1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              S E M _ C H 6                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2019, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;   use Aspects;
27with Atree;     use Atree;
28with Checks;    use Checks;
29with Contracts; use Contracts;
30with Debug;     use Debug;
31with Einfo;     use Einfo;
32with Elists;    use Elists;
33with Errout;    use Errout;
34with Expander;  use Expander;
35with Exp_Ch6;   use Exp_Ch6;
36with Exp_Ch7;   use Exp_Ch7;
37with Exp_Ch9;   use Exp_Ch9;
38with Exp_Dbug;  use Exp_Dbug;
39with Exp_Tss;   use Exp_Tss;
40with Exp_Util;  use Exp_Util;
41with Freeze;    use Freeze;
42with Ghost;     use Ghost;
43with Inline;    use Inline;
44with Itypes;    use Itypes;
45with Lib.Xref;  use Lib.Xref;
46with Layout;    use Layout;
47with Namet;     use Namet;
48with Lib;       use Lib;
49with Nlists;    use Nlists;
50with Nmake;     use Nmake;
51with Opt;       use Opt;
52with Output;    use Output;
53with Restrict;  use Restrict;
54with Rident;    use Rident;
55with Rtsfind;   use Rtsfind;
56with Sem;       use Sem;
57with Sem_Aux;   use Sem_Aux;
58with Sem_Cat;   use Sem_Cat;
59with Sem_Ch3;   use Sem_Ch3;
60with Sem_Ch4;   use Sem_Ch4;
61with Sem_Ch5;   use Sem_Ch5;
62with Sem_Ch8;   use Sem_Ch8;
63with Sem_Ch9;   use Sem_Ch9;
64with Sem_Ch10;  use Sem_Ch10;
65with Sem_Ch12;  use Sem_Ch12;
66with Sem_Ch13;  use Sem_Ch13;
67with Sem_Dim;   use Sem_Dim;
68with Sem_Disp;  use Sem_Disp;
69with Sem_Dist;  use Sem_Dist;
70with Sem_Elim;  use Sem_Elim;
71with Sem_Eval;  use Sem_Eval;
72with Sem_Mech;  use Sem_Mech;
73with Sem_Prag;  use Sem_Prag;
74with Sem_Res;   use Sem_Res;
75with Sem_Util;  use Sem_Util;
76with Sem_Type;  use Sem_Type;
77with Sem_Warn;  use Sem_Warn;
78with Sinput;    use Sinput;
79with Stand;     use Stand;
80with Sinfo;     use Sinfo;
81with Sinfo.CN;  use Sinfo.CN;
82with Snames;    use Snames;
83with Stringt;   use Stringt;
84with Style;
85with Stylesw;   use Stylesw;
86with Tbuild;    use Tbuild;
87with Uintp;     use Uintp;
88with Urealp;    use Urealp;
89with Validsw;   use Validsw;
90
91package body Sem_Ch6 is
92
93   May_Hide_Profile : Boolean := False;
94   --  This flag is used to indicate that two formals in two subprograms being
95   --  checked for conformance differ only in that one is an access parameter
96   --  while the other is of a general access type with the same designated
97   --  type. In this case, if the rest of the signatures match, a call to
98   --  either subprogram may be ambiguous, which is worth a warning. The flag
99   --  is set in Compatible_Types, and the warning emitted in
100   --  New_Overloaded_Entity.
101
102   -----------------------
103   -- Local Subprograms --
104   -----------------------
105
106   procedure Analyze_Function_Return (N : Node_Id);
107   --  Subsidiary to Analyze_Return_Statement. Called when the return statement
108   --  applies to a [generic] function.
109
110   procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
111   --  Analyze a generic subprogram body. N is the body to be analyzed, and
112   --  Gen_Id is the defining entity Id for the corresponding spec.
113
114   procedure Analyze_Null_Procedure
115     (N             : Node_Id;
116      Is_Completion : out Boolean);
117   --  A null procedure can be a declaration or (Ada 2012) a completion
118
119   procedure Analyze_Return_Statement (N : Node_Id);
120   --  Common processing for simple and extended return statements
121
122   procedure Analyze_Return_Type (N : Node_Id);
123   --  Subsidiary to Process_Formals: analyze subtype mark in function
124   --  specification in a context where the formals are visible and hide
125   --  outer homographs.
126
127   procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
128   --  Does all the real work of Analyze_Subprogram_Body. This is split out so
129   --  that we can use RETURN but not skip the debug output at the end.
130
131   function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132   --  Returns true if Subp can override a predefined operator.
133
134   procedure Check_Conformance
135     (New_Id                   : Entity_Id;
136      Old_Id                   : Entity_Id;
137      Ctype                    : Conformance_Type;
138      Errmsg                   : Boolean;
139      Conforms                 : out Boolean;
140      Err_Loc                  : Node_Id := Empty;
141      Get_Inst                 : Boolean := False;
142      Skip_Controlling_Formals : Boolean := False);
143   --  Given two entities, this procedure checks that the profiles associated
144   --  with these entities meet the conformance criterion given by the third
145   --  parameter. If they conform, Conforms is set True and control returns
146   --  to the caller. If they do not conform, Conforms is set to False, and
147   --  in addition, if Errmsg is True on the call, proper messages are output
148   --  to complain about the conformance failure. If Err_Loc is non_Empty
149   --  the error messages are placed on Err_Loc, if Err_Loc is empty, then
150   --  error messages are placed on the appropriate part of the construct
151   --  denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152   --  against a formal access-to-subprogram type so Get_Instance_Of must
153   --  be called.
154
155   procedure Check_Limited_Return
156     (N      : Node_Id;
157      Expr   : Node_Id;
158      R_Type : Entity_Id);
159   --  Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
160   --  types. Used only for simple return statements. Expr is the expression
161   --  returned.
162
163   procedure Check_Subprogram_Order (N : Node_Id);
164   --  N is the N_Subprogram_Body node for a subprogram. This routine applies
165   --  the alpha ordering rule for N if this ordering requirement applicable.
166
167   procedure Check_Returns
168     (HSS  : Node_Id;
169      Mode : Character;
170      Err  : out Boolean;
171      Proc : Entity_Id := Empty);
172   --  Called to check for missing return statements in a function body, or for
173   --  returns present in a procedure body which has No_Return set. HSS is the
174   --  handled statement sequence for the subprogram body. This procedure
175   --  checks all flow paths to make sure they either have return (Mode = 'F',
176   --  used for functions) or do not have a return (Mode = 'P', used for
177   --  No_Return procedures). The flag Err is set if there are any control
178   --  paths not explicitly terminated by a return in the function case, and is
179   --  True otherwise. Proc is the entity for the procedure case and is used
180   --  in posting the warning message.
181
182   procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
183   --  In Ada 2012, a primitive equality operator on an untagged record type
184   --  must appear before the type is frozen, and have the same visibility as
185   --  that of the type. This procedure checks that this rule is met, and
186   --  otherwise emits an error on the subprogram declaration and a warning
187   --  on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
188   --  this routine outputs errors (or warnings if -gnatd.E is set). In earlier
189   --  versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
190   --  is set, otherwise the call has no effect.
191
192   procedure Enter_Overloaded_Entity (S : Entity_Id);
193   --  This procedure makes S, a new overloaded entity, into the first visible
194   --  entity with that name.
195
196   function Is_Non_Overriding_Operation
197     (Prev_E : Entity_Id;
198      New_E  : Entity_Id) return Boolean;
199   --  Enforce the rule given in 12.3(18): a private operation in an instance
200   --  overrides an inherited operation only if the corresponding operation
201   --  was overriding in the generic. This needs to be checked for primitive
202   --  operations of types derived (in the generic unit) from formal private
203   --  or formal derived types.
204
205   procedure Make_Inequality_Operator (S : Entity_Id);
206   --  Create the declaration for an inequality operator that is implicitly
207   --  created by a user-defined equality operator that yields a boolean.
208
209   procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id);
210   --  Preanalysis of default expressions of subprogram formals. N is the
211   --  expression to be analyzed and T is the expected type.
212
213   procedure Set_Formal_Validity (Formal_Id : Entity_Id);
214   --  Formal_Id is an formal parameter entity. This procedure deals with
215   --  setting the proper validity status for this entity, which depends on
216   --  the kind of parameter and the validity checking mode.
217
218   ---------------------------------------------
219   -- Analyze_Abstract_Subprogram_Declaration --
220   ---------------------------------------------
221
222   procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
223      Scop    : constant Entity_Id := Current_Scope;
224      Subp_Id : constant Entity_Id :=
225                  Analyze_Subprogram_Specification (Specification (N));
226
227   begin
228      Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
229
230      Generate_Definition (Subp_Id);
231
232      --  Set the SPARK mode from the current context (may be overwritten later
233      --  with explicit pragma).
234
235      Set_SPARK_Pragma           (Subp_Id, SPARK_Mode_Pragma);
236      Set_SPARK_Pragma_Inherited (Subp_Id);
237
238      --  Preserve relevant elaboration-related attributes of the context which
239      --  are no longer available or very expensive to recompute once analysis,
240      --  resolution, and expansion are over.
241
242      Mark_Elaboration_Attributes
243        (N_Id     => Subp_Id,
244         Checks   => True,
245         Warnings => True);
246
247      Set_Is_Abstract_Subprogram (Subp_Id);
248      New_Overloaded_Entity (Subp_Id);
249      Check_Delayed_Subprogram (Subp_Id);
250
251      Set_Categorization_From_Scope (Subp_Id, Scop);
252
253      if Ekind (Scope (Subp_Id)) = E_Protected_Type then
254         Error_Msg_N ("abstract subprogram not allowed in protected type", N);
255
256      --  Issue a warning if the abstract subprogram is neither a dispatching
257      --  operation nor an operation that overrides an inherited subprogram or
258      --  predefined operator, since this most likely indicates a mistake.
259
260      elsif Warn_On_Redundant_Constructs
261        and then not Is_Dispatching_Operation (Subp_Id)
262        and then not Present (Overridden_Operation (Subp_Id))
263        and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
264                   or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
265      then
266         Error_Msg_N
267           ("abstract subprogram is not dispatching or overriding?r?", N);
268      end if;
269
270      Generate_Reference_To_Formals (Subp_Id);
271      Check_Eliminated (Subp_Id);
272
273      if Has_Aspects (N) then
274         Analyze_Aspect_Specifications (N, Subp_Id);
275      end if;
276   end Analyze_Abstract_Subprogram_Declaration;
277
278   ---------------------------------
279   -- Analyze_Expression_Function --
280   ---------------------------------
281
282   procedure Analyze_Expression_Function (N : Node_Id) is
283      Expr : constant Node_Id    := Expression (N);
284      Loc  : constant Source_Ptr := Sloc (N);
285      LocX : constant Source_Ptr := Sloc (Expr);
286      Spec : constant Node_Id    := Specification (N);
287
288      --  Local variables
289
290      Asp      : Node_Id;
291      New_Body : Node_Id;
292      New_Spec : Node_Id;
293      Orig_N   : Node_Id;
294      Ret      : Node_Id;
295
296      Def_Id : Entity_Id := Empty;
297      Prev   : Entity_Id;
298      --  If the expression is a completion, Prev is the entity whose
299      --  declaration is completed. Def_Id is needed to analyze the spec.
300
301   --  Start of processing for Analyze_Expression_Function
302
303   begin
304      --  This is one of the occasions on which we transform the tree during
305      --  semantic analysis. If this is a completion, transform the expression
306      --  function into an equivalent subprogram body, and analyze it.
307
308      --  Expression functions are inlined unconditionally. The back-end will
309      --  determine whether this is possible.
310
311      Inline_Processing_Required := True;
312
313      --  Create a specification for the generated body. This must be done
314      --  prior to the analysis of the initial declaration.
315
316      New_Spec := Copy_Subprogram_Spec (Spec);
317      Prev     := Current_Entity_In_Scope (Defining_Entity (Spec));
318
319      --  If there are previous overloadable entities with the same name,
320      --  check whether any of them is completed by the expression function.
321      --  In a generic context a formal subprogram has no completion.
322
323      if Present (Prev)
324        and then Is_Overloadable (Prev)
325        and then not Is_Formal_Subprogram (Prev)
326      then
327         Def_Id := Analyze_Subprogram_Specification (Spec);
328         Prev   := Find_Corresponding_Spec (N);
329
330         --  The previous entity may be an expression function as well, in
331         --  which case the redeclaration is illegal.
332
333         if Present (Prev)
334           and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
335                                                        N_Expression_Function
336         then
337            Error_Msg_Sloc := Sloc (Prev);
338            Error_Msg_N ("& conflicts with declaration#", Def_Id);
339            return;
340         end if;
341      end if;
342
343      Ret := Make_Simple_Return_Statement (LocX, Expr);
344
345      New_Body :=
346        Make_Subprogram_Body (Loc,
347          Specification              => New_Spec,
348          Declarations               => Empty_List,
349          Handled_Statement_Sequence =>
350            Make_Handled_Sequence_Of_Statements (LocX,
351              Statements => New_List (Ret)));
352      Set_Was_Expression_Function (New_Body);
353
354      --  If the expression completes a generic subprogram, we must create a
355      --  separate node for the body, because at instantiation the original
356      --  node of the generic copy must be a generic subprogram body, and
357      --  cannot be a expression function. Otherwise we just rewrite the
358      --  expression with the non-generic body.
359
360      if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
361         Insert_After (N, New_Body);
362
363         --  Propagate any aspects or pragmas that apply to the expression
364         --  function to the proper body when the expression function acts
365         --  as a completion.
366
367         if Has_Aspects (N) then
368            Move_Aspects (N, To => New_Body);
369         end if;
370
371         Relocate_Pragmas_To_Body (New_Body);
372
373         Rewrite (N, Make_Null_Statement (Loc));
374         Set_Has_Completion (Prev, False);
375         Analyze (N);
376         Analyze (New_Body);
377         Set_Is_Inlined (Prev);
378
379      --  If the expression function is a completion, the previous declaration
380      --  must come from source. We know already that it appears in the current
381      --  scope. The entity itself may be internally created if within a body
382      --  to be inlined.
383
384      elsif Present (Prev)
385        and then Is_Overloadable (Prev)
386        and then not Is_Formal_Subprogram (Prev)
387        and then Comes_From_Source (Parent (Prev))
388      then
389         Set_Has_Completion (Prev, False);
390         Set_Is_Inlined (Prev);
391
392         --  AI12-0103: Expression functions that are a completion freeze their
393         --  expression but don't freeze anything else (unlike regular bodies).
394
395         --  Note that we cannot defer this freezing to the analysis of the
396         --  expression itself, because a freeze node might appear in a nested
397         --  scope, leading to an elaboration order issue in gigi.
398         --  As elsewhere, we do not emit freeze nodes within a generic unit.
399
400         if not Inside_A_Generic then
401            Freeze_Expr_Types
402              (Def_Id => Def_Id,
403               Typ    => Etype (Def_Id),
404               Expr   => Expr,
405               N      => N);
406         end if;
407
408         --  For navigation purposes, indicate that the function is a body
409
410         Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
411         Rewrite (N, New_Body);
412
413         --  Remove any existing aspects from the original node because the act
414         --  of rewriting causes the list to be shared between the two nodes.
415
416         Orig_N := Original_Node (N);
417         Remove_Aspects (Orig_N);
418
419         --  Propagate any pragmas that apply to expression function to the
420         --  proper body when the expression function acts as a completion.
421         --  Aspects are automatically transfered because of node rewriting.
422
423         Relocate_Pragmas_To_Body (N);
424         Analyze (N);
425
426         --  Once the aspects of the generated body have been analyzed, create
427         --  a copy for ASIS purposes and associate it with the original node.
428
429         if Has_Aspects (N) then
430            Set_Aspect_Specifications (Orig_N,
431              New_Copy_List_Tree (Aspect_Specifications (N)));
432         end if;
433
434         --  Prev is the previous entity with the same name, but it is can
435         --  be an unrelated spec that is not completed by the expression
436         --  function. In that case the relevant entity is the one in the body.
437         --  Not clear that the backend can inline it in this case ???
438
439         if Has_Completion (Prev) then
440
441            --  The formals of the expression function are body formals,
442            --  and do not appear in the ali file, which will only contain
443            --  references to the formals of the original subprogram spec.
444
445            declare
446               F1 : Entity_Id;
447               F2 : Entity_Id;
448
449            begin
450               F1 := First_Formal (Def_Id);
451               F2 := First_Formal (Prev);
452
453               while Present (F1) loop
454                  Set_Spec_Entity (F1, F2);
455                  Next_Formal (F1);
456                  Next_Formal (F2);
457               end loop;
458            end;
459
460         else
461            Set_Is_Inlined (Defining_Entity (New_Body));
462         end if;
463
464      --  If this is not a completion, create both a declaration and a body, so
465      --  that the expression can be inlined whenever possible.
466
467      else
468         --  An expression function that is not a completion is not a
469         --  subprogram declaration, and thus cannot appear in a protected
470         --  definition.
471
472         if Nkind (Parent (N)) = N_Protected_Definition then
473            Error_Msg_N
474              ("an expression function is not a legal protected operation", N);
475         end if;
476
477         Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
478
479         --  Remove any existing aspects from the original node because the act
480         --  of rewriting causes the list to be shared between the two nodes.
481
482         Orig_N := Original_Node (N);
483         Remove_Aspects (Orig_N);
484
485         Analyze (N);
486
487         --  Once the aspects of the generated spec have been analyzed, create
488         --  a copy for ASIS purposes and associate it with the original node.
489
490         if Has_Aspects (N) then
491            Set_Aspect_Specifications (Orig_N,
492              New_Copy_List_Tree (Aspect_Specifications (N)));
493         end if;
494
495         --  If aspect SPARK_Mode was specified on the body, it needs to be
496         --  repeated both on the generated spec and the body.
497
498         Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
499
500         if Present (Asp) then
501            Asp := New_Copy_Tree (Asp);
502            Set_Analyzed (Asp, False);
503            Set_Aspect_Specifications (New_Body, New_List (Asp));
504         end if;
505
506         Def_Id := Defining_Entity (N);
507         Set_Is_Inlined (Def_Id);
508
509         --  Establish the linkages between the spec and the body. These are
510         --  used when the expression function acts as the prefix of attribute
511         --  'Access in order to freeze the original expression which has been
512         --  moved to the generated body.
513
514         Set_Corresponding_Body (N, Defining_Entity (New_Body));
515         Set_Corresponding_Spec (New_Body, Def_Id);
516
517         --  Within a generic preanalyze the original expression for name
518         --  capture. The body is also generated but plays no role in
519         --  this because it is not part of the original source.
520
521         if Inside_A_Generic then
522            Set_Has_Completion (Def_Id);
523            Push_Scope (Def_Id);
524            Install_Formals (Def_Id);
525            Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
526            End_Scope;
527         end if;
528
529         --  To prevent premature freeze action, insert the new body at the end
530         --  of the current declarations, or at the end of the package spec.
531         --  However, resolve usage names now, to prevent spurious visibility
532         --  on later entities. Note that the function can now be called in
533         --  the current declarative part, which will appear to be prior to
534         --  the presence of the body in the code. There are nevertheless no
535         --  order of elaboration issues because all name resolution has taken
536         --  place at the point of declaration.
537
538         declare
539            Decls : List_Id            := List_Containing (N);
540            Expr  : constant Node_Id   := Expression (Ret);
541            Par   : constant Node_Id   := Parent (Decls);
542            Typ   : constant Entity_Id := Etype (Def_Id);
543
544         begin
545            --  If this is a wrapper created for in an instance for a formal
546            --  subprogram, insert body after declaration, to be analyzed when
547            --  the enclosing instance is analyzed.
548
549            if GNATprove_Mode
550              and then Is_Generic_Actual_Subprogram (Def_Id)
551            then
552               Insert_After (N, New_Body);
553
554            else
555               if Nkind (Par) = N_Package_Specification
556                 and then Decls = Visible_Declarations (Par)
557                 and then Present (Private_Declarations (Par))
558                 and then not Is_Empty_List (Private_Declarations (Par))
559               then
560                  Decls := Private_Declarations (Par);
561               end if;
562
563               Insert_After (Last (Decls), New_Body);
564
565               --  Preanalyze the expression if not already done above
566
567               if not Inside_A_Generic then
568                  Push_Scope (Def_Id);
569                  Install_Formals (Def_Id);
570                  Preanalyze_Formal_Expression (Expr, Typ);
571                  Check_Limited_Return (Original_Node (N), Expr, Typ);
572                  End_Scope;
573               end if;
574            end if;
575         end;
576      end if;
577
578      --  Check incorrect use of dynamically tagged expression. This doesn't
579      --  fall out automatically when analyzing the generated function body,
580      --  because Check_Dynamically_Tagged_Expression deliberately ignores
581      --  nodes that don't come from source.
582
583      if Present (Def_Id)
584        and then Nkind (Def_Id) in N_Has_Etype
585        and then Is_Tagged_Type (Etype (Def_Id))
586      then
587         Check_Dynamically_Tagged_Expression
588           (Expr        => Expr,
589            Typ         => Etype (Def_Id),
590            Related_Nod => Original_Node (N));
591      end if;
592
593      --  We must enforce checks for unreferenced formals in our newly
594      --  generated function, so we propagate the referenced flag from the
595      --  original spec to the new spec as well as setting Comes_From_Source.
596
597      if Present (Parameter_Specifications (New_Spec)) then
598         declare
599            Form_New_Def  : Entity_Id;
600            Form_New_Spec : Entity_Id;
601            Form_Old_Def  : Entity_Id;
602            Form_Old_Spec : Entity_Id;
603
604         begin
605            Form_New_Spec := First (Parameter_Specifications (New_Spec));
606            Form_Old_Spec := First (Parameter_Specifications (Spec));
607
608            while Present (Form_New_Spec) and then Present (Form_Old_Spec) loop
609               Form_New_Def := Defining_Identifier (Form_New_Spec);
610               Form_Old_Def := Defining_Identifier (Form_Old_Spec);
611
612               Set_Comes_From_Source (Form_New_Def, True);
613
614               --  Because of the usefulness of unreferenced controlling
615               --  formals we exempt them from unreferenced warnings by marking
616               --  them as always referenced.
617
618               Set_Referenced (Form_Old_Def,
619                 (Is_Formal (Form_Old_Def)
620                    and then Is_Controlling_Formal (Form_Old_Def))
621                  or else Referenced (Form_Old_Def));
622
623               Next (Form_New_Spec);
624               Next (Form_Old_Spec);
625            end loop;
626         end;
627      end if;
628   end Analyze_Expression_Function;
629
630   ----------------------------------------
631   -- Analyze_Extended_Return_Statement  --
632   ----------------------------------------
633
634   procedure Analyze_Extended_Return_Statement (N : Node_Id) is
635   begin
636      Check_Compiler_Unit ("extended return statement", N);
637      Analyze_Return_Statement (N);
638   end Analyze_Extended_Return_Statement;
639
640   ----------------------------
641   -- Analyze_Function_Call  --
642   ----------------------------
643
644   procedure Analyze_Function_Call (N : Node_Id) is
645      Actuals  : constant List_Id := Parameter_Associations (N);
646      Func_Nam : constant Node_Id := Name (N);
647      Actual   : Node_Id;
648
649   begin
650      Analyze (Func_Nam);
651
652      --  A call of the form A.B (X) may be an Ada 2005 call, which is
653      --  rewritten as B (A, X). If the rewriting is successful, the call
654      --  has been analyzed and we just return.
655
656      if Nkind (Func_Nam) = N_Selected_Component
657        and then Name (N) /= Func_Nam
658        and then Is_Rewrite_Substitution (N)
659        and then Present (Etype (N))
660      then
661         return;
662      end if;
663
664      --  If error analyzing name, then set Any_Type as result type and return
665
666      if Etype (Func_Nam) = Any_Type then
667         Set_Etype (N, Any_Type);
668         return;
669      end if;
670
671      --  Otherwise analyze the parameters
672
673      if Present (Actuals) then
674         Actual := First (Actuals);
675         while Present (Actual) loop
676            Analyze (Actual);
677            Check_Parameterless_Call (Actual);
678            Next (Actual);
679         end loop;
680      end if;
681
682      Analyze_Call (N);
683   end Analyze_Function_Call;
684
685   -----------------------------
686   -- Analyze_Function_Return --
687   -----------------------------
688
689   procedure Analyze_Function_Return (N : Node_Id) is
690      Loc        : constant Source_Ptr := Sloc (N);
691      Stm_Entity : constant Entity_Id  := Return_Statement_Entity (N);
692      Scope_Id   : constant Entity_Id  := Return_Applies_To (Stm_Entity);
693
694      R_Type : constant Entity_Id := Etype (Scope_Id);
695      --  Function result subtype
696
697      procedure Check_Return_Obj_Accessibility (Return_Stmt : Node_Id);
698      --  Apply legality rule of 6.5 (5.9) to the access discriminants of an
699      --  aggregate in a return statement.
700
701      procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
702      --  Check that the return_subtype_indication properly matches the result
703      --  subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
704
705      ------------------------------------
706      -- Check_Return_Obj_Accessibility --
707      ------------------------------------
708
709      procedure Check_Return_Obj_Accessibility (Return_Stmt : Node_Id) is
710         Assoc         : Node_Id;
711         Agg           : Node_Id := Empty;
712         Discr         : Entity_Id;
713         Expr          : Node_Id;
714         Obj           : Node_Id;
715         Process_Exprs : Boolean := False;
716         Return_Obj    : Node_Id;
717
718      begin
719         --  Only perform checks on record types with access discriminants
720
721         if not Is_Record_Type (R_Type)
722           or else not Has_Discriminants (R_Type)
723         then
724            return;
725         end if;
726
727         --  We are only interested in return statements
728
729         if not Nkind_In (Return_Stmt, N_Extended_Return_Statement,
730                                       N_Simple_Return_Statement)
731         then
732            return;
733         end if;
734
735         --  Fetch the object from the return statement, in the case of a
736         --  simple return statement the expression is part of the node.
737
738         if Nkind (Return_Stmt) = N_Extended_Return_Statement then
739            Return_Obj := Last (Return_Object_Declarations (Return_Stmt));
740
741            --  We could be looking at something that's been expanded with
742            --  an initialzation procedure which we can safely ignore.
743
744            if Nkind (Return_Obj) /= N_Object_Declaration then
745               return;
746            end if;
747         else
748            Return_Obj := Return_Stmt;
749         end if;
750
751         --  We may need to check an aggregate or a subtype indication
752         --  depending on how the discriminants were specified and whether
753         --  we are looking at an extended return statement.
754
755         if Nkind (Return_Obj) = N_Object_Declaration
756           and then Nkind (Object_Definition (Return_Obj))
757                      = N_Subtype_Indication
758         then
759            Assoc := First (Constraints
760                             (Constraint (Object_Definition (Return_Obj))));
761         else
762            --  Qualified expressions may be nested
763
764            Agg := Original_Node (Expression (Return_Obj));
765            while Nkind (Agg) = N_Qualified_Expression loop
766               Agg := Original_Node (Expression (Agg));
767            end loop;
768
769            --  If we are looking at an aggregate instead of a function call we
770            --  can continue checking accessibility for the supplied
771            --  discriminant associations.
772
773            if Nkind (Agg) = N_Aggregate then
774               if Present (Expressions (Agg)) then
775                  Assoc         := First (Expressions (Agg));
776                  Process_Exprs := True;
777               else
778                  Assoc := First (Component_Associations (Agg));
779               end if;
780
781            --  Otherwise the expression is not of interest ???
782
783            else
784               return;
785            end if;
786         end if;
787
788         --  Move through the discriminants checking the accessibility level
789         --  of each co-extension's associated expression.
790
791         Discr := First_Discriminant (R_Type);
792         while Present (Discr) loop
793            if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
794
795               if Nkind (Assoc) = N_Attribute_Reference then
796                  Expr := Assoc;
797               elsif Nkind_In (Assoc, N_Component_Association,
798                                      N_Discriminant_Association)
799               then
800                  Expr := Expression (Assoc);
801               end if;
802
803               --  This anonymous access discriminant has an associated
804               --  expression which needs checking.
805
806               if Nkind (Expr) = N_Attribute_Reference
807                 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
808               then
809                  --  Obtain the object to perform static checks on by moving
810                  --  up the prefixes in the expression taking into account
811                  --  named access types.
812
813                  Obj := Prefix (Expr);
814                  while Nkind_In (Obj, N_Indexed_Component,
815                                       N_Selected_Component)
816                  loop
817                     --  When we encounter a named access type then we can
818                     --  ignore accessibility checks on the dereference.
819
820                     if Ekind (Etype (Prefix (Obj)))
821                          in E_Access_Type ..
822                             E_Access_Protected_Subprogram_Type
823                     then
824                        if Nkind (Obj) = N_Selected_Component then
825                           Obj := Selector_Name (Obj);
826                        end if;
827                        exit;
828                     end if;
829
830                     --  Skip over the explicit dereference
831
832                     if Nkind (Prefix (Obj)) = N_Explicit_Dereference then
833                        Obj := Prefix (Prefix (Obj));
834
835                     --  Otherwise move up to the next prefix
836
837                     else
838                        Obj := Prefix (Obj);
839                     end if;
840                  end loop;
841
842                  --  Do not check aliased formals or function calls. A
843                  --  run-time check may still be needed ???
844
845                  if Is_Entity_Name (Obj)
846                    and then Comes_From_Source (Obj)
847                  then
848                     --  Explicitly aliased formals are allowed
849
850                     if Is_Formal (Entity (Obj))
851                       and then Is_Aliased (Entity (Obj))
852                     then
853                        null;
854
855                     elsif Object_Access_Level (Obj) >
856                             Scope_Depth (Scope (Scope_Id))
857                     then
858                        Error_Msg_N
859                          ("access discriminant in return aggregate would "
860                           & "be a dangling reference", Obj);
861                     end if;
862                  end if;
863               end if;
864            end if;
865
866            Next_Discriminant (Discr);
867
868            if not Is_List_Member (Assoc) then
869               Assoc := Empty;
870            else
871               Nlists.Next (Assoc);
872            end if;
873
874            --  After aggregate expressions, examine component associations if
875            --  present.
876
877            if No (Assoc) then
878               if Present (Agg)
879                 and then Process_Exprs
880                 and then Present (Component_Associations (Agg))
881               then
882                  Assoc         := First (Component_Associations (Agg));
883                  Process_Exprs := False;
884               else
885                  exit;
886               end if;
887            end if;
888         end loop;
889      end Check_Return_Obj_Accessibility;
890
891      -------------------------------------
892      -- Check_Return_Subtype_Indication --
893      -------------------------------------
894
895      procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
896         Return_Obj : constant Node_Id   := Defining_Identifier (Obj_Decl);
897
898         R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
899         --  Subtype given in the extended return statement (must match R_Type)
900
901         Subtype_Ind : constant Node_Id :=
902                         Object_Definition (Original_Node (Obj_Decl));
903
904         procedure Error_No_Match (N : Node_Id);
905         --  Output error messages for case where types do not statically
906         --  match. N is the location for the messages.
907
908         --------------------
909         -- Error_No_Match --
910         --------------------
911
912         procedure Error_No_Match (N : Node_Id) is
913         begin
914            Error_Msg_N
915              ("subtype must statically match function result subtype", N);
916
917            if not Predicates_Match (R_Stm_Type, R_Type) then
918               Error_Msg_Node_2 := R_Type;
919               Error_Msg_NE
920                 ("\predicate of& does not match predicate of&",
921                  N, R_Stm_Type);
922            end if;
923         end Error_No_Match;
924
925      --  Start of processing for Check_Return_Subtype_Indication
926
927      begin
928         --  First, avoid cascaded errors
929
930         if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
931            return;
932         end if;
933
934         --  "return access T" case; check that the return statement also has
935         --  "access T", and that the subtypes statically match:
936         --   if this is an access to subprogram the signatures must match.
937
938         if Is_Anonymous_Access_Type (R_Type) then
939            if Is_Anonymous_Access_Type (R_Stm_Type) then
940               if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
941               then
942                  if Base_Type (Designated_Type (R_Stm_Type)) /=
943                     Base_Type (Designated_Type (R_Type))
944                    or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
945                  then
946                     Error_No_Match (Subtype_Mark (Subtype_Ind));
947                  end if;
948
949               else
950                  --  For two anonymous access to subprogram types, the types
951                  --  themselves must be type conformant.
952
953                  if not Conforming_Types
954                           (R_Stm_Type, R_Type, Fully_Conformant)
955                  then
956                     Error_No_Match (Subtype_Ind);
957                  end if;
958               end if;
959
960            else
961               Error_Msg_N ("must use anonymous access type", Subtype_Ind);
962            end if;
963
964         --  If the return object is of an anonymous access type, then report
965         --  an error if the function's result type is not also anonymous.
966
967         elsif Is_Anonymous_Access_Type (R_Stm_Type) then
968            pragma Assert (not Is_Anonymous_Access_Type (R_Type));
969            Error_Msg_N
970              ("anonymous access not allowed for function with named access "
971               & "result", Subtype_Ind);
972
973         --  Subtype indication case: check that the return object's type is
974         --  covered by the result type, and that the subtypes statically match
975         --  when the result subtype is constrained. Also handle record types
976         --  with unknown discriminants for which we have built the underlying
977         --  record view. Coverage is needed to allow specific-type return
978         --  objects when the result type is class-wide (see AI05-32).
979
980         elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
981           or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
982                     and then
983                       Covers
984                         (Base_Type (R_Type),
985                          Underlying_Record_View (Base_Type (R_Stm_Type))))
986         then
987            --  A null exclusion may be present on the return type, on the
988            --  function specification, on the object declaration or on the
989            --  subtype itself.
990
991            if Is_Access_Type (R_Type)
992              and then
993                (Can_Never_Be_Null (R_Type)
994                  or else Null_Exclusion_Present (Parent (Scope_Id))) /=
995                            Can_Never_Be_Null (R_Stm_Type)
996            then
997               Error_No_Match (Subtype_Ind);
998            end if;
999
1000            --  AI05-103: for elementary types, subtypes must statically match
1001
1002            if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
1003               if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
1004                  Error_No_Match (Subtype_Ind);
1005               end if;
1006            end if;
1007
1008         --  All remaining cases are illegal
1009
1010         --  Note: previous versions of this subprogram allowed the return
1011         --  value to be the ancestor of the return type if the return type
1012         --  was a null extension. This was plainly incorrect.
1013
1014         else
1015            Error_Msg_N
1016              ("wrong type for return_subtype_indication", Subtype_Ind);
1017         end if;
1018      end Check_Return_Subtype_Indication;
1019
1020      ---------------------
1021      -- Local Variables --
1022      ---------------------
1023
1024      Expr     : Node_Id;
1025      Obj_Decl : Node_Id := Empty;
1026
1027   --  Start of processing for Analyze_Function_Return
1028
1029   begin
1030      Set_Return_Present (Scope_Id);
1031
1032      if Nkind (N) = N_Simple_Return_Statement then
1033         Expr := Expression (N);
1034
1035         --  Guard against a malformed expression. The parser may have tried to
1036         --  recover but the node is not analyzable.
1037
1038         if Nkind (Expr) = N_Error then
1039            Set_Etype (Expr, Any_Type);
1040            Expander_Mode_Save_And_Set (False);
1041            return;
1042
1043         else
1044            --  The resolution of a controlled [extension] aggregate associated
1045            --  with a return statement creates a temporary which needs to be
1046            --  finalized on function exit. Wrap the return statement inside a
1047            --  block so that the finalization machinery can detect this case.
1048            --  This early expansion is done only when the return statement is
1049            --  not part of a handled sequence of statements.
1050
1051            if Nkind_In (Expr, N_Aggregate,
1052                               N_Extension_Aggregate)
1053              and then Needs_Finalization (R_Type)
1054              and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1055            then
1056               Rewrite (N,
1057                 Make_Block_Statement (Loc,
1058                   Handled_Statement_Sequence =>
1059                     Make_Handled_Sequence_Of_Statements (Loc,
1060                       Statements => New_List (Relocate_Node (N)))));
1061
1062               Analyze (N);
1063               return;
1064            end if;
1065
1066            Analyze (Expr);
1067
1068            --  Ada 2005 (AI-251): If the type of the returned object is
1069            --  an access to an interface type then we add an implicit type
1070            --  conversion to force the displacement of the "this" pointer to
1071            --  reference the secondary dispatch table. We cannot delay the
1072            --  generation of this implicit conversion until the expansion
1073            --  because in this case the type resolution changes the decoration
1074            --  of the expression node to match R_Type; by contrast, if the
1075            --  returned object is a class-wide interface type then it is too
1076            --  early to generate here the implicit conversion since the return
1077            --  statement may be rewritten by the expander into an extended
1078            --  return statement whose expansion takes care of adding the
1079            --  implicit type conversion to displace the pointer to the object.
1080
1081            if Expander_Active
1082              and then Serious_Errors_Detected = 0
1083              and then Is_Access_Type (R_Type)
1084              and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
1085              and then Is_Interface (Designated_Type (R_Type))
1086              and then Is_Progenitor (Designated_Type (R_Type),
1087                                      Designated_Type (Etype (Expr)))
1088            then
1089               Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1090               Analyze (Expr);
1091            end if;
1092
1093            Resolve (Expr, R_Type);
1094            Check_Limited_Return (N, Expr, R_Type);
1095
1096            Check_Return_Obj_Accessibility (N);
1097         end if;
1098
1099         --  RETURN only allowed in SPARK as the last statement in function
1100
1101         if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1102           and then
1103             (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
1104               or else Present (Next (N)))
1105         then
1106            Check_SPARK_05_Restriction
1107              ("RETURN should be the last statement in function", N);
1108         end if;
1109
1110      else
1111         Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
1112         Obj_Decl := Last (Return_Object_Declarations (N));
1113
1114         --  Analyze parts specific to extended_return_statement:
1115
1116         declare
1117            Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
1118            HSS         : constant Node_Id := Handled_Statement_Sequence (N);
1119
1120         begin
1121            Expr := Expression (Obj_Decl);
1122
1123            --  Note: The check for OK_For_Limited_Init will happen in
1124            --  Analyze_Object_Declaration; we treat it as a normal
1125            --  object declaration.
1126
1127            Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1128            Analyze (Obj_Decl);
1129
1130            Check_Return_Subtype_Indication (Obj_Decl);
1131
1132            if Present (HSS) then
1133               Analyze (HSS);
1134
1135               if Present (Exception_Handlers (HSS)) then
1136
1137                  --  ???Has_Nested_Block_With_Handler needs to be set.
1138                  --  Probably by creating an actual N_Block_Statement.
1139                  --  Probably in Expand.
1140
1141                  null;
1142               end if;
1143            end if;
1144
1145            --  Mark the return object as referenced, since the return is an
1146            --  implicit reference of the object.
1147
1148            Set_Referenced (Defining_Identifier (Obj_Decl));
1149
1150            Check_References (Stm_Entity);
1151
1152            Check_Return_Obj_Accessibility (N);
1153
1154            --  Check RM 6.5 (5.9/3)
1155
1156            if Has_Aliased then
1157               if Ada_Version < Ada_2012 then
1158
1159                  --  Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1160                  --  Can it really happen (extended return???)
1161
1162                  Error_Msg_N
1163                    ("aliased only allowed for limited return objects "
1164                     & "in Ada 2012??", N);
1165
1166               elsif not Is_Limited_View (R_Type) then
1167                  Error_Msg_N
1168                    ("aliased only allowed for limited return objects", N);
1169               end if;
1170            end if;
1171         end;
1172      end if;
1173
1174      --  Case of Expr present
1175
1176      if Present (Expr) then
1177
1178         --  Defend against previous errors
1179
1180         if Nkind (Expr) = N_Empty
1181           or else No (Etype (Expr))
1182         then
1183            return;
1184         end if;
1185
1186         --  Apply constraint check. Note that this is done before the implicit
1187         --  conversion of the expression done for anonymous access types to
1188         --  ensure correct generation of the null-excluding check associated
1189         --  with null-excluding expressions found in return statements. We
1190         --  don't need a check if the subtype of the return object is the
1191         --  same as the result subtype of the function.
1192
1193         if Nkind (N) /= N_Extended_Return_Statement
1194           or else Nkind (Obj_Decl) /= N_Object_Declaration
1195           or else Nkind (Object_Definition (Obj_Decl)) not in N_Has_Entity
1196           or else Entity (Object_Definition (Obj_Decl)) /= R_Type
1197         then
1198            Apply_Constraint_Check (Expr, R_Type);
1199         end if;
1200
1201         --  The return value is converted to the return type of the function,
1202         --  which implies a predicate check if the return type is predicated.
1203         --  We do not apply the check to a case expression because it will
1204         --  be expanded into a series of return statements, each of which
1205         --  will receive a predicate check.
1206
1207         if Nkind (Expr) /= N_Case_Expression then
1208            Apply_Predicate_Check (Expr, R_Type);
1209         end if;
1210
1211         --  Ada 2005 (AI-318-02): When the result type is an anonymous access
1212         --  type, apply an implicit conversion of the expression to that type
1213         --  to force appropriate static and run-time accessibility checks.
1214
1215         if Ada_Version >= Ada_2005
1216           and then Ekind (R_Type) = E_Anonymous_Access_Type
1217         then
1218            Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1219            Analyze_And_Resolve (Expr, R_Type);
1220
1221         --  If this is a local anonymous access to subprogram, the
1222         --  accessibility check can be applied statically. The return is
1223         --  illegal if the access type of the return expression is declared
1224         --  inside of the subprogram (except if it is the subtype indication
1225         --  of an extended return statement).
1226
1227         elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1228            if not Comes_From_Source (Current_Scope)
1229              or else Ekind (Current_Scope) = E_Return_Statement
1230            then
1231               null;
1232
1233            elsif
1234                Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1235            then
1236               Error_Msg_N ("cannot return local access to subprogram", N);
1237            end if;
1238
1239         --  The expression cannot be of a formal incomplete type
1240
1241         elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1242           and then Is_Generic_Type (Etype (Expr))
1243         then
1244            Error_Msg_N
1245              ("cannot return expression of a formal incomplete type", N);
1246         end if;
1247
1248         --  If the result type is class-wide, then check that the return
1249         --  expression's type is not declared at a deeper level than the
1250         --  function (RM05-6.5(5.6/2)).
1251
1252         if Ada_Version >= Ada_2005
1253           and then Is_Class_Wide_Type (R_Type)
1254         then
1255            if Type_Access_Level (Etype (Expr)) >
1256                 Subprogram_Access_Level (Scope_Id)
1257            then
1258               Error_Msg_N
1259                 ("level of return expression type is deeper than "
1260                  & "class-wide function!", Expr);
1261            end if;
1262         end if;
1263
1264         --  Check incorrect use of dynamically tagged expression
1265
1266         if Is_Tagged_Type (R_Type) then
1267            Check_Dynamically_Tagged_Expression
1268              (Expr => Expr,
1269               Typ  => R_Type,
1270               Related_Nod => N);
1271         end if;
1272
1273         --  ??? A real run-time accessibility check is needed in cases
1274         --  involving dereferences of access parameters. For now we just
1275         --  check the static cases.
1276
1277         if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1278           and then Is_Limited_View (Etype (Scope_Id))
1279           and then Object_Access_Level (Expr) >
1280                      Subprogram_Access_Level (Scope_Id)
1281         then
1282            --  Suppress the message in a generic, where the rewriting
1283            --  is irrelevant.
1284
1285            if Inside_A_Generic then
1286               null;
1287
1288            else
1289               Rewrite (N,
1290                 Make_Raise_Program_Error (Loc,
1291                   Reason => PE_Accessibility_Check_Failed));
1292               Analyze (N);
1293
1294               Error_Msg_Warn := SPARK_Mode /= On;
1295               Error_Msg_N ("cannot return a local value by reference<<", N);
1296               Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1297            end if;
1298         end if;
1299
1300         if Known_Null (Expr)
1301           and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1302           and then Null_Exclusion_Present (Parent (Scope_Id))
1303         then
1304            Apply_Compile_Time_Constraint_Error
1305              (N      => Expr,
1306               Msg    => "(Ada 2005) null not allowed for "
1307                         & "null-excluding return??",
1308               Reason => CE_Null_Not_Allowed);
1309         end if;
1310
1311      --  RM 6.5 (5.4/3): accessibility checks also apply if the return object
1312      --  has no initializing expression.
1313
1314      elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1315         if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1316              Subprogram_Access_Level (Scope_Id)
1317         then
1318            Error_Msg_N
1319              ("level of return expression type is deeper than "
1320               & "class-wide function!", Obj_Decl);
1321         end if;
1322      end if;
1323   end Analyze_Function_Return;
1324
1325   -------------------------------------
1326   -- Analyze_Generic_Subprogram_Body --
1327   -------------------------------------
1328
1329   procedure Analyze_Generic_Subprogram_Body
1330     (N      : Node_Id;
1331      Gen_Id : Entity_Id)
1332   is
1333      Gen_Decl : constant Node_Id     := Unit_Declaration_Node (Gen_Id);
1334      Kind     : constant Entity_Kind := Ekind (Gen_Id);
1335      Body_Id  : Entity_Id;
1336      New_N    : Node_Id;
1337      Spec     : Node_Id;
1338
1339   begin
1340      --  Copy body and disable expansion while analyzing the generic For a
1341      --  stub, do not copy the stub (which would load the proper body), this
1342      --  will be done when the proper body is analyzed.
1343
1344      if Nkind (N) /= N_Subprogram_Body_Stub then
1345         New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1346         Rewrite (N, New_N);
1347
1348         --  Once the contents of the generic copy and the template are
1349         --  swapped, do the same for their respective aspect specifications.
1350
1351         Exchange_Aspects (N, New_N);
1352
1353         --  Collect all contract-related source pragmas found within the
1354         --  template and attach them to the contract of the subprogram body.
1355         --  This contract is used in the capture of global references within
1356         --  annotations.
1357
1358         Create_Generic_Contract (N);
1359
1360         Start_Generic;
1361      end if;
1362
1363      Spec := Specification (N);
1364
1365      --  Within the body of the generic, the subprogram is callable, and
1366      --  behaves like the corresponding non-generic unit.
1367
1368      Body_Id := Defining_Entity (Spec);
1369
1370      if Kind = E_Generic_Procedure
1371        and then Nkind (Spec) /= N_Procedure_Specification
1372      then
1373         Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1374         return;
1375
1376      elsif Kind = E_Generic_Function
1377        and then Nkind (Spec) /= N_Function_Specification
1378      then
1379         Error_Msg_N ("invalid body for generic function ", Body_Id);
1380         return;
1381      end if;
1382
1383      Set_Corresponding_Body (Gen_Decl, Body_Id);
1384
1385      if Has_Completion (Gen_Id)
1386        and then Nkind (Parent (N)) /= N_Subunit
1387      then
1388         Error_Msg_N ("duplicate generic body", N);
1389         return;
1390      else
1391         Set_Has_Completion (Gen_Id);
1392      end if;
1393
1394      if Nkind (N) = N_Subprogram_Body_Stub then
1395         Set_Ekind (Defining_Entity (Specification (N)), Kind);
1396      else
1397         Set_Corresponding_Spec (N, Gen_Id);
1398      end if;
1399
1400      if Nkind (Parent (N)) = N_Compilation_Unit then
1401         Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1402      end if;
1403
1404      --  Make generic parameters immediately visible in the body. They are
1405      --  needed to process the formals declarations. Then make the formals
1406      --  visible in a separate step.
1407
1408      Push_Scope (Gen_Id);
1409
1410      declare
1411         E         : Entity_Id;
1412         First_Ent : Entity_Id;
1413
1414      begin
1415         First_Ent := First_Entity (Gen_Id);
1416
1417         E := First_Ent;
1418         while Present (E) and then not Is_Formal (E) loop
1419            Install_Entity (E);
1420            Next_Entity (E);
1421         end loop;
1422
1423         Set_Use (Generic_Formal_Declarations (Gen_Decl));
1424
1425         --  Now generic formals are visible, and the specification can be
1426         --  analyzed, for subsequent conformance check.
1427
1428         Body_Id := Analyze_Subprogram_Specification (Spec);
1429
1430         --  Make formal parameters visible
1431
1432         if Present (E) then
1433
1434            --  E is the first formal parameter, we loop through the formals
1435            --  installing them so that they will be visible.
1436
1437            Set_First_Entity (Gen_Id, E);
1438            while Present (E) loop
1439               Install_Entity (E);
1440               Next_Formal (E);
1441            end loop;
1442         end if;
1443
1444         --  Visible generic entity is callable within its own body
1445
1446         Set_Ekind          (Gen_Id,  Ekind (Body_Id));
1447         Set_Ekind          (Body_Id, E_Subprogram_Body);
1448         Set_Convention     (Body_Id, Convention (Gen_Id));
1449         Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1450         Set_Scope          (Body_Id, Scope (Gen_Id));
1451
1452         Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1453
1454         if Nkind (N) = N_Subprogram_Body_Stub then
1455
1456            --  No body to analyze, so restore state of generic unit
1457
1458            Set_Ekind (Gen_Id, Kind);
1459            Set_Ekind (Body_Id, Kind);
1460
1461            if Present (First_Ent) then
1462               Set_First_Entity (Gen_Id, First_Ent);
1463            end if;
1464
1465            End_Scope;
1466            return;
1467         end if;
1468
1469         --  If this is a compilation unit, it must be made visible explicitly,
1470         --  because the compilation of the declaration, unlike other library
1471         --  unit declarations, does not. If it is not a unit, the following
1472         --  is redundant but harmless.
1473
1474         Set_Is_Immediately_Visible (Gen_Id);
1475         Reference_Body_Formals (Gen_Id, Body_Id);
1476
1477         if Is_Child_Unit (Gen_Id) then
1478            Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1479         end if;
1480
1481         Set_Actual_Subtypes (N, Current_Scope);
1482
1483         Set_SPARK_Pragma           (Body_Id, SPARK_Mode_Pragma);
1484         Set_SPARK_Pragma_Inherited (Body_Id);
1485
1486         --  Analyze any aspect specifications that appear on the generic
1487         --  subprogram body.
1488
1489         if Has_Aspects (N) then
1490            Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
1491         end if;
1492
1493         Analyze_Declarations (Declarations (N));
1494         Check_Completion;
1495
1496         --  Process the contract of the subprogram body after all declarations
1497         --  have been analyzed. This ensures that any contract-related pragmas
1498         --  are available through the N_Contract node of the body.
1499
1500         Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1501
1502         Analyze (Handled_Statement_Sequence (N));
1503         Save_Global_References (Original_Node (N));
1504
1505         --  Prior to exiting the scope, include generic formals again (if any
1506         --  are present) in the set of local entities.
1507
1508         if Present (First_Ent) then
1509            Set_First_Entity (Gen_Id, First_Ent);
1510         end if;
1511
1512         Check_References (Gen_Id);
1513      end;
1514
1515      Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1516      Update_Use_Clause_Chain;
1517      Validate_Categorization_Dependency (N, Gen_Id);
1518      End_Scope;
1519      Check_Subprogram_Order (N);
1520
1521      --  Outside of its body, unit is generic again
1522
1523      Set_Ekind (Gen_Id, Kind);
1524      Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1525
1526      if Style_Check then
1527         Style.Check_Identifier (Body_Id, Gen_Id);
1528      end if;
1529
1530      End_Generic;
1531   end Analyze_Generic_Subprogram_Body;
1532
1533   ----------------------------
1534   -- Analyze_Null_Procedure --
1535   ----------------------------
1536
1537   --  WARNING: This routine manages Ghost regions. Return statements must be
1538   --  replaced by gotos that jump to the end of the routine and restore the
1539   --  Ghost mode.
1540
1541   procedure Analyze_Null_Procedure
1542     (N             : Node_Id;
1543      Is_Completion : out Boolean)
1544   is
1545      Loc  : constant Source_Ptr := Sloc (N);
1546      Spec : constant Node_Id    := Specification (N);
1547
1548      Saved_GM   : constant Ghost_Mode_Type := Ghost_Mode;
1549      Saved_IGR  : constant Node_Id         := Ignored_Ghost_Region;
1550      Saved_ISMP : constant Boolean         :=
1551                     Ignore_SPARK_Mode_Pragmas_In_Instance;
1552      --  Save the Ghost and SPARK mode-related data to restore on exit
1553
1554      Designator : Entity_Id;
1555      Form       : Node_Id;
1556      Null_Body  : Node_Id := Empty;
1557      Null_Stmt  : Node_Id := Null_Statement (Spec);
1558      Prev       : Entity_Id;
1559
1560   begin
1561      Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1562
1563      --  A null procedure is Ghost when it is stand-alone and is subject to
1564      --  pragma Ghost, or when the corresponding spec is Ghost. Set the mode
1565      --  now, to ensure that any nodes generated during analysis and expansion
1566      --  are properly marked as Ghost.
1567
1568      if Present (Prev) then
1569         Mark_And_Set_Ghost_Body (N, Prev);
1570      end if;
1571
1572      --  Capture the profile of the null procedure before analysis, for
1573      --  expansion at the freeze point and at each point of call. The body is
1574      --  used if the procedure has preconditions, or if it is a completion. In
1575      --  the first case the body is analyzed at the freeze point, in the other
1576      --  it replaces the null procedure declaration.
1577
1578      --  For a null procedure that comes from source, a NULL statement is
1579      --  provided by the parser, which carries the source location of the
1580      --  NULL keyword, and has Comes_From_Source set. For a null procedure
1581      --  from expansion, create one now.
1582
1583      if No (Null_Stmt) then
1584         Null_Stmt := Make_Null_Statement (Loc);
1585      end if;
1586
1587      Null_Body :=
1588        Make_Subprogram_Body (Loc,
1589          Specification              => New_Copy_Tree (Spec),
1590          Declarations               => New_List,
1591          Handled_Statement_Sequence =>
1592            Make_Handled_Sequence_Of_Statements (Loc,
1593              Statements => New_List (Null_Stmt)));
1594
1595      --  Create new entities for body and formals
1596
1597      Set_Defining_Unit_Name (Specification (Null_Body),
1598        Make_Defining_Identifier
1599          (Sloc (Defining_Entity (N)),
1600           Chars (Defining_Entity (N))));
1601
1602      Form := First (Parameter_Specifications (Specification (Null_Body)));
1603      while Present (Form) loop
1604         Set_Defining_Identifier (Form,
1605           Make_Defining_Identifier
1606             (Sloc (Defining_Identifier (Form)),
1607              Chars (Defining_Identifier (Form))));
1608         Next (Form);
1609      end loop;
1610
1611      --  Determine whether the null procedure may be a completion of a generic
1612      --  suprogram, in which case we use the new null body as the completion
1613      --  and set minimal semantic information on the original declaration,
1614      --  which is rewritten as a null statement.
1615
1616      if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1617         Insert_Before (N, Null_Body);
1618         Set_Ekind (Defining_Entity (N), Ekind (Prev));
1619
1620         Rewrite (N, Make_Null_Statement (Loc));
1621         Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1622         Is_Completion := True;
1623
1624         goto Leave;
1625
1626      else
1627         --  Resolve the types of the formals now, because the freeze point may
1628         --  appear in a different context, e.g. an instantiation.
1629
1630         Form := First (Parameter_Specifications (Specification (Null_Body)));
1631         while Present (Form) loop
1632            if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1633               Find_Type (Parameter_Type (Form));
1634
1635            elsif No (Access_To_Subprogram_Definition
1636                       (Parameter_Type (Form)))
1637            then
1638               Find_Type (Subtype_Mark (Parameter_Type (Form)));
1639
1640            --  The case of a null procedure with a formal that is an
1641            --  access-to-subprogram type, and that is used as an actual
1642            --  in an instantiation is left to the enthusiastic reader.
1643
1644            else
1645               null;
1646            end if;
1647
1648            Next (Form);
1649         end loop;
1650      end if;
1651
1652      --  If there are previous overloadable entities with the same name, check
1653      --  whether any of them is completed by the null procedure.
1654
1655      if Present (Prev) and then Is_Overloadable (Prev) then
1656         Designator := Analyze_Subprogram_Specification (Spec);
1657         Prev       := Find_Corresponding_Spec (N);
1658      end if;
1659
1660      if No (Prev) or else not Comes_From_Source (Prev) then
1661         Designator := Analyze_Subprogram_Specification (Spec);
1662         Set_Has_Completion (Designator);
1663
1664         --  Signal to caller that this is a procedure declaration
1665
1666         Is_Completion := False;
1667
1668         --  Null procedures are always inlined, but generic formal subprograms
1669         --  which appear as such in the internal instance of formal packages,
1670         --  need no completion and are not marked Inline.
1671
1672         if Expander_Active
1673           and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1674         then
1675            Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1676            Set_Body_To_Inline (N, Null_Body);
1677            Set_Is_Inlined (Designator);
1678         end if;
1679
1680      else
1681         --  The null procedure is a completion. We unconditionally rewrite
1682         --  this as a null body (even if expansion is not active), because
1683         --  there are various error checks that are applied on this body
1684         --  when it is analyzed (e.g. correct aspect placement).
1685
1686         if Has_Completion (Prev) then
1687            Error_Msg_Sloc := Sloc (Prev);
1688            Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1689         end if;
1690
1691         Check_Previous_Null_Procedure (N, Prev);
1692
1693         Is_Completion := True;
1694         Rewrite (N, Null_Body);
1695         Analyze (N);
1696      end if;
1697
1698   <<Leave>>
1699      Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
1700      Restore_Ghost_Region (Saved_GM, Saved_IGR);
1701   end Analyze_Null_Procedure;
1702
1703   -----------------------------
1704   -- Analyze_Operator_Symbol --
1705   -----------------------------
1706
1707   --  An operator symbol such as "+" or "and" may appear in context where the
1708   --  literal denotes an entity name, such as "+"(x, y) or in context when it
1709   --  is just a string, as in (conjunction = "or"). In these cases the parser
1710   --  generates this node, and the semantics does the disambiguation. Other
1711   --  such case are actuals in an instantiation, the generic unit in an
1712   --  instantiation, and pragma arguments.
1713
1714   procedure Analyze_Operator_Symbol (N : Node_Id) is
1715      Par : constant Node_Id := Parent (N);
1716
1717   begin
1718      if        (Nkind (Par) = N_Function_Call and then N = Name (Par))
1719        or else  Nkind (Par) = N_Function_Instantiation
1720        or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1721        or else (Nkind (Par) = N_Pragma_Argument_Association
1722                  and then not Is_Pragma_String_Literal (Par))
1723        or else  Nkind (Par) = N_Subprogram_Renaming_Declaration
1724        or else (Nkind (Par) = N_Attribute_Reference
1725                  and then Attribute_Name (Par) /= Name_Value)
1726      then
1727         Find_Direct_Name (N);
1728
1729      else
1730         Change_Operator_Symbol_To_String_Literal (N);
1731         Analyze (N);
1732      end if;
1733   end Analyze_Operator_Symbol;
1734
1735   -----------------------------------
1736   -- Analyze_Parameter_Association --
1737   -----------------------------------
1738
1739   procedure Analyze_Parameter_Association (N : Node_Id) is
1740   begin
1741      Analyze (Explicit_Actual_Parameter (N));
1742   end Analyze_Parameter_Association;
1743
1744   ----------------------------
1745   -- Analyze_Procedure_Call --
1746   ----------------------------
1747
1748   --  WARNING: This routine manages Ghost regions. Return statements must be
1749   --  replaced by gotos that jump to the end of the routine and restore the
1750   --  Ghost mode.
1751
1752   procedure Analyze_Procedure_Call (N : Node_Id) is
1753      procedure Analyze_Call_And_Resolve;
1754      --  Do Analyze and Resolve calls for procedure call. At the end, check
1755      --  for illegal order dependence.
1756      --  ??? where is the check for illegal order dependencies?
1757
1758      ------------------------------
1759      -- Analyze_Call_And_Resolve --
1760      ------------------------------
1761
1762      procedure Analyze_Call_And_Resolve is
1763      begin
1764         if Nkind (N) = N_Procedure_Call_Statement then
1765            Analyze_Call (N);
1766            Resolve (N, Standard_Void_Type);
1767         else
1768            Analyze (N);
1769         end if;
1770      end Analyze_Call_And_Resolve;
1771
1772      --  Local variables
1773
1774      Actuals : constant List_Id    := Parameter_Associations (N);
1775      Loc     : constant Source_Ptr := Sloc (N);
1776      P       : constant Node_Id    := Name (N);
1777
1778      Saved_GM  : constant Ghost_Mode_Type := Ghost_Mode;
1779      Saved_IGR : constant Node_Id         := Ignored_Ghost_Region;
1780      --  Save the Ghost-related attributes to restore on exit
1781
1782      Actual : Node_Id;
1783      New_N  : Node_Id;
1784
1785   --  Start of processing for Analyze_Procedure_Call
1786
1787   begin
1788      --  The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1789      --  a procedure call or an entry call. The prefix may denote an access
1790      --  to subprogram type, in which case an implicit dereference applies.
1791      --  If the prefix is an indexed component (without implicit dereference)
1792      --  then the construct denotes a call to a member of an entire family.
1793      --  If the prefix is a simple name, it may still denote a call to a
1794      --  parameterless member of an entry family. Resolution of these various
1795      --  interpretations is delicate.
1796
1797      --  Do not analyze machine code statements to avoid rejecting them in
1798      --  CodePeer mode.
1799
1800      if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1801         Set_Etype (P, Standard_Void_Type);
1802      else
1803         Analyze (P);
1804      end if;
1805
1806      --  If this is a call of the form Obj.Op, the call may have been analyzed
1807      --  and possibly rewritten into a block, in which case we are done.
1808
1809      if Analyzed (N) then
1810         return;
1811
1812      --  If there is an error analyzing the name (which may have been
1813      --  rewritten if the original call was in prefix notation) then error
1814      --  has been emitted already, mark node and return.
1815
1816      elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1817         Set_Etype (N, Any_Type);
1818         return;
1819      end if;
1820
1821      --  A procedure call is Ghost when its name denotes a Ghost procedure.
1822      --  Set the mode now to ensure that any nodes generated during analysis
1823      --  and expansion are properly marked as Ghost.
1824
1825      Mark_And_Set_Ghost_Procedure_Call (N);
1826
1827      --  Otherwise analyze the parameters
1828
1829      if Present (Actuals) then
1830         Actual := First (Actuals);
1831
1832         while Present (Actual) loop
1833            Analyze (Actual);
1834            Check_Parameterless_Call (Actual);
1835            Next (Actual);
1836         end loop;
1837      end if;
1838
1839      --  Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1840
1841      if Nkind (P) = N_Attribute_Reference
1842        and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1843                                             Name_Elab_Body,
1844                                             Name_Elab_Subp_Body)
1845      then
1846         if Present (Actuals) then
1847            Error_Msg_N
1848              ("no parameters allowed for this call", First (Actuals));
1849            goto Leave;
1850         end if;
1851
1852         Set_Etype (N, Standard_Void_Type);
1853         Set_Analyzed (N);
1854
1855      elsif Is_Entity_Name (P)
1856        and then Is_Record_Type (Etype (Entity (P)))
1857        and then Remote_AST_I_Dereference (P)
1858      then
1859         goto Leave;
1860
1861      elsif Is_Entity_Name (P)
1862        and then Ekind (Entity (P)) /= E_Entry_Family
1863      then
1864         if Is_Access_Type (Etype (P))
1865           and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1866           and then No (Actuals)
1867           and then Comes_From_Source (N)
1868         then
1869            Error_Msg_N ("missing explicit dereference in call", N);
1870         end if;
1871
1872         Analyze_Call_And_Resolve;
1873
1874      --  If the prefix is the simple name of an entry family, this is a
1875      --  parameterless call from within the task body itself.
1876
1877      elsif Is_Entity_Name (P)
1878        and then Nkind (P) = N_Identifier
1879        and then Ekind (Entity (P)) = E_Entry_Family
1880        and then Present (Actuals)
1881        and then No (Next (First (Actuals)))
1882      then
1883         --  Can be call to parameterless entry family. What appears to be the
1884         --  sole argument is in fact the entry index. Rewrite prefix of node
1885         --  accordingly. Source representation is unchanged by this
1886         --  transformation.
1887
1888         New_N :=
1889           Make_Indexed_Component (Loc,
1890             Prefix      =>
1891               Make_Selected_Component (Loc,
1892                 Prefix        => New_Occurrence_Of (Scope (Entity (P)), Loc),
1893                 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1894             Expressions => Actuals);
1895         Set_Name (N, New_N);
1896         Set_Etype (New_N, Standard_Void_Type);
1897         Set_Parameter_Associations (N, No_List);
1898         Analyze_Call_And_Resolve;
1899
1900      elsif Nkind (P) = N_Explicit_Dereference then
1901         if Ekind (Etype (P)) = E_Subprogram_Type then
1902            Analyze_Call_And_Resolve;
1903         else
1904            Error_Msg_N ("expect access to procedure in call", P);
1905         end if;
1906
1907      --  The name can be a selected component or an indexed component that
1908      --  yields an access to subprogram. Such a prefix is legal if the call
1909      --  has parameter associations.
1910
1911      elsif Is_Access_Type (Etype (P))
1912        and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1913      then
1914         if Present (Actuals) then
1915            Analyze_Call_And_Resolve;
1916         else
1917            Error_Msg_N ("missing explicit dereference in call ", N);
1918         end if;
1919
1920      --  If not an access to subprogram, then the prefix must resolve to the
1921      --  name of an entry, entry family, or protected operation.
1922
1923      --  For the case of a simple entry call, P is a selected component where
1924      --  the prefix is the task and the selector name is the entry. A call to
1925      --  a protected procedure will have the same syntax. If the protected
1926      --  object contains overloaded operations, the entity may appear as a
1927      --  function, the context will select the operation whose type is Void.
1928
1929      elsif Nkind (P) = N_Selected_Component
1930        and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1931                                                       E_Function,
1932                                                       E_Procedure)
1933      then
1934         --  When front-end inlining is enabled, as with SPARK_Mode, a call
1935         --  in prefix notation may still be missing its controlling argument,
1936         --  so perform the transformation now.
1937
1938         if SPARK_Mode = On and then In_Inlined_Body then
1939            declare
1940               Subp : constant Entity_Id := Entity (Selector_Name (P));
1941               Typ  : constant Entity_Id := Etype (Prefix (P));
1942
1943            begin
1944               if Is_Tagged_Type (Typ)
1945                 and then Present (First_Formal (Subp))
1946                 and then (Etype (First_Formal (Subp)) = Typ
1947                             or else
1948                           Class_Wide_Type (Etype (First_Formal (Subp))) = Typ)
1949                 and then Try_Object_Operation (P)
1950               then
1951                  return;
1952
1953               else
1954                  Analyze_Call_And_Resolve;
1955               end if;
1956            end;
1957
1958         else
1959            Analyze_Call_And_Resolve;
1960         end if;
1961
1962      elsif Nkind (P) = N_Selected_Component
1963        and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1964        and then Present (Actuals)
1965        and then No (Next (First (Actuals)))
1966      then
1967         --  Can be call to parameterless entry family. What appears to be the
1968         --  sole argument is in fact the entry index. Rewrite prefix of node
1969         --  accordingly. Source representation is unchanged by this
1970         --  transformation.
1971
1972         New_N :=
1973           Make_Indexed_Component (Loc,
1974             Prefix      => New_Copy (P),
1975             Expressions => Actuals);
1976         Set_Name (N, New_N);
1977         Set_Etype (New_N, Standard_Void_Type);
1978         Set_Parameter_Associations (N, No_List);
1979         Analyze_Call_And_Resolve;
1980
1981      --  For the case of a reference to an element of an entry family, P is
1982      --  an indexed component whose prefix is a selected component (task and
1983      --  entry family), and whose index is the entry family index.
1984
1985      elsif Nkind (P) = N_Indexed_Component
1986        and then Nkind (Prefix (P)) = N_Selected_Component
1987        and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1988      then
1989         Analyze_Call_And_Resolve;
1990
1991      --  If the prefix is the name of an entry family, it is a call from
1992      --  within the task body itself.
1993
1994      elsif Nkind (P) = N_Indexed_Component
1995        and then Nkind (Prefix (P)) = N_Identifier
1996        and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1997      then
1998         New_N :=
1999           Make_Selected_Component (Loc,
2000             Prefix        =>
2001               New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
2002             Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
2003         Rewrite (Prefix (P), New_N);
2004         Analyze (P);
2005         Analyze_Call_And_Resolve;
2006
2007      --  In Ada 2012. a qualified expression is a name, but it cannot be a
2008      --  procedure name, so the construct can only be a qualified expression.
2009
2010      elsif Nkind (P) = N_Qualified_Expression
2011        and then Ada_Version >= Ada_2012
2012      then
2013         Rewrite (N, Make_Code_Statement (Loc, Expression => P));
2014         Analyze (N);
2015
2016      --  Anything else is an error
2017
2018      else
2019         Error_Msg_N ("invalid procedure or entry call", N);
2020      end if;
2021
2022   <<Leave>>
2023      Restore_Ghost_Region (Saved_GM, Saved_IGR);
2024   end Analyze_Procedure_Call;
2025
2026   ------------------------------
2027   -- Analyze_Return_Statement --
2028   ------------------------------
2029
2030   procedure Analyze_Return_Statement (N : Node_Id) is
2031      pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
2032                                  N_Simple_Return_Statement));
2033
2034      Returns_Object : constant Boolean :=
2035                         Nkind (N) = N_Extended_Return_Statement
2036                           or else
2037                             (Nkind (N) = N_Simple_Return_Statement
2038                               and then Present (Expression (N)));
2039      --  True if we're returning something; that is, "return <expression>;"
2040      --  or "return Result : T [:= ...]". False for "return;". Used for error
2041      --  checking: If Returns_Object is True, N should apply to a function
2042      --  body; otherwise N should apply to a procedure body, entry body,
2043      --  accept statement, or extended return statement.
2044
2045      function Find_What_It_Applies_To return Entity_Id;
2046      --  Find the entity representing the innermost enclosing body, accept
2047      --  statement, or extended return statement. If the result is a callable
2048      --  construct or extended return statement, then this will be the value
2049      --  of the Return_Applies_To attribute. Otherwise, the program is
2050      --  illegal. See RM-6.5(4/2).
2051
2052      -----------------------------
2053      -- Find_What_It_Applies_To --
2054      -----------------------------
2055
2056      function Find_What_It_Applies_To return Entity_Id is
2057         Result : Entity_Id := Empty;
2058
2059      begin
2060         --  Loop outward through the Scope_Stack, skipping blocks, loops,
2061         --  and postconditions.
2062
2063         for J in reverse 0 .. Scope_Stack.Last loop
2064            Result := Scope_Stack.Table (J).Entity;
2065            exit when not Ekind_In (Result, E_Block, E_Loop)
2066              and then Chars (Result) /= Name_uPostconditions;
2067         end loop;
2068
2069         pragma Assert (Present (Result));
2070         return Result;
2071      end Find_What_It_Applies_To;
2072
2073      --  Local declarations
2074
2075      Scope_Id   : constant Entity_Id   := Find_What_It_Applies_To;
2076      Kind       : constant Entity_Kind := Ekind (Scope_Id);
2077      Loc        : constant Source_Ptr  := Sloc (N);
2078      Stm_Entity : constant Entity_Id   :=
2079                     New_Internal_Entity
2080                       (E_Return_Statement, Current_Scope, Loc, 'R');
2081
2082   --  Start of processing for Analyze_Return_Statement
2083
2084   begin
2085      Set_Return_Statement_Entity (N, Stm_Entity);
2086
2087      Set_Etype (Stm_Entity, Standard_Void_Type);
2088      Set_Return_Applies_To (Stm_Entity, Scope_Id);
2089
2090      --  Place Return entity on scope stack, to simplify enforcement of 6.5
2091      --  (4/2): an inner return statement will apply to this extended return.
2092
2093      if Nkind (N) = N_Extended_Return_Statement then
2094         Push_Scope (Stm_Entity);
2095      end if;
2096
2097      --  Check that pragma No_Return is obeyed. Don't complain about the
2098      --  implicitly-generated return that is placed at the end.
2099
2100      if No_Return (Scope_Id) and then Comes_From_Source (N) then
2101         Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
2102      end if;
2103
2104      --  Warn on any unassigned OUT parameters if in procedure
2105
2106      if Ekind (Scope_Id) = E_Procedure then
2107         Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
2108      end if;
2109
2110      --  Check that functions return objects, and other things do not
2111
2112      if Kind = E_Function or else Kind = E_Generic_Function then
2113         if not Returns_Object then
2114            Error_Msg_N ("missing expression in return from function", N);
2115         end if;
2116
2117      elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
2118         if Returns_Object then
2119            Error_Msg_N ("procedure cannot return value (use function)", N);
2120         end if;
2121
2122      elsif Kind = E_Entry or else Kind = E_Entry_Family then
2123         if Returns_Object then
2124            if Is_Protected_Type (Scope (Scope_Id)) then
2125               Error_Msg_N ("entry body cannot return value", N);
2126            else
2127               Error_Msg_N ("accept statement cannot return value", N);
2128            end if;
2129         end if;
2130
2131      elsif Kind = E_Return_Statement then
2132
2133         --  We are nested within another return statement, which must be an
2134         --  extended_return_statement.
2135
2136         if Returns_Object then
2137            if Nkind (N) = N_Extended_Return_Statement then
2138               Error_Msg_N
2139                 ("extended return statement cannot be nested (use `RETURN;`)",
2140                  N);
2141
2142            --  Case of a simple return statement with a value inside extended
2143            --  return statement.
2144
2145            else
2146               Error_Msg_N
2147                 ("return nested in extended return statement cannot return "
2148                  & "value (use `RETURN;`)", N);
2149            end if;
2150         end if;
2151
2152      else
2153         Error_Msg_N ("illegal context for return statement", N);
2154      end if;
2155
2156      if Ekind_In (Kind, E_Function, E_Generic_Function) then
2157         Analyze_Function_Return (N);
2158
2159      elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2160         Set_Return_Present (Scope_Id);
2161      end if;
2162
2163      if Nkind (N) = N_Extended_Return_Statement then
2164         End_Scope;
2165      end if;
2166
2167      Kill_Current_Values (Last_Assignment_Only => True);
2168      Check_Unreachable_Code (N);
2169
2170      Analyze_Dimension (N);
2171   end Analyze_Return_Statement;
2172
2173   -------------------------------------
2174   -- Analyze_Simple_Return_Statement --
2175   -------------------------------------
2176
2177   procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2178   begin
2179      if Present (Expression (N)) then
2180         Mark_Coextensions (N, Expression (N));
2181      end if;
2182
2183      Analyze_Return_Statement (N);
2184   end Analyze_Simple_Return_Statement;
2185
2186   -------------------------
2187   -- Analyze_Return_Type --
2188   -------------------------
2189
2190   procedure Analyze_Return_Type (N : Node_Id) is
2191      Designator : constant Entity_Id := Defining_Entity (N);
2192      Typ        : Entity_Id := Empty;
2193
2194   begin
2195      --  Normal case where result definition does not indicate an error
2196
2197      if Result_Definition (N) /= Error then
2198         if Nkind (Result_Definition (N)) = N_Access_Definition then
2199            Check_SPARK_05_Restriction
2200              ("access result is not allowed", Result_Definition (N));
2201
2202            --  Ada 2005 (AI-254): Handle anonymous access to subprograms
2203
2204            declare
2205               AD : constant Node_Id :=
2206                      Access_To_Subprogram_Definition (Result_Definition (N));
2207            begin
2208               if Present (AD) and then Protected_Present (AD) then
2209                  Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2210               else
2211                  Typ := Access_Definition (N, Result_Definition (N));
2212               end if;
2213            end;
2214
2215            Set_Parent (Typ, Result_Definition (N));
2216            Set_Is_Local_Anonymous_Access (Typ);
2217            Set_Etype (Designator, Typ);
2218
2219            --  Ada 2005 (AI-231): Ensure proper usage of null exclusion
2220
2221            Null_Exclusion_Static_Checks (N);
2222
2223         --  Subtype_Mark case
2224
2225         else
2226            Find_Type (Result_Definition (N));
2227            Typ := Entity (Result_Definition (N));
2228            Set_Etype (Designator, Typ);
2229
2230            --  Unconstrained array as result is not allowed in SPARK
2231
2232            if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2233               Check_SPARK_05_Restriction
2234                 ("returning an unconstrained array is not allowed",
2235                  Result_Definition (N));
2236            end if;
2237
2238            --  Ada 2005 (AI-231): Ensure proper usage of null exclusion
2239
2240            Null_Exclusion_Static_Checks (N);
2241
2242            --  If a null exclusion is imposed on the result type, then create
2243            --  a null-excluding itype (an access subtype) and use it as the
2244            --  function's Etype. Note that the null exclusion checks are done
2245            --  right before this, because they don't get applied to types that
2246            --  do not come from source.
2247
2248            if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2249               Set_Etype  (Designator,
2250                 Create_Null_Excluding_Itype
2251                  (T           => Typ,
2252                   Related_Nod => N,
2253                   Scope_Id    => Scope (Current_Scope)));
2254
2255               --  The new subtype must be elaborated before use because
2256               --  it is visible outside of the function. However its base
2257               --  type may not be frozen yet, so the reference that will
2258               --  force elaboration must be attached to the freezing of
2259               --  the base type.
2260
2261               --  If the return specification appears on a proper body,
2262               --  the subtype will have been created already on the spec.
2263
2264               if Is_Frozen (Typ) then
2265                  if Nkind (Parent (N)) = N_Subprogram_Body
2266                    and then Nkind (Parent (Parent (N))) = N_Subunit
2267                  then
2268                     null;
2269                  else
2270                     Build_Itype_Reference (Etype (Designator), Parent (N));
2271                  end if;
2272
2273               else
2274                  Ensure_Freeze_Node (Typ);
2275
2276                  declare
2277                     IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2278                  begin
2279                     Set_Itype (IR, Etype (Designator));
2280                     Append_Freeze_Actions (Typ, New_List (IR));
2281                  end;
2282               end if;
2283
2284            else
2285               Set_Etype (Designator, Typ);
2286            end if;
2287
2288            if Ekind (Typ) = E_Incomplete_Type
2289              or else (Is_Class_Wide_Type (Typ)
2290                        and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2291            then
2292               --  AI05-0151: Tagged incomplete types are allowed in all formal
2293               --  parts. Untagged incomplete types are not allowed in bodies.
2294               --  As a consequence, limited views cannot appear in a basic
2295               --  declaration that is itself within a body, because there is
2296               --  no point at which the non-limited view will become visible.
2297
2298               if Ada_Version >= Ada_2012 then
2299                  if From_Limited_With (Typ) and then In_Package_Body then
2300                     Error_Msg_NE
2301                       ("invalid use of incomplete type&",
2302                        Result_Definition (N), Typ);
2303
2304                  --  The return type of a subprogram body cannot be of a
2305                  --  formal incomplete type.
2306
2307                  elsif Is_Generic_Type (Typ)
2308                    and then Nkind (Parent (N)) = N_Subprogram_Body
2309                  then
2310                     Error_Msg_N
2311                      ("return type cannot be a formal incomplete type",
2312                        Result_Definition (N));
2313
2314                  elsif Is_Class_Wide_Type (Typ)
2315                    and then Is_Generic_Type (Root_Type (Typ))
2316                    and then Nkind (Parent (N)) = N_Subprogram_Body
2317                  then
2318                     Error_Msg_N
2319                      ("return type cannot be a formal incomplete type",
2320                        Result_Definition (N));
2321
2322                  elsif Is_Tagged_Type (Typ) then
2323                     null;
2324
2325                  --  Use is legal in a thunk generated for an operation
2326                  --  inherited from a progenitor.
2327
2328                  elsif Is_Thunk (Designator)
2329                    and then Present (Non_Limited_View (Typ))
2330                  then
2331                     null;
2332
2333                  elsif Nkind (Parent (N)) = N_Subprogram_Body
2334                    or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2335                                                           N_Entry_Body)
2336                  then
2337                     Error_Msg_NE
2338                       ("invalid use of untagged incomplete type&",
2339                          Designator, Typ);
2340                  end if;
2341
2342                  --  The type must be completed in the current package. This
2343                  --  is checked at the end of the package declaration when
2344                  --  Taft-amendment types are identified. If the return type
2345                  --  is class-wide, there is no required check, the type can
2346                  --  be a bona fide TAT.
2347
2348                  if Ekind (Scope (Current_Scope)) = E_Package
2349                    and then In_Private_Part (Scope (Current_Scope))
2350                    and then not Is_Class_Wide_Type (Typ)
2351                  then
2352                     Append_Elmt (Designator, Private_Dependents (Typ));
2353                  end if;
2354
2355               else
2356                  Error_Msg_NE
2357                    ("invalid use of incomplete type&", Designator, Typ);
2358               end if;
2359            end if;
2360         end if;
2361
2362      --  Case where result definition does indicate an error
2363
2364      else
2365         Set_Etype (Designator, Any_Type);
2366      end if;
2367   end Analyze_Return_Type;
2368
2369   -----------------------------
2370   -- Analyze_Subprogram_Body --
2371   -----------------------------
2372
2373   procedure Analyze_Subprogram_Body (N : Node_Id) is
2374      Loc       : constant Source_Ptr := Sloc (N);
2375      Body_Spec : constant Node_Id    := Specification (N);
2376      Body_Id   : constant Entity_Id  := Defining_Entity (Body_Spec);
2377
2378   begin
2379      if Debug_Flag_C then
2380         Write_Str ("==> subprogram body ");
2381         Write_Name (Chars (Body_Id));
2382         Write_Str (" from ");
2383         Write_Location (Loc);
2384         Write_Eol;
2385         Indent;
2386      end if;
2387
2388      Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2389
2390      --  The real work is split out into the helper, so it can do "return;"
2391      --  without skipping the debug output:
2392
2393      Analyze_Subprogram_Body_Helper (N);
2394
2395      if Debug_Flag_C then
2396         Outdent;
2397         Write_Str ("<== subprogram body ");
2398         Write_Name (Chars (Body_Id));
2399         Write_Str (" from ");
2400         Write_Location (Loc);
2401         Write_Eol;
2402      end if;
2403   end Analyze_Subprogram_Body;
2404
2405   ------------------------------------
2406   -- Analyze_Subprogram_Body_Helper --
2407   ------------------------------------
2408
2409   --  This procedure is called for regular subprogram bodies, generic bodies,
2410   --  and for subprogram stubs of both kinds. In the case of stubs, only the
2411   --  specification matters, and is used to create a proper declaration for
2412   --  the subprogram, or to perform conformance checks.
2413
2414   --  WARNING: This routine manages Ghost regions. Return statements must be
2415   --  replaced by gotos that jump to the end of the routine and restore the
2416   --  Ghost mode.
2417
2418   procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2419      Body_Spec : Node_Id             := Specification (N);
2420      Body_Id   : Entity_Id           := Defining_Entity (Body_Spec);
2421      Loc       : constant Source_Ptr := Sloc (N);
2422      Prev_Id   : constant Entity_Id  := Current_Entity_In_Scope (Body_Id);
2423
2424      Conformant : Boolean;
2425      Desig_View : Entity_Id := Empty;
2426      Exch_Views : Elist_Id  := No_Elist;
2427      HSS        : Node_Id;
2428      Mask_Types : Elist_Id  := No_Elist;
2429      Prot_Typ   : Entity_Id := Empty;
2430      Spec_Decl  : Node_Id   := Empty;
2431      Spec_Id    : Entity_Id;
2432
2433      Last_Real_Spec_Entity : Entity_Id := Empty;
2434      --  When we analyze a separate spec, the entity chain ends up containing
2435      --  the formals, as well as any itypes generated during analysis of the
2436      --  default expressions for parameters, or the arguments of associated
2437      --  precondition/postcondition pragmas (which are analyzed in the context
2438      --  of the spec since they have visibility on formals).
2439      --
2440      --  These entities belong with the spec and not the body. However we do
2441      --  the analysis of the body in the context of the spec (again to obtain
2442      --  visibility to the formals), and all the entities generated during
2443      --  this analysis end up also chained to the entity chain of the spec.
2444      --  But they really belong to the body, and there is circuitry to move
2445      --  them from the spec to the body.
2446      --
2447      --  However, when we do this move, we don't want to move the real spec
2448      --  entities (first para above) to the body. The Last_Real_Spec_Entity
2449      --  variable points to the last real spec entity, so we only move those
2450      --  chained beyond that point. It is initialized to Empty to deal with
2451      --  the case where there is no separate spec.
2452
2453      function Body_Has_Contract return Boolean;
2454      --  Check whether unanalyzed body has an aspect or pragma that may
2455      --  generate a SPARK contract.
2456
2457      function Body_Has_SPARK_Mode_On return Boolean;
2458      --  Check whether SPARK_Mode On applies to the subprogram body, either
2459      --  because it is specified directly on the body, or because it is
2460      --  inherited from the enclosing subprogram or package.
2461
2462      procedure Build_Subprogram_Declaration;
2463      --  Create a matching subprogram declaration for subprogram body N
2464
2465      procedure Check_Anonymous_Return;
2466      --  Ada 2005: if a function returns an access type that denotes a task,
2467      --  or a type that contains tasks, we must create a master entity for
2468      --  the anonymous type, which typically will be used in an allocator
2469      --  in the body of the function.
2470
2471      procedure Check_Inline_Pragma (Spec : in out Node_Id);
2472      --  Look ahead to recognize a pragma that may appear after the body.
2473      --  If there is a previous spec, check that it appears in the same
2474      --  declarative part. If the pragma is Inline_Always, perform inlining
2475      --  unconditionally, otherwise only if Front_End_Inlining is requested.
2476      --  If the body acts as a spec, and inlining is required, we create a
2477      --  subprogram declaration for it, in order to attach the body to inline.
2478      --  If pragma does not appear after the body, check whether there is
2479      --  an inline pragma before any local declarations.
2480
2481      procedure Check_Missing_Return;
2482      --  Checks for a function with a no return statements, and also performs
2483      --  the warning checks implemented by Check_Returns. In formal mode, also
2484      --  verify that a function ends with a RETURN and that a procedure does
2485      --  not contain any RETURN.
2486
2487      function Disambiguate_Spec return Entity_Id;
2488      --  When a primitive is declared between the private view and the full
2489      --  view of a concurrent type which implements an interface, a special
2490      --  mechanism is used to find the corresponding spec of the primitive
2491      --  body.
2492
2493      function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2494      --  Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2495      --  incomplete types coming from a limited context and replace their
2496      --  limited views with the non-limited ones. Return the list of changes
2497      --  to be used to undo the transformation.
2498
2499      function Is_Private_Concurrent_Primitive
2500        (Subp_Id : Entity_Id) return Boolean;
2501      --  Determine whether subprogram Subp_Id is a primitive of a concurrent
2502      --  type that implements an interface and has a private view.
2503
2504      function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2505      --  N is the body generated for an expression function that is not a
2506      --  completion and Spec_Id the defining entity of its spec. Mark all
2507      --  the not-yet-frozen types referenced by the simple return statement
2508      --  of the function as formally frozen.
2509
2510      procedure Restore_Limited_Views (Restore_List : Elist_Id);
2511      --  Undo the transformation done by Exchange_Limited_Views.
2512
2513      procedure Set_Trivial_Subprogram (N : Node_Id);
2514      --  Sets the Is_Trivial_Subprogram flag in both spec and body of the
2515      --  subprogram whose body is being analyzed. N is the statement node
2516      --  causing the flag to be set, if the following statement is a return
2517      --  of an entity, we mark the entity as set in source to suppress any
2518      --  warning on the stylized use of function stubs with a dummy return.
2519
2520      procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2521      --  Undo the transformation done by Mask_Unfrozen_Types
2522
2523      procedure Verify_Overriding_Indicator;
2524      --  If there was a previous spec, the entity has been entered in the
2525      --  current scope previously. If the body itself carries an overriding
2526      --  indicator, check that it is consistent with the known status of the
2527      --  entity.
2528
2529      -----------------------
2530      -- Body_Has_Contract --
2531      -----------------------
2532
2533      function Body_Has_Contract return Boolean is
2534         Decls : constant List_Id := Declarations (N);
2535         Item  : Node_Id;
2536
2537      begin
2538         --  Check for aspects that may generate a contract
2539
2540         if Present (Aspect_Specifications (N)) then
2541            Item := First (Aspect_Specifications (N));
2542            while Present (Item) loop
2543               if Is_Subprogram_Contract_Annotation (Item) then
2544                  return True;
2545               end if;
2546
2547               Next (Item);
2548            end loop;
2549         end if;
2550
2551         --  Check for pragmas that may generate a contract
2552
2553         if Present (Decls) then
2554            Item := First (Decls);
2555            while Present (Item) loop
2556               if Nkind (Item) = N_Pragma
2557                 and then Is_Subprogram_Contract_Annotation (Item)
2558               then
2559                  return True;
2560               end if;
2561
2562               Next (Item);
2563            end loop;
2564         end if;
2565
2566         return False;
2567      end Body_Has_Contract;
2568
2569      ----------------------------
2570      -- Body_Has_SPARK_Mode_On --
2571      ----------------------------
2572
2573      function Body_Has_SPARK_Mode_On return Boolean is
2574         Decls : constant List_Id := Declarations (N);
2575         Item  : Node_Id;
2576
2577      begin
2578         --  Check for SPARK_Mode aspect
2579
2580         if Present (Aspect_Specifications (N)) then
2581            Item := First (Aspect_Specifications (N));
2582            while Present (Item) loop
2583               if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2584                  return Get_SPARK_Mode_From_Annotation (Item) = On;
2585               end if;
2586
2587               Next (Item);
2588            end loop;
2589         end if;
2590
2591         --  Check for SPARK_Mode pragma
2592
2593         if Present (Decls) then
2594            Item := First (Decls);
2595            while Present (Item) loop
2596
2597               --  Pragmas that apply to a subprogram body are usually grouped
2598               --  together. Look for a potential pragma SPARK_Mode among them.
2599
2600               if Nkind (Item) = N_Pragma then
2601                  if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2602                     return Get_SPARK_Mode_From_Annotation (Item) = On;
2603                  end if;
2604
2605               --  Otherwise the first non-pragma declarative item terminates
2606               --  the region where pragma SPARK_Mode may appear.
2607
2608               else
2609                  exit;
2610               end if;
2611
2612               Next (Item);
2613            end loop;
2614         end if;
2615
2616         --  Otherwise, the applicable SPARK_Mode is inherited from the
2617         --  enclosing subprogram or package.
2618
2619         return SPARK_Mode = On;
2620      end Body_Has_SPARK_Mode_On;
2621
2622      ----------------------------------
2623      -- Build_Subprogram_Declaration --
2624      ----------------------------------
2625
2626      procedure Build_Subprogram_Declaration is
2627         procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2628         --  Relocate certain categorization pragmas from the declarative list
2629         --  of subprogram body From and insert them after node To. The pragmas
2630         --  in question are:
2631         --    Ghost
2632         --    Volatile_Function
2633         --  Also copy pragma SPARK_Mode if present in the declarative list
2634         --  of subprogram body From and insert it after node To. This pragma
2635         --  should not be moved, as it applies to the body too.
2636
2637         ------------------
2638         -- Move_Pragmas --
2639         ------------------
2640
2641         procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2642            Decl      : Node_Id;
2643            Next_Decl : Node_Id;
2644
2645         begin
2646            pragma Assert (Nkind (From) = N_Subprogram_Body);
2647
2648            --  The destination node must be part of a list, as the pragmas are
2649            --  inserted after it.
2650
2651            pragma Assert (Is_List_Member (To));
2652
2653            --  Inspect the declarations of the subprogram body looking for
2654            --  specific pragmas.
2655
2656            Decl := First (Declarations (N));
2657            while Present (Decl) loop
2658               Next_Decl := Next (Decl);
2659
2660               if Nkind (Decl) = N_Pragma then
2661                  if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2662                     Insert_After (To, New_Copy_Tree (Decl));
2663
2664                  elsif Nam_In (Pragma_Name_Unmapped (Decl),
2665                                Name_Ghost,
2666                                Name_Volatile_Function)
2667                  then
2668                     Remove (Decl);
2669                     Insert_After (To, Decl);
2670                  end if;
2671               end if;
2672
2673               Decl := Next_Decl;
2674            end loop;
2675         end Move_Pragmas;
2676
2677         --  Local variables
2678
2679         Decl      : Node_Id;
2680         Subp_Decl : Node_Id;
2681
2682      --  Start of processing for Build_Subprogram_Declaration
2683
2684      begin
2685         --  Create a matching subprogram spec using the profile of the body.
2686         --  The structure of the tree is identical, but has new entities for
2687         --  the defining unit name and formal parameters.
2688
2689         Subp_Decl :=
2690           Make_Subprogram_Declaration (Loc,
2691             Specification => Copy_Subprogram_Spec (Body_Spec));
2692         Set_Comes_From_Source (Subp_Decl, True);
2693
2694         --  Also mark parameters as coming from source
2695
2696         if Present (Parameter_Specifications (Specification (Subp_Decl))) then
2697            declare
2698               Form : Entity_Id;
2699            begin
2700               Form :=
2701                 First (Parameter_Specifications (Specification (Subp_Decl)));
2702
2703               while Present (Form) loop
2704                  Set_Comes_From_Source (Defining_Identifier (Form), True);
2705                  Next (Form);
2706               end loop;
2707            end;
2708         end if;
2709
2710         --  Relocate the aspects and relevant pragmas from the subprogram body
2711         --  to the generated spec because it acts as the initial declaration.
2712
2713         Insert_Before (N, Subp_Decl);
2714         Move_Aspects (N, To => Subp_Decl);
2715         Move_Pragmas (N, To => Subp_Decl);
2716
2717         --  Ensure that the generated corresponding spec and original body
2718         --  share the same SPARK_Mode pragma or aspect. As a result, both have
2719         --  the same SPARK_Mode attributes, and the global SPARK_Mode value is
2720         --  correctly set for local subprograms.
2721
2722         Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2723
2724         Analyze (Subp_Decl);
2725
2726         --  Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2727         --  the body since the expander may generate calls using that entity.
2728         --  Required to ensure that Expand_Call rewrites calls to this
2729         --  function by calls to the built procedure.
2730
2731         if Modify_Tree_For_C
2732           and then Nkind (Body_Spec) = N_Function_Specification
2733           and then
2734              Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2735         then
2736            Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2737            Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2738              Corresponding_Procedure
2739                (Defining_Entity (Specification (Subp_Decl))));
2740         end if;
2741
2742         --  Analyze any relocated source pragmas or pragmas created for aspect
2743         --  specifications.
2744
2745         Decl := Next (Subp_Decl);
2746         while Present (Decl) loop
2747
2748            --  Stop the search for pragmas once the body has been reached as
2749            --  this terminates the region where pragmas may appear.
2750
2751            if Decl = N then
2752               exit;
2753
2754            elsif Nkind (Decl) = N_Pragma then
2755               Analyze (Decl);
2756            end if;
2757
2758            Next (Decl);
2759         end loop;
2760
2761         Spec_Id := Defining_Entity (Subp_Decl);
2762         Set_Corresponding_Spec (N, Spec_Id);
2763
2764         --  Mark the generated spec as a source construct to ensure that all
2765         --  calls to it are properly registered in ALI files for GNATprove.
2766
2767         Set_Comes_From_Source (Spec_Id, True);
2768
2769         --  Ensure that the specs of the subprogram declaration and its body
2770         --  are identical, otherwise they will appear non-conformant due to
2771         --  rewritings in the default values of formal parameters.
2772
2773         Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2774         Set_Specification (N, Body_Spec);
2775         Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2776      end Build_Subprogram_Declaration;
2777
2778      ----------------------------
2779      -- Check_Anonymous_Return --
2780      ----------------------------
2781
2782      procedure Check_Anonymous_Return is
2783         Decl : Node_Id;
2784         Par  : Node_Id;
2785         Scop : Entity_Id;
2786
2787      begin
2788         if Present (Spec_Id) then
2789            Scop := Spec_Id;
2790         else
2791            Scop := Body_Id;
2792         end if;
2793
2794         if Ekind (Scop) = E_Function
2795           and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2796           and then not Is_Thunk (Scop)
2797
2798            --  Skip internally built functions which handle the case of
2799            --  a null access (see Expand_Interface_Conversion)
2800
2801           and then not (Is_Interface (Designated_Type (Etype (Scop)))
2802                          and then not Comes_From_Source (Parent (Scop)))
2803
2804           and then (Has_Task (Designated_Type (Etype (Scop)))
2805                      or else
2806                        (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2807                           and then
2808                         Is_Limited_Record (Designated_Type (Etype (Scop)))))
2809           and then Expander_Active
2810
2811           --  Avoid cases with no tasking support
2812
2813           and then RTE_Available (RE_Current_Master)
2814           and then not Restriction_Active (No_Task_Hierarchy)
2815         then
2816            Decl :=
2817              Make_Object_Declaration (Loc,
2818                Defining_Identifier =>
2819                  Make_Defining_Identifier (Loc, Name_uMaster),
2820                Constant_Present => True,
2821                Object_Definition =>
2822                  New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2823                Expression =>
2824                  Make_Explicit_Dereference (Loc,
2825                    New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2826
2827            if Present (Declarations (N)) then
2828               Prepend (Decl, Declarations (N));
2829            else
2830               Set_Declarations (N, New_List (Decl));
2831            end if;
2832
2833            Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2834            Set_Has_Master_Entity (Scop);
2835
2836            --  Now mark the containing scope as a task master
2837
2838            Par := N;
2839            while Nkind (Par) /= N_Compilation_Unit loop
2840               Par := Parent (Par);
2841               pragma Assert (Present (Par));
2842
2843               --  If we fall off the top, we are at the outer level, and
2844               --  the environment task is our effective master, so nothing
2845               --  to mark.
2846
2847               if Nkind_In
2848                   (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2849               then
2850                  Set_Is_Task_Master (Par, True);
2851                  exit;
2852               end if;
2853            end loop;
2854         end if;
2855      end Check_Anonymous_Return;
2856
2857      -------------------------
2858      -- Check_Inline_Pragma --
2859      -------------------------
2860
2861      procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2862         Prag  : Node_Id;
2863         Plist : List_Id;
2864
2865         function Is_Inline_Pragma (N : Node_Id) return Boolean;
2866         --  True when N is a pragma Inline or Inline_Always that applies
2867         --  to this subprogram.
2868
2869         -----------------------
2870         --  Is_Inline_Pragma --
2871         -----------------------
2872
2873         function Is_Inline_Pragma (N : Node_Id) return Boolean is
2874         begin
2875            if Nkind (N) = N_Pragma
2876                and then
2877                  (Pragma_Name_Unmapped (N) = Name_Inline_Always
2878                    or else (Pragma_Name_Unmapped (N) = Name_Inline
2879                      and then
2880                        (Front_End_Inlining or else Optimization_Level > 0)))
2881               and then Present (Pragma_Argument_Associations (N))
2882            then
2883               declare
2884                  Pragma_Arg : Node_Id :=
2885                    Expression (First (Pragma_Argument_Associations (N)));
2886               begin
2887                  if Nkind (Pragma_Arg) = N_Selected_Component then
2888                     Pragma_Arg := Selector_Name (Pragma_Arg);
2889                  end if;
2890
2891                  return Chars (Pragma_Arg) = Chars (Body_Id);
2892               end;
2893
2894            else
2895               return False;
2896            end if;
2897         end Is_Inline_Pragma;
2898
2899      --  Start of processing for Check_Inline_Pragma
2900
2901      begin
2902         if not Expander_Active then
2903            return;
2904         end if;
2905
2906         if Is_List_Member (N)
2907           and then Present (Next (N))
2908           and then Is_Inline_Pragma (Next (N))
2909         then
2910            Prag := Next (N);
2911
2912         elsif Nkind (N) /= N_Subprogram_Body_Stub
2913           and then Present (Declarations (N))
2914           and then Is_Inline_Pragma (First (Declarations (N)))
2915         then
2916            Prag := First (Declarations (N));
2917
2918         else
2919            Prag := Empty;
2920         end if;
2921
2922         if Present (Prag) then
2923            if Present (Spec_Id) then
2924               if Is_List_Member (N)
2925                 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2926                 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2927               then
2928                  Analyze (Prag);
2929               end if;
2930
2931            else
2932               --  Create a subprogram declaration, to make treatment uniform.
2933               --  Make the sloc of the subprogram name that of the entity in
2934               --  the body, so that style checks find identical strings.
2935
2936               declare
2937                  Subp : constant Entity_Id :=
2938                           Make_Defining_Identifier
2939                             (Sloc (Body_Id), Chars (Body_Id));
2940                  Decl : constant Node_Id :=
2941                           Make_Subprogram_Declaration (Loc,
2942                             Specification =>
2943                               New_Copy_Tree (Specification (N)));
2944
2945               begin
2946                  --  Link the body and the generated spec
2947
2948                  Set_Corresponding_Body (Decl, Body_Id);
2949                  Set_Corresponding_Spec (N, Subp);
2950
2951                  Set_Defining_Unit_Name (Specification (Decl), Subp);
2952
2953                  --  To ensure proper coverage when body is inlined, indicate
2954                  --  whether the subprogram comes from source.
2955
2956                  Set_Comes_From_Source (Subp, Comes_From_Source (N));
2957
2958                  if Present (First_Formal (Body_Id)) then
2959                     Plist := Copy_Parameter_List (Body_Id);
2960                     Set_Parameter_Specifications
2961                       (Specification (Decl), Plist);
2962                  end if;
2963
2964                  --  Move aspects to the new spec
2965
2966                  if Has_Aspects (N) then
2967                     Move_Aspects (N, To => Decl);
2968                  end if;
2969
2970                  Insert_Before (N, Decl);
2971                  Analyze (Decl);
2972                  Analyze (Prag);
2973                  Set_Has_Pragma_Inline (Subp);
2974
2975                  if Pragma_Name (Prag) = Name_Inline_Always then
2976                     Set_Is_Inlined (Subp);
2977                     Set_Has_Pragma_Inline_Always (Subp);
2978                  end if;
2979
2980                  --  Prior to copying the subprogram body to create a template
2981                  --  for it for subsequent inlining, remove the pragma from
2982                  --  the current body so that the copy that will produce the
2983                  --  new body will start from a completely unanalyzed tree.
2984
2985                  if Nkind (Parent (Prag)) = N_Subprogram_Body then
2986                     Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2987                  end if;
2988
2989                  Spec := Subp;
2990               end;
2991            end if;
2992         end if;
2993      end Check_Inline_Pragma;
2994
2995      --------------------------
2996      -- Check_Missing_Return --
2997      --------------------------
2998
2999      procedure Check_Missing_Return is
3000         Id          : Entity_Id;
3001         Missing_Ret : Boolean;
3002
3003      begin
3004         if Nkind (Body_Spec) = N_Function_Specification then
3005            if Present (Spec_Id) then
3006               Id := Spec_Id;
3007            else
3008               Id := Body_Id;
3009            end if;
3010
3011            if Return_Present (Id) then
3012               Check_Returns (HSS, 'F', Missing_Ret);
3013
3014               if Missing_Ret then
3015                  Set_Has_Missing_Return (Id);
3016               end if;
3017
3018            --  Within a premature instantiation of a package with no body, we
3019            --  build completions of the functions therein, with a Raise
3020            --  statement. No point in complaining about a missing return in
3021            --  this case.
3022
3023            elsif Ekind (Id) = E_Function
3024              and then In_Instance
3025              and then Present (Statements (HSS))
3026              and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
3027            then
3028               null;
3029
3030            elsif Is_Generic_Subprogram (Id)
3031              or else not Is_Machine_Code_Subprogram (Id)
3032            then
3033               Error_Msg_N ("missing RETURN statement in function body", N);
3034            end if;
3035
3036         --  If procedure with No_Return, check returns
3037
3038         elsif Nkind (Body_Spec) = N_Procedure_Specification then
3039            if Present (Spec_Id) then
3040               Id := Spec_Id;
3041            else
3042               Id := Body_Id;
3043            end if;
3044
3045            if No_Return (Id) then
3046               Check_Returns (HSS, 'P', Missing_Ret, Id);
3047            end if;
3048         end if;
3049
3050         --  Special checks in SPARK mode
3051
3052         if Nkind (Body_Spec) = N_Function_Specification then
3053
3054            --  In SPARK mode, last statement of a function should be a return
3055
3056            declare
3057               Stat : constant Node_Id := Last_Source_Statement (HSS);
3058            begin
3059               if Present (Stat)
3060                 and then not Nkind_In (Stat, N_Simple_Return_Statement,
3061                                              N_Extended_Return_Statement)
3062               then
3063                  Check_SPARK_05_Restriction
3064                    ("last statement in function should be RETURN", Stat);
3065               end if;
3066            end;
3067
3068         --  In SPARK mode, verify that a procedure has no return
3069
3070         elsif Nkind (Body_Spec) = N_Procedure_Specification then
3071            if Present (Spec_Id) then
3072               Id := Spec_Id;
3073            else
3074               Id := Body_Id;
3075            end if;
3076
3077            --  Would be nice to point to return statement here, can we
3078            --  borrow the Check_Returns procedure here ???
3079
3080            if Return_Present (Id) then
3081               Check_SPARK_05_Restriction
3082                 ("procedure should not have RETURN", N);
3083            end if;
3084         end if;
3085      end Check_Missing_Return;
3086
3087      -----------------------
3088      -- Disambiguate_Spec --
3089      -----------------------
3090
3091      function Disambiguate_Spec return Entity_Id is
3092         Priv_Spec : Entity_Id;
3093         Spec_N    : Entity_Id;
3094
3095         procedure Replace_Types (To_Corresponding : Boolean);
3096         --  Depending on the flag, replace the type of formal parameters of
3097         --  Body_Id if it is a concurrent type implementing interfaces with
3098         --  the corresponding record type or the other way around.
3099
3100         procedure Replace_Types (To_Corresponding : Boolean) is
3101            Formal     : Entity_Id;
3102            Formal_Typ : Entity_Id;
3103
3104         begin
3105            Formal := First_Formal (Body_Id);
3106            while Present (Formal) loop
3107               Formal_Typ := Etype (Formal);
3108
3109               if Is_Class_Wide_Type (Formal_Typ) then
3110                  Formal_Typ := Root_Type (Formal_Typ);
3111               end if;
3112
3113               --  From concurrent type to corresponding record
3114
3115               if To_Corresponding then
3116                  if Is_Concurrent_Type (Formal_Typ)
3117                    and then Present (Corresponding_Record_Type (Formal_Typ))
3118                    and then
3119                      Present (Interfaces
3120                                 (Corresponding_Record_Type (Formal_Typ)))
3121                  then
3122                     Set_Etype (Formal,
3123                       Corresponding_Record_Type (Formal_Typ));
3124                  end if;
3125
3126               --  From corresponding record to concurrent type
3127
3128               else
3129                  if Is_Concurrent_Record_Type (Formal_Typ)
3130                    and then Present (Interfaces (Formal_Typ))
3131                  then
3132                     Set_Etype (Formal,
3133                       Corresponding_Concurrent_Type (Formal_Typ));
3134                  end if;
3135               end if;
3136
3137               Next_Formal (Formal);
3138            end loop;
3139         end Replace_Types;
3140
3141      --  Start of processing for Disambiguate_Spec
3142
3143      begin
3144         --  Try to retrieve the specification of the body as is. All error
3145         --  messages are suppressed because the body may not have a spec in
3146         --  its current state.
3147
3148         Spec_N := Find_Corresponding_Spec (N, False);
3149
3150         --  It is possible that this is the body of a primitive declared
3151         --  between a private and a full view of a concurrent type. The
3152         --  controlling parameter of the spec carries the concurrent type,
3153         --  not the corresponding record type as transformed by Analyze_
3154         --  Subprogram_Specification. In such cases, we undo the change
3155         --  made by the analysis of the specification and try to find the
3156         --  spec again.
3157
3158         --  Note that wrappers already have their corresponding specs and
3159         --  bodies set during their creation, so if the candidate spec is
3160         --  a wrapper, then we definitely need to swap all types to their
3161         --  original concurrent status.
3162
3163         if No (Spec_N)
3164           or else Is_Primitive_Wrapper (Spec_N)
3165         then
3166            --  Restore all references of corresponding record types to the
3167            --  original concurrent types.
3168
3169            Replace_Types (To_Corresponding => False);
3170            Priv_Spec := Find_Corresponding_Spec (N, False);
3171
3172            --  The current body truly belongs to a primitive declared between
3173            --  a private and a full view. We leave the modified body as is,
3174            --  and return the true spec.
3175
3176            if Present (Priv_Spec)
3177              and then Is_Private_Primitive (Priv_Spec)
3178            then
3179               return Priv_Spec;
3180            end if;
3181
3182            --  In case that this is some sort of error, restore the original
3183            --  state of the body.
3184
3185            Replace_Types (To_Corresponding => True);
3186         end if;
3187
3188         return Spec_N;
3189      end Disambiguate_Spec;
3190
3191      ----------------------------
3192      -- Exchange_Limited_Views --
3193      ----------------------------
3194
3195      function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3196         Result : Elist_Id := No_Elist;
3197
3198         procedure Detect_And_Exchange (Id : Entity_Id);
3199         --  Determine whether Id's type denotes an incomplete type associated
3200         --  with a limited with clause and exchange the limited view with the
3201         --  non-limited one when available. Note that the non-limited view
3202         --  may exist because of a with_clause in another unit in the context,
3203         --  but cannot be used because the current view of the enclosing unit
3204         --  is still a limited view.
3205
3206         -------------------------
3207         -- Detect_And_Exchange --
3208         -------------------------
3209
3210         procedure Detect_And_Exchange (Id : Entity_Id) is
3211            Typ : constant Entity_Id := Etype (Id);
3212         begin
3213            if From_Limited_With (Typ)
3214              and then Has_Non_Limited_View (Typ)
3215              and then not From_Limited_With (Scope (Typ))
3216            then
3217               if No (Result) then
3218                  Result := New_Elmt_List;
3219               end if;
3220
3221               Prepend_Elmt (Typ, Result);
3222               Prepend_Elmt (Id, Result);
3223               Set_Etype (Id, Non_Limited_View (Typ));
3224            end if;
3225         end Detect_And_Exchange;
3226
3227         --  Local variables
3228
3229         Formal : Entity_Id;
3230
3231      --  Start of processing for Exchange_Limited_Views
3232
3233      begin
3234         --  Do not process subprogram bodies as they already use the non-
3235         --  limited view of types.
3236
3237         if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3238            return No_Elist;
3239         end if;
3240
3241         --  Examine all formals and swap views when applicable
3242
3243         Formal := First_Formal (Subp_Id);
3244         while Present (Formal) loop
3245            Detect_And_Exchange (Formal);
3246
3247            Next_Formal (Formal);
3248         end loop;
3249
3250         --  Process the return type of a function
3251
3252         if Ekind (Subp_Id) = E_Function then
3253            Detect_And_Exchange (Subp_Id);
3254         end if;
3255
3256         return Result;
3257      end Exchange_Limited_Views;
3258
3259      -------------------------------------
3260      -- Is_Private_Concurrent_Primitive --
3261      -------------------------------------
3262
3263      function Is_Private_Concurrent_Primitive
3264        (Subp_Id : Entity_Id) return Boolean
3265      is
3266         Formal_Typ : Entity_Id;
3267
3268      begin
3269         if Present (First_Formal (Subp_Id)) then
3270            Formal_Typ := Etype (First_Formal (Subp_Id));
3271
3272            if Is_Concurrent_Record_Type (Formal_Typ) then
3273               if Is_Class_Wide_Type (Formal_Typ) then
3274                  Formal_Typ := Root_Type (Formal_Typ);
3275               end if;
3276
3277               Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3278            end if;
3279
3280            --  The type of the first formal is a concurrent tagged type with
3281            --  a private view.
3282
3283            return
3284              Is_Concurrent_Type (Formal_Typ)
3285                and then Is_Tagged_Type (Formal_Typ)
3286                and then Has_Private_Declaration (Formal_Typ);
3287         end if;
3288
3289         return False;
3290      end Is_Private_Concurrent_Primitive;
3291
3292      -------------------------
3293      -- Mask_Unfrozen_Types --
3294      -------------------------
3295
3296      function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3297         Result : Elist_Id := No_Elist;
3298
3299         function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3300         --  Mask all types referenced in the subtree rooted at Node
3301
3302         --------------------
3303         -- Mask_Type_Refs --
3304         --------------------
3305
3306         function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3307            procedure Mask_Type (Typ : Entity_Id);
3308            --  ??? what does this do?
3309
3310            ---------------
3311            -- Mask_Type --
3312            ---------------
3313
3314            procedure Mask_Type (Typ : Entity_Id) is
3315            begin
3316               --  Skip Itypes created by the preanalysis
3317
3318               if Is_Itype (Typ)
3319                 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3320               then
3321                  return;
3322               end if;
3323
3324               if not Is_Frozen (Typ) then
3325                  if Scope (Typ) /= Current_Scope then
3326                     Set_Is_Frozen (Typ);
3327                     Append_New_Elmt (Typ, Result);
3328                  else
3329                     Freeze_Before (N, Typ);
3330                  end if;
3331               end if;
3332            end Mask_Type;
3333
3334         --  Start of processing for Mask_Type_Refs
3335
3336         begin
3337            if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3338               Mask_Type (Etype (Entity (Node)));
3339
3340               if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3341                  Mask_Type (Scope (Entity (Node)));
3342               end if;
3343
3344            elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3345              and then Present (Etype (Node))
3346            then
3347               Mask_Type (Etype (Node));
3348            end if;
3349
3350            return OK;
3351         end Mask_Type_Refs;
3352
3353         procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3354
3355         --  Local variables
3356
3357         Return_Stmt : constant Node_Id :=
3358                         First (Statements (Handled_Statement_Sequence (N)));
3359
3360      --  Start of processing for Mask_Unfrozen_Types
3361
3362      begin
3363         pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3364
3365         Mask_References (Expression (Return_Stmt));
3366
3367         return Result;
3368      end Mask_Unfrozen_Types;
3369
3370      ---------------------------
3371      -- Restore_Limited_Views --
3372      ---------------------------
3373
3374      procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3375         Elmt : Elmt_Id := First_Elmt (Restore_List);
3376         Id   : Entity_Id;
3377
3378      begin
3379         while Present (Elmt) loop
3380            Id := Node (Elmt);
3381            Next_Elmt (Elmt);
3382            Set_Etype (Id, Node (Elmt));
3383            Next_Elmt (Elmt);
3384         end loop;
3385      end Restore_Limited_Views;
3386
3387      ----------------------------
3388      -- Set_Trivial_Subprogram --
3389      ----------------------------
3390
3391      procedure Set_Trivial_Subprogram (N : Node_Id) is
3392         Nxt : constant Node_Id := Next (N);
3393
3394      begin
3395         Set_Is_Trivial_Subprogram (Body_Id);
3396
3397         if Present (Spec_Id) then
3398            Set_Is_Trivial_Subprogram (Spec_Id);
3399         end if;
3400
3401         if Present (Nxt)
3402           and then Nkind (Nxt) = N_Simple_Return_Statement
3403           and then No (Next (Nxt))
3404           and then Present (Expression (Nxt))
3405           and then Is_Entity_Name (Expression (Nxt))
3406         then
3407            Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3408         end if;
3409      end Set_Trivial_Subprogram;
3410
3411      ---------------------------
3412      -- Unmask_Unfrozen_Types --
3413      ---------------------------
3414
3415      procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3416         Elmt : Elmt_Id := First_Elmt (Unmask_List);
3417
3418      begin
3419         while Present (Elmt) loop
3420            Set_Is_Frozen (Node (Elmt), False);
3421            Next_Elmt (Elmt);
3422         end loop;
3423      end Unmask_Unfrozen_Types;
3424
3425      ---------------------------------
3426      -- Verify_Overriding_Indicator --
3427      ---------------------------------
3428
3429      procedure Verify_Overriding_Indicator is
3430      begin
3431         if Must_Override (Body_Spec) then
3432            if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3433              and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3434            then
3435               null;
3436
3437            --  Overridden controlled primitives may have had their
3438            --  Overridden_Operation field cleared according to the setting of
3439            --  the Is_Hidden flag. An issue arises, however, when analyzing
3440            --  an instance that may have manipulated the flag during
3441            --  expansion. As a result, we add an exception for this case.
3442
3443            elsif not Present (Overridden_Operation (Spec_Id))
3444              and then not (Nam_In (Chars (Spec_Id), Name_Adjust,
3445                                                     Name_Finalize,
3446                                                     Name_Initialize)
3447                             and then In_Instance)
3448            then
3449               Error_Msg_NE
3450                 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3451
3452            --  Overriding indicators aren't allowed for protected subprogram
3453            --  bodies (see the Confirmation in Ada Comment AC95-00213). Change
3454            --  this to a warning if -gnatd.E is enabled.
3455
3456            elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3457               Error_Msg_Warn := Error_To_Warning;
3458               Error_Msg_N
3459                 ("<<overriding indicator not allowed for protected "
3460                  & "subprogram body", Body_Spec);
3461            end if;
3462
3463         elsif Must_Not_Override (Body_Spec) then
3464            if Present (Overridden_Operation (Spec_Id)) then
3465               Error_Msg_NE
3466                 ("subprogram& overrides inherited operation",
3467                  Body_Spec, Spec_Id);
3468
3469            elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3470              and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3471            then
3472               Error_Msg_NE
3473                 ("subprogram& overrides predefined operator ",
3474                    Body_Spec, Spec_Id);
3475
3476            --  Overriding indicators aren't allowed for protected subprogram
3477            --  bodies (see the Confirmation in Ada Comment AC95-00213). Change
3478            --  this to a warning if -gnatd.E is enabled.
3479
3480            elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3481               Error_Msg_Warn := Error_To_Warning;
3482
3483               Error_Msg_N
3484                 ("<<overriding indicator not allowed "
3485                  & "for protected subprogram body", Body_Spec);
3486
3487            --  If this is not a primitive operation, then the overriding
3488            --  indicator is altogether illegal.
3489
3490            elsif not Is_Primitive (Spec_Id) then
3491               Error_Msg_N
3492                 ("overriding indicator only allowed "
3493                  & "if subprogram is primitive", Body_Spec);
3494            end if;
3495
3496         --  If checking the style rule and the operation overrides, then
3497         --  issue a warning about a missing overriding_indicator. Protected
3498         --  subprogram bodies are excluded from this style checking, since
3499         --  they aren't primitives (even though their declarations can
3500         --  override) and aren't allowed to have an overriding_indicator.
3501
3502         elsif Style_Check
3503           and then Present (Overridden_Operation (Spec_Id))
3504           and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3505         then
3506            pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3507            Style.Missing_Overriding (N, Body_Id);
3508
3509         elsif Style_Check
3510           and then Can_Override_Operator (Spec_Id)
3511           and then not In_Predefined_Unit (Spec_Id)
3512         then
3513            pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3514            Style.Missing_Overriding (N, Body_Id);
3515         end if;
3516      end Verify_Overriding_Indicator;
3517
3518      --  Local variables
3519
3520      Body_Nod         : Node_Id := Empty;
3521      Minimum_Acc_Objs : List_Id := No_List;
3522
3523      Saved_GM   : constant Ghost_Mode_Type := Ghost_Mode;
3524      Saved_IGR  : constant Node_Id         := Ignored_Ghost_Region;
3525      Saved_EA   : constant Boolean         := Expander_Active;
3526      Saved_ISMP : constant Boolean         :=
3527                     Ignore_SPARK_Mode_Pragmas_In_Instance;
3528      --  Save the Ghost and SPARK mode-related data to restore on exit
3529
3530   --  Start of processing for Analyze_Subprogram_Body_Helper
3531
3532   begin
3533      --  A [generic] subprogram body freezes the contract of the nearest
3534      --  enclosing package body and all other contracts encountered in the
3535      --  same declarative part up to and excluding the subprogram body:
3536
3537      --    package body Nearest_Enclosing_Package
3538      --      with Refined_State => (State => Constit)
3539      --    is
3540      --       Constit : ...;
3541
3542      --       procedure Freezes_Enclosing_Package_Body
3543      --         with Refined_Depends => (Input => Constit) ...
3544
3545      --  This ensures that any annotations referenced by the contract of the
3546      --  [generic] subprogram body are available. This form of freezing is
3547      --  decoupled from the usual Freeze_xxx mechanism because it must also
3548      --  work in the context of generics where normal freezing is disabled.
3549
3550      --  Only bodies coming from source should cause this type of freezing.
3551      --  Expression functions that act as bodies and complete an initial
3552      --  declaration must be included in this category, hence the use of
3553      --  Original_Node.
3554
3555      if Comes_From_Source (Original_Node (N)) then
3556         Freeze_Previous_Contracts (N);
3557      end if;
3558
3559      --  Generic subprograms are handled separately. They always have a
3560      --  generic specification. Determine whether current scope has a
3561      --  previous declaration.
3562
3563      --  If the subprogram body is defined within an instance of the same
3564      --  name, the instance appears as a package renaming, and will be hidden
3565      --  within the subprogram.
3566
3567      if Present (Prev_Id)
3568        and then not Is_Overloadable (Prev_Id)
3569        and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3570                   or else Comes_From_Source (Prev_Id))
3571      then
3572         if Is_Generic_Subprogram (Prev_Id) then
3573            Spec_Id := Prev_Id;
3574
3575            --  A subprogram body is Ghost when it is stand-alone and subject
3576            --  to pragma Ghost or when the corresponding spec is Ghost. Set
3577            --  the mode now to ensure that any nodes generated during analysis
3578            --  and expansion are properly marked as Ghost.
3579
3580            Mark_And_Set_Ghost_Body (N, Spec_Id);
3581
3582            --  If the body completes the initial declaration of a compilation
3583            --  unit which is subject to pragma Elaboration_Checks, set the
3584            --  model specified by the pragma because it applies to all parts
3585            --  of the unit.
3586
3587            Install_Elaboration_Model (Spec_Id);
3588
3589            Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3590            Set_Is_Child_Unit       (Body_Id, Is_Child_Unit       (Spec_Id));
3591
3592            Analyze_Generic_Subprogram_Body (N, Spec_Id);
3593
3594            if Nkind (N) = N_Subprogram_Body then
3595               HSS := Handled_Statement_Sequence (N);
3596               Check_Missing_Return;
3597            end if;
3598
3599            goto Leave;
3600
3601         --  Otherwise a previous entity conflicts with the subprogram name.
3602         --  Attempting to enter name will post error.
3603
3604         else
3605            Enter_Name (Body_Id);
3606            goto Leave;
3607         end if;
3608
3609      --  Non-generic case, find the subprogram declaration, if one was seen,
3610      --  or enter new overloaded entity in the current scope. If the
3611      --  Current_Entity is the Body_Id itself, the unit is being analyzed as
3612      --  part of the context of one of its subunits. No need to redo the
3613      --  analysis.
3614
3615      elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3616         goto Leave;
3617
3618      else
3619         Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3620
3621         if Nkind (N) = N_Subprogram_Body_Stub
3622           or else No (Corresponding_Spec (N))
3623         then
3624            if Is_Private_Concurrent_Primitive (Body_Id) then
3625               Spec_Id := Disambiguate_Spec;
3626
3627               --  A subprogram body is Ghost when it is stand-alone and
3628               --  subject to pragma Ghost or when the corresponding spec is
3629               --  Ghost. Set the mode now to ensure that any nodes generated
3630               --  during analysis and expansion are properly marked as Ghost.
3631
3632               Mark_And_Set_Ghost_Body (N, Spec_Id);
3633
3634               --  If the body completes a compilation unit which is subject
3635               --  to pragma Elaboration_Checks, set the model specified by
3636               --  the pragma because it applies to all parts of the unit.
3637
3638               Install_Elaboration_Model (Spec_Id);
3639
3640            else
3641               Spec_Id := Find_Corresponding_Spec (N);
3642
3643               --  A subprogram body is Ghost when it is stand-alone and
3644               --  subject to pragma Ghost or when the corresponding spec is
3645               --  Ghost. Set the mode now to ensure that any nodes generated
3646               --  during analysis and expansion are properly marked as Ghost.
3647
3648               Mark_And_Set_Ghost_Body (N, Spec_Id);
3649
3650               --  If the body completes a compilation unit which is subject
3651               --  to pragma Elaboration_Checks, set the model specified by
3652               --  the pragma because it applies to all parts of the unit.
3653
3654               Install_Elaboration_Model (Spec_Id);
3655
3656               --  In GNATprove mode, if the body has no previous spec, create
3657               --  one so that the inlining machinery can operate properly.
3658               --  Transfer aspects, if any, to the new spec, so that they
3659               --  are legal and can be processed ahead of the body.
3660               --  We make two copies of the given spec, one for the new
3661               --  declaration, and one for the body.
3662
3663               if No (Spec_Id) and then GNATprove_Mode
3664
3665                 --  Inlining does not apply during preanalysis of code
3666
3667                 and then Full_Analysis
3668
3669                 --  Inlining only applies to full bodies, not stubs
3670
3671                 and then Nkind (N) /= N_Subprogram_Body_Stub
3672
3673                 --  Inlining only applies to bodies in the source code, not to
3674                 --  those generated by the compiler. In particular, expression
3675                 --  functions, whose body is generated by the compiler, are
3676                 --  treated specially by GNATprove.
3677
3678                 and then Comes_From_Source (Body_Id)
3679
3680                 --  This cannot be done for a compilation unit, which is not
3681                 --  in a context where we can insert a new spec.
3682
3683                 and then Is_List_Member (N)
3684
3685                 --  Inlining only applies to subprograms without contracts,
3686                 --  as a contract is a sign that GNATprove should perform a
3687                 --  modular analysis of the subprogram instead of a contextual
3688                 --  analysis at each call site. The same test is performed in
3689                 --  Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3690                 --  here in another form (because the contract has not been
3691                 --  attached to the body) to avoid front-end errors in case
3692                 --  pragmas are used instead of aspects, because the
3693                 --  corresponding pragmas in the body would not be transferred
3694                 --  to the spec, leading to legality errors.
3695
3696                 and then not Body_Has_Contract
3697                 and then not Inside_A_Generic
3698               then
3699                  Build_Subprogram_Declaration;
3700
3701               --  If this is a function that returns a constrained array, and
3702               --  we are generating SPARK_For_C, create subprogram declaration
3703               --  to simplify subsequent C generation.
3704
3705               elsif No (Spec_Id)
3706                 and then Modify_Tree_For_C
3707                 and then Nkind (Body_Spec) = N_Function_Specification
3708                 and then Is_Array_Type (Etype (Body_Id))
3709                 and then Is_Constrained (Etype (Body_Id))
3710               then
3711                  Build_Subprogram_Declaration;
3712               end if;
3713            end if;
3714
3715            --  If this is a duplicate body, no point in analyzing it
3716
3717            if Error_Posted (N) then
3718               goto Leave;
3719            end if;
3720
3721            --  A subprogram body should cause freezing of its own declaration,
3722            --  but if there was no previous explicit declaration, then the
3723            --  subprogram will get frozen too late (there may be code within
3724            --  the body that depends on the subprogram having been frozen,
3725            --  such as uses of extra formals), so we force it to be frozen
3726            --  here. Same holds if the body and spec are compilation units.
3727            --  Finally, if the return type is an anonymous access to protected
3728            --  subprogram, it must be frozen before the body because its
3729            --  expansion has generated an equivalent type that is used when
3730            --  elaborating the body.
3731
3732            --  An exception in the case of Ada 2012, AI05-177: The bodies
3733            --  created for expression functions do not freeze.
3734
3735            if No (Spec_Id)
3736              and then Nkind (Original_Node (N)) /= N_Expression_Function
3737            then
3738               Freeze_Before (N, Body_Id);
3739
3740            elsif Nkind (Parent (N)) = N_Compilation_Unit then
3741               Freeze_Before (N, Spec_Id);
3742
3743            elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3744               Freeze_Before (N, Etype (Body_Id));
3745            end if;
3746
3747         else
3748            Spec_Id := Corresponding_Spec (N);
3749
3750            --  A subprogram body is Ghost when it is stand-alone and subject
3751            --  to pragma Ghost or when the corresponding spec is Ghost. Set
3752            --  the mode now to ensure that any nodes generated during analysis
3753            --  and expansion are properly marked as Ghost.
3754
3755            Mark_And_Set_Ghost_Body (N, Spec_Id);
3756
3757            --  If the body completes the initial declaration of a compilation
3758            --  unit which is subject to pragma Elaboration_Checks, set the
3759            --  model specified by the pragma because it applies to all parts
3760            --  of the unit.
3761
3762            Install_Elaboration_Model (Spec_Id);
3763         end if;
3764      end if;
3765
3766      --  Deactivate expansion inside the body of ignored Ghost entities,
3767      --  as this code will ultimately be ignored. This avoids requiring the
3768      --  presence of run-time units which are not needed. Only do this for
3769      --  user entities, as internally generated entitities might still need
3770      --  to be expanded (e.g. those generated for types).
3771
3772      if Present (Ignored_Ghost_Region)
3773        and then Comes_From_Source (Body_Id)
3774      then
3775         Expander_Active := False;
3776      end if;
3777
3778      --  Previously we scanned the body to look for nested subprograms, and
3779      --  rejected an inline directive if nested subprograms were present,
3780      --  because the back-end would generate conflicting symbols for the
3781      --  nested bodies. This is now unnecessary.
3782
3783      --  Look ahead to recognize a pragma Inline that appears after the body
3784
3785      Check_Inline_Pragma (Spec_Id);
3786
3787      --  Deal with special case of a fully private operation in the body of
3788      --  the protected type. We must create a declaration for the subprogram,
3789      --  in order to attach the protected subprogram that will be used in
3790      --  internal calls. We exclude compiler generated bodies from the
3791      --  expander since the issue does not arise for those cases.
3792
3793      if No (Spec_Id)
3794        and then Comes_From_Source (N)
3795        and then Is_Protected_Type (Current_Scope)
3796      then
3797         Spec_Id := Build_Private_Protected_Declaration (N);
3798      end if;
3799
3800      --  If we are generating C and this is a function returning a constrained
3801      --  array type for which we must create a procedure with an extra out
3802      --  parameter, build and analyze the body now. The procedure declaration
3803      --  has already been created. We reuse the source body of the function,
3804      --  because in an instance it may contain global references that cannot
3805      --  be reanalyzed. The source function itself is not used any further,
3806      --  so we mark it as having a completion. If the subprogram is a stub the
3807      --  transformation is done later, when the proper body is analyzed.
3808
3809      if Expander_Active
3810        and then Modify_Tree_For_C
3811        and then Present (Spec_Id)
3812        and then Ekind (Spec_Id) = E_Function
3813        and then Nkind (N) /= N_Subprogram_Body_Stub
3814        and then Rewritten_For_C (Spec_Id)
3815      then
3816         Set_Has_Completion (Spec_Id);
3817
3818         Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3819         Analyze (N);
3820
3821         --  The entity for the created procedure must remain invisible, so it
3822         --  does not participate in resolution of subsequent references to the
3823         --  function.
3824
3825         Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3826         goto Leave;
3827      end if;
3828
3829      --  If a separate spec is present, then deal with freezing issues
3830
3831      if Present (Spec_Id) then
3832         Spec_Decl := Unit_Declaration_Node (Spec_Id);
3833         Verify_Overriding_Indicator;
3834
3835         --  In general, the spec will be frozen when we start analyzing the
3836         --  body. However, for internally generated operations, such as
3837         --  wrapper functions for inherited operations with controlling
3838         --  results, the spec may not have been frozen by the time we expand
3839         --  the freeze actions that include the bodies. In particular, extra
3840         --  formals for accessibility or for return-in-place may need to be
3841         --  generated. Freeze nodes, if any, are inserted before the current
3842         --  body. These freeze actions are also needed in ASIS mode and in
3843         --  Compile_Only mode to enable the proper back-end type annotations.
3844         --  They are necessary in any case to ensure proper elaboration order
3845         --  in gigi.
3846
3847         if Nkind (N) = N_Subprogram_Body
3848           and then Was_Expression_Function (N)
3849           and then not Has_Completion (Spec_Id)
3850           and then Serious_Errors_Detected = 0
3851           and then (Expander_Active
3852                      or else ASIS_Mode
3853                      or else Operating_Mode = Check_Semantics
3854                      or else Is_Ignored_Ghost_Entity (Spec_Id))
3855         then
3856            --  The body generated for an expression function that is not a
3857            --  completion is a freeze point neither for the profile nor for
3858            --  anything else. That's why, in order to prevent any freezing
3859            --  during analysis, we need to mask types declared outside the
3860            --  expression (and in an outer scope) that are not yet frozen.
3861            --  This also needs to be done in the case of an ignored Ghost
3862            --  expression function, where the expander isn't active.
3863
3864            Set_Is_Frozen (Spec_Id);
3865            Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3866
3867         elsif not Is_Frozen (Spec_Id)
3868           and then Serious_Errors_Detected = 0
3869         then
3870            Set_Has_Delayed_Freeze (Spec_Id);
3871            Freeze_Before (N, Spec_Id);
3872         end if;
3873      end if;
3874
3875      --  If the subprogram has a class-wide clone, build its body as a copy
3876      --  of the original body, and rewrite body of original subprogram as a
3877      --  wrapper that calls the clone. If N is a stub, this construction will
3878      --  take place when the proper body is analyzed. No action needed if this
3879      --  subprogram has been eliminated.
3880
3881      if Present (Spec_Id)
3882        and then Present (Class_Wide_Clone (Spec_Id))
3883        and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3884        and then Nkind (N) /= N_Subprogram_Body_Stub
3885        and then not (Expander_Active and then Is_Eliminated (Spec_Id))
3886      then
3887         Build_Class_Wide_Clone_Body (Spec_Id, N);
3888
3889         --  This is the new body for the existing primitive operation
3890
3891         Rewrite (N, Build_Class_Wide_Clone_Call
3892           (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3893         Set_Has_Completion (Spec_Id, False);
3894         Analyze (N);
3895         return;
3896      end if;
3897
3898      --  Place subprogram on scope stack, and make formals visible. If there
3899      --  is a spec, the visible entity remains that of the spec.
3900
3901      if Present (Spec_Id) then
3902         Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3903
3904         if Is_Child_Unit (Spec_Id) then
3905            Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3906         end if;
3907
3908         if Style_Check then
3909            Style.Check_Identifier (Body_Id, Spec_Id);
3910         end if;
3911
3912         Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3913         Set_Is_Child_Unit       (Body_Id, Is_Child_Unit       (Spec_Id));
3914
3915         if Is_Abstract_Subprogram (Spec_Id) then
3916            Error_Msg_N ("an abstract subprogram cannot have a body", N);
3917            goto Leave;
3918
3919         else
3920            Set_Convention (Body_Id, Convention (Spec_Id));
3921            Set_Has_Completion (Spec_Id);
3922
3923            if Is_Protected_Type (Scope (Spec_Id)) then
3924               Prot_Typ := Scope (Spec_Id);
3925            end if;
3926
3927            --  If this is a body generated for a renaming, do not check for
3928            --  full conformance. The check is redundant, because the spec of
3929            --  the body is a copy of the spec in the renaming declaration,
3930            --  and the test can lead to spurious errors on nested defaults.
3931
3932            if Present (Spec_Decl)
3933              and then not Comes_From_Source (N)
3934              and then
3935                (Nkind (Original_Node (Spec_Decl)) =
3936                                          N_Subprogram_Renaming_Declaration
3937                  or else (Present (Corresponding_Body (Spec_Decl))
3938                            and then
3939                              Nkind (Unit_Declaration_Node
3940                                       (Corresponding_Body (Spec_Decl))) =
3941                                          N_Subprogram_Renaming_Declaration))
3942            then
3943               Conformant := True;
3944
3945            --  Conversely, the spec may have been generated for specless body
3946            --  with an inline pragma. The entity comes from source, which is
3947            --  both semantically correct and necessary for proper inlining.
3948            --  The subprogram declaration itself is not in the source.
3949
3950            elsif Comes_From_Source (N)
3951              and then Present (Spec_Decl)
3952              and then not Comes_From_Source (Spec_Decl)
3953              and then Has_Pragma_Inline (Spec_Id)
3954            then
3955               Conformant := True;
3956
3957            else
3958               Check_Conformance
3959                 (Body_Id, Spec_Id,
3960                  Fully_Conformant, True, Conformant, Body_Id);
3961            end if;
3962
3963            --  If the body is not fully conformant, we have to decide if we
3964            --  should analyze it or not. If it has a really messed up profile
3965            --  then we probably should not analyze it, since we will get too
3966            --  many bogus messages.
3967
3968            --  Our decision is to go ahead in the non-fully conformant case
3969            --  only if it is at least mode conformant with the spec. Note
3970            --  that the call to Check_Fully_Conformant has issued the proper
3971            --  error messages to complain about the lack of conformance.
3972
3973            if not Conformant
3974              and then not Mode_Conformant (Body_Id, Spec_Id)
3975            then
3976               goto Leave;
3977            end if;
3978         end if;
3979
3980         --  In the case we are dealing with an expression function we check
3981         --  the formals attached to the spec instead of the body - so we don't
3982         --  reference body formals.
3983
3984         if Spec_Id /= Body_Id
3985           and then not Is_Expression_Function (Spec_Id)
3986         then
3987            Reference_Body_Formals (Spec_Id, Body_Id);
3988         end if;
3989
3990         Set_Ekind (Body_Id, E_Subprogram_Body);
3991
3992         if Nkind (N) = N_Subprogram_Body_Stub then
3993            Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3994
3995         --  Regular body
3996
3997         else
3998            Set_Corresponding_Spec (N, Spec_Id);
3999
4000            --  Ada 2005 (AI-345): If the operation is a primitive operation
4001            --  of a concurrent type, the type of the first parameter has been
4002            --  replaced with the corresponding record, which is the proper
4003            --  run-time structure to use. However, within the body there may
4004            --  be uses of the formals that depend on primitive operations
4005            --  of the type (in particular calls in prefixed form) for which
4006            --  we need the original concurrent type. The operation may have
4007            --  several controlling formals, so the replacement must be done
4008            --  for all of them.
4009
4010            if Comes_From_Source (Spec_Id)
4011              and then Present (First_Entity (Spec_Id))
4012              and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
4013              and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
4014              and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
4015              and then Present (Corresponding_Concurrent_Type
4016                                  (Etype (First_Entity (Spec_Id))))
4017            then
4018               declare
4019                  Typ  : constant Entity_Id := Etype (First_Entity (Spec_Id));
4020                  Form : Entity_Id;
4021
4022               begin
4023                  Form := First_Formal (Spec_Id);
4024                  while Present (Form) loop
4025                     if Etype (Form) = Typ then
4026                        Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
4027                     end if;
4028
4029                     Next_Formal (Form);
4030                  end loop;
4031               end;
4032            end if;
4033
4034            --  Make the formals visible, and place subprogram on scope stack.
4035            --  This is also the point at which we set Last_Real_Spec_Entity
4036            --  to mark the entities which will not be moved to the body.
4037
4038            Install_Formals (Spec_Id);
4039            Last_Real_Spec_Entity := Last_Entity (Spec_Id);
4040
4041            --  Within an instance, add local renaming declarations so that
4042            --  gdb can retrieve the values of actuals more easily. This is
4043            --  only relevant if generating code (and indeed we definitely
4044            --  do not want these definitions -gnatc mode, because that would
4045            --  confuse ASIS).
4046
4047            if Is_Generic_Instance (Spec_Id)
4048              and then Is_Wrapper_Package (Current_Scope)
4049              and then Expander_Active
4050            then
4051               Build_Subprogram_Instance_Renamings (N, Current_Scope);
4052            end if;
4053
4054            Push_Scope (Spec_Id);
4055
4056            --  Make sure that the subprogram is immediately visible. For
4057            --  child units that have no separate spec this is indispensable.
4058            --  Otherwise it is safe albeit redundant.
4059
4060            Set_Is_Immediately_Visible (Spec_Id);
4061         end if;
4062
4063         Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
4064         Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
4065         Set_Scope          (Body_Id, Scope (Spec_Id));
4066
4067      --  Case of subprogram body with no previous spec
4068
4069      else
4070         --  Check for style warning required
4071
4072         if Style_Check
4073
4074           --  Only apply check for source level subprograms for which checks
4075           --  have not been suppressed.
4076
4077           and then Comes_From_Source (Body_Id)
4078           and then not Suppress_Style_Checks (Body_Id)
4079
4080           --  No warnings within an instance
4081
4082           and then not In_Instance
4083
4084           --  No warnings for expression functions
4085
4086           and then Nkind (Original_Node (N)) /= N_Expression_Function
4087         then
4088            Style.Body_With_No_Spec (N);
4089         end if;
4090
4091         New_Overloaded_Entity (Body_Id);
4092
4093         if Nkind (N) /= N_Subprogram_Body_Stub then
4094            Set_Acts_As_Spec (N);
4095            Generate_Definition (Body_Id);
4096            Generate_Reference
4097              (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
4098
4099            --  If the body is an entry wrapper created for an entry with
4100            --  preconditions, it must be compiled in the context of the
4101            --  enclosing synchronized object, because it may mention other
4102            --  operations of the type.
4103
4104            if Is_Entry_Wrapper (Body_Id) then
4105               declare
4106                  Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
4107               begin
4108                  Push_Scope (Prot);
4109                  Install_Declarations (Prot);
4110               end;
4111            end if;
4112
4113            Install_Formals (Body_Id);
4114
4115            Push_Scope (Body_Id);
4116         end if;
4117
4118         --  For stubs and bodies with no previous spec, generate references to
4119         --  formals.
4120
4121         Generate_Reference_To_Formals (Body_Id);
4122      end if;
4123
4124      --  Entry barrier functions are generated outside the protected type and
4125      --  should not carry the SPARK_Mode of the enclosing context.
4126
4127      if Nkind (N) = N_Subprogram_Body
4128        and then Is_Entry_Barrier_Function (N)
4129      then
4130         null;
4131
4132      --  The body is generated as part of expression function expansion. When
4133      --  the expression function appears in the visible declarations of a
4134      --  package, the body is added to the private declarations. Since both
4135      --  declarative lists may be subject to a different SPARK_Mode, inherit
4136      --  the mode of the spec.
4137
4138      --    package P with SPARK_Mode is
4139      --       function Expr_Func ... is (...);         --  original
4140      --       [function Expr_Func ...;]                --  generated spec
4141      --                                                --    mode is ON
4142      --    private
4143      --       pragma SPARK_Mode (Off);
4144      --       [function Expr_Func ... is return ...;]  --  generated body
4145      --    end P;                                      --    mode is ON
4146
4147      elsif not Comes_From_Source (N)
4148        and then Present (Spec_Id)
4149        and then Is_Expression_Function (Spec_Id)
4150      then
4151         Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4152         Set_SPARK_Pragma_Inherited
4153           (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4154
4155      --  Set the SPARK_Mode from the current context (may be overwritten later
4156      --  with explicit pragma). Exclude the case where the SPARK_Mode appears
4157      --  initially on a stand-alone subprogram body, but is then relocated to
4158      --  a generated corresponding spec. In this scenario the mode is shared
4159      --  between the spec and body.
4160
4161      elsif No (SPARK_Pragma (Body_Id)) then
4162         Set_SPARK_Pragma           (Body_Id, SPARK_Mode_Pragma);
4163         Set_SPARK_Pragma_Inherited (Body_Id);
4164      end if;
4165
4166      --  A subprogram body may be instantiated or inlined at a later pass.
4167      --  Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4168      --  applied to the initial declaration of the body.
4169
4170      if Present (Spec_Id) then
4171         if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4172            Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4173         end if;
4174
4175      else
4176         --  Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4177         --  case the body is instantiated or inlined later and out of context.
4178         --  The body uses this attribute to restore the value of the global
4179         --  flag.
4180
4181         if Ignore_SPARK_Mode_Pragmas_In_Instance then
4182            Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4183
4184         elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4185            Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4186         end if;
4187      end if;
4188
4189      --  Preserve relevant elaboration-related attributes of the context which
4190      --  are no longer available or very expensive to recompute once analysis,
4191      --  resolution, and expansion are over.
4192
4193      if No (Spec_Id) then
4194         Mark_Elaboration_Attributes
4195           (N_Id     => Body_Id,
4196            Checks   => True,
4197            Warnings => True);
4198      end if;
4199
4200      --  If this is the proper body of a stub, we must verify that the stub
4201      --  conforms to the body, and to the previous spec if one was present.
4202      --  We know already that the body conforms to that spec. This test is
4203      --  only required for subprograms that come from source.
4204
4205      if Nkind (Parent (N)) = N_Subunit
4206        and then Comes_From_Source (N)
4207        and then not Error_Posted (Body_Id)
4208        and then Nkind (Corresponding_Stub (Parent (N))) =
4209                                                N_Subprogram_Body_Stub
4210      then
4211         declare
4212            Old_Id : constant Entity_Id :=
4213                       Defining_Entity
4214                         (Specification (Corresponding_Stub (Parent (N))));
4215
4216            Conformant : Boolean := False;
4217
4218         begin
4219            if No (Spec_Id) then
4220               Check_Fully_Conformant (Body_Id, Old_Id);
4221
4222            else
4223               Check_Conformance
4224                 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4225
4226               if not Conformant then
4227
4228                  --  The stub was taken to be a new declaration. Indicate that
4229                  --  it lacks a body.
4230
4231                  Set_Has_Completion (Old_Id, False);
4232               end if;
4233            end if;
4234         end;
4235      end if;
4236
4237      Set_Has_Completion (Body_Id);
4238      Check_Eliminated (Body_Id);
4239
4240      --  Analyze any aspect specifications that appear on the subprogram body
4241      --  stub. Stop the analysis now as the stub does not have a declarative
4242      --  or a statement part, and it cannot be inlined.
4243
4244      if Nkind (N) = N_Subprogram_Body_Stub then
4245         if Has_Aspects (N) then
4246            Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4247         end if;
4248
4249         goto Leave;
4250      end if;
4251
4252      --  Handle inlining
4253
4254      --  Note: Normally we don't do any inlining if expansion is off, since
4255      --  we won't generate code in any case. An exception arises in GNATprove
4256      --  mode where we want to expand some calls in place, even with expansion
4257      --  disabled, since the inlining eases formal verification.
4258
4259      if not GNATprove_Mode
4260        and then Expander_Active
4261        and then Serious_Errors_Detected = 0
4262        and then Present (Spec_Id)
4263        and then Has_Pragma_Inline (Spec_Id)
4264      then
4265         --  Legacy implementation (relying on front-end inlining)
4266
4267         if not Back_End_Inlining then
4268            if (Has_Pragma_Inline_Always (Spec_Id)
4269                 and then not Opt.Disable_FE_Inline_Always)
4270              or else (Front_End_Inlining
4271                        and then not Opt.Disable_FE_Inline)
4272            then
4273               Build_Body_To_Inline (N, Spec_Id);
4274            end if;
4275
4276         --  New implementation (relying on back-end inlining)
4277
4278         else
4279            if Has_Pragma_Inline_Always (Spec_Id)
4280              or else Optimization_Level > 0
4281            then
4282               --  Handle function returning an unconstrained type
4283
4284               if Comes_From_Source (Body_Id)
4285                 and then Ekind (Spec_Id) = E_Function
4286                 and then Returns_Unconstrained_Type (Spec_Id)
4287
4288                 --  If function builds in place, i.e. returns a limited type,
4289                 --  inlining cannot be done.
4290
4291                 and then not Is_Limited_Type (Etype (Spec_Id))
4292               then
4293                  Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4294
4295               else
4296                  declare
4297                     Subp_Body : constant Node_Id :=
4298                                   Unit_Declaration_Node (Body_Id);
4299                     Subp_Decl : constant List_Id := Declarations (Subp_Body);
4300
4301                  begin
4302                     --  Do not pass inlining to the backend if the subprogram
4303                     --  has declarations or statements which cannot be inlined
4304                     --  by the backend. This check is done here to emit an
4305                     --  error instead of the generic warning message reported
4306                     --  by the GCC backend (ie. "function might not be
4307                     --  inlinable").
4308
4309                     if Present (Subp_Decl)
4310                       and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4311                     then
4312                        null;
4313
4314                     elsif Has_Excluded_Statement
4315                             (Spec_Id,
4316                              Statements
4317                                (Handled_Statement_Sequence (Subp_Body)))
4318                     then
4319                        null;
4320
4321                     --  If the backend inlining is available then at this
4322                     --  stage we only have to mark the subprogram as inlined.
4323                     --  The expander will take care of registering it in the
4324                     --  table of subprograms inlined by the backend a part of
4325                     --  processing calls to it (cf. Expand_Call)
4326
4327                     else
4328                        Set_Is_Inlined (Spec_Id);
4329                     end if;
4330                  end;
4331               end if;
4332            end if;
4333         end if;
4334
4335      --  In GNATprove mode, inline only when there is a separate subprogram
4336      --  declaration for now, as inlining of subprogram bodies acting as
4337      --  declarations, or subprogram stubs, are not supported by front-end
4338      --  inlining. This inlining should occur after analysis of the body, so
4339      --  that it is known whether the value of SPARK_Mode, which can be
4340      --  defined by a pragma inside the body, is applicable to the body.
4341      --  Inlining can be disabled with switch -gnatdm
4342
4343      elsif GNATprove_Mode
4344        and then Full_Analysis
4345        and then not Inside_A_Generic
4346        and then Present (Spec_Id)
4347        and then
4348          Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4349        and then Body_Has_SPARK_Mode_On
4350        and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4351        and then not Body_Has_Contract
4352        and then not Debug_Flag_M
4353      then
4354         Build_Body_To_Inline (N, Spec_Id);
4355      end if;
4356
4357      --  When generating code, inherited pre/postconditions are handled when
4358      --  expanding the corresponding contract.
4359
4360      --  Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4361      --  of the specification we have to install the private withed units.
4362      --  This holds for child units as well.
4363
4364      if Is_Compilation_Unit (Body_Id)
4365        or else Nkind (Parent (N)) = N_Compilation_Unit
4366      then
4367         Install_Private_With_Clauses (Body_Id);
4368      end if;
4369
4370      Check_Anonymous_Return;
4371
4372      --  Set the Protected_Formal field of each extra formal of the protected
4373      --  subprogram to reference the corresponding extra formal of the
4374      --  subprogram that implements it. For regular formals this occurs when
4375      --  the protected subprogram's declaration is expanded, but the extra
4376      --  formals don't get created until the subprogram is frozen. We need to
4377      --  do this before analyzing the protected subprogram's body so that any
4378      --  references to the original subprogram's extra formals will be changed
4379      --  refer to the implementing subprogram's formals (see Expand_Formal).
4380
4381      if Present (Spec_Id)
4382        and then Is_Protected_Type (Scope (Spec_Id))
4383        and then Present (Protected_Body_Subprogram (Spec_Id))
4384      then
4385         declare
4386            Impl_Subp       : constant Entity_Id :=
4387                                Protected_Body_Subprogram (Spec_Id);
4388            Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4389            Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4390
4391         begin
4392            while Present (Prot_Ext_Formal) loop
4393               pragma Assert (Present (Impl_Ext_Formal));
4394               Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4395               Next_Formal_With_Extras (Prot_Ext_Formal);
4396               Next_Formal_With_Extras (Impl_Ext_Formal);
4397            end loop;
4398         end;
4399      end if;
4400
4401      --  Generate minimum accessibility local objects to correspond with
4402      --  any extra formal added for anonymous access types. This new local
4403      --  object can then be used instead of the formal in case it is used
4404      --  in an actual to a call to a nested subprogram.
4405
4406      --  This method is used to supplement our "small integer model" for
4407      --  accessibility-check generation (for more information see
4408      --  Dynamic_Accessibility_Level).
4409
4410      --  Because we allow accessibility values greater than our expected value
4411      --  passing along the same extra accessibility formal as an actual
4412      --  to a nested subprogram becomes a problem because high values mean
4413      --  different things to the callee even though they are the same to the
4414      --  caller. So, as described in the first section, we create a local
4415      --  object representing the minimum of the accessibility level value that
4416      --  is passed in and the accessibility level of the callee's parameter
4417      --  and locals and use it in the case of a call to a nested subprogram.
4418      --  This generated object is refered to as a "minimum accessiblity
4419      --  level."
4420
4421      if Present (Spec_Id) or else Present (Body_Id) then
4422         Body_Nod := Unit_Declaration_Node (Body_Id);
4423
4424         declare
4425            Form : Entity_Id;
4426         begin
4427            --  Grab the appropriate formal depending on whether there exists
4428            --  an actual spec for the subprogram or whether we are dealing
4429            --  with a protected subprogram.
4430
4431            if Present (Spec_Id) then
4432               if Present (Protected_Body_Subprogram (Spec_Id)) then
4433                  Form := First_Formal (Protected_Body_Subprogram (Spec_Id));
4434               else
4435                  Form := First_Formal (Spec_Id);
4436               end if;
4437            else
4438               Form := First_Formal (Body_Id);
4439            end if;
4440
4441            --  Loop through formals if the subprogram is capable of accepting
4442            --  a generated local object. If it is not then it is also not
4443            --  capable of having local subprograms meaning it would not need
4444            --  a minimum accessibility level object anyway.
4445
4446            if Present (Body_Nod)
4447              and then Has_Declarations (Body_Nod)
4448              and then Nkind (Body_Nod) /= N_Package_Specification
4449            then
4450               while Present (Form) loop
4451
4452                  if Present (Extra_Accessibility (Form))
4453                    and then No (Minimum_Accessibility (Form))
4454                  then
4455                     --  Generate the minimum accessibility level object
4456
4457                     --    A60b : integer := integer'min(2, paramL);
4458
4459                     declare
4460                        Loc      : constant Source_Ptr := Sloc (Body_Nod);
4461                        Obj_Node : constant Node_Id :=
4462                           Make_Object_Declaration (Loc,
4463                            Defining_Identifier =>
4464                              Make_Temporary
4465                                (Loc, 'A', Extra_Accessibility (Form)),
4466                            Object_Definition   => New_Occurrence_Of
4467                                                     (Standard_Integer, Loc),
4468                            Expression          =>
4469                              Make_Attribute_Reference (Loc,
4470                                Prefix         => New_Occurrence_Of
4471                                                    (Standard_Integer, Loc),
4472                                Attribute_Name => Name_Min,
4473                                Expressions    => New_List (
4474                                  Make_Integer_Literal (Loc,
4475                                    Object_Access_Level (Form)),
4476                                  New_Occurrence_Of
4477                                    (Extra_Accessibility (Form), Loc))));
4478                     begin
4479                        --  Add the new local object to the Minimum_Acc_Obj to
4480                        --  be later prepended to the subprogram's list of
4481                        --  declarations after we are sure all expansion is
4482                        --  done.
4483
4484                        if Present (Minimum_Acc_Objs) then
4485                           Prepend (Obj_Node, Minimum_Acc_Objs);
4486                        else
4487                           Minimum_Acc_Objs := New_List (Obj_Node);
4488                        end if;
4489
4490                        --  Register the object and analyze it
4491
4492                        Set_Minimum_Accessibility
4493                          (Form, Defining_Identifier (Obj_Node));
4494
4495                        Analyze (Obj_Node);
4496                     end;
4497                  end if;
4498
4499                  Next_Formal (Form);
4500               end loop;
4501            end if;
4502         end;
4503      end if;
4504
4505      --  Now we can go on to analyze the body
4506
4507      HSS := Handled_Statement_Sequence (N);
4508      Set_Actual_Subtypes (N, Current_Scope);
4509
4510      --  Add a declaration for the Protection object, renaming declarations
4511      --  for discriminals and privals and finally a declaration for the entry
4512      --  family index (if applicable). This form of early expansion is done
4513      --  when the Expander is active because Install_Private_Data_Declarations
4514      --  references entities which were created during regular expansion. The
4515      --  subprogram entity must come from source, and not be an internally
4516      --  generated subprogram.
4517
4518      if Expander_Active
4519        and then Present (Prot_Typ)
4520        and then Present (Spec_Id)
4521        and then Comes_From_Source (Spec_Id)
4522        and then not Is_Eliminated (Spec_Id)
4523      then
4524         Install_Private_Data_Declarations
4525           (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4526      end if;
4527
4528      --  Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4529      --  may now appear in parameter and result profiles. Since the analysis
4530      --  of a subprogram body may use the parameter and result profile of the
4531      --  spec, swap any limited views with their non-limited counterpart.
4532
4533      if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4534         Exch_Views := Exchange_Limited_Views (Spec_Id);
4535      end if;
4536
4537      --  If the return type is an anonymous access type whose designated type
4538      --  is the limited view of a class-wide type and the non-limited view is
4539      --  available, update the return type accordingly.
4540
4541      if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4542         declare
4543            Etyp : Entity_Id;
4544            Rtyp : Entity_Id;
4545
4546         begin
4547            Rtyp := Etype (Spec_Id);
4548
4549            if Ekind (Rtyp) = E_Anonymous_Access_Type then
4550               Etyp := Directly_Designated_Type (Rtyp);
4551
4552               if Is_Class_Wide_Type (Etyp)
4553                 and then From_Limited_With (Etyp)
4554               then
4555                  Desig_View := Etyp;
4556                  Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4557               end if;
4558            end if;
4559         end;
4560      end if;
4561
4562      --  Analyze any aspect specifications that appear on the subprogram body
4563
4564      if Has_Aspects (N) then
4565         Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4566      end if;
4567
4568      Analyze_Declarations (Declarations (N));
4569
4570      --  Verify that the SPARK_Mode of the body agrees with that of its spec
4571
4572      if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4573         if Present (SPARK_Pragma (Spec_Id)) then
4574            if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4575                 and then
4576               Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4577            then
4578               Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4579               Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4580               Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4581               Error_Msg_NE
4582                 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4583            end if;
4584
4585         elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4586            null;
4587
4588         else
4589            Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4590            Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4591            Error_Msg_Sloc := Sloc (Spec_Id);
4592            Error_Msg_NE
4593              ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4594         end if;
4595      end if;
4596
4597      --  A subprogram body freezes its own contract. Analyze the contract
4598      --  after the declarations of the body have been processed as pragmas
4599      --  are now chained on the contract of the subprogram body.
4600
4601      Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4602
4603      --  Check completion, and analyze the statements
4604
4605      Check_Completion;
4606      Inspect_Deferred_Constant_Completion (Declarations (N));
4607      Analyze (HSS);
4608
4609      --  Add the generated minimum accessibility objects to the subprogram
4610      --  body's list of declarations after analysis of the statements and
4611      --  contracts.
4612
4613      while Is_Non_Empty_List (Minimum_Acc_Objs) loop
4614         if Present (Declarations (Body_Nod)) then
4615            Prepend (Remove_Head (Minimum_Acc_Objs), Declarations (Body_Nod));
4616         else
4617            Set_Declarations
4618              (Body_Nod, New_List (Remove_Head (Minimum_Acc_Objs)));
4619         end if;
4620      end loop;
4621
4622      --  Deal with end of scope processing for the body
4623
4624      Process_End_Label (HSS, 't', Current_Scope);
4625      Update_Use_Clause_Chain;
4626      End_Scope;
4627
4628      --  If we are compiling an entry wrapper, remove the enclosing
4629      --  synchronized object from the stack.
4630
4631      if Is_Entry_Wrapper (Body_Id) then
4632         End_Scope;
4633      end if;
4634
4635      Check_Subprogram_Order (N);
4636      Set_Analyzed (Body_Id);
4637
4638      --  If we have a separate spec, then the analysis of the declarations
4639      --  caused the entities in the body to be chained to the spec id, but
4640      --  we want them chained to the body id. Only the formal parameters
4641      --  end up chained to the spec id in this case.
4642
4643      if Present (Spec_Id) then
4644
4645         --  We must conform to the categorization of our spec
4646
4647         Validate_Categorization_Dependency (N, Spec_Id);
4648
4649         --  And if this is a child unit, the parent units must conform
4650
4651         if Is_Child_Unit (Spec_Id) then
4652            Validate_Categorization_Dependency
4653              (Unit_Declaration_Node (Spec_Id), Spec_Id);
4654         end if;
4655
4656         --  Here is where we move entities from the spec to the body
4657
4658         --  Case where there are entities that stay with the spec
4659
4660         if Present (Last_Real_Spec_Entity) then
4661
4662            --  No body entities (happens when the only real spec entities come
4663            --  from precondition and postcondition pragmas).
4664
4665            if No (Last_Entity (Body_Id)) then
4666               Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4667
4668            --  Body entities present (formals), so chain stuff past them
4669
4670            else
4671               Link_Entities
4672                 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4673            end if;
4674
4675            Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4676            Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4677            Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4678
4679         --  Case where there are no spec entities, in this case there can be
4680         --  no body entities either, so just move everything.
4681
4682         --  If the body is generated for an expression function, it may have
4683         --  been preanalyzed already, if 'access was applied to it.
4684
4685         else
4686            if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4687                                                       N_Expression_Function
4688            then
4689               pragma Assert (No (Last_Entity (Body_Id)));
4690               null;
4691            end if;
4692
4693            Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4694            Set_Last_Entity  (Body_Id, Last_Entity (Spec_Id));
4695            Set_First_Entity (Spec_Id, Empty);
4696            Set_Last_Entity  (Spec_Id, Empty);
4697         end if;
4698
4699      --  Otherwise the body does not complete a previous declaration. Check
4700      --  the categorization of the body against the units it withs.
4701
4702      else
4703         Validate_Categorization_Dependency (N, Body_Id);
4704      end if;
4705
4706      Check_Missing_Return;
4707
4708      --  Now we are going to check for variables that are never modified in
4709      --  the body of the procedure. But first we deal with a special case
4710      --  where we want to modify this check. If the body of the subprogram
4711      --  starts with a raise statement or its equivalent, or if the body
4712      --  consists entirely of a null statement, then it is pretty obvious that
4713      --  it is OK to not reference the parameters. For example, this might be
4714      --  the following common idiom for a stubbed function: statement of the
4715      --  procedure raises an exception. In particular this deals with the
4716      --  common idiom of a stubbed function, which appears something like:
4717
4718      --     function F (A : Integer) return Some_Type;
4719      --        X : Some_Type;
4720      --     begin
4721      --        raise Program_Error;
4722      --        return X;
4723      --     end F;
4724
4725      --  Here the purpose of X is simply to satisfy the annoying requirement
4726      --  in Ada that there be at least one return, and we certainly do not
4727      --  want to go posting warnings on X that it is not initialized. On
4728      --  the other hand, if X is entirely unreferenced that should still
4729      --  get a warning.
4730
4731      --  What we do is to detect these cases, and if we find them, flag the
4732      --  subprogram as being Is_Trivial_Subprogram and then use that flag to
4733      --  suppress unwanted warnings. For the case of the function stub above
4734      --  we have a special test to set X as apparently assigned to suppress
4735      --  the warning.
4736
4737      declare
4738         Stm : Node_Id;
4739
4740      begin
4741         --  Skip call markers installed by the ABE mechanism, labels, and
4742         --  Push_xxx_Error_Label to find the first real statement.
4743
4744         Stm := First (Statements (HSS));
4745         while Nkind_In (Stm, N_Call_Marker, N_Label)
4746           or else Nkind (Stm) in N_Push_xxx_Label
4747         loop
4748            Next (Stm);
4749         end loop;
4750
4751         --  Do the test on the original statement before expansion
4752
4753         declare
4754            Ostm : constant Node_Id := Original_Node (Stm);
4755
4756         begin
4757            --  If explicit raise statement, turn on flag
4758
4759            if Nkind (Ostm) = N_Raise_Statement then
4760               Set_Trivial_Subprogram (Stm);
4761
4762            --  If null statement, and no following statements, turn on flag
4763
4764            elsif Nkind (Stm) = N_Null_Statement
4765              and then Comes_From_Source (Stm)
4766              and then No (Next (Stm))
4767            then
4768               Set_Trivial_Subprogram (Stm);
4769
4770            --  Check for explicit call cases which likely raise an exception
4771
4772            elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4773               if Is_Entity_Name (Name (Ostm)) then
4774                  declare
4775                     Ent : constant Entity_Id := Entity (Name (Ostm));
4776
4777                  begin
4778                     --  If the procedure is marked No_Return, then likely it
4779                     --  raises an exception, but in any case it is not coming
4780                     --  back here, so turn on the flag.
4781
4782                     if Present (Ent)
4783                       and then Ekind (Ent) = E_Procedure
4784                       and then No_Return (Ent)
4785                     then
4786                        Set_Trivial_Subprogram (Stm);
4787                     end if;
4788                  end;
4789               end if;
4790            end if;
4791         end;
4792      end;
4793
4794      --  Check for variables that are never modified
4795
4796      declare
4797         E1 : Entity_Id;
4798         E2 : Entity_Id;
4799
4800      begin
4801         --  If there is a separate spec, then transfer Never_Set_In_Source
4802         --  flags from out parameters to the corresponding entities in the
4803         --  body. The reason we do that is we want to post error flags on
4804         --  the body entities, not the spec entities.
4805
4806         if Present (Spec_Id) then
4807            E1 := First_Entity (Spec_Id);
4808            while Present (E1) loop
4809               if Ekind (E1) = E_Out_Parameter then
4810                  E2 := First_Entity (Body_Id);
4811                  while Present (E2) loop
4812                     exit when Chars (E1) = Chars (E2);
4813                     Next_Entity (E2);
4814                  end loop;
4815
4816                  if Present (E2) then
4817                     Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4818                  end if;
4819               end if;
4820
4821               Next_Entity (E1);
4822            end loop;
4823         end if;
4824
4825         --  Check references of the subprogram spec when we are dealing with
4826         --  an expression function due to it having a generated body.
4827         --  Otherwise, we simply check the formals of the subprogram body.
4828
4829         if Present (Spec_Id)
4830           and then Is_Expression_Function (Spec_Id)
4831         then
4832            Check_References (Spec_Id);
4833         else
4834            Check_References (Body_Id);
4835         end if;
4836      end;
4837
4838      --  Check for nested subprogram, and mark outer level subprogram if so
4839
4840      declare
4841         Ent : Entity_Id;
4842
4843      begin
4844         if Present (Spec_Id) then
4845            Ent := Spec_Id;
4846         else
4847            Ent := Body_Id;
4848         end if;
4849
4850         loop
4851            Ent := Enclosing_Subprogram (Ent);
4852            exit when No (Ent) or else Is_Subprogram (Ent);
4853         end loop;
4854
4855         if Present (Ent) then
4856            Set_Has_Nested_Subprogram (Ent);
4857         end if;
4858      end;
4859
4860      --  Restore the limited views in the spec, if any, to let the back end
4861      --  process it without running into circularities.
4862
4863      if Exch_Views /= No_Elist then
4864         Restore_Limited_Views (Exch_Views);
4865      end if;
4866
4867      if Mask_Types /= No_Elist then
4868         Unmask_Unfrozen_Types (Mask_Types);
4869      end if;
4870
4871      if Present (Desig_View) then
4872         Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4873      end if;
4874
4875   <<Leave>>
4876      if Present (Ignored_Ghost_Region) then
4877         Expander_Active := Saved_EA;
4878      end if;
4879
4880      Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4881      Restore_Ghost_Region (Saved_GM, Saved_IGR);
4882   end Analyze_Subprogram_Body_Helper;
4883
4884   ------------------------------------
4885   -- Analyze_Subprogram_Declaration --
4886   ------------------------------------
4887
4888   procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4889      Scop       : constant Entity_Id := Current_Scope;
4890      Designator : Entity_Id;
4891
4892      Is_Completion : Boolean;
4893      --  Indicates whether a null procedure declaration is a completion
4894
4895   begin
4896      --  Null procedures are not allowed in SPARK
4897
4898      if Nkind (Specification (N)) = N_Procedure_Specification
4899        and then Null_Present (Specification (N))
4900      then
4901         Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4902
4903         --  Null procedures are allowed in protected types, following the
4904         --  recent AI12-0147.
4905
4906         if Is_Protected_Type (Current_Scope)
4907           and then Ada_Version < Ada_2012
4908         then
4909            Error_Msg_N ("protected operation cannot be a null procedure", N);
4910         end if;
4911
4912         Analyze_Null_Procedure (N, Is_Completion);
4913
4914         --  The null procedure acts as a body, nothing further is needed
4915
4916         if Is_Completion then
4917            return;
4918         end if;
4919      end if;
4920
4921      Designator := Analyze_Subprogram_Specification (Specification (N));
4922
4923      --  A reference may already have been generated for the unit name, in
4924      --  which case the following call is redundant. However it is needed for
4925      --  declarations that are the rewriting of an expression function.
4926
4927      Generate_Definition (Designator);
4928
4929      --  Set the SPARK mode from the current context (may be overwritten later
4930      --  with explicit pragma). This is not done for entry barrier functions
4931      --  because they are generated outside the protected type and should not
4932      --  carry the mode of the enclosing context.
4933
4934      if Nkind (N) = N_Subprogram_Declaration
4935        and then Is_Entry_Barrier_Function (N)
4936      then
4937         null;
4938
4939      else
4940         Set_SPARK_Pragma           (Designator, SPARK_Mode_Pragma);
4941         Set_SPARK_Pragma_Inherited (Designator);
4942      end if;
4943
4944      --  Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4945      --  the body of this subprogram is instantiated or inlined later and out
4946      --  of context. The body uses this attribute to restore the value of the
4947      --  global flag.
4948
4949      if Ignore_SPARK_Mode_Pragmas_In_Instance then
4950         Set_Ignore_SPARK_Mode_Pragmas (Designator);
4951      end if;
4952
4953      --  Preserve relevant elaboration-related attributes of the context which
4954      --  are no longer available or very expensive to recompute once analysis,
4955      --  resolution, and expansion are over.
4956
4957      Mark_Elaboration_Attributes
4958        (N_Id     => Designator,
4959         Checks   => True,
4960         Warnings => True);
4961
4962      if Debug_Flag_C then
4963         Write_Str ("==> subprogram spec ");
4964         Write_Name (Chars (Designator));
4965         Write_Str (" from ");
4966         Write_Location (Sloc (N));
4967         Write_Eol;
4968         Indent;
4969      end if;
4970
4971      Validate_RCI_Subprogram_Declaration (N);
4972      New_Overloaded_Entity (Designator);
4973      Check_Delayed_Subprogram (Designator);
4974
4975      --  If the type of the first formal of the current subprogram is a non-
4976      --  generic tagged private type, mark the subprogram as being a private
4977      --  primitive. Ditto if this is a function with controlling result, and
4978      --  the return type is currently private. In both cases, the type of the
4979      --  controlling argument or result must be in the current scope for the
4980      --  operation to be primitive.
4981
4982      if Has_Controlling_Result (Designator)
4983        and then Is_Private_Type (Etype (Designator))
4984        and then Scope (Etype (Designator)) = Current_Scope
4985        and then not Is_Generic_Actual_Type (Etype (Designator))
4986      then
4987         Set_Is_Private_Primitive (Designator);
4988
4989      elsif Present (First_Formal (Designator)) then
4990         declare
4991            Formal_Typ : constant Entity_Id :=
4992                           Etype (First_Formal (Designator));
4993         begin
4994            Set_Is_Private_Primitive (Designator,
4995              Is_Tagged_Type (Formal_Typ)
4996                and then Scope (Formal_Typ) = Current_Scope
4997                and then Is_Private_Type (Formal_Typ)
4998                and then not Is_Generic_Actual_Type (Formal_Typ));
4999         end;
5000      end if;
5001
5002      --  Ada 2005 (AI-251): Abstract interface primitives must be abstract
5003      --  or null.
5004
5005      if Ada_Version >= Ada_2005
5006        and then Comes_From_Source (N)
5007        and then Is_Dispatching_Operation (Designator)
5008      then
5009         declare
5010            E    : Entity_Id;
5011            Etyp : Entity_Id;
5012
5013         begin
5014            if Has_Controlling_Result (Designator) then
5015               Etyp := Etype (Designator);
5016
5017            else
5018               E := First_Entity (Designator);
5019               while Present (E)
5020                 and then Is_Formal (E)
5021                 and then not Is_Controlling_Formal (E)
5022               loop
5023                  Next_Entity (E);
5024               end loop;
5025
5026               Etyp := Etype (E);
5027            end if;
5028
5029            if Is_Access_Type (Etyp) then
5030               Etyp := Directly_Designated_Type (Etyp);
5031            end if;
5032
5033            if Is_Interface (Etyp)
5034              and then not Is_Abstract_Subprogram (Designator)
5035              and then not (Ekind (Designator) = E_Procedure
5036                             and then Null_Present (Specification (N)))
5037            then
5038               Error_Msg_Name_1 := Chars (Defining_Entity (N));
5039
5040               --  Specialize error message based on procedures vs. functions,
5041               --  since functions can't be null subprograms.
5042
5043               if Ekind (Designator) = E_Procedure then
5044                  Error_Msg_N
5045                    ("interface procedure % must be abstract or null", N);
5046               else
5047                  Error_Msg_N
5048                    ("interface function % must be abstract", N);
5049               end if;
5050            end if;
5051         end;
5052      end if;
5053
5054      --  What is the following code for, it used to be
5055
5056      --  ???   Set_Suppress_Elaboration_Checks
5057      --  ???     (Designator, Elaboration_Checks_Suppressed (Designator));
5058
5059      --  The following seems equivalent, but a bit dubious
5060
5061      if Elaboration_Checks_Suppressed (Designator) then
5062         Set_Kill_Elaboration_Checks (Designator);
5063      end if;
5064
5065      --  For a compilation unit, set body required. This flag will only be
5066      --  reset if a valid Import or Interface pragma is processed later on.
5067
5068      if Nkind (Parent (N)) = N_Compilation_Unit then
5069         Set_Body_Required (Parent (N), True);
5070
5071         if Ada_Version >= Ada_2005
5072           and then Nkind (Specification (N)) = N_Procedure_Specification
5073           and then Null_Present (Specification (N))
5074         then
5075            Error_Msg_N
5076              ("null procedure cannot be declared at library level", N);
5077         end if;
5078      end if;
5079
5080      Generate_Reference_To_Formals (Designator);
5081      Check_Eliminated (Designator);
5082
5083      if Debug_Flag_C then
5084         Outdent;
5085         Write_Str ("<== subprogram spec ");
5086         Write_Name (Chars (Designator));
5087         Write_Str (" from ");
5088         Write_Location (Sloc (N));
5089         Write_Eol;
5090      end if;
5091
5092      --  Indicate that this is a protected operation, because it may be used
5093      --  in subsequent declarations within the protected type.
5094
5095      if Is_Protected_Type (Current_Scope) then
5096         Set_Convention (Designator, Convention_Protected);
5097      end if;
5098
5099      List_Inherited_Pre_Post_Aspects (Designator);
5100
5101      --  Process the aspects before establishing the proper categorization in
5102      --  case the subprogram is a compilation unit and one of its aspects is
5103      --  converted into a categorization pragma.
5104
5105      if Has_Aspects (N) then
5106         Analyze_Aspect_Specifications (N, Designator);
5107      end if;
5108
5109      if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
5110         Set_Categorization_From_Scope (Designator, Scop);
5111
5112      --  Otherwise the unit is a compilation unit and/or a child unit. Set the
5113      --  proper categorization of the unit based on its pragmas.
5114
5115      else
5116         Push_Scope (Designator);
5117         Set_Categorization_From_Pragmas (N);
5118         Validate_Categorization_Dependency (N, Designator);
5119         Pop_Scope;
5120      end if;
5121   end Analyze_Subprogram_Declaration;
5122
5123   --------------------------------------
5124   -- Analyze_Subprogram_Specification --
5125   --------------------------------------
5126
5127   --  Reminder: N here really is a subprogram specification (not a subprogram
5128   --  declaration). This procedure is called to analyze the specification in
5129   --  both subprogram bodies and subprogram declarations (specs).
5130
5131   function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
5132      function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
5133      --  Determine whether entity E denotes the spec or body of an invariant
5134      --  procedure.
5135
5136      ------------------------------------
5137      -- Is_Invariant_Procedure_Or_Body --
5138      ------------------------------------
5139
5140      function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
5141         Decl : constant Node_Id := Unit_Declaration_Node (E);
5142         Spec : Entity_Id;
5143
5144      begin
5145         if Nkind (Decl) = N_Subprogram_Body then
5146            Spec := Corresponding_Spec (Decl);
5147         else
5148            Spec := E;
5149         end if;
5150
5151         return
5152           Present (Spec)
5153             and then Ekind (Spec) = E_Procedure
5154             and then (Is_Partial_Invariant_Procedure (Spec)
5155                        or else Is_Invariant_Procedure (Spec));
5156      end Is_Invariant_Procedure_Or_Body;
5157
5158      --  Local variables
5159
5160      Designator : constant Entity_Id := Defining_Entity (N);
5161      Formals    : constant List_Id   := Parameter_Specifications (N);
5162
5163   --  Start of processing for Analyze_Subprogram_Specification
5164
5165   begin
5166      --  User-defined operator is not allowed in SPARK, except as a renaming
5167
5168      if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
5169        and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
5170      then
5171         Check_SPARK_05_Restriction
5172           ("user-defined operator is not allowed", N);
5173      end if;
5174
5175      --  Proceed with analysis. Do not emit a cross-reference entry if the
5176      --  specification comes from an expression function, because it may be
5177      --  the completion of a previous declaration. If it is not, the cross-
5178      --  reference entry will be emitted for the new subprogram declaration.
5179
5180      if Nkind (Parent (N)) /= N_Expression_Function then
5181         Generate_Definition (Designator);
5182      end if;
5183
5184      if Nkind (N) = N_Function_Specification then
5185         Set_Ekind (Designator, E_Function);
5186         Set_Mechanism (Designator, Default_Mechanism);
5187      else
5188         Set_Ekind (Designator, E_Procedure);
5189         Set_Etype (Designator, Standard_Void_Type);
5190      end if;
5191
5192      --  Flag Is_Inlined_Always is True by default, and reversed to False for
5193      --  those subprograms which could be inlined in GNATprove mode (because
5194      --  Body_To_Inline is non-Empty) but should not be inlined.
5195
5196      if GNATprove_Mode then
5197         Set_Is_Inlined_Always (Designator);
5198      end if;
5199
5200      --  Introduce new scope for analysis of the formals and the return type
5201
5202      Set_Scope (Designator, Current_Scope);
5203
5204      if Present (Formals) then
5205         Push_Scope (Designator);
5206         Process_Formals (Formals, N);
5207
5208         --  Check dimensions in N for formals with default expression
5209
5210         Analyze_Dimension_Formals (N, Formals);
5211
5212         --  Ada 2005 (AI-345): If this is an overriding operation of an
5213         --  inherited interface operation, and the controlling type is
5214         --  a synchronized type, replace the type with its corresponding
5215         --  record, to match the proper signature of an overriding operation.
5216         --  Same processing for an access parameter whose designated type is
5217         --  derived from a synchronized interface.
5218
5219         --  This modification is not done for invariant procedures because
5220         --  the corresponding record may not necessarely be visible when the
5221         --  concurrent type acts as the full view of a private type.
5222
5223         --    package Pack is
5224         --       type Prot is private with Type_Invariant => ...;
5225         --       procedure ConcInvariant (Obj : Prot);
5226         --    private
5227         --       protected type Prot is ...;
5228         --       type Concurrent_Record_Prot is record ...;
5229         --       procedure ConcInvariant (Obj : Prot) is
5230         --          ...
5231         --       end ConcInvariant;
5232         --    end Pack;
5233
5234         --  In the example above, both the spec and body of the invariant
5235         --  procedure must utilize the private type as the controlling type.
5236
5237         if Ada_Version >= Ada_2005
5238           and then not Is_Invariant_Procedure_Or_Body (Designator)
5239         then
5240            declare
5241               Formal     : Entity_Id;
5242               Formal_Typ : Entity_Id;
5243               Rec_Typ    : Entity_Id;
5244               Desig_Typ  : Entity_Id;
5245
5246            begin
5247               Formal := First_Formal (Designator);
5248               while Present (Formal) loop
5249                  Formal_Typ := Etype (Formal);
5250
5251                  if Is_Concurrent_Type (Formal_Typ)
5252                    and then Present (Corresponding_Record_Type (Formal_Typ))
5253                  then
5254                     Rec_Typ := Corresponding_Record_Type (Formal_Typ);
5255
5256                     if Present (Interfaces (Rec_Typ)) then
5257                        Set_Etype (Formal, Rec_Typ);
5258                     end if;
5259
5260                  elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
5261                     Desig_Typ := Designated_Type (Formal_Typ);
5262
5263                     if Is_Concurrent_Type (Desig_Typ)
5264                       and then Present (Corresponding_Record_Type (Desig_Typ))
5265                     then
5266                        Rec_Typ := Corresponding_Record_Type (Desig_Typ);
5267
5268                        if Present (Interfaces (Rec_Typ)) then
5269                           Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5270                        end if;
5271                     end if;
5272                  end if;
5273
5274                  Next_Formal (Formal);
5275               end loop;
5276            end;
5277         end if;
5278
5279         End_Scope;
5280
5281      --  The subprogram scope is pushed and popped around the processing of
5282      --  the return type for consistency with call above to Process_Formals
5283      --  (which itself can call Analyze_Return_Type), and to ensure that any
5284      --  itype created for the return type will be associated with the proper
5285      --  scope.
5286
5287      elsif Nkind (N) = N_Function_Specification then
5288         Push_Scope (Designator);
5289         Analyze_Return_Type (N);
5290         End_Scope;
5291      end if;
5292
5293      --  Function case
5294
5295      if Nkind (N) = N_Function_Specification then
5296
5297         --  Deal with operator symbol case
5298
5299         if Nkind (Designator) = N_Defining_Operator_Symbol then
5300            Valid_Operator_Definition (Designator);
5301         end if;
5302
5303         May_Need_Actuals (Designator);
5304
5305         --  Ada 2005 (AI-251): If the return type is abstract, verify that
5306         --  the subprogram is abstract also. This does not apply to renaming
5307         --  declarations, where abstractness is inherited, and to subprogram
5308         --  bodies generated for stream operations, which become renamings as
5309         --  bodies.
5310
5311         --  In case of primitives associated with abstract interface types
5312         --  the check is applied later (see Analyze_Subprogram_Declaration).
5313
5314         if not Nkind_In (Original_Node (Parent (N)),
5315                          N_Abstract_Subprogram_Declaration,
5316                          N_Formal_Abstract_Subprogram_Declaration,
5317                          N_Subprogram_Renaming_Declaration)
5318         then
5319            if Is_Abstract_Type (Etype (Designator))
5320              and then not Is_Interface (Etype (Designator))
5321            then
5322               Error_Msg_N
5323                 ("function that returns abstract type must be abstract", N);
5324
5325            --  Ada 2012 (AI-0073): Extend this test to subprograms with an
5326            --  access result whose designated type is abstract.
5327
5328            elsif Ada_Version >= Ada_2012
5329              and then Nkind (Result_Definition (N)) = N_Access_Definition
5330              and then
5331                not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5332              and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5333            then
5334               Error_Msg_N
5335                 ("function whose access result designates abstract type "
5336                  & "must be abstract", N);
5337            end if;
5338         end if;
5339      end if;
5340
5341      return Designator;
5342   end Analyze_Subprogram_Specification;
5343
5344   -----------------------
5345   -- Check_Conformance --
5346   -----------------------
5347
5348   procedure Check_Conformance
5349     (New_Id                   : Entity_Id;
5350      Old_Id                   : Entity_Id;
5351      Ctype                    : Conformance_Type;
5352      Errmsg                   : Boolean;
5353      Conforms                 : out Boolean;
5354      Err_Loc                  : Node_Id := Empty;
5355      Get_Inst                 : Boolean := False;
5356      Skip_Controlling_Formals : Boolean := False)
5357   is
5358      procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5359      --  Sets Conforms to False. If Errmsg is False, then that's all it does.
5360      --  If Errmsg is True, then processing continues to post an error message
5361      --  for conformance error on given node. Two messages are output. The
5362      --  first message points to the previous declaration with a general "no
5363      --  conformance" message. The second is the detailed reason, supplied as
5364      --  Msg. The parameter N provide information for a possible & insertion
5365      --  in the message, and also provides the location for posting the
5366      --  message in the absence of a specified Err_Loc location.
5367
5368      function Conventions_Match
5369        (Id1 : Entity_Id;
5370         Id2 : Entity_Id) return Boolean;
5371      --  Determine whether the conventions of arbitrary entities Id1 and Id2
5372      --  match.
5373
5374      -----------------------
5375      -- Conformance_Error --
5376      -----------------------
5377
5378      procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5379         Enode : Node_Id;
5380
5381      begin
5382         Conforms := False;
5383
5384         if Errmsg then
5385            if No (Err_Loc) then
5386               Enode := N;
5387            else
5388               Enode := Err_Loc;
5389            end if;
5390
5391            Error_Msg_Sloc := Sloc (Old_Id);
5392
5393            case Ctype is
5394               when Type_Conformant =>
5395                  Error_Msg_N -- CODEFIX
5396                    ("not type conformant with declaration#!", Enode);
5397
5398               when Mode_Conformant =>
5399                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5400                     Error_Msg_N
5401                       ("not mode conformant with operation inherited#!",
5402                         Enode);
5403                  else
5404                     Error_Msg_N
5405                       ("not mode conformant with declaration#!", Enode);
5406                  end if;
5407
5408               when Subtype_Conformant =>
5409                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5410                     Error_Msg_N
5411                       ("not subtype conformant with operation inherited#!",
5412                         Enode);
5413                  else
5414                     Error_Msg_N
5415                       ("not subtype conformant with declaration#!", Enode);
5416                  end if;
5417
5418               when Fully_Conformant =>
5419                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5420                     Error_Msg_N -- CODEFIX
5421                       ("not fully conformant with operation inherited#!",
5422                         Enode);
5423                  else
5424                     Error_Msg_N -- CODEFIX
5425                       ("not fully conformant with declaration#!", Enode);
5426                  end if;
5427            end case;
5428
5429            Error_Msg_NE (Msg, Enode, N);
5430         end if;
5431      end Conformance_Error;
5432
5433      -----------------------
5434      -- Conventions_Match --
5435      -----------------------
5436
5437      function Conventions_Match
5438        (Id1 : Entity_Id;
5439         Id2 : Entity_Id) return Boolean
5440      is
5441      begin
5442         --  Ignore the conventions of anonymous access-to-subprogram types
5443         --  and subprogram types because these are internally generated and
5444         --  the only way these may receive a convention is if they inherit
5445         --  the convention of a related subprogram.
5446
5447         if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5448                           E_Subprogram_Type)
5449              or else
5450            Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5451                           E_Subprogram_Type)
5452         then
5453            return True;
5454
5455         --  Otherwise compare the conventions directly
5456
5457         else
5458            return Convention (Id1) = Convention (Id2);
5459         end if;
5460      end Conventions_Match;
5461
5462      --  Local Variables
5463
5464      Old_Type           : constant Entity_Id := Etype (Old_Id);
5465      New_Type           : constant Entity_Id := Etype (New_Id);
5466      Old_Formal         : Entity_Id;
5467      New_Formal         : Entity_Id;
5468      Access_Types_Match : Boolean;
5469      Old_Formal_Base    : Entity_Id;
5470      New_Formal_Base    : Entity_Id;
5471
5472   --  Start of processing for Check_Conformance
5473
5474   begin
5475      Conforms := True;
5476
5477      --  We need a special case for operators, since they don't appear
5478      --  explicitly.
5479
5480      if Ctype = Type_Conformant then
5481         if Ekind (New_Id) = E_Operator
5482           and then Operator_Matches_Spec (New_Id, Old_Id)
5483         then
5484            return;
5485         end if;
5486      end if;
5487
5488      --  If both are functions/operators, check return types conform
5489
5490      if Old_Type /= Standard_Void_Type
5491           and then
5492         New_Type /= Standard_Void_Type
5493      then
5494         --  If we are checking interface conformance we omit controlling
5495         --  arguments and result, because we are only checking the conformance
5496         --  of the remaining parameters.
5497
5498         if Has_Controlling_Result (Old_Id)
5499           and then Has_Controlling_Result (New_Id)
5500           and then Skip_Controlling_Formals
5501         then
5502            null;
5503
5504         elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5505            if Ctype >= Subtype_Conformant
5506              and then not Predicates_Match (Old_Type, New_Type)
5507            then
5508               Conformance_Error
5509                 ("\predicate of return type does not match!", New_Id);
5510            else
5511               Conformance_Error
5512                 ("\return type does not match!", New_Id);
5513            end if;
5514
5515            return;
5516         end if;
5517
5518         --  Ada 2005 (AI-231): In case of anonymous access types check the
5519         --  null-exclusion and access-to-constant attributes match.
5520
5521         if Ada_Version >= Ada_2005
5522           and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5523           and then
5524             (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5525               or else Is_Access_Constant (Etype (Old_Type)) /=
5526                       Is_Access_Constant (Etype (New_Type)))
5527         then
5528            Conformance_Error ("\return type does not match!", New_Id);
5529            return;
5530         end if;
5531
5532      --  If either is a function/operator and the other isn't, error
5533
5534      elsif Old_Type /= Standard_Void_Type
5535        or else New_Type /= Standard_Void_Type
5536      then
5537         Conformance_Error ("\functions can only match functions!", New_Id);
5538         return;
5539      end if;
5540
5541      --  In subtype conformant case, conventions must match (RM 6.3.1(16)).
5542      --  If this is a renaming as body, refine error message to indicate that
5543      --  the conflict is with the original declaration. If the entity is not
5544      --  frozen, the conventions don't have to match, the one of the renamed
5545      --  entity is inherited.
5546
5547      if Ctype >= Subtype_Conformant then
5548         if not Conventions_Match (Old_Id, New_Id) then
5549            if not Is_Frozen (New_Id) then
5550               null;
5551
5552            elsif Present (Err_Loc)
5553              and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5554              and then Present (Corresponding_Spec (Err_Loc))
5555            then
5556               Error_Msg_Name_1 := Chars (New_Id);
5557               Error_Msg_Name_2 :=
5558                 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5559               Conformance_Error ("\prior declaration for% has convention %!");
5560
5561            else
5562               Conformance_Error ("\calling conventions do not match!");
5563            end if;
5564
5565            return;
5566
5567         elsif Is_Formal_Subprogram (Old_Id)
5568           or else Is_Formal_Subprogram (New_Id)
5569           or else (Is_Subprogram (New_Id)
5570                     and then Present (Alias (New_Id))
5571                     and then Is_Formal_Subprogram (Alias (New_Id)))
5572         then
5573            Conformance_Error
5574              ("\formal subprograms are not subtype conformant "
5575               & "(RM 6.3.1 (17/3))");
5576         end if;
5577      end if;
5578
5579      --  Deal with parameters
5580
5581      --  Note: we use the entity information, rather than going directly
5582      --  to the specification in the tree. This is not only simpler, but
5583      --  absolutely necessary for some cases of conformance tests between
5584      --  operators, where the declaration tree simply does not exist.
5585
5586      Old_Formal := First_Formal (Old_Id);
5587      New_Formal := First_Formal (New_Id);
5588      while Present (Old_Formal) and then Present (New_Formal) loop
5589         if Is_Controlling_Formal (Old_Formal)
5590           and then Is_Controlling_Formal (New_Formal)
5591           and then Skip_Controlling_Formals
5592         then
5593            --  The controlling formals will have different types when
5594            --  comparing an interface operation with its match, but both
5595            --  or neither must be access parameters.
5596
5597            if Is_Access_Type (Etype (Old_Formal))
5598                 =
5599               Is_Access_Type (Etype (New_Formal))
5600            then
5601               goto Skip_Controlling_Formal;
5602            else
5603               Conformance_Error
5604                 ("\access parameter does not match!", New_Formal);
5605            end if;
5606         end if;
5607
5608         --  Ada 2012: Mode conformance also requires that formal parameters
5609         --  be both aliased, or neither.
5610
5611         if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5612            if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5613               Conformance_Error
5614                 ("\aliased parameter mismatch!", New_Formal);
5615            end if;
5616         end if;
5617
5618         if Ctype = Fully_Conformant then
5619
5620            --  Names must match. Error message is more accurate if we do
5621            --  this before checking that the types of the formals match.
5622
5623            if Chars (Old_Formal) /= Chars (New_Formal) then
5624               Conformance_Error ("\name& does not match!", New_Formal);
5625
5626               --  Set error posted flag on new formal as well to stop
5627               --  junk cascaded messages in some cases.
5628
5629               Set_Error_Posted (New_Formal);
5630               return;
5631            end if;
5632
5633            --  Null exclusion must match
5634
5635            if Null_Exclusion_Present (Parent (Old_Formal))
5636                 /=
5637               Null_Exclusion_Present (Parent (New_Formal))
5638            then
5639               --  Only give error if both come from source. This should be
5640               --  investigated some time, since it should not be needed ???
5641
5642               if Comes_From_Source (Old_Formal)
5643                    and then
5644                  Comes_From_Source (New_Formal)
5645               then
5646                  Conformance_Error
5647                    ("\null exclusion for& does not match", New_Formal);
5648
5649                  --  Mark error posted on the new formal to avoid duplicated
5650                  --  complaint about types not matching.
5651
5652                  Set_Error_Posted (New_Formal);
5653               end if;
5654            end if;
5655         end if;
5656
5657         --  Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5658         --  case occurs whenever a subprogram is being renamed and one of its
5659         --  parameters imposes a null exclusion. For example:
5660
5661         --     type T is null record;
5662         --     type Acc_T is access T;
5663         --     subtype Acc_T_Sub is Acc_T;
5664
5665         --     procedure P     (Obj : not null Acc_T_Sub);  --  itype
5666         --     procedure Ren_P (Obj :          Acc_T_Sub)   --  subtype
5667         --       renames P;
5668
5669         Old_Formal_Base := Etype (Old_Formal);
5670         New_Formal_Base := Etype (New_Formal);
5671
5672         if Get_Inst then
5673            Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5674            New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5675         end if;
5676
5677         Access_Types_Match := Ada_Version >= Ada_2005
5678
5679           --  Ensure that this rule is only applied when New_Id is a
5680           --  renaming of Old_Id.
5681
5682           and then Nkind (Parent (Parent (New_Id))) =
5683                      N_Subprogram_Renaming_Declaration
5684           and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5685           and then Present (Entity (Name (Parent (Parent (New_Id)))))
5686           and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5687
5688           --  Now handle the allowed access-type case
5689
5690           and then Is_Access_Type (Old_Formal_Base)
5691           and then Is_Access_Type (New_Formal_Base)
5692
5693           --  The type kinds must match. The only exception occurs with
5694           --  multiple generics of the form:
5695
5696           --   generic                    generic
5697           --     type F is private;         type A is private;
5698           --     type F_Ptr is access F;    type A_Ptr is access A;
5699           --     with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5700           --   package F_Pack is ...      package A_Pack is
5701           --                                package F_Inst is
5702           --                                  new F_Pack (A, A_Ptr, A_P);
5703
5704           --  When checking for conformance between the parameters of A_P
5705           --  and F_P, the type kinds of F_Ptr and A_Ptr will not match
5706           --  because the compiler has transformed A_Ptr into a subtype of
5707           --  F_Ptr. We catch this case in the code below.
5708
5709           and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5710                      or else
5711                        (Is_Generic_Type (Old_Formal_Base)
5712                          and then Is_Generic_Type (New_Formal_Base)
5713                          and then Is_Internal (New_Formal_Base)
5714                          and then Etype (Etype (New_Formal_Base)) =
5715                                                          Old_Formal_Base))
5716               and then Directly_Designated_Type (Old_Formal_Base) =
5717                                    Directly_Designated_Type (New_Formal_Base)
5718           and then ((Is_Itype (Old_Formal_Base)
5719                       and then (Can_Never_Be_Null (Old_Formal_Base)
5720                                  or else Is_Access_Constant
5721                                            (Old_Formal_Base)))
5722                     or else
5723                      (Is_Itype (New_Formal_Base)
5724                        and then (Can_Never_Be_Null (New_Formal_Base)
5725                                   or else Is_Access_Constant
5726                                             (New_Formal_Base))));
5727
5728         --  Types must always match. In the visible part of an instance,
5729         --  usual overloading rules for dispatching operations apply, and
5730         --  we check base types (not the actual subtypes).
5731
5732         if In_Instance_Visible_Part
5733           and then Is_Dispatching_Operation (New_Id)
5734         then
5735            if not Conforming_Types
5736                     (T1       => Base_Type (Etype (Old_Formal)),
5737                      T2       => Base_Type (Etype (New_Formal)),
5738                      Ctype    => Ctype,
5739                      Get_Inst => Get_Inst)
5740               and then not Access_Types_Match
5741            then
5742               Conformance_Error ("\type of & does not match!", New_Formal);
5743               return;
5744            end if;
5745
5746         elsif not Conforming_Types
5747                     (T1       => Old_Formal_Base,
5748                      T2       => New_Formal_Base,
5749                      Ctype    => Ctype,
5750                      Get_Inst => Get_Inst)
5751           and then not Access_Types_Match
5752         then
5753            --  Don't give error message if old type is Any_Type. This test
5754            --  avoids some cascaded errors, e.g. in case of a bad spec.
5755
5756            if Errmsg and then Old_Formal_Base = Any_Type then
5757               Conforms := False;
5758            else
5759               if Ctype >= Subtype_Conformant
5760                 and then
5761                   not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5762               then
5763                  Conformance_Error
5764                    ("\predicate of & does not match!", New_Formal);
5765               else
5766                  Conformance_Error
5767                    ("\type of & does not match!", New_Formal);
5768
5769                  if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5770                  then
5771                     Error_Msg_N ("\dimensions mismatch!", New_Formal);
5772                  end if;
5773               end if;
5774            end if;
5775
5776            return;
5777         end if;
5778
5779         --  For mode conformance, mode must match
5780
5781         if Ctype >= Mode_Conformant then
5782            if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5783               if not Ekind_In (New_Id, E_Function, E_Procedure)
5784                 or else not Is_Primitive_Wrapper (New_Id)
5785               then
5786                  Conformance_Error ("\mode of & does not match!", New_Formal);
5787
5788               else
5789                  declare
5790                     T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5791                  begin
5792                     if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5793                     then
5794                        Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5795                     else
5796                        Conformance_Error
5797                          ("\mode of & does not match!", New_Formal);
5798                     end if;
5799                  end;
5800               end if;
5801
5802               return;
5803
5804            --  Part of mode conformance for access types is having the same
5805            --  constant modifier.
5806
5807            elsif Access_Types_Match
5808              and then Is_Access_Constant (Old_Formal_Base) /=
5809                       Is_Access_Constant (New_Formal_Base)
5810            then
5811               Conformance_Error
5812                 ("\constant modifier does not match!", New_Formal);
5813               return;
5814            end if;
5815         end if;
5816
5817         if Ctype >= Subtype_Conformant then
5818
5819            --  Ada 2005 (AI-231): In case of anonymous access types check
5820            --  the null-exclusion and access-to-constant attributes must
5821            --  match. For null exclusion, we test the types rather than the
5822            --  formals themselves, since the attribute is only set reliably
5823            --  on the formals in the Ada 95 case, and we exclude the case
5824            --  where Old_Formal is marked as controlling, to avoid errors
5825            --  when matching completing bodies with dispatching declarations
5826            --  (access formals in the bodies aren't marked Can_Never_Be_Null).
5827
5828            if Ada_Version >= Ada_2005
5829              and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5830              and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5831              and then
5832                ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5833                  Can_Never_Be_Null (Etype (New_Formal))
5834                    and then
5835                      not Is_Controlling_Formal (Old_Formal))
5836                   or else
5837                 Is_Access_Constant (Etype (Old_Formal)) /=
5838                 Is_Access_Constant (Etype (New_Formal)))
5839
5840              --  Do not complain if error already posted on New_Formal. This
5841              --  avoids some redundant error messages.
5842
5843              and then not Error_Posted (New_Formal)
5844            then
5845               --  It is allowed to omit the null-exclusion in case of stream
5846               --  attribute subprograms. We recognize stream subprograms
5847               --  through their TSS-generated suffix.
5848
5849               declare
5850                  TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5851
5852               begin
5853                  if TSS_Name /= TSS_Stream_Read
5854                    and then TSS_Name /= TSS_Stream_Write
5855                    and then TSS_Name /= TSS_Stream_Input
5856                    and then TSS_Name /= TSS_Stream_Output
5857                  then
5858                     --  Here we have a definite conformance error. It is worth
5859                     --  special casing the error message for the case of a
5860                     --  controlling formal (which excludes null).
5861
5862                     if Is_Controlling_Formal (New_Formal) then
5863                        Error_Msg_Node_2 := Scope (New_Formal);
5864                        Conformance_Error
5865                         ("\controlling formal & of & excludes null, "
5866                          & "declaration must exclude null as well",
5867                          New_Formal);
5868
5869                     --  Normal case (couldn't we give more detail here???)
5870
5871                     else
5872                        Conformance_Error
5873                          ("\type of & does not match!", New_Formal);
5874                     end if;
5875
5876                     return;
5877                  end if;
5878               end;
5879            end if;
5880         end if;
5881
5882         --  Full conformance checks
5883
5884         if Ctype = Fully_Conformant then
5885
5886            --  We have checked already that names match
5887
5888            if Parameter_Mode (Old_Formal) = E_In_Parameter then
5889
5890               --  Check default expressions for in parameters
5891
5892               declare
5893                  NewD : constant Boolean :=
5894                           Present (Default_Value (New_Formal));
5895                  OldD : constant Boolean :=
5896                           Present (Default_Value (Old_Formal));
5897               begin
5898                  if NewD or OldD then
5899
5900                     --  The old default value has been analyzed because the
5901                     --  current full declaration will have frozen everything
5902                     --  before. The new default value has not been analyzed,
5903                     --  so analyze it now before we check for conformance.
5904
5905                     if NewD then
5906                        Push_Scope (New_Id);
5907                        Preanalyze_Spec_Expression
5908                          (Default_Value (New_Formal), Etype (New_Formal));
5909                        End_Scope;
5910                     end if;
5911
5912                     if not (NewD and OldD)
5913                       or else not Fully_Conformant_Expressions
5914                                    (Default_Value (Old_Formal),
5915                                     Default_Value (New_Formal))
5916                     then
5917                        Conformance_Error
5918                          ("\default expression for & does not match!",
5919                           New_Formal);
5920                        return;
5921                     end if;
5922                  end if;
5923               end;
5924            end if;
5925         end if;
5926
5927         --  A couple of special checks for Ada 83 mode. These checks are
5928         --  skipped if either entity is an operator in package Standard,
5929         --  or if either old or new instance is not from the source program.
5930
5931         if Ada_Version = Ada_83
5932           and then Sloc (Old_Id) > Standard_Location
5933           and then Sloc (New_Id) > Standard_Location
5934           and then Comes_From_Source (Old_Id)
5935           and then Comes_From_Source (New_Id)
5936         then
5937            declare
5938               Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5939               New_Param : constant Node_Id := Declaration_Node (New_Formal);
5940
5941            begin
5942               --  Explicit IN must be present or absent in both cases. This
5943               --  test is required only in the full conformance case.
5944
5945               if In_Present (Old_Param) /= In_Present (New_Param)
5946                 and then Ctype = Fully_Conformant
5947               then
5948                  Conformance_Error
5949                    ("\(Ada 83) IN must appear in both declarations",
5950                     New_Formal);
5951                  return;
5952               end if;
5953
5954               --  Grouping (use of comma in param lists) must be the same
5955               --  This is where we catch a misconformance like:
5956
5957               --    A, B : Integer
5958               --    A : Integer; B : Integer
5959
5960               --  which are represented identically in the tree except
5961               --  for the setting of the flags More_Ids and Prev_Ids.
5962
5963               if More_Ids (Old_Param) /= More_Ids (New_Param)
5964                 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5965               then
5966                  Conformance_Error
5967                    ("\grouping of & does not match!", New_Formal);
5968                  return;
5969               end if;
5970            end;
5971         end if;
5972
5973         --  This label is required when skipping controlling formals
5974
5975         <<Skip_Controlling_Formal>>
5976
5977         Next_Formal (Old_Formal);
5978         Next_Formal (New_Formal);
5979      end loop;
5980
5981      if Present (Old_Formal) then
5982         Conformance_Error ("\too few parameters!");
5983         return;
5984
5985      elsif Present (New_Formal) then
5986         Conformance_Error ("\too many parameters!", New_Formal);
5987         return;
5988      end if;
5989   end Check_Conformance;
5990
5991   -----------------------
5992   -- Check_Conventions --
5993   -----------------------
5994
5995   procedure Check_Conventions (Typ : Entity_Id) is
5996      Ifaces_List : Elist_Id;
5997
5998      procedure Check_Convention (Op : Entity_Id);
5999      --  Verify that the convention of inherited dispatching operation Op is
6000      --  consistent among all subprograms it overrides. In order to minimize
6001      --  the search, Search_From is utilized to designate a specific point in
6002      --  the list rather than iterating over the whole list once more.
6003
6004      ----------------------
6005      -- Check_Convention --
6006      ----------------------
6007
6008      procedure Check_Convention (Op : Entity_Id) is
6009         Op_Conv         : constant Convention_Id := Convention (Op);
6010         Iface_Conv      : Convention_Id;
6011         Iface_Elmt      : Elmt_Id;
6012         Iface_Prim_Elmt : Elmt_Id;
6013         Iface_Prim      : Entity_Id;
6014
6015      begin
6016         Iface_Elmt := First_Elmt (Ifaces_List);
6017         while Present (Iface_Elmt) loop
6018            Iface_Prim_Elmt :=
6019              First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
6020            while Present (Iface_Prim_Elmt) loop
6021               Iface_Prim := Node (Iface_Prim_Elmt);
6022               Iface_Conv := Convention (Iface_Prim);
6023
6024               if Is_Interface_Conformant (Typ, Iface_Prim, Op)
6025                 and then Iface_Conv /= Op_Conv
6026               then
6027                  Error_Msg_N
6028                    ("inconsistent conventions in primitive operations", Typ);
6029
6030                  Error_Msg_Name_1 := Chars (Op);
6031                  Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
6032                  Error_Msg_Sloc   := Sloc (Op);
6033
6034                  if Comes_From_Source (Op) or else No (Alias (Op)) then
6035                     if not Present (Overridden_Operation (Op)) then
6036                        Error_Msg_N ("\\primitive % defined #", Typ);
6037                     else
6038                        Error_Msg_N
6039                          ("\\overriding operation % with "
6040                           & "convention % defined #", Typ);
6041                     end if;
6042
6043                  else pragma Assert (Present (Alias (Op)));
6044                     Error_Msg_Sloc := Sloc (Alias (Op));
6045                     Error_Msg_N ("\\inherited operation % with "
6046                                  & "convention % defined #", Typ);
6047                  end if;
6048
6049                  Error_Msg_Name_1 := Chars (Op);
6050                  Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
6051                  Error_Msg_Sloc   := Sloc (Iface_Prim);
6052                  Error_Msg_N ("\\overridden operation % with "
6053                               & "convention % defined #", Typ);
6054
6055                  --  Avoid cascading errors
6056
6057                  return;
6058               end if;
6059
6060               Next_Elmt (Iface_Prim_Elmt);
6061            end loop;
6062
6063            Next_Elmt (Iface_Elmt);
6064         end loop;
6065      end Check_Convention;
6066
6067      --  Local variables
6068
6069      Prim_Op      : Entity_Id;
6070      Prim_Op_Elmt : Elmt_Id;
6071
6072   --  Start of processing for Check_Conventions
6073
6074   begin
6075      if not Has_Interfaces (Typ) then
6076         return;
6077      end if;
6078
6079      Collect_Interfaces (Typ, Ifaces_List);
6080
6081      --  The algorithm checks every overriding dispatching operation against
6082      --  all the corresponding overridden dispatching operations, detecting
6083      --  differences in conventions.
6084
6085      Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
6086      while Present (Prim_Op_Elmt) loop
6087         Prim_Op := Node (Prim_Op_Elmt);
6088
6089         --  A small optimization: skip the predefined dispatching operations
6090         --  since they always have the same convention.
6091
6092         if not Is_Predefined_Dispatching_Operation (Prim_Op) then
6093            Check_Convention (Prim_Op);
6094         end if;
6095
6096         Next_Elmt (Prim_Op_Elmt);
6097      end loop;
6098   end Check_Conventions;
6099
6100   ------------------------------
6101   -- Check_Delayed_Subprogram --
6102   ------------------------------
6103
6104   procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
6105      procedure Possible_Freeze (T : Entity_Id);
6106      --  T is the type of either a formal parameter or of the return type. If
6107      --  T is not yet frozen and needs a delayed freeze, then the subprogram
6108      --  itself must be delayed.
6109
6110      ---------------------
6111      -- Possible_Freeze --
6112      ---------------------
6113
6114      procedure Possible_Freeze (T : Entity_Id) is
6115         Scop : constant Entity_Id := Scope (Designator);
6116
6117      begin
6118         --  If the subprogram appears within a package instance (which may be
6119         --  the wrapper package of a subprogram instance) the freeze node for
6120         --  that package will freeze the subprogram at the proper place, so
6121         --  do not emit a freeze node for the subprogram, given that it may
6122         --  appear in the wrong scope.
6123
6124         if Ekind (Scop) = E_Package
6125           and then not Comes_From_Source (Scop)
6126           and then Is_Generic_Instance (Scop)
6127         then
6128            null;
6129
6130         elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
6131            Set_Has_Delayed_Freeze (Designator);
6132
6133         elsif Is_Access_Type (T)
6134           and then Has_Delayed_Freeze (Designated_Type (T))
6135           and then not Is_Frozen (Designated_Type (T))
6136         then
6137            Set_Has_Delayed_Freeze (Designator);
6138         end if;
6139      end Possible_Freeze;
6140
6141      --  Local variables
6142
6143      F : Entity_Id;
6144
6145   --  Start of processing for Check_Delayed_Subprogram
6146
6147   begin
6148      --  All subprograms, including abstract subprograms, may need a freeze
6149      --  node if some formal type or the return type needs one.
6150
6151      Possible_Freeze (Etype (Designator));
6152      Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
6153
6154      --  Need delayed freeze if any of the formal types themselves need a
6155      --  delayed freeze and are not yet frozen.
6156
6157      F := First_Formal (Designator);
6158      while Present (F) loop
6159         Possible_Freeze (Etype (F));
6160         Possible_Freeze (Base_Type (Etype (F))); -- needed ???
6161         Next_Formal (F);
6162      end loop;
6163
6164      --  Mark functions that return by reference. Note that it cannot be done
6165      --  for delayed_freeze subprograms because the underlying returned type
6166      --  may not be known yet (for private types).
6167
6168      if not Has_Delayed_Freeze (Designator) and then Expander_Active then
6169         declare
6170            Typ  : constant Entity_Id := Etype (Designator);
6171            Utyp : constant Entity_Id := Underlying_Type (Typ);
6172
6173         begin
6174            if Is_Limited_View (Typ) then
6175               Set_Returns_By_Ref (Designator);
6176
6177            elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
6178               Set_Returns_By_Ref (Designator);
6179            end if;
6180         end;
6181      end if;
6182   end Check_Delayed_Subprogram;
6183
6184   ------------------------------------
6185   -- Check_Discriminant_Conformance --
6186   ------------------------------------
6187
6188   procedure Check_Discriminant_Conformance
6189     (N        : Node_Id;
6190      Prev     : Entity_Id;
6191      Prev_Loc : Node_Id)
6192   is
6193      Old_Discr      : Entity_Id := First_Discriminant (Prev);
6194      New_Discr      : Node_Id   := First (Discriminant_Specifications (N));
6195      New_Discr_Id   : Entity_Id;
6196      New_Discr_Type : Entity_Id;
6197
6198      procedure Conformance_Error (Msg : String; N : Node_Id);
6199      --  Post error message for conformance error on given node. Two messages
6200      --  are output. The first points to the previous declaration with a
6201      --  general "no conformance" message. The second is the detailed reason,
6202      --  supplied as Msg. The parameter N provide information for a possible
6203      --  & insertion in the message.
6204
6205      -----------------------
6206      -- Conformance_Error --
6207      -----------------------
6208
6209      procedure Conformance_Error (Msg : String; N : Node_Id) is
6210      begin
6211         Error_Msg_Sloc := Sloc (Prev_Loc);
6212         Error_Msg_N -- CODEFIX
6213           ("not fully conformant with declaration#!", N);
6214         Error_Msg_NE (Msg, N, N);
6215      end Conformance_Error;
6216
6217   --  Start of processing for Check_Discriminant_Conformance
6218
6219   begin
6220      while Present (Old_Discr) and then Present (New_Discr) loop
6221         New_Discr_Id := Defining_Identifier (New_Discr);
6222
6223         --  The subtype mark of the discriminant on the full type has not
6224         --  been analyzed so we do it here. For an access discriminant a new
6225         --  type is created.
6226
6227         if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
6228            New_Discr_Type :=
6229              Access_Definition (N, Discriminant_Type (New_Discr));
6230
6231         else
6232            Find_Type (Discriminant_Type (New_Discr));
6233            New_Discr_Type := Etype (Discriminant_Type (New_Discr));
6234
6235            --  Ada 2005: if the discriminant definition carries a null
6236            --  exclusion, create an itype to check properly for consistency
6237            --  with partial declaration.
6238
6239            if Is_Access_Type (New_Discr_Type)
6240              and then Null_Exclusion_Present (New_Discr)
6241            then
6242               New_Discr_Type :=
6243                 Create_Null_Excluding_Itype
6244                   (T           => New_Discr_Type,
6245                    Related_Nod => New_Discr,
6246                    Scope_Id    => Current_Scope);
6247            end if;
6248         end if;
6249
6250         if not Conforming_Types
6251                  (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
6252         then
6253            Conformance_Error ("type of & does not match!", New_Discr_Id);
6254            return;
6255         else
6256            --  Treat the new discriminant as an occurrence of the old one,
6257            --  for navigation purposes, and fill in some semantic
6258            --  information, for completeness.
6259
6260            Generate_Reference (Old_Discr, New_Discr_Id, 'r');
6261            Set_Etype (New_Discr_Id, Etype (Old_Discr));
6262            Set_Scope (New_Discr_Id, Scope (Old_Discr));
6263         end if;
6264
6265         --  Names must match
6266
6267         if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
6268            Conformance_Error ("name & does not match!", New_Discr_Id);
6269            return;
6270         end if;
6271
6272         --  Default expressions must match
6273
6274         declare
6275            NewD : constant Boolean :=
6276                     Present (Expression (New_Discr));
6277            OldD : constant Boolean :=
6278                     Present (Expression (Parent (Old_Discr)));
6279
6280         begin
6281            if NewD or OldD then
6282
6283               --  The old default value has been analyzed and expanded,
6284               --  because the current full declaration will have frozen
6285               --  everything before. The new default values have not been
6286               --  expanded, so expand now to check conformance.
6287
6288               if NewD then
6289                  Preanalyze_Spec_Expression
6290                    (Expression (New_Discr), New_Discr_Type);
6291               end if;
6292
6293               if not (NewD and OldD)
6294                 or else not Fully_Conformant_Expressions
6295                              (Expression (Parent (Old_Discr)),
6296                               Expression (New_Discr))
6297
6298               then
6299                  Conformance_Error
6300                    ("default expression for & does not match!",
6301                     New_Discr_Id);
6302                  return;
6303               end if;
6304            end if;
6305         end;
6306
6307         --  In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6308
6309         if Ada_Version = Ada_83 then
6310            declare
6311               Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6312
6313            begin
6314               --  Grouping (use of comma in param lists) must be the same
6315               --  This is where we catch a misconformance like:
6316
6317               --    A, B : Integer
6318               --    A : Integer; B : Integer
6319
6320               --  which are represented identically in the tree except
6321               --  for the setting of the flags More_Ids and Prev_Ids.
6322
6323               if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6324                 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6325               then
6326                  Conformance_Error
6327                    ("grouping of & does not match!", New_Discr_Id);
6328                  return;
6329               end if;
6330            end;
6331         end if;
6332
6333         Next_Discriminant (Old_Discr);
6334         Next (New_Discr);
6335      end loop;
6336
6337      if Present (Old_Discr) then
6338         Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6339         return;
6340
6341      elsif Present (New_Discr) then
6342         Conformance_Error
6343           ("too many discriminants!", Defining_Identifier (New_Discr));
6344         return;
6345      end if;
6346   end Check_Discriminant_Conformance;
6347
6348   ----------------------------
6349   -- Check_Fully_Conformant --
6350   ----------------------------
6351
6352   procedure Check_Fully_Conformant
6353     (New_Id  : Entity_Id;
6354      Old_Id  : Entity_Id;
6355      Err_Loc : Node_Id := Empty)
6356   is
6357      Result : Boolean;
6358      pragma Warnings (Off, Result);
6359   begin
6360      Check_Conformance
6361        (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6362   end Check_Fully_Conformant;
6363
6364   --------------------------
6365   -- Check_Limited_Return --
6366   --------------------------
6367
6368   procedure Check_Limited_Return
6369     (N      : Node_Id;
6370      Expr   : Node_Id;
6371      R_Type : Entity_Id)
6372   is
6373   begin
6374      --  Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6375      --  replaced by anonymous access results. This is an incompatibility with
6376      --  Ada 95. Not clear whether this should be enforced yet or perhaps
6377      --  controllable with special switch. ???
6378
6379      --  A limited interface that is not immutably limited is OK
6380
6381      if Is_Limited_Interface (R_Type)
6382        and then
6383          not (Is_Task_Interface (R_Type)
6384                or else Is_Protected_Interface (R_Type)
6385                or else Is_Synchronized_Interface (R_Type))
6386      then
6387         null;
6388
6389      elsif Is_Limited_Type (R_Type)
6390        and then not Is_Interface (R_Type)
6391        and then Comes_From_Source (N)
6392        and then not In_Instance_Body
6393        and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6394      then
6395         --  Error in Ada 2005
6396
6397         if Ada_Version >= Ada_2005
6398           and then not Debug_Flag_Dot_L
6399           and then not GNAT_Mode
6400         then
6401            Error_Msg_N
6402              ("(Ada 2005) cannot copy object of a limited type "
6403               & "(RM-2005 6.5(5.5/2))", Expr);
6404
6405            if Is_Limited_View (R_Type) then
6406               Error_Msg_N
6407                 ("\return by reference not permitted in Ada 2005", Expr);
6408            end if;
6409
6410         --  Warn in Ada 95 mode, to give folks a heads up about this
6411         --  incompatibility.
6412
6413         --  In GNAT mode, this is just a warning, to allow it to be evilly
6414         --  turned off. Otherwise it is a real error.
6415
6416         --  In a generic context, simplify the warning because it makes no
6417         --  sense to discuss pass-by-reference or copy.
6418
6419         elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6420            if Inside_A_Generic then
6421               Error_Msg_N
6422                 ("return of limited object not permitted in Ada 2005 "
6423                  & "(RM-2005 6.5(5.5/2))?y?", Expr);
6424
6425            elsif Is_Limited_View (R_Type) then
6426               Error_Msg_N
6427                 ("return by reference not permitted in Ada 2005 "
6428                  & "(RM-2005 6.5(5.5/2))?y?", Expr);
6429            else
6430               Error_Msg_N
6431                 ("cannot copy object of a limited type in Ada 2005 "
6432                  & "(RM-2005 6.5(5.5/2))?y?", Expr);
6433            end if;
6434
6435         --  Ada 95 mode, and compatibility warnings disabled
6436
6437         else
6438            pragma Assert (Ada_Version <= Ada_95);
6439            pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6440            return; --  skip continuation messages below
6441         end if;
6442
6443         if not Inside_A_Generic then
6444            Error_Msg_N
6445              ("\consider switching to return of access type", Expr);
6446            Explain_Limited_Type (R_Type, Expr);
6447         end if;
6448      end if;
6449   end Check_Limited_Return;
6450
6451   ---------------------------
6452   -- Check_Mode_Conformant --
6453   ---------------------------
6454
6455   procedure Check_Mode_Conformant
6456     (New_Id   : Entity_Id;
6457      Old_Id   : Entity_Id;
6458      Err_Loc  : Node_Id := Empty;
6459      Get_Inst : Boolean := False)
6460   is
6461      Result : Boolean;
6462      pragma Warnings (Off, Result);
6463   begin
6464      Check_Conformance
6465        (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6466   end Check_Mode_Conformant;
6467
6468   --------------------------------
6469   -- Check_Overriding_Indicator --
6470   --------------------------------
6471
6472   procedure Check_Overriding_Indicator
6473     (Subp            : Entity_Id;
6474      Overridden_Subp : Entity_Id;
6475      Is_Primitive    : Boolean)
6476   is
6477      Decl : Node_Id;
6478      Spec : Node_Id;
6479
6480   begin
6481      --  No overriding indicator for literals
6482
6483      if Ekind (Subp) = E_Enumeration_Literal then
6484         return;
6485
6486      elsif Ekind (Subp) = E_Entry then
6487         Decl := Parent (Subp);
6488
6489         --  No point in analyzing a malformed operator
6490
6491      elsif Nkind (Subp) = N_Defining_Operator_Symbol
6492        and then Error_Posted (Subp)
6493      then
6494         return;
6495
6496      else
6497         Decl := Unit_Declaration_Node (Subp);
6498      end if;
6499
6500      if Nkind_In (Decl, N_Subprogram_Body,
6501                         N_Subprogram_Body_Stub,
6502                         N_Subprogram_Declaration,
6503                         N_Abstract_Subprogram_Declaration,
6504                         N_Subprogram_Renaming_Declaration)
6505      then
6506         Spec := Specification (Decl);
6507
6508      elsif Nkind (Decl) = N_Entry_Declaration then
6509         Spec := Decl;
6510
6511      else
6512         return;
6513      end if;
6514
6515      --  The overriding operation is type conformant with the overridden one,
6516      --  but the names of the formals are not required to match. If the names
6517      --  appear permuted in the overriding operation, this is a possible
6518      --  source of confusion that is worth diagnosing. Controlling formals
6519      --  often carry names that reflect the type, and it is not worthwhile
6520      --  requiring that their names match.
6521
6522      if Present (Overridden_Subp)
6523        and then Nkind (Subp) /= N_Defining_Operator_Symbol
6524      then
6525         declare
6526            Form1 : Entity_Id;
6527            Form2 : Entity_Id;
6528
6529         begin
6530            Form1 := First_Formal (Subp);
6531            Form2 := First_Formal (Overridden_Subp);
6532
6533            --  If the overriding operation is a synchronized operation, skip
6534            --  the first parameter of the overridden operation, which is
6535            --  implicit in the new one. If the operation is declared in the
6536            --  body it is not primitive and all formals must match.
6537
6538            if Is_Concurrent_Type (Scope (Subp))
6539              and then Is_Tagged_Type (Scope (Subp))
6540              and then not Has_Completion (Scope (Subp))
6541            then
6542               Form2 := Next_Formal (Form2);
6543            end if;
6544
6545            if Present (Form1) then
6546               Form1 := Next_Formal (Form1);
6547               Form2 := Next_Formal (Form2);
6548            end if;
6549
6550            while Present (Form1) loop
6551               if not Is_Controlling_Formal (Form1)
6552                 and then Present (Next_Formal (Form2))
6553                 and then Chars (Form1) = Chars (Next_Formal (Form2))
6554               then
6555                  Error_Msg_Node_2 := Alias (Overridden_Subp);
6556                  Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6557                  Error_Msg_NE
6558                    ("& does not match corresponding formal of&#",
6559                     Form1, Form1);
6560                  exit;
6561               end if;
6562
6563               Next_Formal (Form1);
6564               Next_Formal (Form2);
6565            end loop;
6566         end;
6567      end if;
6568
6569      --  If there is an overridden subprogram, then check that there is no
6570      --  "not overriding" indicator, and mark the subprogram as overriding.
6571
6572      --  This is not done if the overridden subprogram is marked as hidden,
6573      --  which can occur for the case of inherited controlled operations
6574      --  (see Derive_Subprogram), unless the inherited subprogram's parent
6575      --  subprogram is not itself hidden or we are within a generic instance,
6576      --  in which case the hidden flag may have been modified for the
6577      --  expansion of the instance.
6578
6579      --  (Note: This condition could probably be simplified, leaving out the
6580      --  testing for the specific controlled cases, but it seems safer and
6581      --  clearer this way, and echoes similar special-case tests of this
6582      --  kind in other places.)
6583
6584      if Present (Overridden_Subp)
6585        and then (not Is_Hidden (Overridden_Subp)
6586                   or else
6587                     (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6588                                                       Name_Adjust,
6589                                                       Name_Finalize)
6590                      and then Present (Alias (Overridden_Subp))
6591                      and then (not Is_Hidden (Alias (Overridden_Subp))
6592                                 or else In_Instance)))
6593      then
6594         if Must_Not_Override (Spec) then
6595            Error_Msg_Sloc := Sloc (Overridden_Subp);
6596
6597            if Ekind (Subp) = E_Entry then
6598               Error_Msg_NE
6599                 ("entry & overrides inherited operation #", Spec, Subp);
6600            else
6601               Error_Msg_NE
6602                 ("subprogram & overrides inherited operation #", Spec, Subp);
6603            end if;
6604
6605         --  Special-case to fix a GNAT oddity: Limited_Controlled is declared
6606         --  as an extension of Root_Controlled, and thus has a useless Adjust
6607         --  operation. This operation should not be inherited by other limited
6608         --  controlled types. An explicit Adjust for them is not overriding.
6609
6610         elsif Must_Override (Spec)
6611           and then Chars (Overridden_Subp) = Name_Adjust
6612           and then Is_Limited_Type (Etype (First_Formal (Subp)))
6613           and then Present (Alias (Overridden_Subp))
6614           and then In_Predefined_Unit (Alias (Overridden_Subp))
6615         then
6616            Get_Name_String
6617              (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6618            Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6619
6620         elsif Is_Subprogram (Subp) then
6621            if Is_Init_Proc (Subp) then
6622               null;
6623
6624            elsif No (Overridden_Operation (Subp)) then
6625
6626               --  For entities generated by Derive_Subprograms the overridden
6627               --  operation is the inherited primitive (which is available
6628               --  through the attribute alias)
6629
6630               if (Is_Dispatching_Operation (Subp)
6631                    or else Is_Dispatching_Operation (Overridden_Subp))
6632                 and then not Comes_From_Source (Overridden_Subp)
6633                 and then Find_Dispatching_Type (Overridden_Subp) =
6634                          Find_Dispatching_Type (Subp)
6635                 and then Present (Alias (Overridden_Subp))
6636                 and then Comes_From_Source (Alias (Overridden_Subp))
6637               then
6638                  Set_Overridden_Operation    (Subp, Alias (Overridden_Subp));
6639                  Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6640
6641               else
6642                  Set_Overridden_Operation    (Subp, Overridden_Subp);
6643                  Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6644               end if;
6645            end if;
6646         end if;
6647
6648         --  If primitive flag is set or this is a protected operation, then
6649         --  the operation is overriding at the point of its declaration, so
6650         --  warn if necessary. Otherwise it may have been declared before the
6651         --  operation it overrides and no check is required.
6652
6653         if Style_Check
6654           and then not Must_Override (Spec)
6655           and then (Is_Primitive
6656                      or else Ekind (Scope (Subp)) = E_Protected_Type)
6657         then
6658            Style.Missing_Overriding (Decl, Subp);
6659         end if;
6660
6661      --  If Subp is an operator, it may override a predefined operation, if
6662      --  it is defined in the same scope as the type to which it applies.
6663      --  In that case Overridden_Subp is empty because of our implicit
6664      --  representation for predefined operators. We have to check whether the
6665      --  signature of Subp matches that of a predefined operator. Note that
6666      --  first argument provides the name of the operator, and the second
6667      --  argument the signature that may match that of a standard operation.
6668      --  If the indicator is overriding, then the operator must match a
6669      --  predefined signature, because we know already that there is no
6670      --  explicit overridden operation.
6671
6672      elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6673         if Must_Not_Override (Spec) then
6674
6675            --  If this is not a primitive or a protected subprogram, then
6676            --  "not overriding" is illegal.
6677
6678            if not Is_Primitive
6679              and then Ekind (Scope (Subp)) /= E_Protected_Type
6680            then
6681               Error_Msg_N ("overriding indicator only allowed "
6682                            & "if subprogram is primitive", Subp);
6683
6684            elsif Can_Override_Operator (Subp) then
6685               Error_Msg_NE
6686                 ("subprogram& overrides predefined operator ", Spec, Subp);
6687            end if;
6688
6689         elsif Must_Override (Spec) then
6690            if No (Overridden_Operation (Subp))
6691              and then not Can_Override_Operator (Subp)
6692            then
6693               Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6694            end if;
6695
6696         elsif not Error_Posted (Subp)
6697           and then Style_Check
6698           and then Can_Override_Operator (Subp)
6699           and then not In_Predefined_Unit (Subp)
6700         then
6701            --  If style checks are enabled, indicate that the indicator is
6702            --  missing. However, at the point of declaration, the type of
6703            --  which this is a primitive operation may be private, in which
6704            --  case the indicator would be premature.
6705
6706            if Has_Private_Declaration (Etype (Subp))
6707              or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6708            then
6709               null;
6710            else
6711               Style.Missing_Overriding (Decl, Subp);
6712            end if;
6713         end if;
6714
6715      elsif Must_Override (Spec) then
6716         if Ekind (Subp) = E_Entry then
6717            Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6718         else
6719            Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6720         end if;
6721
6722      --  If the operation is marked "not overriding" and it's not primitive
6723      --  then an error is issued, unless this is an operation of a task or
6724      --  protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6725      --  has been specified have already been checked above.
6726
6727      elsif Must_Not_Override (Spec)
6728        and then not Is_Primitive
6729        and then Ekind (Subp) /= E_Entry
6730        and then Ekind (Scope (Subp)) /= E_Protected_Type
6731      then
6732         Error_Msg_N
6733           ("overriding indicator only allowed if subprogram is primitive",
6734            Subp);
6735         return;
6736      end if;
6737   end Check_Overriding_Indicator;
6738
6739   -------------------
6740   -- Check_Returns --
6741   -------------------
6742
6743   --  Note: this procedure needs to know far too much about how the expander
6744   --  messes with exceptions. The use of the flag Exception_Junk and the
6745   --  incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6746   --  works, but is not very clean. It would be better if the expansion
6747   --  routines would leave Original_Node working nicely, and we could use
6748   --  Original_Node here to ignore all the peculiar expander messing ???
6749
6750   procedure Check_Returns
6751     (HSS  : Node_Id;
6752      Mode : Character;
6753      Err  : out Boolean;
6754      Proc : Entity_Id := Empty)
6755   is
6756      Handler : Node_Id;
6757
6758      procedure Check_Statement_Sequence (L : List_Id);
6759      --  Internal recursive procedure to check a list of statements for proper
6760      --  termination by a return statement (or a transfer of control or a
6761      --  compound statement that is itself internally properly terminated).
6762
6763      ------------------------------
6764      -- Check_Statement_Sequence --
6765      ------------------------------
6766
6767      procedure Check_Statement_Sequence (L : List_Id) is
6768         Last_Stm : Node_Id;
6769         Stm      : Node_Id;
6770         Kind     : Node_Kind;
6771
6772         function Assert_False return Boolean;
6773         --  Returns True if Last_Stm is a pragma Assert (False) that has been
6774         --  rewritten as a null statement when assertions are off. The assert
6775         --  is not active, but it is still enough to kill the warning.
6776
6777         ------------------
6778         -- Assert_False --
6779         ------------------
6780
6781         function Assert_False return Boolean is
6782            Orig : constant Node_Id := Original_Node (Last_Stm);
6783
6784         begin
6785            if Nkind (Orig) = N_Pragma
6786              and then Pragma_Name (Orig) = Name_Assert
6787              and then not Error_Posted (Orig)
6788            then
6789               declare
6790                  Arg : constant Node_Id :=
6791                          First (Pragma_Argument_Associations (Orig));
6792                  Exp : constant Node_Id := Expression (Arg);
6793               begin
6794                  return Nkind (Exp) = N_Identifier
6795                    and then Chars (Exp) = Name_False;
6796               end;
6797
6798            else
6799               return False;
6800            end if;
6801         end Assert_False;
6802
6803         --  Local variables
6804
6805         Raise_Exception_Call : Boolean;
6806         --  Set True if statement sequence terminated by Raise_Exception call
6807         --  or a Reraise_Occurrence call.
6808
6809      --  Start of processing for Check_Statement_Sequence
6810
6811      begin
6812         Raise_Exception_Call := False;
6813
6814         --  Get last real statement
6815
6816         Last_Stm := Last (L);
6817
6818         --  Deal with digging out exception handler statement sequences that
6819         --  have been transformed by the local raise to goto optimization.
6820         --  See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6821         --  optimization has occurred, we are looking at something like:
6822
6823         --  begin
6824         --     original stmts in block
6825
6826         --  exception            \
6827         --     when excep1 =>     |
6828         --        goto L1;        | omitted if No_Exception_Propagation
6829         --     when excep2 =>     |
6830         --        goto L2;       /
6831         --  end;
6832
6833         --  goto L3;      -- skip handler when exception not raised
6834
6835         --  <<L1>>        -- target label for local exception
6836         --     begin
6837         --        estmts1
6838         --     end;
6839
6840         --     goto L3;
6841
6842         --  <<L2>>
6843         --     begin
6844         --        estmts2
6845         --     end;
6846
6847         --  <<L3>>
6848
6849         --  and what we have to do is to dig out the estmts1 and estmts2
6850         --  sequences (which were the original sequences of statements in
6851         --  the exception handlers) and check them.
6852
6853         if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6854            Stm := Last_Stm;
6855            loop
6856               Prev (Stm);
6857               exit when No (Stm);
6858               exit when Nkind (Stm) /= N_Block_Statement;
6859               exit when not Exception_Junk (Stm);
6860               Prev (Stm);
6861               exit when No (Stm);
6862               exit when Nkind (Stm) /= N_Label;
6863               exit when not Exception_Junk (Stm);
6864               Check_Statement_Sequence
6865                 (Statements (Handled_Statement_Sequence (Next (Stm))));
6866
6867               Prev (Stm);
6868               Last_Stm := Stm;
6869               exit when No (Stm);
6870               exit when Nkind (Stm) /= N_Goto_Statement;
6871               exit when not Exception_Junk (Stm);
6872            end loop;
6873         end if;
6874
6875         --  Don't count pragmas
6876
6877         while Nkind (Last_Stm) = N_Pragma
6878
6879         --  Don't count call to SS_Release (can happen after Raise_Exception)
6880
6881           or else
6882             (Nkind (Last_Stm) = N_Procedure_Call_Statement
6883                and then
6884              Nkind (Name (Last_Stm)) = N_Identifier
6885                and then
6886              Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6887
6888         --  Don't count exception junk
6889
6890           or else
6891             (Nkind_In (Last_Stm, N_Goto_Statement,
6892                                   N_Label,
6893                                   N_Object_Declaration)
6894               and then Exception_Junk (Last_Stm))
6895           or else Nkind (Last_Stm) in N_Push_xxx_Label
6896           or else Nkind (Last_Stm) in N_Pop_xxx_Label
6897
6898         --  Inserted code, such as finalization calls, is irrelevant: we only
6899         --  need to check original source.
6900
6901           or else Is_Rewrite_Insertion (Last_Stm)
6902         loop
6903            Prev (Last_Stm);
6904         end loop;
6905
6906         --  Here we have the "real" last statement
6907
6908         Kind := Nkind (Last_Stm);
6909
6910         --  Transfer of control, OK. Note that in the No_Return procedure
6911         --  case, we already diagnosed any explicit return statements, so
6912         --  we can treat them as OK in this context.
6913
6914         if Is_Transfer (Last_Stm) then
6915            return;
6916
6917         --  Check cases of explicit non-indirect procedure calls
6918
6919         elsif Kind = N_Procedure_Call_Statement
6920           and then Is_Entity_Name (Name (Last_Stm))
6921         then
6922            --  Check call to Raise_Exception procedure which is treated
6923            --  specially, as is a call to Reraise_Occurrence.
6924
6925            --  We suppress the warning in these cases since it is likely that
6926            --  the programmer really does not expect to deal with the case
6927            --  of Null_Occurrence, and thus would find a warning about a
6928            --  missing return curious, and raising Program_Error does not
6929            --  seem such a bad behavior if this does occur.
6930
6931            --  Note that in the Ada 2005 case for Raise_Exception, the actual
6932            --  behavior will be to raise Constraint_Error (see AI-329).
6933
6934            if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6935                 or else
6936               Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6937            then
6938               Raise_Exception_Call := True;
6939
6940               --  For Raise_Exception call, test first argument, if it is
6941               --  an attribute reference for a 'Identity call, then we know
6942               --  that the call cannot possibly return.
6943
6944               declare
6945                  Arg : constant Node_Id :=
6946                          Original_Node (First_Actual (Last_Stm));
6947               begin
6948                  if Nkind (Arg) = N_Attribute_Reference
6949                    and then Attribute_Name (Arg) = Name_Identity
6950                  then
6951                     return;
6952                  end if;
6953               end;
6954            end if;
6955
6956         --  If statement, need to look inside if there is an else and check
6957         --  each constituent statement sequence for proper termination.
6958
6959         elsif Kind = N_If_Statement
6960           and then Present (Else_Statements (Last_Stm))
6961         then
6962            Check_Statement_Sequence (Then_Statements (Last_Stm));
6963            Check_Statement_Sequence (Else_Statements (Last_Stm));
6964
6965            if Present (Elsif_Parts (Last_Stm)) then
6966               declare
6967                  Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6968
6969               begin
6970                  while Present (Elsif_Part) loop
6971                     Check_Statement_Sequence (Then_Statements (Elsif_Part));
6972                     Next (Elsif_Part);
6973                  end loop;
6974               end;
6975            end if;
6976
6977            return;
6978
6979         --  Case statement, check each case for proper termination
6980
6981         elsif Kind = N_Case_Statement then
6982            declare
6983               Case_Alt : Node_Id;
6984            begin
6985               Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6986               while Present (Case_Alt) loop
6987                  Check_Statement_Sequence (Statements (Case_Alt));
6988                  Next_Non_Pragma (Case_Alt);
6989               end loop;
6990            end;
6991
6992            return;
6993
6994         --  Block statement, check its handled sequence of statements
6995
6996         elsif Kind = N_Block_Statement then
6997            declare
6998               Err1 : Boolean;
6999
7000            begin
7001               Check_Returns
7002                 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
7003
7004               if Err1 then
7005                  Err := True;
7006               end if;
7007
7008               return;
7009            end;
7010
7011         --  Loop statement. If there is an iteration scheme, we can definitely
7012         --  fall out of the loop. Similarly if there is an exit statement, we
7013         --  can fall out. In either case we need a following return.
7014
7015         elsif Kind = N_Loop_Statement then
7016            if Present (Iteration_Scheme (Last_Stm))
7017              or else Has_Exit (Entity (Identifier (Last_Stm)))
7018            then
7019               null;
7020
7021            --  A loop with no exit statement or iteration scheme is either
7022            --  an infinite loop, or it has some other exit (raise/return).
7023            --  In either case, no warning is required.
7024
7025            else
7026               return;
7027            end if;
7028
7029         --  Timed entry call, check entry call and delay alternatives
7030
7031         --  Note: in expanded code, the timed entry call has been converted
7032         --  to a set of expanded statements on which the check will work
7033         --  correctly in any case.
7034
7035         elsif Kind = N_Timed_Entry_Call then
7036            declare
7037               ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7038               DCA : constant Node_Id := Delay_Alternative      (Last_Stm);
7039
7040            begin
7041               --  If statement sequence of entry call alternative is missing,
7042               --  then we can definitely fall through, and we post the error
7043               --  message on the entry call alternative itself.
7044
7045               if No (Statements (ECA)) then
7046                  Last_Stm := ECA;
7047
7048               --  If statement sequence of delay alternative is missing, then
7049               --  we can definitely fall through, and we post the error
7050               --  message on the delay alternative itself.
7051
7052               --  Note: if both ECA and DCA are missing the return, then we
7053               --  post only one message, should be enough to fix the bugs.
7054               --  If not we will get a message next time on the DCA when the
7055               --  ECA is fixed.
7056
7057               elsif No (Statements (DCA)) then
7058                  Last_Stm := DCA;
7059
7060               --  Else check both statement sequences
7061
7062               else
7063                  Check_Statement_Sequence (Statements (ECA));
7064                  Check_Statement_Sequence (Statements (DCA));
7065                  return;
7066               end if;
7067            end;
7068
7069         --  Conditional entry call, check entry call and else part
7070
7071         --  Note: in expanded code, the conditional entry call has been
7072         --  converted to a set of expanded statements on which the check
7073         --  will work correctly in any case.
7074
7075         elsif Kind = N_Conditional_Entry_Call then
7076            declare
7077               ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7078
7079            begin
7080               --  If statement sequence of entry call alternative is missing,
7081               --  then we can definitely fall through, and we post the error
7082               --  message on the entry call alternative itself.
7083
7084               if No (Statements (ECA)) then
7085                  Last_Stm := ECA;
7086
7087               --  Else check statement sequence and else part
7088
7089               else
7090                  Check_Statement_Sequence (Statements (ECA));
7091                  Check_Statement_Sequence (Else_Statements (Last_Stm));
7092                  return;
7093               end if;
7094            end;
7095         end if;
7096
7097         --  If we fall through, issue appropriate message
7098
7099         if Mode = 'F' then
7100
7101            --  Kill warning if last statement is a raise exception call,
7102            --  or a pragma Assert (False). Note that with assertions enabled,
7103            --  such a pragma has been converted into a raise exception call
7104            --  already, so the Assert_False is for the assertions off case.
7105
7106            if not Raise_Exception_Call and then not Assert_False then
7107
7108               --  In GNATprove mode, it is an error to have a missing return
7109
7110               Error_Msg_Warn := SPARK_Mode /= On;
7111
7112               --  Issue error message or warning
7113
7114               Error_Msg_N
7115                 ("RETURN statement missing following this statement<<!",
7116                  Last_Stm);
7117               Error_Msg_N
7118                 ("\Program_Error ]<<!", Last_Stm);
7119            end if;
7120
7121            --  Note: we set Err even though we have not issued a warning
7122            --  because we still have a case of a missing return. This is
7123            --  an extremely marginal case, probably will never be noticed
7124            --  but we might as well get it right.
7125
7126            Err := True;
7127
7128         --  Otherwise we have the case of a procedure marked No_Return
7129
7130         else
7131            if not Raise_Exception_Call then
7132               if GNATprove_Mode then
7133                  Error_Msg_N
7134                    ("implied return after this statement would have raised "
7135                     & "Program_Error", Last_Stm);
7136
7137               --  In normal compilation mode, do not warn on a generated call
7138               --  (e.g. in the body of a renaming as completion).
7139
7140               elsif Comes_From_Source (Last_Stm) then
7141                  Error_Msg_N
7142                    ("implied return after this statement will raise "
7143                     & "Program_Error??", Last_Stm);
7144               end if;
7145
7146               Error_Msg_Warn := SPARK_Mode /= On;
7147               Error_Msg_NE
7148                 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
7149            end if;
7150
7151            declare
7152               RE : constant Node_Id :=
7153                      Make_Raise_Program_Error (Sloc (Last_Stm),
7154                        Reason => PE_Implicit_Return);
7155            begin
7156               Insert_After (Last_Stm, RE);
7157               Analyze (RE);
7158            end;
7159         end if;
7160      end Check_Statement_Sequence;
7161
7162   --  Start of processing for Check_Returns
7163
7164   begin
7165      Err := False;
7166      Check_Statement_Sequence (Statements (HSS));
7167
7168      if Present (Exception_Handlers (HSS)) then
7169         Handler := First_Non_Pragma (Exception_Handlers (HSS));
7170         while Present (Handler) loop
7171            Check_Statement_Sequence (Statements (Handler));
7172            Next_Non_Pragma (Handler);
7173         end loop;
7174      end if;
7175   end Check_Returns;
7176
7177   ----------------------------
7178   -- Check_Subprogram_Order --
7179   ----------------------------
7180
7181   procedure Check_Subprogram_Order (N : Node_Id) is
7182
7183      function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
7184      --  This is used to check if S1 > S2 in the sense required by this test,
7185      --  for example nameab < namec, but name2 < name10.
7186
7187      -----------------------------
7188      -- Subprogram_Name_Greater --
7189      -----------------------------
7190
7191      function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
7192         L1, L2 : Positive;
7193         N1, N2 : Natural;
7194
7195      begin
7196         --  Deal with special case where names are identical except for a
7197         --  numerical suffix. These are handled specially, taking the numeric
7198         --  ordering from the suffix into account.
7199
7200         L1 := S1'Last;
7201         while S1 (L1) in '0' .. '9' loop
7202            L1 := L1 - 1;
7203         end loop;
7204
7205         L2 := S2'Last;
7206         while S2 (L2) in '0' .. '9' loop
7207            L2 := L2 - 1;
7208         end loop;
7209
7210         --  If non-numeric parts non-equal, do straight compare
7211
7212         if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
7213            return S1 > S2;
7214
7215         --  If non-numeric parts equal, compare suffixed numeric parts. Note
7216         --  that a missing suffix is treated as numeric zero in this test.
7217
7218         else
7219            N1 := 0;
7220            while L1 < S1'Last loop
7221               L1 := L1 + 1;
7222               N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
7223            end loop;
7224
7225            N2 := 0;
7226            while L2 < S2'Last loop
7227               L2 := L2 + 1;
7228               N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
7229            end loop;
7230
7231            return N1 > N2;
7232         end if;
7233      end Subprogram_Name_Greater;
7234
7235   --  Start of processing for Check_Subprogram_Order
7236
7237   begin
7238      --  Check body in alpha order if this is option
7239
7240      if Style_Check
7241        and then Style_Check_Order_Subprograms
7242        and then Nkind (N) = N_Subprogram_Body
7243        and then Comes_From_Source (N)
7244        and then In_Extended_Main_Source_Unit (N)
7245      then
7246         declare
7247            LSN : String_Ptr
7248                    renames Scope_Stack.Table
7249                              (Scope_Stack.Last).Last_Subprogram_Name;
7250
7251            Body_Id : constant Entity_Id :=
7252                        Defining_Entity (Specification (N));
7253
7254         begin
7255            Get_Decoded_Name_String (Chars (Body_Id));
7256
7257            if LSN /= null then
7258               if Subprogram_Name_Greater
7259                    (LSN.all, Name_Buffer (1 .. Name_Len))
7260               then
7261                  Style.Subprogram_Not_In_Alpha_Order (Body_Id);
7262               end if;
7263
7264               Free (LSN);
7265            end if;
7266
7267            LSN := new String'(Name_Buffer (1 .. Name_Len));
7268         end;
7269      end if;
7270   end Check_Subprogram_Order;
7271
7272   ------------------------------
7273   -- Check_Subtype_Conformant --
7274   ------------------------------
7275
7276   procedure Check_Subtype_Conformant
7277     (New_Id                   : Entity_Id;
7278      Old_Id                   : Entity_Id;
7279      Err_Loc                  : Node_Id := Empty;
7280      Skip_Controlling_Formals : Boolean := False;
7281      Get_Inst                 : Boolean := False)
7282   is
7283      Result : Boolean;
7284      pragma Warnings (Off, Result);
7285   begin
7286      Check_Conformance
7287        (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7288         Skip_Controlling_Formals => Skip_Controlling_Formals,
7289         Get_Inst                 => Get_Inst);
7290   end Check_Subtype_Conformant;
7291
7292   -----------------------------------
7293   -- Check_Synchronized_Overriding --
7294   -----------------------------------
7295
7296   procedure Check_Synchronized_Overriding
7297     (Def_Id          : Entity_Id;
7298      Overridden_Subp : out Entity_Id)
7299   is
7300      Ifaces_List : Elist_Id;
7301      In_Scope    : Boolean;
7302      Typ         : Entity_Id;
7303
7304      function Is_Valid_Formal (F : Entity_Id) return Boolean;
7305      --  Predicate for legality rule in 9.4 (11.9/2): If an inherited
7306      --  subprogram is implemented by a protected procedure or entry,
7307      --  its first parameter must be out, in out, or access-to-variable.
7308
7309      function Matches_Prefixed_View_Profile
7310        (Prim_Params  : List_Id;
7311         Iface_Params : List_Id) return Boolean;
7312      --  Determine whether a subprogram's parameter profile Prim_Params
7313      --  matches that of a potentially overridden interface subprogram
7314      --  Iface_Params. Also determine if the type of first parameter of
7315      --  Iface_Params is an implemented interface.
7316
7317      ----------------------
7318      --  Is_Valid_Formal --
7319      ----------------------
7320
7321      function Is_Valid_Formal (F : Entity_Id) return Boolean is
7322      begin
7323         return
7324           Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
7325             or else
7326               (Nkind (Parameter_Type (Parent (F))) = N_Access_Definition
7327                 and then not Constant_Present (Parameter_Type (Parent (F))));
7328      end Is_Valid_Formal;
7329
7330      -----------------------------------
7331      -- Matches_Prefixed_View_Profile --
7332      -----------------------------------
7333
7334      function Matches_Prefixed_View_Profile
7335        (Prim_Params  : List_Id;
7336         Iface_Params : List_Id) return Boolean
7337      is
7338         function Is_Implemented
7339           (Ifaces_List : Elist_Id;
7340            Iface       : Entity_Id) return Boolean;
7341         --  Determine if Iface is implemented by the current task or
7342         --  protected type.
7343
7344         --------------------
7345         -- Is_Implemented --
7346         --------------------
7347
7348         function Is_Implemented
7349           (Ifaces_List : Elist_Id;
7350            Iface       : Entity_Id) return Boolean
7351         is
7352            Iface_Elmt : Elmt_Id;
7353
7354         begin
7355            Iface_Elmt := First_Elmt (Ifaces_List);
7356            while Present (Iface_Elmt) loop
7357               if Node (Iface_Elmt) = Iface then
7358                  return True;
7359               end if;
7360
7361               Next_Elmt (Iface_Elmt);
7362            end loop;
7363
7364            return False;
7365         end Is_Implemented;
7366
7367         --  Local variables
7368
7369         Iface_Id     : Entity_Id;
7370         Iface_Param  : Node_Id;
7371         Iface_Typ    : Entity_Id;
7372         Prim_Id      : Entity_Id;
7373         Prim_Param   : Node_Id;
7374         Prim_Typ     : Entity_Id;
7375
7376      --  Start of processing for Matches_Prefixed_View_Profile
7377
7378      begin
7379         Iface_Param := First (Iface_Params);
7380         Iface_Typ   := Etype (Defining_Identifier (Iface_Param));
7381
7382         if Is_Access_Type (Iface_Typ) then
7383            Iface_Typ := Designated_Type (Iface_Typ);
7384         end if;
7385
7386         Prim_Param := First (Prim_Params);
7387
7388         --  The first parameter of the potentially overridden subprogram must
7389         --  be an interface implemented by Prim.
7390
7391         if not Is_Interface (Iface_Typ)
7392           or else not Is_Implemented (Ifaces_List, Iface_Typ)
7393         then
7394            return False;
7395         end if;
7396
7397         --  The checks on the object parameters are done, so move on to the
7398         --  rest of the parameters.
7399
7400         if not In_Scope then
7401            Prim_Param := Next (Prim_Param);
7402         end if;
7403
7404         Iface_Param := Next (Iface_Param);
7405         while Present (Iface_Param) and then Present (Prim_Param) loop
7406            Iface_Id  := Defining_Identifier (Iface_Param);
7407            Iface_Typ := Find_Parameter_Type (Iface_Param);
7408
7409            Prim_Id  := Defining_Identifier (Prim_Param);
7410            Prim_Typ := Find_Parameter_Type (Prim_Param);
7411
7412            if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7413              and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7414              and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7415            then
7416               Iface_Typ := Designated_Type (Iface_Typ);
7417               Prim_Typ  := Designated_Type (Prim_Typ);
7418            end if;
7419
7420            --  Case of multiple interface types inside a parameter profile
7421
7422            --     (Obj_Param : in out Iface; ...; Param : Iface)
7423
7424            --  If the interface type is implemented, then the matching type in
7425            --  the primitive should be the implementing record type.
7426
7427            if Ekind (Iface_Typ) = E_Record_Type
7428              and then Is_Interface (Iface_Typ)
7429              and then Is_Implemented (Ifaces_List, Iface_Typ)
7430            then
7431               if Prim_Typ /= Typ then
7432                  return False;
7433               end if;
7434
7435            --  The two parameters must be both mode and subtype conformant
7436
7437            elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7438              or else not
7439                Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7440            then
7441               return False;
7442            end if;
7443
7444            Next (Iface_Param);
7445            Next (Prim_Param);
7446         end loop;
7447
7448         --  One of the two lists contains more parameters than the other
7449
7450         if Present (Iface_Param) or else Present (Prim_Param) then
7451            return False;
7452         end if;
7453
7454         return True;
7455      end Matches_Prefixed_View_Profile;
7456
7457   --  Start of processing for Check_Synchronized_Overriding
7458
7459   begin
7460      Overridden_Subp := Empty;
7461
7462      --  Def_Id must be an entry or a subprogram. We should skip predefined
7463      --  primitives internally generated by the front end; however at this
7464      --  stage predefined primitives are still not fully decorated. As a
7465      --  minor optimization we skip here internally generated subprograms.
7466
7467      if (Ekind (Def_Id) /= E_Entry
7468           and then Ekind (Def_Id) /= E_Function
7469           and then Ekind (Def_Id) /= E_Procedure)
7470        or else not Comes_From_Source (Def_Id)
7471      then
7472         return;
7473      end if;
7474
7475      --  Search for the concurrent declaration since it contains the list of
7476      --  all implemented interfaces. In this case, the subprogram is declared
7477      --  within the scope of a protected or a task type.
7478
7479      if Present (Scope (Def_Id))
7480        and then Is_Concurrent_Type (Scope (Def_Id))
7481        and then not Is_Generic_Actual_Type (Scope (Def_Id))
7482      then
7483         Typ := Scope (Def_Id);
7484         In_Scope := True;
7485
7486      --  The enclosing scope is not a synchronized type and the subprogram
7487      --  has no formals.
7488
7489      elsif No (First_Formal (Def_Id)) then
7490         return;
7491
7492      --  The subprogram has formals and hence it may be a primitive of a
7493      --  concurrent type.
7494
7495      else
7496         Typ := Etype (First_Formal (Def_Id));
7497
7498         if Is_Access_Type (Typ) then
7499            Typ := Directly_Designated_Type (Typ);
7500         end if;
7501
7502         if Is_Concurrent_Type (Typ)
7503           and then not Is_Generic_Actual_Type (Typ)
7504         then
7505            In_Scope := False;
7506
7507         --  This case occurs when the concurrent type is declared within a
7508         --  generic unit. As a result the corresponding record has been built
7509         --  and used as the type of the first formal, we just have to retrieve
7510         --  the corresponding concurrent type.
7511
7512         elsif Is_Concurrent_Record_Type (Typ)
7513           and then not Is_Class_Wide_Type (Typ)
7514           and then Present (Corresponding_Concurrent_Type (Typ))
7515         then
7516            Typ := Corresponding_Concurrent_Type (Typ);
7517            In_Scope := False;
7518
7519         else
7520            return;
7521         end if;
7522      end if;
7523
7524      --  There is no overriding to check if this is an inherited operation in
7525      --  a type derivation for a generic actual.
7526
7527      Collect_Interfaces (Typ, Ifaces_List);
7528
7529      if Is_Empty_Elmt_List (Ifaces_List) then
7530         return;
7531      end if;
7532
7533      --  Determine whether entry or subprogram Def_Id overrides a primitive
7534      --  operation that belongs to one of the interfaces in Ifaces_List.
7535
7536      declare
7537         Candidate : Entity_Id := Empty;
7538         Hom       : Entity_Id := Empty;
7539         Subp      : Entity_Id := Empty;
7540
7541      begin
7542         --  Traverse the homonym chain, looking for a potentially overridden
7543         --  subprogram that belongs to an implemented interface.
7544
7545         Hom := Current_Entity_In_Scope (Def_Id);
7546         while Present (Hom) loop
7547            Subp := Hom;
7548
7549            if Subp = Def_Id
7550              or else not Is_Overloadable (Subp)
7551              or else not Is_Primitive (Subp)
7552              or else not Is_Dispatching_Operation (Subp)
7553              or else not Present (Find_Dispatching_Type (Subp))
7554              or else not Is_Interface (Find_Dispatching_Type (Subp))
7555            then
7556               null;
7557
7558            --  Entries and procedures can override abstract or null interface
7559            --  procedures.
7560
7561            elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7562              and then Ekind (Subp) = E_Procedure
7563              and then Matches_Prefixed_View_Profile
7564                         (Parameter_Specifications (Parent (Def_Id)),
7565                          Parameter_Specifications (Parent (Subp)))
7566            then
7567               Candidate := Subp;
7568
7569               --  For an overridden subprogram Subp, check whether the mode
7570               --  of its first parameter is correct depending on the kind of
7571               --  synchronized type.
7572
7573               declare
7574                  Formal : constant Node_Id := First_Formal (Candidate);
7575
7576               begin
7577                  --  In order for an entry or a protected procedure to
7578                  --  override, the first parameter of the overridden routine
7579                  --  must be of mode "out", "in out", or access-to-variable.
7580
7581                  if Ekind_In (Candidate, E_Entry, E_Procedure)
7582                    and then Is_Protected_Type (Typ)
7583                    and then not Is_Valid_Formal (Formal)
7584                  then
7585                     null;
7586
7587                  --  All other cases are OK since a task entry or routine does
7588                  --  not have a restriction on the mode of the first parameter
7589                  --  of the overridden interface routine.
7590
7591                  else
7592                     Overridden_Subp := Candidate;
7593                     return;
7594                  end if;
7595               end;
7596
7597            --  Functions can override abstract interface functions. Return
7598            --  types must be subtype conformant.
7599
7600            elsif Ekind (Def_Id) = E_Function
7601              and then Ekind (Subp) = E_Function
7602              and then Matches_Prefixed_View_Profile
7603                         (Parameter_Specifications (Parent (Def_Id)),
7604                          Parameter_Specifications (Parent (Subp)))
7605              and then Conforming_Types
7606                         (Etype (Def_Id), Etype (Subp), Subtype_Conformant)
7607            then
7608               Candidate := Subp;
7609
7610               --  If an inherited subprogram is implemented by a protected
7611               --  function, then the first parameter of the inherited
7612               --  subprogram shall be of mode in, but not an access-to-
7613               --  variable parameter (RM 9.4(11/9)).
7614
7615               if Present (First_Formal (Subp))
7616                 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7617                 and then
7618                   (not Is_Access_Type (Etype (First_Formal (Subp)))
7619                      or else
7620                    Is_Access_Constant (Etype (First_Formal (Subp))))
7621               then
7622                  Overridden_Subp := Subp;
7623                  return;
7624               end if;
7625            end if;
7626
7627            Hom := Homonym (Hom);
7628         end loop;
7629
7630         --  After examining all candidates for overriding, we are left with
7631         --  the best match, which is a mode-incompatible interface routine.
7632
7633         if In_Scope and then Present (Candidate) then
7634            Error_Msg_PT (Def_Id, Candidate);
7635         end if;
7636
7637         Overridden_Subp := Candidate;
7638         return;
7639      end;
7640   end Check_Synchronized_Overriding;
7641
7642   ---------------------------
7643   -- Check_Type_Conformant --
7644   ---------------------------
7645
7646   procedure Check_Type_Conformant
7647     (New_Id  : Entity_Id;
7648      Old_Id  : Entity_Id;
7649      Err_Loc : Node_Id := Empty)
7650   is
7651      Result : Boolean;
7652      pragma Warnings (Off, Result);
7653   begin
7654      Check_Conformance
7655        (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7656   end Check_Type_Conformant;
7657
7658   ---------------------------
7659   -- Can_Override_Operator --
7660   ---------------------------
7661
7662   function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7663      Typ : Entity_Id;
7664
7665   begin
7666      if Nkind (Subp) /= N_Defining_Operator_Symbol then
7667         return False;
7668
7669      else
7670         Typ := Base_Type (Etype (First_Formal (Subp)));
7671
7672         --  Check explicitly that the operation is a primitive of the type
7673
7674         return Operator_Matches_Spec (Subp, Subp)
7675           and then not Is_Generic_Type (Typ)
7676           and then Scope (Subp) = Scope (Typ)
7677           and then not Is_Class_Wide_Type (Typ);
7678      end if;
7679   end Can_Override_Operator;
7680
7681   ----------------------
7682   -- Conforming_Types --
7683   ----------------------
7684
7685   function Conforming_Types
7686     (T1       : Entity_Id;
7687      T2       : Entity_Id;
7688      Ctype    : Conformance_Type;
7689      Get_Inst : Boolean := False) return Boolean
7690   is
7691      function Base_Types_Match
7692        (Typ_1 : Entity_Id;
7693         Typ_2 : Entity_Id) return Boolean;
7694      --  If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7695      --  in different scopes (e.g. parent and child instances), then verify
7696      --  that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7697      --  the same subtype chain. The whole purpose of this procedure is to
7698      --  prevent spurious ambiguities in an instantiation that may arise if
7699      --  two distinct generic types are instantiated with the same actual.
7700
7701      function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7702      --  An access parameter can designate an incomplete type. If the
7703      --  incomplete type is the limited view of a type from a limited_
7704      --  with_clause, check whether the non-limited view is available.
7705      --  If it is a (non-limited) incomplete type, get the full view.
7706
7707      function Matches_Limited_With_View
7708        (Typ_1 : Entity_Id;
7709         Typ_2 : Entity_Id) return Boolean;
7710      --  Returns True if and only if either Typ_1 denotes a limited view of
7711      --  Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7712      --  the limited with view of a type is used in a subprogram declaration
7713      --  and the subprogram body is in the scope of a regular with clause for
7714      --  the same unit. In such a case, the two type entities are considered
7715      --  identical for purposes of conformance checking.
7716
7717      ----------------------
7718      -- Base_Types_Match --
7719      ----------------------
7720
7721      function Base_Types_Match
7722        (Typ_1 : Entity_Id;
7723         Typ_2 : Entity_Id) return Boolean
7724      is
7725         Base_1 : constant Entity_Id := Base_Type (Typ_1);
7726         Base_2 : constant Entity_Id := Base_Type (Typ_2);
7727
7728      begin
7729         if Typ_1 = Typ_2 then
7730            return True;
7731
7732         elsif Base_1 = Base_2 then
7733
7734            --  The following is too permissive. A more precise test should
7735            --  check that the generic actual is an ancestor subtype of the
7736            --  other ???.
7737
7738            --  See code in Find_Corresponding_Spec that applies an additional
7739            --  filter to handle accidental amiguities in instances.
7740
7741            return
7742              not Is_Generic_Actual_Type (Typ_1)
7743                or else not Is_Generic_Actual_Type (Typ_2)
7744                or else Scope (Typ_1) /= Scope (Typ_2);
7745
7746         --  If Typ_2 is a generic actual type it is declared as the subtype of
7747         --  the actual. If that actual is itself a subtype we need to use its
7748         --  own base type to check for compatibility.
7749
7750         elsif Ekind (Base_2) = Ekind (Typ_2)
7751           and then Base_1 = Base_Type (Base_2)
7752         then
7753            return True;
7754
7755         elsif Ekind (Base_1) = Ekind (Typ_1)
7756           and then Base_2 = Base_Type (Base_1)
7757         then
7758            return True;
7759
7760         else
7761            return False;
7762         end if;
7763      end Base_Types_Match;
7764
7765      --------------------------
7766      -- Find_Designated_Type --
7767      --------------------------
7768
7769      function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7770         Desig : Entity_Id;
7771
7772      begin
7773         Desig := Directly_Designated_Type (Typ);
7774
7775         if Ekind (Desig) = E_Incomplete_Type then
7776
7777            --  If regular incomplete type, get full view if available
7778
7779            if Present (Full_View (Desig)) then
7780               Desig := Full_View (Desig);
7781
7782            --  If limited view of a type, get non-limited view if available,
7783            --  and check again for a regular incomplete type.
7784
7785            elsif Present (Non_Limited_View (Desig)) then
7786               Desig := Get_Full_View (Non_Limited_View (Desig));
7787            end if;
7788         end if;
7789
7790         return Desig;
7791      end Find_Designated_Type;
7792
7793      -------------------------------
7794      -- Matches_Limited_With_View --
7795      -------------------------------
7796
7797      function Matches_Limited_With_View
7798        (Typ_1 : Entity_Id;
7799         Typ_2 : Entity_Id) return Boolean
7800      is
7801         function Is_Matching_Limited_View
7802           (Typ  : Entity_Id;
7803            View : Entity_Id) return Boolean;
7804         --  Determine whether non-limited view View denotes type Typ in some
7805         --  conformant fashion.
7806
7807         ------------------------------
7808         -- Is_Matching_Limited_View --
7809         ------------------------------
7810
7811         function Is_Matching_Limited_View
7812           (Typ  : Entity_Id;
7813            View : Entity_Id) return Boolean
7814         is
7815            Root_Typ  : Entity_Id;
7816            Root_View : Entity_Id;
7817
7818         begin
7819            --  The non-limited view directly denotes the type
7820
7821            if Typ = View then
7822               return True;
7823
7824            --  The type is a subtype of the non-limited view
7825
7826            elsif Is_Subtype_Of (Typ, View) then
7827               return True;
7828
7829            --  Both the non-limited view and the type denote class-wide types
7830
7831            elsif Is_Class_Wide_Type (Typ)
7832              and then Is_Class_Wide_Type (View)
7833            then
7834               Root_Typ  := Root_Type (Typ);
7835               Root_View := Root_Type (View);
7836
7837               if Root_Typ = Root_View then
7838                  return True;
7839
7840               --  An incomplete tagged type and its full view may receive two
7841               --  distinct class-wide types when the related package has not
7842               --  been analyzed yet.
7843
7844               --    package Pack is
7845               --       type T is tagged;              --  CW_1
7846               --       type T is tagged null record;  --  CW_2
7847               --    end Pack;
7848
7849               --  This is because the package lacks any semantic information
7850               --  that may eventually link both views of T. As a consequence,
7851               --  a client of the limited view of Pack will see CW_2 while a
7852               --  client of the non-limited view of Pack will see CW_1.
7853
7854               elsif Is_Incomplete_Type (Root_Typ)
7855                 and then Present (Full_View (Root_Typ))
7856                 and then Full_View (Root_Typ) = Root_View
7857               then
7858                  return True;
7859
7860               elsif Is_Incomplete_Type (Root_View)
7861                 and then Present (Full_View (Root_View))
7862                 and then Full_View (Root_View) = Root_Typ
7863               then
7864                  return True;
7865               end if;
7866            end if;
7867
7868            return False;
7869         end Is_Matching_Limited_View;
7870
7871      --  Start of processing for Matches_Limited_With_View
7872
7873      begin
7874         --  In some cases a type imported through a limited_with clause, and
7875         --  its non-limited view are both visible, for example in an anonymous
7876         --  access-to-class-wide type in a formal, or when building the body
7877         --  for a subprogram renaming after the subprogram has been frozen.
7878         --  In these cases both entities designate the same type. In addition,
7879         --  if one of them is an actual in an instance, it may be a subtype of
7880         --  the non-limited view of the other.
7881
7882         if From_Limited_With (Typ_1)
7883           and then From_Limited_With (Typ_2)
7884           and then Available_View (Typ_1) = Available_View (Typ_2)
7885         then
7886            return True;
7887
7888         elsif From_Limited_With (Typ_1) then
7889            return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7890
7891         elsif From_Limited_With (Typ_2) then
7892            return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7893
7894         else
7895            return False;
7896         end if;
7897      end Matches_Limited_With_View;
7898
7899      --  Local variables
7900
7901      Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7902
7903      Type_1 : Entity_Id := T1;
7904      Type_2 : Entity_Id := T2;
7905
7906   --  Start of processing for Conforming_Types
7907
7908   begin
7909      --  The context is an instance association for a formal access-to-
7910      --  subprogram type; the formal parameter types require mapping because
7911      --  they may denote other formal parameters of the generic unit.
7912
7913      if Get_Inst then
7914         Type_1 := Get_Instance_Of (T1);
7915         Type_2 := Get_Instance_Of (T2);
7916      end if;
7917
7918      --  If one of the types is a view of the other introduced by a limited
7919      --  with clause, treat these as conforming for all purposes.
7920
7921      if Matches_Limited_With_View (T1, T2) then
7922         return True;
7923
7924      elsif Base_Types_Match (Type_1, Type_2) then
7925         if Ctype <= Mode_Conformant then
7926            return True;
7927
7928         else
7929            return
7930              Subtypes_Statically_Match (Type_1, Type_2)
7931                and then Dimensions_Match (Type_1, Type_2);
7932         end if;
7933
7934      elsif Is_Incomplete_Or_Private_Type (Type_1)
7935        and then Present (Full_View (Type_1))
7936        and then Base_Types_Match (Full_View (Type_1), Type_2)
7937      then
7938         return
7939           Ctype <= Mode_Conformant
7940             or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7941
7942      elsif Ekind (Type_2) = E_Incomplete_Type
7943        and then Present (Full_View (Type_2))
7944        and then Base_Types_Match (Type_1, Full_View (Type_2))
7945      then
7946         return
7947           Ctype <= Mode_Conformant
7948             or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7949
7950      elsif Is_Private_Type (Type_2)
7951        and then In_Instance
7952        and then Present (Full_View (Type_2))
7953        and then Base_Types_Match (Type_1, Full_View (Type_2))
7954      then
7955         return
7956           Ctype <= Mode_Conformant
7957             or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7958
7959      --  Another confusion between views in a nested instance with an
7960      --  actual private type whose full view is not in scope.
7961
7962      elsif Ekind (Type_2) = E_Private_Subtype
7963        and then In_Instance
7964        and then Etype (Type_2) = Type_1
7965      then
7966         return True;
7967
7968      --  In Ada 2012, incomplete types (including limited views) can appear
7969      --  as actuals in instantiations, where they are conformant to the
7970      --  corresponding incomplete formal.
7971
7972      elsif Is_Incomplete_Type (Type_1)
7973        and then Is_Incomplete_Type (Type_2)
7974        and then In_Instance
7975        and then (Used_As_Generic_Actual (Type_1)
7976                   or else Used_As_Generic_Actual (Type_2))
7977      then
7978         return True;
7979      end if;
7980
7981      --  Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7982      --  treated recursively because they carry a signature. As far as
7983      --  conformance is concerned, convention plays no role, and either
7984      --  or both could be access to protected subprograms.
7985
7986      Are_Anonymous_Access_To_Subprogram_Types :=
7987        Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7988                          E_Anonymous_Access_Protected_Subprogram_Type)
7989          and then
7990        Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7991                          E_Anonymous_Access_Protected_Subprogram_Type);
7992
7993      --  Test anonymous access type case. For this case, static subtype
7994      --  matching is required for mode conformance (RM 6.3.1(15)). We check
7995      --  the base types because we may have built internal subtype entities
7996      --  to handle null-excluding types (see Process_Formals).
7997
7998      if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7999            and then
8000          Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
8001
8002        -- Ada 2005 (AI-254)
8003
8004        or else Are_Anonymous_Access_To_Subprogram_Types
8005      then
8006         declare
8007            Desig_1 : Entity_Id;
8008            Desig_2 : Entity_Id;
8009
8010         begin
8011            --  In Ada 2005, access constant indicators must match for
8012            --  subtype conformance.
8013
8014            if Ada_Version >= Ada_2005
8015              and then Ctype >= Subtype_Conformant
8016              and then
8017                Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
8018            then
8019               return False;
8020            end if;
8021
8022            Desig_1 := Find_Designated_Type (Type_1);
8023            Desig_2 := Find_Designated_Type (Type_2);
8024
8025            --  If the context is an instance association for a formal
8026            --  access-to-subprogram type; formal access parameter designated
8027            --  types require mapping because they may denote other formal
8028            --  parameters of the generic unit.
8029
8030            if Get_Inst then
8031               Desig_1 := Get_Instance_Of (Desig_1);
8032               Desig_2 := Get_Instance_Of (Desig_2);
8033            end if;
8034
8035            --  It is possible for a Class_Wide_Type to be introduced for an
8036            --  incomplete type, in which case there is a separate class_ wide
8037            --  type for the full view. The types conform if their Etypes
8038            --  conform, i.e. one may be the full view of the other. This can
8039            --  only happen in the context of an access parameter, other uses
8040            --  of an incomplete Class_Wide_Type are illegal.
8041
8042            if Is_Class_Wide_Type (Desig_1)
8043                 and then
8044               Is_Class_Wide_Type (Desig_2)
8045            then
8046               return
8047                 Conforming_Types
8048                   (Etype (Base_Type (Desig_1)),
8049                    Etype (Base_Type (Desig_2)), Ctype);
8050
8051            elsif Are_Anonymous_Access_To_Subprogram_Types then
8052               if Ada_Version < Ada_2005 then
8053                  return
8054                    Ctype = Type_Conformant
8055                      or else Subtypes_Statically_Match (Desig_1, Desig_2);
8056
8057               --  We must check the conformance of the signatures themselves
8058
8059               else
8060                  declare
8061                     Conformant : Boolean;
8062                  begin
8063                     Check_Conformance
8064                       (Desig_1, Desig_2, Ctype, False, Conformant);
8065                     return Conformant;
8066                  end;
8067               end if;
8068
8069            --  A limited view of an actual matches the corresponding
8070            --  incomplete formal.
8071
8072            elsif Ekind (Desig_2) = E_Incomplete_Subtype
8073              and then From_Limited_With (Desig_2)
8074              and then Used_As_Generic_Actual (Etype (Desig_2))
8075            then
8076               return True;
8077
8078            else
8079               return Base_Type (Desig_1) = Base_Type (Desig_2)
8080                and then (Ctype = Type_Conformant
8081                           or else
8082                             Subtypes_Statically_Match (Desig_1, Desig_2));
8083            end if;
8084         end;
8085
8086      --  Otherwise definitely no match
8087
8088      else
8089         if ((Ekind (Type_1) = E_Anonymous_Access_Type
8090               and then Is_Access_Type (Type_2))
8091            or else (Ekind (Type_2) = E_Anonymous_Access_Type
8092                      and then Is_Access_Type (Type_1)))
8093           and then
8094             Conforming_Types
8095               (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
8096         then
8097            May_Hide_Profile := True;
8098         end if;
8099
8100         return False;
8101      end if;
8102   end Conforming_Types;
8103
8104   --------------------------
8105   -- Create_Extra_Formals --
8106   --------------------------
8107
8108   procedure Create_Extra_Formals (E : Entity_Id) is
8109      First_Extra : Entity_Id := Empty;
8110      Formal      : Entity_Id;
8111      Last_Extra  : Entity_Id := Empty;
8112
8113      function Add_Extra_Formal
8114        (Assoc_Entity : Entity_Id;
8115         Typ          : Entity_Id;
8116         Scope        : Entity_Id;
8117         Suffix       : String) return Entity_Id;
8118      --  Add an extra formal to the current list of formals and extra formals.
8119      --  The extra formal is added to the end of the list of extra formals,
8120      --  and also returned as the result. These formals are always of mode IN.
8121      --  The new formal has the type Typ, is declared in Scope, and its name
8122      --  is given by a concatenation of the name of Assoc_Entity and Suffix.
8123      --  The following suffixes are currently used. They should not be changed
8124      --  without coordinating with CodePeer, which makes use of these to
8125      --  provide better messages.
8126
8127      --  O denotes the Constrained bit.
8128      --  L denotes the accessibility level.
8129      --  BIP_xxx denotes an extra formal for a build-in-place function. See
8130      --  the full list in exp_ch6.BIP_Formal_Kind.
8131
8132      ----------------------
8133      -- Add_Extra_Formal --
8134      ----------------------
8135
8136      function Add_Extra_Formal
8137        (Assoc_Entity : Entity_Id;
8138         Typ          : Entity_Id;
8139         Scope        : Entity_Id;
8140         Suffix       : String) return Entity_Id
8141      is
8142         EF : constant Entity_Id :=
8143                Make_Defining_Identifier (Sloc (Assoc_Entity),
8144                  Chars  => New_External_Name (Chars (Assoc_Entity),
8145                                               Suffix => Suffix));
8146
8147      begin
8148         --  A little optimization. Never generate an extra formal for the
8149         --  _init operand of an initialization procedure, since it could
8150         --  never be used.
8151
8152         if Chars (Formal) = Name_uInit then
8153            return Empty;
8154         end if;
8155
8156         Set_Ekind           (EF, E_In_Parameter);
8157         Set_Actual_Subtype  (EF, Typ);
8158         Set_Etype           (EF, Typ);
8159         Set_Scope           (EF, Scope);
8160         Set_Mechanism       (EF, Default_Mechanism);
8161         Set_Formal_Validity (EF);
8162
8163         if No (First_Extra) then
8164            First_Extra := EF;
8165            Set_Extra_Formals (Scope, EF);
8166         end if;
8167
8168         if Present (Last_Extra) then
8169            Set_Extra_Formal (Last_Extra, EF);
8170         end if;
8171
8172         Last_Extra := EF;
8173
8174         return EF;
8175      end Add_Extra_Formal;
8176
8177      --  Local variables
8178
8179      Formal_Type : Entity_Id;
8180      P_Formal    : Entity_Id := Empty;
8181
8182   --  Start of processing for Create_Extra_Formals
8183
8184   begin
8185      --  We never generate extra formals if expansion is not active because we
8186      --  don't need them unless we are generating code.
8187
8188      if not Expander_Active then
8189         return;
8190      end if;
8191
8192      --  No need to generate extra formals in interface thunks whose target
8193      --  primitive has no extra formals.
8194
8195      if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
8196         return;
8197      end if;
8198
8199      --  If this is a derived subprogram then the subtypes of the parent
8200      --  subprogram's formal parameters will be used to determine the need
8201      --  for extra formals.
8202
8203      if Is_Overloadable (E) and then Present (Alias (E)) then
8204         P_Formal := First_Formal (Alias (E));
8205      end if;
8206
8207      Formal := First_Formal (E);
8208      while Present (Formal) loop
8209         Last_Extra := Formal;
8210         Next_Formal (Formal);
8211      end loop;
8212
8213      --  If Extra_Formals were already created, don't do it again. This
8214      --  situation may arise for subprogram types created as part of
8215      --  dispatching calls (see Expand_Dispatching_Call).
8216
8217      if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
8218         return;
8219      end if;
8220
8221      --  If the subprogram is a predefined dispatching subprogram then don't
8222      --  generate any extra constrained or accessibility level formals. In
8223      --  general we suppress these for internal subprograms (by not calling
8224      --  Freeze_Subprogram and Create_Extra_Formals at all), but internally
8225      --  generated stream attributes do get passed through because extra
8226      --  build-in-place formals are needed in some cases (limited 'Input).
8227
8228      if Is_Predefined_Internal_Operation (E) then
8229         goto Test_For_Func_Result_Extras;
8230      end if;
8231
8232      Formal := First_Formal (E);
8233      while Present (Formal) loop
8234
8235         --  Create extra formal for supporting the attribute 'Constrained.
8236         --  The case of a private type view without discriminants also
8237         --  requires the extra formal if the underlying type has defaulted
8238         --  discriminants.
8239
8240         if Ekind (Formal) /= E_In_Parameter then
8241            if Present (P_Formal) then
8242               Formal_Type := Etype (P_Formal);
8243            else
8244               Formal_Type := Etype (Formal);
8245            end if;
8246
8247            --  Do not produce extra formals for Unchecked_Union parameters.
8248            --  Jump directly to the end of the loop.
8249
8250            if Is_Unchecked_Union (Base_Type (Formal_Type)) then
8251               goto Skip_Extra_Formal_Generation;
8252            end if;
8253
8254            if not Has_Discriminants (Formal_Type)
8255              and then Ekind (Formal_Type) in Private_Kind
8256              and then Present (Underlying_Type (Formal_Type))
8257            then
8258               Formal_Type := Underlying_Type (Formal_Type);
8259            end if;
8260
8261            --  Suppress the extra formal if formal's subtype is constrained or
8262            --  indefinite, or we're compiling for Ada 2012 and the underlying
8263            --  type is tagged and limited. In Ada 2012, a limited tagged type
8264            --  can have defaulted discriminants, but 'Constrained is required
8265            --  to return True, so the formal is never needed (see AI05-0214).
8266            --  Note that this ensures consistency of calling sequences for
8267            --  dispatching operations when some types in a class have defaults
8268            --  on discriminants and others do not (and requiring the extra
8269            --  formal would introduce distributed overhead).
8270
8271            --  If the type does not have a completion yet, treat as prior to
8272            --  Ada 2012 for consistency.
8273
8274            if Has_Discriminants (Formal_Type)
8275              and then not Is_Constrained (Formal_Type)
8276              and then Is_Definite_Subtype (Formal_Type)
8277              and then (Ada_Version < Ada_2012
8278                         or else No (Underlying_Type (Formal_Type))
8279                         or else not
8280                           (Is_Limited_Type (Formal_Type)
8281                             and then
8282                               (Is_Tagged_Type
8283                                  (Underlying_Type (Formal_Type)))))
8284            then
8285               Set_Extra_Constrained
8286                 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
8287            end if;
8288         end if;
8289
8290         --  Create extra formal for supporting accessibility checking. This
8291         --  is done for both anonymous access formals and formals of named
8292         --  access types that are marked as controlling formals. The latter
8293         --  case can occur when Expand_Dispatching_Call creates a subprogram
8294         --  type and substitutes the types of access-to-class-wide actuals
8295         --  for the anonymous access-to-specific-type of controlling formals.
8296         --  Base_Type is applied because in cases where there is a null
8297         --  exclusion the formal may have an access subtype.
8298
8299         --  This is suppressed if we specifically suppress accessibility
8300         --  checks at the package level for either the subprogram, or the
8301         --  package in which it resides. However, we do not suppress it
8302         --  simply if the scope has accessibility checks suppressed, since
8303         --  this could cause trouble when clients are compiled with a
8304         --  different suppression setting. The explicit checks at the
8305         --  package level are safe from this point of view.
8306
8307         if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8308              or else (Is_Controlling_Formal (Formal)
8309                        and then Is_Access_Type (Base_Type (Etype (Formal)))))
8310           and then not
8311             (Explicit_Suppress (E, Accessibility_Check)
8312               or else
8313              Explicit_Suppress (Scope (E), Accessibility_Check))
8314           and then
8315             (No (P_Formal)
8316               or else Present (Extra_Accessibility (P_Formal)))
8317         then
8318            Set_Extra_Accessibility
8319              (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8320         end if;
8321
8322         --  This label is required when skipping extra formal generation for
8323         --  Unchecked_Union parameters.
8324
8325         <<Skip_Extra_Formal_Generation>>
8326
8327         if Present (P_Formal) then
8328            Next_Formal (P_Formal);
8329         end if;
8330
8331         Next_Formal (Formal);
8332      end loop;
8333
8334      <<Test_For_Func_Result_Extras>>
8335
8336      --  Ada 2012 (AI05-234): "the accessibility level of the result of a
8337      --  function call is ... determined by the point of call ...".
8338
8339      if Needs_Result_Accessibility_Level (E) then
8340         Set_Extra_Accessibility_Of_Result
8341           (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8342      end if;
8343
8344      --  Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8345      --  appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8346
8347      if Is_Build_In_Place_Function (E) then
8348         declare
8349            Result_Subt : constant Entity_Id := Etype (E);
8350            Formal_Typ  : Entity_Id;
8351            Subp_Decl   : Node_Id;
8352            Discard     : Entity_Id;
8353
8354         begin
8355            --  In the case of functions with unconstrained result subtypes,
8356            --  add a 4-state formal indicating whether the return object is
8357            --  allocated by the caller (1), or should be allocated by the
8358            --  callee on the secondary stack (2), in the global heap (3), or
8359            --  in a user-defined storage pool (4). For the moment we just use
8360            --  Natural for the type of this formal. Note that this formal
8361            --  isn't usually needed in the case where the result subtype is
8362            --  constrained, but it is needed when the function has a tagged
8363            --  result, because generally such functions can be called in a
8364            --  dispatching context and such calls must be handled like calls
8365            --  to a class-wide function.
8366
8367            if Needs_BIP_Alloc_Form (E) then
8368               Discard :=
8369                 Add_Extra_Formal
8370                   (E, Standard_Natural,
8371                    E, BIP_Formal_Suffix (BIP_Alloc_Form));
8372
8373               --  Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8374               --  use a user-defined pool. This formal is not added on
8375               --  ZFP as those targets do not support pools.
8376
8377               if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8378                  Discard :=
8379                    Add_Extra_Formal
8380                      (E, RTE (RE_Root_Storage_Pool_Ptr),
8381                       E, BIP_Formal_Suffix (BIP_Storage_Pool));
8382               end if;
8383            end if;
8384
8385            --  In the case of functions whose result type needs finalization,
8386            --  add an extra formal which represents the finalization master.
8387
8388            if Needs_BIP_Finalization_Master (E) then
8389               Discard :=
8390                 Add_Extra_Formal
8391                   (E, RTE (RE_Finalization_Master_Ptr),
8392                    E, BIP_Formal_Suffix (BIP_Finalization_Master));
8393            end if;
8394
8395            --  When the result type contains tasks, add two extra formals: the
8396            --  master of the tasks to be created, and the caller's activation
8397            --  chain.
8398
8399            if Needs_BIP_Task_Actuals (E) then
8400               Discard :=
8401                 Add_Extra_Formal
8402                   (E, RTE (RE_Master_Id),
8403                    E, BIP_Formal_Suffix (BIP_Task_Master));
8404               Discard :=
8405                 Add_Extra_Formal
8406                   (E, RTE (RE_Activation_Chain_Access),
8407                    E, BIP_Formal_Suffix (BIP_Activation_Chain));
8408            end if;
8409
8410            --  All build-in-place functions get an extra formal that will be
8411            --  passed the address of the return object within the caller.
8412
8413            Formal_Typ :=
8414              Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8415
8416            --  Incomplete_View_From_Limited_With is needed here because
8417            --  gigi gets confused if the designated type is the full view
8418            --  coming from a limited-with'ed package. In the normal case,
8419            --  (no limited with) Incomplete_View_From_Limited_With
8420            --  returns Result_Subt.
8421
8422            Set_Directly_Designated_Type
8423              (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
8424            Set_Etype (Formal_Typ, Formal_Typ);
8425            Set_Depends_On_Private
8426              (Formal_Typ, Has_Private_Component (Formal_Typ));
8427            Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8428            Set_Is_Access_Constant (Formal_Typ, False);
8429
8430            --  Ada 2005 (AI-50217): Propagate the attribute that indicates
8431            --  the designated type comes from the limited view (for back-end
8432            --  purposes).
8433
8434            Set_From_Limited_With
8435              (Formal_Typ, From_Limited_With (Result_Subt));
8436
8437            Layout_Type (Formal_Typ);
8438
8439            --  Force the definition of the Itype in case of internal function
8440            --  calls within the same or nested scope.
8441
8442            if Is_Subprogram_Or_Generic_Subprogram (E) then
8443               Subp_Decl := Parent (E);
8444
8445               --  The insertion point for an Itype reference should be after
8446               --  the unit declaration node of the subprogram. An exception
8447               --  to this are inherited operations from a parent type in which
8448               --  case the derived type acts as their parent.
8449
8450               if Nkind_In (Subp_Decl, N_Function_Specification,
8451                                       N_Procedure_Specification)
8452               then
8453                  Subp_Decl := Parent (Subp_Decl);
8454               end if;
8455
8456               Build_Itype_Reference (Formal_Typ, Subp_Decl);
8457            end if;
8458
8459            Discard :=
8460              Add_Extra_Formal
8461                (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8462         end;
8463      end if;
8464
8465      --  If this is an instance of a generic, we need to have extra formals
8466      --  for the Alias.
8467
8468      if Is_Generic_Instance (E) and then Present (Alias (E)) then
8469         Set_Extra_Formals (Alias (E), Extra_Formals (E));
8470      end if;
8471   end Create_Extra_Formals;
8472
8473   -----------------------------
8474   -- Enter_Overloaded_Entity --
8475   -----------------------------
8476
8477   procedure Enter_Overloaded_Entity (S : Entity_Id) is
8478      function Matches_Predefined_Op return Boolean;
8479      --  This returns an approximation of whether S matches a predefined
8480      --  operator, based on the operator symbol, and the parameter and result
8481      --  types. The rules are scattered throughout chapter 4 of the Ada RM.
8482
8483      ---------------------------
8484      -- Matches_Predefined_Op --
8485      ---------------------------
8486
8487      function Matches_Predefined_Op return Boolean is
8488         Formal_1    : constant Entity_Id := First_Formal (S);
8489         Formal_2    : constant Entity_Id := Next_Formal (Formal_1);
8490         Op          : constant Name_Id   := Chars (S);
8491         Result_Type : constant Entity_Id := Base_Type (Etype (S));
8492         Type_1      : constant Entity_Id := Base_Type (Etype (Formal_1));
8493
8494      begin
8495         --  Binary operator
8496
8497         if Present (Formal_2) then
8498            declare
8499               Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8500
8501            begin
8502               --  All but "&" and "**" have same-types parameters
8503
8504               case Op is
8505                  when Name_Op_Concat
8506                     | Name_Op_Expon
8507                  =>
8508                     null;
8509
8510                  when others =>
8511                     if Type_1 /= Type_2 then
8512                        return False;
8513                     end if;
8514               end case;
8515
8516               --  Check parameter and result types
8517
8518               case Op is
8519                  when Name_Op_And
8520                     | Name_Op_Or
8521                     | Name_Op_Xor
8522                  =>
8523                     return
8524                       Is_Boolean_Type (Result_Type)
8525                         and then Result_Type = Type_1;
8526
8527                  when Name_Op_Mod
8528                     | Name_Op_Rem
8529                  =>
8530                     return
8531                       Is_Integer_Type (Result_Type)
8532                         and then Result_Type = Type_1;
8533
8534                  when Name_Op_Add
8535                     | Name_Op_Divide
8536                     | Name_Op_Multiply
8537                     | Name_Op_Subtract
8538                  =>
8539                     return
8540                       Is_Numeric_Type (Result_Type)
8541                         and then Result_Type = Type_1;
8542
8543                  when Name_Op_Eq
8544                     | Name_Op_Ne
8545                  =>
8546                     return
8547                       Is_Boolean_Type (Result_Type)
8548                         and then not Is_Limited_Type (Type_1);
8549
8550                  when Name_Op_Ge
8551                     | Name_Op_Gt
8552                     | Name_Op_Le
8553                     | Name_Op_Lt
8554                  =>
8555                     return
8556                       Is_Boolean_Type (Result_Type)
8557                         and then (Is_Array_Type (Type_1)
8558                                    or else Is_Scalar_Type (Type_1));
8559
8560                  when Name_Op_Concat =>
8561                     return Is_Array_Type (Result_Type);
8562
8563                  when Name_Op_Expon =>
8564                     return
8565                       (Is_Integer_Type (Result_Type)
8566                           or else Is_Floating_Point_Type (Result_Type))
8567                         and then Result_Type = Type_1
8568                         and then Type_2 = Standard_Integer;
8569
8570                  when others =>
8571                     raise Program_Error;
8572               end case;
8573            end;
8574
8575         --  Unary operator
8576
8577         else
8578            case Op is
8579               when Name_Op_Abs
8580                  | Name_Op_Add
8581                  | Name_Op_Subtract
8582               =>
8583                  return
8584                    Is_Numeric_Type (Result_Type)
8585                      and then Result_Type = Type_1;
8586
8587               when Name_Op_Not =>
8588                  return
8589                    Is_Boolean_Type (Result_Type)
8590                      and then Result_Type = Type_1;
8591
8592               when others =>
8593                  raise Program_Error;
8594            end case;
8595         end if;
8596      end Matches_Predefined_Op;
8597
8598      --  Local variables
8599
8600      E   : Entity_Id := Current_Entity_In_Scope (S);
8601      C_E : Entity_Id := Current_Entity (S);
8602
8603   --  Start of processing for Enter_Overloaded_Entity
8604
8605   begin
8606      if Present (E) then
8607         Set_Has_Homonym (E);
8608         Set_Has_Homonym (S);
8609      end if;
8610
8611      Set_Is_Immediately_Visible (S);
8612      Set_Scope (S, Current_Scope);
8613
8614      --  Chain new entity if front of homonym in current scope, so that
8615      --  homonyms are contiguous.
8616
8617      if Present (E) and then E /= C_E then
8618         while Homonym (C_E) /= E loop
8619            C_E := Homonym (C_E);
8620         end loop;
8621
8622         Set_Homonym (C_E, S);
8623
8624      else
8625         E := C_E;
8626         Set_Current_Entity (S);
8627      end if;
8628
8629      Set_Homonym (S, E);
8630
8631      if Is_Inherited_Operation (S) then
8632         Append_Inherited_Subprogram (S);
8633      else
8634         Append_Entity (S, Current_Scope);
8635      end if;
8636
8637      Set_Public_Status (S);
8638
8639      if Debug_Flag_E then
8640         Write_Str ("New overloaded entity chain: ");
8641         Write_Name (Chars (S));
8642
8643         E := S;
8644         while Present (E) loop
8645            Write_Str (" "); Write_Int (Int (E));
8646            E := Homonym (E);
8647         end loop;
8648
8649         Write_Eol;
8650      end if;
8651
8652      --  Generate warning for hiding
8653
8654      if Warn_On_Hiding
8655        and then Comes_From_Source (S)
8656        and then In_Extended_Main_Source_Unit (S)
8657      then
8658         E := S;
8659         loop
8660            E := Homonym (E);
8661            exit when No (E);
8662
8663            --  Warn unless genuine overloading. Do not emit warning on
8664            --  hiding predefined operators in Standard (these are either an
8665            --  (artifact of our implicit declarations, or simple noise) but
8666            --  keep warning on a operator defined on a local subtype, because
8667            --  of the real danger that different operators may be applied in
8668            --  various parts of the program.
8669
8670            --  Note that if E and S have the same scope, there is never any
8671            --  hiding. Either the two conflict, and the program is illegal,
8672            --  or S is overriding an implicit inherited subprogram.
8673
8674            if Scope (E) /= Scope (S)
8675              and then (not Is_Overloadable (E)
8676                         or else Subtype_Conformant (E, S))
8677              and then (Is_Immediately_Visible (E)
8678                         or else Is_Potentially_Use_Visible (S))
8679            then
8680               if Scope (E) = Standard_Standard then
8681                  if Nkind (S) = N_Defining_Operator_Symbol
8682                    and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8683                               Scope (S)
8684                    and then Matches_Predefined_Op
8685                  then
8686                     Error_Msg_N
8687                       ("declaration of & hides predefined operator?h?", S);
8688                  end if;
8689
8690               --  E not immediately within Standard
8691
8692               else
8693                  Error_Msg_Sloc := Sloc (E);
8694                  Error_Msg_N ("declaration of & hides one #?h?", S);
8695               end if;
8696            end if;
8697         end loop;
8698      end if;
8699   end Enter_Overloaded_Entity;
8700
8701   -----------------------------
8702   -- Check_Untagged_Equality --
8703   -----------------------------
8704
8705   procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8706      Typ      : constant Entity_Id := Etype (First_Formal (Eq_Op));
8707      Decl     : constant Node_Id   := Unit_Declaration_Node (Eq_Op);
8708      Obj_Decl : Node_Id;
8709
8710   begin
8711      --  This check applies only if we have a subprogram declaration with an
8712      --  untagged record type that is conformant to the predefined op.
8713
8714      if Nkind (Decl) /= N_Subprogram_Declaration
8715        or else not Is_Record_Type (Typ)
8716        or else Is_Tagged_Type (Typ)
8717        or else Etype (Next_Formal (First_Formal (Eq_Op))) /= Typ
8718      then
8719         return;
8720      end if;
8721
8722      --  In Ada 2012 case, we will output errors or warnings depending on
8723      --  the setting of debug flag -gnatd.E.
8724
8725      if Ada_Version >= Ada_2012 then
8726         Error_Msg_Warn := Debug_Flag_Dot_EE;
8727
8728      --  In earlier versions of Ada, nothing to do unless we are warning on
8729      --  Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8730
8731      else
8732         if not Warn_On_Ada_2012_Compatibility then
8733            return;
8734         end if;
8735      end if;
8736
8737      --  Cases where the type has already been frozen
8738
8739      if Is_Frozen (Typ) then
8740
8741         --  The check applies to a primitive operation, so check that type
8742         --  and equality operation are in the same scope.
8743
8744         if Scope (Typ) /= Current_Scope then
8745            return;
8746
8747         --  If the type is a generic actual (sub)type, the operation is not
8748         --  primitive either because the base type is declared elsewhere.
8749
8750         elsif Is_Generic_Actual_Type (Typ) then
8751            return;
8752
8753         --  Here we have a definite error of declaration after freezing
8754
8755         else
8756            if Ada_Version >= Ada_2012 then
8757               Error_Msg_NE
8758                 ("equality operator must be declared before type & is "
8759                  & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8760
8761               --  In Ada 2012 mode with error turned to warning, output one
8762               --  more warning to warn that the equality operation may not
8763               --  compose. This is the consequence of ignoring the error.
8764
8765               if Error_Msg_Warn then
8766                  Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8767               end if;
8768
8769            else
8770               Error_Msg_NE
8771                 ("equality operator must be declared before type& is "
8772                  & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8773            end if;
8774
8775            --  If we are in the package body, we could just move the
8776            --  declaration to the package spec, so add a message saying that.
8777
8778            if In_Package_Body (Scope (Typ)) then
8779               if Ada_Version >= Ada_2012 then
8780                  Error_Msg_N
8781                    ("\move declaration to package spec<<", Eq_Op);
8782               else
8783                  Error_Msg_N
8784                    ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8785               end if;
8786
8787            --  Otherwise try to find the freezing point for better message.
8788
8789            else
8790               Obj_Decl := Next (Parent (Typ));
8791               while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8792                  if Nkind (Obj_Decl) = N_Object_Declaration
8793                    and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8794                  then
8795                     --  Freezing point, output warnings
8796
8797                     if Ada_Version >= Ada_2012 then
8798                        Error_Msg_NE
8799                          ("type& is frozen by declaration??", Obj_Decl, Typ);
8800                        Error_Msg_N
8801                          ("\an equality operator cannot be declared after "
8802                           & "this point??",
8803                           Obj_Decl);
8804                     else
8805                        Error_Msg_NE
8806                          ("type& is frozen by declaration (Ada 2012)?y?",
8807                           Obj_Decl, Typ);
8808                        Error_Msg_N
8809                          ("\an equality operator cannot be declared after "
8810                           & "this point (Ada 2012)?y?",
8811                           Obj_Decl);
8812                     end if;
8813
8814                     exit;
8815
8816                  --  If we reach generated code for subprogram declaration
8817                  --  or body, it is the body that froze the type and the
8818                  --  declaration is legal.
8819
8820                  elsif Sloc (Obj_Decl) = Sloc (Decl) then
8821                     return;
8822                  end if;
8823
8824                  Next (Obj_Decl);
8825               end loop;
8826            end if;
8827         end if;
8828
8829      --  Here if type is not frozen yet. It is illegal to have a primitive
8830      --  equality declared in the private part if the type is visible.
8831
8832      elsif not In_Same_List (Parent (Typ), Decl)
8833        and then not Is_Limited_Type (Typ)
8834      then
8835         --  Shouldn't we give an RM reference here???
8836
8837         if Ada_Version >= Ada_2012 then
8838            Error_Msg_N
8839              ("equality operator appears too late<<", Eq_Op);
8840         else
8841            Error_Msg_N
8842              ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8843         end if;
8844
8845      --  No error detected
8846
8847      else
8848         return;
8849      end if;
8850   end Check_Untagged_Equality;
8851
8852   -----------------------------
8853   -- Find_Corresponding_Spec --
8854   -----------------------------
8855
8856   function Find_Corresponding_Spec
8857     (N          : Node_Id;
8858      Post_Error : Boolean := True) return Entity_Id
8859   is
8860      Spec       : constant Node_Id   := Specification (N);
8861      Designator : constant Entity_Id := Defining_Entity (Spec);
8862
8863      E : Entity_Id;
8864
8865      function Different_Generic_Profile (E : Entity_Id) return Boolean;
8866      --  Even if fully conformant, a body may depend on a generic actual when
8867      --  the spec does not, or vice versa, in which case they were distinct
8868      --  entities in the generic.
8869
8870      -------------------------------
8871      -- Different_Generic_Profile --
8872      -------------------------------
8873
8874      function Different_Generic_Profile (E : Entity_Id) return Boolean is
8875         F1, F2 : Entity_Id;
8876
8877         function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8878         --  Check that the types of corresponding formals have the same
8879         --  generic actual if any. We have to account for subtypes of a
8880         --  generic formal, declared between a spec and a body, which may
8881         --  appear distinct in an instance but matched in the generic, and
8882         --  the subtype may be used either in the spec or the body of the
8883         --  subprogram being checked.
8884
8885         -------------------------
8886         -- Same_Generic_Actual --
8887         -------------------------
8888
8889         function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8890
8891            function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8892            --  Predicate to check whether S1 is a subtype of S2 in the source
8893            --  of the instance.
8894
8895            -------------------------
8896            -- Is_Declared_Subtype --
8897            -------------------------
8898
8899            function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8900            begin
8901               return Comes_From_Source (Parent (S1))
8902                 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8903                 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8904                 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8905            end Is_Declared_Subtype;
8906
8907         --  Start of processing for Same_Generic_Actual
8908
8909         begin
8910            return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8911              or else Is_Declared_Subtype (T1, T2)
8912              or else Is_Declared_Subtype (T2, T1);
8913         end Same_Generic_Actual;
8914
8915      --  Start of processing for Different_Generic_Profile
8916
8917      begin
8918         if not In_Instance then
8919            return False;
8920
8921         elsif Ekind (E) = E_Function
8922           and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8923         then
8924            return True;
8925         end if;
8926
8927         F1 := First_Formal (Designator);
8928         F2 := First_Formal (E);
8929         while Present (F1) loop
8930            if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8931               return True;
8932            end if;
8933
8934            Next_Formal (F1);
8935            Next_Formal (F2);
8936         end loop;
8937
8938         return False;
8939      end Different_Generic_Profile;
8940
8941   --  Start of processing for Find_Corresponding_Spec
8942
8943   begin
8944      E := Current_Entity (Designator);
8945      while Present (E) loop
8946
8947         --  We are looking for a matching spec. It must have the same scope,
8948         --  and the same name, and either be type conformant, or be the case
8949         --  of a library procedure spec and its body (which belong to one
8950         --  another regardless of whether they are type conformant or not).
8951
8952         if Scope (E) = Current_Scope then
8953            if Current_Scope = Standard_Standard
8954              or else (Ekind (E) = Ekind (Designator)
8955                        and then Type_Conformant (E, Designator))
8956            then
8957               --  Within an instantiation, we know that spec and body are
8958               --  subtype conformant, because they were subtype conformant in
8959               --  the generic. We choose the subtype-conformant entity here as
8960               --  well, to resolve spurious ambiguities in the instance that
8961               --  were not present in the generic (i.e. when two different
8962               --  types are given the same actual). If we are looking for a
8963               --  spec to match a body, full conformance is expected.
8964
8965               if In_Instance then
8966
8967                  --  Inherit the convention and "ghostness" of the matching
8968                  --  spec to ensure proper full and subtype conformance.
8969
8970                  Set_Convention (Designator, Convention (E));
8971
8972                  --  Skip past subprogram bodies and subprogram renamings that
8973                  --  may appear to have a matching spec, but that aren't fully
8974                  --  conformant with it. That can occur in cases where an
8975                  --  actual type causes unrelated homographs in the instance.
8976
8977                  if Nkind_In (N, N_Subprogram_Body,
8978                                  N_Subprogram_Renaming_Declaration)
8979                    and then Present (Homonym (E))
8980                    and then not Fully_Conformant (Designator, E)
8981                  then
8982                     goto Next_Entity;
8983
8984                  elsif not Subtype_Conformant (Designator, E) then
8985                     goto Next_Entity;
8986
8987                  elsif Different_Generic_Profile (E) then
8988                     goto Next_Entity;
8989                  end if;
8990               end if;
8991
8992               --  Ada 2012 (AI05-0165): For internally generated bodies of
8993               --  null procedures locate the internally generated spec. We
8994               --  enforce mode conformance since a tagged type may inherit
8995               --  from interfaces several null primitives which differ only
8996               --  in the mode of the formals.
8997
8998               if not (Comes_From_Source (E))
8999                 and then Is_Null_Procedure (E)
9000                 and then not Mode_Conformant (Designator, E)
9001               then
9002                  null;
9003
9004               --  For null procedures coming from source that are completions,
9005               --  analysis of the generated body will establish the link.
9006
9007               elsif Comes_From_Source (E)
9008                 and then Nkind (Spec) = N_Procedure_Specification
9009                 and then Null_Present (Spec)
9010               then
9011                  return E;
9012
9013               --  Expression functions can be completions, but cannot be
9014               --  completed by an explicit body.
9015
9016               elsif Comes_From_Source (E)
9017                 and then Comes_From_Source (N)
9018                 and then Nkind (N) = N_Subprogram_Body
9019                 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
9020                            N_Expression_Function
9021               then
9022                  Error_Msg_Sloc := Sloc (E);
9023                  Error_Msg_N ("body conflicts with expression function#", N);
9024                  return Empty;
9025
9026               elsif not Has_Completion (E) then
9027                  if Nkind (N) /= N_Subprogram_Body_Stub then
9028                     Set_Corresponding_Spec (N, E);
9029                  end if;
9030
9031                  Set_Has_Completion (E);
9032                  return E;
9033
9034               elsif Nkind (Parent (N)) = N_Subunit then
9035
9036                  --  If this is the proper body of a subunit, the completion
9037                  --  flag is set when analyzing the stub.
9038
9039                  return E;
9040
9041               --  If E is an internal function with a controlling result that
9042               --  was created for an operation inherited by a null extension,
9043               --  it may be overridden by a body without a previous spec (one
9044               --  more reason why these should be shunned). In that case we
9045               --  remove the generated body if present, because the current
9046               --  one is the explicit overriding.
9047
9048               elsif Ekind (E) = E_Function
9049                 and then Ada_Version >= Ada_2005
9050                 and then not Comes_From_Source (E)
9051                 and then Has_Controlling_Result (E)
9052                 and then Is_Null_Extension (Etype (E))
9053                 and then Comes_From_Source (Spec)
9054               then
9055                  Set_Has_Completion (E, False);
9056
9057                  if Expander_Active
9058                    and then Nkind (Parent (E)) = N_Function_Specification
9059                  then
9060                     Remove
9061                       (Unit_Declaration_Node
9062                          (Corresponding_Body (Unit_Declaration_Node (E))));
9063
9064                     return E;
9065
9066                  --  If expansion is disabled, or if the wrapper function has
9067                  --  not been generated yet, this a late body overriding an
9068                  --  inherited operation, or it is an overriding by some other
9069                  --  declaration before the controlling result is frozen. In
9070                  --  either case this is a declaration of a new entity.
9071
9072                  else
9073                     return Empty;
9074                  end if;
9075
9076               --  If the body already exists, then this is an error unless
9077               --  the previous declaration is the implicit declaration of a
9078               --  derived subprogram. It is also legal for an instance to
9079               --  contain type conformant overloadable declarations (but the
9080               --  generic declaration may not), per 8.3(26/2).
9081
9082               elsif No (Alias (E))
9083                 and then not Is_Intrinsic_Subprogram (E)
9084                 and then not In_Instance
9085                 and then Post_Error
9086               then
9087                  Error_Msg_Sloc := Sloc (E);
9088
9089                  if Is_Imported (E) then
9090                     Error_Msg_NE
9091                      ("body not allowed for imported subprogram & declared#",
9092                        N, E);
9093                  else
9094                     Error_Msg_NE ("duplicate body for & declared#", N, E);
9095                  end if;
9096               end if;
9097
9098            --  Child units cannot be overloaded, so a conformance mismatch
9099            --  between body and a previous spec is an error.
9100
9101            elsif Is_Child_Unit (E)
9102              and then
9103                Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
9104              and then
9105                Nkind (Parent (Unit_Declaration_Node (Designator))) =
9106                  N_Compilation_Unit
9107              and then Post_Error
9108            then
9109               Error_Msg_N
9110                 ("body of child unit does not match previous declaration", N);
9111            end if;
9112         end if;
9113
9114         <<Next_Entity>>
9115            E := Homonym (E);
9116      end loop;
9117
9118      --  On exit, we know that no previous declaration of subprogram exists
9119
9120      return Empty;
9121   end Find_Corresponding_Spec;
9122
9123   ----------------------
9124   -- Fully_Conformant --
9125   ----------------------
9126
9127   function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9128      Result : Boolean;
9129   begin
9130      Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
9131      return Result;
9132   end Fully_Conformant;
9133
9134   ----------------------------------
9135   -- Fully_Conformant_Expressions --
9136   ----------------------------------
9137
9138   function Fully_Conformant_Expressions
9139     (Given_E1 : Node_Id;
9140      Given_E2 : Node_Id;
9141      Report   : Boolean := False) return Boolean
9142   is
9143      E1 : constant Node_Id := Original_Node (Given_E1);
9144      E2 : constant Node_Id := Original_Node (Given_E2);
9145      --  We always test conformance on original nodes, since it is possible
9146      --  for analysis and/or expansion to make things look as though they
9147      --  conform when they do not, e.g. by converting 1+2 into 3.
9148
9149      function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean;
9150      --  ???
9151
9152      function FCL (L1 : List_Id; L2 : List_Id) return Boolean;
9153      --  Compare elements of two lists for conformance. Elements have to be
9154      --  conformant, and actuals inserted as default parameters do not match
9155      --  explicit actuals with the same value.
9156
9157      function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean;
9158      --  Compare an operator node with a function call
9159
9160      ---------
9161      -- FCE --
9162      ---------
9163
9164      function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean is
9165      begin
9166         return Fully_Conformant_Expressions (Given_E1, Given_E2, Report);
9167      end FCE;
9168
9169      ---------
9170      -- FCL --
9171      ---------
9172
9173      function FCL (L1 : List_Id; L2 : List_Id) return Boolean is
9174         N1 : Node_Id;
9175         N2 : Node_Id;
9176
9177      begin
9178         if L1 = No_List then
9179            N1 := Empty;
9180         else
9181            N1 := First (L1);
9182         end if;
9183
9184         if L2 = No_List then
9185            N2 := Empty;
9186         else
9187            N2 := First (L2);
9188         end if;
9189
9190         --  Compare two lists, skipping rewrite insertions (we want to compare
9191         --  the original trees, not the expanded versions).
9192
9193         loop
9194            if Is_Rewrite_Insertion (N1) then
9195               Next (N1);
9196            elsif Is_Rewrite_Insertion (N2) then
9197               Next (N2);
9198            elsif No (N1) then
9199               return No (N2);
9200            elsif No (N2) then
9201               return False;
9202            elsif not FCE (N1, N2) then
9203               return False;
9204            else
9205               Next (N1);
9206               Next (N2);
9207            end if;
9208         end loop;
9209      end FCL;
9210
9211      ---------
9212      -- FCO --
9213      ---------
9214
9215      function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean is
9216         Actuals : constant List_Id := Parameter_Associations (Call_Node);
9217         Act     : Node_Id;
9218
9219      begin
9220         if No (Actuals)
9221            or else Entity (Op_Node) /= Entity (Name (Call_Node))
9222         then
9223            return False;
9224
9225         else
9226            Act := First (Actuals);
9227
9228            if Nkind (Op_Node) in N_Binary_Op then
9229               if not FCE (Left_Opnd (Op_Node), Act) then
9230                  return False;
9231               end if;
9232
9233               Next (Act);
9234            end if;
9235
9236            return Present (Act)
9237              and then FCE (Right_Opnd (Op_Node), Act)
9238              and then No (Next (Act));
9239         end if;
9240      end FCO;
9241
9242      --  Local variables
9243
9244      Result : Boolean;
9245
9246   --  Start of processing for Fully_Conformant_Expressions
9247
9248   begin
9249      Result := True;
9250
9251      --  Nonconformant if paren count does not match. Note: if some idiot
9252      --  complains that we don't do this right for more than 3 levels of
9253      --  parentheses, they will be treated with the respect they deserve.
9254
9255      if Paren_Count (E1) /= Paren_Count (E2) then
9256         return False;
9257
9258      --  If same entities are referenced, then they are conformant even if
9259      --  they have different forms (RM 8.3.1(19-20)).
9260
9261      elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
9262         if Present (Entity (E1)) then
9263            Result := Entity (E1) = Entity (E2)
9264
9265              --  One may be a discriminant that has been replaced by the
9266              --  corresponding discriminal.
9267
9268              or else
9269                (Chars (Entity (E1)) = Chars (Entity (E2))
9270                  and then Ekind (Entity (E1)) = E_Discriminant
9271                  and then Ekind (Entity (E2)) = E_In_Parameter)
9272
9273             --  The discriminant of a protected type is transformed into
9274             --  a local constant and then into a parameter of a protected
9275             --  operation.
9276
9277             or else
9278               (Ekind (Entity (E1)) = E_Constant
9279                 and then Ekind (Entity (E2)) = E_In_Parameter
9280                 and then Present (Discriminal_Link (Entity (E1)))
9281                 and then Discriminal_Link (Entity (E1)) =
9282                          Discriminal_Link (Entity (E2)))
9283
9284             --  AI12-050: The loop variables of quantified expressions match
9285             --  if they have the same identifier, even though they may have
9286             --  different entities.
9287
9288              or else
9289                (Chars (Entity (E1)) = Chars (Entity (E2))
9290                  and then Ekind (Entity (E1)) = E_Loop_Parameter
9291                  and then Ekind (Entity (E2)) = E_Loop_Parameter)
9292
9293              --  A call to an instantiation of Unchecked_Conversion is
9294              --  rewritten with the name of the generated function created for
9295              --  the instance, and this must be special-cased.
9296
9297              or else
9298                 (Ekind (Entity (E1)) = E_Function
9299                   and then Is_Intrinsic_Subprogram (Entity (E1))
9300                   and then Is_Generic_Instance (Entity (E1))
9301                   and then Entity (E2) = Alias (Entity (E1)));
9302            if Report and not Result then
9303               Error_Msg_Sloc :=
9304                 Text_Ptr'Max (Sloc (Entity (E1)), Sloc (Entity (E2)));
9305               Error_Msg_NE
9306                 ("Meaning of& differs because of declaration#", E1, E2);
9307            end if;
9308
9309            return Result;
9310
9311         elsif Nkind (E1) = N_Expanded_Name
9312           and then Nkind (E2) = N_Expanded_Name
9313           and then Nkind (Selector_Name (E1)) = N_Character_Literal
9314           and then Nkind (Selector_Name (E2)) = N_Character_Literal
9315         then
9316            return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
9317
9318         else
9319            --  Identifiers in component associations don't always have
9320            --  entities, but their names must conform.
9321
9322            return Nkind  (E1) = N_Identifier
9323              and then Nkind (E2) = N_Identifier
9324              and then Chars (E1) = Chars (E2);
9325         end if;
9326
9327      elsif Nkind (E1) = N_Character_Literal
9328        and then Nkind (E2) = N_Expanded_Name
9329      then
9330         return Nkind (Selector_Name (E2)) = N_Character_Literal
9331           and then Chars (E1) = Chars (Selector_Name (E2));
9332
9333      elsif Nkind (E2) = N_Character_Literal
9334        and then Nkind (E1) = N_Expanded_Name
9335      then
9336         return Nkind (Selector_Name (E1)) = N_Character_Literal
9337           and then Chars (E2) = Chars (Selector_Name (E1));
9338
9339      elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
9340         return FCO (E1, E2);
9341
9342      elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
9343         return FCO (E2, E1);
9344
9345      --  Otherwise we must have the same syntactic entity
9346
9347      elsif Nkind (E1) /= Nkind (E2) then
9348         return False;
9349
9350      --  At this point, we specialize by node type
9351
9352      else
9353         case Nkind (E1) is
9354            when N_Aggregate =>
9355               return
9356                 FCL (Expressions (E1), Expressions (E2))
9357                   and then
9358                 FCL (Component_Associations (E1),
9359                      Component_Associations (E2));
9360
9361            when N_Allocator =>
9362               if Nkind (Expression (E1)) = N_Qualified_Expression
9363                    or else
9364                  Nkind (Expression (E2)) = N_Qualified_Expression
9365               then
9366                  return FCE (Expression (E1), Expression (E2));
9367
9368               --  Check that the subtype marks and any constraints
9369               --  are conformant
9370
9371               else
9372                  declare
9373                     Indic1 : constant Node_Id := Expression (E1);
9374                     Indic2 : constant Node_Id := Expression (E2);
9375                     Elt1   : Node_Id;
9376                     Elt2   : Node_Id;
9377
9378                  begin
9379                     if Nkind (Indic1) /= N_Subtype_Indication then
9380                        return
9381                          Nkind (Indic2) /= N_Subtype_Indication
9382                            and then Entity (Indic1) = Entity (Indic2);
9383
9384                     elsif Nkind (Indic2) /= N_Subtype_Indication then
9385                        return
9386                          Nkind (Indic1) /= N_Subtype_Indication
9387                            and then Entity (Indic1) = Entity (Indic2);
9388
9389                     else
9390                        if Entity (Subtype_Mark (Indic1)) /=
9391                          Entity (Subtype_Mark (Indic2))
9392                        then
9393                           return False;
9394                        end if;
9395
9396                        Elt1 := First (Constraints (Constraint (Indic1)));
9397                        Elt2 := First (Constraints (Constraint (Indic2)));
9398                        while Present (Elt1) and then Present (Elt2) loop
9399                           if not FCE (Elt1, Elt2) then
9400                              return False;
9401                           end if;
9402
9403                           Next (Elt1);
9404                           Next (Elt2);
9405                        end loop;
9406
9407                        return True;
9408                     end if;
9409                  end;
9410               end if;
9411
9412            when N_Attribute_Reference =>
9413               return
9414                 Attribute_Name (E1) = Attribute_Name (E2)
9415                   and then FCL (Expressions (E1), Expressions (E2));
9416
9417            when N_Binary_Op =>
9418               return
9419                 Entity (E1) = Entity (E2)
9420                   and then FCE (Left_Opnd  (E1), Left_Opnd  (E2))
9421                   and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9422
9423            when N_Membership_Test
9424               | N_Short_Circuit
9425            =>
9426               return
9427                 FCE (Left_Opnd  (E1), Left_Opnd  (E2))
9428                   and then
9429                 FCE (Right_Opnd (E1), Right_Opnd (E2));
9430
9431            when N_Case_Expression =>
9432               declare
9433                  Alt1 : Node_Id;
9434                  Alt2 : Node_Id;
9435
9436               begin
9437                  if not FCE (Expression (E1), Expression (E2)) then
9438                     return False;
9439
9440                  else
9441                     Alt1 := First (Alternatives (E1));
9442                     Alt2 := First (Alternatives (E2));
9443                     loop
9444                        if Present (Alt1) /= Present (Alt2) then
9445                           return False;
9446                        elsif No (Alt1) then
9447                           return True;
9448                        end if;
9449
9450                        if not FCE (Expression (Alt1), Expression (Alt2))
9451                          or else not FCL (Discrete_Choices (Alt1),
9452                                           Discrete_Choices (Alt2))
9453                        then
9454                           return False;
9455                        end if;
9456
9457                        Next (Alt1);
9458                        Next (Alt2);
9459                     end loop;
9460                  end if;
9461               end;
9462
9463            when N_Character_Literal =>
9464               return
9465                 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9466
9467            when N_Component_Association =>
9468               return
9469                 FCL (Choices (E1), Choices (E2))
9470                   and then
9471                 FCE (Expression (E1), Expression (E2));
9472
9473            when N_Explicit_Dereference =>
9474               return
9475                 FCE (Prefix (E1), Prefix (E2));
9476
9477            when N_Extension_Aggregate =>
9478               return
9479                 FCL (Expressions (E1), Expressions (E2))
9480                   and then Null_Record_Present (E1) =
9481                            Null_Record_Present (E2)
9482                   and then FCL (Component_Associations (E1),
9483                               Component_Associations (E2));
9484
9485            when N_Function_Call =>
9486               return
9487                 FCE (Name (E1), Name (E2))
9488                   and then
9489                 FCL (Parameter_Associations (E1),
9490                      Parameter_Associations (E2));
9491
9492            when N_If_Expression =>
9493               return
9494                 FCL (Expressions (E1), Expressions (E2));
9495
9496            when N_Indexed_Component =>
9497               return
9498                 FCE (Prefix (E1), Prefix (E2))
9499                   and then
9500                 FCL (Expressions (E1), Expressions (E2));
9501
9502            when N_Integer_Literal =>
9503               return (Intval (E1) = Intval (E2));
9504
9505            when N_Null =>
9506               return True;
9507
9508            when N_Operator_Symbol =>
9509               return
9510                 Chars (E1) = Chars (E2);
9511
9512            when N_Others_Choice =>
9513               return True;
9514
9515            when N_Parameter_Association =>
9516               return
9517                 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9518                   and then FCE (Explicit_Actual_Parameter (E1),
9519                                 Explicit_Actual_Parameter (E2));
9520
9521            when N_Qualified_Expression
9522               | N_Type_Conversion
9523               | N_Unchecked_Type_Conversion
9524            =>
9525               return
9526                 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9527                   and then
9528                 FCE (Expression (E1), Expression (E2));
9529
9530            when N_Quantified_Expression =>
9531               if not FCE (Condition (E1), Condition (E2)) then
9532                  return False;
9533               end if;
9534
9535               if Present (Loop_Parameter_Specification (E1))
9536                 and then Present (Loop_Parameter_Specification (E2))
9537               then
9538                  declare
9539                     L1 : constant Node_Id :=
9540                       Loop_Parameter_Specification (E1);
9541                     L2 : constant Node_Id :=
9542                       Loop_Parameter_Specification (E2);
9543
9544                  begin
9545                     return
9546                       Reverse_Present (L1) = Reverse_Present (L2)
9547                         and then
9548                           FCE (Defining_Identifier (L1),
9549                                Defining_Identifier (L2))
9550                         and then
9551                           FCE (Discrete_Subtype_Definition (L1),
9552                                Discrete_Subtype_Definition (L2));
9553                  end;
9554
9555               elsif Present (Iterator_Specification (E1))
9556                 and then Present (Iterator_Specification (E2))
9557               then
9558                  declare
9559                     I1 : constant Node_Id := Iterator_Specification (E1);
9560                     I2 : constant Node_Id := Iterator_Specification (E2);
9561
9562                  begin
9563                     return
9564                       FCE (Defining_Identifier (I1),
9565                            Defining_Identifier (I2))
9566                       and then
9567                         Of_Present (I1) = Of_Present (I2)
9568                       and then
9569                         Reverse_Present (I1) = Reverse_Present (I2)
9570                       and then FCE (Name (I1), Name (I2))
9571                       and then FCE (Subtype_Indication (I1),
9572                                      Subtype_Indication (I2));
9573                  end;
9574
9575               --  The quantified expressions used different specifications to
9576               --  walk their respective ranges.
9577
9578               else
9579                  return False;
9580               end if;
9581
9582            when N_Range =>
9583               return
9584                 FCE (Low_Bound (E1), Low_Bound (E2))
9585                   and then
9586                 FCE (High_Bound (E1), High_Bound (E2));
9587
9588            when N_Real_Literal =>
9589               return (Realval (E1) = Realval (E2));
9590
9591            when N_Selected_Component =>
9592               return
9593                 FCE (Prefix (E1), Prefix (E2))
9594                   and then
9595                 FCE (Selector_Name (E1), Selector_Name (E2));
9596
9597            when N_Slice =>
9598               return
9599                 FCE (Prefix (E1), Prefix (E2))
9600                   and then
9601                 FCE (Discrete_Range (E1), Discrete_Range (E2));
9602
9603            when N_String_Literal =>
9604               declare
9605                  S1 : constant String_Id := Strval (E1);
9606                  S2 : constant String_Id := Strval (E2);
9607                  L1 : constant Nat       := String_Length (S1);
9608                  L2 : constant Nat       := String_Length (S2);
9609
9610               begin
9611                  if L1 /= L2 then
9612                     return False;
9613
9614                  else
9615                     for J in 1 .. L1 loop
9616                        if Get_String_Char (S1, J) /=
9617                           Get_String_Char (S2, J)
9618                        then
9619                           return False;
9620                        end if;
9621                     end loop;
9622
9623                     return True;
9624                  end if;
9625               end;
9626
9627            when N_Unary_Op =>
9628               return
9629                 Entity (E1) = Entity (E2)
9630                   and then
9631                 FCE (Right_Opnd (E1), Right_Opnd (E2));
9632
9633            --  All other node types cannot appear in this context. Strictly
9634            --  we should raise a fatal internal error. Instead we just ignore
9635            --  the nodes. This means that if anyone makes a mistake in the
9636            --  expander and mucks an expression tree irretrievably, the result
9637            --  will be a failure to detect a (probably very obscure) case
9638            --  of non-conformance, which is better than bombing on some
9639            --  case where two expressions do in fact conform.
9640
9641            when others =>
9642               return True;
9643         end case;
9644      end if;
9645   end Fully_Conformant_Expressions;
9646
9647   ----------------------------------------
9648   -- Fully_Conformant_Discrete_Subtypes --
9649   ----------------------------------------
9650
9651   function Fully_Conformant_Discrete_Subtypes
9652     (Given_S1 : Node_Id;
9653      Given_S2 : Node_Id) return Boolean
9654   is
9655      S1 : constant Node_Id := Original_Node (Given_S1);
9656      S2 : constant Node_Id := Original_Node (Given_S2);
9657
9658      function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9659      --  Special-case for a bound given by a discriminant, which in the body
9660      --  is replaced with the discriminal of the enclosing type.
9661
9662      function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9663      --  Check both bounds
9664
9665      -----------------------
9666      -- Conforming_Bounds --
9667      -----------------------
9668
9669      function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9670      begin
9671         if Is_Entity_Name (B1)
9672           and then Is_Entity_Name (B2)
9673           and then Ekind (Entity (B1)) = E_Discriminant
9674         then
9675            return Chars (B1) = Chars (B2);
9676
9677         else
9678            return Fully_Conformant_Expressions (B1, B2);
9679         end if;
9680      end Conforming_Bounds;
9681
9682      -----------------------
9683      -- Conforming_Ranges --
9684      -----------------------
9685
9686      function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9687      begin
9688         return
9689           Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9690             and then
9691           Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9692      end Conforming_Ranges;
9693
9694   --  Start of processing for Fully_Conformant_Discrete_Subtypes
9695
9696   begin
9697      if Nkind (S1) /= Nkind (S2) then
9698         return False;
9699
9700      elsif Is_Entity_Name (S1) then
9701         return Entity (S1) = Entity (S2);
9702
9703      elsif Nkind (S1) = N_Range then
9704         return Conforming_Ranges (S1, S2);
9705
9706      elsif Nkind (S1) = N_Subtype_Indication then
9707         return
9708            Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9709              and then
9710            Conforming_Ranges
9711              (Range_Expression (Constraint (S1)),
9712               Range_Expression (Constraint (S2)));
9713      else
9714         return True;
9715      end if;
9716   end Fully_Conformant_Discrete_Subtypes;
9717
9718   --------------------
9719   -- Install_Entity --
9720   --------------------
9721
9722   procedure Install_Entity (E : Entity_Id) is
9723      Prev : constant Entity_Id := Current_Entity (E);
9724   begin
9725      Set_Is_Immediately_Visible (E);
9726      Set_Current_Entity (E);
9727      Set_Homonym (E, Prev);
9728   end Install_Entity;
9729
9730   ---------------------
9731   -- Install_Formals --
9732   ---------------------
9733
9734   procedure Install_Formals (Id : Entity_Id) is
9735      F : Entity_Id;
9736   begin
9737      F := First_Formal (Id);
9738      while Present (F) loop
9739         Install_Entity (F);
9740         Next_Formal (F);
9741      end loop;
9742   end Install_Formals;
9743
9744   -----------------------------
9745   -- Is_Interface_Conformant --
9746   -----------------------------
9747
9748   function Is_Interface_Conformant
9749     (Tagged_Type : Entity_Id;
9750      Iface_Prim  : Entity_Id;
9751      Prim        : Entity_Id) return Boolean
9752   is
9753      --  The operation may in fact be an inherited (implicit) operation
9754      --  rather than the original interface primitive, so retrieve the
9755      --  ultimate ancestor.
9756
9757      Iface : constant Entity_Id :=
9758                Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9759      Typ   : constant Entity_Id := Find_Dispatching_Type (Prim);
9760
9761      function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9762      --  Return the controlling formal of Prim
9763
9764      ------------------------
9765      -- Controlling_Formal --
9766      ------------------------
9767
9768      function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9769         E : Entity_Id;
9770
9771      begin
9772         E := First_Entity (Prim);
9773         while Present (E) loop
9774            if Is_Formal (E) and then Is_Controlling_Formal (E) then
9775               return E;
9776            end if;
9777
9778            Next_Entity (E);
9779         end loop;
9780
9781         return Empty;
9782      end Controlling_Formal;
9783
9784      --  Local variables
9785
9786      Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9787      Prim_Ctrl_F  : constant Entity_Id := Controlling_Formal (Prim);
9788
9789   --  Start of processing for Is_Interface_Conformant
9790
9791   begin
9792      pragma Assert (Is_Subprogram (Iface_Prim)
9793        and then Is_Subprogram (Prim)
9794        and then Is_Dispatching_Operation (Iface_Prim)
9795        and then Is_Dispatching_Operation (Prim));
9796
9797      pragma Assert (Is_Interface (Iface)
9798        or else (Present (Alias (Iface_Prim))
9799                   and then
9800                     Is_Interface
9801                       (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9802
9803      if Prim = Iface_Prim
9804        or else not Is_Subprogram (Prim)
9805        or else Ekind (Prim) /= Ekind (Iface_Prim)
9806        or else not Is_Dispatching_Operation (Prim)
9807        or else Scope (Prim) /= Scope (Tagged_Type)
9808        or else No (Typ)
9809        or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9810        or else not Primitive_Names_Match (Iface_Prim, Prim)
9811      then
9812         return False;
9813
9814      --  The mode of the controlling formals must match
9815
9816      elsif Present (Iface_Ctrl_F)
9817        and then Present (Prim_Ctrl_F)
9818        and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9819      then
9820         return False;
9821
9822      --  Case of a procedure, or a function whose result type matches the
9823      --  result type of the interface primitive, or a function that has no
9824      --  controlling result (I or access I).
9825
9826      elsif Ekind (Iface_Prim) = E_Procedure
9827        or else Etype (Prim) = Etype (Iface_Prim)
9828        or else not Has_Controlling_Result (Prim)
9829      then
9830         return Type_Conformant
9831                  (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9832
9833      --  Case of a function returning an interface, or an access to one. Check
9834      --  that the return types correspond.
9835
9836      elsif Implements_Interface (Typ, Iface) then
9837         if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9838              /=
9839            (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9840         then
9841            return False;
9842         else
9843            return
9844              Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9845                Skip_Controlling_Formals => True);
9846         end if;
9847
9848      else
9849         return False;
9850      end if;
9851   end Is_Interface_Conformant;
9852
9853   ---------------------------------
9854   -- Is_Non_Overriding_Operation --
9855   ---------------------------------
9856
9857   function Is_Non_Overriding_Operation
9858     (Prev_E : Entity_Id;
9859      New_E  : Entity_Id) return Boolean
9860   is
9861      Formal : Entity_Id;
9862      F_Typ  : Entity_Id;
9863      G_Typ  : Entity_Id := Empty;
9864
9865      function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9866      --  If F_Type is a derived type associated with a generic actual subtype,
9867      --  then return its Generic_Parent_Type attribute, else return Empty.
9868
9869      function Types_Correspond
9870        (P_Type : Entity_Id;
9871         N_Type : Entity_Id) return Boolean;
9872      --  Returns true if and only if the types (or designated types in the
9873      --  case of anonymous access types) are the same or N_Type is derived
9874      --  directly or indirectly from P_Type.
9875
9876      -----------------------------
9877      -- Get_Generic_Parent_Type --
9878      -----------------------------
9879
9880      function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9881         G_Typ : Entity_Id;
9882         Defn  : Node_Id;
9883         Indic : Node_Id;
9884
9885      begin
9886         if Is_Derived_Type (F_Typ)
9887           and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9888         then
9889            --  The tree must be traversed to determine the parent subtype in
9890            --  the generic unit, which unfortunately isn't always available
9891            --  via semantic attributes. ??? (Note: The use of Original_Node
9892            --  is needed for cases where a full derived type has been
9893            --  rewritten.)
9894
9895            --  If the parent type is a scalar type, the derivation creates
9896            --  an anonymous base type for it, and the source type is its
9897            --  first subtype.
9898
9899            if Is_Scalar_Type (F_Typ)
9900              and then not Comes_From_Source (F_Typ)
9901            then
9902               Defn :=
9903                 Type_Definition
9904                   (Original_Node (Parent (First_Subtype (F_Typ))));
9905            else
9906               Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9907            end if;
9908            if Nkind (Defn) = N_Derived_Type_Definition then
9909               Indic := Subtype_Indication (Defn);
9910
9911               if Nkind (Indic) = N_Subtype_Indication then
9912                  G_Typ := Entity (Subtype_Mark (Indic));
9913               else
9914                  G_Typ := Entity (Indic);
9915               end if;
9916
9917               if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9918                 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9919               then
9920                  return Generic_Parent_Type (Parent (G_Typ));
9921               end if;
9922            end if;
9923         end if;
9924
9925         return Empty;
9926      end Get_Generic_Parent_Type;
9927
9928      ----------------------
9929      -- Types_Correspond --
9930      ----------------------
9931
9932      function Types_Correspond
9933        (P_Type : Entity_Id;
9934         N_Type : Entity_Id) return Boolean
9935      is
9936         Prev_Type : Entity_Id := Base_Type (P_Type);
9937         New_Type  : Entity_Id := Base_Type (N_Type);
9938
9939      begin
9940         if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9941            Prev_Type := Designated_Type (Prev_Type);
9942         end if;
9943
9944         if Ekind (New_Type) = E_Anonymous_Access_Type then
9945            New_Type := Designated_Type (New_Type);
9946         end if;
9947
9948         if Prev_Type = New_Type then
9949            return True;
9950
9951         elsif not Is_Class_Wide_Type (New_Type) then
9952            while Etype (New_Type) /= New_Type loop
9953               New_Type := Etype (New_Type);
9954
9955               if New_Type = Prev_Type then
9956                  return True;
9957               end if;
9958            end loop;
9959         end if;
9960         return False;
9961      end Types_Correspond;
9962
9963   --  Start of processing for Is_Non_Overriding_Operation
9964
9965   begin
9966      --  In the case where both operations are implicit derived subprograms
9967      --  then neither overrides the other. This can only occur in certain
9968      --  obscure cases (e.g., derivation from homographs created in a generic
9969      --  instantiation).
9970
9971      if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9972         return True;
9973
9974      elsif Ekind (Current_Scope) = E_Package
9975        and then Is_Generic_Instance (Current_Scope)
9976        and then In_Private_Part (Current_Scope)
9977        and then Comes_From_Source (New_E)
9978      then
9979         --  We examine the formals and result type of the inherited operation,
9980         --  to determine whether their type is derived from (the instance of)
9981         --  a generic type. The first such formal or result type is the one
9982         --  tested.
9983
9984         Formal := First_Formal (Prev_E);
9985         F_Typ  := Empty;
9986         while Present (Formal) loop
9987            F_Typ := Base_Type (Etype (Formal));
9988
9989            if Ekind (F_Typ) = E_Anonymous_Access_Type then
9990               F_Typ := Designated_Type (F_Typ);
9991            end if;
9992
9993            G_Typ := Get_Generic_Parent_Type (F_Typ);
9994            exit when Present (G_Typ);
9995
9996            Next_Formal (Formal);
9997         end loop;
9998
9999         --  If the function dispatches on result check the result type
10000
10001         if No (G_Typ) and then Ekind (Prev_E) = E_Function then
10002            G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
10003         end if;
10004
10005         if No (G_Typ) then
10006            return False;
10007         end if;
10008
10009         --  If the generic type is a private type, then the original operation
10010         --  was not overriding in the generic, because there was no primitive
10011         --  operation to override.
10012
10013         if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
10014           and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
10015                      N_Formal_Private_Type_Definition
10016         then
10017            return True;
10018
10019         --  The generic parent type is the ancestor of a formal derived
10020         --  type declaration. We need to check whether it has a primitive
10021         --  operation that should be overridden by New_E in the generic.
10022
10023         else
10024            declare
10025               P_Formal : Entity_Id;
10026               N_Formal : Entity_Id;
10027               P_Typ    : Entity_Id;
10028               N_Typ    : Entity_Id;
10029               P_Prim   : Entity_Id;
10030               Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
10031
10032            begin
10033               while Present (Prim_Elt) loop
10034                  P_Prim := Node (Prim_Elt);
10035
10036                  if Chars (P_Prim) = Chars (New_E)
10037                    and then Ekind (P_Prim) = Ekind (New_E)
10038                  then
10039                     P_Formal := First_Formal (P_Prim);
10040                     N_Formal := First_Formal (New_E);
10041                     while Present (P_Formal) and then Present (N_Formal) loop
10042                        P_Typ := Etype (P_Formal);
10043                        N_Typ := Etype (N_Formal);
10044
10045                        if not Types_Correspond (P_Typ, N_Typ) then
10046                           exit;
10047                        end if;
10048
10049                        Next_Entity (P_Formal);
10050                        Next_Entity (N_Formal);
10051                     end loop;
10052
10053                     --  Found a matching primitive operation belonging to the
10054                     --  formal ancestor type, so the new subprogram is
10055                     --  overriding.
10056
10057                     if No (P_Formal)
10058                       and then No (N_Formal)
10059                       and then (Ekind (New_E) /= E_Function
10060                                  or else
10061                                    Types_Correspond
10062                                      (Etype (P_Prim), Etype (New_E)))
10063                     then
10064                        return False;
10065                     end if;
10066                  end if;
10067
10068                  Next_Elmt (Prim_Elt);
10069               end loop;
10070
10071               --  If no match found, then the new subprogram does not override
10072               --  in the generic (nor in the instance).
10073
10074               --  If the type in question is not abstract, and the subprogram
10075               --  is, this will be an error if the new operation is in the
10076               --  private part of the instance. Emit a warning now, which will
10077               --  make the subsequent error message easier to understand.
10078
10079               if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
10080                 and then Is_Abstract_Subprogram (Prev_E)
10081                 and then In_Private_Part (Current_Scope)
10082               then
10083                  Error_Msg_Node_2 := F_Typ;
10084                  Error_Msg_NE
10085                    ("private operation& in generic unit does not override "
10086                     & "any primitive operation of& (RM 12.3 (18))??",
10087                     New_E, New_E);
10088               end if;
10089
10090               return True;
10091            end;
10092         end if;
10093      else
10094         return False;
10095      end if;
10096   end Is_Non_Overriding_Operation;
10097
10098   -------------------------------------
10099   -- List_Inherited_Pre_Post_Aspects --
10100   -------------------------------------
10101
10102   procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
10103   begin
10104      if Opt.List_Inherited_Aspects
10105        and then Is_Subprogram_Or_Generic_Subprogram (E)
10106      then
10107         declare
10108            Subps : constant Subprogram_List := Inherited_Subprograms (E);
10109            Items : Node_Id;
10110            Prag  : Node_Id;
10111
10112         begin
10113            for Index in Subps'Range loop
10114               Items := Contract (Subps (Index));
10115
10116               if Present (Items) then
10117                  Prag := Pre_Post_Conditions (Items);
10118                  while Present (Prag) loop
10119                     Error_Msg_Sloc := Sloc (Prag);
10120
10121                     if Class_Present (Prag)
10122                       and then not Split_PPC (Prag)
10123                     then
10124                        if Pragma_Name (Prag) = Name_Precondition then
10125                           Error_Msg_N
10126                             ("info: & inherits `Pre''Class` aspect from "
10127                              & "#?L?", E);
10128                        else
10129                           Error_Msg_N
10130                             ("info: & inherits `Post''Class` aspect from "
10131                              & "#?L?", E);
10132                        end if;
10133                     end if;
10134
10135                     Prag := Next_Pragma (Prag);
10136                  end loop;
10137               end if;
10138            end loop;
10139         end;
10140      end if;
10141   end List_Inherited_Pre_Post_Aspects;
10142
10143   ------------------------------
10144   -- Make_Inequality_Operator --
10145   ------------------------------
10146
10147   --  S is the defining identifier of an equality operator. We build a
10148   --  subprogram declaration with the right signature. This operation is
10149   --  intrinsic, because it is always expanded as the negation of the
10150   --  call to the equality function.
10151
10152   procedure Make_Inequality_Operator (S : Entity_Id) is
10153      Loc     : constant Source_Ptr := Sloc (S);
10154      Decl    : Node_Id;
10155      Formals : List_Id;
10156      Op_Name : Entity_Id;
10157
10158      FF : constant Entity_Id := First_Formal (S);
10159      NF : constant Entity_Id := Next_Formal (FF);
10160
10161   begin
10162      --  Check that equality was properly defined, ignore call if not
10163
10164      if No (NF) then
10165         return;
10166      end if;
10167
10168      declare
10169         A : constant Entity_Id :=
10170               Make_Defining_Identifier (Sloc (FF),
10171                 Chars => Chars (FF));
10172
10173         B : constant Entity_Id :=
10174               Make_Defining_Identifier (Sloc (NF),
10175                 Chars => Chars (NF));
10176
10177      begin
10178         Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
10179
10180         Formals := New_List (
10181           Make_Parameter_Specification (Loc,
10182             Defining_Identifier => A,
10183             Parameter_Type      =>
10184               New_Occurrence_Of (Etype (First_Formal (S)),
10185                 Sloc (Etype (First_Formal (S))))),
10186
10187           Make_Parameter_Specification (Loc,
10188             Defining_Identifier => B,
10189             Parameter_Type      =>
10190               New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
10191                 Sloc (Etype (Next_Formal (First_Formal (S)))))));
10192
10193         Decl :=
10194           Make_Subprogram_Declaration (Loc,
10195             Specification =>
10196               Make_Function_Specification (Loc,
10197                 Defining_Unit_Name       => Op_Name,
10198                 Parameter_Specifications => Formals,
10199                 Result_Definition        =>
10200                   New_Occurrence_Of (Standard_Boolean, Loc)));
10201
10202         --  Insert inequality right after equality if it is explicit or after
10203         --  the derived type when implicit. These entities are created only
10204         --  for visibility purposes, and eventually replaced in the course
10205         --  of expansion, so they do not need to be attached to the tree and
10206         --  seen by the back-end. Keeping them internal also avoids spurious
10207         --  freezing problems. The declaration is inserted in the tree for
10208         --  analysis, and removed afterwards. If the equality operator comes
10209         --  from an explicit declaration, attach the inequality immediately
10210         --  after. Else the equality is inherited from a derived type
10211         --  declaration, so insert inequality after that declaration.
10212
10213         if No (Alias (S)) then
10214            Insert_After (Unit_Declaration_Node (S), Decl);
10215         elsif Is_List_Member (Parent (S)) then
10216            Insert_After (Parent (S), Decl);
10217         else
10218            Insert_After (Parent (Etype (First_Formal (S))), Decl);
10219         end if;
10220
10221         Mark_Rewrite_Insertion (Decl);
10222         Set_Is_Intrinsic_Subprogram (Op_Name);
10223         Analyze (Decl);
10224         Remove (Decl);
10225         Set_Has_Completion (Op_Name);
10226         Set_Corresponding_Equality (Op_Name, S);
10227         Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
10228      end;
10229   end Make_Inequality_Operator;
10230
10231   ----------------------
10232   -- May_Need_Actuals --
10233   ----------------------
10234
10235   procedure May_Need_Actuals (Fun : Entity_Id) is
10236      F : Entity_Id;
10237      B : Boolean;
10238
10239   begin
10240      F := First_Formal (Fun);
10241      B := True;
10242      while Present (F) loop
10243         if No (Default_Value (F)) then
10244            B := False;
10245            exit;
10246         end if;
10247
10248         Next_Formal (F);
10249      end loop;
10250
10251      Set_Needs_No_Actuals (Fun, B);
10252   end May_Need_Actuals;
10253
10254   ---------------------
10255   -- Mode_Conformant --
10256   ---------------------
10257
10258   function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
10259      Result : Boolean;
10260   begin
10261      Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
10262      return Result;
10263   end Mode_Conformant;
10264
10265   ---------------------------
10266   -- New_Overloaded_Entity --
10267   ---------------------------
10268
10269   procedure New_Overloaded_Entity
10270     (S            : Entity_Id;
10271      Derived_Type : Entity_Id := Empty)
10272   is
10273      Overridden_Subp : Entity_Id := Empty;
10274      --  Set if the current scope has an operation that is type-conformant
10275      --  with S, and becomes hidden by S.
10276
10277      Is_Primitive_Subp : Boolean;
10278      --  Set to True if the new subprogram is primitive
10279
10280      E : Entity_Id;
10281      --  Entity that S overrides
10282
10283      procedure Check_For_Primitive_Subprogram
10284        (Is_Primitive  : out Boolean;
10285         Is_Overriding : Boolean := False);
10286      --  If the subprogram being analyzed is a primitive operation of the type
10287      --  of a formal or result, set the Has_Primitive_Operations flag on the
10288      --  type, and set Is_Primitive to True (otherwise set to False). Set the
10289      --  corresponding flag on the entity itself for later use.
10290
10291      function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
10292      --  True if a) E is a subprogram whose first formal is a concurrent type
10293      --  defined in the scope of E that has some entry or subprogram whose
10294      --  profile matches E, or b) E is an internally built dispatching
10295      --  subprogram of a protected type and there is a matching subprogram
10296      --  defined in the enclosing scope of the protected type, or c) E is
10297      --  an entry of a synchronized type and a matching procedure has been
10298      --  previously defined in the enclosing scope of the synchronized type.
10299
10300      function Is_Private_Declaration (E : Entity_Id) return Boolean;
10301      --  Check that E is declared in the private part of the current package,
10302      --  or in the package body, where it may hide a previous declaration.
10303      --  We can't use In_Private_Part by itself because this flag is also
10304      --  set when freezing entities, so we must examine the place of the
10305      --  declaration in the tree, and recognize wrapper packages as well.
10306
10307      function Is_Overriding_Alias
10308        (Old_E : Entity_Id;
10309         New_E : Entity_Id) return Boolean;
10310      --  Check whether new subprogram and old subprogram are both inherited
10311      --  from subprograms that have distinct dispatch table entries. This can
10312      --  occur with derivations from instances with accidental homonyms. The
10313      --  function is conservative given that the converse is only true within
10314      --  instances that contain accidental overloadings.
10315
10316      procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
10317      --  Report conflict between entities S and E
10318
10319      ------------------------------------
10320      -- Check_For_Primitive_Subprogram --
10321      ------------------------------------
10322
10323      procedure Check_For_Primitive_Subprogram
10324        (Is_Primitive  : out Boolean;
10325         Is_Overriding : Boolean := False)
10326      is
10327         Formal : Entity_Id;
10328         F_Typ  : Entity_Id;
10329         B_Typ  : Entity_Id;
10330
10331         function Visible_Part_Type (T : Entity_Id) return Boolean;
10332         --  Returns true if T is declared in the visible part of the current
10333         --  package scope; otherwise returns false. Assumes that T is declared
10334         --  in a package.
10335
10336         procedure Check_Private_Overriding (T : Entity_Id);
10337         --  Checks that if a primitive abstract subprogram of a visible
10338         --  abstract type is declared in a private part, then it must override
10339         --  an abstract subprogram declared in the visible part. Also checks
10340         --  that if a primitive function with a controlling result is declared
10341         --  in a private part, then it must override a function declared in
10342         --  the visible part.
10343
10344         ------------------------------
10345         -- Check_Private_Overriding --
10346         ------------------------------
10347
10348         procedure Check_Private_Overriding (T : Entity_Id) is
10349            function Overrides_Private_Part_Op return Boolean;
10350            --  This detects the special case where the overriding subprogram
10351            --  is overriding a subprogram that was declared in the same
10352            --  private part. That case is illegal by 3.9.3(10).
10353
10354            function Overrides_Visible_Function
10355              (Partial_View : Entity_Id) return Boolean;
10356            --  True if S overrides a function in the visible part. The
10357            --  overridden function could be explicitly or implicitly declared.
10358
10359            -------------------------------
10360            -- Overrides_Private_Part_Op --
10361            -------------------------------
10362
10363            function Overrides_Private_Part_Op return Boolean is
10364               Over_Decl : constant Node_Id :=
10365                             Unit_Declaration_Node (Overridden_Operation (S));
10366               Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10367
10368            begin
10369               pragma Assert (Is_Overriding);
10370               pragma Assert
10371                 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10372               pragma Assert
10373                 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10374
10375               return In_Same_List (Over_Decl, Subp_Decl);
10376            end Overrides_Private_Part_Op;
10377
10378            --------------------------------
10379            -- Overrides_Visible_Function --
10380            --------------------------------
10381
10382            function Overrides_Visible_Function
10383              (Partial_View : Entity_Id) return Boolean
10384            is
10385            begin
10386               if not Is_Overriding or else not Has_Homonym (S) then
10387                  return False;
10388               end if;
10389
10390               if not Present (Partial_View) then
10391                  return True;
10392               end if;
10393
10394               --  Search through all the homonyms H of S in the current
10395               --  package spec, and return True if we find one that matches.
10396               --  Note that Parent (H) will be the declaration of the
10397               --  partial view of T for a match.
10398
10399               declare
10400                  H : Entity_Id := S;
10401               begin
10402                  loop
10403                     H := Homonym (H);
10404                     exit when not Present (H) or else Scope (H) /= Scope (S);
10405
10406                     if Nkind_In
10407                       (Parent (H),
10408                        N_Private_Extension_Declaration,
10409                        N_Private_Type_Declaration)
10410                       and then Defining_Identifier (Parent (H)) = Partial_View
10411                     then
10412                        return True;
10413                     end if;
10414                  end loop;
10415               end;
10416
10417               return False;
10418            end Overrides_Visible_Function;
10419
10420         --  Start of processing for Check_Private_Overriding
10421
10422         begin
10423            if Is_Package_Or_Generic_Package (Current_Scope)
10424              and then In_Private_Part (Current_Scope)
10425              and then Visible_Part_Type (T)
10426              and then not In_Instance
10427            then
10428               if Is_Abstract_Type (T)
10429                 and then Is_Abstract_Subprogram (S)
10430                 and then (not Is_Overriding
10431                             or else not Is_Abstract_Subprogram (E)
10432                             or else Overrides_Private_Part_Op)
10433               then
10434                  Error_Msg_N
10435                    ("abstract subprograms must be visible (RM 3.9.3(10))!",
10436                     S);
10437
10438               elsif Ekind (S) = E_Function then
10439                  declare
10440                     Partial_View : constant Entity_Id :=
10441                                      Incomplete_Or_Partial_View (T);
10442
10443                  begin
10444                     if not Overrides_Visible_Function (Partial_View) then
10445
10446                        --  Here, S is "function ... return T;" declared in
10447                        --  the private part, not overriding some visible
10448                        --  operation. That's illegal in the tagged case
10449                        --  (but not if the private type is untagged).
10450
10451                        if ((Present (Partial_View)
10452                              and then Is_Tagged_Type (Partial_View))
10453                          or else (not Present (Partial_View)
10454                                    and then Is_Tagged_Type (T)))
10455                          and then T = Base_Type (Etype (S))
10456                        then
10457                           Error_Msg_N
10458                             ("private function with tagged result must"
10459                              & " override visible-part function", S);
10460                           Error_Msg_N
10461                             ("\move subprogram to the visible part"
10462                              & " (RM 3.9.3(10))", S);
10463
10464                        --  AI05-0073: extend this test to the case of a
10465                        --  function with a controlling access result.
10466
10467                        elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10468                          and then Is_Tagged_Type (Designated_Type (Etype (S)))
10469                          and then
10470                            not Is_Class_Wide_Type
10471                                  (Designated_Type (Etype (S)))
10472                          and then Ada_Version >= Ada_2012
10473                        then
10474                           Error_Msg_N
10475                             ("private function with controlling access "
10476                              & "result must override visible-part function",
10477                              S);
10478                           Error_Msg_N
10479                             ("\move subprogram to the visible part"
10480                              & " (RM 3.9.3(10))", S);
10481                        end if;
10482                     end if;
10483                  end;
10484               end if;
10485            end if;
10486         end Check_Private_Overriding;
10487
10488         -----------------------
10489         -- Visible_Part_Type --
10490         -----------------------
10491
10492         function Visible_Part_Type (T : Entity_Id) return Boolean is
10493            P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10494
10495         begin
10496            --  If the entity is a private type, then it must be declared in a
10497            --  visible part.
10498
10499            if Ekind (T) in Private_Kind then
10500               return True;
10501
10502            elsif Is_Type (T) and then Has_Private_Declaration (T) then
10503               return True;
10504
10505            elsif Is_List_Member (Declaration_Node (T))
10506              and then List_Containing (Declaration_Node (T)) =
10507                         Visible_Declarations (Specification (P))
10508            then
10509               return True;
10510
10511            else
10512               return False;
10513            end if;
10514         end Visible_Part_Type;
10515
10516      --  Start of processing for Check_For_Primitive_Subprogram
10517
10518      begin
10519         Is_Primitive := False;
10520
10521         if not Comes_From_Source (S) then
10522            null;
10523
10524         --  If subprogram is at library level, it is not primitive operation
10525
10526         elsif Current_Scope = Standard_Standard then
10527            null;
10528
10529         elsif (Is_Package_Or_Generic_Package (Current_Scope)
10530                 and then not In_Package_Body (Current_Scope))
10531           or else Is_Overriding
10532         then
10533            --  For function, check return type
10534
10535            if Ekind (S) = E_Function then
10536               if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10537                  F_Typ := Designated_Type (Etype (S));
10538               else
10539                  F_Typ := Etype (S);
10540               end if;
10541
10542               B_Typ := Base_Type (F_Typ);
10543
10544               if Scope (B_Typ) = Current_Scope
10545                 and then not Is_Class_Wide_Type (B_Typ)
10546                 and then not Is_Generic_Type (B_Typ)
10547               then
10548                  Is_Primitive := True;
10549                  Set_Has_Primitive_Operations (B_Typ);
10550                  Set_Is_Primitive (S);
10551                  Check_Private_Overriding (B_Typ);
10552
10553                  --  The Ghost policy in effect at the point of declaration
10554                  --  or a tagged type and a primitive operation must match
10555                  --  (SPARK RM 6.9(16)).
10556
10557                  Check_Ghost_Primitive (S, B_Typ);
10558               end if;
10559            end if;
10560
10561            --  For all subprograms, check formals
10562
10563            Formal := First_Formal (S);
10564            while Present (Formal) loop
10565               if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10566                  F_Typ := Designated_Type (Etype (Formal));
10567               else
10568                  F_Typ := Etype (Formal);
10569               end if;
10570
10571               B_Typ := Base_Type (F_Typ);
10572
10573               if Ekind (B_Typ) = E_Access_Subtype then
10574                  B_Typ := Base_Type (B_Typ);
10575               end if;
10576
10577               if Scope (B_Typ) = Current_Scope
10578                 and then not Is_Class_Wide_Type (B_Typ)
10579                 and then not Is_Generic_Type (B_Typ)
10580               then
10581                  Is_Primitive := True;
10582                  Set_Is_Primitive (S);
10583                  Set_Has_Primitive_Operations (B_Typ);
10584                  Check_Private_Overriding (B_Typ);
10585
10586                  --  The Ghost policy in effect at the point of declaration
10587                  --  of a tagged type and a primitive operation must match
10588                  --  (SPARK RM 6.9(16)).
10589
10590                  Check_Ghost_Primitive (S, B_Typ);
10591               end if;
10592
10593               Next_Formal (Formal);
10594            end loop;
10595
10596         --  Special case: An equality function can be redefined for a type
10597         --  occurring in a declarative part, and won't otherwise be treated as
10598         --  a primitive because it doesn't occur in a package spec and doesn't
10599         --  override an inherited subprogram. It's important that we mark it
10600         --  primitive so it can be returned by Collect_Primitive_Operations
10601         --  and be used in composing the equality operation of later types
10602         --  that have a component of the type.
10603
10604         elsif Chars (S) = Name_Op_Eq
10605           and then Etype (S) = Standard_Boolean
10606         then
10607            B_Typ := Base_Type (Etype (First_Formal (S)));
10608
10609            if Scope (B_Typ) = Current_Scope
10610              and then
10611                Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10612              and then not Is_Limited_Type (B_Typ)
10613            then
10614               Is_Primitive := True;
10615               Set_Is_Primitive (S);
10616               Set_Has_Primitive_Operations (B_Typ);
10617               Check_Private_Overriding (B_Typ);
10618
10619               --  The Ghost policy in effect at the point of declaration of a
10620               --  tagged type and a primitive operation must match
10621               --  (SPARK RM 6.9(16)).
10622
10623               Check_Ghost_Primitive (S, B_Typ);
10624            end if;
10625         end if;
10626      end Check_For_Primitive_Subprogram;
10627
10628      --------------------------------------
10629      -- Has_Matching_Entry_Or_Subprogram --
10630      --------------------------------------
10631
10632      function Has_Matching_Entry_Or_Subprogram
10633        (E : Entity_Id) return Boolean
10634      is
10635         function Check_Conforming_Parameters
10636           (E1_Param : Node_Id;
10637            E2_Param : Node_Id;
10638            Ctype    : Conformance_Type) return Boolean;
10639         --  Starting from the given parameters, check that all the parameters
10640         --  of two entries or subprograms are conformant. Used to skip
10641         --  the check on the controlling argument.
10642
10643         function Matching_Entry_Or_Subprogram
10644           (Conc_Typ : Entity_Id;
10645            Subp     : Entity_Id) return Entity_Id;
10646         --  Return the first entry or subprogram of the given concurrent type
10647         --  whose name matches the name of Subp and has a profile conformant
10648         --  with Subp; return Empty if not found.
10649
10650         function Matching_Dispatching_Subprogram
10651           (Conc_Typ : Entity_Id;
10652            Ent      : Entity_Id) return Entity_Id;
10653         --  Return the first dispatching primitive of Conc_Type defined in the
10654         --  enclosing scope of Conc_Type (i.e. before the full definition of
10655         --  this concurrent type) whose name matches the entry Ent and has a
10656         --  profile conformant with the profile of the corresponding (not yet
10657         --  built) dispatching primitive of Ent; return Empty if not found.
10658
10659         function Matching_Original_Protected_Subprogram
10660           (Prot_Typ : Entity_Id;
10661            Subp     : Entity_Id) return Entity_Id;
10662         --  Return the first subprogram defined in the enclosing scope of
10663         --  Prot_Typ (before the full definition of this protected type)
10664         --  whose name matches the original name of Subp and has a profile
10665         --  conformant with the profile of Subp; return Empty if not found.
10666
10667         function Normalized_First_Parameter_Type
10668           (E : Entity_Id) return Entity_Id;
10669         --  Return the type of the first parameter unless that type
10670         --  is an anonymous access type, in which case return the
10671         --  designated type. Used to treat anonymous-access-to-synchronized
10672         --  the same as synchronized for purposes of checking for
10673         --  prefixed view profile conflicts.
10674
10675         ---------------------------------
10676         -- Check_Conforming_Parameters --
10677         ---------------------------------
10678
10679         function Check_Conforming_Parameters
10680           (E1_Param : Node_Id;
10681            E2_Param : Node_Id;
10682            Ctype    : Conformance_Type) return Boolean
10683         is
10684            Param_E1 : Node_Id := E1_Param;
10685            Param_E2 : Node_Id := E2_Param;
10686
10687         begin
10688            while Present (Param_E1) and then Present (Param_E2) loop
10689               if (Ctype >= Mode_Conformant) and then
10690                 Ekind (Defining_Identifier (Param_E1)) /=
10691                 Ekind (Defining_Identifier (Param_E2))
10692               then
10693                  return False;
10694               elsif not
10695                   Conforming_Types
10696                     (Find_Parameter_Type (Param_E1),
10697                      Find_Parameter_Type (Param_E2),
10698                      Ctype)
10699               then
10700                  return False;
10701               end if;
10702
10703               Next (Param_E1);
10704               Next (Param_E2);
10705            end loop;
10706
10707            --  The candidate is not valid if one of the two lists contains
10708            --  more parameters than the other
10709
10710            return No (Param_E1) and then No (Param_E2);
10711         end Check_Conforming_Parameters;
10712
10713         ----------------------------------
10714         -- Matching_Entry_Or_Subprogram --
10715         ----------------------------------
10716
10717         function Matching_Entry_Or_Subprogram
10718           (Conc_Typ : Entity_Id;
10719            Subp     : Entity_Id) return Entity_Id
10720         is
10721            E : Entity_Id;
10722
10723         begin
10724            E := First_Entity (Conc_Typ);
10725            while Present (E) loop
10726               if Chars (Subp) = Chars (E)
10727                 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10728                 and then
10729                   Check_Conforming_Parameters
10730                     (First (Parameter_Specifications (Parent (E))),
10731                      Next (First (Parameter_Specifications (Parent (Subp)))),
10732                      Type_Conformant)
10733               then
10734                  return E;
10735               end if;
10736
10737               Next_Entity (E);
10738            end loop;
10739
10740            return Empty;
10741         end Matching_Entry_Or_Subprogram;
10742
10743         -------------------------------------
10744         -- Matching_Dispatching_Subprogram --
10745         -------------------------------------
10746
10747         function Matching_Dispatching_Subprogram
10748           (Conc_Typ : Entity_Id;
10749            Ent      : Entity_Id) return Entity_Id
10750         is
10751            E : Entity_Id;
10752
10753         begin
10754            --  Search for entities in the enclosing scope of this synchonized
10755            --  type.
10756
10757            pragma Assert (Is_Concurrent_Type (Conc_Typ));
10758            Push_Scope (Scope (Conc_Typ));
10759            E := Current_Entity_In_Scope (Ent);
10760            Pop_Scope;
10761
10762            while Present (E) loop
10763               if Scope (E) = Scope (Conc_Typ)
10764                 and then Comes_From_Source (E)
10765                 and then Ekind (E) = E_Procedure
10766                 and then Present (First_Entity (E))
10767                 and then Is_Controlling_Formal (First_Entity (E))
10768                 and then Etype (First_Entity (E)) = Conc_Typ
10769                 and then
10770                   Check_Conforming_Parameters
10771                     (First (Parameter_Specifications (Parent (Ent))),
10772                      Next (First (Parameter_Specifications (Parent (E)))),
10773                      Subtype_Conformant)
10774               then
10775                  return E;
10776               end if;
10777
10778               E := Homonym (E);
10779            end loop;
10780
10781            return Empty;
10782         end Matching_Dispatching_Subprogram;
10783
10784         --------------------------------------------
10785         -- Matching_Original_Protected_Subprogram --
10786         --------------------------------------------
10787
10788         function Matching_Original_Protected_Subprogram
10789           (Prot_Typ : Entity_Id;
10790            Subp     : Entity_Id) return Entity_Id
10791         is
10792            ICF : constant Boolean :=
10793                    Is_Controlling_Formal (First_Entity (Subp));
10794            E   : Entity_Id;
10795
10796         begin
10797            --  Temporarily decorate the first parameter of Subp as controlling
10798            --  formal, required to invoke Subtype_Conformant.
10799
10800            Set_Is_Controlling_Formal (First_Entity (Subp));
10801
10802            E :=
10803              Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10804
10805            while Present (E) loop
10806               if Scope (E) = Scope (Prot_Typ)
10807                 and then Comes_From_Source (E)
10808                 and then Ekind (Subp) = Ekind (E)
10809                 and then Present (First_Entity (E))
10810                 and then Is_Controlling_Formal (First_Entity (E))
10811                 and then Etype (First_Entity (E)) = Prot_Typ
10812                 and then Subtype_Conformant (Subp, E,
10813                            Skip_Controlling_Formals => True)
10814               then
10815                  Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10816                  return E;
10817               end if;
10818
10819               E := Homonym (E);
10820            end loop;
10821
10822            Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10823
10824            return Empty;
10825         end Matching_Original_Protected_Subprogram;
10826
10827         -------------------------------------
10828         -- Normalized_First_Parameter_Type --
10829         -------------------------------------
10830
10831         function Normalized_First_Parameter_Type
10832           (E : Entity_Id) return Entity_Id
10833         is
10834            Result : Entity_Id := Etype (First_Entity (E));
10835         begin
10836            if Ekind (Result) = E_Anonymous_Access_Type then
10837               Result := Designated_Type (Result);
10838            end if;
10839            return Result;
10840         end Normalized_First_Parameter_Type;
10841
10842      --  Start of processing for Has_Matching_Entry_Or_Subprogram
10843
10844      begin
10845         --  Case 1: E is a subprogram whose first formal is a concurrent type
10846         --  defined in the scope of E that has an entry or subprogram whose
10847         --  profile matches E.
10848
10849         if Comes_From_Source (E)
10850           and then Is_Subprogram (E)
10851           and then Present (First_Entity (E))
10852           and then Is_Concurrent_Record_Type
10853                      (Normalized_First_Parameter_Type (E))
10854         then
10855            if Scope (E) =
10856                 Scope (Corresponding_Concurrent_Type
10857                         (Normalized_First_Parameter_Type (E)))
10858              and then
10859                Present
10860                  (Matching_Entry_Or_Subprogram
10861                     (Corresponding_Concurrent_Type
10862                        (Normalized_First_Parameter_Type (E)),
10863                      Subp => E))
10864            then
10865               Report_Conflict (E,
10866                 Matching_Entry_Or_Subprogram
10867                   (Corresponding_Concurrent_Type
10868                      (Normalized_First_Parameter_Type (E)),
10869                    Subp => E));
10870               return True;
10871            end if;
10872
10873         --  Case 2: E is an internally built dispatching subprogram of a
10874         --  protected type and there is a subprogram defined in the enclosing
10875         --  scope of the protected type that has the original name of E and
10876         --  its profile is conformant with the profile of E. We check the
10877         --  name of the original protected subprogram associated with E since
10878         --  the expander builds dispatching primitives of protected functions
10879         --  and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10880
10881         elsif not Comes_From_Source (E)
10882           and then Is_Subprogram (E)
10883           and then Present (First_Entity (E))
10884           and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10885           and then Present (Original_Protected_Subprogram (E))
10886           and then
10887             Present
10888               (Matching_Original_Protected_Subprogram
10889                 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10890                  Subp => E))
10891         then
10892            Report_Conflict (E,
10893              Matching_Original_Protected_Subprogram
10894                (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10895                 Subp => E));
10896            return True;
10897
10898         --  Case 3: E is an entry of a synchronized type and a matching
10899         --  procedure has been previously defined in the enclosing scope
10900         --  of the synchronized type.
10901
10902         elsif Comes_From_Source (E)
10903           and then Ekind (E) = E_Entry
10904           and then
10905             Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10906         then
10907            Report_Conflict (E,
10908              Matching_Dispatching_Subprogram (Current_Scope, E));
10909            return True;
10910         end if;
10911
10912         return False;
10913      end Has_Matching_Entry_Or_Subprogram;
10914
10915      ----------------------------
10916      -- Is_Private_Declaration --
10917      ----------------------------
10918
10919      function Is_Private_Declaration (E : Entity_Id) return Boolean is
10920         Decl       : constant Node_Id := Unit_Declaration_Node (E);
10921         Priv_Decls : List_Id;
10922
10923      begin
10924         if Is_Package_Or_Generic_Package (Current_Scope)
10925           and then In_Private_Part (Current_Scope)
10926         then
10927            Priv_Decls :=
10928              Private_Declarations (Package_Specification (Current_Scope));
10929
10930            return In_Package_Body (Current_Scope)
10931              or else
10932                (Is_List_Member (Decl)
10933                  and then List_Containing (Decl) = Priv_Decls)
10934              or else (Nkind (Parent (Decl)) = N_Package_Specification
10935                        and then not
10936                          Is_Compilation_Unit
10937                            (Defining_Entity (Parent (Decl)))
10938                        and then List_Containing (Parent (Parent (Decl))) =
10939                                                                Priv_Decls);
10940         else
10941            return False;
10942         end if;
10943      end Is_Private_Declaration;
10944
10945      --------------------------
10946      -- Is_Overriding_Alias --
10947      --------------------------
10948
10949      function Is_Overriding_Alias
10950        (Old_E : Entity_Id;
10951         New_E : Entity_Id) return Boolean
10952      is
10953         AO : constant Entity_Id := Alias (Old_E);
10954         AN : constant Entity_Id := Alias (New_E);
10955
10956      begin
10957         return Scope (AO) /= Scope (AN)
10958           or else No (DTC_Entity (AO))
10959           or else No (DTC_Entity (AN))
10960           or else DT_Position (AO) = DT_Position (AN);
10961      end Is_Overriding_Alias;
10962
10963      ---------------------
10964      -- Report_Conflict --
10965      ---------------------
10966
10967      procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10968      begin
10969         Error_Msg_Sloc := Sloc (E);
10970
10971         --  Generate message, with useful additional warning if in generic
10972
10973         if Is_Generic_Unit (E) then
10974            Error_Msg_N ("previous generic unit cannot be overloaded", S);
10975            Error_Msg_N ("\& conflicts with declaration#", S);
10976         else
10977            Error_Msg_N ("& conflicts with declaration#", S);
10978         end if;
10979      end Report_Conflict;
10980
10981   --  Start of processing for New_Overloaded_Entity
10982
10983   begin
10984      --  We need to look for an entity that S may override. This must be a
10985      --  homonym in the current scope, so we look for the first homonym of
10986      --  S in the current scope as the starting point for the search.
10987
10988      E := Current_Entity_In_Scope (S);
10989
10990      --  Ada 2005 (AI-251): Derivation of abstract interface primitives.
10991      --  They are directly added to the list of primitive operations of
10992      --  Derived_Type, unless this is a rederivation in the private part
10993      --  of an operation that was already derived in the visible part of
10994      --  the current package.
10995
10996      if Ada_Version >= Ada_2005
10997        and then Present (Derived_Type)
10998        and then Present (Alias (S))
10999        and then Is_Dispatching_Operation (Alias (S))
11000        and then Present (Find_Dispatching_Type (Alias (S)))
11001        and then Is_Interface (Find_Dispatching_Type (Alias (S)))
11002      then
11003         --  For private types, when the full-view is processed we propagate to
11004         --  the full view the non-overridden entities whose attribute "alias"
11005         --  references an interface primitive. These entities were added by
11006         --  Derive_Subprograms to ensure that interface primitives are
11007         --  covered.
11008
11009         --  Inside_Freeze_Actions is non zero when S corresponds with an
11010         --  internal entity that links an interface primitive with its
11011         --  covering primitive through attribute Interface_Alias (see
11012         --  Add_Internal_Interface_Entities).
11013
11014         if Inside_Freezing_Actions = 0
11015           and then Is_Package_Or_Generic_Package (Current_Scope)
11016           and then In_Private_Part (Current_Scope)
11017           and then Nkind (Parent (E)) = N_Private_Extension_Declaration
11018           and then Nkind (Parent (S)) = N_Full_Type_Declaration
11019           and then Full_View (Defining_Identifier (Parent (E)))
11020                      = Defining_Identifier (Parent (S))
11021           and then Alias (E) = Alias (S)
11022         then
11023            Check_Operation_From_Private_View (S, E);
11024            Set_Is_Dispatching_Operation (S);
11025
11026         --  Common case
11027
11028         else
11029            Enter_Overloaded_Entity (S);
11030            Check_Dispatching_Operation (S, Empty);
11031            Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11032         end if;
11033
11034         return;
11035      end if;
11036
11037      --  For synchronized types check conflicts of this entity with previously
11038      --  defined entities.
11039
11040      if Ada_Version >= Ada_2005
11041        and then Has_Matching_Entry_Or_Subprogram (S)
11042      then
11043         return;
11044      end if;
11045
11046      --  If there is no homonym then this is definitely not overriding
11047
11048      if No (E) then
11049         Enter_Overloaded_Entity (S);
11050         Check_Dispatching_Operation (S, Empty);
11051         Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11052
11053         --  If subprogram has an explicit declaration, check whether it has an
11054         --  overriding indicator.
11055
11056         if Comes_From_Source (S) then
11057            Check_Synchronized_Overriding (S, Overridden_Subp);
11058
11059            --  (Ada 2012: AI05-0125-1): If S is a dispatching operation then
11060            --  it may have overridden some hidden inherited primitive. Update
11061            --  Overridden_Subp to avoid spurious errors when checking the
11062            --  overriding indicator.
11063
11064            if Ada_Version >= Ada_2012
11065              and then No (Overridden_Subp)
11066              and then Is_Dispatching_Operation (S)
11067              and then Present (Overridden_Operation (S))
11068            then
11069               Overridden_Subp := Overridden_Operation (S);
11070            end if;
11071
11072            Check_Overriding_Indicator
11073              (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11074
11075            --  The Ghost policy in effect at the point of declaration of a
11076            --  parent subprogram and an overriding subprogram must match
11077            --  (SPARK RM 6.9(17)).
11078
11079            Check_Ghost_Overriding (S, Overridden_Subp);
11080         end if;
11081
11082      --  If there is a homonym that is not overloadable, then we have an
11083      --  error, except for the special cases checked explicitly below.
11084
11085      elsif not Is_Overloadable (E) then
11086
11087         --  Check for spurious conflict produced by a subprogram that has the
11088         --  same name as that of the enclosing generic package. The conflict
11089         --  occurs within an instance, between the subprogram and the renaming
11090         --  declaration for the package. After the subprogram, the package
11091         --  renaming declaration becomes hidden.
11092
11093         if Ekind (E) = E_Package
11094           and then Present (Renamed_Object (E))
11095           and then Renamed_Object (E) = Current_Scope
11096           and then Nkind (Parent (Renamed_Object (E))) =
11097                                                     N_Package_Specification
11098           and then Present (Generic_Parent (Parent (Renamed_Object (E))))
11099         then
11100            Set_Is_Hidden (E);
11101            Set_Is_Immediately_Visible (E, False);
11102            Enter_Overloaded_Entity (S);
11103            Set_Homonym (S, Homonym (E));
11104            Check_Dispatching_Operation (S, Empty);
11105            Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
11106
11107         --  If the subprogram is implicit it is hidden by the previous
11108         --  declaration. However if it is dispatching, it must appear in the
11109         --  dispatch table anyway, because it can be dispatched to even if it
11110         --  cannot be called directly.
11111
11112         elsif Present (Alias (S)) and then not Comes_From_Source (S) then
11113            Set_Scope (S, Current_Scope);
11114
11115            if Is_Dispatching_Operation (Alias (S)) then
11116               Check_Dispatching_Operation (S, Empty);
11117            end if;
11118
11119            return;
11120
11121         else
11122            Report_Conflict (S, E);
11123            return;
11124         end if;
11125
11126      --  E exists and is overloadable
11127
11128      else
11129         Check_Synchronized_Overriding (S, Overridden_Subp);
11130
11131         --  Loop through E and its homonyms to determine if any of them is
11132         --  the candidate for overriding by S.
11133
11134         while Present (E) loop
11135
11136            --  Definitely not interesting if not in the current scope
11137
11138            if Scope (E) /= Current_Scope then
11139               null;
11140
11141            --  A function can overload the name of an abstract state. The
11142            --  state can be viewed as a function with a profile that cannot
11143            --  be matched by anything.
11144
11145            elsif Ekind (S) = E_Function
11146              and then Ekind (E) = E_Abstract_State
11147            then
11148               Enter_Overloaded_Entity (S);
11149               return;
11150
11151            --  Ada 2012 (AI05-0165): For internally generated bodies of null
11152            --  procedures locate the internally generated spec. We enforce
11153            --  mode conformance since a tagged type may inherit from
11154            --  interfaces several null primitives which differ only in
11155            --  the mode of the formals.
11156
11157            elsif not Comes_From_Source (S)
11158              and then Is_Null_Procedure (S)
11159              and then not Mode_Conformant (E, S)
11160            then
11161               null;
11162
11163            --  Check if we have type conformance
11164
11165            elsif Type_Conformant (E, S) then
11166
11167               --  If the old and new entities have the same profile and one
11168               --  is not the body of the other, then this is an error, unless
11169               --  one of them is implicitly declared.
11170
11171               --  There are some cases when both can be implicit, for example
11172               --  when both a literal and a function that overrides it are
11173               --  inherited in a derivation, or when an inherited operation
11174               --  of a tagged full type overrides the inherited operation of
11175               --  a private extension. Ada 83 had a special rule for the
11176               --  literal case. In Ada 95, the later implicit operation hides
11177               --  the former, and the literal is always the former. In the
11178               --  odd case where both are derived operations declared at the
11179               --  same point, both operations should be declared, and in that
11180               --  case we bypass the following test and proceed to the next
11181               --  part. This can only occur for certain obscure cases in
11182               --  instances, when an operation on a type derived from a formal
11183               --  private type does not override a homograph inherited from
11184               --  the actual. In subsequent derivations of such a type, the
11185               --  DT positions of these operations remain distinct, if they
11186               --  have been set.
11187
11188               if Present (Alias (S))
11189                 and then (No (Alias (E))
11190                            or else Comes_From_Source (E)
11191                            or else Is_Abstract_Subprogram (S)
11192                            or else
11193                              (Is_Dispatching_Operation (E)
11194                                and then Is_Overriding_Alias (E, S)))
11195                 and then Ekind (E) /= E_Enumeration_Literal
11196               then
11197                  --  When an derived operation is overloaded it may be due to
11198                  --  the fact that the full view of a private extension
11199                  --  re-inherits. It has to be dealt with.
11200
11201                  if Is_Package_Or_Generic_Package (Current_Scope)
11202                    and then In_Private_Part (Current_Scope)
11203                  then
11204                     Check_Operation_From_Private_View (S, E);
11205                  end if;
11206
11207                  --  In any case the implicit operation remains hidden by the
11208                  --  existing declaration, which is overriding. Indicate that
11209                  --  E overrides the operation from which S is inherited.
11210
11211                  if Present (Alias (S)) then
11212                     Set_Overridden_Operation    (E, Alias (S));
11213                     Inherit_Subprogram_Contract (E, Alias (S));
11214
11215                  else
11216                     Set_Overridden_Operation    (E, S);
11217                     Inherit_Subprogram_Contract (E, S);
11218                  end if;
11219
11220                  if Comes_From_Source (E) then
11221                     Check_Overriding_Indicator (E, S, Is_Primitive => False);
11222
11223                     --  The Ghost policy in effect at the point of declaration
11224                     --  of a parent subprogram and an overriding subprogram
11225                     --  must match (SPARK RM 6.9(17)).
11226
11227                     Check_Ghost_Overriding (E, S);
11228                  end if;
11229
11230                  return;
11231
11232               --  Within an instance, the renaming declarations for actual
11233               --  subprograms may become ambiguous, but they do not hide each
11234               --  other.
11235
11236               elsif Ekind (E) /= E_Entry
11237                 and then not Comes_From_Source (E)
11238                 and then not Is_Generic_Instance (E)
11239                 and then (Present (Alias (E))
11240                            or else Is_Intrinsic_Subprogram (E))
11241                 and then (not In_Instance
11242                            or else No (Parent (E))
11243                            or else Nkind (Unit_Declaration_Node (E)) /=
11244                                      N_Subprogram_Renaming_Declaration)
11245               then
11246                  --  A subprogram child unit is not allowed to override an
11247                  --  inherited subprogram (10.1.1(20)).
11248
11249                  if Is_Child_Unit (S) then
11250                     Error_Msg_N
11251                       ("child unit overrides inherited subprogram in parent",
11252                        S);
11253                     return;
11254                  end if;
11255
11256                  if Is_Non_Overriding_Operation (E, S) then
11257                     Enter_Overloaded_Entity (S);
11258
11259                     if No (Derived_Type)
11260                       or else Is_Tagged_Type (Derived_Type)
11261                     then
11262                        Check_Dispatching_Operation (S, Empty);
11263                     end if;
11264
11265                     return;
11266                  end if;
11267
11268                  --  E is a derived operation or an internal operator which
11269                  --  is being overridden. Remove E from further visibility.
11270                  --  Furthermore, if E is a dispatching operation, it must be
11271                  --  replaced in the list of primitive operations of its type
11272                  --  (see Override_Dispatching_Operation).
11273
11274                  Overridden_Subp := E;
11275
11276                  --  It is possible for E to be in the current scope and
11277                  --  yet not in the entity chain. This can only occur in a
11278                  --  generic context where E is an implicit concatenation
11279                  --  in the formal part, because in a generic body the
11280                  --  entity chain starts with the formals.
11281
11282                  --  In GNATprove mode, a wrapper for an operation with
11283                  --  axiomatization may be a homonym of another declaration
11284                  --  for an actual subprogram (needs refinement ???).
11285
11286                  if No (Prev_Entity (E)) then
11287                     if In_Instance
11288                       and then GNATprove_Mode
11289                       and then
11290                         Nkind (Original_Node (Unit_Declaration_Node (S))) =
11291                                          N_Subprogram_Renaming_Declaration
11292                     then
11293                        return;
11294                     else
11295                        pragma Assert (Chars (E) = Name_Op_Concat);
11296                        null;
11297                     end if;
11298                  end if;
11299
11300                  --  E must be removed both from the entity_list of the
11301                  --  current scope, and from the visibility chain.
11302
11303                  if Debug_Flag_E then
11304                     Write_Str ("Override implicit operation ");
11305                     Write_Int (Int (E));
11306                     Write_Eol;
11307                  end if;
11308
11309                  --  If E is a predefined concatenation, it stands for four
11310                  --  different operations. As a result, a single explicit
11311                  --  declaration does not hide it. In a possible ambiguous
11312                  --  situation, Disambiguate chooses the user-defined op,
11313                  --  so it is correct to retain the previous internal one.
11314
11315                  if Chars (E) /= Name_Op_Concat
11316                    or else Ekind (E) /= E_Operator
11317                  then
11318                     --  For nondispatching derived operations that are
11319                     --  overridden by a subprogram declared in the private
11320                     --  part of a package, we retain the derived subprogram
11321                     --  but mark it as not immediately visible. If the
11322                     --  derived operation was declared in the visible part
11323                     --  then this ensures that it will still be visible
11324                     --  outside the package with the proper signature
11325                     --  (calls from outside must also be directed to this
11326                     --  version rather than the overriding one, unlike the
11327                     --  dispatching case). Calls from inside the package
11328                     --  will still resolve to the overriding subprogram
11329                     --  since the derived one is marked as not visible
11330                     --  within the package.
11331
11332                     --  If the private operation is dispatching, we achieve
11333                     --  the overriding by keeping the implicit operation
11334                     --  but setting its alias to be the overriding one. In
11335                     --  this fashion the proper body is executed in all
11336                     --  cases, but the original signature is used outside
11337                     --  of the package.
11338
11339                     --  If the overriding is not in the private part, we
11340                     --  remove the implicit operation altogether.
11341
11342                     if Is_Private_Declaration (S) then
11343                        if not Is_Dispatching_Operation (E) then
11344                           Set_Is_Immediately_Visible (E, False);
11345                        else
11346                           --  Work done in Override_Dispatching_Operation, so
11347                           --  nothing else needs to be done here.
11348
11349                           null;
11350                        end if;
11351
11352                     else
11353                        Remove_Entity_And_Homonym (E);
11354                     end if;
11355                  end if;
11356
11357                  Enter_Overloaded_Entity (S);
11358
11359                  --  For entities generated by Derive_Subprograms the
11360                  --  overridden operation is the inherited primitive
11361                  --  (which is available through the attribute alias).
11362
11363                  if not (Comes_From_Source (E))
11364                    and then Is_Dispatching_Operation (E)
11365                    and then Find_Dispatching_Type (E) =
11366                             Find_Dispatching_Type (S)
11367                    and then Present (Alias (E))
11368                    and then Comes_From_Source (Alias (E))
11369                  then
11370                     Set_Overridden_Operation    (S, Alias (E));
11371                     Inherit_Subprogram_Contract (S, Alias (E));
11372
11373                  --  Normal case of setting entity as overridden
11374
11375                  --  Note: Static_Initialization and Overridden_Operation
11376                  --  attributes use the same field in subprogram entities.
11377                  --  Static_Initialization is only defined for internal
11378                  --  initialization procedures, where Overridden_Operation
11379                  --  is irrelevant. Therefore the setting of this attribute
11380                  --  must check whether the target is an init_proc.
11381
11382                  elsif not Is_Init_Proc (S) then
11383                     Set_Overridden_Operation    (S, E);
11384                     Inherit_Subprogram_Contract (S, E);
11385                  end if;
11386
11387                  Check_Overriding_Indicator (S, E, Is_Primitive => True);
11388
11389                  --  The Ghost policy in effect at the point of declaration
11390                  --  of a parent subprogram and an overriding subprogram
11391                  --  must match (SPARK RM 6.9(17)).
11392
11393                  Check_Ghost_Overriding (S, E);
11394
11395                  --  If S is a user-defined subprogram or a null procedure
11396                  --  expanded to override an inherited null procedure, or a
11397                  --  predefined dispatching primitive then indicate that E
11398                  --  overrides the operation from which S is inherited.
11399
11400                  if Comes_From_Source (S)
11401                    or else
11402                      (Present (Parent (S))
11403                        and then Nkind (Parent (S)) = N_Procedure_Specification
11404                        and then Null_Present (Parent (S)))
11405                    or else
11406                      (Present (Alias (E))
11407                        and then
11408                          Is_Predefined_Dispatching_Operation (Alias (E)))
11409                  then
11410                     if Present (Alias (E)) then
11411                        Set_Overridden_Operation    (S, Alias (E));
11412                        Inherit_Subprogram_Contract (S, Alias (E));
11413                     end if;
11414                  end if;
11415
11416                  if Is_Dispatching_Operation (E) then
11417
11418                     --  An overriding dispatching subprogram inherits the
11419                     --  convention of the overridden subprogram (AI-117).
11420
11421                     Set_Convention (S, Convention (E));
11422                     Check_Dispatching_Operation (S, E);
11423
11424                  else
11425                     Check_Dispatching_Operation (S, Empty);
11426                  end if;
11427
11428                  Check_For_Primitive_Subprogram
11429                    (Is_Primitive_Subp, Is_Overriding => True);
11430                  goto Check_Inequality;
11431
11432               --  Apparent redeclarations in instances can occur when two
11433               --  formal types get the same actual type. The subprograms in
11434               --  in the instance are legal,  even if not callable from the
11435               --  outside. Calls from within are disambiguated elsewhere.
11436               --  For dispatching operations in the visible part, the usual
11437               --  rules apply, and operations with the same profile are not
11438               --  legal (B830001).
11439
11440               elsif (In_Instance_Visible_Part
11441                       and then not Is_Dispatching_Operation (E))
11442                 or else In_Instance_Not_Visible
11443               then
11444                  null;
11445
11446               --  Here we have a real error (identical profile)
11447
11448               else
11449                  Error_Msg_Sloc := Sloc (E);
11450
11451                  --  Avoid cascaded errors if the entity appears in
11452                  --  subsequent calls.
11453
11454                  Set_Scope (S, Current_Scope);
11455
11456                  --  Generate error, with extra useful warning for the case
11457                  --  of a generic instance with no completion.
11458
11459                  if Is_Generic_Instance (S)
11460                    and then not Has_Completion (E)
11461                  then
11462                     Error_Msg_N
11463                       ("instantiation cannot provide body for&", S);
11464                     Error_Msg_N ("\& conflicts with declaration#", S);
11465                  else
11466                     Error_Msg_N ("& conflicts with declaration#", S);
11467                  end if;
11468
11469                  return;
11470               end if;
11471
11472            else
11473               --  If one subprogram has an access parameter and the other
11474               --  a parameter of an access type, calls to either might be
11475               --  ambiguous. Verify that parameters match except for the
11476               --  access parameter.
11477
11478               if May_Hide_Profile then
11479                  declare
11480                     F1 : Entity_Id;
11481                     F2 : Entity_Id;
11482
11483                  begin
11484                     F1 := First_Formal (S);
11485                     F2 := First_Formal (E);
11486                     while Present (F1) and then Present (F2) loop
11487                        if Is_Access_Type (Etype (F1)) then
11488                           if not Is_Access_Type (Etype (F2))
11489                              or else not Conforming_Types
11490                                (Designated_Type (Etype (F1)),
11491                                 Designated_Type (Etype (F2)),
11492                                 Type_Conformant)
11493                           then
11494                              May_Hide_Profile := False;
11495                           end if;
11496
11497                        elsif
11498                          not Conforming_Types
11499                            (Etype (F1), Etype (F2), Type_Conformant)
11500                        then
11501                           May_Hide_Profile := False;
11502                        end if;
11503
11504                        Next_Formal (F1);
11505                        Next_Formal (F2);
11506                     end loop;
11507
11508                     if May_Hide_Profile
11509                       and then No (F1)
11510                       and then No (F2)
11511                     then
11512                        Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11513                     end if;
11514                  end;
11515               end if;
11516            end if;
11517
11518            E := Homonym (E);
11519         end loop;
11520
11521         --  On exit, we know that S is a new entity
11522
11523         Enter_Overloaded_Entity (S);
11524         Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11525         Check_Overriding_Indicator
11526           (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11527
11528         --  The Ghost policy in effect at the point of declaration of a parent
11529         --  subprogram and an overriding subprogram must match
11530         --  (SPARK RM 6.9(17)).
11531
11532         Check_Ghost_Overriding (S, Overridden_Subp);
11533
11534         --  Overloading is not allowed in SPARK, except for operators
11535
11536         if Nkind (S) /= N_Defining_Operator_Symbol then
11537            Error_Msg_Sloc := Sloc (Homonym (S));
11538            Check_SPARK_05_Restriction
11539              ("overloading not allowed with entity#", S);
11540         end if;
11541
11542         --  If S is a derived operation for an untagged type then by
11543         --  definition it's not a dispatching operation (even if the parent
11544         --  operation was dispatching), so Check_Dispatching_Operation is not
11545         --  called in that case.
11546
11547         if No (Derived_Type)
11548           or else Is_Tagged_Type (Derived_Type)
11549         then
11550            Check_Dispatching_Operation (S, Empty);
11551         end if;
11552      end if;
11553
11554      --  If this is a user-defined equality operator that is not a derived
11555      --  subprogram, create the corresponding inequality. If the operation is
11556      --  dispatching, the expansion is done elsewhere, and we do not create
11557      --  an explicit inequality operation.
11558
11559      <<Check_Inequality>>
11560         if Chars (S) = Name_Op_Eq
11561           and then Etype (S) = Standard_Boolean
11562           and then Present (Parent (S))
11563           and then not Is_Dispatching_Operation (S)
11564         then
11565            Make_Inequality_Operator (S);
11566            Check_Untagged_Equality (S);
11567         end if;
11568   end New_Overloaded_Entity;
11569
11570   ----------------------------------
11571   -- Preanalyze_Formal_Expression --
11572   ----------------------------------
11573
11574   procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id) is
11575      Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
11576   begin
11577      In_Spec_Expression := True;
11578      Preanalyze_With_Freezing_And_Resolve (N, T);
11579      In_Spec_Expression := Save_In_Spec_Expression;
11580   end Preanalyze_Formal_Expression;
11581
11582   ---------------------
11583   -- Process_Formals --
11584   ---------------------
11585
11586   procedure Process_Formals
11587     (T           : List_Id;
11588      Related_Nod : Node_Id)
11589   is
11590      function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11591      --  Determine whether an access type designates a type coming from a
11592      --  limited view.
11593
11594      function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11595      --  Check whether the default has a class-wide type. After analysis the
11596      --  default has the type of the formal, so we must also check explicitly
11597      --  for an access attribute.
11598
11599      ----------------------------------
11600      -- Designates_From_Limited_With --
11601      ----------------------------------
11602
11603      function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11604         Desig : Entity_Id := Typ;
11605
11606      begin
11607         if Is_Access_Type (Desig) then
11608            Desig := Directly_Designated_Type (Desig);
11609         end if;
11610
11611         if Is_Class_Wide_Type (Desig) then
11612            Desig := Root_Type (Desig);
11613         end if;
11614
11615         return
11616           Ekind (Desig) = E_Incomplete_Type
11617             and then From_Limited_With (Desig);
11618      end Designates_From_Limited_With;
11619
11620      ---------------------------
11621      -- Is_Class_Wide_Default --
11622      ---------------------------
11623
11624      function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11625      begin
11626         return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11627           or else (Nkind (D) = N_Attribute_Reference
11628                     and then Attribute_Name (D) = Name_Access
11629                     and then Is_Class_Wide_Type (Etype (Prefix (D))));
11630      end Is_Class_Wide_Default;
11631
11632      --  Local variables
11633
11634      Context     : constant Node_Id := Parent (Parent (T));
11635      Default     : Node_Id;
11636      Formal      : Entity_Id;
11637      Formal_Type : Entity_Id;
11638      Param_Spec  : Node_Id;
11639      Ptype       : Entity_Id;
11640
11641      Num_Out_Params  : Nat       := 0;
11642      First_Out_Param : Entity_Id := Empty;
11643      --  Used for setting Is_Only_Out_Parameter
11644
11645   --  Start of processing for Process_Formals
11646
11647   begin
11648      --  In order to prevent premature use of the formals in the same formal
11649      --  part, the Ekind is left undefined until all default expressions are
11650      --  analyzed. The Ekind is established in a separate loop at the end.
11651
11652      Param_Spec := First (T);
11653      while Present (Param_Spec) loop
11654         Formal := Defining_Identifier (Param_Spec);
11655         Set_Never_Set_In_Source (Formal, True);
11656         Enter_Name (Formal);
11657
11658         --  Case of ordinary parameters
11659
11660         if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11661            Find_Type (Parameter_Type (Param_Spec));
11662            Ptype := Parameter_Type (Param_Spec);
11663
11664            if Ptype = Error then
11665               goto Continue;
11666            end if;
11667
11668            --  Protect against malformed parameter types
11669
11670            if Nkind (Ptype) not in N_Has_Entity then
11671               Formal_Type := Any_Type;
11672            else
11673               Formal_Type := Entity (Ptype);
11674            end if;
11675
11676            if Is_Incomplete_Type (Formal_Type)
11677              or else
11678               (Is_Class_Wide_Type (Formal_Type)
11679                 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11680            then
11681               --  Ada 2005 (AI-326): Tagged incomplete types allowed in
11682               --  primitive operations, as long as their completion is
11683               --  in the same declarative part. If in the private part
11684               --  this means that the type cannot be a Taft-amendment type.
11685               --  Check is done on package exit. For access to subprograms,
11686               --  the use is legal for Taft-amendment types.
11687
11688               --  Ada 2012: tagged incomplete types are allowed as generic
11689               --  formal types. They do not introduce dependencies and the
11690               --  corresponding generic subprogram does not have a delayed
11691               --  freeze, because it does not need a freeze node. However,
11692               --  it is still the case that untagged incomplete types cannot
11693               --  be Taft-amendment types and must be completed in private
11694               --  part, so the subprogram must appear in the list of private
11695               --  dependents of the type.
11696
11697               if Is_Tagged_Type (Formal_Type)
11698                 or else (Ada_Version >= Ada_2012
11699                           and then not From_Limited_With (Formal_Type)
11700                           and then not Is_Generic_Type (Formal_Type))
11701               then
11702                  if Ekind (Scope (Current_Scope)) = E_Package
11703                    and then not Is_Generic_Type (Formal_Type)
11704                    and then not Is_Class_Wide_Type (Formal_Type)
11705                  then
11706                     if not Nkind_In
11707                              (Parent (T), N_Access_Function_Definition,
11708                                           N_Access_Procedure_Definition)
11709                     then
11710                        Append_Elmt (Current_Scope,
11711                          Private_Dependents (Base_Type (Formal_Type)));
11712
11713                        --  Freezing is delayed to ensure that Register_Prim
11714                        --  will get called for this operation, which is needed
11715                        --  in cases where static dispatch tables aren't built.
11716                        --  (Note that the same is done for controlling access
11717                        --  parameter cases in function Access_Definition.)
11718
11719                        if not Is_Thunk (Current_Scope) then
11720                           Set_Has_Delayed_Freeze (Current_Scope);
11721                        end if;
11722                     end if;
11723                  end if;
11724
11725               elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11726                                               N_Access_Procedure_Definition)
11727               then
11728                  --  AI05-0151: Tagged incomplete types are allowed in all
11729                  --  formal parts. Untagged incomplete types are not allowed
11730                  --  in bodies. Limited views of either kind are not allowed
11731                  --  if there is no place at which the non-limited view can
11732                  --  become available.
11733
11734                  --  Incomplete formal untagged types are not allowed in
11735                  --  subprogram bodies (but are legal in their declarations).
11736                  --  This excludes bodies created for null procedures, which
11737                  --  are basic declarations.
11738
11739                  if Is_Generic_Type (Formal_Type)
11740                    and then not Is_Tagged_Type (Formal_Type)
11741                    and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11742                  then
11743                     Error_Msg_N
11744                       ("invalid use of formal incomplete type", Param_Spec);
11745
11746                  elsif Ada_Version >= Ada_2012 then
11747                     if Is_Tagged_Type (Formal_Type)
11748                       and then (not From_Limited_With (Formal_Type)
11749                                  or else not In_Package_Body)
11750                     then
11751                        null;
11752
11753                     elsif Nkind_In (Context, N_Accept_Statement,
11754                                              N_Accept_Alternative,
11755                                              N_Entry_Body)
11756                       or else (Nkind (Context) = N_Subprogram_Body
11757                                 and then Comes_From_Source (Context))
11758                     then
11759                        Error_Msg_NE
11760                          ("invalid use of untagged incomplete type &",
11761                           Ptype, Formal_Type);
11762                     end if;
11763
11764                  else
11765                     Error_Msg_NE
11766                       ("invalid use of incomplete type&",
11767                        Param_Spec, Formal_Type);
11768
11769                     --  Further checks on the legality of incomplete types
11770                     --  in formal parts are delayed until the freeze point
11771                     --  of the enclosing subprogram or access to subprogram.
11772                  end if;
11773               end if;
11774
11775            elsif Ekind (Formal_Type) = E_Void then
11776               Error_Msg_NE
11777                 ("premature use of&",
11778                  Parameter_Type (Param_Spec), Formal_Type);
11779            end if;
11780
11781            --  Ada 2012 (AI-142): Handle aliased parameters
11782
11783            if Ada_Version >= Ada_2012
11784              and then Aliased_Present (Param_Spec)
11785            then
11786               Set_Is_Aliased (Formal);
11787
11788               --  AI12-001: All aliased objects are considered to be specified
11789               --  as independently addressable (RM C.6(8.1/4)).
11790
11791               Set_Is_Independent (Formal);
11792            end if;
11793
11794            --  Ada 2005 (AI-231): Create and decorate an internal subtype
11795            --  declaration corresponding to the null-excluding type of the
11796            --  formal in the enclosing scope. Finally, replace the parameter
11797            --  type of the formal with the internal subtype.
11798
11799            if Ada_Version >= Ada_2005
11800              and then Null_Exclusion_Present (Param_Spec)
11801            then
11802               if not Is_Access_Type (Formal_Type) then
11803                  Error_Msg_N
11804                    ("`NOT NULL` allowed only for an access type", Param_Spec);
11805
11806               else
11807                  if Can_Never_Be_Null (Formal_Type)
11808                    and then Comes_From_Source (Related_Nod)
11809                  then
11810                     Error_Msg_NE
11811                       ("`NOT NULL` not allowed (& already excludes null)",
11812                        Param_Spec, Formal_Type);
11813                  end if;
11814
11815                  Formal_Type :=
11816                    Create_Null_Excluding_Itype
11817                      (T           => Formal_Type,
11818                       Related_Nod => Related_Nod,
11819                       Scope_Id    => Scope (Current_Scope));
11820
11821                  --  If the designated type of the itype is an itype that is
11822                  --  not frozen yet, we set the Has_Delayed_Freeze attribute
11823                  --  on the access subtype, to prevent order-of-elaboration
11824                  --  issues in the backend.
11825
11826                  --  Example:
11827                  --     type T is access procedure;
11828                  --     procedure Op (O : not null T);
11829
11830                  if Is_Itype (Directly_Designated_Type (Formal_Type))
11831                    and then
11832                      not Is_Frozen (Directly_Designated_Type (Formal_Type))
11833                  then
11834                     Set_Has_Delayed_Freeze (Formal_Type);
11835                  end if;
11836               end if;
11837            end if;
11838
11839         --  An access formal type
11840
11841         else
11842            Formal_Type :=
11843              Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11844
11845            --  No need to continue if we already notified errors
11846
11847            if not Present (Formal_Type) then
11848               return;
11849            end if;
11850
11851            --  Ada 2005 (AI-254)
11852
11853            declare
11854               AD : constant Node_Id :=
11855                      Access_To_Subprogram_Definition
11856                        (Parameter_Type (Param_Spec));
11857            begin
11858               if Present (AD) and then Protected_Present (AD) then
11859                  Formal_Type :=
11860                    Replace_Anonymous_Access_To_Protected_Subprogram
11861                      (Param_Spec);
11862               end if;
11863            end;
11864         end if;
11865
11866         Set_Etype (Formal, Formal_Type);
11867
11868         --  Deal with default expression if present
11869
11870         Default := Expression (Param_Spec);
11871
11872         if Present (Default) then
11873            Check_SPARK_05_Restriction
11874              ("default expression is not allowed", Default);
11875
11876            if Out_Present (Param_Spec) then
11877               Error_Msg_N
11878                 ("default initialization only allowed for IN parameters",
11879                  Param_Spec);
11880            end if;
11881
11882            --  Do the special preanalysis of the expression (see section on
11883            --  "Handling of Default Expressions" in the spec of package Sem).
11884
11885            Preanalyze_Formal_Expression (Default, Formal_Type);
11886
11887            --  An access to constant cannot be the default for
11888            --  an access parameter that is an access to variable.
11889
11890            if Ekind (Formal_Type) = E_Anonymous_Access_Type
11891              and then not Is_Access_Constant (Formal_Type)
11892              and then Is_Access_Type (Etype (Default))
11893              and then Is_Access_Constant (Etype (Default))
11894            then
11895               Error_Msg_N
11896                 ("formal that is access to variable cannot be initialized "
11897                  & "with an access-to-constant expression", Default);
11898            end if;
11899
11900            --  Check that the designated type of an access parameter's default
11901            --  is not a class-wide type unless the parameter's designated type
11902            --  is also class-wide.
11903
11904            if Ekind (Formal_Type) = E_Anonymous_Access_Type
11905              and then not Designates_From_Limited_With (Formal_Type)
11906              and then Is_Class_Wide_Default (Default)
11907              and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11908            then
11909               Error_Msg_N
11910                 ("access to class-wide expression not allowed here", Default);
11911            end if;
11912
11913            --  Check incorrect use of dynamically tagged expressions
11914
11915            if Is_Tagged_Type (Formal_Type) then
11916               Check_Dynamically_Tagged_Expression
11917                 (Expr        => Default,
11918                  Typ         => Formal_Type,
11919                  Related_Nod => Default);
11920            end if;
11921         end if;
11922
11923         --  Ada 2005 (AI-231): Static checks
11924
11925         if Ada_Version >= Ada_2005
11926           and then Is_Access_Type (Etype (Formal))
11927           and then Can_Never_Be_Null (Etype (Formal))
11928         then
11929            Null_Exclusion_Static_Checks (Param_Spec);
11930         end if;
11931
11932         --  The following checks are relevant only when SPARK_Mode is on as
11933         --  these are not standard Ada legality rules.
11934
11935         if SPARK_Mode = On then
11936            if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11937
11938               --  A function cannot have a parameter of mode IN OUT or OUT
11939               --  (SPARK RM 6.1).
11940
11941               if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11942                  Error_Msg_N
11943                    ("function cannot have parameter of mode `OUT` or "
11944                     & "`IN OUT`", Formal);
11945               end if;
11946
11947            --  A procedure cannot have an effectively volatile formal
11948            --  parameter of mode IN because it behaves as a constant
11949            --  (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11950
11951            elsif Ekind (Scope (Formal)) = E_Procedure
11952              and then Ekind (Formal) = E_In_Parameter
11953              and then Is_Effectively_Volatile (Formal)
11954            then
11955               Error_Msg_N
11956                 ("formal parameter of mode `IN` cannot be volatile", Formal);
11957            end if;
11958         end if;
11959
11960      <<Continue>>
11961         Next (Param_Spec);
11962      end loop;
11963
11964      --  If this is the formal part of a function specification, analyze the
11965      --  subtype mark in the context where the formals are visible but not
11966      --  yet usable, and may hide outer homographs.
11967
11968      if Nkind (Related_Nod) = N_Function_Specification then
11969         Analyze_Return_Type (Related_Nod);
11970      end if;
11971
11972      --  Now set the kind (mode) of each formal
11973
11974      Param_Spec := First (T);
11975      while Present (Param_Spec) loop
11976         Formal := Defining_Identifier (Param_Spec);
11977         Set_Formal_Mode (Formal);
11978
11979         if Ekind (Formal) = E_In_Parameter then
11980            Set_Default_Value (Formal, Expression (Param_Spec));
11981
11982            if Present (Expression (Param_Spec)) then
11983               Default := Expression (Param_Spec);
11984
11985               if Is_Scalar_Type (Etype (Default)) then
11986                  if Nkind (Parameter_Type (Param_Spec)) /=
11987                                              N_Access_Definition
11988                  then
11989                     Formal_Type := Entity (Parameter_Type (Param_Spec));
11990                  else
11991                     Formal_Type :=
11992                       Access_Definition
11993                         (Related_Nod, Parameter_Type (Param_Spec));
11994                  end if;
11995
11996                  Apply_Scalar_Range_Check (Default, Formal_Type);
11997               end if;
11998            end if;
11999
12000         elsif Ekind (Formal) = E_Out_Parameter then
12001            Num_Out_Params := Num_Out_Params + 1;
12002
12003            if Num_Out_Params = 1 then
12004               First_Out_Param := Formal;
12005            end if;
12006
12007         elsif Ekind (Formal) = E_In_Out_Parameter then
12008            Num_Out_Params := Num_Out_Params + 1;
12009         end if;
12010
12011         --  Skip remaining processing if formal type was in error
12012
12013         if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
12014            goto Next_Parameter;
12015         end if;
12016
12017         --  Force call by reference if aliased
12018
12019         declare
12020            Conv : constant Convention_Id := Convention (Etype (Formal));
12021         begin
12022            if Is_Aliased (Formal) then
12023               Set_Mechanism (Formal, By_Reference);
12024
12025               --  Warn if user asked this to be passed by copy
12026
12027               if Conv = Convention_Ada_Pass_By_Copy then
12028                  Error_Msg_N
12029                    ("cannot pass aliased parameter & by copy??", Formal);
12030               end if;
12031
12032            --  Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
12033
12034            elsif Conv = Convention_Ada_Pass_By_Copy then
12035               Set_Mechanism (Formal, By_Copy);
12036
12037            elsif Conv = Convention_Ada_Pass_By_Reference then
12038               Set_Mechanism (Formal, By_Reference);
12039            end if;
12040         end;
12041
12042      <<Next_Parameter>>
12043         Next (Param_Spec);
12044      end loop;
12045
12046      if Present (First_Out_Param) and then Num_Out_Params = 1 then
12047         Set_Is_Only_Out_Parameter (First_Out_Param);
12048      end if;
12049   end Process_Formals;
12050
12051   ----------------------------
12052   -- Reference_Body_Formals --
12053   ----------------------------
12054
12055   procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
12056      Fs : Entity_Id;
12057      Fb : Entity_Id;
12058
12059   begin
12060      if Error_Posted (Spec) then
12061         return;
12062      end if;
12063
12064      --  Iterate over both lists. They may be of different lengths if the two
12065      --  specs are not conformant.
12066
12067      Fs := First_Formal (Spec);
12068      Fb := First_Formal (Bod);
12069      while Present (Fs) and then Present (Fb) loop
12070         Generate_Reference (Fs, Fb, 'b');
12071
12072         if Style_Check then
12073            Style.Check_Identifier (Fb, Fs);
12074         end if;
12075
12076         Set_Spec_Entity (Fb, Fs);
12077         Set_Referenced (Fs, False);
12078         Next_Formal (Fs);
12079         Next_Formal (Fb);
12080      end loop;
12081   end Reference_Body_Formals;
12082
12083   -------------------------
12084   -- Set_Actual_Subtypes --
12085   -------------------------
12086
12087   procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
12088      Decl       : Node_Id;
12089      Formal     : Entity_Id;
12090      T          : Entity_Id;
12091      First_Stmt : Node_Id := Empty;
12092      AS_Needed  : Boolean;
12093
12094   begin
12095      --  If this is an empty initialization procedure, no need to create
12096      --  actual subtypes (small optimization).
12097
12098      if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
12099         return;
12100
12101      --  Within a predicate function we do not want to generate local
12102      --  subtypes that may generate nested predicate functions.
12103
12104      elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
12105         return;
12106      end if;
12107
12108      --  The subtype declarations may freeze the formals. The body generated
12109      --  for an expression function is not a freeze point, so do not emit
12110      --  these declarations (small loss of efficiency in rare cases).
12111
12112      if Nkind (N) = N_Subprogram_Body
12113        and then Was_Expression_Function (N)
12114      then
12115         return;
12116      end if;
12117
12118      Formal := First_Formal (Subp);
12119      while Present (Formal) loop
12120         T := Etype (Formal);
12121
12122         --  We never need an actual subtype for a constrained formal
12123
12124         if Is_Constrained (T) then
12125            AS_Needed := False;
12126
12127         --  If we have unknown discriminants, then we do not need an actual
12128         --  subtype, or more accurately we cannot figure it out. Note that
12129         --  all class-wide types have unknown discriminants.
12130
12131         elsif Has_Unknown_Discriminants (T) then
12132            AS_Needed := False;
12133
12134         --  At this stage we have an unconstrained type that may need an
12135         --  actual subtype. For sure the actual subtype is needed if we have
12136         --  an unconstrained array type. However, in an instance, the type
12137         --  may appear as a subtype of the full view, while the actual is
12138         --  in fact private (in which case no actual subtype is needed) so
12139         --  check the kind of the base type.
12140
12141         elsif Is_Array_Type (Base_Type (T)) then
12142            AS_Needed := True;
12143
12144         --  The only other case needing an actual subtype is an unconstrained
12145         --  record type which is an IN parameter (we cannot generate actual
12146         --  subtypes for the OUT or IN OUT case, since an assignment can
12147         --  change the discriminant values. However we exclude the case of
12148         --  initialization procedures, since discriminants are handled very
12149         --  specially in this context, see the section entitled "Handling of
12150         --  Discriminants" in Einfo.
12151
12152         --  We also exclude the case of Discrim_SO_Functions (functions used
12153         --  in front-end layout mode for size/offset values), since in such
12154         --  functions only discriminants are referenced, and not only are such
12155         --  subtypes not needed, but they cannot always be generated, because
12156         --  of order of elaboration issues.
12157
12158         elsif Is_Record_Type (T)
12159           and then Ekind (Formal) = E_In_Parameter
12160           and then Chars (Formal) /= Name_uInit
12161           and then not Is_Unchecked_Union (T)
12162           and then not Is_Discrim_SO_Function (Subp)
12163         then
12164            AS_Needed := True;
12165
12166         --  All other cases do not need an actual subtype
12167
12168         else
12169            AS_Needed := False;
12170         end if;
12171
12172         --  Generate actual subtypes for unconstrained arrays and
12173         --  unconstrained discriminated records.
12174
12175         if AS_Needed then
12176            if Nkind (N) = N_Accept_Statement then
12177
12178               --  If expansion is active, the formal is replaced by a local
12179               --  variable that renames the corresponding entry of the
12180               --  parameter block, and it is this local variable that may
12181               --  require an actual subtype.
12182
12183               if Expander_Active then
12184                  Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
12185               else
12186                  Decl := Build_Actual_Subtype (T, Formal);
12187               end if;
12188
12189               if Present (Handled_Statement_Sequence (N)) then
12190                  First_Stmt :=
12191                    First (Statements (Handled_Statement_Sequence (N)));
12192                  Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
12193                  Mark_Rewrite_Insertion (Decl);
12194               else
12195                  --  If the accept statement has no body, there will be no
12196                  --  reference to the actuals, so no need to compute actual
12197                  --  subtypes.
12198
12199                  return;
12200               end if;
12201
12202            else
12203               Decl := Build_Actual_Subtype (T, Formal);
12204               Prepend (Decl, Declarations (N));
12205               Mark_Rewrite_Insertion (Decl);
12206            end if;
12207
12208            --  The declaration uses the bounds of an existing object, and
12209            --  therefore needs no constraint checks.
12210
12211            Analyze (Decl, Suppress => All_Checks);
12212            Set_Is_Actual_Subtype (Defining_Identifier (Decl));
12213
12214            --  We need to freeze manually the generated type when it is
12215            --  inserted anywhere else than in a declarative part.
12216
12217            if Present (First_Stmt) then
12218               Insert_List_Before_And_Analyze (First_Stmt,
12219                 Freeze_Entity (Defining_Identifier (Decl), N));
12220
12221            --  Ditto if the type has a dynamic predicate, because the
12222            --  generated function will mention the actual subtype. The
12223            --  predicate may come from an explicit aspect of be inherited.
12224
12225            elsif Has_Predicates (T) then
12226               Insert_List_After_And_Analyze (Decl,
12227                 Freeze_Entity (Defining_Identifier (Decl), N));
12228            end if;
12229
12230            if Nkind (N) = N_Accept_Statement
12231              and then Expander_Active
12232            then
12233               Set_Actual_Subtype (Renamed_Object (Formal),
12234                 Defining_Identifier (Decl));
12235            else
12236               Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
12237            end if;
12238         end if;
12239
12240         Next_Formal (Formal);
12241      end loop;
12242   end Set_Actual_Subtypes;
12243
12244   ---------------------
12245   -- Set_Formal_Mode --
12246   ---------------------
12247
12248   procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
12249      Spec : constant Node_Id   := Parent (Formal_Id);
12250      Id   : constant Entity_Id := Scope (Formal_Id);
12251
12252   begin
12253      --  Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
12254      --  since we ensure that corresponding actuals are always valid at the
12255      --  point of the call.
12256
12257      if Out_Present (Spec) then
12258         if Ekind_In (Id, E_Entry, E_Entry_Family)
12259           or else Is_Subprogram_Or_Generic_Subprogram (Id)
12260         then
12261            Set_Has_Out_Or_In_Out_Parameter (Id, True);
12262         end if;
12263
12264         if Ekind_In (Id, E_Function, E_Generic_Function) then
12265
12266            --  [IN] OUT parameters allowed for functions in Ada 2012
12267
12268            if Ada_Version >= Ada_2012 then
12269
12270               --  Even in Ada 2012 operators can only have IN parameters
12271
12272               if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
12273                  Error_Msg_N ("operators can only have IN parameters", Spec);
12274               end if;
12275
12276               if In_Present (Spec) then
12277                  Set_Ekind (Formal_Id, E_In_Out_Parameter);
12278               else
12279                  Set_Ekind (Formal_Id, E_Out_Parameter);
12280               end if;
12281
12282            --  But not in earlier versions of Ada
12283
12284            else
12285               Error_Msg_N ("functions can only have IN parameters", Spec);
12286               Set_Ekind (Formal_Id, E_In_Parameter);
12287            end if;
12288
12289         elsif In_Present (Spec) then
12290            Set_Ekind (Formal_Id, E_In_Out_Parameter);
12291
12292         else
12293            Set_Ekind               (Formal_Id, E_Out_Parameter);
12294            Set_Never_Set_In_Source (Formal_Id, True);
12295            Set_Is_True_Constant    (Formal_Id, False);
12296            Set_Current_Value       (Formal_Id, Empty);
12297         end if;
12298
12299      else
12300         Set_Ekind (Formal_Id, E_In_Parameter);
12301      end if;
12302
12303      --  Set Is_Known_Non_Null for access parameters since the language
12304      --  guarantees that access parameters are always non-null. We also set
12305      --  Can_Never_Be_Null, since there is no way to change the value.
12306
12307      if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
12308
12309         --  Ada 2005 (AI-231): In Ada 95, access parameters are always non-
12310         --  null; In Ada 2005, only if then null_exclusion is explicit.
12311
12312         if Ada_Version < Ada_2005
12313           or else Can_Never_Be_Null (Etype (Formal_Id))
12314         then
12315            Set_Is_Known_Non_Null (Formal_Id);
12316            Set_Can_Never_Be_Null (Formal_Id);
12317         end if;
12318
12319      --  Ada 2005 (AI-231): Null-exclusion access subtype
12320
12321      elsif Is_Access_Type (Etype (Formal_Id))
12322        and then Can_Never_Be_Null (Etype (Formal_Id))
12323      then
12324         Set_Is_Known_Non_Null (Formal_Id);
12325
12326         --  We can also set Can_Never_Be_Null (thus preventing some junk
12327         --  access checks) for the case of an IN parameter, which cannot
12328         --  be changed, or for an IN OUT parameter, which can be changed but
12329         --  not to a null value. But for an OUT parameter, the initial value
12330         --  passed in can be null, so we can't set this flag in that case.
12331
12332         if Ekind (Formal_Id) /= E_Out_Parameter then
12333            Set_Can_Never_Be_Null (Formal_Id);
12334         end if;
12335      end if;
12336
12337      Set_Mechanism (Formal_Id, Default_Mechanism);
12338      Set_Formal_Validity (Formal_Id);
12339   end Set_Formal_Mode;
12340
12341   -------------------------
12342   -- Set_Formal_Validity --
12343   -------------------------
12344
12345   procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
12346   begin
12347      --  If no validity checking, then we cannot assume anything about the
12348      --  validity of parameters, since we do not know there is any checking
12349      --  of the validity on the call side.
12350
12351      if not Validity_Checks_On then
12352         return;
12353
12354      --  If validity checking for parameters is enabled, this means we are
12355      --  not supposed to make any assumptions about argument values.
12356
12357      elsif Validity_Check_Parameters then
12358         return;
12359
12360      --  If we are checking in parameters, we will assume that the caller is
12361      --  also checking parameters, so we can assume the parameter is valid.
12362
12363      elsif Ekind (Formal_Id) = E_In_Parameter
12364        and then Validity_Check_In_Params
12365      then
12366         Set_Is_Known_Valid (Formal_Id, True);
12367
12368      --  Similar treatment for IN OUT parameters
12369
12370      elsif Ekind (Formal_Id) = E_In_Out_Parameter
12371        and then Validity_Check_In_Out_Params
12372      then
12373         Set_Is_Known_Valid (Formal_Id, True);
12374      end if;
12375   end Set_Formal_Validity;
12376
12377   ------------------------
12378   -- Subtype_Conformant --
12379   ------------------------
12380
12381   function Subtype_Conformant
12382     (New_Id                   : Entity_Id;
12383      Old_Id                   : Entity_Id;
12384      Skip_Controlling_Formals : Boolean := False) return Boolean
12385   is
12386      Result : Boolean;
12387   begin
12388      Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12389        Skip_Controlling_Formals => Skip_Controlling_Formals);
12390      return Result;
12391   end Subtype_Conformant;
12392
12393   ---------------------
12394   -- Type_Conformant --
12395   ---------------------
12396
12397   function Type_Conformant
12398     (New_Id                   : Entity_Id;
12399      Old_Id                   : Entity_Id;
12400      Skip_Controlling_Formals : Boolean := False) return Boolean
12401   is
12402      Result : Boolean;
12403   begin
12404      May_Hide_Profile := False;
12405      Check_Conformance
12406        (New_Id, Old_Id, Type_Conformant, False, Result,
12407         Skip_Controlling_Formals => Skip_Controlling_Formals);
12408      return Result;
12409   end Type_Conformant;
12410
12411   -------------------------------
12412   -- Valid_Operator_Definition --
12413   -------------------------------
12414
12415   procedure Valid_Operator_Definition (Designator : Entity_Id) is
12416      N    : Integer := 0;
12417      F    : Entity_Id;
12418      Id   : constant Name_Id := Chars (Designator);
12419      N_OK : Boolean;
12420
12421   begin
12422      F := First_Formal (Designator);
12423      while Present (F) loop
12424         N := N + 1;
12425
12426         if Present (Default_Value (F)) then
12427            Error_Msg_N
12428              ("default values not allowed for operator parameters",
12429               Parent (F));
12430
12431         --  For function instantiations that are operators, we must check
12432         --  separately that the corresponding generic only has in-parameters.
12433         --  For subprogram declarations this is done in Set_Formal_Mode. Such
12434         --  an error could not arise in earlier versions of the language.
12435
12436         elsif Ekind (F) /= E_In_Parameter then
12437            Error_Msg_N ("operators can only have IN parameters", F);
12438         end if;
12439
12440         Next_Formal (F);
12441      end loop;
12442
12443      --  Verify that user-defined operators have proper number of arguments
12444      --  First case of operators which can only be unary
12445
12446      if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12447         N_OK := (N = 1);
12448
12449      --  Case of operators which can be unary or binary
12450
12451      elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12452         N_OK := (N in 1 .. 2);
12453
12454      --  All other operators can only be binary
12455
12456      else
12457         N_OK := (N = 2);
12458      end if;
12459
12460      if not N_OK then
12461         Error_Msg_N
12462           ("incorrect number of arguments for operator", Designator);
12463      end if;
12464
12465      if Id = Name_Op_Ne
12466        and then Base_Type (Etype (Designator)) = Standard_Boolean
12467        and then not Is_Intrinsic_Subprogram (Designator)
12468      then
12469         Error_Msg_N
12470           ("explicit definition of inequality not allowed", Designator);
12471      end if;
12472   end Valid_Operator_Definition;
12473
12474end Sem_Ch6;
12475