1 /* mpn_mul_n -- Multiply two natural numbers of length n.
2 
3 Copyright (C) 1991, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
4 
5 This file is part of the GNU MP Library.
6 
7 The GNU MP Library is free software; you can redistribute it and/or modify
8 it under the terms of the GNU Lesser General Public License as published by
9 the Free Software Foundation; either version 2.1 of the License, or (at your
10 option) any later version.
11 
12 The GNU MP Library is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
15 License for more details.
16 
17 You should have received a copy of the GNU Lesser General Public License
18 along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
20 MA 02111-1307, USA. */
21 
22 #include <config.h>
23 #include "gmp-impl.h"
24 
25 /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
26    both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are
27    always stored.  Return the most significant limb.
28 
29    Argument constraints:
30    1. PRODP != UP and PRODP != VP, i.e. the destination
31       must be distinct from the multiplier and the multiplicand.  */
32 
33 /* If KARATSUBA_THRESHOLD is not already defined, define it to a
34    value which is good on most machines.  */
35 #ifndef KARATSUBA_THRESHOLD
36 #define KARATSUBA_THRESHOLD 32
37 #endif
38 
39 /* The code can't handle KARATSUBA_THRESHOLD smaller than 2.  */
40 #if KARATSUBA_THRESHOLD < 2
41 #undef KARATSUBA_THRESHOLD
42 #define KARATSUBA_THRESHOLD 2
43 #endif
44 
45 /* Handle simple cases with traditional multiplication.
46 
47    This is the most critical code of multiplication.  All multiplies rely
48    on this, both small and huge.  Small ones arrive here immediately.  Huge
49    ones arrive here as this is the base case for Karatsuba's recursive
50    algorithm below.  */
51 
52 void
53 #if __STDC__
impn_mul_n_basecase(mp_ptr prodp,mp_srcptr up,mp_srcptr vp,mp_size_t size)54 impn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
55 #else
56 impn_mul_n_basecase (prodp, up, vp, size)
57      mp_ptr prodp;
58      mp_srcptr up;
59      mp_srcptr vp;
60      mp_size_t size;
61 #endif
62 {
63   mp_size_t i;
64   mp_limb_t cy_limb;
65   mp_limb_t v_limb;
66 
67   /* Multiply by the first limb in V separately, as the result can be
68      stored (not added) to PROD.  We also avoid a loop for zeroing.  */
69   v_limb = vp[0];
70   if (v_limb <= 1)
71     {
72       if (v_limb == 1)
73 	MPN_COPY (prodp, up, size);
74       else
75 	MPN_ZERO (prodp, size);
76       cy_limb = 0;
77     }
78   else
79     cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
80 
81   prodp[size] = cy_limb;
82   prodp++;
83 
84   /* For each iteration in the outer loop, multiply one limb from
85      U with one limb from V, and add it to PROD.  */
86   for (i = 1; i < size; i++)
87     {
88       v_limb = vp[i];
89       if (v_limb <= 1)
90 	{
91 	  cy_limb = 0;
92 	  if (v_limb == 1)
93 	    cy_limb = mpn_add_n (prodp, prodp, up, size);
94 	}
95       else
96 	cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
97 
98       prodp[size] = cy_limb;
99       prodp++;
100     }
101 }
102 
103 void
104 #if __STDC__
impn_mul_n(mp_ptr prodp,mp_srcptr up,mp_srcptr vp,mp_size_t size,mp_ptr tspace)105 impn_mul_n (mp_ptr prodp,
106 	     mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace)
107 #else
108 impn_mul_n (prodp, up, vp, size, tspace)
109      mp_ptr prodp;
110      mp_srcptr up;
111      mp_srcptr vp;
112      mp_size_t size;
113      mp_ptr tspace;
114 #endif
115 {
116   if ((size & 1) != 0)
117     {
118       /* The size is odd, the code code below doesn't handle that.
119 	 Multiply the least significant (size - 1) limbs with a recursive
120 	 call, and handle the most significant limb of S1 and S2
121 	 separately.  */
122       /* A slightly faster way to do this would be to make the Karatsuba
123 	 code below behave as if the size were even, and let it check for
124 	 odd size in the end.  I.e., in essence move this code to the end.
125 	 Doing so would save us a recursive call, and potentially make the
126 	 stack grow a lot less.  */
127 
128       mp_size_t esize = size - 1;	/* even size */
129       mp_limb_t cy_limb;
130 
131       MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace);
132       cy_limb = mpn_addmul_1 (prodp + esize, up, esize, vp[esize]);
133       prodp[esize + esize] = cy_limb;
134       cy_limb = mpn_addmul_1 (prodp + esize, vp, size, up[esize]);
135 
136       prodp[esize + size] = cy_limb;
137     }
138   else
139     {
140       /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
141 
142 	 Split U in two pieces, U1 and U0, such that
143 	 U = U0 + U1*(B**n),
144 	 and V in V1 and V0, such that
145 	 V = V0 + V1*(B**n).
146 
147 	 UV is then computed recursively using the identity
148 
149 		2n   n          n                     n
150 	 UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V
151 			1 1        1  0   0  1              0 0
152 
153 	 Where B = 2**BITS_PER_MP_LIMB.  */
154 
155       mp_size_t hsize = size >> 1;
156       mp_limb_t cy;
157       int negflg;
158 
159       /*** Product H.	 ________________  ________________
160 			|_____U1 x V1____||____U0 x V0_____|  */
161       /* Put result in upper part of PROD and pass low part of TSPACE
162 	 as new TSPACE.  */
163       MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace);
164 
165       /*** Product M.	 ________________
166 			|_(U1-U0)(V0-V1)_|  */
167       if (mpn_cmp (up + hsize, up, hsize) >= 0)
168 	{
169 	  mpn_sub_n (prodp, up + hsize, up, hsize);
170 	  negflg = 0;
171 	}
172       else
173 	{
174 	  mpn_sub_n (prodp, up, up + hsize, hsize);
175 	  negflg = 1;
176 	}
177       if (mpn_cmp (vp + hsize, vp, hsize) >= 0)
178 	{
179 	  mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize);
180 	  negflg ^= 1;
181 	}
182       else
183 	{
184 	  mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize);
185 	  /* No change of NEGFLG.  */
186 	}
187       /* Read temporary operands from low part of PROD.
188 	 Put result in low part of TSPACE using upper part of TSPACE
189 	 as new TSPACE.  */
190       MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size);
191 
192       /*** Add/copy product H.  */
193       MPN_COPY (prodp + hsize, prodp + size, hsize);
194       cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
195 
196       /*** Add product M (if NEGFLG M is a negative number).  */
197       if (negflg)
198 	cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
199       else
200 	cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
201 
202       /*** Product L.	 ________________  ________________
203 			|________________||____U0 x V0_____|  */
204       /* Read temporary operands from low part of PROD.
205 	 Put result in low part of TSPACE using upper part of TSPACE
206 	 as new TSPACE.  */
207       MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size);
208 
209       /*** Add/copy Product L (twice).  */
210 
211       cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
212       if (cy)
213 	mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
214 
215       MPN_COPY (prodp, tspace, hsize);
216       cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
217       if (cy)
218 	mpn_add_1 (prodp + size, prodp + size, size, 1);
219     }
220 }
221