1 /* Support routines for Value Range Propagation (VRP).
2    Copyright (C) 2005-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "tree-pass.h"
27 #include "ssa.h"
28 #include "gimple-pretty-print.h"
29 #include "cfganal.h"
30 #include "gimple-fold.h"
31 #include "tree-eh.h"
32 #include "gimple-iterator.h"
33 #include "tree-cfg.h"
34 #include "tree-ssa-loop-manip.h"
35 #include "tree-ssa-loop.h"
36 #include "cfgloop.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "alloc-pool.h"
40 #include "domwalk.h"
41 #include "tree-cfgcleanup.h"
42 #include "vr-values.h"
43 #include "gimple-ssa-evrp-analyze.h"
44 
evrp_range_analyzer(bool update_global_ranges)45 evrp_range_analyzer::evrp_range_analyzer (bool update_global_ranges)
46   : stack (10), m_update_global_ranges (update_global_ranges)
47 {
48   edge e;
49   edge_iterator ei;
50   basic_block bb;
51   FOR_EACH_BB_FN (bb, cfun)
52     {
53       bb->flags &= ~BB_VISITED;
54       FOR_EACH_EDGE (e, ei, bb->preds)
55         e->flags |= EDGE_EXECUTABLE;
56     }
57   vr_values = new class vr_values;
58 }
59 
60 /* Push an unwinding marker onto the unwinding stack.  */
61 
62 void
push_marker()63 evrp_range_analyzer::push_marker ()
64 {
65   stack.safe_push (std::make_pair (NULL_TREE, (value_range_equiv *)NULL));
66 }
67 
68 /* Analyze ranges as we enter basic block BB.  */
69 
70 void
enter(basic_block bb)71 evrp_range_analyzer::enter (basic_block bb)
72 {
73   if (!optimize)
74     return;
75   push_marker ();
76   record_ranges_from_incoming_edge (bb);
77   record_ranges_from_phis (bb);
78   bb->flags |= BB_VISITED;
79 }
80 
81 /* Find new range for NAME such that (OP CODE LIMIT) is true.  */
82 value_range_equiv *
try_find_new_range(tree name,tree op,tree_code code,tree limit)83 evrp_range_analyzer::try_find_new_range (tree name,
84 					 tree op, tree_code code, tree limit)
85 {
86   value_range_equiv vr;
87   const value_range_equiv *old_vr = get_value_range (name);
88 
89   /* Discover VR when condition is true.  */
90   vr_values->extract_range_for_var_from_comparison_expr (name, code, op,
91 							 limit, &vr);
92   /* If we found any usable VR, set the VR to ssa_name and create a
93      PUSH old value in the stack with the old VR.  */
94   if (!vr.undefined_p () && !vr.varying_p ())
95     {
96       if (old_vr->equal_p (vr, /*ignore_equivs=*/true))
97 	return NULL;
98       value_range_equiv *new_vr = vr_values->allocate_value_range_equiv ();
99       new_vr->move (&vr);
100       return new_vr;
101     }
102   return NULL;
103 }
104 
105 /* For LHS record VR in the SSA info.  */
106 void
set_ssa_range_info(tree lhs,value_range_equiv * vr)107 evrp_range_analyzer::set_ssa_range_info (tree lhs, value_range_equiv *vr)
108 {
109   gcc_assert (m_update_global_ranges);
110 
111   /* Set the SSA with the value range.  */
112   if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
113     {
114       if (vr->constant_p ())
115 	set_range_info (lhs, vr->kind (),
116 			wi::to_wide (vr->min ()),
117 			wi::to_wide (vr->max ()));
118     }
119   else if (POINTER_TYPE_P (TREE_TYPE (lhs))
120 	   && range_includes_zero_p (vr) == 0)
121     set_ptr_nonnull (lhs);
122 }
123 
124 /* Return true if all uses of NAME are dominated by STMT or feed STMT
125    via a chain of single immediate uses.  */
126 
127 static bool
all_uses_feed_or_dominated_by_stmt(tree name,gimple * stmt)128 all_uses_feed_or_dominated_by_stmt (tree name, gimple *stmt)
129 {
130   use_operand_p use_p, use2_p;
131   imm_use_iterator iter;
132   basic_block stmt_bb = gimple_bb (stmt);
133 
134   FOR_EACH_IMM_USE_FAST (use_p, iter, name)
135     {
136       gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
137       if (use_stmt == stmt
138 	  || is_gimple_debug (use_stmt)
139 	  || (gimple_bb (use_stmt) != stmt_bb
140 	      && dominated_by_p (CDI_DOMINATORS,
141 				 gimple_bb (use_stmt), stmt_bb)))
142 	continue;
143       while (use_stmt != stmt
144 	     && is_gimple_assign (use_stmt)
145 	     && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
146 	     && single_imm_use (gimple_assign_lhs (use_stmt),
147 				&use2_p, &use_stmt2))
148 	use_stmt = use_stmt2;
149       if (use_stmt != stmt)
150 	return false;
151     }
152   return true;
153 }
154 
155 void
record_ranges_from_incoming_edge(basic_block bb)156 evrp_range_analyzer::record_ranges_from_incoming_edge (basic_block bb)
157 {
158   edge pred_e = single_pred_edge_ignoring_loop_edges (bb, false);
159   if (pred_e)
160     {
161       gimple *stmt = last_stmt (pred_e->src);
162       tree op0 = NULL_TREE;
163 
164       if (stmt
165 	  && gimple_code (stmt) == GIMPLE_COND
166 	  && (op0 = gimple_cond_lhs (stmt))
167 	  && TREE_CODE (op0) == SSA_NAME
168 	  && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))
169 	      || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))))
170 	{
171 	  if (dump_file && (dump_flags & TDF_DETAILS))
172 	    {
173 	      fprintf (dump_file, "Visiting controlling predicate ");
174 	      print_gimple_stmt (dump_file, stmt, 0);
175 	    }
176 	  /* Entering a new scope.  Try to see if we can find a VR
177 	     here.  */
178 	  tree op1 = gimple_cond_rhs (stmt);
179 	  if (TREE_OVERFLOW_P (op1))
180 	    op1 = drop_tree_overflow (op1);
181 	  tree_code code = gimple_cond_code (stmt);
182 
183 	  auto_vec<assert_info, 8> asserts;
184 	  register_edge_assert_for (op0, pred_e, code, op0, op1, asserts);
185 	  if (TREE_CODE (op1) == SSA_NAME)
186 	    register_edge_assert_for (op1, pred_e, code, op0, op1, asserts);
187 
188 	  auto_vec<std::pair<tree, value_range_equiv *>, 8> vrs;
189 	  for (unsigned i = 0; i < asserts.length (); ++i)
190 	    {
191 	      value_range_equiv *vr
192 		= try_find_new_range (asserts[i].name,
193 				      asserts[i].expr,
194 				      asserts[i].comp_code,
195 				      asserts[i].val);
196 	      if (vr)
197 		vrs.safe_push (std::make_pair (asserts[i].name, vr));
198 	    }
199 
200 	  /* If pred_e is really a fallthru we can record value ranges
201 	     in SSA names as well.  */
202 	  bool is_fallthru = assert_unreachable_fallthru_edge_p (pred_e);
203 
204 	  /* Push updated ranges only after finding all of them to avoid
205 	     ordering issues that can lead to worse ranges.  */
206 	  for (unsigned i = 0; i < vrs.length (); ++i)
207 	    {
208 	      /* But make sure we do not weaken ranges like when
209 	         getting first [64, +INF] and then ~[0, 0] from
210 		 conditions like (s & 0x3cc0) == 0).  */
211 	      const value_range_equiv *old_vr
212 		= get_value_range (vrs[i].first);
213 	      value_range tem (*old_vr);
214 	      tem.intersect (vrs[i].second);
215 	      if (tem.equal_p (*old_vr))
216 		{
217 		  vr_values->free_value_range (vrs[i].second);
218 		  continue;
219 		}
220 	      push_value_range (vrs[i].first, vrs[i].second);
221 	      if (is_fallthru
222 		  && m_update_global_ranges
223 		  && all_uses_feed_or_dominated_by_stmt (vrs[i].first, stmt))
224 		{
225 		  set_ssa_range_info (vrs[i].first, vrs[i].second);
226 		  maybe_set_nonzero_bits (pred_e, vrs[i].first);
227 		}
228 	    }
229 	}
230     }
231 }
232 
233 void
record_ranges_from_phis(basic_block bb)234 evrp_range_analyzer::record_ranges_from_phis (basic_block bb)
235 {
236   /* Visit PHI stmts and discover any new VRs possible.  */
237   bool has_unvisited_preds = false;
238   edge_iterator ei;
239   edge e;
240   FOR_EACH_EDGE (e, ei, bb->preds)
241     if (e->flags & EDGE_EXECUTABLE
242 	&& !(e->src->flags & BB_VISITED))
243       {
244 	has_unvisited_preds = true;
245 	break;
246       }
247 
248   for (gphi_iterator gpi = gsi_start_phis (bb);
249        !gsi_end_p (gpi); gsi_next (&gpi))
250     {
251       gphi *phi = gpi.phi ();
252       tree lhs = PHI_RESULT (phi);
253       if (virtual_operand_p (lhs))
254 	continue;
255 
256       /* Skips floats and other things we can't represent in a
257 	 range.  */
258       if (!value_range::supports_type_p (TREE_TYPE (lhs)))
259 	continue;
260 
261       value_range_equiv vr_result;
262       bool interesting = stmt_interesting_for_vrp (phi);
263       if (!has_unvisited_preds && interesting)
264 	vr_values->extract_range_from_phi_node (phi, &vr_result);
265       else
266 	{
267 	  vr_result.set_varying (TREE_TYPE (lhs));
268 	  /* When we have an unvisited executable predecessor we can't
269 	     use PHI arg ranges which may be still UNDEFINED but have
270 	     to use VARYING for them.  But we can still resort to
271 	     SCEV for loop header PHIs.  */
272 	  class loop *l;
273 	  if (scev_initialized_p ()
274 	      && interesting
275 	      && (l = loop_containing_stmt (phi))
276 	      && l->header == gimple_bb (phi))
277 	  vr_values->adjust_range_with_scev (&vr_result, l, phi, lhs);
278 	}
279       vr_values->update_value_range (lhs, &vr_result);
280 
281       /* Set the SSA with the value range.  */
282       if (m_update_global_ranges)
283 	set_ssa_range_info (lhs, &vr_result);
284     }
285 }
286 
287 /* Record ranges from STMT into our VR_VALUES class.  If TEMPORARY is
288    true, then this is a temporary equivalence and should be recorded
289    into the unwind table.  Othewise record the equivalence into the
290    global table.  */
291 
292 void
record_ranges_from_stmt(gimple * stmt,bool temporary)293 evrp_range_analyzer::record_ranges_from_stmt (gimple *stmt, bool temporary)
294 {
295   tree output = NULL_TREE;
296 
297   if (!optimize)
298     return;
299 
300   if (dyn_cast <gcond *> (stmt))
301     ;
302   else if (stmt_interesting_for_vrp (stmt))
303     {
304       edge taken_edge;
305       value_range_equiv vr;
306       vr_values->extract_range_from_stmt (stmt, &taken_edge, &output, &vr);
307       if (output)
308 	{
309 	  /* Set the SSA with the value range.  There are two cases to
310 	     consider.  First (the the most common) is we are processing
311 	     STMT in a context where its resulting range globally holds
312 	     and thus it can be reflected into the global ranges and need
313 	     not be unwound as we leave scope.
314 
315 	     The second case occurs if we are processing a statement in
316 	     a context where the resulting range must not be reflected
317 	     into the global tables and must be unwound as we leave
318 	     the current context.  This happens in jump threading for
319 	     example.  */
320 	  if (!temporary)
321 	    {
322 	      /* Case one.  We can just update the underlying range
323 		 information as well as the global information.  */
324 	      vr_values->update_value_range (output, &vr);
325 	      if (m_update_global_ranges)
326 		set_ssa_range_info (output, &vr);
327 	    }
328 	  else
329 	    {
330 	      /* We're going to need to unwind this range.  We cannot
331 		 use VR as that's a stack object.  We have to allocate
332 		 a new range and push the old range onto the stack.  We
333 		 also have to be very careful about sharing the underlying
334 		 bitmaps.  Ugh.  */
335 	      value_range_equiv *new_vr
336 		= vr_values->allocate_value_range_equiv ();
337 	      new_vr->set (vr.min (), vr.max (), NULL, vr.kind ());
338 	      vr.equiv_clear ();
339 	      push_value_range (output, new_vr);
340 	    }
341 	}
342       else
343 	vr_values->set_defs_to_varying (stmt);
344     }
345   else
346     vr_values->set_defs_to_varying (stmt);
347 
348   /* See if we can derive a range for any of STMT's operands.  */
349   tree op;
350   ssa_op_iter i;
351   FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
352     {
353       tree value;
354       enum tree_code comp_code;
355 
356       /* If OP is used in such a way that we can infer a value
357          range for it, and we don't find a previous assertion for
358          it, create a new assertion location node for OP.  */
359       if (infer_value_range (stmt, op, &comp_code, &value))
360 	{
361 	  /* If we are able to infer a nonzero value range for OP,
362 	     then walk backwards through the use-def chain to see if OP
363 	     was set via a typecast.
364 	     If so, then we can also infer a nonzero value range
365 	     for the operand of the NOP_EXPR.  */
366 	  if (comp_code == NE_EXPR && integer_zerop (value))
367 	    {
368 	      tree t = op;
369 	      gimple *def_stmt = SSA_NAME_DEF_STMT (t);
370 	      while (is_gimple_assign (def_stmt)
371 		     && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
372 		     && TREE_CODE
373 			  (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
374 		     && POINTER_TYPE_P
375 			  (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
376 		{
377 		  t = gimple_assign_rhs1 (def_stmt);
378 		  def_stmt = SSA_NAME_DEF_STMT (t);
379 
380 		  /* Add VR when (T COMP_CODE value) condition is
381 		     true.  */
382 		  value_range_equiv *op_range
383 		    = try_find_new_range (t, t, comp_code, value);
384 		  if (op_range)
385 		    push_value_range (t, op_range);
386 		}
387 	    }
388 	  /* Add VR when (OP COMP_CODE value) condition is true.  */
389 	  value_range_equiv *op_range = try_find_new_range (op, op,
390 							    comp_code, value);
391 	  if (op_range)
392 	    push_value_range (op, op_range);
393 	}
394     }
395 }
396 
397 /* Unwind recorded ranges to their most recent state.  */
398 
399 void
pop_to_marker(void)400 evrp_range_analyzer::pop_to_marker (void)
401 {
402   gcc_checking_assert (!stack.is_empty ());
403   while (stack.last ().first != NULL_TREE)
404     pop_value_range ();
405   stack.pop ();
406 }
407 
408 /* Restore/pop VRs valid only for BB when we leave BB.  */
409 
410 void
leave(basic_block bb ATTRIBUTE_UNUSED)411 evrp_range_analyzer::leave (basic_block bb ATTRIBUTE_UNUSED)
412 {
413   if (!optimize)
414     return;
415   pop_to_marker ();
416 }
417 
418 
419 /* Push the Value Range of VAR to the stack and update it with new VR.  */
420 
421 void
push_value_range(tree var,value_range_equiv * vr)422 evrp_range_analyzer::push_value_range (tree var, value_range_equiv *vr)
423 {
424   if (dump_file && (dump_flags & TDF_DETAILS))
425     {
426       fprintf (dump_file, "pushing new range for ");
427       print_generic_expr (dump_file, var);
428       fprintf (dump_file, ": ");
429       dump_value_range (dump_file, vr);
430       fprintf (dump_file, "\n");
431     }
432   value_range_equiv *old_vr = vr_values->swap_vr_value (var, vr);
433   stack.safe_push (std::make_pair (var, old_vr));
434 }
435 
436 /* Pop a Value Range from the vrp_stack.  */
437 
438 void
pop_value_range()439 evrp_range_analyzer::pop_value_range ()
440 {
441   std::pair<tree, value_range_equiv *> e = stack.pop ();
442   tree var = e.first;
443   value_range_equiv *vr = e.second;
444   if (dump_file && (dump_flags & TDF_DETAILS))
445     {
446       fprintf (dump_file, "popping range for ");
447       print_generic_expr (dump_file, var);
448       fprintf (dump_file, ", restoring ");
449       dump_value_range (dump_file, vr);
450       fprintf (dump_file, "\n");
451     }
452   /* We saved off a lattice entry, now give it back and release
453      the one we popped.  */
454   value_range_equiv *popped_vr = vr_values->swap_vr_value (var, vr);
455   if (popped_vr)
456     vr_values->free_value_range (popped_vr);
457 }
458