) ifControl() Node {
464	return newIf(t.parseControl(true, "if"))
465}
466
467// Range:
468//	{{range pipeline}} itemList {{end}}
469//	{{range pipeline}} itemList {{else}} itemList {{end}}
470// Range keyword is past.
471func (t *Tree) rangeControl() Node {
472	return newRange(t.parseControl(false, "range"))
473}
474
475// With:
476//	{{with pipeline}} itemList {{end}}
477//	{{with pipeline}} itemList {{else}} itemList {{end}}
478// If keyword is past.
479func (t *Tree) withControl() Node {
480	return newWith(t.parseControl(false, "with"))
481}
482
483// End:
484//	{{end}}
485// End keyword is past.
486func (t *Tree) endControl() Node {
487	return newEnd(t.expect(itemRightDelim, "end").pos)
488}
489
490// Else:
491//	{{else}}
492// Else keyword is past.
493func (t *Tree) elseControl() Node {
494	// Special case for "else if".
495	peek := t.peekNonSpace()
496	if peek.typ == itemIf {
497		// We see "{{else if ... " but in effect rewrite it to {{else}}{{if ... ".
498		return newElse(peek.pos, t.lex.lineNumber())
499	}
500	return newElse(t.expect(itemRightDelim, "else").pos, t.lex.lineNumber())
501}
502
503// Template:
504//	{{template stringValue pipeline}}
505// Template keyword is past.  The name must be something that can evaluate
506// to a string.
507func (t *Tree) templateControl() Node {
508	var name string
509	token := t.nextNonSpace()
510	switch token.typ {
511	case itemString, itemRawString:
512		s, err := strconv.Unquote(token.val)
513		if err != nil {
514			t.error(err)
515		}
516		name = s
517	default:
518		t.unexpected(token, "template invocation")
519	}
520	var pipe *PipeNode
521	if t.nextNonSpace().typ != itemRightDelim {
522		t.backup()
523		// Do not pop variables; they persist until "end".
524		pipe = t.pipeline("template")
525	}
526	return newTemplate(token.pos, t.lex.lineNumber(), name, pipe)
527}
528
529// command:
530//	operand (space operand)*
531// space-separated arguments up to a pipeline character or right delimiter.
532// we consume the pipe character but leave the right delim to terminate the action.
533func (t *Tree) command() *CommandNode {
534	cmd := newCommand(t.peekNonSpace().pos)
535	for {
536		t.peekNonSpace() // skip leading spaces.
537		operand := t.operand()
538		if operand != nil {
539			cmd.append(operand)
540		}
541		switch token := t.next(); token.typ {
542		case itemSpace:
543			continue
544		case itemError:
545			t.errorf("%s", token.val)
546		case itemRightDelim, itemRightParen:
547			t.backup()
548		case itemPipe:
549		default:
550			t.errorf("unexpected %s in operand; missing space?", token)
551		}
552		break
553	}
554	if len(cmd.Args) == 0 {
555		t.errorf("empty command")
556	}
557	return cmd
558}
559
560// operand:
561//	term .Field*
562// An operand is a space-separated component of a command,
563// a term possibly followed by field accesses.
564// A nil return means the next item is not an operand.
565func (t *Tree) operand() Node {
566	node := t.term()
567	if node == nil {
568		return nil
569	}
570	if t.peek().typ == itemField {
571		chain := newChain(t.peek().pos, node)
572		for t.peek().typ == itemField {
573			chain.Add(t.next().val)
574		}
575		// Compatibility with original API: If the term is of type NodeField
576		// or NodeVariable, just put more fields on the original.
577		// Otherwise, keep the Chain node.
578		// TODO: Switch to Chains always when we can.
579		switch node.Type() {
580		case NodeField:
581			node = newField(chain.Position(), chain.String())
582		case NodeVariable:
583			node = newVariable(chain.Position(), chain.String())
584		default:
585			node = chain
586		}
587	}
588	return node
589}
590
591// term:
592//	literal (number, string, nil, boolean)
593//	function (identifier)
594//	.
595//	.Field
596//	$
597//	'(' pipeline ')'
598// A term is a simple "expression".
599// A nil return means the next item is not a term.
600func (t *Tree) term() Node {
601	switch token := t.nextNonSpace(); token.typ {
602	case itemError:
603		t.errorf("%s", token.val)
604	case itemIdentifier:
605		if !t.hasFunction(token.val) {
606			t.errorf("function %q not defined", token.val)
607		}
608		return NewIdentifier(token.val).SetPos(token.pos)
609	case itemDot:
610		return newDot(token.pos)
611	case itemNil:
612		return newNil(token.pos)
613	case itemVariable:
614		return t.useVar(token.pos, token.val)
615	case itemField:
616		return newField(token.pos, token.val)
617	case itemBool:
618		return newBool(token.pos, token.val == "true")
619	case itemCharConstant, itemComplex, itemNumber:
620		number, err := newNumber(token.pos, token.val, token.typ)
621		if err != nil {
622			t.error(err)
623		}
624		return number
625	case itemLeftParen:
626		pipe := t.pipeline("parenthesized pipeline")
627		if token := t.next(); token.typ != itemRightParen {
628			t.errorf("unclosed right paren: unexpected %s", token)
629		}
630		return pipe
631	case itemString, itemRawString:
632		s, err := strconv.Unquote(token.val)
633		if err != nil {
634			t.error(err)
635		}
636		return newString(token.pos, token.val, s)
637	}
638	t.backup()
639	return nil
640}
641
642// hasFunction reports if a function name exists in the Tree's maps.
643func (t *Tree) hasFunction(name string) bool {
644	for _, funcMap := range t.funcs {
645		if funcMap == nil {
646			continue
647		}
648		if funcMap[name] != nil {
649			return true
650		}
651	}
652	return false
653}
654
655// popVars trims the variable list to the specified length
656func (t *Tree) popVars(n int) {
657	t.vars = t.vars[:n]
658}
659
660// useVar returns a node for a variable reference. It errors if the
661// variable is not defined.
662func (t *Tree) useVar(pos Pos, name string) Node {
663	v := newVariable(pos, name)
664	for _, varName := range t.vars {
665		if varName == v.Ident[0] {
666			return v
667		}
668	}
669	t.errorf("undefined variable %q", v.Ident[0])
670	return nil
671}
672