1 #ifdef MALLOC_PROVIDED
2 int _dummy_mallocr = 1;
3 #else
4 /* ---------- To make a malloc.h, start cutting here ------------ */
5
6 /*
7 A version of malloc/free/realloc written by Doug Lea and released to the
8 public domain. Send questions/comments/complaints/performance data
9 to dl@cs.oswego.edu
10
11 * VERSION 2.6.5 Wed Jun 17 15:55:16 1998 Doug Lea (dl at gee)
12
13 Note: There may be an updated version of this malloc obtainable at
14 ftp://g.oswego.edu/pub/misc/malloc.c
15 Check before installing!
16
17 Note: This version differs from 2.6.4 only by correcting a
18 statement ordering error that could cause failures only
19 when calls to this malloc are interposed with calls to
20 other memory allocators.
21
22 * Why use this malloc?
23
24 This is not the fastest, most space-conserving, most portable, or
25 most tunable malloc ever written. However it is among the fastest
26 while also being among the most space-conserving, portable and tunable.
27 Consistent balance across these factors results in a good general-purpose
28 allocator. For a high-level description, see
29 http://g.oswego.edu/dl/html/malloc.html
30
31 * Synopsis of public routines
32
33 (Much fuller descriptions are contained in the program documentation below.)
34
35 malloc(size_t n);
36 Return a pointer to a newly allocated chunk of at least n bytes, or null
37 if no space is available.
38 free(Void_t* p);
39 Release the chunk of memory pointed to by p, or no effect if p is null.
40 realloc(Void_t* p, size_t n);
41 Return a pointer to a chunk of size n that contains the same data
42 as does chunk p up to the minimum of (n, p's size) bytes, or null
43 if no space is available. The returned pointer may or may not be
44 the same as p. If p is null, equivalent to malloc. Unless the
45 #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
46 size argument of zero (re)allocates a minimum-sized chunk.
47 memalign(size_t alignment, size_t n);
48 Return a pointer to a newly allocated chunk of n bytes, aligned
49 in accord with the alignment argument, which must be a power of
50 two.
51 valloc(size_t n);
52 Equivalent to memalign(pagesize, n), where pagesize is the page
53 size of the system (or as near to this as can be figured out from
54 all the includes/defines below.)
55 pvalloc(size_t n);
56 Equivalent to valloc(minimum-page-that-holds(n)), that is,
57 round up n to nearest pagesize.
58 calloc(size_t unit, size_t quantity);
59 Returns a pointer to quantity * unit bytes, with all locations
60 set to zero.
61 cfree(Void_t* p);
62 Equivalent to free(p).
63 malloc_trim(size_t pad);
64 Release all but pad bytes of freed top-most memory back
65 to the system. Return 1 if successful, else 0.
66 malloc_usable_size(Void_t* p);
67 Report the number usable allocated bytes associated with allocated
68 chunk p. This may or may not report more bytes than were requested,
69 due to alignment and minimum size constraints.
70 malloc_stats();
71 Prints brief summary statistics on stderr.
72 mallinfo()
73 Returns (by copy) a struct containing various summary statistics.
74 mallopt(int parameter_number, int parameter_value)
75 Changes one of the tunable parameters described below. Returns
76 1 if successful in changing the parameter, else 0.
77
78 * Vital statistics:
79
80 Alignment: 8-byte
81 8 byte alignment is currently hardwired into the design. This
82 seems to suffice for all current machines and C compilers.
83
84 Assumed pointer representation: 4 or 8 bytes
85 Code for 8-byte pointers is untested by me but has worked
86 reliably by Wolfram Gloger, who contributed most of the
87 changes supporting this.
88
89 Assumed size_t representation: 4 or 8 bytes
90 Note that size_t is allowed to be 4 bytes even if pointers are 8.
91
92 Minimum overhead per allocated chunk: 4 or 8 bytes
93 Each malloced chunk has a hidden overhead of 4 bytes holding size
94 and status information.
95
96 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
97 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
98
99 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
100 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
101 needed; 4 (8) for a trailing size field
102 and 8 (16) bytes for free list pointers. Thus, the minimum
103 allocatable size is 16/24/32 bytes.
104
105 Even a request for zero bytes (i.e., malloc(0)) returns a
106 pointer to something of the minimum allocatable size.
107
108 Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes
109 8-byte size_t: 2^63 - 16 bytes
110
111 It is assumed that (possibly signed) size_t bit values suffice to
112 represent chunk sizes. `Possibly signed' is due to the fact
113 that `size_t' may be defined on a system as either a signed or
114 an unsigned type. To be conservative, values that would appear
115 as negative numbers are avoided.
116 Requests for sizes with a negative sign bit will return a
117 minimum-sized chunk.
118
119 Maximum overhead wastage per allocated chunk: normally 15 bytes
120
121 Alignnment demands, plus the minimum allocatable size restriction
122 make the normal worst-case wastage 15 bytes (i.e., up to 15
123 more bytes will be allocated than were requested in malloc), with
124 two exceptions:
125 1. Because requests for zero bytes allocate non-zero space,
126 the worst case wastage for a request of zero bytes is 24 bytes.
127 2. For requests >= mmap_threshold that are serviced via
128 mmap(), the worst case wastage is 8 bytes plus the remainder
129 from a system page (the minimal mmap unit); typically 4096 bytes.
130
131 * Limitations
132
133 Here are some features that are NOT currently supported
134
135 * No user-definable hooks for callbacks and the like.
136 * No automated mechanism for fully checking that all accesses
137 to malloced memory stay within their bounds.
138 * No support for compaction.
139
140 * Synopsis of compile-time options:
141
142 People have reported using previous versions of this malloc on all
143 versions of Unix, sometimes by tweaking some of the defines
144 below. It has been tested most extensively on Solaris and
145 Linux. It is also reported to work on WIN32 platforms.
146 People have also reported adapting this malloc for use in
147 stand-alone embedded systems.
148
149 The implementation is in straight, hand-tuned ANSI C. Among other
150 consequences, it uses a lot of macros. Because of this, to be at
151 all usable, this code should be compiled using an optimizing compiler
152 (for example gcc -O2) that can simplify expressions and control
153 paths.
154
155 __STD_C (default: derived from C compiler defines)
156 Nonzero if using ANSI-standard C compiler, a C++ compiler, or
157 a C compiler sufficiently close to ANSI to get away with it.
158 DEBUG (default: NOT defined)
159 Define to enable debugging. Adds fairly extensive assertion-based
160 checking to help track down memory errors, but noticeably slows down
161 execution.
162 SEPARATE_OBJECTS (default: NOT defined)
163 Define this to compile into separate .o files. You must then
164 compile malloc.c several times, defining a DEFINE_* macro each
165 time. The list of DEFINE_* macros appears below.
166 MALLOC_LOCK (default: NOT defined)
167 MALLOC_UNLOCK (default: NOT defined)
168 Define these to C expressions which are run to lock and unlock
169 the malloc data structures. Calls may be nested; that is,
170 MALLOC_LOCK may be called more than once before the corresponding
171 MALLOC_UNLOCK calls. MALLOC_LOCK must avoid waiting for a lock
172 that it already holds.
173 MALLOC_ALIGNMENT (default: NOT defined)
174 Define this to 16 if you need 16 byte alignment instead of 8 byte alignment
175 which is the normal default.
176 REALLOC_ZERO_BYTES_FREES (default: NOT defined)
177 Define this if you think that realloc(p, 0) should be equivalent
178 to free(p). Otherwise, since malloc returns a unique pointer for
179 malloc(0), so does realloc(p, 0).
180 HAVE_MEMCPY (default: defined)
181 Define if you are not otherwise using ANSI STD C, but still
182 have memcpy and memset in your C library and want to use them.
183 Otherwise, simple internal versions are supplied.
184 USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
185 Define as 1 if you want the C library versions of memset and
186 memcpy called in realloc and calloc (otherwise macro versions are used).
187 At least on some platforms, the simple macro versions usually
188 outperform libc versions.
189 HAVE_MMAP (default: defined as 1)
190 Define to non-zero to optionally make malloc() use mmap() to
191 allocate very large blocks.
192 HAVE_MREMAP (default: defined as 0 unless Linux libc set)
193 Define to non-zero to optionally make realloc() use mremap() to
194 reallocate very large blocks.
195 malloc_getpagesize (default: derived from system #includes)
196 Either a constant or routine call returning the system page size.
197 HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
198 Optionally define if you are on a system with a /usr/include/malloc.h
199 that declares struct mallinfo. It is not at all necessary to
200 define this even if you do, but will ensure consistency.
201 INTERNAL_SIZE_T (default: size_t)
202 Define to a 32-bit type (probably `unsigned int') if you are on a
203 64-bit machine, yet do not want or need to allow malloc requests of
204 greater than 2^31 to be handled. This saves space, especially for
205 very small chunks.
206 INTERNAL_LINUX_C_LIB (default: NOT defined)
207 Defined only when compiled as part of Linux libc.
208 Also note that there is some odd internal name-mangling via defines
209 (for example, internally, `malloc' is named `mALLOc') needed
210 when compiling in this case. These look funny but don't otherwise
211 affect anything.
212 INTERNAL_NEWLIB (default: NOT defined)
213 Defined only when compiled as part of the Cygnus newlib
214 distribution.
215 WIN32 (default: undefined)
216 Define this on MS win (95, nt) platforms to compile in sbrk emulation.
217 LACKS_UNISTD_H (default: undefined)
218 Define this if your system does not have a <unistd.h>.
219 MORECORE (default: sbrk)
220 The name of the routine to call to obtain more memory from the system.
221 MORECORE_FAILURE (default: -1)
222 The value returned upon failure of MORECORE.
223 MORECORE_CLEARS (default 1)
224 True (1) if the routine mapped to MORECORE zeroes out memory (which
225 holds for sbrk).
226 DEFAULT_TRIM_THRESHOLD
227 DEFAULT_TOP_PAD
228 DEFAULT_MMAP_THRESHOLD
229 DEFAULT_MMAP_MAX
230 Default values of tunable parameters (described in detail below)
231 controlling interaction with host system routines (sbrk, mmap, etc).
232 These values may also be changed dynamically via mallopt(). The
233 preset defaults are those that give best performance for typical
234 programs/systems.
235
236
237 */
238
239
240
241
242 /* Preliminaries */
243
244 #ifndef __STD_C
245 #ifdef __STDC__
246 #define __STD_C 1
247 #else
248 #if __cplusplus
249 #define __STD_C 1
250 #else
251 #define __STD_C 0
252 #endif /*__cplusplus*/
253 #endif /*__STDC__*/
254 #endif /*__STD_C*/
255
256 #ifndef Void_t
257 #if __STD_C
258 #define Void_t void
259 #else
260 #define Void_t char
261 #endif
262 #endif /*Void_t*/
263
264 #if __STD_C
265 #include <stddef.h> /* for size_t */
266 #else
267 #include <sys/types.h>
268 #endif
269
270 #ifdef __cplusplus
271 extern "C" {
272 #endif
273
274 #include <stdio.h> /* needed for malloc_stats */
275 #include <limits.h> /* needed for overflow checks */
276 #include <errno.h> /* needed to set errno to ENOMEM */
277
278 #ifdef WIN32
279 #define WIN32_LEAN_AND_MEAN
280 #include <windows.h>
281 #endif
282
283 /*
284 Compile-time options
285 */
286
287
288 /*
289
290 Special defines for Cygnus newlib distribution.
291
292 */
293
294 #ifdef INTERNAL_NEWLIB
295
296 #include <sys/config.h>
297
298 /*
299 In newlib, all the publically visible routines take a reentrancy
300 pointer. We don't currently do anything much with it, but we do
301 pass it to the lock routine.
302 */
303
304 #include <reent.h>
305
306 #define POINTER_UINT unsigned _POINTER_INT
307 #define SEPARATE_OBJECTS
308 #define HAVE_MMAP 0
309 #define MORECORE(size) _sbrk_r(reent_ptr, (size))
310 #define MORECORE_CLEARS 0
311 #define MALLOC_LOCK __malloc_lock(reent_ptr)
312 #define MALLOC_UNLOCK __malloc_unlock(reent_ptr)
313
314 #ifdef __CYGWIN__
315 # undef _WIN32
316 # undef WIN32
317 #endif
318
319 #ifndef _WIN32
320 #ifdef SMALL_MEMORY
321 #define malloc_getpagesize (128)
322 #else
323 #define malloc_getpagesize (4096)
324 #endif
325 #endif
326
327 #if __STD_C
328 extern void __malloc_lock(struct _reent *);
329 extern void __malloc_unlock(struct _reent *);
330 #else
331 extern void __malloc_lock();
332 extern void __malloc_unlock();
333 #endif
334
335 #if __STD_C
336 #define RARG struct _reent *reent_ptr,
337 #define RONEARG struct _reent *reent_ptr
338 #else
339 #define RARG reent_ptr
340 #define RONEARG reent_ptr
341 #define RDECL struct _reent *reent_ptr;
342 #endif
343
344 #define RERRNO reent_ptr->_errno
345 #define RCALL reent_ptr,
346 #define RONECALL reent_ptr
347
348 #else /* ! INTERNAL_NEWLIB */
349
350 #define POINTER_UINT unsigned long
351 #define RARG
352 #define RONEARG
353 #define RDECL
354 #define RERRNO errno
355 #define RCALL
356 #define RONECALL
357
358 #endif /* ! INTERNAL_NEWLIB */
359
360 /*
361 Debugging:
362
363 Because freed chunks may be overwritten with link fields, this
364 malloc will often die when freed memory is overwritten by user
365 programs. This can be very effective (albeit in an annoying way)
366 in helping track down dangling pointers.
367
368 If you compile with -DDEBUG, a number of assertion checks are
369 enabled that will catch more memory errors. You probably won't be
370 able to make much sense of the actual assertion errors, but they
371 should help you locate incorrectly overwritten memory. The
372 checking is fairly extensive, and will slow down execution
373 noticeably. Calling malloc_stats or mallinfo with DEBUG set will
374 attempt to check every non-mmapped allocated and free chunk in the
375 course of computing the summmaries. (By nature, mmapped regions
376 cannot be checked very much automatically.)
377
378 Setting DEBUG may also be helpful if you are trying to modify
379 this code. The assertions in the check routines spell out in more
380 detail the assumptions and invariants underlying the algorithms.
381
382 */
383
384 #if DEBUG
385 #include <assert.h>
386 #else
387 #define assert(x) ((void)0)
388 #endif
389
390
391 /*
392 SEPARATE_OBJECTS should be defined if you want each function to go
393 into a separate .o file. You must then compile malloc.c once per
394 function, defining the appropriate DEFINE_ macro. See below for the
395 list of macros.
396 */
397
398 #ifndef SEPARATE_OBJECTS
399 #define DEFINE_MALLOC
400 #define DEFINE_FREE
401 #define DEFINE_REALLOC
402 #define DEFINE_CALLOC
403 #define DEFINE_CFREE
404 #define DEFINE_MEMALIGN
405 #define DEFINE_VALLOC
406 #define DEFINE_PVALLOC
407 #define DEFINE_MALLINFO
408 #define DEFINE_MALLOC_STATS
409 #define DEFINE_MALLOC_USABLE_SIZE
410 #define DEFINE_MALLOPT
411
412 #define STATIC static
413 #else
414 #define STATIC
415 #endif
416
417 /*
418 Define MALLOC_LOCK and MALLOC_UNLOCK to C expressions to run to
419 lock and unlock the malloc data structures. MALLOC_LOCK may be
420 called recursively.
421 */
422
423 #ifndef MALLOC_LOCK
424 #define MALLOC_LOCK
425 #endif
426
427 #ifndef MALLOC_UNLOCK
428 #define MALLOC_UNLOCK
429 #endif
430
431 /*
432 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
433 of chunk sizes. On a 64-bit machine, you can reduce malloc
434 overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
435 at the expense of not being able to handle requests greater than
436 2^31. This limitation is hardly ever a concern; you are encouraged
437 to set this. However, the default version is the same as size_t.
438 */
439
440 #ifndef INTERNAL_SIZE_T
441 #define INTERNAL_SIZE_T size_t
442 #endif
443
444 /*
445 Following is needed on implementations whereby long > size_t.
446 The problem is caused because the code performs subtractions of
447 size_t values and stores the result in long values. In the case
448 where long > size_t and the first value is actually less than
449 the second value, the resultant value is positive. For example,
450 (long)(x - y) where x = 0 and y is 1 ends up being 0x00000000FFFFFFFF
451 which is 2*31 - 1 instead of 0xFFFFFFFFFFFFFFFF. This is due to the
452 fact that assignment from unsigned to signed won't sign extend.
453 */
454
455 #define long_sub_size_t(x, y) \
456 (sizeof (long) > sizeof (INTERNAL_SIZE_T) && x < y \
457 ? -(long) (y - x) \
458 : (long) (x - y))
459
460 /*
461 REALLOC_ZERO_BYTES_FREES should be set if a call to
462 realloc with zero bytes should be the same as a call to free.
463 Some people think it should. Otherwise, since this malloc
464 returns a unique pointer for malloc(0), so does realloc(p, 0).
465 */
466
467
468 /* #define REALLOC_ZERO_BYTES_FREES */
469
470
471 /*
472 WIN32 causes an emulation of sbrk to be compiled in
473 mmap-based options are not currently supported in WIN32.
474 */
475
476 /* #define WIN32 */
477 #ifdef WIN32
478 #define MORECORE wsbrk
479 #define HAVE_MMAP 0
480 #endif
481
482
483 /*
484 HAVE_MEMCPY should be defined if you are not otherwise using
485 ANSI STD C, but still have memcpy and memset in your C library
486 and want to use them in calloc and realloc. Otherwise simple
487 macro versions are defined here.
488
489 USE_MEMCPY should be defined as 1 if you actually want to
490 have memset and memcpy called. People report that the macro
491 versions are often enough faster than libc versions on many
492 systems that it is better to use them.
493
494 */
495
496 #define HAVE_MEMCPY
497
498 /* Although the original macro is called USE_MEMCPY, newlib actually
499 uses memmove to handle cases whereby a platform's memcpy implementation
500 copies backwards and thus destructive overlap may occur in realloc
501 whereby we are reclaiming free memory prior to the old allocation. */
502 #ifndef USE_MEMCPY
503 #ifdef HAVE_MEMCPY
504 #define USE_MEMCPY 1
505 #else
506 #define USE_MEMCPY 0
507 #endif
508 #endif
509
510 #if (__STD_C || defined(HAVE_MEMCPY))
511
512 #if __STD_C
513 void* memset(void*, int, size_t);
514 void* memcpy(void*, const void*, size_t);
515 void* memmove(void*, const void*, size_t);
516 #else
517 Void_t* memset();
518 Void_t* memcpy();
519 Void_t* memmove();
520 #endif
521 #endif
522
523 #if USE_MEMCPY
524
525 /* The following macros are only invoked with (2n+1)-multiples of
526 INTERNAL_SIZE_T units, with a positive integer n. This is exploited
527 for fast inline execution when n is small. */
528
529 #define MALLOC_ZERO(charp, nbytes) \
530 do { \
531 INTERNAL_SIZE_T mzsz = (nbytes); \
532 if(mzsz <= 9*sizeof(mzsz)) { \
533 INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \
534 if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \
535 *mz++ = 0; \
536 if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \
537 *mz++ = 0; \
538 if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \
539 *mz++ = 0; }}} \
540 *mz++ = 0; \
541 *mz++ = 0; \
542 *mz = 0; \
543 } else memset((charp), 0, mzsz); \
544 } while(0)
545
546 #define MALLOC_COPY(dest,src,nbytes) \
547 do { \
548 INTERNAL_SIZE_T mcsz = (nbytes); \
549 if(mcsz <= 9*sizeof(mcsz)) { \
550 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \
551 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \
552 if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
553 *mcdst++ = *mcsrc++; \
554 if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
555 *mcdst++ = *mcsrc++; \
556 if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
557 *mcdst++ = *mcsrc++; }}} \
558 *mcdst++ = *mcsrc++; \
559 *mcdst++ = *mcsrc++; \
560 *mcdst = *mcsrc ; \
561 } else memmove(dest, src, mcsz); \
562 } while(0)
563
564 #else /* !USE_MEMCPY */
565
566 /* Use Duff's device for good zeroing/copying performance. */
567
568 #define MALLOC_ZERO(charp, nbytes) \
569 do { \
570 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
571 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
572 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
573 switch (mctmp) { \
574 case 0: for(;;) { *mzp++ = 0; \
575 case 7: *mzp++ = 0; \
576 case 6: *mzp++ = 0; \
577 case 5: *mzp++ = 0; \
578 case 4: *mzp++ = 0; \
579 case 3: *mzp++ = 0; \
580 case 2: *mzp++ = 0; \
581 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
582 } \
583 } while(0)
584
585 #define MALLOC_COPY(dest,src,nbytes) \
586 do { \
587 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
588 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
589 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
590 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
591 switch (mctmp) { \
592 case 0: for(;;) { *mcdst++ = *mcsrc++; \
593 case 7: *mcdst++ = *mcsrc++; \
594 case 6: *mcdst++ = *mcsrc++; \
595 case 5: *mcdst++ = *mcsrc++; \
596 case 4: *mcdst++ = *mcsrc++; \
597 case 3: *mcdst++ = *mcsrc++; \
598 case 2: *mcdst++ = *mcsrc++; \
599 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
600 } \
601 } while(0)
602
603 #endif
604
605
606 /*
607 Define HAVE_MMAP to optionally make malloc() use mmap() to
608 allocate very large blocks. These will be returned to the
609 operating system immediately after a free().
610 */
611
612 #ifndef HAVE_MMAP
613 #define HAVE_MMAP 1
614 #endif
615
616 /*
617 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
618 large blocks. This is currently only possible on Linux with
619 kernel versions newer than 1.3.77.
620 */
621
622 #ifndef HAVE_MREMAP
623 #ifdef INTERNAL_LINUX_C_LIB
624 #define HAVE_MREMAP 1
625 #else
626 #define HAVE_MREMAP 0
627 #endif
628 #endif
629
630 #if HAVE_MMAP
631
632 #include <unistd.h>
633 #include <fcntl.h>
634 #include <sys/mman.h>
635
636 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
637 #define MAP_ANONYMOUS MAP_ANON
638 #endif
639
640 #endif /* HAVE_MMAP */
641
642 /*
643 Access to system page size. To the extent possible, this malloc
644 manages memory from the system in page-size units.
645
646 The following mechanics for getpagesize were adapted from
647 bsd/gnu getpagesize.h
648 */
649
650 #ifndef LACKS_UNISTD_H
651 # include <unistd.h>
652 #endif
653
654 #ifndef malloc_getpagesize
655 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
656 # ifndef _SC_PAGE_SIZE
657 # define _SC_PAGE_SIZE _SC_PAGESIZE
658 # endif
659 # endif
660 # ifdef _SC_PAGE_SIZE
661 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
662 # else
663 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
664 extern size_t getpagesize();
665 # define malloc_getpagesize getpagesize()
666 # else
667 # include <sys/param.h>
668 # ifdef EXEC_PAGESIZE
669 # define malloc_getpagesize EXEC_PAGESIZE
670 # else
671 # ifdef NBPG
672 # ifndef CLSIZE
673 # define malloc_getpagesize NBPG
674 # else
675 # define malloc_getpagesize (NBPG * CLSIZE)
676 # endif
677 # else
678 # ifdef NBPC
679 # define malloc_getpagesize NBPC
680 # else
681 # ifdef PAGESIZE
682 # define malloc_getpagesize PAGESIZE
683 # else
684 # define malloc_getpagesize (4096) /* just guess */
685 # endif
686 # endif
687 # endif
688 # endif
689 # endif
690 # endif
691 #endif
692
693
694
695 /*
696
697 This version of malloc supports the standard SVID/XPG mallinfo
698 routine that returns a struct containing the same kind of
699 information you can get from malloc_stats. It should work on
700 any SVID/XPG compliant system that has a /usr/include/malloc.h
701 defining struct mallinfo. (If you'd like to install such a thing
702 yourself, cut out the preliminary declarations as described above
703 and below and save them in a malloc.h file. But there's no
704 compelling reason to bother to do this.)
705
706 The main declaration needed is the mallinfo struct that is returned
707 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
708 bunch of fields, most of which are not even meaningful in this
709 version of malloc. Some of these fields are are instead filled by
710 mallinfo() with other numbers that might possibly be of interest.
711
712 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
713 /usr/include/malloc.h file that includes a declaration of struct
714 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
715 version is declared below. These must be precisely the same for
716 mallinfo() to work.
717
718 */
719
720 /* #define HAVE_USR_INCLUDE_MALLOC_H */
721
722 #if HAVE_USR_INCLUDE_MALLOC_H
723 #include "/usr/include/malloc.h"
724 #else
725
726 /* SVID2/XPG mallinfo structure */
727
728 struct mallinfo {
729 int arena; /* total space allocated from system */
730 int ordblks; /* number of non-inuse chunks */
731 int smblks; /* unused -- always zero */
732 int hblks; /* number of mmapped regions */
733 int hblkhd; /* total space in mmapped regions */
734 int usmblks; /* unused -- always zero */
735 int fsmblks; /* unused -- always zero */
736 int uordblks; /* total allocated space */
737 int fordblks; /* total non-inuse space */
738 int keepcost; /* top-most, releasable (via malloc_trim) space */
739 };
740
741 /* SVID2/XPG mallopt options */
742
743 #define M_MXFAST 1 /* UNUSED in this malloc */
744 #define M_NLBLKS 2 /* UNUSED in this malloc */
745 #define M_GRAIN 3 /* UNUSED in this malloc */
746 #define M_KEEP 4 /* UNUSED in this malloc */
747
748 #endif
749
750 /* mallopt options that actually do something */
751
752 #define M_TRIM_THRESHOLD -1
753 #define M_TOP_PAD -2
754 #define M_MMAP_THRESHOLD -3
755 #define M_MMAP_MAX -4
756
757
758
759 #ifndef DEFAULT_TRIM_THRESHOLD
760 #define DEFAULT_TRIM_THRESHOLD (128L * 1024L)
761 #endif
762
763 /*
764 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
765 to keep before releasing via malloc_trim in free().
766
767 Automatic trimming is mainly useful in long-lived programs.
768 Because trimming via sbrk can be slow on some systems, and can
769 sometimes be wasteful (in cases where programs immediately
770 afterward allocate more large chunks) the value should be high
771 enough so that your overall system performance would improve by
772 releasing.
773
774 The trim threshold and the mmap control parameters (see below)
775 can be traded off with one another. Trimming and mmapping are
776 two different ways of releasing unused memory back to the
777 system. Between these two, it is often possible to keep
778 system-level demands of a long-lived program down to a bare
779 minimum. For example, in one test suite of sessions measuring
780 the XF86 X server on Linux, using a trim threshold of 128K and a
781 mmap threshold of 192K led to near-minimal long term resource
782 consumption.
783
784 If you are using this malloc in a long-lived program, it should
785 pay to experiment with these values. As a rough guide, you
786 might set to a value close to the average size of a process
787 (program) running on your system. Releasing this much memory
788 would allow such a process to run in memory. Generally, it's
789 worth it to tune for trimming rather tham memory mapping when a
790 program undergoes phases where several large chunks are
791 allocated and released in ways that can reuse each other's
792 storage, perhaps mixed with phases where there are no such
793 chunks at all. And in well-behaved long-lived programs,
794 controlling release of large blocks via trimming versus mapping
795 is usually faster.
796
797 However, in most programs, these parameters serve mainly as
798 protection against the system-level effects of carrying around
799 massive amounts of unneeded memory. Since frequent calls to
800 sbrk, mmap, and munmap otherwise degrade performance, the default
801 parameters are set to relatively high values that serve only as
802 safeguards.
803
804 The default trim value is high enough to cause trimming only in
805 fairly extreme (by current memory consumption standards) cases.
806 It must be greater than page size to have any useful effect. To
807 disable trimming completely, you can set to (unsigned long)(-1);
808
809
810 */
811
812
813 #ifndef DEFAULT_TOP_PAD
814 #define DEFAULT_TOP_PAD (0)
815 #endif
816
817 /*
818 M_TOP_PAD is the amount of extra `padding' space to allocate or
819 retain whenever sbrk is called. It is used in two ways internally:
820
821 * When sbrk is called to extend the top of the arena to satisfy
822 a new malloc request, this much padding is added to the sbrk
823 request.
824
825 * When malloc_trim is called automatically from free(),
826 it is used as the `pad' argument.
827
828 In both cases, the actual amount of padding is rounded
829 so that the end of the arena is always a system page boundary.
830
831 The main reason for using padding is to avoid calling sbrk so
832 often. Having even a small pad greatly reduces the likelihood
833 that nearly every malloc request during program start-up (or
834 after trimming) will invoke sbrk, which needlessly wastes
835 time.
836
837 Automatic rounding-up to page-size units is normally sufficient
838 to avoid measurable overhead, so the default is 0. However, in
839 systems where sbrk is relatively slow, it can pay to increase
840 this value, at the expense of carrying around more memory than
841 the program needs.
842
843 */
844
845
846 #ifndef DEFAULT_MMAP_THRESHOLD
847 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
848 #endif
849
850 /*
851
852 M_MMAP_THRESHOLD is the request size threshold for using mmap()
853 to service a request. Requests of at least this size that cannot
854 be allocated using already-existing space will be serviced via mmap.
855 (If enough normal freed space already exists it is used instead.)
856
857 Using mmap segregates relatively large chunks of memory so that
858 they can be individually obtained and released from the host
859 system. A request serviced through mmap is never reused by any
860 other request (at least not directly; the system may just so
861 happen to remap successive requests to the same locations).
862
863 Segregating space in this way has the benefit that mmapped space
864 can ALWAYS be individually released back to the system, which
865 helps keep the system level memory demands of a long-lived
866 program low. Mapped memory can never become `locked' between
867 other chunks, as can happen with normally allocated chunks, which
868 menas that even trimming via malloc_trim would not release them.
869
870 However, it has the disadvantages that:
871
872 1. The space cannot be reclaimed, consolidated, and then
873 used to service later requests, as happens with normal chunks.
874 2. It can lead to more wastage because of mmap page alignment
875 requirements
876 3. It causes malloc performance to be more dependent on host
877 system memory management support routines which may vary in
878 implementation quality and may impose arbitrary
879 limitations. Generally, servicing a request via normal
880 malloc steps is faster than going through a system's mmap.
881
882 All together, these considerations should lead you to use mmap
883 only for relatively large requests.
884
885
886 */
887
888
889
890 #ifndef DEFAULT_MMAP_MAX
891 #if HAVE_MMAP
892 #define DEFAULT_MMAP_MAX (64)
893 #else
894 #define DEFAULT_MMAP_MAX (0)
895 #endif
896 #endif
897
898 /*
899 M_MMAP_MAX is the maximum number of requests to simultaneously
900 service using mmap. This parameter exists because:
901
902 1. Some systems have a limited number of internal tables for
903 use by mmap.
904 2. In most systems, overreliance on mmap can degrade overall
905 performance.
906 3. If a program allocates many large regions, it is probably
907 better off using normal sbrk-based allocation routines that
908 can reclaim and reallocate normal heap memory. Using a
909 small value allows transition into this mode after the
910 first few allocations.
911
912 Setting to 0 disables all use of mmap. If HAVE_MMAP is not set,
913 the default value is 0, and attempts to set it to non-zero values
914 in mallopt will fail.
915 */
916
917
918
919
920 /*
921
922 Special defines for linux libc
923
924 Except when compiled using these special defines for Linux libc
925 using weak aliases, this malloc is NOT designed to work in
926 multithreaded applications. No semaphores or other concurrency
927 control are provided to ensure that multiple malloc or free calls
928 don't run at the same time, which could be disasterous. A single
929 semaphore could be used across malloc, realloc, and free (which is
930 essentially the effect of the linux weak alias approach). It would
931 be hard to obtain finer granularity.
932
933 */
934
935
936 #ifdef INTERNAL_LINUX_C_LIB
937
938 #if __STD_C
939
940 Void_t * __default_morecore_init (ptrdiff_t);
941 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
942
943 #else
944
945 Void_t * __default_morecore_init ();
946 Void_t *(*__morecore)() = __default_morecore_init;
947
948 #endif
949
950 #define MORECORE (*__morecore)
951 #define MORECORE_FAILURE 0
952 #define MORECORE_CLEARS 1
953
954 #else /* INTERNAL_LINUX_C_LIB */
955
956 #ifndef INTERNAL_NEWLIB
957 #if __STD_C
958 extern Void_t* sbrk(ptrdiff_t);
959 #else
960 extern Void_t* sbrk();
961 #endif
962 #endif
963
964 #ifndef MORECORE
965 #define MORECORE sbrk
966 #endif
967
968 #ifndef MORECORE_FAILURE
969 #define MORECORE_FAILURE -1
970 #endif
971
972 #ifndef MORECORE_CLEARS
973 #define MORECORE_CLEARS 1
974 #endif
975
976 #endif /* INTERNAL_LINUX_C_LIB */
977
978 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
979
980 #define cALLOc __libc_calloc
981 #define fREe __libc_free
982 #define mALLOc __libc_malloc
983 #define mEMALIGn __libc_memalign
984 #define rEALLOc __libc_realloc
985 #define vALLOc __libc_valloc
986 #define pvALLOc __libc_pvalloc
987 #define mALLINFo __libc_mallinfo
988 #define mALLOPt __libc_mallopt
989
990 #pragma weak calloc = __libc_calloc
991 #pragma weak free = __libc_free
992 #pragma weak cfree = __libc_free
993 #pragma weak malloc = __libc_malloc
994 #pragma weak memalign = __libc_memalign
995 #pragma weak realloc = __libc_realloc
996 #pragma weak valloc = __libc_valloc
997 #pragma weak pvalloc = __libc_pvalloc
998 #pragma weak mallinfo = __libc_mallinfo
999 #pragma weak mallopt = __libc_mallopt
1000
1001 #else
1002
1003 #ifdef INTERNAL_NEWLIB
1004
1005 #define cALLOc _calloc_r
1006 #define fREe _free_r
1007 #define mALLOc _malloc_r
1008 #define mEMALIGn _memalign_r
1009 #define rEALLOc _realloc_r
1010 #define vALLOc _valloc_r
1011 #define pvALLOc _pvalloc_r
1012 #define mALLINFo _mallinfo_r
1013 #define mALLOPt _mallopt_r
1014
1015 #define malloc_stats _malloc_stats_r
1016 #define malloc_trim _malloc_trim_r
1017 #define malloc_usable_size _malloc_usable_size_r
1018
1019 #define malloc_update_mallinfo __malloc_update_mallinfo
1020
1021 #define malloc_av_ __malloc_av_
1022 #define malloc_current_mallinfo __malloc_current_mallinfo
1023 #define malloc_max_sbrked_mem __malloc_max_sbrked_mem
1024 #define malloc_max_total_mem __malloc_max_total_mem
1025 #define malloc_sbrk_base __malloc_sbrk_base
1026 #define malloc_top_pad __malloc_top_pad
1027 #define malloc_trim_threshold __malloc_trim_threshold
1028
1029 #else /* ! INTERNAL_NEWLIB */
1030
1031 #define cALLOc calloc
1032 #define fREe free
1033 #define mALLOc malloc
1034 #define mEMALIGn memalign
1035 #define rEALLOc realloc
1036 #define vALLOc valloc
1037 #define pvALLOc pvalloc
1038 #define mALLINFo mallinfo
1039 #define mALLOPt mallopt
1040
1041 #endif /* ! INTERNAL_NEWLIB */
1042 #endif
1043
1044 /* Public routines */
1045
1046 #if __STD_C
1047
1048 Void_t* mALLOc(RARG size_t);
1049 void fREe(RARG Void_t*);
1050 Void_t* rEALLOc(RARG Void_t*, size_t);
1051 Void_t* mEMALIGn(RARG size_t, size_t);
1052 Void_t* vALLOc(RARG size_t);
1053 Void_t* pvALLOc(RARG size_t);
1054 Void_t* cALLOc(RARG size_t, size_t);
1055 void cfree(Void_t*);
1056 int malloc_trim(RARG size_t);
1057 size_t malloc_usable_size(RARG Void_t*);
1058 void malloc_stats(RONEARG);
1059 int mALLOPt(RARG int, int);
1060 struct mallinfo mALLINFo(RONEARG);
1061 #else
1062 Void_t* mALLOc();
1063 void fREe();
1064 Void_t* rEALLOc();
1065 Void_t* mEMALIGn();
1066 Void_t* vALLOc();
1067 Void_t* pvALLOc();
1068 Void_t* cALLOc();
1069 void cfree();
1070 int malloc_trim();
1071 size_t malloc_usable_size();
1072 void malloc_stats();
1073 int mALLOPt();
1074 struct mallinfo mALLINFo();
1075 #endif
1076
1077
1078 #ifdef __cplusplus
1079 }; /* end of extern "C" */
1080 #endif
1081
1082 /* ---------- To make a malloc.h, end cutting here ------------ */
1083
1084
1085 /*
1086 Emulation of sbrk for WIN32
1087 All code within the ifdef WIN32 is untested by me.
1088 */
1089
1090
1091 #ifdef WIN32
1092
1093 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
1094 ~(malloc_getpagesize-1))
1095
1096 /* resrve 64MB to insure large contiguous space */
1097 #define RESERVED_SIZE (1024*1024*64)
1098 #define NEXT_SIZE (2048*1024)
1099 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
1100
1101 struct GmListElement;
1102 typedef struct GmListElement GmListElement;
1103
1104 struct GmListElement
1105 {
1106 GmListElement* next;
1107 void* base;
1108 };
1109
1110 static GmListElement* head = 0;
1111 static unsigned int gNextAddress = 0;
1112 static unsigned int gAddressBase = 0;
1113 static unsigned int gAllocatedSize = 0;
1114
1115 static
makeGmListElement(void * bas)1116 GmListElement* makeGmListElement (void* bas)
1117 {
1118 GmListElement* this;
1119 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
1120 ASSERT (this);
1121 if (this)
1122 {
1123 this->base = bas;
1124 this->next = head;
1125 head = this;
1126 }
1127 return this;
1128 }
1129
gcleanup()1130 void gcleanup ()
1131 {
1132 BOOL rval;
1133 ASSERT ( (head == NULL) || (head->base == (void*)gAddressBase));
1134 if (gAddressBase && (gNextAddress - gAddressBase))
1135 {
1136 rval = VirtualFree ((void*)gAddressBase,
1137 gNextAddress - gAddressBase,
1138 MEM_DECOMMIT);
1139 ASSERT (rval);
1140 }
1141 while (head)
1142 {
1143 GmListElement* next = head->next;
1144 rval = VirtualFree (head->base, 0, MEM_RELEASE);
1145 ASSERT (rval);
1146 LocalFree (head);
1147 head = next;
1148 }
1149 }
1150
1151 static
findRegion(void * start_address,unsigned long size)1152 void* findRegion (void* start_address, unsigned long size)
1153 {
1154 MEMORY_BASIC_INFORMATION info;
1155 while ((unsigned long)start_address < TOP_MEMORY)
1156 {
1157 VirtualQuery (start_address, &info, sizeof (info));
1158 if (info.State != MEM_FREE)
1159 start_address = (char*)info.BaseAddress + info.RegionSize;
1160 else if (info.RegionSize >= size)
1161 return start_address;
1162 else
1163 start_address = (char*)info.BaseAddress + info.RegionSize;
1164 }
1165 return NULL;
1166
1167 }
1168
1169
wsbrk(long size)1170 void* wsbrk (long size)
1171 {
1172 void* tmp;
1173 if (size > 0)
1174 {
1175 if (gAddressBase == 0)
1176 {
1177 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1178 gNextAddress = gAddressBase =
1179 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1180 MEM_RESERVE, PAGE_NOACCESS);
1181 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
1182 gAllocatedSize))
1183 {
1184 long new_size = max (NEXT_SIZE, AlignPage (size));
1185 void* new_address = (void*)(gAddressBase+gAllocatedSize);
1186 do
1187 {
1188 new_address = findRegion (new_address, new_size);
1189
1190 if (new_address == 0)
1191 return (void*)-1;
1192
1193 gAddressBase = gNextAddress =
1194 (unsigned int)VirtualAlloc (new_address, new_size,
1195 MEM_RESERVE, PAGE_NOACCESS);
1196 // repeat in case of race condition
1197 // The region that we found has been snagged
1198 // by another thread
1199 }
1200 while (gAddressBase == 0);
1201
1202 ASSERT (new_address == (void*)gAddressBase);
1203
1204 gAllocatedSize = new_size;
1205
1206 if (!makeGmListElement ((void*)gAddressBase))
1207 return (void*)-1;
1208 }
1209 if ((size + gNextAddress) > AlignPage (gNextAddress))
1210 {
1211 void* res;
1212 res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1213 (size + gNextAddress -
1214 AlignPage (gNextAddress)),
1215 MEM_COMMIT, PAGE_READWRITE);
1216 if (res == 0)
1217 return (void*)-1;
1218 }
1219 tmp = (void*)gNextAddress;
1220 gNextAddress = (unsigned int)tmp + size;
1221 return tmp;
1222 }
1223 else if (size < 0)
1224 {
1225 unsigned int alignedGoal = AlignPage (gNextAddress + size);
1226 /* Trim by releasing the virtual memory */
1227 if (alignedGoal >= gAddressBase)
1228 {
1229 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1230 MEM_DECOMMIT);
1231 gNextAddress = gNextAddress + size;
1232 return (void*)gNextAddress;
1233 }
1234 else
1235 {
1236 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1237 MEM_DECOMMIT);
1238 gNextAddress = gAddressBase;
1239 return (void*)-1;
1240 }
1241 }
1242 else
1243 {
1244 return (void*)gNextAddress;
1245 }
1246 }
1247
1248 #endif
1249
1250
1251
1252 /*
1253 Type declarations
1254 */
1255
1256
1257 struct malloc_chunk
1258 {
1259 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1260 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1261 struct malloc_chunk* fd; /* double links -- used only if free. */
1262 struct malloc_chunk* bk;
1263 };
1264
1265 typedef struct malloc_chunk* mchunkptr;
1266
1267 /*
1268
1269 malloc_chunk details:
1270
1271 (The following includes lightly edited explanations by Colin Plumb.)
1272
1273 Chunks of memory are maintained using a `boundary tag' method as
1274 described in e.g., Knuth or Standish. (See the paper by Paul
1275 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1276 survey of such techniques.) Sizes of free chunks are stored both
1277 in the front of each chunk and at the end. This makes
1278 consolidating fragmented chunks into bigger chunks very fast. The
1279 size fields also hold bits representing whether chunks are free or
1280 in use.
1281
1282 An allocated chunk looks like this:
1283
1284
1285 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1286 | Size of previous chunk, if allocated | |
1287 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1288 | Size of chunk, in bytes |P|
1289 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1290 | User data starts here... .
1291 . .
1292 . (malloc_usable_space() bytes) .
1293 . |
1294 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1295 | Size of chunk |
1296 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1297
1298
1299 Where "chunk" is the front of the chunk for the purpose of most of
1300 the malloc code, but "mem" is the pointer that is returned to the
1301 user. "Nextchunk" is the beginning of the next contiguous chunk.
1302
1303 Chunks always begin on even word boundries, so the mem portion
1304 (which is returned to the user) is also on an even word boundary, and
1305 thus double-word aligned.
1306
1307 Free chunks are stored in circular doubly-linked lists, and look like this:
1308
1309 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1310 | Size of previous chunk |
1311 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1312 `head:' | Size of chunk, in bytes |P|
1313 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1314 | Forward pointer to next chunk in list |
1315 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1316 | Back pointer to previous chunk in list |
1317 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1318 | Unused space (may be 0 bytes long) .
1319 . .
1320 . |
1321 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1322 `foot:' | Size of chunk, in bytes |
1323 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1324
1325 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1326 chunk size (which is always a multiple of two words), is an in-use
1327 bit for the *previous* chunk. If that bit is *clear*, then the
1328 word before the current chunk size contains the previous chunk
1329 size, and can be used to find the front of the previous chunk.
1330 (The very first chunk allocated always has this bit set,
1331 preventing access to non-existent (or non-owned) memory.)
1332
1333 Note that the `foot' of the current chunk is actually represented
1334 as the prev_size of the NEXT chunk. (This makes it easier to
1335 deal with alignments etc).
1336
1337 The two exceptions to all this are
1338
1339 1. The special chunk `top', which doesn't bother using the
1340 trailing size field since there is no
1341 next contiguous chunk that would have to index off it. (After
1342 initialization, `top' is forced to always exist. If it would
1343 become less than MINSIZE bytes long, it is replenished via
1344 malloc_extend_top.)
1345
1346 2. Chunks allocated via mmap, which have the second-lowest-order
1347 bit (IS_MMAPPED) set in their size fields. Because they are
1348 never merged or traversed from any other chunk, they have no
1349 foot size or inuse information.
1350
1351 Available chunks are kept in any of several places (all declared below):
1352
1353 * `av': An array of chunks serving as bin headers for consolidated
1354 chunks. Each bin is doubly linked. The bins are approximately
1355 proportionally (log) spaced. There are a lot of these bins
1356 (128). This may look excessive, but works very well in
1357 practice. All procedures maintain the invariant that no
1358 consolidated chunk physically borders another one. Chunks in
1359 bins are kept in size order, with ties going to the
1360 approximately least recently used chunk.
1361
1362 The chunks in each bin are maintained in decreasing sorted order by
1363 size. This is irrelevant for the small bins, which all contain
1364 the same-sized chunks, but facilitates best-fit allocation for
1365 larger chunks. (These lists are just sequential. Keeping them in
1366 order almost never requires enough traversal to warrant using
1367 fancier ordered data structures.) Chunks of the same size are
1368 linked with the most recently freed at the front, and allocations
1369 are taken from the back. This results in LRU or FIFO allocation
1370 order, which tends to give each chunk an equal opportunity to be
1371 consolidated with adjacent freed chunks, resulting in larger free
1372 chunks and less fragmentation.
1373
1374 * `top': The top-most available chunk (i.e., the one bordering the
1375 end of available memory) is treated specially. It is never
1376 included in any bin, is used only if no other chunk is
1377 available, and is released back to the system if it is very
1378 large (see M_TRIM_THRESHOLD).
1379
1380 * `last_remainder': A bin holding only the remainder of the
1381 most recently split (non-top) chunk. This bin is checked
1382 before other non-fitting chunks, so as to provide better
1383 locality for runs of sequentially allocated chunks.
1384
1385 * Implicitly, through the host system's memory mapping tables.
1386 If supported, requests greater than a threshold are usually
1387 serviced via calls to mmap, and then later released via munmap.
1388
1389 */
1390
1391
1392
1393
1394
1395
1396 /* sizes, alignments */
1397
1398 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
1399 #ifndef MALLOC_ALIGNMENT
1400 #define MALLOC_ALIGN 8
1401 #define MALLOC_ALIGNMENT (SIZE_SZ < 4 ? 8 : (SIZE_SZ + SIZE_SZ))
1402 #else
1403 #define MALLOC_ALIGN MALLOC_ALIGNMENT
1404 #endif
1405 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
1406 #define MINSIZE (sizeof(struct malloc_chunk))
1407
1408 /* conversion from malloc headers to user pointers, and back */
1409
1410 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1411 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1412
1413 /* pad request bytes into a usable size */
1414
1415 #define request2size(req) \
1416 (((unsigned long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1417 (unsigned long)(MINSIZE + MALLOC_ALIGN_MASK)) ? ((MINSIZE + MALLOC_ALIGN_MASK) & ~(MALLOC_ALIGN_MASK)) : \
1418 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1419
1420 /* Check if m has acceptable alignment */
1421
1422 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1423
1424
1425
1426
1427 /*
1428 Physical chunk operations
1429 */
1430
1431
1432 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1433
1434 #define PREV_INUSE 0x1
1435
1436 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1437
1438 #define IS_MMAPPED 0x2
1439
1440 /* Bits to mask off when extracting size */
1441
1442 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1443
1444
1445 /* Ptr to next physical malloc_chunk. */
1446
1447 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1448
1449 /* Ptr to previous physical malloc_chunk */
1450
1451 #define prev_chunk(p)\
1452 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1453
1454
1455 /* Treat space at ptr + offset as a chunk */
1456
1457 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1458
1459
1460
1461
1462 /*
1463 Dealing with use bits
1464 */
1465
1466 /* extract p's inuse bit */
1467
1468 #define inuse(p)\
1469 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1470
1471 /* extract inuse bit of previous chunk */
1472
1473 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1474
1475 /* check for mmap()'ed chunk */
1476
1477 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1478
1479 /* set/clear chunk as in use without otherwise disturbing */
1480
1481 #define set_inuse(p)\
1482 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1483
1484 #define clear_inuse(p)\
1485 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1486
1487 /* check/set/clear inuse bits in known places */
1488
1489 #define inuse_bit_at_offset(p, s)\
1490 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1491
1492 #define set_inuse_bit_at_offset(p, s)\
1493 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1494
1495 #define clear_inuse_bit_at_offset(p, s)\
1496 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1497
1498
1499
1500
1501 /*
1502 Dealing with size fields
1503 */
1504
1505 /* Get size, ignoring use bits */
1506
1507 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
1508
1509 /* Set size at head, without disturbing its use bit */
1510
1511 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1512
1513 /* Set size/use ignoring previous bits in header */
1514
1515 #define set_head(p, s) ((p)->size = (s))
1516
1517 /* Set size at footer (only when chunk is not in use) */
1518
1519 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1520
1521
1522
1523
1524
1525 /*
1526 Bins
1527
1528 The bins, `av_' are an array of pairs of pointers serving as the
1529 heads of (initially empty) doubly-linked lists of chunks, laid out
1530 in a way so that each pair can be treated as if it were in a
1531 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1532 and chunks are the same).
1533
1534 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1535 8 bytes apart. Larger bins are approximately logarithmically
1536 spaced. (See the table below.) The `av_' array is never mentioned
1537 directly in the code, but instead via bin access macros.
1538
1539 Bin layout:
1540
1541 64 bins of size 8
1542 32 bins of size 64
1543 16 bins of size 512
1544 8 bins of size 4096
1545 4 bins of size 32768
1546 2 bins of size 262144
1547 1 bin of size what's left
1548
1549 There is actually a little bit of slop in the numbers in bin_index
1550 for the sake of speed. This makes no difference elsewhere.
1551
1552 The special chunks `top' and `last_remainder' get their own bins,
1553 (this is implemented via yet more trickery with the av_ array),
1554 although `top' is never properly linked to its bin since it is
1555 always handled specially.
1556
1557 */
1558
1559 #ifdef SEPARATE_OBJECTS
1560 #define av_ malloc_av_
1561 #endif
1562
1563 #define NAV 128 /* number of bins */
1564
1565 typedef struct malloc_chunk* mbinptr;
1566
1567 /* access macros */
1568
1569 #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1570 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1571 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1572
1573 /*
1574 The first 2 bins are never indexed. The corresponding av_ cells are instead
1575 used for bookkeeping. This is not to save space, but to simplify
1576 indexing, maintain locality, and avoid some initialization tests.
1577 */
1578
1579 #define top (bin_at(0)->fd) /* The topmost chunk */
1580 #define last_remainder (bin_at(1)) /* remainder from last split */
1581
1582
1583 /*
1584 Because top initially points to its own bin with initial
1585 zero size, thus forcing extension on the first malloc request,
1586 we avoid having any special code in malloc to check whether
1587 it even exists yet. But we still need to in malloc_extend_top.
1588 */
1589
1590 #define initial_top ((mchunkptr)(bin_at(0)))
1591
1592 /* Helper macro to initialize bins */
1593
1594 #define IAV(i) bin_at(i), bin_at(i)
1595
1596 #ifdef DEFINE_MALLOC
1597 STATIC mbinptr av_[NAV * 2 + 2] = {
1598 0, 0,
1599 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
1600 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
1601 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
1602 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
1603 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
1604 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
1605 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
1606 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
1607 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
1608 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
1609 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
1610 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
1611 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
1612 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1613 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1614 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1615 };
1616 #else
1617 extern mbinptr av_[NAV * 2 + 2];
1618 #endif
1619
1620
1621
1622 /* field-extraction macros */
1623
1624 #define first(b) ((b)->fd)
1625 #define last(b) ((b)->bk)
1626
1627 /*
1628 Indexing into bins
1629 */
1630
1631 #define bin_index(sz) \
1632 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
1633 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
1634 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
1635 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
1636 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
1637 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1638 126)
1639 /*
1640 bins for chunks < 512 are all spaced SMALLBIN_WIDTH bytes apart, and hold
1641 identically sized chunks. This is exploited in malloc.
1642 */
1643
1644 #define MAX_SMALLBIN_SIZE 512
1645 #define SMALLBIN_WIDTH 8
1646 #define SMALLBIN_WIDTH_BITS 3
1647 #define MAX_SMALLBIN (MAX_SMALLBIN_SIZE / SMALLBIN_WIDTH) - 1
1648
1649 #define smallbin_index(sz) (((unsigned long)(sz)) >> SMALLBIN_WIDTH_BITS)
1650
1651 /*
1652 Requests are `small' if both the corresponding and the next bin are small
1653 */
1654
1655 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1656
1657
1658
1659 /*
1660 To help compensate for the large number of bins, a one-level index
1661 structure is used for bin-by-bin searching. `binblocks' is a
1662 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1663 have any (possibly) non-empty bins, so they can be skipped over
1664 all at once during during traversals. The bits are NOT always
1665 cleared as soon as all bins in a block are empty, but instead only
1666 when all are noticed to be empty during traversal in malloc.
1667 */
1668
1669 #define BINBLOCKWIDTH 4 /* bins per block */
1670
1671 #define binblocks (bin_at(0)->size) /* bitvector of nonempty blocks */
1672
1673 /* bin<->block macros */
1674
1675 #define idx2binblock(ix) ((unsigned long)1 << (ix / BINBLOCKWIDTH))
1676 #define mark_binblock(ii) (binblocks |= idx2binblock(ii))
1677 #define clear_binblock(ii) (binblocks &= ~(idx2binblock(ii)))
1678
1679
1680
1681
1682
1683 /* Other static bookkeeping data */
1684
1685 #ifdef SEPARATE_OBJECTS
1686 #define trim_threshold malloc_trim_threshold
1687 #define top_pad malloc_top_pad
1688 #define n_mmaps_max malloc_n_mmaps_max
1689 #define mmap_threshold malloc_mmap_threshold
1690 #define sbrk_base malloc_sbrk_base
1691 #define max_sbrked_mem malloc_max_sbrked_mem
1692 #define max_total_mem malloc_max_total_mem
1693 #define current_mallinfo malloc_current_mallinfo
1694 #define n_mmaps malloc_n_mmaps
1695 #define max_n_mmaps malloc_max_n_mmaps
1696 #define mmapped_mem malloc_mmapped_mem
1697 #define max_mmapped_mem malloc_max_mmapped_mem
1698 #endif
1699
1700 /* variables holding tunable values */
1701
1702 #ifdef DEFINE_MALLOC
1703
1704 STATIC unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
1705 STATIC unsigned long top_pad = DEFAULT_TOP_PAD;
1706 #if HAVE_MMAP
1707 STATIC unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
1708 STATIC unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
1709 #endif
1710
1711 /* The first value returned from sbrk */
1712 STATIC char* sbrk_base = (char*)(-1);
1713
1714 /* The maximum memory obtained from system via sbrk */
1715 STATIC unsigned long max_sbrked_mem = 0;
1716
1717 /* The maximum via either sbrk or mmap */
1718 STATIC unsigned long max_total_mem = 0;
1719
1720 /* internal working copy of mallinfo */
1721 STATIC struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1722
1723 #if HAVE_MMAP
1724
1725 /* Tracking mmaps */
1726
1727 STATIC unsigned int n_mmaps = 0;
1728 STATIC unsigned int max_n_mmaps = 0;
1729 STATIC unsigned long mmapped_mem = 0;
1730 STATIC unsigned long max_mmapped_mem = 0;
1731
1732 #endif
1733
1734 #else /* ! DEFINE_MALLOC */
1735
1736 extern unsigned long trim_threshold;
1737 extern unsigned long top_pad;
1738 #if HAVE_MMAP
1739 extern unsigned int n_mmaps_max;
1740 extern unsigned long mmap_threshold;
1741 #endif
1742 extern char* sbrk_base;
1743 extern unsigned long max_sbrked_mem;
1744 extern unsigned long max_total_mem;
1745 extern struct mallinfo current_mallinfo;
1746 #if HAVE_MMAP
1747 extern unsigned int n_mmaps;
1748 extern unsigned int max_n_mmaps;
1749 extern unsigned long mmapped_mem;
1750 extern unsigned long max_mmapped_mem;
1751 #endif
1752
1753 #endif /* ! DEFINE_MALLOC */
1754
1755 /* The total memory obtained from system via sbrk */
1756 #define sbrked_mem (current_mallinfo.arena)
1757
1758
1759
1760 /*
1761 Debugging support
1762 */
1763
1764 #if DEBUG
1765
1766
1767 /*
1768 These routines make a number of assertions about the states
1769 of data structures that should be true at all times. If any
1770 are not true, it's very likely that a user program has somehow
1771 trashed memory. (It's also possible that there is a coding error
1772 in malloc. In which case, please report it!)
1773 */
1774
1775 #if __STD_C
do_check_chunk(mchunkptr p)1776 static void do_check_chunk(mchunkptr p)
1777 #else
1778 static void do_check_chunk(p) mchunkptr p;
1779 #endif
1780 {
1781 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1782
1783 /* No checkable chunk is mmapped */
1784 assert(!chunk_is_mmapped(p));
1785
1786 /* Check for legal address ... */
1787 assert((char*)p >= sbrk_base);
1788 if (p != top)
1789 assert((char*)p + sz <= (char*)top);
1790 else
1791 assert((char*)p + sz <= sbrk_base + sbrked_mem);
1792
1793 }
1794
1795
1796 #if __STD_C
do_check_free_chunk(mchunkptr p)1797 static void do_check_free_chunk(mchunkptr p)
1798 #else
1799 static void do_check_free_chunk(p) mchunkptr p;
1800 #endif
1801 {
1802 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1803 mchunkptr next = chunk_at_offset(p, sz);
1804
1805 do_check_chunk(p);
1806
1807 /* Check whether it claims to be free ... */
1808 assert(!inuse(p));
1809
1810 /* Unless a special marker, must have OK fields */
1811 if ((long)sz >= (long)MINSIZE)
1812 {
1813 assert((sz & MALLOC_ALIGN_MASK) == 0);
1814 assert(aligned_OK(chunk2mem(p)));
1815 /* ... matching footer field */
1816 assert(next->prev_size == sz);
1817 /* ... and is fully consolidated */
1818 assert(prev_inuse(p));
1819 assert (next == top || inuse(next));
1820
1821 /* ... and has minimally sane links */
1822 assert(p->fd->bk == p);
1823 assert(p->bk->fd == p);
1824 }
1825 else /* markers are always of size SIZE_SZ */
1826 assert(sz == SIZE_SZ);
1827 }
1828
1829 #if __STD_C
do_check_inuse_chunk(mchunkptr p)1830 static void do_check_inuse_chunk(mchunkptr p)
1831 #else
1832 static void do_check_inuse_chunk(p) mchunkptr p;
1833 #endif
1834 {
1835 mchunkptr next = next_chunk(p);
1836 do_check_chunk(p);
1837
1838 /* Check whether it claims to be in use ... */
1839 assert(inuse(p));
1840
1841 /* ... and is surrounded by OK chunks.
1842 Since more things can be checked with free chunks than inuse ones,
1843 if an inuse chunk borders them and debug is on, it's worth doing them.
1844 */
1845 if (!prev_inuse(p))
1846 {
1847 mchunkptr prv = prev_chunk(p);
1848 assert(next_chunk(prv) == p);
1849 do_check_free_chunk(prv);
1850 }
1851 if (next == top)
1852 {
1853 assert(prev_inuse(next));
1854 assert(chunksize(next) >= MINSIZE);
1855 }
1856 else if (!inuse(next))
1857 do_check_free_chunk(next);
1858
1859 }
1860
1861 #if __STD_C
do_check_malloced_chunk(mchunkptr p,INTERNAL_SIZE_T s)1862 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1863 #else
1864 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1865 #endif
1866 {
1867 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1868 long room = long_sub_size_t(sz, s);
1869
1870 do_check_inuse_chunk(p);
1871
1872 /* Legal size ... */
1873 assert((long)sz >= (long)MINSIZE);
1874 assert((sz & MALLOC_ALIGN_MASK) == 0);
1875 assert(room >= 0);
1876 assert(room < (long)MINSIZE);
1877
1878 /* ... and alignment */
1879 assert(aligned_OK(chunk2mem(p)));
1880
1881
1882 /* ... and was allocated at front of an available chunk */
1883 assert(prev_inuse(p));
1884
1885 }
1886
1887
1888 #define check_free_chunk(P) do_check_free_chunk(P)
1889 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
1890 #define check_chunk(P) do_check_chunk(P)
1891 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1892 #else
1893 #define check_free_chunk(P)
1894 #define check_inuse_chunk(P)
1895 #define check_chunk(P)
1896 #define check_malloced_chunk(P,N)
1897 #endif
1898
1899
1900
1901 /*
1902 Macro-based internal utilities
1903 */
1904
1905
1906 /*
1907 Linking chunks in bin lists.
1908 Call these only with variables, not arbitrary expressions, as arguments.
1909 */
1910
1911 /*
1912 Place chunk p of size s in its bin, in size order,
1913 putting it ahead of others of same size.
1914 */
1915
1916
1917 #define frontlink(P, S, IDX, BK, FD) \
1918 { \
1919 if (S < MAX_SMALLBIN_SIZE) \
1920 { \
1921 IDX = smallbin_index(S); \
1922 mark_binblock(IDX); \
1923 BK = bin_at(IDX); \
1924 FD = BK->fd; \
1925 P->bk = BK; \
1926 P->fd = FD; \
1927 FD->bk = BK->fd = P; \
1928 } \
1929 else \
1930 { \
1931 IDX = bin_index(S); \
1932 BK = bin_at(IDX); \
1933 FD = BK->fd; \
1934 if (FD == BK) mark_binblock(IDX); \
1935 else \
1936 { \
1937 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
1938 BK = FD->bk; \
1939 } \
1940 P->bk = BK; \
1941 P->fd = FD; \
1942 FD->bk = BK->fd = P; \
1943 } \
1944 }
1945
1946
1947 /* take a chunk off a list */
1948
1949 #define unlink(P, BK, FD) \
1950 { \
1951 BK = P->bk; \
1952 FD = P->fd; \
1953 FD->bk = BK; \
1954 BK->fd = FD; \
1955 } \
1956
1957 /* Place p as the last remainder */
1958
1959 #define link_last_remainder(P) \
1960 { \
1961 last_remainder->fd = last_remainder->bk = P; \
1962 P->fd = P->bk = last_remainder; \
1963 }
1964
1965 /* Clear the last_remainder bin */
1966
1967 #define clear_last_remainder \
1968 (last_remainder->fd = last_remainder->bk = last_remainder)
1969
1970
1971
1972
1973
1974
1975 /* Routines dealing with mmap(). */
1976
1977 #if HAVE_MMAP
1978
1979 #ifdef DEFINE_MALLOC
1980
1981 #if __STD_C
mmap_chunk(size_t size)1982 static mchunkptr mmap_chunk(size_t size)
1983 #else
1984 static mchunkptr mmap_chunk(size) size_t size;
1985 #endif
1986 {
1987 size_t page_mask = malloc_getpagesize - 1;
1988 mchunkptr p;
1989
1990 #ifndef MAP_ANONYMOUS
1991 static int fd = -1;
1992 #endif
1993
1994 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1995
1996 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1997 * there is no following chunk whose prev_size field could be used.
1998 */
1999 size = (size + SIZE_SZ + page_mask) & ~page_mask;
2000
2001 #ifdef MAP_ANONYMOUS
2002 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
2003 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
2004 #else /* !MAP_ANONYMOUS */
2005 if (fd < 0)
2006 {
2007 fd = open("/dev/zero", O_RDWR);
2008 if(fd < 0) return 0;
2009 }
2010 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
2011 #endif
2012
2013 if(p == (mchunkptr)-1) return 0;
2014
2015 n_mmaps++;
2016 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
2017
2018 /* We demand that eight bytes into a page must be 8-byte aligned. */
2019 assert(aligned_OK(chunk2mem(p)));
2020
2021 /* The offset to the start of the mmapped region is stored
2022 * in the prev_size field of the chunk; normally it is zero,
2023 * but that can be changed in memalign().
2024 */
2025 p->prev_size = 0;
2026 set_head(p, size|IS_MMAPPED);
2027
2028 mmapped_mem += size;
2029 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
2030 max_mmapped_mem = mmapped_mem;
2031 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2032 max_total_mem = mmapped_mem + sbrked_mem;
2033 return p;
2034 }
2035
2036 #endif /* DEFINE_MALLOC */
2037
2038 #ifdef SEPARATE_OBJECTS
2039 #define munmap_chunk malloc_munmap_chunk
2040 #endif
2041
2042 #ifdef DEFINE_FREE
2043
2044 #if __STD_C
munmap_chunk(mchunkptr p)2045 STATIC void munmap_chunk(mchunkptr p)
2046 #else
2047 STATIC void munmap_chunk(p) mchunkptr p;
2048 #endif
2049 {
2050 INTERNAL_SIZE_T size = chunksize(p);
2051 int ret;
2052
2053 assert (chunk_is_mmapped(p));
2054 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
2055 assert((n_mmaps > 0));
2056 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
2057
2058 n_mmaps--;
2059 mmapped_mem -= (size + p->prev_size);
2060
2061 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
2062
2063 /* munmap returns non-zero on failure */
2064 assert(ret == 0);
2065 }
2066
2067 #else /* ! DEFINE_FREE */
2068
2069 #if __STD_C
2070 extern void munmap_chunk(mchunkptr);
2071 #else
2072 extern void munmap_chunk();
2073 #endif
2074
2075 #endif /* ! DEFINE_FREE */
2076
2077 #if HAVE_MREMAP
2078
2079 #ifdef DEFINE_REALLOC
2080
2081 #if __STD_C
mremap_chunk(mchunkptr p,size_t new_size)2082 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
2083 #else
2084 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
2085 #endif
2086 {
2087 size_t page_mask = malloc_getpagesize - 1;
2088 INTERNAL_SIZE_T offset = p->prev_size;
2089 INTERNAL_SIZE_T size = chunksize(p);
2090 char *cp;
2091
2092 assert (chunk_is_mmapped(p));
2093 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
2094 assert((n_mmaps > 0));
2095 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
2096
2097 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
2098 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
2099
2100 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
2101
2102 if (cp == (char *)-1) return 0;
2103
2104 p = (mchunkptr)(cp + offset);
2105
2106 assert(aligned_OK(chunk2mem(p)));
2107
2108 assert((p->prev_size == offset));
2109 set_head(p, (new_size - offset)|IS_MMAPPED);
2110
2111 mmapped_mem -= size + offset;
2112 mmapped_mem += new_size;
2113 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
2114 max_mmapped_mem = mmapped_mem;
2115 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2116 max_total_mem = mmapped_mem + sbrked_mem;
2117 return p;
2118 }
2119
2120 #endif /* DEFINE_REALLOC */
2121
2122 #endif /* HAVE_MREMAP */
2123
2124 #endif /* HAVE_MMAP */
2125
2126
2127
2128
2129 #ifdef DEFINE_MALLOC
2130
2131 /*
2132 Extend the top-most chunk by obtaining memory from system.
2133 Main interface to sbrk (but see also malloc_trim).
2134 */
2135
2136 #if __STD_C
malloc_extend_top(RARG INTERNAL_SIZE_T nb)2137 static void malloc_extend_top(RARG INTERNAL_SIZE_T nb)
2138 #else
2139 static void malloc_extend_top(RARG nb) RDECL INTERNAL_SIZE_T nb;
2140 #endif
2141 {
2142 char* brk; /* return value from sbrk */
2143 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
2144 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
2145 int correction_failed = 0; /* whether we should relax the assertion */
2146 char* new_brk; /* return of 2nd sbrk call */
2147 INTERNAL_SIZE_T top_size; /* new size of top chunk */
2148
2149 mchunkptr old_top = top; /* Record state of old top */
2150 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
2151 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
2152
2153 /* Pad request with top_pad plus minimal overhead */
2154
2155 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
2156 unsigned long pagesz = malloc_getpagesize;
2157
2158 /* If not the first time through, round to preserve page boundary */
2159 /* Otherwise, we need to correct to a page size below anyway. */
2160 /* (We also correct below if an intervening foreign sbrk call.) */
2161
2162 if (sbrk_base != (char*)(-1))
2163 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
2164
2165 brk = (char*)(MORECORE (sbrk_size));
2166
2167 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2168 if (brk == (char*)(MORECORE_FAILURE) ||
2169 (brk < old_end && old_top != initial_top))
2170 return;
2171
2172 sbrked_mem += sbrk_size;
2173
2174 if (brk == old_end /* can just add bytes to current top, unless
2175 previous correction failed */
2176 && ((POINTER_UINT)old_end & (pagesz - 1)) == 0)
2177 {
2178 top_size = sbrk_size + old_top_size;
2179 set_head(top, top_size | PREV_INUSE);
2180 }
2181 else
2182 {
2183 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
2184 sbrk_base = brk;
2185 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
2186 sbrked_mem += brk - (char*)old_end;
2187
2188 /* Guarantee alignment of first new chunk made from this space */
2189 front_misalign = (POINTER_UINT)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2190 if (front_misalign > 0)
2191 {
2192 correction = (MALLOC_ALIGNMENT) - front_misalign;
2193 brk += correction;
2194 }
2195 else
2196 correction = 0;
2197
2198 /* Guarantee the next brk will be at a page boundary */
2199 correction += pagesz - ((POINTER_UINT)(brk + sbrk_size) & (pagesz - 1));
2200
2201 /* Allocate correction */
2202 new_brk = (char*)(MORECORE (correction));
2203 if (new_brk == (char*)(MORECORE_FAILURE))
2204 {
2205 correction = 0;
2206 correction_failed = 1;
2207 new_brk = brk;
2208 }
2209
2210 sbrked_mem += correction;
2211
2212 top = (mchunkptr)brk;
2213 top_size = new_brk - brk + correction;
2214 set_head(top, top_size | PREV_INUSE);
2215
2216 if (old_top != initial_top)
2217 {
2218
2219 /* There must have been an intervening foreign sbrk call. */
2220 /* A double fencepost is necessary to prevent consolidation */
2221
2222 /* If not enough space to do this, then user did something very wrong */
2223 if (old_top_size < MINSIZE)
2224 {
2225 set_head(top, PREV_INUSE); /* will force null return from malloc */
2226 return;
2227 }
2228
2229 /* Also keep size a multiple of MALLOC_ALIGNMENT */
2230 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2231 set_head_size(old_top, old_top_size);
2232 chunk_at_offset(old_top, old_top_size )->size =
2233 SIZE_SZ|PREV_INUSE;
2234 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2235 SIZE_SZ|PREV_INUSE;
2236 /* If possible, release the rest. */
2237 if (old_top_size >= MINSIZE)
2238 fREe(RCALL chunk2mem(old_top));
2239 }
2240 }
2241
2242 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2243 max_sbrked_mem = sbrked_mem;
2244 #if HAVE_MMAP
2245 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2246 max_total_mem = mmapped_mem + sbrked_mem;
2247 #else
2248 if ((unsigned long)(sbrked_mem) > (unsigned long)max_total_mem)
2249 max_total_mem = sbrked_mem;
2250 #endif
2251
2252 /* We always land on a page boundary */
2253 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0
2254 || correction_failed);
2255 }
2256
2257 #endif /* DEFINE_MALLOC */
2258
2259
2260 /* Main public routines */
2261
2262 #ifdef DEFINE_MALLOC
2263
2264 /*
2265 Malloc Algorthim:
2266
2267 The requested size is first converted into a usable form, `nb'.
2268 This currently means to add 4 bytes overhead plus possibly more to
2269 obtain 8-byte alignment and/or to obtain a size of at least
2270 MINSIZE (currently 16 bytes), the smallest allocatable size.
2271 (All fits are considered `exact' if they are within MINSIZE bytes.)
2272
2273 From there, the first successful of the following steps is taken:
2274
2275 1. The bin corresponding to the request size is scanned, and if
2276 a chunk of exactly the right size is found, it is taken.
2277
2278 2. The most recently remaindered chunk is used if it is big
2279 enough. This is a form of (roving) first fit, used only in
2280 the absence of exact fits. Runs of consecutive requests use
2281 the remainder of the chunk used for the previous such request
2282 whenever possible. This limited use of a first-fit style
2283 allocation strategy tends to give contiguous chunks
2284 coextensive lifetimes, which improves locality and can reduce
2285 fragmentation in the long run.
2286
2287 3. Other bins are scanned in increasing size order, using a
2288 chunk big enough to fulfill the request, and splitting off
2289 any remainder. This search is strictly by best-fit; i.e.,
2290 the smallest (with ties going to approximately the least
2291 recently used) chunk that fits is selected.
2292
2293 4. If large enough, the chunk bordering the end of memory
2294 (`top') is split off. (This use of `top' is in accord with
2295 the best-fit search rule. In effect, `top' is treated as
2296 larger (and thus less well fitting) than any other available
2297 chunk since it can be extended to be as large as necessary
2298 (up to system limitations).
2299
2300 5. If the request size meets the mmap threshold and the
2301 system supports mmap, and there are few enough currently
2302 allocated mmapped regions, and a call to mmap succeeds,
2303 the request is allocated via direct memory mapping.
2304
2305 6. Otherwise, the top of memory is extended by
2306 obtaining more space from the system (normally using sbrk,
2307 but definable to anything else via the MORECORE macro).
2308 Memory is gathered from the system (in system page-sized
2309 units) in a way that allows chunks obtained across different
2310 sbrk calls to be consolidated, but does not require
2311 contiguous memory. Thus, it should be safe to intersperse
2312 mallocs with other sbrk calls.
2313
2314
2315 All allocations are made from the the `lowest' part of any found
2316 chunk. (The implementation invariant is that prev_inuse is
2317 always true of any allocated chunk; i.e., that each allocated
2318 chunk borders either a previously allocated and still in-use chunk,
2319 or the base of its memory arena.)
2320
2321 */
2322
2323 #if __STD_C
mALLOc(RARG size_t bytes)2324 Void_t* mALLOc(RARG size_t bytes)
2325 #else
2326 Void_t* mALLOc(RARG bytes) RDECL size_t bytes;
2327 #endif
2328 {
2329 #ifdef MALLOC_PROVIDED
2330
2331 return malloc (bytes); // Make sure that the pointer returned by malloc is returned back.
2332
2333 #else
2334
2335 mchunkptr victim; /* inspected/selected chunk */
2336 INTERNAL_SIZE_T victim_size; /* its size */
2337 int idx; /* index for bin traversal */
2338 mbinptr bin; /* associated bin */
2339 mchunkptr remainder; /* remainder from a split */
2340 long remainder_size; /* its size */
2341 int remainder_index; /* its bin index */
2342 unsigned long block; /* block traverser bit */
2343 int startidx; /* first bin of a traversed block */
2344 mchunkptr fwd; /* misc temp for linking */
2345 mchunkptr bck; /* misc temp for linking */
2346 mbinptr q; /* misc temp */
2347
2348 INTERNAL_SIZE_T nb = request2size(bytes); /* padded request size; */
2349
2350 /* Check for overflow and just fail, if so. */
2351 if (nb > INT_MAX || nb < bytes)
2352 {
2353 RERRNO = ENOMEM;
2354 return 0;
2355 }
2356
2357 MALLOC_LOCK;
2358
2359 /* Check for exact match in a bin */
2360
2361 if (is_small_request(nb)) /* Faster version for small requests */
2362 {
2363 idx = smallbin_index(nb);
2364
2365 /* No traversal or size check necessary for small bins. */
2366
2367 q = bin_at(idx);
2368 victim = last(q);
2369
2370 #if MALLOC_ALIGN != 16
2371 /* Also scan the next one, since it would have a remainder < MINSIZE */
2372 if (victim == q)
2373 {
2374 q = next_bin(q);
2375 victim = last(q);
2376 }
2377 #endif
2378 if (victim != q)
2379 {
2380 victim_size = chunksize(victim);
2381 unlink(victim, bck, fwd);
2382 set_inuse_bit_at_offset(victim, victim_size);
2383 check_malloced_chunk(victim, nb);
2384 MALLOC_UNLOCK;
2385 return chunk2mem(victim);
2386 }
2387
2388 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2389
2390 }
2391 else
2392 {
2393 idx = bin_index(nb);
2394 bin = bin_at(idx);
2395
2396 for (victim = last(bin); victim != bin; victim = victim->bk)
2397 {
2398 victim_size = chunksize(victim);
2399 remainder_size = long_sub_size_t(victim_size, nb);
2400
2401 if (remainder_size >= (long)MINSIZE) /* too big */
2402 {
2403 --idx; /* adjust to rescan below after checking last remainder */
2404 break;
2405 }
2406
2407 else if (remainder_size >= 0) /* exact fit */
2408 {
2409 unlink(victim, bck, fwd);
2410 set_inuse_bit_at_offset(victim, victim_size);
2411 check_malloced_chunk(victim, nb);
2412 MALLOC_UNLOCK;
2413 return chunk2mem(victim);
2414 }
2415 }
2416
2417 ++idx;
2418
2419 }
2420
2421 /* Try to use the last split-off remainder */
2422
2423 if ( (victim = last_remainder->fd) != last_remainder)
2424 {
2425 victim_size = chunksize(victim);
2426 remainder_size = long_sub_size_t(victim_size, nb);
2427
2428 if (remainder_size >= (long)MINSIZE) /* re-split */
2429 {
2430 remainder = chunk_at_offset(victim, nb);
2431 set_head(victim, nb | PREV_INUSE);
2432 link_last_remainder(remainder);
2433 set_head(remainder, remainder_size | PREV_INUSE);
2434 set_foot(remainder, remainder_size);
2435 check_malloced_chunk(victim, nb);
2436 MALLOC_UNLOCK;
2437 return chunk2mem(victim);
2438 }
2439
2440 clear_last_remainder;
2441
2442 if (remainder_size >= 0) /* exhaust */
2443 {
2444 set_inuse_bit_at_offset(victim, victim_size);
2445 check_malloced_chunk(victim, nb);
2446 MALLOC_UNLOCK;
2447 return chunk2mem(victim);
2448 }
2449
2450 /* Else place in bin */
2451
2452 frontlink(victim, victim_size, remainder_index, bck, fwd);
2453 }
2454
2455 /*
2456 If there are any possibly nonempty big-enough blocks,
2457 search for best fitting chunk by scanning bins in blockwidth units.
2458 */
2459
2460 if ( (block = idx2binblock(idx)) <= binblocks)
2461 {
2462
2463 /* Get to the first marked block */
2464
2465 if ( (block & binblocks) == 0)
2466 {
2467 /* force to an even block boundary */
2468 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2469 block <<= 1;
2470 while ((block & binblocks) == 0)
2471 {
2472 idx += BINBLOCKWIDTH;
2473 block <<= 1;
2474 }
2475 }
2476
2477 /* For each possibly nonempty block ... */
2478 for (;;)
2479 {
2480 startidx = idx; /* (track incomplete blocks) */
2481 q = bin = bin_at(idx);
2482
2483 /* For each bin in this block ... */
2484 do
2485 {
2486 /* Find and use first big enough chunk ... */
2487
2488 for (victim = last(bin); victim != bin; victim = victim->bk)
2489 {
2490 victim_size = chunksize(victim);
2491 remainder_size = long_sub_size_t(victim_size, nb);
2492
2493 if (remainder_size >= (long)MINSIZE) /* split */
2494 {
2495 remainder = chunk_at_offset(victim, nb);
2496 set_head(victim, nb | PREV_INUSE);
2497 unlink(victim, bck, fwd);
2498 link_last_remainder(remainder);
2499 set_head(remainder, remainder_size | PREV_INUSE);
2500 set_foot(remainder, remainder_size);
2501 check_malloced_chunk(victim, nb);
2502 MALLOC_UNLOCK;
2503 return chunk2mem(victim);
2504 }
2505
2506 else if (remainder_size >= 0) /* take */
2507 {
2508 set_inuse_bit_at_offset(victim, victim_size);
2509 unlink(victim, bck, fwd);
2510 check_malloced_chunk(victim, nb);
2511 MALLOC_UNLOCK;
2512 return chunk2mem(victim);
2513 }
2514
2515 }
2516
2517 bin = next_bin(bin);
2518
2519 #if MALLOC_ALIGN == 16
2520 if (idx < MAX_SMALLBIN)
2521 {
2522 bin = next_bin(bin);
2523 ++idx;
2524 }
2525 #endif
2526 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2527
2528 /* Clear out the block bit. */
2529
2530 do /* Possibly backtrack to try to clear a partial block */
2531 {
2532 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2533 {
2534 binblocks &= ~block;
2535 break;
2536 }
2537 --startidx;
2538 q = prev_bin(q);
2539 } while (first(q) == q);
2540
2541 /* Get to the next possibly nonempty block */
2542
2543 if ( (block <<= 1) <= binblocks && (block != 0) )
2544 {
2545 while ((block & binblocks) == 0)
2546 {
2547 idx += BINBLOCKWIDTH;
2548 block <<= 1;
2549 }
2550 }
2551 else
2552 break;
2553 }
2554 }
2555
2556
2557 /* Try to use top chunk */
2558
2559 /* Require that there be a remainder, ensuring top always exists */
2560 remainder_size = long_sub_size_t(chunksize(top), nb);
2561 if (chunksize(top) < nb || remainder_size < (long)MINSIZE)
2562 {
2563
2564 #if HAVE_MMAP
2565 /* If big and would otherwise need to extend, try to use mmap instead */
2566 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2567 (victim = mmap_chunk(nb)) != 0)
2568 {
2569 MALLOC_UNLOCK;
2570 return chunk2mem(victim);
2571 }
2572 #endif
2573
2574 /* Try to extend */
2575 malloc_extend_top(RCALL nb);
2576 remainder_size = long_sub_size_t(chunksize(top), nb);
2577 if (chunksize(top) < nb || remainder_size < (long)MINSIZE)
2578 {
2579 MALLOC_UNLOCK;
2580 return 0; /* propagate failure */
2581 }
2582 }
2583
2584 victim = top;
2585 set_head(victim, nb | PREV_INUSE);
2586 top = chunk_at_offset(victim, nb);
2587 set_head(top, remainder_size | PREV_INUSE);
2588 check_malloced_chunk(victim, nb);
2589 MALLOC_UNLOCK;
2590 return chunk2mem(victim);
2591
2592 #endif /* MALLOC_PROVIDED */
2593 }
2594
2595 #endif /* DEFINE_MALLOC */
2596
2597 #ifdef DEFINE_FREE
2598
2599 /*
2600
2601 free() algorithm :
2602
2603 cases:
2604
2605 1. free(0) has no effect.
2606
2607 2. If the chunk was allocated via mmap, it is release via munmap().
2608
2609 3. If a returned chunk borders the current high end of memory,
2610 it is consolidated into the top, and if the total unused
2611 topmost memory exceeds the trim threshold, malloc_trim is
2612 called.
2613
2614 4. Other chunks are consolidated as they arrive, and
2615 placed in corresponding bins. (This includes the case of
2616 consolidating with the current `last_remainder').
2617
2618 */
2619
2620
2621 #if __STD_C
fREe(RARG Void_t * mem)2622 void fREe(RARG Void_t* mem)
2623 #else
2624 void fREe(RARG mem) RDECL Void_t* mem;
2625 #endif
2626 {
2627 #ifdef MALLOC_PROVIDED
2628
2629 free (mem);
2630
2631 #else
2632
2633 mchunkptr p; /* chunk corresponding to mem */
2634 INTERNAL_SIZE_T hd; /* its head field */
2635 INTERNAL_SIZE_T sz; /* its size */
2636 int idx; /* its bin index */
2637 mchunkptr next; /* next contiguous chunk */
2638 INTERNAL_SIZE_T nextsz; /* its size */
2639 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2640 mchunkptr bck; /* misc temp for linking */
2641 mchunkptr fwd; /* misc temp for linking */
2642 int islr; /* track whether merging with last_remainder */
2643
2644 if (mem == 0) /* free(0) has no effect */
2645 return;
2646
2647 MALLOC_LOCK;
2648
2649 p = mem2chunk(mem);
2650 hd = p->size;
2651
2652 #if HAVE_MMAP
2653 if (hd & IS_MMAPPED) /* release mmapped memory. */
2654 {
2655 munmap_chunk(p);
2656 MALLOC_UNLOCK;
2657 return;
2658 }
2659 #endif
2660
2661 check_inuse_chunk(p);
2662
2663 sz = hd & ~PREV_INUSE;
2664 next = chunk_at_offset(p, sz);
2665 nextsz = chunksize(next);
2666
2667 if (next == top) /* merge with top */
2668 {
2669 sz += nextsz;
2670
2671 if (!(hd & PREV_INUSE)) /* consolidate backward */
2672 {
2673 prevsz = p->prev_size;
2674 p = chunk_at_offset(p, -prevsz);
2675 sz += prevsz;
2676 unlink(p, bck, fwd);
2677 }
2678
2679 set_head(p, sz | PREV_INUSE);
2680 top = p;
2681 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2682 malloc_trim(RCALL top_pad);
2683 MALLOC_UNLOCK;
2684 return;
2685 }
2686
2687 set_head(next, nextsz); /* clear inuse bit */
2688
2689 islr = 0;
2690
2691 if (!(hd & PREV_INUSE)) /* consolidate backward */
2692 {
2693 prevsz = p->prev_size;
2694 p = chunk_at_offset(p, -prevsz);
2695 sz += prevsz;
2696
2697 if (p->fd == last_remainder) /* keep as last_remainder */
2698 islr = 1;
2699 else
2700 unlink(p, bck, fwd);
2701 }
2702
2703 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
2704 {
2705 sz += nextsz;
2706
2707 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
2708 {
2709 islr = 1;
2710 link_last_remainder(p);
2711 }
2712 else
2713 unlink(next, bck, fwd);
2714 }
2715
2716
2717 set_head(p, sz | PREV_INUSE);
2718 set_foot(p, sz);
2719 if (!islr)
2720 frontlink(p, sz, idx, bck, fwd);
2721
2722 MALLOC_UNLOCK;
2723
2724 #endif /* MALLOC_PROVIDED */
2725 }
2726
2727 #endif /* DEFINE_FREE */
2728
2729 #ifdef DEFINE_REALLOC
2730
2731 /*
2732
2733 Realloc algorithm:
2734
2735 Chunks that were obtained via mmap cannot be extended or shrunk
2736 unless HAVE_MREMAP is defined, in which case mremap is used.
2737 Otherwise, if their reallocation is for additional space, they are
2738 copied. If for less, they are just left alone.
2739
2740 Otherwise, if the reallocation is for additional space, and the
2741 chunk can be extended, it is, else a malloc-copy-free sequence is
2742 taken. There are several different ways that a chunk could be
2743 extended. All are tried:
2744
2745 * Extending forward into following adjacent free chunk.
2746 * Shifting backwards, joining preceding adjacent space
2747 * Both shifting backwards and extending forward.
2748 * Extending into newly sbrked space
2749
2750 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2751 size argument of zero (re)allocates a minimum-sized chunk.
2752
2753 If the reallocation is for less space, and the new request is for
2754 a `small' (<512 bytes) size, then the newly unused space is lopped
2755 off and freed.
2756
2757 The old unix realloc convention of allowing the last-free'd chunk
2758 to be used as an argument to realloc is no longer supported.
2759 I don't know of any programs still relying on this feature,
2760 and allowing it would also allow too many other incorrect
2761 usages of realloc to be sensible.
2762
2763
2764 */
2765
2766
2767 #if __STD_C
rEALLOc(RARG Void_t * oldmem,size_t bytes)2768 Void_t* rEALLOc(RARG Void_t* oldmem, size_t bytes)
2769 #else
2770 Void_t* rEALLOc(RARG oldmem, bytes) RDECL Void_t* oldmem; size_t bytes;
2771 #endif
2772 {
2773 #ifdef MALLOC_PROVIDED
2774
2775 realloc (oldmem, bytes);
2776
2777 #else
2778
2779 INTERNAL_SIZE_T nb; /* padded request size */
2780
2781 mchunkptr oldp; /* chunk corresponding to oldmem */
2782 INTERNAL_SIZE_T oldsize; /* its size */
2783
2784 mchunkptr newp; /* chunk to return */
2785 INTERNAL_SIZE_T newsize; /* its size */
2786 Void_t* newmem; /* corresponding user mem */
2787
2788 mchunkptr next; /* next contiguous chunk after oldp */
2789 INTERNAL_SIZE_T nextsize; /* its size */
2790
2791 mchunkptr prev; /* previous contiguous chunk before oldp */
2792 INTERNAL_SIZE_T prevsize; /* its size */
2793
2794 mchunkptr remainder; /* holds split off extra space from newp */
2795 INTERNAL_SIZE_T remainder_size; /* its size */
2796
2797 mchunkptr bck; /* misc temp for linking */
2798 mchunkptr fwd; /* misc temp for linking */
2799
2800 #ifdef REALLOC_ZERO_BYTES_FREES
2801 if (bytes == 0) { fREe(RCALL oldmem); return 0; }
2802 #endif
2803
2804
2805 /* realloc of null is supposed to be same as malloc */
2806 if (oldmem == 0) return mALLOc(RCALL bytes);
2807
2808 MALLOC_LOCK;
2809
2810 newp = oldp = mem2chunk(oldmem);
2811 newsize = oldsize = chunksize(oldp);
2812
2813
2814 nb = request2size(bytes);
2815
2816 /* Check for overflow and just fail, if so. */
2817 if (nb > INT_MAX || nb < bytes)
2818 {
2819 RERRNO = ENOMEM;
2820 return 0;
2821 }
2822
2823 #if HAVE_MMAP
2824 if (chunk_is_mmapped(oldp))
2825 {
2826 #if HAVE_MREMAP
2827 newp = mremap_chunk(oldp, nb);
2828 if(newp)
2829 {
2830 MALLOC_UNLOCK;
2831 return chunk2mem(newp);
2832 }
2833 #endif
2834 /* Note the extra SIZE_SZ overhead. */
2835 if(oldsize - SIZE_SZ >= nb)
2836 {
2837 MALLOC_UNLOCK;
2838 return oldmem; /* do nothing */
2839 }
2840 /* Must alloc, copy, free. */
2841 newmem = mALLOc(RCALL bytes);
2842 if (newmem == 0)
2843 {
2844 MALLOC_UNLOCK;
2845 return 0; /* propagate failure */
2846 }
2847 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2848 munmap_chunk(oldp);
2849 MALLOC_UNLOCK;
2850 return newmem;
2851 }
2852 #endif
2853
2854 check_inuse_chunk(oldp);
2855
2856 if ((long)(oldsize) < (long)(nb))
2857 {
2858
2859 /* Try expanding forward */
2860
2861 next = chunk_at_offset(oldp, oldsize);
2862 if (next == top || !inuse(next))
2863 {
2864 nextsize = chunksize(next);
2865
2866 /* Forward into top only if a remainder */
2867 if (next == top)
2868 {
2869 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2870 {
2871 newsize += nextsize;
2872 top = chunk_at_offset(oldp, nb);
2873 set_head(top, (newsize - nb) | PREV_INUSE);
2874 set_head_size(oldp, nb);
2875 MALLOC_UNLOCK;
2876 return chunk2mem(oldp);
2877 }
2878 }
2879
2880 /* Forward into next chunk */
2881 else if (((long)(nextsize + newsize) >= (long)(nb)))
2882 {
2883 unlink(next, bck, fwd);
2884 newsize += nextsize;
2885 goto split;
2886 }
2887 }
2888 else
2889 {
2890 next = 0;
2891 nextsize = 0;
2892 }
2893
2894 /* Try shifting backwards. */
2895
2896 if (!prev_inuse(oldp))
2897 {
2898 prev = prev_chunk(oldp);
2899 prevsize = chunksize(prev);
2900
2901 /* try forward + backward first to save a later consolidation */
2902
2903 if (next != 0)
2904 {
2905 /* into top */
2906 if (next == top)
2907 {
2908 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2909 {
2910 unlink(prev, bck, fwd);
2911 newp = prev;
2912 newsize += prevsize + nextsize;
2913 newmem = chunk2mem(newp);
2914 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2915 top = chunk_at_offset(newp, nb);
2916 set_head(top, (newsize - nb) | PREV_INUSE);
2917 set_head_size(newp, nb);
2918 MALLOC_UNLOCK;
2919 return newmem;
2920 }
2921 }
2922
2923 /* into next chunk */
2924 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2925 {
2926 unlink(next, bck, fwd);
2927 unlink(prev, bck, fwd);
2928 newp = prev;
2929 newsize += nextsize + prevsize;
2930 newmem = chunk2mem(newp);
2931 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2932 goto split;
2933 }
2934 }
2935
2936 /* backward only */
2937 if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
2938 {
2939 unlink(prev, bck, fwd);
2940 newp = prev;
2941 newsize += prevsize;
2942 newmem = chunk2mem(newp);
2943 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2944 goto split;
2945 }
2946 }
2947
2948 /* Must allocate */
2949
2950 newmem = mALLOc (RCALL bytes);
2951
2952 if (newmem == 0) /* propagate failure */
2953 {
2954 MALLOC_UNLOCK;
2955 return 0;
2956 }
2957
2958 /* Avoid copy if newp is next chunk after oldp. */
2959 /* (This can only happen when new chunk is sbrk'ed.) */
2960
2961 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2962 {
2963 newsize += chunksize(newp);
2964 newp = oldp;
2965 goto split;
2966 }
2967
2968 /* Otherwise copy, free, and exit */
2969 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2970 fREe(RCALL oldmem);
2971 MALLOC_UNLOCK;
2972 return newmem;
2973 }
2974
2975
2976 split: /* split off extra room in old or expanded chunk */
2977
2978 remainder_size = long_sub_size_t(newsize, nb);
2979
2980 if (remainder_size >= (long)MINSIZE) /* split off remainder */
2981 {
2982 remainder = chunk_at_offset(newp, nb);
2983 set_head_size(newp, nb);
2984 set_head(remainder, remainder_size | PREV_INUSE);
2985 set_inuse_bit_at_offset(remainder, remainder_size);
2986 fREe(RCALL chunk2mem(remainder)); /* let free() deal with it */
2987 }
2988 else
2989 {
2990 set_head_size(newp, newsize);
2991 set_inuse_bit_at_offset(newp, newsize);
2992 }
2993
2994 check_inuse_chunk(newp);
2995 MALLOC_UNLOCK;
2996 return chunk2mem(newp);
2997
2998 #endif /* MALLOC_PROVIDED */
2999 }
3000
3001 #endif /* DEFINE_REALLOC */
3002
3003 #ifdef DEFINE_MEMALIGN
3004
3005 /*
3006
3007 memalign algorithm:
3008
3009 memalign requests more than enough space from malloc, finds a spot
3010 within that chunk that meets the alignment request, and then
3011 possibly frees the leading and trailing space.
3012
3013 The alignment argument must be a power of two. This property is not
3014 checked by memalign, so misuse may result in random runtime errors.
3015
3016 8-byte alignment is guaranteed by normal malloc calls, so don't
3017 bother calling memalign with an argument of 8 or less.
3018
3019 Overreliance on memalign is a sure way to fragment space.
3020
3021 */
3022
3023
3024 #if __STD_C
mEMALIGn(RARG size_t alignment,size_t bytes)3025 Void_t* mEMALIGn(RARG size_t alignment, size_t bytes)
3026 #else
3027 Void_t* mEMALIGn(RARG alignment, bytes) RDECL size_t alignment; size_t bytes;
3028 #endif
3029 {
3030 INTERNAL_SIZE_T nb; /* padded request size */
3031 char* m; /* memory returned by malloc call */
3032 mchunkptr p; /* corresponding chunk */
3033 char* brk; /* alignment point within p */
3034 mchunkptr newp; /* chunk to return */
3035 INTERNAL_SIZE_T newsize; /* its size */
3036 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
3037 mchunkptr remainder; /* spare room at end to split off */
3038 long remainder_size; /* its size */
3039
3040 /* If need less alignment than we give anyway, just relay to malloc */
3041
3042 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(RCALL bytes);
3043
3044 /* Otherwise, ensure that it is at least a minimum chunk size */
3045
3046 if (alignment < MINSIZE) alignment = MINSIZE;
3047
3048 /* Call malloc with worst case padding to hit alignment. */
3049
3050 nb = request2size(bytes);
3051
3052 /* Check for overflow. */
3053 if (nb > INT_MAX || nb < bytes)
3054 {
3055 RERRNO = ENOMEM;
3056 return 0;
3057 }
3058
3059 m = (char*)(mALLOc(RCALL nb + alignment + MINSIZE));
3060
3061 if (m == 0) return 0; /* propagate failure */
3062
3063 MALLOC_LOCK;
3064
3065 p = mem2chunk(m);
3066
3067 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
3068 {
3069 #if HAVE_MMAP
3070 if(chunk_is_mmapped(p))
3071 {
3072 MALLOC_UNLOCK;
3073 return chunk2mem(p); /* nothing more to do */
3074 }
3075 #endif
3076 }
3077 else /* misaligned */
3078 {
3079 /*
3080 Find an aligned spot inside chunk.
3081 Since we need to give back leading space in a chunk of at
3082 least MINSIZE, if the first calculation places us at
3083 a spot with less than MINSIZE leader, we can move to the
3084 next aligned spot -- we've allocated enough total room so that
3085 this is always possible.
3086 */
3087
3088 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -alignment);
3089 if ((long)(brk - (char*)(p)) < (long)MINSIZE) brk = brk + alignment;
3090
3091 newp = (mchunkptr)brk;
3092 leadsize = brk - (char*)(p);
3093 newsize = chunksize(p) - leadsize;
3094
3095 #if HAVE_MMAP
3096 if(chunk_is_mmapped(p))
3097 {
3098 newp->prev_size = p->prev_size + leadsize;
3099 set_head(newp, newsize|IS_MMAPPED);
3100 MALLOC_UNLOCK;
3101 return chunk2mem(newp);
3102 }
3103 #endif
3104
3105 /* give back leader, use the rest */
3106
3107 set_head(newp, newsize | PREV_INUSE);
3108 set_inuse_bit_at_offset(newp, newsize);
3109 set_head_size(p, leadsize);
3110 fREe(RCALL chunk2mem(p));
3111 p = newp;
3112
3113 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
3114 }
3115
3116 /* Also give back spare room at the end */
3117
3118 remainder_size = long_sub_size_t(chunksize(p), nb);
3119
3120 if (remainder_size >= (long)MINSIZE)
3121 {
3122 remainder = chunk_at_offset(p, nb);
3123 set_head(remainder, remainder_size | PREV_INUSE);
3124 set_head_size(p, nb);
3125 fREe(RCALL chunk2mem(remainder));
3126 }
3127
3128 check_inuse_chunk(p);
3129 MALLOC_UNLOCK;
3130 return chunk2mem(p);
3131
3132 }
3133
3134 #endif /* DEFINE_MEMALIGN */
3135
3136 #ifdef DEFINE_VALLOC
3137
3138 /*
3139 valloc just invokes memalign with alignment argument equal
3140 to the page size of the system (or as near to this as can
3141 be figured out from all the includes/defines above.)
3142 */
3143
3144 #if __STD_C
vALLOc(RARG size_t bytes)3145 Void_t* vALLOc(RARG size_t bytes)
3146 #else
3147 Void_t* vALLOc(RARG bytes) RDECL size_t bytes;
3148 #endif
3149 {
3150 return mEMALIGn (RCALL malloc_getpagesize, bytes);
3151 }
3152
3153 #endif /* DEFINE_VALLOC */
3154
3155 #ifdef DEFINE_PVALLOC
3156
3157 /*
3158 pvalloc just invokes valloc for the nearest pagesize
3159 that will accommodate request
3160 */
3161
3162
3163 #if __STD_C
pvALLOc(RARG size_t bytes)3164 Void_t* pvALLOc(RARG size_t bytes)
3165 #else
3166 Void_t* pvALLOc(RARG bytes) RDECL size_t bytes;
3167 #endif
3168 {
3169 size_t pagesize = malloc_getpagesize;
3170 return mEMALIGn (RCALL pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
3171 }
3172
3173 #endif /* DEFINE_PVALLOC */
3174
3175 #ifdef DEFINE_CALLOC
3176
3177 /*
3178
3179 calloc calls malloc, then zeroes out the allocated chunk.
3180
3181 */
3182
3183 #if __STD_C
cALLOc(RARG size_t n,size_t elem_size)3184 Void_t* cALLOc(RARG size_t n, size_t elem_size)
3185 #else
3186 Void_t* cALLOc(RARG n, elem_size) RDECL size_t n; size_t elem_size;
3187 #endif
3188 {
3189 mchunkptr p;
3190 INTERNAL_SIZE_T csz;
3191
3192 INTERNAL_SIZE_T sz = n * elem_size;
3193
3194 #if MORECORE_CLEARS
3195 mchunkptr oldtop;
3196 INTERNAL_SIZE_T oldtopsize;
3197 #endif
3198 Void_t* mem;
3199
3200 /* check if expand_top called, in which case don't need to clear */
3201 #if MORECORE_CLEARS
3202 MALLOC_LOCK;
3203 oldtop = top;
3204 oldtopsize = chunksize(top);
3205 #endif
3206
3207 mem = mALLOc (RCALL sz);
3208
3209 if (mem == 0)
3210 {
3211 #if MORECORE_CLEARS
3212 MALLOC_UNLOCK;
3213 #endif
3214 return 0;
3215 }
3216 else
3217 {
3218 p = mem2chunk(mem);
3219
3220 /* Two optional cases in which clearing not necessary */
3221
3222
3223 #if HAVE_MMAP
3224 if (chunk_is_mmapped(p))
3225 {
3226 #if MORECORE_CLEARS
3227 MALLOC_UNLOCK;
3228 #endif
3229 return mem;
3230 }
3231 #endif
3232
3233 csz = chunksize(p);
3234
3235 #if MORECORE_CLEARS
3236 if (p == oldtop && csz > oldtopsize)
3237 {
3238 /* clear only the bytes from non-freshly-sbrked memory */
3239 csz = oldtopsize;
3240 }
3241 MALLOC_UNLOCK;
3242 #endif
3243
3244 MALLOC_ZERO(mem, csz - SIZE_SZ);
3245 return mem;
3246 }
3247 }
3248
3249 #endif /* DEFINE_CALLOC */
3250
3251 #if defined(DEFINE_CFREE) && !defined(__CYGWIN__)
3252
3253 /*
3254
3255 cfree just calls free. It is needed/defined on some systems
3256 that pair it with calloc, presumably for odd historical reasons.
3257
3258 */
3259
3260 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
3261 #if !defined(INTERNAL_NEWLIB) || !defined(_REENT_ONLY)
3262 #if __STD_C
cfree(Void_t * mem)3263 void cfree(Void_t *mem)
3264 #else
3265 void cfree(mem) Void_t *mem;
3266 #endif
3267 {
3268 #ifdef INTERNAL_NEWLIB
3269 fREe(_REENT, mem);
3270 #else
3271 fREe(mem);
3272 #endif
3273 }
3274 #endif
3275 #endif
3276
3277 #endif /* DEFINE_CFREE */
3278
3279 #ifdef DEFINE_FREE
3280
3281 /*
3282
3283 Malloc_trim gives memory back to the system (via negative
3284 arguments to sbrk) if there is unused memory at the `high' end of
3285 the malloc pool. You can call this after freeing large blocks of
3286 memory to potentially reduce the system-level memory requirements
3287 of a program. However, it cannot guarantee to reduce memory. Under
3288 some allocation patterns, some large free blocks of memory will be
3289 locked between two used chunks, so they cannot be given back to
3290 the system.
3291
3292 The `pad' argument to malloc_trim represents the amount of free
3293 trailing space to leave untrimmed. If this argument is zero,
3294 only the minimum amount of memory to maintain internal data
3295 structures will be left (one page or less). Non-zero arguments
3296 can be supplied to maintain enough trailing space to service
3297 future expected allocations without having to re-obtain memory
3298 from the system.
3299
3300 Malloc_trim returns 1 if it actually released any memory, else 0.
3301
3302 */
3303
3304 #if __STD_C
malloc_trim(RARG size_t pad)3305 int malloc_trim(RARG size_t pad)
3306 #else
3307 int malloc_trim(RARG pad) RDECL size_t pad;
3308 #endif
3309 {
3310 long top_size; /* Amount of top-most memory */
3311 long extra; /* Amount to release */
3312 char* current_brk; /* address returned by pre-check sbrk call */
3313 char* new_brk; /* address returned by negative sbrk call */
3314
3315 unsigned long pagesz = malloc_getpagesize;
3316
3317 MALLOC_LOCK;
3318
3319 top_size = chunksize(top);
3320 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3321
3322 if (extra < (long)pagesz) /* Not enough memory to release */
3323 {
3324 MALLOC_UNLOCK;
3325 return 0;
3326 }
3327
3328 else
3329 {
3330 /* Test to make sure no one else called sbrk */
3331 current_brk = (char*)(MORECORE (0));
3332 if (current_brk != (char*)(top) + top_size)
3333 {
3334 MALLOC_UNLOCK;
3335 return 0; /* Apparently we don't own memory; must fail */
3336 }
3337
3338 else
3339 {
3340 new_brk = (char*)(MORECORE (-extra));
3341
3342 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3343 {
3344 /* Try to figure out what we have */
3345 current_brk = (char*)(MORECORE (0));
3346 top_size = current_brk - (char*)top;
3347 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3348 {
3349 sbrked_mem = current_brk - sbrk_base;
3350 set_head(top, top_size | PREV_INUSE);
3351 }
3352 check_chunk(top);
3353 MALLOC_UNLOCK;
3354 return 0;
3355 }
3356
3357 else
3358 {
3359 /* Success. Adjust top accordingly. */
3360 set_head(top, (top_size - extra) | PREV_INUSE);
3361 sbrked_mem -= extra;
3362 check_chunk(top);
3363 MALLOC_UNLOCK;
3364 return 1;
3365 }
3366 }
3367 }
3368 }
3369
3370 #endif /* DEFINE_FREE */
3371
3372 #ifdef DEFINE_MALLOC_USABLE_SIZE
3373
3374 /*
3375 malloc_usable_size:
3376
3377 This routine tells you how many bytes you can actually use in an
3378 allocated chunk, which may be more than you requested (although
3379 often not). You can use this many bytes without worrying about
3380 overwriting other allocated objects. Not a particularly great
3381 programming practice, but still sometimes useful.
3382
3383 */
3384
3385 #if __STD_C
malloc_usable_size(RARG Void_t * mem)3386 size_t malloc_usable_size(RARG Void_t* mem)
3387 #else
3388 size_t malloc_usable_size(RARG mem) RDECL Void_t* mem;
3389 #endif
3390 {
3391 mchunkptr p;
3392 if (mem == 0)
3393 return 0;
3394 else
3395 {
3396 p = mem2chunk(mem);
3397 if(!chunk_is_mmapped(p))
3398 {
3399 if (!inuse(p)) return 0;
3400 #if DEBUG
3401 MALLOC_LOCK;
3402 check_inuse_chunk(p);
3403 MALLOC_UNLOCK;
3404 #endif
3405 return chunksize(p) - SIZE_SZ;
3406 }
3407 return chunksize(p) - 2*SIZE_SZ;
3408 }
3409 }
3410
3411 #endif /* DEFINE_MALLOC_USABLE_SIZE */
3412
3413 #ifdef DEFINE_MALLINFO
3414
3415 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3416
malloc_update_mallinfo()3417 STATIC void malloc_update_mallinfo()
3418 {
3419 int i;
3420 mbinptr b;
3421 mchunkptr p;
3422 #if DEBUG
3423 mchunkptr q;
3424 #endif
3425
3426 INTERNAL_SIZE_T avail = chunksize(top);
3427 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3428
3429 for (i = 1; i < NAV; ++i)
3430 {
3431 b = bin_at(i);
3432 for (p = last(b); p != b; p = p->bk)
3433 {
3434 #if DEBUG
3435 check_free_chunk(p);
3436 for (q = next_chunk(p);
3437 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3438 q = next_chunk(q))
3439 check_inuse_chunk(q);
3440 #endif
3441 avail += chunksize(p);
3442 navail++;
3443 }
3444 }
3445
3446 current_mallinfo.ordblks = navail;
3447 current_mallinfo.uordblks = sbrked_mem - avail;
3448 current_mallinfo.fordblks = avail;
3449 #if HAVE_MMAP
3450 current_mallinfo.hblks = n_mmaps;
3451 current_mallinfo.hblkhd = mmapped_mem;
3452 #endif
3453 current_mallinfo.keepcost = chunksize(top);
3454
3455 }
3456
3457 #else /* ! DEFINE_MALLINFO */
3458
3459 #if __STD_C
3460 extern void malloc_update_mallinfo(void);
3461 #else
3462 extern void malloc_update_mallinfo();
3463 #endif
3464
3465 #endif /* ! DEFINE_MALLINFO */
3466
3467 #ifdef DEFINE_MALLOC_STATS
3468
3469 /*
3470
3471 malloc_stats:
3472
3473 Prints on stderr the amount of space obtain from the system (both
3474 via sbrk and mmap), the maximum amount (which may be more than
3475 current if malloc_trim and/or munmap got called), the maximum
3476 number of simultaneous mmap regions used, and the current number
3477 of bytes allocated via malloc (or realloc, etc) but not yet
3478 freed. (Note that this is the number of bytes allocated, not the
3479 number requested. It will be larger than the number requested
3480 because of alignment and bookkeeping overhead.)
3481
3482 */
3483
3484 #if __STD_C
malloc_stats(RONEARG)3485 void malloc_stats(RONEARG)
3486 #else
3487 void malloc_stats(RONEARG) RDECL
3488 #endif
3489 {
3490 unsigned long local_max_total_mem;
3491 int local_sbrked_mem;
3492 struct mallinfo local_mallinfo;
3493 #if HAVE_MMAP
3494 unsigned long local_mmapped_mem, local_max_n_mmaps;
3495 #endif
3496 FILE *fp;
3497
3498 MALLOC_LOCK;
3499 malloc_update_mallinfo();
3500 local_max_total_mem = max_total_mem;
3501 local_sbrked_mem = sbrked_mem;
3502 local_mallinfo = current_mallinfo;
3503 #if HAVE_MMAP
3504 local_mmapped_mem = mmapped_mem;
3505 local_max_n_mmaps = max_n_mmaps;
3506 #endif
3507 MALLOC_UNLOCK;
3508
3509 #ifdef INTERNAL_NEWLIB
3510 _REENT_SMALL_CHECK_INIT(reent_ptr);
3511 fp = _stderr_r(reent_ptr);
3512 #define fprintf fiprintf
3513 #else
3514 fp = stderr;
3515 #endif
3516
3517 fprintf(fp, "max system bytes = %10u\n",
3518 (unsigned int)(local_max_total_mem));
3519 #if HAVE_MMAP
3520 fprintf(fp, "system bytes = %10u\n",
3521 (unsigned int)(local_sbrked_mem + local_mmapped_mem));
3522 fprintf(fp, "in use bytes = %10u\n",
3523 (unsigned int)(local_mallinfo.uordblks + local_mmapped_mem));
3524 #else
3525 fprintf(fp, "system bytes = %10u\n",
3526 (unsigned int)local_sbrked_mem);
3527 fprintf(fp, "in use bytes = %10u\n",
3528 (unsigned int)local_mallinfo.uordblks);
3529 #endif
3530 #if HAVE_MMAP
3531 fprintf(fp, "max mmap regions = %10u\n",
3532 (unsigned int)local_max_n_mmaps);
3533 #endif
3534 }
3535
3536 #endif /* DEFINE_MALLOC_STATS */
3537
3538 #ifdef DEFINE_MALLINFO
3539
3540 /*
3541 mallinfo returns a copy of updated current mallinfo.
3542 */
3543
3544 #if __STD_C
mALLINFo(RONEARG)3545 struct mallinfo mALLINFo(RONEARG)
3546 #else
3547 struct mallinfo mALLINFo(RONEARG) RDECL
3548 #endif
3549 {
3550 struct mallinfo ret;
3551
3552 MALLOC_LOCK;
3553 malloc_update_mallinfo();
3554 ret = current_mallinfo;
3555 MALLOC_UNLOCK;
3556 return ret;
3557 }
3558
3559 #endif /* DEFINE_MALLINFO */
3560
3561 #ifdef DEFINE_MALLOPT
3562
3563 /*
3564 mallopt:
3565
3566 mallopt is the general SVID/XPG interface to tunable parameters.
3567 The format is to provide a (parameter-number, parameter-value) pair.
3568 mallopt then sets the corresponding parameter to the argument
3569 value if it can (i.e., so long as the value is meaningful),
3570 and returns 1 if successful else 0.
3571
3572 See descriptions of tunable parameters above.
3573
3574 */
3575
3576 #if __STD_C
mALLOPt(RARG int param_number,int value)3577 int mALLOPt(RARG int param_number, int value)
3578 #else
3579 int mALLOPt(RARG param_number, value) RDECL int param_number; int value;
3580 #endif
3581 {
3582 MALLOC_LOCK;
3583 switch(param_number)
3584 {
3585 case M_TRIM_THRESHOLD:
3586 trim_threshold = value; MALLOC_UNLOCK; return 1;
3587 case M_TOP_PAD:
3588 top_pad = value; MALLOC_UNLOCK; return 1;
3589 case M_MMAP_THRESHOLD:
3590 #if HAVE_MMAP
3591 mmap_threshold = value;
3592 #endif
3593 MALLOC_UNLOCK;
3594 return 1;
3595 case M_MMAP_MAX:
3596 #if HAVE_MMAP
3597 n_mmaps_max = value; MALLOC_UNLOCK; return 1;
3598 #else
3599 MALLOC_UNLOCK; return value == 0;
3600 #endif
3601
3602 default:
3603 MALLOC_UNLOCK;
3604 return 0;
3605 }
3606 }
3607
3608 #endif /* DEFINE_MALLOPT */
3609
3610 /*
3611
3612 History:
3613
3614 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
3615 * Fixed ordering problem with boundary-stamping
3616
3617 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
3618 * Added pvalloc, as recommended by H.J. Liu
3619 * Added 64bit pointer support mainly from Wolfram Gloger
3620 * Added anonymously donated WIN32 sbrk emulation
3621 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3622 * malloc_extend_top: fix mask error that caused wastage after
3623 foreign sbrks
3624 * Add linux mremap support code from HJ Liu
3625
3626 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
3627 * Integrated most documentation with the code.
3628 * Add support for mmap, with help from
3629 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3630 * Use last_remainder in more cases.
3631 * Pack bins using idea from colin@nyx10.cs.du.edu
3632 * Use ordered bins instead of best-fit threshhold
3633 * Eliminate block-local decls to simplify tracing and debugging.
3634 * Support another case of realloc via move into top
3635 * Fix error occuring when initial sbrk_base not word-aligned.
3636 * Rely on page size for units instead of SBRK_UNIT to
3637 avoid surprises about sbrk alignment conventions.
3638 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3639 (raymond@es.ele.tue.nl) for the suggestion.
3640 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3641 * More precautions for cases where other routines call sbrk,
3642 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3643 * Added macros etc., allowing use in linux libc from
3644 H.J. Lu (hjl@gnu.ai.mit.edu)
3645 * Inverted this history list
3646
3647 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
3648 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3649 * Removed all preallocation code since under current scheme
3650 the work required to undo bad preallocations exceeds
3651 the work saved in good cases for most test programs.
3652 * No longer use return list or unconsolidated bins since
3653 no scheme using them consistently outperforms those that don't
3654 given above changes.
3655 * Use best fit for very large chunks to prevent some worst-cases.
3656 * Added some support for debugging
3657
3658 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
3659 * Removed footers when chunks are in use. Thanks to
3660 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3661
3662 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
3663 * Added malloc_trim, with help from Wolfram Gloger
3664 (wmglo@Dent.MED.Uni-Muenchen.DE).
3665
3666 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
3667
3668 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
3669 * realloc: try to expand in both directions
3670 * malloc: swap order of clean-bin strategy;
3671 * realloc: only conditionally expand backwards
3672 * Try not to scavenge used bins
3673 * Use bin counts as a guide to preallocation
3674 * Occasionally bin return list chunks in first scan
3675 * Add a few optimizations from colin@nyx10.cs.du.edu
3676
3677 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
3678 * faster bin computation & slightly different binning
3679 * merged all consolidations to one part of malloc proper
3680 (eliminating old malloc_find_space & malloc_clean_bin)
3681 * Scan 2 returns chunks (not just 1)
3682 * Propagate failure in realloc if malloc returns 0
3683 * Add stuff to allow compilation on non-ANSI compilers
3684 from kpv@research.att.com
3685
3686 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
3687 * removed potential for odd address access in prev_chunk
3688 * removed dependency on getpagesize.h
3689 * misc cosmetics and a bit more internal documentation
3690 * anticosmetics: mangled names in macros to evade debugger strangeness
3691 * tested on sparc, hp-700, dec-mips, rs6000
3692 with gcc & native cc (hp, dec only) allowing
3693 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3694
3695 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
3696 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3697 structure of old version, but most details differ.)
3698
3699 */
3700 #endif
3701