1 // gogo.cc -- Go frontend parsed representation.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <fstream>
10
11 #include "filenames.h"
12
13 #include "go-c.h"
14 #include "go-diagnostics.h"
15 #include "go-encode-id.h"
16 #include "go-dump.h"
17 #include "go-optimize.h"
18 #include "lex.h"
19 #include "types.h"
20 #include "statements.h"
21 #include "expressions.h"
22 #include "runtime.h"
23 #include "import.h"
24 #include "export.h"
25 #include "backend.h"
26 #include "gogo.h"
27
28 // Class Gogo.
29
Gogo(Backend * backend,Linemap * linemap,int,int pointer_size)30 Gogo::Gogo(Backend* backend, Linemap* linemap, int, int pointer_size)
31 : backend_(backend),
32 linemap_(linemap),
33 package_(NULL),
34 functions_(),
35 globals_(new Bindings(NULL)),
36 file_block_names_(),
37 imports_(),
38 imported_unsafe_(false),
39 current_file_imported_unsafe_(false),
40 packages_(),
41 init_functions_(),
42 var_deps_(),
43 need_init_fn_(false),
44 init_fn_name_(),
45 imported_init_fns_(),
46 pkgpath_(),
47 pkgpath_symbol_(),
48 prefix_(),
49 pkgpath_set_(false),
50 pkgpath_from_option_(false),
51 prefix_from_option_(false),
52 relative_import_path_(),
53 c_header_(),
54 check_divide_by_zero_(true),
55 check_divide_overflow_(true),
56 compiling_runtime_(false),
57 debug_escape_level_(0),
58 debug_optimization_(false),
59 nil_check_size_threshold_(4096),
60 verify_types_(),
61 interface_types_(),
62 specific_type_functions_(),
63 specific_type_functions_are_written_(false),
64 named_types_are_converted_(false),
65 analysis_sets_(),
66 gc_roots_(),
67 type_descriptors_(),
68 imported_inlinable_functions_(),
69 imported_inline_functions_()
70 {
71 const Location loc = Linemap::predeclared_location();
72
73 Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
74 RUNTIME_TYPE_KIND_UINT8);
75 this->add_named_type(uint8_type);
76 this->add_named_type(Type::make_integer_type("uint16", true, 16,
77 RUNTIME_TYPE_KIND_UINT16));
78 this->add_named_type(Type::make_integer_type("uint32", true, 32,
79 RUNTIME_TYPE_KIND_UINT32));
80 this->add_named_type(Type::make_integer_type("uint64", true, 64,
81 RUNTIME_TYPE_KIND_UINT64));
82
83 this->add_named_type(Type::make_integer_type("int8", false, 8,
84 RUNTIME_TYPE_KIND_INT8));
85 this->add_named_type(Type::make_integer_type("int16", false, 16,
86 RUNTIME_TYPE_KIND_INT16));
87 Named_type* int32_type = Type::make_integer_type("int32", false, 32,
88 RUNTIME_TYPE_KIND_INT32);
89 this->add_named_type(int32_type);
90 this->add_named_type(Type::make_integer_type("int64", false, 64,
91 RUNTIME_TYPE_KIND_INT64));
92
93 this->add_named_type(Type::make_float_type("float32", 32,
94 RUNTIME_TYPE_KIND_FLOAT32));
95 this->add_named_type(Type::make_float_type("float64", 64,
96 RUNTIME_TYPE_KIND_FLOAT64));
97
98 this->add_named_type(Type::make_complex_type("complex64", 64,
99 RUNTIME_TYPE_KIND_COMPLEX64));
100 this->add_named_type(Type::make_complex_type("complex128", 128,
101 RUNTIME_TYPE_KIND_COMPLEX128));
102
103 int int_type_size = pointer_size;
104 if (int_type_size < 32)
105 int_type_size = 32;
106 this->add_named_type(Type::make_integer_type("uint", true,
107 int_type_size,
108 RUNTIME_TYPE_KIND_UINT));
109 Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
110 RUNTIME_TYPE_KIND_INT);
111 this->add_named_type(int_type);
112
113 this->add_named_type(Type::make_integer_type("uintptr", true,
114 pointer_size,
115 RUNTIME_TYPE_KIND_UINTPTR));
116
117 // "byte" is an alias for "uint8".
118 uint8_type->integer_type()->set_is_byte();
119 Named_object* byte_type = Named_object::make_type("byte", NULL, uint8_type,
120 loc);
121 byte_type->type_value()->set_is_alias();
122 this->add_named_type(byte_type->type_value());
123
124 // "rune" is an alias for "int32".
125 int32_type->integer_type()->set_is_rune();
126 Named_object* rune_type = Named_object::make_type("rune", NULL, int32_type,
127 loc);
128 rune_type->type_value()->set_is_alias();
129 this->add_named_type(rune_type->type_value());
130
131 this->add_named_type(Type::make_named_bool_type());
132
133 this->add_named_type(Type::make_named_string_type());
134
135 // "error" is interface { Error() string }.
136 {
137 Typed_identifier_list *methods = new Typed_identifier_list;
138 Typed_identifier_list *results = new Typed_identifier_list;
139 results->push_back(Typed_identifier("", Type::lookup_string_type(), loc));
140 Type *method_type = Type::make_function_type(NULL, NULL, results, loc);
141 methods->push_back(Typed_identifier("Error", method_type, loc));
142 Interface_type *error_iface = Type::make_interface_type(methods, loc);
143 error_iface->finalize_methods();
144 Named_type *error_type = Named_object::make_type("error", NULL, error_iface, loc)->type_value();
145 this->add_named_type(error_type);
146 }
147
148 this->globals_->add_constant(Typed_identifier("true",
149 Type::make_boolean_type(),
150 loc),
151 NULL,
152 Expression::make_boolean(true, loc),
153 0);
154 this->globals_->add_constant(Typed_identifier("false",
155 Type::make_boolean_type(),
156 loc),
157 NULL,
158 Expression::make_boolean(false, loc),
159 0);
160
161 this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
162 loc),
163 NULL,
164 Expression::make_nil(loc),
165 0);
166
167 Type* abstract_int_type = Type::make_abstract_integer_type();
168 this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
169 loc),
170 NULL,
171 Expression::make_iota(),
172 0);
173
174 Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
175 new_type->set_is_varargs();
176 new_type->set_is_builtin();
177 this->globals_->add_function_declaration("new", NULL, new_type, loc);
178
179 Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
180 make_type->set_is_varargs();
181 make_type->set_is_builtin();
182 this->globals_->add_function_declaration("make", NULL, make_type, loc);
183
184 Typed_identifier_list* len_result = new Typed_identifier_list();
185 len_result->push_back(Typed_identifier("", int_type, loc));
186 Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
187 loc);
188 len_type->set_is_builtin();
189 this->globals_->add_function_declaration("len", NULL, len_type, loc);
190
191 Typed_identifier_list* cap_result = new Typed_identifier_list();
192 cap_result->push_back(Typed_identifier("", int_type, loc));
193 Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
194 loc);
195 cap_type->set_is_builtin();
196 this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
197
198 Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
199 print_type->set_is_varargs();
200 print_type->set_is_builtin();
201 this->globals_->add_function_declaration("print", NULL, print_type, loc);
202
203 print_type = Type::make_function_type(NULL, NULL, NULL, loc);
204 print_type->set_is_varargs();
205 print_type->set_is_builtin();
206 this->globals_->add_function_declaration("println", NULL, print_type, loc);
207
208 Type *empty = Type::make_empty_interface_type(loc);
209 Typed_identifier_list* panic_parms = new Typed_identifier_list();
210 panic_parms->push_back(Typed_identifier("e", empty, loc));
211 Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
212 NULL, loc);
213 panic_type->set_is_builtin();
214 this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
215
216 Typed_identifier_list* recover_result = new Typed_identifier_list();
217 recover_result->push_back(Typed_identifier("", empty, loc));
218 Function_type* recover_type = Type::make_function_type(NULL, NULL,
219 recover_result,
220 loc);
221 recover_type->set_is_builtin();
222 this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
223
224 Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
225 close_type->set_is_varargs();
226 close_type->set_is_builtin();
227 this->globals_->add_function_declaration("close", NULL, close_type, loc);
228
229 Typed_identifier_list* copy_result = new Typed_identifier_list();
230 copy_result->push_back(Typed_identifier("", int_type, loc));
231 Function_type* copy_type = Type::make_function_type(NULL, NULL,
232 copy_result, loc);
233 copy_type->set_is_varargs();
234 copy_type->set_is_builtin();
235 this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
236
237 Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
238 append_type->set_is_varargs();
239 append_type->set_is_builtin();
240 this->globals_->add_function_declaration("append", NULL, append_type, loc);
241
242 Function_type* complex_type = Type::make_function_type(NULL, NULL, NULL, loc);
243 complex_type->set_is_varargs();
244 complex_type->set_is_builtin();
245 this->globals_->add_function_declaration("complex", NULL, complex_type, loc);
246
247 Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
248 real_type->set_is_varargs();
249 real_type->set_is_builtin();
250 this->globals_->add_function_declaration("real", NULL, real_type, loc);
251
252 Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
253 imag_type->set_is_varargs();
254 imag_type->set_is_builtin();
255 this->globals_->add_function_declaration("imag", NULL, imag_type, loc);
256
257 Function_type* delete_type = Type::make_function_type(NULL, NULL, NULL, loc);
258 delete_type->set_is_varargs();
259 delete_type->set_is_builtin();
260 this->globals_->add_function_declaration("delete", NULL, delete_type, loc);
261 }
262
263 std::string
pkgpath_for_symbol(const std::string & pkgpath)264 Gogo::pkgpath_for_symbol(const std::string& pkgpath)
265 {
266 go_assert(!pkgpath.empty());
267 return go_encode_id(pkgpath);
268 }
269
270 // Return a hash code for a string, given a starting hash.
271
272 unsigned int
hash_string(const std::string & s,unsigned int h)273 Gogo::hash_string(const std::string& s, unsigned int h)
274 {
275 const char* p = s.data();
276 size_t len = s.length();
277 for (; len > 0; --len)
278 {
279 h ^= *p++;
280 h*= 16777619;
281 }
282 return h;
283 }
284
285 // Get the package path to use for type reflection data. This should
286 // ideally be unique across the entire link.
287
288 const std::string&
pkgpath() const289 Gogo::pkgpath() const
290 {
291 go_assert(this->pkgpath_set_);
292 return this->pkgpath_;
293 }
294
295 // Set the package path from the -fgo-pkgpath command line option.
296
297 void
set_pkgpath(const std::string & arg)298 Gogo::set_pkgpath(const std::string& arg)
299 {
300 go_assert(!this->pkgpath_set_);
301 this->pkgpath_ = go_mangle_pkgpath(arg);
302 this->pkgpath_set_ = true;
303 this->pkgpath_from_option_ = true;
304 }
305
306 // Get the package path to use for symbol names.
307
308 const std::string&
pkgpath_symbol() const309 Gogo::pkgpath_symbol() const
310 {
311 go_assert(this->pkgpath_set_);
312 return this->pkgpath_symbol_;
313 }
314
315 // Set the unique prefix to use to determine the package path, from
316 // the -fgo-prefix command line option.
317
318 void
set_prefix(const std::string & arg)319 Gogo::set_prefix(const std::string& arg)
320 {
321 go_assert(!this->prefix_from_option_);
322 this->prefix_ = arg;
323 this->prefix_from_option_ = true;
324 }
325
326 // Given a name which may or may not have been hidden, append the
327 // appropriate version of the name to the result string. Take care
328 // to avoid creating a sequence that will be rejected by go_encode_id
329 // (avoid ..u, ..U, ..z).
330 void
append_possibly_hidden_name(std::string * result,const std::string & name)331 Gogo::append_possibly_hidden_name(std::string *result, const std::string& name)
332 {
333 // FIXME: This adds in pkgpath twice for hidden symbols, which is
334 // less than ideal.
335 if (!Gogo::is_hidden_name(name))
336 (*result) += name;
337 else
338 {
339 std::string n = ".";
340 std::string pkgpath = Gogo::hidden_name_pkgpath(name);
341 char lastR = result->at(result->length() - 1);
342 char firstP = pkgpath.at(0);
343 if (lastR == '.' && (firstP == 'u' || firstP == 'U' || firstP == 'z'))
344 n = "_.";
345 n.append(pkgpath);
346 n.append(1, '.');
347 n.append(Gogo::unpack_hidden_name(name));
348 (*result) += n;
349 }
350 }
351
352 // Munge name for use in an error message.
353
354 std::string
message_name(const std::string & name)355 Gogo::message_name(const std::string& name)
356 {
357 return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
358 }
359
360 // Get the package name.
361
362 const std::string&
package_name() const363 Gogo::package_name() const
364 {
365 go_assert(this->package_ != NULL);
366 return this->package_->package_name();
367 }
368
369 // Set the package name.
370
371 void
set_package_name(const std::string & package_name,Location location)372 Gogo::set_package_name(const std::string& package_name,
373 Location location)
374 {
375 if (this->package_ != NULL)
376 {
377 if (this->package_->package_name() != package_name)
378 go_error_at(location, "expected package %<%s%>",
379 Gogo::message_name(this->package_->package_name()).c_str());
380 return;
381 }
382
383 // Now that we know the name of the package we are compiling, set
384 // the package path to use for reflect.Type.PkgPath and global
385 // symbol names.
386 if (this->pkgpath_set_)
387 this->pkgpath_symbol_ = Gogo::pkgpath_for_symbol(this->pkgpath_);
388 else
389 {
390 if (!this->prefix_from_option_ && package_name == "main")
391 {
392 this->pkgpath_ = package_name;
393 this->pkgpath_symbol_ = Gogo::pkgpath_for_symbol(package_name);
394 }
395 else
396 {
397 if (!this->prefix_from_option_)
398 this->prefix_ = "go";
399 this->pkgpath_ = (go_mangle_pkgpath(this->prefix_) + '.'
400 + package_name);
401 this->pkgpath_symbol_ = (Gogo::pkgpath_for_symbol(this->prefix_) + '.'
402 + Gogo::pkgpath_for_symbol(package_name));
403 }
404 this->pkgpath_set_ = true;
405 }
406
407 this->package_ = this->register_package(this->pkgpath_,
408 this->pkgpath_symbol_, location);
409 this->package_->set_package_name(package_name, location);
410
411 if (this->is_main_package())
412 {
413 // Declare "main" as a function which takes no parameters and
414 // returns no value.
415 Location uloc = Linemap::unknown_location();
416 this->declare_function(Gogo::pack_hidden_name("main", false),
417 Type::make_function_type (NULL, NULL, NULL, uloc),
418 uloc);
419 }
420 }
421
422 // Return whether this is the "main" package. This is not true if
423 // -fgo-pkgpath or -fgo-prefix was used.
424
425 bool
is_main_package() const426 Gogo::is_main_package() const
427 {
428 return (this->package_name() == "main"
429 && !this->pkgpath_from_option_
430 && !this->prefix_from_option_);
431 }
432
433 // Import a package.
434
435 void
import_package(const std::string & filename,const std::string & local_name,bool is_local_name_exported,bool must_exist,Location location)436 Gogo::import_package(const std::string& filename,
437 const std::string& local_name,
438 bool is_local_name_exported,
439 bool must_exist,
440 Location location)
441 {
442 if (filename.empty())
443 {
444 go_error_at(location, "import path is empty");
445 return;
446 }
447
448 const char *pf = filename.data();
449 const char *pend = pf + filename.length();
450 while (pf < pend)
451 {
452 unsigned int c;
453 int adv = Lex::fetch_char(pf, &c);
454 if (adv == 0)
455 {
456 go_error_at(location, "import path contains invalid UTF-8 sequence");
457 return;
458 }
459 if (c == '\0')
460 {
461 go_error_at(location, "import path contains NUL");
462 return;
463 }
464 if (c < 0x20 || c == 0x7f)
465 {
466 go_error_at(location, "import path contains control character");
467 return;
468 }
469 if (c == '\\')
470 {
471 go_error_at(location, "import path contains backslash; use slash");
472 return;
473 }
474 if (Lex::is_unicode_space(c))
475 {
476 go_error_at(location, "import path contains space character");
477 return;
478 }
479 if (c < 0x7f && strchr("!\"#$%&'()*,:;<=>?[]^`{|}", c) != NULL)
480 {
481 go_error_at(location,
482 "import path contains invalid character '%c'", c);
483 return;
484 }
485 pf += adv;
486 }
487
488 if (IS_ABSOLUTE_PATH(filename.c_str()))
489 {
490 go_error_at(location, "import path cannot be absolute path");
491 return;
492 }
493
494 if (local_name == "init")
495 go_error_at(location, "cannot import package as init");
496
497 if (filename == "unsafe")
498 {
499 this->import_unsafe(local_name, is_local_name_exported, location);
500 this->current_file_imported_unsafe_ = true;
501 return;
502 }
503
504 Imports::const_iterator p = this->imports_.find(filename);
505 if (p != this->imports_.end())
506 {
507 Package* package = p->second;
508 package->set_location(location);
509 std::string ln = local_name;
510 bool is_ln_exported = is_local_name_exported;
511 if (ln.empty())
512 {
513 ln = package->package_name();
514 go_assert(!ln.empty());
515 is_ln_exported = Lex::is_exported_name(ln);
516 }
517 if (ln == "_")
518 ;
519 else if (ln == ".")
520 {
521 Bindings* bindings = package->bindings();
522 for (Bindings::const_declarations_iterator pd =
523 bindings->begin_declarations();
524 pd != bindings->end_declarations();
525 ++pd)
526 this->add_dot_import_object(pd->second);
527 std::string dot_alias = "." + package->package_name();
528 package->add_alias(dot_alias, location);
529 }
530 else
531 {
532 package->add_alias(ln, location);
533 ln = this->pack_hidden_name(ln, is_ln_exported);
534 this->package_->bindings()->add_package(ln, package);
535 }
536 return;
537 }
538
539 Import::Stream* stream = Import::open_package(filename, location,
540 this->relative_import_path_);
541 if (stream == NULL)
542 {
543 if (must_exist)
544 go_error_at(location, "import file %qs not found", filename.c_str());
545 return;
546 }
547
548 Import* imp = new Import(stream, location);
549 imp->register_builtin_types(this);
550 Package* package = imp->import(this, local_name, is_local_name_exported);
551 if (package != NULL)
552 {
553 if (package->pkgpath() == this->pkgpath())
554 go_error_at(location,
555 ("imported package uses same package path as package "
556 "being compiled (see %<-fgo-pkgpath%> option)"));
557
558 this->imports_.insert(std::make_pair(filename, package));
559 }
560
561 imp->clear_stream();
562 delete stream;
563
564 // FIXME: we never delete imp; we may need it for inlinable functions.
565 }
566
567 Import_init *
lookup_init(const std::string & init_name)568 Gogo::lookup_init(const std::string& init_name)
569 {
570 Import_init tmp("", init_name, -1);
571 Import_init_set::iterator it = this->imported_init_fns_.find(&tmp);
572 return (it != this->imported_init_fns_.end()) ? *it : NULL;
573 }
574
575 // Add an import control function for an imported package to the list.
576
577 void
add_import_init_fn(const std::string & package_name,const std::string & init_name,int prio)578 Gogo::add_import_init_fn(const std::string& package_name,
579 const std::string& init_name, int prio)
580 {
581 for (Import_init_set::iterator p =
582 this->imported_init_fns_.begin();
583 p != this->imported_init_fns_.end();
584 ++p)
585 {
586 Import_init *ii = (*p);
587 if (ii->init_name() == init_name)
588 {
589 // If a test of package P1, built as part of package P1,
590 // imports package P2, and P2 imports P1 (perhaps
591 // indirectly), then we will see the same import name with
592 // different import priorities. That is OK, so don't give
593 // an error about it.
594 if (ii->package_name() != package_name)
595 {
596 go_error_at(Linemap::unknown_location(),
597 "duplicate package initialization name %qs",
598 Gogo::message_name(init_name).c_str());
599 go_inform(Linemap::unknown_location(), "used by package %qs",
600 Gogo::message_name(ii->package_name()).c_str());
601 go_inform(Linemap::unknown_location(), " and by package %qs",
602 Gogo::message_name(package_name).c_str());
603 }
604 ii->set_priority(prio);
605 return;
606 }
607 }
608
609 Import_init* nii = new Import_init(package_name, init_name, prio);
610 this->imported_init_fns_.insert(nii);
611 }
612
613 // Return whether we are at the global binding level.
614
615 bool
in_global_scope() const616 Gogo::in_global_scope() const
617 {
618 return this->functions_.empty();
619 }
620
621 // Return the current binding contour.
622
623 Bindings*
current_bindings()624 Gogo::current_bindings()
625 {
626 if (!this->functions_.empty())
627 return this->functions_.back().blocks.back()->bindings();
628 else if (this->package_ != NULL)
629 return this->package_->bindings();
630 else
631 return this->globals_;
632 }
633
634 const Bindings*
current_bindings() const635 Gogo::current_bindings() const
636 {
637 if (!this->functions_.empty())
638 return this->functions_.back().blocks.back()->bindings();
639 else if (this->package_ != NULL)
640 return this->package_->bindings();
641 else
642 return this->globals_;
643 }
644
645 void
update_init_priority(Import_init * ii,std::set<const Import_init * > * visited)646 Gogo::update_init_priority(Import_init* ii,
647 std::set<const Import_init *>* visited)
648 {
649 visited->insert(ii);
650 int succ_prior = -1;
651
652 for (std::set<std::string>::const_iterator pci =
653 ii->precursors().begin();
654 pci != ii->precursors().end();
655 ++pci)
656 {
657 Import_init* succ = this->lookup_init(*pci);
658 if (visited->find(succ) == visited->end())
659 update_init_priority(succ, visited);
660 succ_prior = std::max(succ_prior, succ->priority());
661 }
662 if (ii->priority() <= succ_prior)
663 ii->set_priority(succ_prior + 1);
664 }
665
666 void
recompute_init_priorities()667 Gogo::recompute_init_priorities()
668 {
669 std::set<Import_init *> nonroots;
670
671 for (Import_init_set::const_iterator p =
672 this->imported_init_fns_.begin();
673 p != this->imported_init_fns_.end();
674 ++p)
675 {
676 const Import_init *ii = *p;
677 for (std::set<std::string>::const_iterator pci =
678 ii->precursors().begin();
679 pci != ii->precursors().end();
680 ++pci)
681 {
682 Import_init* ii_init = this->lookup_init(*pci);
683 nonroots.insert(ii_init);
684 }
685 }
686
687 // Recursively update priorities starting at roots.
688 std::set<const Import_init*> visited;
689 for (Import_init_set::iterator p =
690 this->imported_init_fns_.begin();
691 p != this->imported_init_fns_.end();
692 ++p)
693 {
694 Import_init* ii = *p;
695 if (nonroots.find(ii) != nonroots.end())
696 continue;
697 update_init_priority(ii, &visited);
698 }
699 }
700
701 // Add statements to INIT_STMTS which run the initialization
702 // functions for imported packages. This is only used for the "main"
703 // package.
704
705 void
init_imports(std::vector<Bstatement * > & init_stmts,Bfunction * bfunction)706 Gogo::init_imports(std::vector<Bstatement*>& init_stmts, Bfunction *bfunction)
707 {
708 go_assert(this->is_main_package());
709
710 if (this->imported_init_fns_.empty())
711 return;
712
713 Location unknown_loc = Linemap::unknown_location();
714 Function_type* func_type =
715 Type::make_function_type(NULL, NULL, NULL, unknown_loc);
716 Btype* fntype = func_type->get_backend_fntype(this);
717
718 // Recompute init priorities based on a walk of the init graph.
719 recompute_init_priorities();
720
721 // We must call them in increasing priority order.
722 std::vector<const Import_init*> v;
723 for (Import_init_set::const_iterator p =
724 this->imported_init_fns_.begin();
725 p != this->imported_init_fns_.end();
726 ++p)
727 {
728 // Don't include dummy inits. They are not real functions.
729 if ((*p)->is_dummy())
730 continue;
731 if ((*p)->priority() < 0)
732 go_error_at(Linemap::unknown_location(),
733 "internal error: failed to set init priority for %s",
734 (*p)->package_name().c_str());
735 v.push_back(*p);
736 }
737 std::sort(v.begin(), v.end(), priority_compare);
738
739 // We build calls to the init functions, which take no arguments.
740 std::vector<Bexpression*> empty_args;
741 for (std::vector<const Import_init*>::const_iterator p = v.begin();
742 p != v.end();
743 ++p)
744 {
745 const Import_init* ii = *p;
746 std::string user_name = ii->package_name() + ".init";
747 const std::string& init_name(ii->init_name());
748 const unsigned int flags =
749 (Backend::function_is_visible
750 | Backend::function_is_declaration
751 | Backend::function_is_inlinable);
752 Bfunction* pfunc = this->backend()->function(fntype, user_name, init_name,
753 flags, unknown_loc);
754 Bexpression* pfunc_code =
755 this->backend()->function_code_expression(pfunc, unknown_loc);
756 Bexpression* pfunc_call =
757 this->backend()->call_expression(bfunction, pfunc_code, empty_args,
758 NULL, unknown_loc);
759 init_stmts.push_back(this->backend()->expression_statement(bfunction,
760 pfunc_call));
761 }
762 }
763
764 // Register global variables with the garbage collector. We need to
765 // register all variables which can hold a pointer value. They become
766 // roots during the mark phase. We build a struct that is easy to
767 // hook into a list of roots.
768
769 // type gcRoot struct {
770 // decl unsafe.Pointer // Pointer to variable.
771 // size uintptr // Total size of variable.
772 // ptrdata uintptr // Length of variable's gcdata.
773 // gcdata *byte // Pointer mask.
774 // }
775 //
776 // type gcRootList struct {
777 // next *gcRootList
778 // count int
779 // roots [...]gcRoot
780 // }
781
782 // The last entry in the roots array has a NULL decl field.
783
784 void
register_gc_vars(const std::vector<Named_object * > & var_gc,std::vector<Bstatement * > & init_stmts,Bfunction * init_bfn)785 Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
786 std::vector<Bstatement*>& init_stmts,
787 Bfunction* init_bfn)
788 {
789 if (var_gc.empty() && this->gc_roots_.empty())
790 return;
791
792 Type* pvt = Type::make_pointer_type(Type::make_void_type());
793 Type* uintptr_type = Type::lookup_integer_type("uintptr");
794 Type* byte_type = this->lookup_global("byte")->type_value();
795 Type* pointer_byte_type = Type::make_pointer_type(byte_type);
796 Struct_type* root_type =
797 Type::make_builtin_struct_type(4,
798 "decl", pvt,
799 "size", uintptr_type,
800 "ptrdata", uintptr_type,
801 "gcdata", pointer_byte_type);
802
803 Location builtin_loc = Linemap::predeclared_location();
804 unsigned long roots_len = var_gc.size() + this->gc_roots_.size();
805 Expression* length = Expression::make_integer_ul(roots_len, NULL,
806 builtin_loc);
807 Array_type* root_array_type = Type::make_array_type(root_type, length);
808 root_array_type->set_is_array_incomparable();
809
810 Type* int_type = Type::lookup_integer_type("int");
811 Struct_type* root_list_type =
812 Type::make_builtin_struct_type(3,
813 "next", pvt,
814 "count", int_type,
815 "roots", root_array_type);
816
817 // Build an initializer for the roots array.
818
819 Expression_list* roots_init = new Expression_list();
820
821 for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
822 p != var_gc.end();
823 ++p)
824 {
825 Expression_list* init = new Expression_list();
826
827 Location no_loc = (*p)->location();
828 Expression* decl = Expression::make_var_reference(*p, no_loc);
829 Expression* decl_addr =
830 Expression::make_unary(OPERATOR_AND, decl, no_loc);
831 decl_addr->unary_expression()->set_does_not_escape();
832 decl_addr = Expression::make_cast(pvt, decl_addr, no_loc);
833 init->push_back(decl_addr);
834
835 Expression* size =
836 Expression::make_type_info(decl->type(),
837 Expression::TYPE_INFO_SIZE);
838 init->push_back(size);
839
840 Expression* ptrdata =
841 Expression::make_type_info(decl->type(),
842 Expression::TYPE_INFO_BACKEND_PTRDATA);
843 init->push_back(ptrdata);
844
845 Expression* gcdata = Expression::make_ptrmask_symbol(decl->type());
846 init->push_back(gcdata);
847
848 Expression* root_ctor =
849 Expression::make_struct_composite_literal(root_type, init, no_loc);
850 roots_init->push_back(root_ctor);
851 }
852
853 for (std::vector<Expression*>::const_iterator p = this->gc_roots_.begin();
854 p != this->gc_roots_.end();
855 ++p)
856 {
857 Expression_list *init = new Expression_list();
858
859 Expression* expr = *p;
860 Location eloc = expr->location();
861 init->push_back(Expression::make_cast(pvt, expr, eloc));
862
863 Type* type = expr->type()->points_to();
864 go_assert(type != NULL);
865
866 Expression* size =
867 Expression::make_type_info(type,
868 Expression::TYPE_INFO_SIZE);
869 init->push_back(size);
870
871 Expression* ptrdata =
872 Expression::make_type_info(type,
873 Expression::TYPE_INFO_BACKEND_PTRDATA);
874 init->push_back(ptrdata);
875
876 Expression* gcdata = Expression::make_ptrmask_symbol(type);
877 init->push_back(gcdata);
878
879 Expression* root_ctor =
880 Expression::make_struct_composite_literal(root_type, init, eloc);
881 roots_init->push_back(root_ctor);
882 }
883
884 // Build a constructor for the struct.
885
886 Expression_list* root_list_init = new Expression_list();
887 root_list_init->push_back(Expression::make_nil(builtin_loc));
888 root_list_init->push_back(Expression::make_integer_ul(roots_len, int_type,
889 builtin_loc));
890
891 Expression* roots_ctor =
892 Expression::make_array_composite_literal(root_array_type, roots_init,
893 builtin_loc);
894 root_list_init->push_back(roots_ctor);
895
896 Expression* root_list_ctor =
897 Expression::make_struct_composite_literal(root_list_type, root_list_init,
898 builtin_loc);
899
900 Expression* root_addr = Expression::make_unary(OPERATOR_AND, root_list_ctor,
901 builtin_loc);
902 root_addr->unary_expression()->set_is_gc_root();
903 Expression* register_roots = Runtime::make_call(Runtime::REGISTER_GC_ROOTS,
904 builtin_loc, 1, root_addr);
905
906 Translate_context context(this, NULL, NULL, NULL);
907 Bexpression* bcall = register_roots->get_backend(&context);
908 init_stmts.push_back(this->backend()->expression_statement(init_bfn, bcall));
909 }
910
911 // Build the list of type descriptors defined in this package. This is to help
912 // the reflect package to find compiler-generated types.
913
914 // type typeDescriptorList struct {
915 // count int
916 // types [...]unsafe.Pointer
917 // }
918
919 static Struct_type*
type_descriptor_list_type(unsigned long len)920 type_descriptor_list_type(unsigned long len)
921 {
922 Location builtin_loc = Linemap::predeclared_location();
923 Type* int_type = Type::lookup_integer_type("int");
924 Type* ptr_type = Type::make_pointer_type(Type::make_void_type());
925 // Avoid creating zero-length type.
926 unsigned long nelems = (len != 0 ? len : 1);
927 Expression* len_expr = Expression::make_integer_ul(nelems, NULL,
928 builtin_loc);
929 Array_type* array_type = Type::make_array_type(ptr_type, len_expr);
930 array_type->set_is_array_incomparable();
931 Struct_type* list_type =
932 Type::make_builtin_struct_type(2, "count", int_type,
933 "types", array_type);
934 return list_type;
935 }
936
937 void
build_type_descriptor_list()938 Gogo::build_type_descriptor_list()
939 {
940 // Create the list type
941 Location builtin_loc = Linemap::predeclared_location();
942 unsigned long len = this->type_descriptors_.size();
943 Struct_type* list_type = type_descriptor_list_type(len);
944 Btype* bt = list_type->get_backend(this);
945 Btype* bat = list_type->field(1)->type()->get_backend(this);
946
947 // Create the variable
948 std::string name = this->type_descriptor_list_symbol(this->pkgpath_symbol());
949 Bvariable* bv = this->backend()->implicit_variable(name, name, bt,
950 false, true, false,
951 0);
952
953 // Build the initializer
954 std::vector<unsigned long> indexes;
955 std::vector<Bexpression*> vals;
956 std::vector<Type*>::iterator p = this->type_descriptors_.begin();
957 for (unsigned long i = 0; i < len; ++i, ++p)
958 {
959 Bexpression* bexpr = (*p)->type_descriptor_pointer(this,
960 builtin_loc);
961 indexes.push_back(i);
962 vals.push_back(bexpr);
963 }
964 Bexpression* barray =
965 this->backend()->array_constructor_expression(bat, indexes, vals,
966 builtin_loc);
967
968 Translate_context context(this, NULL, NULL, NULL);
969 std::vector<Bexpression*> fields;
970 Expression* len_expr = Expression::make_integer_ul(len, NULL,
971 builtin_loc);
972 fields.push_back(len_expr->get_backend(&context));
973 fields.push_back(barray);
974 Bexpression* binit =
975 this->backend()->constructor_expression(bt, fields, builtin_loc);
976
977 this->backend()->implicit_variable_set_init(bv, name, bt, false,
978 true, false, binit);
979 }
980
981 // Register the type descriptors with the runtime. This is to help
982 // the reflect package to find compiler-generated types.
983
984 void
register_type_descriptors(std::vector<Bstatement * > & init_stmts,Bfunction * init_bfn)985 Gogo::register_type_descriptors(std::vector<Bstatement*>& init_stmts,
986 Bfunction* init_bfn)
987 {
988 // Create the list type
989 Location builtin_loc = Linemap::predeclared_location();
990 Struct_type* list_type = type_descriptor_list_type(1);
991 Btype* bt = list_type->get_backend(this);
992
993 // Collect type lists from transitive imports.
994 std::vector<std::string> list_names;
995 for (Import_init_set::iterator it = this->imported_init_fns_.begin();
996 it != this->imported_init_fns_.end();
997 ++it)
998 {
999 std::string pkgpath =
1000 this->pkgpath_from_init_fn_name((*it)->init_name());
1001 list_names.push_back(this->type_descriptor_list_symbol(pkgpath));
1002 }
1003 // Add the main package itself.
1004 list_names.push_back(this->type_descriptor_list_symbol("main"));
1005
1006 // Build a list of lists.
1007 std::vector<unsigned long> indexes;
1008 std::vector<Bexpression*> vals;
1009 unsigned long i = 0;
1010 for (std::vector<std::string>::iterator p = list_names.begin();
1011 p != list_names.end();
1012 ++p)
1013 {
1014 Bvariable* bv =
1015 this->backend()->implicit_variable_reference(*p, *p, bt);
1016 Bexpression* bexpr = this->backend()->var_expression(bv, builtin_loc);
1017 bexpr = this->backend()->address_expression(bexpr, builtin_loc);
1018
1019 indexes.push_back(i);
1020 vals.push_back(bexpr);
1021 i++;
1022 }
1023 Expression* len_expr = Expression::make_integer_ul(i, NULL, builtin_loc);
1024 Type* list_ptr_type = Type::make_pointer_type(list_type);
1025 Type* list_array_type = Type::make_array_type(list_ptr_type, len_expr);
1026 Btype* bat = list_array_type->get_backend(this);
1027 Bexpression* barray =
1028 this->backend()->array_constructor_expression(bat, indexes, vals,
1029 builtin_loc);
1030
1031 // Create a variable holding the list.
1032 std::string name = this->typelists_symbol();
1033 Bvariable* bv = this->backend()->implicit_variable(name, name, bat,
1034 true, true, false,
1035 0);
1036 this->backend()->implicit_variable_set_init(bv, name, bat, true, true,
1037 false, barray);
1038
1039 // Build the call in main package's init function.
1040 Translate_context context(this, NULL, NULL, NULL);
1041 Bexpression* bexpr = this->backend()->var_expression(bv, builtin_loc);
1042 bexpr = this->backend()->address_expression(bexpr, builtin_loc);
1043 Type* array_ptr_type = Type::make_pointer_type(list_array_type);
1044 Expression* expr = Expression::make_backend(bexpr, array_ptr_type,
1045 builtin_loc);
1046 expr = Runtime::make_call(Runtime::REGISTER_TYPE_DESCRIPTORS,
1047 builtin_loc, 2, len_expr->copy(), expr);
1048 Bexpression* bcall = expr->get_backend(&context);
1049 init_stmts.push_back(this->backend()->expression_statement(init_bfn,
1050 bcall));
1051 }
1052
1053 // Build the decl for the initialization function.
1054
1055 Named_object*
initialization_function_decl()1056 Gogo::initialization_function_decl()
1057 {
1058 std::string name = this->get_init_fn_name();
1059 Location loc = this->package_->location();
1060
1061 Function_type* fntype = Type::make_function_type(NULL, NULL, NULL, loc);
1062 Function* initfn = new Function(fntype, NULL, NULL, loc);
1063 return Named_object::make_function(name, NULL, initfn);
1064 }
1065
1066 // Create the magic initialization function. CODE_STMT is the
1067 // code that it needs to run.
1068
1069 Named_object*
create_initialization_function(Named_object * initfn,Bstatement * code_stmt)1070 Gogo::create_initialization_function(Named_object* initfn,
1071 Bstatement* code_stmt)
1072 {
1073 // Make sure that we thought we needed an initialization function,
1074 // as otherwise we will not have reported it in the export data.
1075 go_assert(this->is_main_package() || this->need_init_fn_);
1076
1077 if (initfn == NULL)
1078 initfn = this->initialization_function_decl();
1079
1080 // Bind the initialization function code to a block.
1081 Bfunction* fndecl = initfn->func_value()->get_or_make_decl(this, initfn);
1082 Location pkg_loc = this->package_->location();
1083 std::vector<Bvariable*> vars;
1084 this->backend()->block(fndecl, NULL, vars, pkg_loc, pkg_loc);
1085
1086 if (!this->backend()->function_set_body(fndecl, code_stmt))
1087 {
1088 go_assert(saw_errors());
1089 return NULL;
1090 }
1091 return initfn;
1092 }
1093
1094 // Given an expression, collect all the global variables defined in
1095 // this package that it references.
1096
1097 class Find_vars : public Traverse
1098 {
1099 private:
1100 // The list of variables we accumulate.
1101 typedef Unordered_set(Named_object*) Vars;
1102
1103 // A hash table we use to avoid looping. The index is a
1104 // Named_object* or a Temporary_statement*. We only look through
1105 // objects defined in this package.
1106 typedef Unordered_set(const void*) Seen_objects;
1107
1108 public:
Find_vars()1109 Find_vars()
1110 : Traverse(traverse_expressions),
1111 vars_(), seen_objects_()
1112 { }
1113
1114 // An iterator through the variables found, after the traversal.
1115 typedef Vars::const_iterator const_iterator;
1116
1117 const_iterator
begin() const1118 begin() const
1119 { return this->vars_.begin(); }
1120
1121 const_iterator
end() const1122 end() const
1123 { return this->vars_.end(); }
1124
1125 int
1126 expression(Expression**);
1127
1128 private:
1129 // Accumulated variables.
1130 Vars vars_;
1131 // Objects we have already seen.
1132 Seen_objects seen_objects_;
1133 };
1134
1135 // Collect global variables referenced by EXPR. Look through function
1136 // calls and variable initializations.
1137
1138 int
expression(Expression ** pexpr)1139 Find_vars::expression(Expression** pexpr)
1140 {
1141 Expression* e = *pexpr;
1142
1143 Var_expression* ve = e->var_expression();
1144 if (ve != NULL)
1145 {
1146 Named_object* v = ve->named_object();
1147 if (!v->is_variable() || v->package() != NULL)
1148 {
1149 // This is a result parameter or a variable defined in a
1150 // different package. Either way we don't care about it.
1151 return TRAVERSE_CONTINUE;
1152 }
1153
1154 std::pair<Seen_objects::iterator, bool> ins =
1155 this->seen_objects_.insert(v);
1156 if (!ins.second)
1157 {
1158 // We've seen this variable before.
1159 return TRAVERSE_CONTINUE;
1160 }
1161
1162 if (v->var_value()->is_global())
1163 this->vars_.insert(v);
1164
1165 Expression* init = v->var_value()->init();
1166 if (init != NULL)
1167 {
1168 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
1169 return TRAVERSE_EXIT;
1170 }
1171 }
1172
1173 // We traverse the code of any function or bound method we see. Note that
1174 // this means that we will traverse the code of a function or bound method
1175 // whose address is taken even if it is not called.
1176 Func_expression* fe = e->func_expression();
1177 Bound_method_expression* bme = e->bound_method_expression();
1178 if (fe != NULL || bme != NULL)
1179 {
1180 const Named_object* f = fe != NULL ? fe->named_object() : bme->function();
1181 if (f->is_function() && f->package() == NULL)
1182 {
1183 std::pair<Seen_objects::iterator, bool> ins =
1184 this->seen_objects_.insert(f);
1185 if (ins.second)
1186 {
1187 // This is the first time we have seen this name.
1188 if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
1189 return TRAVERSE_EXIT;
1190 }
1191 }
1192 }
1193
1194 Temporary_reference_expression* tre = e->temporary_reference_expression();
1195 if (tre != NULL)
1196 {
1197 Temporary_statement* ts = tre->statement();
1198 Expression* init = ts->init();
1199 if (init != NULL)
1200 {
1201 std::pair<Seen_objects::iterator, bool> ins =
1202 this->seen_objects_.insert(ts);
1203 if (ins.second)
1204 {
1205 // This is the first time we have seen this temporary
1206 // statement.
1207 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
1208 return TRAVERSE_EXIT;
1209 }
1210 }
1211 }
1212
1213 return TRAVERSE_CONTINUE;
1214 }
1215
1216 // Return true if EXPR, PREINIT, or DEP refers to VAR.
1217
1218 static bool
expression_requires(Expression * expr,Block * preinit,Named_object * dep,Named_object * var)1219 expression_requires(Expression* expr, Block* preinit, Named_object* dep,
1220 Named_object* var)
1221 {
1222 Find_vars find_vars;
1223 if (expr != NULL)
1224 Expression::traverse(&expr, &find_vars);
1225 if (preinit != NULL)
1226 preinit->traverse(&find_vars);
1227 if (dep != NULL)
1228 {
1229 Expression* init = dep->var_value()->init();
1230 if (init != NULL)
1231 Expression::traverse(&init, &find_vars);
1232 if (dep->var_value()->has_pre_init())
1233 dep->var_value()->preinit()->traverse(&find_vars);
1234 }
1235
1236 for (Find_vars::const_iterator p = find_vars.begin();
1237 p != find_vars.end();
1238 ++p)
1239 {
1240 if (*p == var)
1241 return true;
1242 }
1243 return false;
1244 }
1245
1246 // Sort variable initializations. If the initialization expression
1247 // for variable A refers directly or indirectly to the initialization
1248 // expression for variable B, then we must initialize B before A.
1249
1250 class Var_init
1251 {
1252 public:
Var_init()1253 Var_init()
1254 : var_(NULL), init_(NULL), refs_(NULL), dep_count_(0)
1255 { }
1256
Var_init(Named_object * var,Bstatement * init)1257 Var_init(Named_object* var, Bstatement* init)
1258 : var_(var), init_(init), refs_(NULL), dep_count_(0)
1259 { }
1260
1261 // Return the variable.
1262 Named_object*
var() const1263 var() const
1264 { return this->var_; }
1265
1266 // Return the initialization expression.
1267 Bstatement*
init() const1268 init() const
1269 { return this->init_; }
1270
1271 // Add a reference.
1272 void
1273 add_ref(Named_object* var);
1274
1275 // The variables which this variable's initializers refer to.
1276 const std::vector<Named_object*>*
refs()1277 refs()
1278 { return this->refs_; }
1279
1280 // Clear the references, if any.
1281 void
1282 clear_refs();
1283
1284 // Return the number of remaining dependencies.
1285 size_t
dep_count() const1286 dep_count() const
1287 { return this->dep_count_; }
1288
1289 // Increment the number of dependencies.
1290 void
add_dependency()1291 add_dependency()
1292 { ++this->dep_count_; }
1293
1294 // Decrement the number of dependencies.
1295 void
remove_dependency()1296 remove_dependency()
1297 { --this->dep_count_; }
1298
1299 private:
1300 // The variable being initialized.
1301 Named_object* var_;
1302 // The backend initialization statement.
1303 Bstatement* init_;
1304 // Variables this refers to.
1305 std::vector<Named_object*>* refs_;
1306 // The number of initializations this is dependent on. A variable
1307 // initialization should not be emitted if any of its dependencies
1308 // have not yet been resolved.
1309 size_t dep_count_;
1310 };
1311
1312 // Add a reference.
1313
1314 void
add_ref(Named_object * var)1315 Var_init::add_ref(Named_object* var)
1316 {
1317 if (this->refs_ == NULL)
1318 this->refs_ = new std::vector<Named_object*>;
1319 this->refs_->push_back(var);
1320 }
1321
1322 // Clear the references, if any.
1323
1324 void
clear_refs()1325 Var_init::clear_refs()
1326 {
1327 if (this->refs_ != NULL)
1328 {
1329 delete this->refs_;
1330 this->refs_ = NULL;
1331 }
1332 }
1333
1334 // For comparing Var_init keys in a map.
1335
1336 inline bool
operator <(const Var_init & v1,const Var_init & v2)1337 operator<(const Var_init& v1, const Var_init& v2)
1338 { return v1.var()->name() < v2.var()->name(); }
1339
1340 typedef std::list<Var_init> Var_inits;
1341
1342 // Sort the variable initializations. The rule we follow is that we
1343 // emit them in the order they appear in the array, except that if the
1344 // initialization expression for a variable V1 depends upon another
1345 // variable V2 then we initialize V1 after V2.
1346
1347 static void
sort_var_inits(Gogo * gogo,Var_inits * var_inits)1348 sort_var_inits(Gogo* gogo, Var_inits* var_inits)
1349 {
1350 if (var_inits->empty())
1351 return;
1352
1353 std::map<Named_object*, Var_init*> var_to_init;
1354
1355 // A mapping from a variable initialization to a set of
1356 // variable initializations that depend on it.
1357 typedef std::map<Var_init, std::set<Var_init*> > Init_deps;
1358 Init_deps init_deps;
1359 bool init_loop = false;
1360
1361 // Compute all variable references.
1362 for (Var_inits::iterator pvar = var_inits->begin();
1363 pvar != var_inits->end();
1364 ++pvar)
1365 {
1366 Named_object* var = pvar->var();
1367 var_to_init[var] = &*pvar;
1368
1369 Find_vars find_vars;
1370 Expression* init = var->var_value()->init();
1371 if (init != NULL)
1372 Expression::traverse(&init, &find_vars);
1373 if (var->var_value()->has_pre_init())
1374 var->var_value()->preinit()->traverse(&find_vars);
1375 Named_object* dep = gogo->var_depends_on(var->var_value());
1376 if (dep != NULL)
1377 {
1378 Expression* dinit = dep->var_value()->init();
1379 if (dinit != NULL)
1380 Expression::traverse(&dinit, &find_vars);
1381 if (dep->var_value()->has_pre_init())
1382 dep->var_value()->preinit()->traverse(&find_vars);
1383 }
1384 for (Find_vars::const_iterator p = find_vars.begin();
1385 p != find_vars.end();
1386 ++p)
1387 pvar->add_ref(*p);
1388 }
1389
1390 // Add dependencies to init_deps, and check for cycles.
1391 for (Var_inits::iterator pvar = var_inits->begin();
1392 pvar != var_inits->end();
1393 ++pvar)
1394 {
1395 Named_object* var = pvar->var();
1396
1397 const std::vector<Named_object*>* refs = pvar->refs();
1398 if (refs == NULL)
1399 continue;
1400 for (std::vector<Named_object*>::const_iterator pdep = refs->begin();
1401 pdep != refs->end();
1402 ++pdep)
1403 {
1404 Named_object* dep = *pdep;
1405 if (var == dep)
1406 {
1407 // This is a reference from a variable to itself, which
1408 // may indicate a loop. We only report an error if
1409 // there is an initializer and there is no dependency.
1410 // When there is no initializer, it means that the
1411 // preinitializer sets the variable, which will appear
1412 // to be a loop here.
1413 if (var->var_value()->init() != NULL
1414 && gogo->var_depends_on(var->var_value()) == NULL)
1415 go_error_at(var->location(),
1416 ("initialization expression for %qs "
1417 "depends upon itself"),
1418 var->message_name().c_str());
1419
1420 continue;
1421 }
1422
1423 Var_init* dep_init = var_to_init[dep];
1424 if (dep_init == NULL)
1425 {
1426 // This is a dependency on some variable that doesn't
1427 // have an initializer, so for purposes of
1428 // initialization ordering this is irrelevant.
1429 continue;
1430 }
1431
1432 init_deps[*dep_init].insert(&(*pvar));
1433 pvar->add_dependency();
1434
1435 // Check for cycles.
1436 const std::vector<Named_object*>* deprefs = dep_init->refs();
1437 if (deprefs == NULL)
1438 continue;
1439 for (std::vector<Named_object*>::const_iterator pdepdep =
1440 deprefs->begin();
1441 pdepdep != deprefs->end();
1442 ++pdepdep)
1443 {
1444 if (*pdepdep == var)
1445 {
1446 go_error_at(var->location(),
1447 ("initialization expressions for %qs and "
1448 "%qs depend upon each other"),
1449 var->message_name().c_str(),
1450 dep->message_name().c_str());
1451 go_inform(dep->location(), "%qs defined here",
1452 dep->message_name().c_str());
1453 init_loop = true;
1454 break;
1455 }
1456 }
1457 }
1458 }
1459
1460 var_to_init.clear();
1461 for (Var_inits::iterator pvar = var_inits->begin();
1462 pvar != var_inits->end();
1463 ++pvar)
1464 pvar->clear_refs();
1465
1466 // If there are no dependencies then the declaration order is sorted.
1467 if (!init_deps.empty() && !init_loop)
1468 {
1469 // Otherwise, sort variable initializations by emitting all variables with
1470 // no dependencies in declaration order. VAR_INITS is already in
1471 // declaration order.
1472 Var_inits ready;
1473 while (!var_inits->empty())
1474 {
1475 Var_inits::iterator v1;;
1476 for (v1 = var_inits->begin(); v1 != var_inits->end(); ++v1)
1477 {
1478 if (v1->dep_count() == 0)
1479 break;
1480 }
1481 go_assert(v1 != var_inits->end());
1482
1483 // V1 either has no dependencies or its dependencies have already
1484 // been emitted, add it to READY next. When V1 is emitted, remove
1485 // a dependency from each V that depends on V1.
1486 ready.splice(ready.end(), *var_inits, v1);
1487
1488 Init_deps::iterator p1 = init_deps.find(*v1);
1489 if (p1 != init_deps.end())
1490 {
1491 std::set<Var_init*> resolved = p1->second;
1492 for (std::set<Var_init*>::iterator pv = resolved.begin();
1493 pv != resolved.end();
1494 ++pv)
1495 (*pv)->remove_dependency();
1496 init_deps.erase(p1);
1497 }
1498 }
1499 var_inits->swap(ready);
1500 go_assert(init_deps.empty());
1501 }
1502 }
1503
1504 // Give an error if the initialization expression for VAR depends on
1505 // itself. We only check if INIT is not NULL and there is no
1506 // dependency; when INIT is NULL, it means that PREINIT sets VAR,
1507 // which we will interpret as a loop.
1508
1509 void
check_self_dep(Named_object * var)1510 Gogo::check_self_dep(Named_object* var)
1511 {
1512 Expression* init = var->var_value()->init();
1513 Block* preinit = var->var_value()->preinit();
1514 Named_object* dep = this->var_depends_on(var->var_value());
1515 if (init != NULL
1516 && dep == NULL
1517 && expression_requires(init, preinit, NULL, var))
1518 go_error_at(var->location(),
1519 "initialization expression for %qs depends upon itself",
1520 var->message_name().c_str());
1521 }
1522
1523 // Write out the global definitions.
1524
1525 void
write_globals()1526 Gogo::write_globals()
1527 {
1528 this->build_interface_method_tables();
1529
1530 Bindings* bindings = this->current_bindings();
1531
1532 for (Bindings::const_declarations_iterator p = bindings->begin_declarations();
1533 p != bindings->end_declarations();
1534 ++p)
1535 {
1536 // If any function declarations needed a descriptor, make sure
1537 // we build it.
1538 Named_object* no = p->second;
1539 if (no->is_function_declaration())
1540 no->func_declaration_value()->build_backend_descriptor(this);
1541 }
1542
1543 // Lists of globally declared types, variables, constants, and functions
1544 // that must be defined.
1545 std::vector<Btype*> type_decls;
1546 std::vector<Bvariable*> var_decls;
1547 std::vector<Bexpression*> const_decls;
1548 std::vector<Bfunction*> func_decls;
1549
1550 // The init function declaration and associated Bfunction, if necessary.
1551 Named_object* init_fndecl = NULL;
1552 Bfunction* init_bfn = NULL;
1553
1554 std::vector<Bstatement*> init_stmts;
1555 std::vector<Bstatement*> var_init_stmts;
1556
1557 if (this->is_main_package())
1558 {
1559 init_fndecl = this->initialization_function_decl();
1560 init_bfn = init_fndecl->func_value()->get_or_make_decl(this, init_fndecl);
1561 }
1562
1563 // A list of variable initializations.
1564 Var_inits var_inits;
1565
1566 // A list of variables which need to be registered with the garbage
1567 // collector.
1568 size_t count_definitions = bindings->size_definitions();
1569 std::vector<Named_object*> var_gc;
1570 var_gc.reserve(count_definitions);
1571
1572 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
1573 p != bindings->end_definitions();
1574 ++p)
1575 {
1576 Named_object* no = *p;
1577 go_assert(!no->is_type_declaration() && !no->is_function_declaration());
1578
1579 // There is nothing to do for a package.
1580 if (no->is_package())
1581 continue;
1582
1583 // There is nothing to do for an object which was imported from
1584 // a different package into the global scope.
1585 if (no->package() != NULL)
1586 continue;
1587
1588 // Skip blank named functions and constants.
1589 if ((no->is_function() && no->func_value()->is_sink())
1590 || (no->is_const() && no->const_value()->is_sink()))
1591 continue;
1592
1593 // There is nothing useful we can output for constants which
1594 // have ideal or non-integral type.
1595 if (no->is_const())
1596 {
1597 Type* type = no->const_value()->type();
1598 if (type == NULL)
1599 type = no->const_value()->expr()->type();
1600 if (type->is_abstract() || !type->is_numeric_type())
1601 continue;
1602 }
1603
1604 if (!no->is_variable())
1605 no->get_backend(this, const_decls, type_decls, func_decls);
1606 else
1607 {
1608 Variable* var = no->var_value();
1609 Bvariable* bvar = no->get_backend_variable(this, NULL);
1610 var_decls.push_back(bvar);
1611
1612 // Check for a sink variable, which may be used to run an
1613 // initializer purely for its side effects.
1614 bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
1615
1616 Bstatement* var_init_stmt = NULL;
1617 if (!var->has_pre_init())
1618 {
1619 // If the backend representation of the variable initializer is
1620 // constant, we can just set the initial value using
1621 // global_var_set_init instead of during the init() function.
1622 // The initializer is constant if it is the zero-value of the
1623 // variable's type or if the initial value is an immutable value
1624 // that is not copied to the heap.
1625 bool is_static_initializer = false;
1626 if (var->init() == NULL)
1627 is_static_initializer = true;
1628 else
1629 {
1630 Type* var_type = var->type();
1631 Expression* init = var->init();
1632 Expression* init_cast =
1633 Expression::make_cast(var_type, init, var->location());
1634 is_static_initializer = init_cast->is_static_initializer();
1635 }
1636
1637 // Non-constant variable initializations might need to create
1638 // temporary variables, which will need the initialization
1639 // function as context.
1640 Named_object* var_init_fn;
1641 if (is_static_initializer)
1642 var_init_fn = NULL;
1643 else
1644 {
1645 if (init_fndecl == NULL)
1646 {
1647 init_fndecl = this->initialization_function_decl();
1648 Function* func = init_fndecl->func_value();
1649 init_bfn = func->get_or_make_decl(this, init_fndecl);
1650 }
1651 var_init_fn = init_fndecl;
1652 }
1653 Bexpression* var_binit = var->get_init(this, var_init_fn);
1654
1655 if (var_binit == NULL)
1656 ;
1657 else if (is_static_initializer)
1658 {
1659 if (expression_requires(var->init(), NULL,
1660 this->var_depends_on(var), no))
1661 go_error_at(no->location(),
1662 "initialization expression for %qs depends "
1663 "upon itself",
1664 no->message_name().c_str());
1665 this->backend()->global_variable_set_init(bvar, var_binit);
1666 }
1667 else if (is_sink)
1668 var_init_stmt =
1669 this->backend()->expression_statement(init_bfn, var_binit);
1670 else
1671 {
1672 Location loc = var->location();
1673 Bexpression* var_expr =
1674 this->backend()->var_expression(bvar, loc);
1675 var_init_stmt =
1676 this->backend()->assignment_statement(init_bfn, var_expr,
1677 var_binit, loc);
1678 }
1679 }
1680 else
1681 {
1682 // We are going to create temporary variables which
1683 // means that we need an fndecl.
1684 if (init_fndecl == NULL)
1685 init_fndecl = this->initialization_function_decl();
1686
1687 Bvariable* var_decl = is_sink ? NULL : bvar;
1688 var_init_stmt = var->get_init_block(this, init_fndecl, var_decl);
1689 }
1690
1691 if (var_init_stmt != NULL)
1692 {
1693 if (var->init() == NULL && !var->has_pre_init())
1694 var_init_stmts.push_back(var_init_stmt);
1695 else
1696 var_inits.push_back(Var_init(no, var_init_stmt));
1697 }
1698 else if (this->var_depends_on(var) != NULL)
1699 {
1700 // This variable is initialized from something that is
1701 // not in its init or preinit. This variable needs to
1702 // participate in dependency analysis sorting, in case
1703 // some other variable depends on this one.
1704 Btype* btype = no->var_value()->type()->get_backend(this);
1705 Bexpression* zero = this->backend()->zero_expression(btype);
1706 Bstatement* zero_stmt =
1707 this->backend()->expression_statement(init_bfn, zero);
1708 var_inits.push_back(Var_init(no, zero_stmt));
1709 }
1710
1711 // Collect a list of all global variables with pointers,
1712 // to register them for the garbage collector.
1713 if (!is_sink && var->type()->has_pointer())
1714 {
1715 // Avoid putting runtime.gcRoots itself on the list.
1716 if (this->compiling_runtime()
1717 && this->package_name() == "runtime"
1718 && (Gogo::unpack_hidden_name(no->name()) == "gcRoots"
1719 || Gogo::unpack_hidden_name(no->name()) == "gcRootsIndex"))
1720 ;
1721 else
1722 var_gc.push_back(no);
1723 }
1724 }
1725 }
1726
1727 // Output inline functions, which are in different packages.
1728 for (std::vector<Named_object*>::const_iterator p =
1729 this->imported_inline_functions_.begin();
1730 p != this->imported_inline_functions_.end();
1731 ++p)
1732 (*p)->get_backend(this, const_decls, type_decls, func_decls);
1733
1734 // Build the list of type descriptors.
1735 this->build_type_descriptor_list();
1736
1737 if (this->is_main_package())
1738 {
1739 // Register the type descriptor lists, so that at run time
1740 // the reflect package can find compiler-created types, and
1741 // deduplicate if the same type is created with reflection.
1742 // This needs to be done before calling any package's init
1743 // function, as it may create type through reflection.
1744 this->register_type_descriptors(init_stmts, init_bfn);
1745
1746 // Initialize imported packages.
1747 this->init_imports(init_stmts, init_bfn);
1748 }
1749
1750 // Register global variables with the garbage collector.
1751 this->register_gc_vars(var_gc, init_stmts, init_bfn);
1752
1753 // Simple variable initializations, after all variables are
1754 // registered.
1755 init_stmts.push_back(this->backend()->statement_list(var_init_stmts));
1756
1757 // Complete variable initializations, first sorting them into a
1758 // workable order.
1759 if (!var_inits.empty())
1760 {
1761 sort_var_inits(this, &var_inits);
1762 for (Var_inits::const_iterator p = var_inits.begin();
1763 p != var_inits.end();
1764 ++p)
1765 init_stmts.push_back(p->init());
1766 }
1767
1768 // After all the variables are initialized, call the init
1769 // functions if there are any. Init functions take no arguments, so
1770 // we pass in EMPTY_ARGS to call them.
1771 std::vector<Bexpression*> empty_args;
1772 for (std::vector<Named_object*>::const_iterator p =
1773 this->init_functions_.begin();
1774 p != this->init_functions_.end();
1775 ++p)
1776 {
1777 Location func_loc = (*p)->location();
1778 Function* func = (*p)->func_value();
1779 Bfunction* initfn = func->get_or_make_decl(this, *p);
1780 Bexpression* func_code =
1781 this->backend()->function_code_expression(initfn, func_loc);
1782 Bexpression* call = this->backend()->call_expression(init_bfn, func_code,
1783 empty_args,
1784 NULL, func_loc);
1785 Bstatement* ist = this->backend()->expression_statement(init_bfn, call);
1786 init_stmts.push_back(ist);
1787 }
1788
1789 // Set up a magic function to do all the initialization actions.
1790 // This will be called if this package is imported.
1791 Bstatement* init_fncode = this->backend()->statement_list(init_stmts);
1792 if (this->need_init_fn_ || this->is_main_package())
1793 {
1794 init_fndecl =
1795 this->create_initialization_function(init_fndecl, init_fncode);
1796 if (init_fndecl != NULL)
1797 func_decls.push_back(init_fndecl->func_value()->get_decl());
1798 }
1799
1800 // We should not have seen any new bindings created during the conversion.
1801 go_assert(count_definitions == this->current_bindings()->size_definitions());
1802
1803 // Define all globally declared values.
1804 if (!saw_errors())
1805 this->backend()->write_global_definitions(type_decls, const_decls,
1806 func_decls, var_decls);
1807 }
1808
1809 // Return the current block.
1810
1811 Block*
current_block()1812 Gogo::current_block()
1813 {
1814 if (this->functions_.empty())
1815 return NULL;
1816 else
1817 return this->functions_.back().blocks.back();
1818 }
1819
1820 // Look up a name in the current binding contour. If PFUNCTION is not
1821 // NULL, set it to the function in which the name is defined, or NULL
1822 // if the name is defined in global scope.
1823
1824 Named_object*
lookup(const std::string & name,Named_object ** pfunction) const1825 Gogo::lookup(const std::string& name, Named_object** pfunction) const
1826 {
1827 if (pfunction != NULL)
1828 *pfunction = NULL;
1829
1830 if (Gogo::is_sink_name(name))
1831 return Named_object::make_sink();
1832
1833 for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
1834 p != this->functions_.rend();
1835 ++p)
1836 {
1837 Named_object* ret = p->blocks.back()->bindings()->lookup(name);
1838 if (ret != NULL)
1839 {
1840 if (pfunction != NULL)
1841 *pfunction = p->function;
1842 return ret;
1843 }
1844 }
1845
1846 if (this->package_ != NULL)
1847 {
1848 Named_object* ret = this->package_->bindings()->lookup(name);
1849 if (ret != NULL)
1850 {
1851 if (ret->package() != NULL)
1852 {
1853 std::string dot_alias = "." + ret->package()->package_name();
1854 ret->package()->note_usage(dot_alias);
1855 }
1856 return ret;
1857 }
1858 }
1859
1860 // We do not look in the global namespace. If we did, the global
1861 // namespace would effectively hide names which were defined in
1862 // package scope which we have not yet seen. Instead,
1863 // define_global_names is called after parsing is over to connect
1864 // undefined names at package scope with names defined at global
1865 // scope.
1866
1867 return NULL;
1868 }
1869
1870 // Look up a name in the current block, without searching enclosing
1871 // blocks.
1872
1873 Named_object*
lookup_in_block(const std::string & name) const1874 Gogo::lookup_in_block(const std::string& name) const
1875 {
1876 go_assert(!this->functions_.empty());
1877 go_assert(!this->functions_.back().blocks.empty());
1878 return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
1879 }
1880
1881 // Look up a name in the global namespace.
1882
1883 Named_object*
lookup_global(const char * name) const1884 Gogo::lookup_global(const char* name) const
1885 {
1886 return this->globals_->lookup(name);
1887 }
1888
1889 // Add an imported package.
1890
1891 Package*
add_imported_package(const std::string & real_name,const std::string & alias_arg,bool is_alias_exported,const std::string & pkgpath,const std::string & pkgpath_symbol,Location location,bool * padd_to_globals)1892 Gogo::add_imported_package(const std::string& real_name,
1893 const std::string& alias_arg,
1894 bool is_alias_exported,
1895 const std::string& pkgpath,
1896 const std::string& pkgpath_symbol,
1897 Location location,
1898 bool* padd_to_globals)
1899 {
1900 Package* ret = this->register_package(pkgpath, pkgpath_symbol, location);
1901 ret->set_package_name(real_name, location);
1902
1903 *padd_to_globals = false;
1904
1905 if (alias_arg == "_")
1906 ;
1907 else if (alias_arg == ".")
1908 {
1909 *padd_to_globals = true;
1910 std::string dot_alias = "." + real_name;
1911 ret->add_alias(dot_alias, location);
1912 }
1913 else
1914 {
1915 std::string alias = alias_arg;
1916 if (alias.empty())
1917 {
1918 alias = real_name;
1919 is_alias_exported = Lex::is_exported_name(alias);
1920 }
1921 ret->add_alias(alias, location);
1922 alias = this->pack_hidden_name(alias, is_alias_exported);
1923 Named_object* no = this->package_->bindings()->add_package(alias, ret);
1924 if (!no->is_package())
1925 return NULL;
1926 }
1927
1928 return ret;
1929 }
1930
1931 // Register a package. This package may or may not be imported. This
1932 // returns the Package structure for the package, creating if it
1933 // necessary. LOCATION is the location of the import statement that
1934 // led us to see this package. PKGPATH_SYMBOL is the symbol to use
1935 // for names in the package; it may be the empty string, in which case
1936 // we either get it later or make a guess when we need it.
1937
1938 Package*
register_package(const std::string & pkgpath,const std::string & pkgpath_symbol,Location location)1939 Gogo::register_package(const std::string& pkgpath,
1940 const std::string& pkgpath_symbol, Location location)
1941 {
1942 Package* package = NULL;
1943 std::pair<Packages::iterator, bool> ins =
1944 this->packages_.insert(std::make_pair(pkgpath, package));
1945 if (!ins.second)
1946 {
1947 // We have seen this package name before.
1948 package = ins.first->second;
1949 go_assert(package != NULL && package->pkgpath() == pkgpath);
1950 if (!pkgpath_symbol.empty())
1951 package->set_pkgpath_symbol(pkgpath_symbol);
1952 if (Linemap::is_unknown_location(package->location()))
1953 package->set_location(location);
1954 }
1955 else
1956 {
1957 // First time we have seen this package name.
1958 package = new Package(pkgpath, pkgpath_symbol, location);
1959 go_assert(ins.first->second == NULL);
1960 ins.first->second = package;
1961 }
1962
1963 return package;
1964 }
1965
1966 // Return the pkgpath symbol for a package, given the pkgpath.
1967
1968 std::string
pkgpath_symbol_for_package(const std::string & pkgpath)1969 Gogo::pkgpath_symbol_for_package(const std::string& pkgpath)
1970 {
1971 Packages::iterator p = this->packages_.find(pkgpath);
1972 go_assert(p != this->packages_.end());
1973 return p->second->pkgpath_symbol();
1974 }
1975
1976 // Start compiling a function.
1977
1978 Named_object*
start_function(const std::string & name,Function_type * type,bool add_method_to_type,Location location)1979 Gogo::start_function(const std::string& name, Function_type* type,
1980 bool add_method_to_type, Location location)
1981 {
1982 bool at_top_level = this->functions_.empty();
1983
1984 Block* block = new Block(NULL, location);
1985
1986 Named_object* enclosing = (at_top_level
1987 ? NULL
1988 : this->functions_.back().function);
1989
1990 Function* function = new Function(type, enclosing, block, location);
1991
1992 if (type->is_method())
1993 {
1994 const Typed_identifier* receiver = type->receiver();
1995 Variable* this_param = new Variable(receiver->type(), NULL, false,
1996 true, true, location);
1997 std::string rname = receiver->name();
1998 unsigned rcounter = 0;
1999
2000 // We need to give a nameless receiver parameter a synthesized name to
2001 // avoid having it clash with some other nameless param. FIXME.
2002 Gogo::rename_if_empty(&rname, "r", &rcounter);
2003
2004 block->bindings()->add_variable(rname, NULL, this_param);
2005 }
2006
2007 const Typed_identifier_list* parameters = type->parameters();
2008 bool is_varargs = type->is_varargs();
2009 unsigned pcounter = 0;
2010 if (parameters != NULL)
2011 {
2012 for (Typed_identifier_list::const_iterator p = parameters->begin();
2013 p != parameters->end();
2014 ++p)
2015 {
2016 Variable* param = new Variable(p->type(), NULL, false, true, false,
2017 p->location());
2018 if (is_varargs && p + 1 == parameters->end())
2019 param->set_is_varargs_parameter();
2020
2021 std::string pname = p->name();
2022
2023 // We need to give each nameless parameter a non-empty name to avoid
2024 // having it clash with some other nameless param. FIXME.
2025 Gogo::rename_if_empty(&pname, "p", &pcounter);
2026
2027 block->bindings()->add_variable(pname, NULL, param);
2028 }
2029 }
2030
2031 function->create_result_variables(this);
2032
2033 const std::string* pname;
2034 std::string nested_name;
2035 bool is_init = false;
2036 if (Gogo::unpack_hidden_name(name) == "init" && !type->is_method())
2037 {
2038 if ((type->parameters() != NULL && !type->parameters()->empty())
2039 || (type->results() != NULL && !type->results()->empty()))
2040 go_error_at(location,
2041 "func init must have no arguments and no return values");
2042 // There can be multiple "init" functions, so give them each a
2043 // different name.
2044 nested_name = this->init_function_name();
2045 pname = &nested_name;
2046 is_init = true;
2047 }
2048 else if (!name.empty())
2049 pname = &name;
2050 else
2051 {
2052 // Invent a name for a nested function.
2053 nested_name = this->nested_function_name(enclosing);
2054 pname = &nested_name;
2055 }
2056
2057 Named_object* ret;
2058 if (Gogo::is_sink_name(*pname))
2059 {
2060 std::string sname(this->sink_function_name());
2061 ret = Named_object::make_function(sname, NULL, function);
2062 ret->func_value()->set_is_sink();
2063
2064 if (!type->is_method())
2065 ret = this->package_->bindings()->add_named_object(ret);
2066 else if (add_method_to_type)
2067 {
2068 // We should report errors even for sink methods.
2069 Type* rtype = type->receiver()->type();
2070 // Avoid points_to and deref to avoid getting an error if
2071 // the type is not yet defined.
2072 if (rtype->classification() == Type::TYPE_POINTER)
2073 rtype = rtype->points_to();
2074 while (rtype->named_type() != NULL
2075 && rtype->named_type()->is_alias())
2076 rtype = rtype->named_type()->real_type()->forwarded();
2077 if (rtype->is_error_type())
2078 ;
2079 else if (rtype->named_type() != NULL)
2080 {
2081 if (rtype->named_type()->named_object()->package() != NULL)
2082 go_error_at(type->receiver()->location(),
2083 "may not define methods on non-local type");
2084 }
2085 else if (rtype->forward_declaration_type() != NULL)
2086 {
2087 // Go ahead and add the method in case we need to report
2088 // an error when we see the definition.
2089 rtype->forward_declaration_type()->add_existing_method(ret);
2090 }
2091 else
2092 go_error_at(type->receiver()->location(),
2093 ("invalid receiver type "
2094 "(receiver must be a named type)"));
2095 }
2096 }
2097 else if (!type->is_method())
2098 {
2099 ret = this->package_->bindings()->add_function(*pname, NULL, function);
2100 if (!ret->is_function() || ret->func_value() != function)
2101 {
2102 // Redefinition error. Invent a name to avoid knockon
2103 // errors.
2104 std::string rname(this->redefined_function_name());
2105 ret = this->package_->bindings()->add_function(rname, NULL, function);
2106 }
2107 }
2108 else
2109 {
2110 if (!add_method_to_type)
2111 ret = Named_object::make_function(name, NULL, function);
2112 else
2113 {
2114 go_assert(at_top_level);
2115 Type* rtype = type->receiver()->type();
2116
2117 while (rtype->named_type() != NULL
2118 && rtype->named_type()->is_alias())
2119 rtype = rtype->named_type()->real_type()->forwarded();
2120
2121 // We want to look through the pointer created by the
2122 // parser, without getting an error if the type is not yet
2123 // defined.
2124 if (rtype->classification() == Type::TYPE_POINTER)
2125 rtype = rtype->points_to();
2126
2127 while (rtype->named_type() != NULL
2128 && rtype->named_type()->is_alias())
2129 rtype = rtype->named_type()->real_type()->forwarded();
2130
2131 if (rtype->is_error_type())
2132 ret = Named_object::make_function(name, NULL, function);
2133 else if (rtype->named_type() != NULL)
2134 {
2135 if (rtype->named_type()->named_object()->package() != NULL)
2136 {
2137 go_error_at(type->receiver()->location(),
2138 "may not define methods on non-local type");
2139 ret = Named_object::make_function(name, NULL, function);
2140 }
2141 else
2142 {
2143 ret = rtype->named_type()->add_method(name, function);
2144 if (!ret->is_function())
2145 {
2146 // Redefinition error.
2147 ret = Named_object::make_function(name, NULL, function);
2148 }
2149 }
2150 }
2151 else if (rtype->forward_declaration_type() != NULL)
2152 {
2153 Named_object* type_no =
2154 rtype->forward_declaration_type()->named_object();
2155 if (type_no->is_unknown())
2156 {
2157 // If we are seeing methods it really must be a
2158 // type. Declare it as such. An alternative would
2159 // be to support lists of methods for unknown
2160 // expressions. Either way the error messages if
2161 // this is not a type are going to get confusing.
2162 Named_object* declared =
2163 this->declare_package_type(type_no->name(),
2164 type_no->location());
2165 go_assert(declared
2166 == type_no->unknown_value()->real_named_object());
2167 }
2168 ret = rtype->forward_declaration_type()->add_method(name,
2169 function);
2170 }
2171 else
2172 {
2173 go_error_at(type->receiver()->location(),
2174 ("invalid receiver type (receiver must "
2175 "be a named type)"));
2176 ret = Named_object::make_function(name, NULL, function);
2177 }
2178 }
2179 this->package_->bindings()->add_method(ret);
2180 }
2181
2182 this->functions_.resize(this->functions_.size() + 1);
2183 Open_function& of(this->functions_.back());
2184 of.function = ret;
2185 of.blocks.push_back(block);
2186
2187 if (is_init)
2188 {
2189 this->init_functions_.push_back(ret);
2190 this->need_init_fn_ = true;
2191 }
2192
2193 return ret;
2194 }
2195
2196 // Finish compiling a function.
2197
2198 void
finish_function(Location location)2199 Gogo::finish_function(Location location)
2200 {
2201 this->finish_block(location);
2202 go_assert(this->functions_.back().blocks.empty());
2203 this->functions_.pop_back();
2204 }
2205
2206 // Return the current function.
2207
2208 Named_object*
current_function() const2209 Gogo::current_function() const
2210 {
2211 go_assert(!this->functions_.empty());
2212 return this->functions_.back().function;
2213 }
2214
2215 // Start a new block.
2216
2217 void
start_block(Location location)2218 Gogo::start_block(Location location)
2219 {
2220 go_assert(!this->functions_.empty());
2221 Block* block = new Block(this->current_block(), location);
2222 this->functions_.back().blocks.push_back(block);
2223 }
2224
2225 // Finish a block.
2226
2227 Block*
finish_block(Location location)2228 Gogo::finish_block(Location location)
2229 {
2230 go_assert(!this->functions_.empty());
2231 go_assert(!this->functions_.back().blocks.empty());
2232 Block* block = this->functions_.back().blocks.back();
2233 this->functions_.back().blocks.pop_back();
2234 block->set_end_location(location);
2235 return block;
2236 }
2237
2238 // Add an erroneous name.
2239
2240 Named_object*
add_erroneous_name(const std::string & name)2241 Gogo::add_erroneous_name(const std::string& name)
2242 {
2243 return this->package_->bindings()->add_erroneous_name(name);
2244 }
2245
2246 // Add an unknown name.
2247
2248 Named_object*
add_unknown_name(const std::string & name,Location location)2249 Gogo::add_unknown_name(const std::string& name, Location location)
2250 {
2251 return this->package_->bindings()->add_unknown_name(name, location);
2252 }
2253
2254 // Declare a function.
2255
2256 Named_object*
declare_function(const std::string & name,Function_type * type,Location location)2257 Gogo::declare_function(const std::string& name, Function_type* type,
2258 Location location)
2259 {
2260 if (!type->is_method())
2261 return this->current_bindings()->add_function_declaration(name, NULL, type,
2262 location);
2263 else
2264 {
2265 // We don't bother to add this to the list of global
2266 // declarations.
2267 Type* rtype = type->receiver()->type();
2268
2269 while (rtype->named_type() != NULL
2270 && rtype->named_type()->is_alias())
2271 rtype = rtype->named_type()->real_type()->forwarded();
2272
2273 // We want to look through the pointer created by the
2274 // parser, without getting an error if the type is not yet
2275 // defined.
2276 if (rtype->classification() == Type::TYPE_POINTER)
2277 rtype = rtype->points_to();
2278
2279 while (rtype->named_type() != NULL
2280 && rtype->named_type()->is_alias())
2281 rtype = rtype->named_type()->real_type()->forwarded();
2282
2283 if (rtype->is_error_type())
2284 return NULL;
2285 else if (rtype->named_type() != NULL)
2286 return rtype->named_type()->add_method_declaration(name, NULL, type,
2287 location);
2288 else if (rtype->forward_declaration_type() != NULL)
2289 {
2290 Forward_declaration_type* ftype = rtype->forward_declaration_type();
2291 return ftype->add_method_declaration(name, NULL, type, location);
2292 }
2293 else
2294 {
2295 go_error_at(type->receiver()->location(),
2296 "invalid receiver type (receiver must be a named type)");
2297 return Named_object::make_erroneous_name(name);
2298 }
2299 }
2300 }
2301
2302 // Add a label definition.
2303
2304 Label*
add_label_definition(const std::string & label_name,Location location)2305 Gogo::add_label_definition(const std::string& label_name,
2306 Location location)
2307 {
2308 go_assert(!this->functions_.empty());
2309 Function* func = this->functions_.back().function->func_value();
2310 Label* label = func->add_label_definition(this, label_name, location);
2311 this->add_statement(Statement::make_label_statement(label, location));
2312 return label;
2313 }
2314
2315 // Add a label reference.
2316
2317 Label*
add_label_reference(const std::string & label_name,Location location,bool issue_goto_errors)2318 Gogo::add_label_reference(const std::string& label_name,
2319 Location location, bool issue_goto_errors)
2320 {
2321 go_assert(!this->functions_.empty());
2322 Function* func = this->functions_.back().function->func_value();
2323 return func->add_label_reference(this, label_name, location,
2324 issue_goto_errors);
2325 }
2326
2327 // Return the current binding state.
2328
2329 Bindings_snapshot*
bindings_snapshot(Location location)2330 Gogo::bindings_snapshot(Location location)
2331 {
2332 return new Bindings_snapshot(this->current_block(), location);
2333 }
2334
2335 // Add a statement.
2336
2337 void
add_statement(Statement * statement)2338 Gogo::add_statement(Statement* statement)
2339 {
2340 go_assert(!this->functions_.empty()
2341 && !this->functions_.back().blocks.empty());
2342 this->functions_.back().blocks.back()->add_statement(statement);
2343 }
2344
2345 // Add a block.
2346
2347 void
add_block(Block * block,Location location)2348 Gogo::add_block(Block* block, Location location)
2349 {
2350 go_assert(!this->functions_.empty()
2351 && !this->functions_.back().blocks.empty());
2352 Statement* statement = Statement::make_block_statement(block, location);
2353 this->functions_.back().blocks.back()->add_statement(statement);
2354 }
2355
2356 // Add a constant.
2357
2358 Named_object*
add_constant(const Typed_identifier & tid,Expression * expr,int iota_value)2359 Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
2360 int iota_value)
2361 {
2362 return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
2363 }
2364
2365 // Add a type.
2366
2367 void
add_type(const std::string & name,Type * type,Location location)2368 Gogo::add_type(const std::string& name, Type* type, Location location)
2369 {
2370 Named_object* no = this->current_bindings()->add_type(name, NULL, type,
2371 location);
2372 if (!this->in_global_scope() && no->is_type())
2373 {
2374 Named_object* f = this->functions_.back().function;
2375 unsigned int index;
2376 if (f->is_function())
2377 index = f->func_value()->new_local_type_index();
2378 else
2379 index = 0;
2380 no->type_value()->set_in_function(f, index);
2381 }
2382 }
2383
2384 // Add a named type.
2385
2386 void
add_named_type(Named_type * type)2387 Gogo::add_named_type(Named_type* type)
2388 {
2389 go_assert(this->in_global_scope());
2390 this->current_bindings()->add_named_type(type);
2391 }
2392
2393 // Declare a type.
2394
2395 Named_object*
declare_type(const std::string & name,Location location)2396 Gogo::declare_type(const std::string& name, Location location)
2397 {
2398 Bindings* bindings = this->current_bindings();
2399 Named_object* no = bindings->add_type_declaration(name, NULL, location);
2400 if (!this->in_global_scope() && no->is_type_declaration())
2401 {
2402 Named_object* f = this->functions_.back().function;
2403 unsigned int index;
2404 if (f->is_function())
2405 index = f->func_value()->new_local_type_index();
2406 else
2407 index = 0;
2408 no->type_declaration_value()->set_in_function(f, index);
2409 }
2410 return no;
2411 }
2412
2413 // Declare a type at the package level.
2414
2415 Named_object*
declare_package_type(const std::string & name,Location location)2416 Gogo::declare_package_type(const std::string& name, Location location)
2417 {
2418 return this->package_->bindings()->add_type_declaration(name, NULL, location);
2419 }
2420
2421 // Declare a function at the package level.
2422
2423 Named_object*
declare_package_function(const std::string & name,Function_type * type,Location location)2424 Gogo::declare_package_function(const std::string& name, Function_type* type,
2425 Location location)
2426 {
2427 return this->package_->bindings()->add_function_declaration(name, NULL, type,
2428 location);
2429 }
2430
2431 // Add a function declaration to the list of functions we may want to
2432 // inline.
2433
2434 void
add_imported_inlinable_function(Named_object * no)2435 Gogo::add_imported_inlinable_function(Named_object* no)
2436 {
2437 go_assert(no->is_function_declaration());
2438 Function_declaration* fd = no->func_declaration_value();
2439 if (fd->is_on_inlinable_list())
2440 return;
2441 this->imported_inlinable_functions_.push_back(no);
2442 fd->set_is_on_inlinable_list();
2443 }
2444
2445 // Define a type which was already declared.
2446
2447 void
define_type(Named_object * no,Named_type * type)2448 Gogo::define_type(Named_object* no, Named_type* type)
2449 {
2450 this->current_bindings()->define_type(no, type);
2451 }
2452
2453 // Add a variable.
2454
2455 Named_object*
add_variable(const std::string & name,Variable * variable)2456 Gogo::add_variable(const std::string& name, Variable* variable)
2457 {
2458 Named_object* no = this->current_bindings()->add_variable(name, NULL,
2459 variable);
2460
2461 // In a function the middle-end wants to see a DECL_EXPR node.
2462 if (no != NULL
2463 && no->is_variable()
2464 && !no->var_value()->is_parameter()
2465 && !this->functions_.empty())
2466 this->add_statement(Statement::make_variable_declaration(no));
2467
2468 return no;
2469 }
2470
2471 void
rename_if_empty(std::string * pname,const char * tag,unsigned * count)2472 Gogo::rename_if_empty(std::string* pname, const char* tag, unsigned* count)
2473 {
2474 if (pname->empty() || Gogo::is_sink_name(*pname))
2475 {
2476 char buf[50];
2477 go_assert(strlen(tag) < 10);
2478 snprintf(buf, sizeof buf, "%s.%u", tag, *count);
2479 ++(*count);
2480 *pname = buf;
2481 }
2482 }
2483
2484
2485 // Add a sink--a reference to the blank identifier _.
2486
2487 Named_object*
add_sink()2488 Gogo::add_sink()
2489 {
2490 return Named_object::make_sink();
2491 }
2492
2493 // Add a named object for a dot import.
2494
2495 void
add_dot_import_object(Named_object * no)2496 Gogo::add_dot_import_object(Named_object* no)
2497 {
2498 // If the name already exists, then it was defined in some file seen
2499 // earlier. If the earlier name is just a declaration, don't add
2500 // this name, because that will cause the previous declaration to
2501 // merge to this imported name, which should not happen. Just add
2502 // this name to the list of file block names to get appropriate
2503 // errors if we see a later definition.
2504 Named_object* e = this->package_->bindings()->lookup(no->name());
2505 if (e != NULL && e->package() == NULL)
2506 {
2507 if (e->is_unknown())
2508 e = e->resolve();
2509 if (e->package() == NULL
2510 && (e->is_type_declaration()
2511 || e->is_function_declaration()
2512 || e->is_unknown()))
2513 {
2514 this->add_file_block_name(no->name(), no->location());
2515 return;
2516 }
2517 }
2518
2519 this->current_bindings()->add_named_object(no);
2520 }
2521
2522 // Add a linkname. This implements the go:linkname compiler directive.
2523 // We only support this for functions and function declarations.
2524
2525 void
add_linkname(const std::string & go_name,bool is_exported,const std::string & ext_name,Location loc)2526 Gogo::add_linkname(const std::string& go_name, bool is_exported,
2527 const std::string& ext_name, Location loc)
2528 {
2529 Named_object* no =
2530 this->package_->bindings()->lookup(this->pack_hidden_name(go_name,
2531 is_exported));
2532 if (no == NULL)
2533 go_error_at(loc, "%s is not defined", go_name.c_str());
2534 else if (no->is_function())
2535 {
2536 if (ext_name.empty())
2537 no->func_value()->set_is_exported_by_linkname();
2538 else
2539 no->func_value()->set_asm_name(ext_name);
2540 }
2541 else if (no->is_function_declaration())
2542 {
2543 if (ext_name.empty())
2544 go_error_at(loc,
2545 ("%<//go:linkname%> missing external name "
2546 "for declaration of %s"),
2547 go_name.c_str());
2548 else
2549 no->func_declaration_value()->set_asm_name(ext_name);
2550 }
2551 else
2552 go_error_at(loc,
2553 ("%s is not a function; "
2554 "%<//go:linkname%> is only supported for functions"),
2555 go_name.c_str());
2556 }
2557
2558 // Mark all local variables used. This is used when some types of
2559 // parse error occur.
2560
2561 void
mark_locals_used()2562 Gogo::mark_locals_used()
2563 {
2564 for (Open_functions::iterator pf = this->functions_.begin();
2565 pf != this->functions_.end();
2566 ++pf)
2567 {
2568 for (std::vector<Block*>::iterator pb = pf->blocks.begin();
2569 pb != pf->blocks.end();
2570 ++pb)
2571 (*pb)->bindings()->mark_locals_used();
2572 }
2573 }
2574
2575 // Record that we've seen an interface type.
2576
2577 void
record_interface_type(Interface_type * itype)2578 Gogo::record_interface_type(Interface_type* itype)
2579 {
2580 this->interface_types_.push_back(itype);
2581 }
2582
2583 // Define the global names. We do this only after parsing all the
2584 // input files, because the program might define the global names
2585 // itself.
2586
2587 void
define_global_names()2588 Gogo::define_global_names()
2589 {
2590 if (this->is_main_package())
2591 {
2592 // Every Go program has to import the runtime package, so that
2593 // it is properly initialized. We can't use
2594 // predeclared_location here as it will cause runtime functions
2595 // to appear to be builtin functions.
2596 this->import_package("runtime", "_", false, false,
2597 this->package_->location());
2598 }
2599
2600 for (Bindings::const_declarations_iterator p =
2601 this->globals_->begin_declarations();
2602 p != this->globals_->end_declarations();
2603 ++p)
2604 {
2605 Named_object* global_no = p->second;
2606 std::string name(Gogo::pack_hidden_name(global_no->name(), false));
2607 Named_object* no = this->package_->bindings()->lookup(name);
2608 if (no == NULL)
2609 continue;
2610 no = no->resolve();
2611 if (no->is_type_declaration())
2612 {
2613 if (global_no->is_type())
2614 {
2615 if (no->type_declaration_value()->has_methods())
2616 {
2617 for (std::vector<Named_object*>::const_iterator pm =
2618 no->type_declaration_value()->methods()->begin();
2619 pm != no->type_declaration_value()->methods()->end();
2620 pm++)
2621 go_error_at((*pm)->location(),
2622 "may not define methods on non-local type");
2623 }
2624 no->set_type_value(global_no->type_value());
2625 }
2626 else
2627 {
2628 go_error_at(no->location(), "expected type");
2629 Type* errtype = Type::make_error_type();
2630 Named_object* err =
2631 Named_object::make_type("erroneous_type", NULL, errtype,
2632 Linemap::predeclared_location());
2633 no->set_type_value(err->type_value());
2634 }
2635 }
2636 else if (no->is_unknown())
2637 no->unknown_value()->set_real_named_object(global_no);
2638 }
2639
2640 // Give an error if any name is defined in both the package block
2641 // and the file block. For example, this can happen if one file
2642 // imports "fmt" and another file defines a global variable fmt.
2643 for (Bindings::const_declarations_iterator p =
2644 this->package_->bindings()->begin_declarations();
2645 p != this->package_->bindings()->end_declarations();
2646 ++p)
2647 {
2648 if (p->second->is_unknown()
2649 && p->second->unknown_value()->real_named_object() == NULL)
2650 {
2651 // No point in warning about an undefined name, as we will
2652 // get other errors later anyhow.
2653 continue;
2654 }
2655 File_block_names::const_iterator pf =
2656 this->file_block_names_.find(p->second->name());
2657 if (pf != this->file_block_names_.end())
2658 {
2659 std::string n = p->second->message_name();
2660 go_error_at(p->second->location(),
2661 "%qs defined as both imported name and global name",
2662 n.c_str());
2663 go_inform(pf->second, "%qs imported here", n.c_str());
2664 }
2665
2666 // No package scope identifier may be named "init".
2667 if (!p->second->is_function()
2668 && Gogo::unpack_hidden_name(p->second->name()) == "init")
2669 {
2670 go_error_at(p->second->location(),
2671 "cannot declare init - must be func");
2672 }
2673 }
2674 }
2675
2676 // Clear out names in file scope.
2677
2678 void
clear_file_scope()2679 Gogo::clear_file_scope()
2680 {
2681 this->package_->bindings()->clear_file_scope(this);
2682
2683 // Warn about packages which were imported but not used.
2684 bool quiet = saw_errors();
2685 for (Packages::iterator p = this->packages_.begin();
2686 p != this->packages_.end();
2687 ++p)
2688 {
2689 Package* package = p->second;
2690 if (package != this->package_ && !quiet)
2691 {
2692 for (Package::Aliases::const_iterator p1 = package->aliases().begin();
2693 p1 != package->aliases().end();
2694 ++p1)
2695 {
2696 if (!p1->second->used())
2697 {
2698 // Give a more refined error message if the alias name is known.
2699 std::string pkg_name = package->package_name();
2700 if (p1->first != pkg_name && p1->first[0] != '.')
2701 {
2702 go_error_at(p1->second->location(),
2703 "imported and not used: %s as %s",
2704 Gogo::message_name(pkg_name).c_str(),
2705 Gogo::message_name(p1->first).c_str());
2706 }
2707 else
2708 go_error_at(p1->second->location(),
2709 "imported and not used: %s",
2710 Gogo::message_name(pkg_name).c_str());
2711 }
2712 }
2713 }
2714 package->clear_used();
2715 }
2716
2717 this->current_file_imported_unsafe_ = false;
2718 }
2719
2720 // Queue up a type-specific hash function for later writing. These
2721 // are written out in write_specific_type_functions, called after the
2722 // parse tree is lowered.
2723
2724 void
queue_hash_function(Type * type,int64_t size,const std::string & hash_name,Function_type * hash_fntype)2725 Gogo::queue_hash_function(Type* type, int64_t size,
2726 const std::string& hash_name,
2727 Function_type* hash_fntype)
2728 {
2729 go_assert(!this->specific_type_functions_are_written_);
2730 go_assert(!this->in_global_scope());
2731 Specific_type_function::Specific_type_function_kind kind =
2732 Specific_type_function::SPECIFIC_HASH;
2733 Specific_type_function* tsf = new Specific_type_function(type, NULL, size,
2734 kind, hash_name,
2735 hash_fntype);
2736 this->specific_type_functions_.push_back(tsf);
2737 }
2738
2739 // Queue up a type-specific equal function for later writing. These
2740 // are written out in write_specific_type_functions, called after the
2741 // parse tree is lowered.
2742
2743 void
queue_equal_function(Type * type,Named_type * name,int64_t size,const std::string & equal_name,Function_type * equal_fntype)2744 Gogo::queue_equal_function(Type* type, Named_type* name, int64_t size,
2745 const std::string& equal_name,
2746 Function_type* equal_fntype)
2747 {
2748 go_assert(!this->specific_type_functions_are_written_);
2749 go_assert(!this->in_global_scope());
2750 Specific_type_function::Specific_type_function_kind kind =
2751 Specific_type_function::SPECIFIC_EQUAL;
2752 Specific_type_function* tsf = new Specific_type_function(type, name, size,
2753 kind, equal_name,
2754 equal_fntype);
2755 this->specific_type_functions_.push_back(tsf);
2756 }
2757
2758 // Look for types which need specific hash or equality functions.
2759
2760 class Specific_type_functions : public Traverse
2761 {
2762 public:
Specific_type_functions(Gogo * gogo)2763 Specific_type_functions(Gogo* gogo)
2764 : Traverse(traverse_types),
2765 gogo_(gogo)
2766 { }
2767
2768 int
2769 type(Type*);
2770
2771 private:
2772 Gogo* gogo_;
2773 };
2774
2775 int
type(Type * t)2776 Specific_type_functions::type(Type* t)
2777 {
2778 switch (t->classification())
2779 {
2780 case Type::TYPE_NAMED:
2781 {
2782 Named_type* nt = t->named_type();
2783 if (nt->is_alias())
2784 return TRAVERSE_CONTINUE;
2785 if (t->needs_specific_type_functions(this->gogo_))
2786 t->equal_function(this->gogo_, nt, NULL);
2787
2788 // If this is a struct type, we don't want to make functions
2789 // for the unnamed struct.
2790 Type* rt = nt->real_type();
2791 if (rt->struct_type() == NULL)
2792 {
2793 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
2794 return TRAVERSE_EXIT;
2795 }
2796 else
2797 {
2798 // If this type is defined in another package, then we don't
2799 // need to worry about the unexported fields.
2800 bool is_defined_elsewhere = nt->named_object()->package() != NULL;
2801 const Struct_field_list* fields = rt->struct_type()->fields();
2802 for (Struct_field_list::const_iterator p = fields->begin();
2803 p != fields->end();
2804 ++p)
2805 {
2806 if (is_defined_elsewhere
2807 && Gogo::is_hidden_name(p->field_name()))
2808 continue;
2809 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
2810 return TRAVERSE_EXIT;
2811 }
2812 }
2813
2814 return TRAVERSE_SKIP_COMPONENTS;
2815 }
2816
2817 case Type::TYPE_STRUCT:
2818 case Type::TYPE_ARRAY:
2819 if (t->needs_specific_type_functions(this->gogo_))
2820 t->equal_function(this->gogo_, NULL, NULL);
2821 break;
2822
2823 case Type::TYPE_MAP:
2824 {
2825 Type* key_type = t->map_type()->key_type();
2826 if (key_type->needs_specific_type_functions(this->gogo_))
2827 key_type->hash_function(this->gogo_, NULL);
2828 }
2829 break;
2830
2831 default:
2832 break;
2833 }
2834
2835 return TRAVERSE_CONTINUE;
2836 }
2837
2838 // Write out type specific functions.
2839
2840 void
write_specific_type_functions()2841 Gogo::write_specific_type_functions()
2842 {
2843 Specific_type_functions stf(this);
2844 this->traverse(&stf);
2845
2846 while (!this->specific_type_functions_.empty())
2847 {
2848 Specific_type_function* tsf = this->specific_type_functions_.back();
2849 this->specific_type_functions_.pop_back();
2850 if (tsf->kind == Specific_type_function::SPECIFIC_HASH)
2851 tsf->type->write_hash_function(this, tsf->size, tsf->fnname,
2852 tsf->fntype);
2853 else
2854 tsf->type->write_equal_function(this, tsf->name, tsf->size,
2855 tsf->fnname, tsf->fntype);
2856 delete tsf;
2857 }
2858 this->specific_type_functions_are_written_ = true;
2859 }
2860
2861 // Traverse the tree.
2862
2863 void
traverse(Traverse * traverse)2864 Gogo::traverse(Traverse* traverse)
2865 {
2866 // Traverse the current package first for consistency. The other
2867 // packages will only contain imported types, constants, and
2868 // declarations.
2869 if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
2870 return;
2871 for (Packages::const_iterator p = this->packages_.begin();
2872 p != this->packages_.end();
2873 ++p)
2874 {
2875 if (p->second != this->package_)
2876 {
2877 if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
2878 break;
2879 }
2880 }
2881 }
2882
2883 // Add a type to verify. This is used for types of sink variables, in
2884 // order to give appropriate error messages.
2885
2886 void
add_type_to_verify(Type * type)2887 Gogo::add_type_to_verify(Type* type)
2888 {
2889 this->verify_types_.push_back(type);
2890 }
2891
2892 // Traversal class used to verify types.
2893
2894 class Verify_types : public Traverse
2895 {
2896 public:
Verify_types()2897 Verify_types()
2898 : Traverse(traverse_types)
2899 { }
2900
2901 int
2902 type(Type*);
2903 };
2904
2905 // Verify that a type is correct.
2906
2907 int
type(Type * t)2908 Verify_types::type(Type* t)
2909 {
2910 if (!t->verify())
2911 return TRAVERSE_SKIP_COMPONENTS;
2912 return TRAVERSE_CONTINUE;
2913 }
2914
2915 // Verify that all types are correct.
2916
2917 void
verify_types()2918 Gogo::verify_types()
2919 {
2920 Verify_types traverse;
2921 this->traverse(&traverse);
2922
2923 for (std::vector<Type*>::iterator p = this->verify_types_.begin();
2924 p != this->verify_types_.end();
2925 ++p)
2926 (*p)->verify();
2927 this->verify_types_.clear();
2928 }
2929
2930 // Traversal class used to lower parse tree.
2931
2932 class Lower_parse_tree : public Traverse
2933 {
2934 public:
Lower_parse_tree(Gogo * gogo,Named_object * function)2935 Lower_parse_tree(Gogo* gogo, Named_object* function)
2936 : Traverse(traverse_variables
2937 | traverse_constants
2938 | traverse_functions
2939 | traverse_statements
2940 | traverse_expressions),
2941 gogo_(gogo), function_(function), iota_value_(-1), inserter_()
2942 { }
2943
2944 void
set_inserter(const Statement_inserter * inserter)2945 set_inserter(const Statement_inserter* inserter)
2946 { this->inserter_ = *inserter; }
2947
2948 int
2949 variable(Named_object*);
2950
2951 int
2952 constant(Named_object*, bool);
2953
2954 int
2955 function(Named_object*);
2956
2957 int
2958 statement(Block*, size_t* pindex, Statement*);
2959
2960 int
2961 expression(Expression**);
2962
2963 private:
2964 // General IR.
2965 Gogo* gogo_;
2966 // The function we are traversing.
2967 Named_object* function_;
2968 // Value to use for the predeclared constant iota.
2969 int iota_value_;
2970 // Current statement inserter for use by expressions.
2971 Statement_inserter inserter_;
2972 };
2973
2974 // Lower variables.
2975
2976 int
variable(Named_object * no)2977 Lower_parse_tree::variable(Named_object* no)
2978 {
2979 if (!no->is_variable())
2980 return TRAVERSE_CONTINUE;
2981
2982 if (no->is_variable() && no->var_value()->is_global())
2983 {
2984 // Global variables can have loops in their initialization
2985 // expressions. This is handled in lower_init_expression.
2986 no->var_value()->lower_init_expression(this->gogo_, this->function_,
2987 &this->inserter_);
2988 return TRAVERSE_CONTINUE;
2989 }
2990
2991 // This is a local variable. We are going to return
2992 // TRAVERSE_SKIP_COMPONENTS here because we want to traverse the
2993 // initialization expression when we reach the variable declaration
2994 // statement. However, that means that we need to traverse the type
2995 // ourselves.
2996 if (no->var_value()->has_type())
2997 {
2998 Type* type = no->var_value()->type();
2999 if (type != NULL)
3000 {
3001 if (Type::traverse(type, this) == TRAVERSE_EXIT)
3002 return TRAVERSE_EXIT;
3003 }
3004 }
3005 go_assert(!no->var_value()->has_pre_init());
3006
3007 return TRAVERSE_SKIP_COMPONENTS;
3008 }
3009
3010 // Lower constants. We handle constants specially so that we can set
3011 // the right value for the predeclared constant iota. This works in
3012 // conjunction with the way we lower Const_expression objects.
3013
3014 int
constant(Named_object * no,bool)3015 Lower_parse_tree::constant(Named_object* no, bool)
3016 {
3017 Named_constant* nc = no->const_value();
3018
3019 // Don't get into trouble if the constant's initializer expression
3020 // refers to the constant itself.
3021 if (nc->lowering())
3022 return TRAVERSE_CONTINUE;
3023 nc->set_lowering();
3024
3025 go_assert(this->iota_value_ == -1);
3026 this->iota_value_ = nc->iota_value();
3027 nc->traverse_expression(this);
3028 this->iota_value_ = -1;
3029
3030 nc->clear_lowering();
3031
3032 // We will traverse the expression a second time, but that will be
3033 // fast.
3034
3035 return TRAVERSE_CONTINUE;
3036 }
3037
3038 // Lower the body of a function, and set the closure type. Record the
3039 // function while lowering it, so that we can pass it down when
3040 // lowering an expression.
3041
3042 int
function(Named_object * no)3043 Lower_parse_tree::function(Named_object* no)
3044 {
3045 no->func_value()->set_closure_type();
3046
3047 go_assert(this->function_ == NULL);
3048 this->function_ = no;
3049 int t = no->func_value()->traverse(this);
3050 this->function_ = NULL;
3051
3052 if (t == TRAVERSE_EXIT)
3053 return t;
3054 return TRAVERSE_SKIP_COMPONENTS;
3055 }
3056
3057 // Lower statement parse trees.
3058
3059 int
statement(Block * block,size_t * pindex,Statement * sorig)3060 Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
3061 {
3062 // Because we explicitly traverse the statement's contents
3063 // ourselves, we want to skip block statements here. There is
3064 // nothing to lower in a block statement.
3065 if (sorig->is_block_statement())
3066 return TRAVERSE_CONTINUE;
3067
3068 Statement_inserter hold_inserter(this->inserter_);
3069 this->inserter_ = Statement_inserter(block, pindex);
3070
3071 // Lower the expressions first.
3072 int t = sorig->traverse_contents(this);
3073 if (t == TRAVERSE_EXIT)
3074 {
3075 this->inserter_ = hold_inserter;
3076 return t;
3077 }
3078
3079 // Keep lowering until nothing changes.
3080 Statement* s = sorig;
3081 while (true)
3082 {
3083 Statement* snew = s->lower(this->gogo_, this->function_, block,
3084 &this->inserter_);
3085 if (snew == s)
3086 break;
3087 s = snew;
3088 t = s->traverse_contents(this);
3089 if (t == TRAVERSE_EXIT)
3090 {
3091 this->inserter_ = hold_inserter;
3092 return t;
3093 }
3094 }
3095
3096 if (s != sorig)
3097 block->replace_statement(*pindex, s);
3098
3099 this->inserter_ = hold_inserter;
3100 return TRAVERSE_SKIP_COMPONENTS;
3101 }
3102
3103 // Lower expression parse trees.
3104
3105 int
expression(Expression ** pexpr)3106 Lower_parse_tree::expression(Expression** pexpr)
3107 {
3108 // We have to lower all subexpressions first, so that we can get
3109 // their type if necessary. This is awkward, because we don't have
3110 // a postorder traversal pass.
3111 if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
3112 return TRAVERSE_EXIT;
3113 // Keep lowering until nothing changes.
3114 while (true)
3115 {
3116 Expression* e = *pexpr;
3117 Expression* enew = e->lower(this->gogo_, this->function_,
3118 &this->inserter_, this->iota_value_);
3119 if (enew == e)
3120 break;
3121 if (enew->traverse_subexpressions(this) == TRAVERSE_EXIT)
3122 return TRAVERSE_EXIT;
3123 *pexpr = enew;
3124 }
3125
3126 // Lower the type of this expression before the parent looks at it,
3127 // in case the type contains an array that has expressions in its
3128 // length. Skip an Unknown_expression, as at this point that means
3129 // a composite literal key that does not have a type.
3130 if ((*pexpr)->unknown_expression() == NULL)
3131 Type::traverse((*pexpr)->type(), this);
3132
3133 return TRAVERSE_SKIP_COMPONENTS;
3134 }
3135
3136 // Lower the parse tree. This is called after the parse is complete,
3137 // when all names should be resolved.
3138
3139 void
lower_parse_tree()3140 Gogo::lower_parse_tree()
3141 {
3142 Lower_parse_tree lower_parse_tree(this, NULL);
3143 this->traverse(&lower_parse_tree);
3144
3145 // If we found any functions defined in other packages that are
3146 // inlinables, import their bodies and turn them into functions.
3147 //
3148 // Note that as we import inlinable functions we may find more
3149 // inlinable functions, so don't use an iterator.
3150 for (size_t i = 0; i < this->imported_inlinable_functions_.size(); i++)
3151 {
3152 Named_object* no = this->imported_inlinable_functions_[i];
3153 no->func_declaration_value()->import_function_body(this, no);
3154 }
3155
3156 // There might be type definitions that involve expressions such as the
3157 // array length. Make sure to lower these expressions as well. Otherwise,
3158 // errors hidden within a type can introduce unexpected errors into later
3159 // passes.
3160 for (std::vector<Type*>::iterator p = this->verify_types_.begin();
3161 p != this->verify_types_.end();
3162 ++p)
3163 Type::traverse(*p, &lower_parse_tree);
3164 }
3165
3166 // Lower a block.
3167
3168 void
lower_block(Named_object * function,Block * block)3169 Gogo::lower_block(Named_object* function, Block* block)
3170 {
3171 Lower_parse_tree lower_parse_tree(this, function);
3172 block->traverse(&lower_parse_tree);
3173 }
3174
3175 // Lower an expression. INSERTER may be NULL, in which case the
3176 // expression had better not need to create any temporaries.
3177
3178 void
lower_expression(Named_object * function,Statement_inserter * inserter,Expression ** pexpr)3179 Gogo::lower_expression(Named_object* function, Statement_inserter* inserter,
3180 Expression** pexpr)
3181 {
3182 Lower_parse_tree lower_parse_tree(this, function);
3183 if (inserter != NULL)
3184 lower_parse_tree.set_inserter(inserter);
3185 lower_parse_tree.expression(pexpr);
3186 }
3187
3188 // Lower a constant. This is called when lowering a reference to a
3189 // constant. We have to make sure that the constant has already been
3190 // lowered.
3191
3192 void
lower_constant(Named_object * no)3193 Gogo::lower_constant(Named_object* no)
3194 {
3195 go_assert(no->is_const());
3196 Lower_parse_tree lower(this, NULL);
3197 lower.constant(no, false);
3198 }
3199
3200 // Make implicit type conversions explicit. Currently only does for
3201 // interface conversions, so the escape analysis can see them and
3202 // optimize.
3203
3204 class Add_conversions : public Traverse
3205 {
3206 public:
Add_conversions()3207 Add_conversions()
3208 : Traverse(traverse_statements
3209 | traverse_expressions)
3210 { }
3211
3212 int
3213 statement(Block*, size_t* pindex, Statement*);
3214
3215 int
3216 expression(Expression**);
3217 };
3218
3219 // Add explicit conversions in a statement.
3220
3221 int
statement(Block *,size_t *,Statement * sorig)3222 Add_conversions::statement(Block*, size_t*, Statement* sorig)
3223 {
3224 sorig->add_conversions();
3225 return TRAVERSE_CONTINUE;
3226 }
3227
3228 // Add explicit conversions in an expression.
3229
3230 int
expression(Expression ** pexpr)3231 Add_conversions::expression(Expression** pexpr)
3232 {
3233 (*pexpr)->add_conversions();
3234 return TRAVERSE_CONTINUE;
3235 }
3236
3237 void
add_conversions()3238 Gogo::add_conversions()
3239 {
3240 Add_conversions add_conversions;
3241 this->traverse(&add_conversions);
3242 }
3243
3244 void
add_conversions_in_block(Block * b)3245 Gogo::add_conversions_in_block(Block *b)
3246 {
3247 Add_conversions add_conversions;
3248 b->traverse(&add_conversions);
3249 }
3250
3251 // Traversal class for simple deadcode elimination.
3252
3253 class Remove_deadcode : public Traverse
3254 {
3255 public:
Remove_deadcode()3256 Remove_deadcode()
3257 : Traverse(traverse_statements
3258 | traverse_expressions)
3259 { }
3260
3261 int
3262 statement(Block*, size_t* pindex, Statement*);
3263
3264 int
3265 expression(Expression**);
3266 };
3267
3268 // Remove deadcode in a statement.
3269
3270 int
statement(Block * block,size_t * pindex,Statement * sorig)3271 Remove_deadcode::statement(Block* block, size_t* pindex, Statement* sorig)
3272 {
3273 Location loc = sorig->location();
3274 If_statement* ifs = sorig->if_statement();
3275 if (ifs != NULL)
3276 {
3277 // Remove the dead branch of an if statement.
3278 bool bval;
3279 if (ifs->condition()->boolean_constant_value(&bval))
3280 {
3281 Statement* s;
3282 if (bval)
3283 s = Statement::make_block_statement(ifs->then_block(),
3284 loc);
3285 else
3286 if (ifs->else_block() != NULL)
3287 s = Statement::make_block_statement(ifs->else_block(),
3288 loc);
3289 else
3290 // Make a dummy statement.
3291 s = Statement::make_statement(Expression::make_boolean(false, loc),
3292 true);
3293
3294 block->replace_statement(*pindex, s);
3295 }
3296 }
3297 return TRAVERSE_CONTINUE;
3298 }
3299
3300 // Remove deadcode in an expression.
3301
3302 int
expression(Expression ** pexpr)3303 Remove_deadcode::expression(Expression** pexpr)
3304 {
3305 // Discard the right arm of a shortcut expression of constant value.
3306 Binary_expression* be = (*pexpr)->binary_expression();
3307 bool bval;
3308 if (be != NULL
3309 && be->boolean_constant_value(&bval)
3310 && (be->op() == OPERATOR_ANDAND
3311 || be->op() == OPERATOR_OROR))
3312 *pexpr = Expression::make_boolean(bval, be->location());
3313 return TRAVERSE_CONTINUE;
3314 }
3315
3316 // Remove deadcode.
3317
3318 void
remove_deadcode()3319 Gogo::remove_deadcode()
3320 {
3321 Remove_deadcode remove_deadcode;
3322 this->traverse(&remove_deadcode);
3323 }
3324
3325 // Traverse the tree to create function descriptors as needed.
3326
3327 class Create_function_descriptors : public Traverse
3328 {
3329 public:
Create_function_descriptors(Gogo * gogo)3330 Create_function_descriptors(Gogo* gogo)
3331 : Traverse(traverse_functions | traverse_expressions),
3332 gogo_(gogo)
3333 { }
3334
3335 int
3336 function(Named_object*);
3337
3338 int
3339 expression(Expression**);
3340
3341 private:
3342 Gogo* gogo_;
3343 };
3344
3345 // Create a descriptor for every top-level exported function.
3346
3347 int
function(Named_object * no)3348 Create_function_descriptors::function(Named_object* no)
3349 {
3350 if (no->is_function()
3351 && no->func_value()->enclosing() == NULL
3352 && !no->func_value()->is_method()
3353 && !Gogo::is_hidden_name(no->name())
3354 && !Gogo::is_thunk(no))
3355 no->func_value()->descriptor(this->gogo_, no);
3356
3357 return TRAVERSE_CONTINUE;
3358 }
3359
3360 // If we see a function referenced in any way other than calling it,
3361 // create a descriptor for it.
3362
3363 int
expression(Expression ** pexpr)3364 Create_function_descriptors::expression(Expression** pexpr)
3365 {
3366 Expression* expr = *pexpr;
3367
3368 Func_expression* fe = expr->func_expression();
3369 if (fe != NULL)
3370 {
3371 // We would not get here for a call to this function, so this is
3372 // a reference to a function other than calling it. We need a
3373 // descriptor.
3374 if (fe->closure() != NULL)
3375 return TRAVERSE_CONTINUE;
3376 Named_object* no = fe->named_object();
3377 if (no->is_function() && !no->func_value()->is_method())
3378 no->func_value()->descriptor(this->gogo_, no);
3379 else if (no->is_function_declaration()
3380 && !no->func_declaration_value()->type()->is_method()
3381 && !Linemap::is_predeclared_location(no->location()))
3382 no->func_declaration_value()->descriptor(this->gogo_, no);
3383 return TRAVERSE_CONTINUE;
3384 }
3385
3386 Bound_method_expression* bme = expr->bound_method_expression();
3387 if (bme != NULL)
3388 {
3389 // We would not get here for a call to this method, so this is a
3390 // method value. We need to create a thunk.
3391 Bound_method_expression::create_thunk(this->gogo_, bme->method(),
3392 bme->function());
3393 return TRAVERSE_CONTINUE;
3394 }
3395
3396 Interface_field_reference_expression* ifre =
3397 expr->interface_field_reference_expression();
3398 if (ifre != NULL)
3399 {
3400 // We would not get here for a call to this interface method, so
3401 // this is a method value. We need to create a thunk.
3402 Interface_type* type = ifre->expr()->type()->interface_type();
3403 if (type != NULL)
3404 Interface_field_reference_expression::create_thunk(this->gogo_, type,
3405 ifre->name());
3406 return TRAVERSE_CONTINUE;
3407 }
3408
3409 Call_expression* ce = expr->call_expression();
3410 if (ce != NULL)
3411 {
3412 Expression* fn = ce->fn();
3413 if (fn->func_expression() != NULL
3414 || fn->bound_method_expression() != NULL
3415 || fn->interface_field_reference_expression() != NULL)
3416 {
3417 // Traverse the arguments but not the function.
3418 Expression_list* args = ce->args();
3419 if (args != NULL)
3420 {
3421 if (args->traverse(this) == TRAVERSE_EXIT)
3422 return TRAVERSE_EXIT;
3423 }
3424 return TRAVERSE_SKIP_COMPONENTS;
3425 }
3426 }
3427
3428 return TRAVERSE_CONTINUE;
3429 }
3430
3431 // Create function descriptors as needed. We need a function
3432 // descriptor for all exported functions and for all functions that
3433 // are referenced without being called.
3434
3435 void
create_function_descriptors()3436 Gogo::create_function_descriptors()
3437 {
3438 // Create a function descriptor for any exported function that is
3439 // declared in this package. This is so that we have a descriptor
3440 // for functions written in assembly. Gather the descriptors first
3441 // so that we don't add declarations while looping over them.
3442 std::vector<Named_object*> fndecls;
3443 Bindings* b = this->package_->bindings();
3444 for (Bindings::const_declarations_iterator p = b->begin_declarations();
3445 p != b->end_declarations();
3446 ++p)
3447 {
3448 Named_object* no = p->second;
3449 if (no->is_function_declaration()
3450 && !no->func_declaration_value()->type()->is_method()
3451 && !Linemap::is_predeclared_location(no->location())
3452 && !Gogo::is_hidden_name(no->name()))
3453 fndecls.push_back(no);
3454 }
3455 for (std::vector<Named_object*>::const_iterator p = fndecls.begin();
3456 p != fndecls.end();
3457 ++p)
3458 (*p)->func_declaration_value()->descriptor(this, *p);
3459 fndecls.clear();
3460
3461 Create_function_descriptors cfd(this);
3462 this->traverse(&cfd);
3463 }
3464
3465 // Finalize the methods of an interface type.
3466
3467 int
type(Type * t)3468 Finalize_methods::type(Type* t)
3469 {
3470 // Check the classification so that we don't finalize the methods
3471 // twice for a named interface type.
3472 switch (t->classification())
3473 {
3474 case Type::TYPE_INTERFACE:
3475 t->interface_type()->finalize_methods();
3476 break;
3477
3478 case Type::TYPE_NAMED:
3479 {
3480 Named_type* nt = t->named_type();
3481 Type* rt = nt->real_type();
3482 if (rt->classification() != Type::TYPE_STRUCT)
3483 {
3484 // Finalize the methods of the real type first.
3485 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
3486 return TRAVERSE_EXIT;
3487
3488 // Finalize the methods of this type.
3489 nt->finalize_methods(this->gogo_);
3490 }
3491 else
3492 {
3493 // We don't want to finalize the methods of a named struct
3494 // type, as the methods should be attached to the named
3495 // type, not the struct type. We just want to finalize
3496 // the field types.
3497 //
3498 // It is possible that a field type refers indirectly to
3499 // this type, such as via a field with function type with
3500 // an argument or result whose type is this type. To
3501 // avoid the cycle, first finalize the methods of any
3502 // embedded types, which are the only types we need to
3503 // know to finalize the methods of this type.
3504 const Struct_field_list* fields = rt->struct_type()->fields();
3505 if (fields != NULL)
3506 {
3507 for (Struct_field_list::const_iterator pf = fields->begin();
3508 pf != fields->end();
3509 ++pf)
3510 {
3511 if (pf->is_anonymous())
3512 {
3513 if (Type::traverse(pf->type(), this) == TRAVERSE_EXIT)
3514 return TRAVERSE_EXIT;
3515 }
3516 }
3517 }
3518
3519 // Finalize the methods of this type.
3520 nt->finalize_methods(this->gogo_);
3521
3522 // Finalize all the struct fields.
3523 if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
3524 return TRAVERSE_EXIT;
3525 }
3526
3527 // If this type is defined in a different package, then finalize the
3528 // types of all the methods, since we won't see them otherwise.
3529 if (nt->named_object()->package() != NULL && nt->has_any_methods())
3530 {
3531 const Methods* methods = nt->methods();
3532 for (Methods::const_iterator p = methods->begin();
3533 p != methods->end();
3534 ++p)
3535 {
3536 if (Type::traverse(p->second->type(), this) == TRAVERSE_EXIT)
3537 return TRAVERSE_EXIT;
3538 }
3539 }
3540
3541 // Finalize the types of all methods that are declared but not
3542 // defined, since we won't see the declarations otherwise.
3543 if (nt->named_object()->package() == NULL
3544 && nt->local_methods() != NULL)
3545 {
3546 const Bindings* methods = nt->local_methods();
3547 for (Bindings::const_declarations_iterator p =
3548 methods->begin_declarations();
3549 p != methods->end_declarations();
3550 p++)
3551 {
3552 if (p->second->is_function_declaration())
3553 {
3554 Type* mt = p->second->func_declaration_value()->type();
3555 if (Type::traverse(mt, this) == TRAVERSE_EXIT)
3556 return TRAVERSE_EXIT;
3557 }
3558 }
3559 }
3560
3561 return TRAVERSE_SKIP_COMPONENTS;
3562 }
3563
3564 case Type::TYPE_STRUCT:
3565 // Traverse the field types first in case there is an embedded
3566 // field with methods that the struct should inherit.
3567 if (t->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
3568 return TRAVERSE_EXIT;
3569 t->struct_type()->finalize_methods(this->gogo_);
3570 return TRAVERSE_SKIP_COMPONENTS;
3571
3572 default:
3573 break;
3574 }
3575
3576 return TRAVERSE_CONTINUE;
3577 }
3578
3579 // Finalize method lists and build stub methods for types.
3580
3581 void
finalize_methods()3582 Gogo::finalize_methods()
3583 {
3584 Finalize_methods finalize(this);
3585 this->traverse(&finalize);
3586 }
3587
3588 // Finalize the method list for a type. This is called when a type is
3589 // parsed for an inlined function body, which happens after the
3590 // finalize_methods pass.
3591
3592 void
finalize_methods_for_type(Type * type)3593 Gogo::finalize_methods_for_type(Type* type)
3594 {
3595 Finalize_methods finalize(this);
3596 Type::traverse(type, &finalize);
3597 }
3598
3599 // Set types for unspecified variables and constants.
3600
3601 void
determine_types()3602 Gogo::determine_types()
3603 {
3604 Bindings* bindings = this->current_bindings();
3605 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
3606 p != bindings->end_definitions();
3607 ++p)
3608 {
3609 if ((*p)->is_function())
3610 (*p)->func_value()->determine_types();
3611 else if ((*p)->is_variable())
3612 (*p)->var_value()->determine_type();
3613 else if ((*p)->is_const())
3614 (*p)->const_value()->determine_type();
3615
3616 // See if a variable requires us to build an initialization
3617 // function. We know that we will see all global variables
3618 // here.
3619 if (!this->need_init_fn_ && (*p)->is_variable())
3620 {
3621 Variable* variable = (*p)->var_value();
3622
3623 // If this is a global variable which requires runtime
3624 // initialization, we need an initialization function.
3625 if (!variable->is_global())
3626 ;
3627 else if (variable->init() == NULL)
3628 ;
3629 else if (variable->type()->interface_type() != NULL)
3630 this->need_init_fn_ = true;
3631 else if (variable->init()->is_constant())
3632 ;
3633 else if (!variable->init()->is_composite_literal())
3634 this->need_init_fn_ = true;
3635 else if (variable->init()->is_nonconstant_composite_literal())
3636 this->need_init_fn_ = true;
3637
3638 // If this is a global variable which holds a pointer value,
3639 // then we need an initialization function to register it as a
3640 // GC root.
3641 if (variable->is_global() && variable->type()->has_pointer())
3642 this->need_init_fn_ = true;
3643 }
3644 }
3645
3646 // Determine the types of constants in packages.
3647 for (Packages::const_iterator p = this->packages_.begin();
3648 p != this->packages_.end();
3649 ++p)
3650 p->second->determine_types();
3651 }
3652
3653 // Traversal class used for type checking.
3654
3655 class Check_types_traverse : public Traverse
3656 {
3657 public:
Check_types_traverse(Gogo * gogo)3658 Check_types_traverse(Gogo* gogo)
3659 : Traverse(traverse_variables
3660 | traverse_constants
3661 | traverse_functions
3662 | traverse_statements
3663 | traverse_expressions),
3664 gogo_(gogo)
3665 { }
3666
3667 int
3668 variable(Named_object*);
3669
3670 int
3671 constant(Named_object*, bool);
3672
3673 int
3674 function(Named_object*);
3675
3676 int
3677 statement(Block*, size_t* pindex, Statement*);
3678
3679 int
3680 expression(Expression**);
3681
3682 private:
3683 // General IR.
3684 Gogo* gogo_;
3685 };
3686
3687 // Check that a variable initializer has the right type.
3688
3689 int
variable(Named_object * named_object)3690 Check_types_traverse::variable(Named_object* named_object)
3691 {
3692 if (named_object->is_variable())
3693 {
3694 Variable* var = named_object->var_value();
3695
3696 // Give error if variable type is not defined.
3697 var->type()->base();
3698
3699 Expression* init = var->init();
3700 std::string reason;
3701 if (init != NULL
3702 && !Type::are_assignable(var->type(), init->type(), &reason))
3703 {
3704 if (reason.empty())
3705 go_error_at(var->location(), "incompatible type in initialization");
3706 else
3707 go_error_at(var->location(),
3708 "incompatible type in initialization (%s)",
3709 reason.c_str());
3710 init = Expression::make_error(named_object->location());
3711 var->clear_init();
3712 }
3713 else if (init != NULL
3714 && init->func_expression() != NULL)
3715 {
3716 Named_object* no = init->func_expression()->named_object();
3717 Function_type* fntype;
3718 if (no->is_function())
3719 fntype = no->func_value()->type();
3720 else if (no->is_function_declaration())
3721 fntype = no->func_declaration_value()->type();
3722 else
3723 go_unreachable();
3724
3725 // Builtin functions cannot be used as function values for variable
3726 // initialization.
3727 if (fntype->is_builtin())
3728 {
3729 go_error_at(init->location(),
3730 "invalid use of special built-in function %qs; "
3731 "must be called",
3732 no->message_name().c_str());
3733 }
3734 }
3735 if (!var->is_used()
3736 && !var->is_global()
3737 && !var->is_parameter()
3738 && !var->is_receiver()
3739 && !var->type()->is_error()
3740 && (init == NULL || !init->is_error_expression())
3741 && !Lex::is_invalid_identifier(named_object->name()))
3742 go_error_at(var->location(), "%qs declared and not used",
3743 named_object->message_name().c_str());
3744 }
3745 return TRAVERSE_CONTINUE;
3746 }
3747
3748 // Check that a constant initializer has the right type.
3749
3750 int
constant(Named_object * named_object,bool)3751 Check_types_traverse::constant(Named_object* named_object, bool)
3752 {
3753 Named_constant* constant = named_object->const_value();
3754 Type* ctype = constant->type();
3755 if (ctype->integer_type() == NULL
3756 && ctype->float_type() == NULL
3757 && ctype->complex_type() == NULL
3758 && !ctype->is_boolean_type()
3759 && !ctype->is_string_type())
3760 {
3761 if (ctype->is_nil_type())
3762 go_error_at(constant->location(), "const initializer cannot be nil");
3763 else if (!ctype->is_error())
3764 go_error_at(constant->location(), "invalid constant type");
3765 constant->set_error();
3766 }
3767 else if (!constant->expr()->is_constant())
3768 {
3769 go_error_at(constant->expr()->location(), "expression is not constant");
3770 constant->set_error();
3771 }
3772 else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
3773 NULL))
3774 {
3775 go_error_at(constant->location(),
3776 "initialization expression has wrong type");
3777 constant->set_error();
3778 }
3779 return TRAVERSE_CONTINUE;
3780 }
3781
3782 // There are no types to check in a function, but this is where we
3783 // issue warnings about labels which are defined but not referenced.
3784
3785 int
function(Named_object * no)3786 Check_types_traverse::function(Named_object* no)
3787 {
3788 no->func_value()->check_labels();
3789 return TRAVERSE_CONTINUE;
3790 }
3791
3792 // Check that types are valid in a statement.
3793
3794 int
statement(Block *,size_t *,Statement * s)3795 Check_types_traverse::statement(Block*, size_t*, Statement* s)
3796 {
3797 s->check_types(this->gogo_);
3798 return TRAVERSE_CONTINUE;
3799 }
3800
3801 // Check that types are valid in an expression.
3802
3803 int
expression(Expression ** expr)3804 Check_types_traverse::expression(Expression** expr)
3805 {
3806 (*expr)->check_types(this->gogo_);
3807 return TRAVERSE_CONTINUE;
3808 }
3809
3810 // Check that types are valid.
3811
3812 void
check_types()3813 Gogo::check_types()
3814 {
3815 Check_types_traverse traverse(this);
3816 this->traverse(&traverse);
3817
3818 Bindings* bindings = this->current_bindings();
3819 for (Bindings::const_declarations_iterator p = bindings->begin_declarations();
3820 p != bindings->end_declarations();
3821 ++p)
3822 {
3823 // Also check the types in a function declaration's signature.
3824 Named_object* no = p->second;
3825 if (no->is_function_declaration())
3826 no->func_declaration_value()->check_types();
3827 }
3828 }
3829
3830 // Check the types in a single block.
3831
3832 void
check_types_in_block(Block * block)3833 Gogo::check_types_in_block(Block* block)
3834 {
3835 Check_types_traverse traverse(this);
3836 block->traverse(&traverse);
3837 }
3838
3839 // A traversal class which finds all the expressions which must be
3840 // evaluated in order within a statement or larger expression. This
3841 // is used to implement the rules about order of evaluation.
3842
3843 class Find_eval_ordering : public Traverse
3844 {
3845 private:
3846 typedef std::vector<Expression**> Expression_pointers;
3847
3848 public:
Find_eval_ordering()3849 Find_eval_ordering()
3850 : Traverse(traverse_blocks
3851 | traverse_statements
3852 | traverse_expressions),
3853 exprs_()
3854 { }
3855
3856 size_t
size() const3857 size() const
3858 { return this->exprs_.size(); }
3859
3860 typedef Expression_pointers::const_iterator const_iterator;
3861
3862 const_iterator
begin() const3863 begin() const
3864 { return this->exprs_.begin(); }
3865
3866 const_iterator
end() const3867 end() const
3868 { return this->exprs_.end(); }
3869
3870 protected:
3871 int
block(Block *)3872 block(Block*)
3873 { return TRAVERSE_SKIP_COMPONENTS; }
3874
3875 int
statement(Block *,size_t *,Statement *)3876 statement(Block*, size_t*, Statement*)
3877 { return TRAVERSE_SKIP_COMPONENTS; }
3878
3879 int
3880 expression(Expression**);
3881
3882 private:
3883 // A list of pointers to expressions with side-effects.
3884 Expression_pointers exprs_;
3885 };
3886
3887 // If an expression must be evaluated in order, put it on the list.
3888
3889 int
expression(Expression ** expression_pointer)3890 Find_eval_ordering::expression(Expression** expression_pointer)
3891 {
3892 Binary_expression* binexp = (*expression_pointer)->binary_expression();
3893 if (binexp != NULL
3894 && (binexp->op() == OPERATOR_ANDAND || binexp->op() == OPERATOR_OROR))
3895 {
3896 // Shortcut expressions may potentially have side effects which need
3897 // to be ordered, so add them to the list.
3898 // We don't order its subexpressions here since they may be evaluated
3899 // conditionally. This is handled in remove_shortcuts.
3900 this->exprs_.push_back(expression_pointer);
3901 return TRAVERSE_SKIP_COMPONENTS;
3902 }
3903
3904 // We have to look at subexpressions before this one.
3905 if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
3906 return TRAVERSE_EXIT;
3907 if ((*expression_pointer)->must_eval_in_order())
3908 this->exprs_.push_back(expression_pointer);
3909 return TRAVERSE_SKIP_COMPONENTS;
3910 }
3911
3912 // A traversal class for ordering evaluations.
3913
3914 class Order_eval : public Traverse
3915 {
3916 public:
Order_eval(Gogo * gogo)3917 Order_eval(Gogo* gogo)
3918 : Traverse(traverse_variables
3919 | traverse_statements),
3920 gogo_(gogo)
3921 { }
3922
3923 int
3924 variable(Named_object*);
3925
3926 int
3927 statement(Block*, size_t*, Statement*);
3928
3929 private:
3930 // The IR.
3931 Gogo* gogo_;
3932 };
3933
3934 // Implement the order of evaluation rules for a statement.
3935
3936 int
statement(Block * block,size_t * pindex,Statement * stmt)3937 Order_eval::statement(Block* block, size_t* pindex, Statement* stmt)
3938 {
3939 // FIXME: This approach doesn't work for switch statements, because
3940 // we add the new statements before the whole switch when we need to
3941 // instead add them just before the switch expression. The right
3942 // fix is probably to lower switch statements with nonconstant cases
3943 // to a series of conditionals.
3944 if (stmt->switch_statement() != NULL)
3945 return TRAVERSE_CONTINUE;
3946
3947 Find_eval_ordering find_eval_ordering;
3948
3949 // If S is a variable declaration, then ordinary traversal won't do
3950 // anything. We want to explicitly traverse the initialization
3951 // expression if there is one.
3952 Variable_declaration_statement* vds = stmt->variable_declaration_statement();
3953 Expression* init = NULL;
3954 Expression* orig_init = NULL;
3955 if (vds == NULL)
3956 stmt->traverse_contents(&find_eval_ordering);
3957 else
3958 {
3959 init = vds->var()->var_value()->init();
3960 if (init == NULL)
3961 return TRAVERSE_CONTINUE;
3962 orig_init = init;
3963
3964 // It might seem that this could be
3965 // init->traverse_subexpressions. Unfortunately that can fail
3966 // in a case like
3967 // var err os.Error
3968 // newvar, err := call(arg())
3969 // Here newvar will have an init of call result 0 of
3970 // call(arg()). If we only traverse subexpressions, we will
3971 // only find arg(), and we won't bother to move anything out.
3972 // Then we get to the assignment to err, we will traverse the
3973 // whole statement, and this time we will find both call() and
3974 // arg(), and so we will move them out. This will cause them to
3975 // be put into temporary variables before the assignment to err
3976 // but after the declaration of newvar. To avoid that problem,
3977 // we traverse the entire expression here.
3978 Expression::traverse(&init, &find_eval_ordering);
3979 }
3980
3981 size_t c = find_eval_ordering.size();
3982 if (c == 0)
3983 return TRAVERSE_CONTINUE;
3984
3985 // If there is only one expression with a side-effect, we can
3986 // usually leave it in place.
3987 if (c == 1)
3988 {
3989 switch (stmt->classification())
3990 {
3991 case Statement::STATEMENT_ASSIGNMENT:
3992 // For an assignment statement, we need to evaluate an
3993 // expression on the right hand side before we evaluate any
3994 // index expression on the left hand side, so for that case
3995 // we always move the expression. Otherwise we mishandle
3996 // m[0] = len(m) where m is a map.
3997 break;
3998
3999 case Statement::STATEMENT_EXPRESSION:
4000 {
4001 // If this is a call statement that doesn't return any
4002 // values, it will not have been counted as a value to
4003 // move. We need to move any subexpressions in case they
4004 // are themselves call statements that require passing a
4005 // closure.
4006 Expression* expr = stmt->expression_statement()->expr();
4007 if (expr->call_expression() != NULL
4008 && expr->call_expression()->result_count() == 0)
4009 break;
4010 return TRAVERSE_CONTINUE;
4011 }
4012
4013 default:
4014 // We can leave the expression in place.
4015 return TRAVERSE_CONTINUE;
4016 }
4017 }
4018
4019 bool is_thunk = stmt->thunk_statement() != NULL;
4020 Expression_statement* es = stmt->expression_statement();
4021 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
4022 p != find_eval_ordering.end();
4023 ++p)
4024 {
4025 Expression** pexpr = *p;
4026
4027 // The last expression in a thunk will be the call passed to go
4028 // or defer, which we must not evaluate early.
4029 if (is_thunk && p + 1 == find_eval_ordering.end())
4030 break;
4031
4032 Location loc = (*pexpr)->location();
4033 Statement* s;
4034 if ((*pexpr)->call_expression() == NULL
4035 || (*pexpr)->call_expression()->result_count() < 2)
4036 {
4037 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
4038 loc);
4039 s = ts;
4040 *pexpr = Expression::make_temporary_reference(ts, loc);
4041 }
4042 else
4043 {
4044 // A call expression which returns multiple results needs to
4045 // be handled specially. We can't create a temporary
4046 // because there is no type to give it. Any actual uses of
4047 // the values will be done via Call_result_expressions.
4048 //
4049 // Since a given call expression can be shared by multiple
4050 // Call_result_expressions, avoid hoisting the call the
4051 // second time we see it here. In addition, don't try to
4052 // hoist the top-level multi-return call in the statement,
4053 // since doing this would result a tree with more than one copy
4054 // of the call.
4055 if (this->remember_expression(*pexpr))
4056 s = NULL;
4057 else if (es != NULL && *pexpr == es->expr())
4058 s = NULL;
4059 else
4060 s = Statement::make_statement(*pexpr, true);
4061 }
4062
4063 if (s != NULL)
4064 {
4065 block->insert_statement_before(*pindex, s);
4066 ++*pindex;
4067 }
4068 }
4069
4070 if (init != orig_init)
4071 vds->var()->var_value()->set_init(init);
4072
4073 return TRAVERSE_CONTINUE;
4074 }
4075
4076 // Implement the order of evaluation rules for the initializer of a
4077 // global variable.
4078
4079 int
variable(Named_object * no)4080 Order_eval::variable(Named_object* no)
4081 {
4082 if (no->is_result_variable())
4083 return TRAVERSE_CONTINUE;
4084 Variable* var = no->var_value();
4085 Expression* init = var->init();
4086 if (!var->is_global() || init == NULL)
4087 return TRAVERSE_CONTINUE;
4088
4089 Find_eval_ordering find_eval_ordering;
4090 Expression::traverse(&init, &find_eval_ordering);
4091
4092 if (find_eval_ordering.size() <= 1)
4093 {
4094 // If there is only one expression with a side-effect, we can
4095 // leave it in place.
4096 return TRAVERSE_SKIP_COMPONENTS;
4097 }
4098
4099 Expression* orig_init = init;
4100
4101 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
4102 p != find_eval_ordering.end();
4103 ++p)
4104 {
4105 Expression** pexpr = *p;
4106 Location loc = (*pexpr)->location();
4107 Statement* s;
4108 if ((*pexpr)->call_expression() == NULL
4109 || (*pexpr)->call_expression()->result_count() < 2)
4110 {
4111 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
4112 loc);
4113 s = ts;
4114 *pexpr = Expression::make_temporary_reference(ts, loc);
4115 }
4116 else
4117 {
4118 // A call expression which returns multiple results needs to
4119 // be handled specially.
4120 s = Statement::make_statement(*pexpr, true);
4121 }
4122 var->add_preinit_statement(this->gogo_, s);
4123 }
4124
4125 if (init != orig_init)
4126 var->set_init(init);
4127
4128 return TRAVERSE_SKIP_COMPONENTS;
4129 }
4130
4131 // Use temporary variables to implement the order of evaluation rules.
4132
4133 void
order_evaluations()4134 Gogo::order_evaluations()
4135 {
4136 Order_eval order_eval(this);
4137 this->traverse(&order_eval);
4138 }
4139
4140 // Order evaluations in a block.
4141
4142 void
order_block(Block * block)4143 Gogo::order_block(Block* block)
4144 {
4145 Order_eval order_eval(this);
4146 block->traverse(&order_eval);
4147 }
4148
4149 // A traversal class used to find a single shortcut operator within an
4150 // expression.
4151
4152 class Find_shortcut : public Traverse
4153 {
4154 public:
Find_shortcut()4155 Find_shortcut()
4156 : Traverse(traverse_blocks
4157 | traverse_statements
4158 | traverse_expressions),
4159 found_(NULL)
4160 { }
4161
4162 // A pointer to the expression which was found, or NULL if none was
4163 // found.
4164 Expression**
found() const4165 found() const
4166 { return this->found_; }
4167
4168 protected:
4169 int
block(Block *)4170 block(Block*)
4171 { return TRAVERSE_SKIP_COMPONENTS; }
4172
4173 int
statement(Block *,size_t *,Statement *)4174 statement(Block*, size_t*, Statement*)
4175 { return TRAVERSE_SKIP_COMPONENTS; }
4176
4177 int
4178 expression(Expression**);
4179
4180 private:
4181 Expression** found_;
4182 };
4183
4184 // Find a shortcut expression.
4185
4186 int
expression(Expression ** pexpr)4187 Find_shortcut::expression(Expression** pexpr)
4188 {
4189 Expression* expr = *pexpr;
4190 Binary_expression* be = expr->binary_expression();
4191 if (be == NULL)
4192 return TRAVERSE_CONTINUE;
4193 Operator op = be->op();
4194 if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
4195 return TRAVERSE_CONTINUE;
4196 go_assert(this->found_ == NULL);
4197 this->found_ = pexpr;
4198 return TRAVERSE_EXIT;
4199 }
4200
4201 // A traversal class used to turn shortcut operators into explicit if
4202 // statements.
4203
4204 class Shortcuts : public Traverse
4205 {
4206 public:
Shortcuts(Gogo * gogo)4207 Shortcuts(Gogo* gogo)
4208 : Traverse(traverse_variables
4209 | traverse_statements),
4210 gogo_(gogo)
4211 { }
4212
4213 protected:
4214 int
4215 variable(Named_object*);
4216
4217 int
4218 statement(Block*, size_t*, Statement*);
4219
4220 private:
4221 // Convert a shortcut operator.
4222 Statement*
4223 convert_shortcut(Block* enclosing, Expression** pshortcut);
4224
4225 // The IR.
4226 Gogo* gogo_;
4227 };
4228
4229 // Remove shortcut operators in a single statement.
4230
4231 int
statement(Block * block,size_t * pindex,Statement * s)4232 Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
4233 {
4234 // FIXME: This approach doesn't work for switch statements, because
4235 // we add the new statements before the whole switch when we need to
4236 // instead add them just before the switch expression. The right
4237 // fix is probably to lower switch statements with nonconstant cases
4238 // to a series of conditionals.
4239 if (s->switch_statement() != NULL)
4240 return TRAVERSE_CONTINUE;
4241
4242 while (true)
4243 {
4244 Find_shortcut find_shortcut;
4245
4246 // If S is a variable declaration, then ordinary traversal won't
4247 // do anything. We want to explicitly traverse the
4248 // initialization expression if there is one.
4249 Variable_declaration_statement* vds = s->variable_declaration_statement();
4250 Expression* init = NULL;
4251 if (vds == NULL)
4252 s->traverse_contents(&find_shortcut);
4253 else
4254 {
4255 init = vds->var()->var_value()->init();
4256 if (init == NULL)
4257 return TRAVERSE_CONTINUE;
4258 init->traverse(&init, &find_shortcut);
4259 }
4260 Expression** pshortcut = find_shortcut.found();
4261 if (pshortcut == NULL)
4262 return TRAVERSE_CONTINUE;
4263
4264 Statement* snew = this->convert_shortcut(block, pshortcut);
4265 block->insert_statement_before(*pindex, snew);
4266 ++*pindex;
4267
4268 if (pshortcut == &init)
4269 vds->var()->var_value()->set_init(init);
4270 }
4271 }
4272
4273 // Remove shortcut operators in the initializer of a global variable.
4274
4275 int
variable(Named_object * no)4276 Shortcuts::variable(Named_object* no)
4277 {
4278 if (no->is_result_variable())
4279 return TRAVERSE_CONTINUE;
4280 Variable* var = no->var_value();
4281 Expression* init = var->init();
4282 if (!var->is_global() || init == NULL)
4283 return TRAVERSE_CONTINUE;
4284
4285 while (true)
4286 {
4287 Find_shortcut find_shortcut;
4288 init->traverse(&init, &find_shortcut);
4289 Expression** pshortcut = find_shortcut.found();
4290 if (pshortcut == NULL)
4291 return TRAVERSE_CONTINUE;
4292
4293 Statement* snew = this->convert_shortcut(NULL, pshortcut);
4294 var->add_preinit_statement(this->gogo_, snew);
4295 if (pshortcut == &init)
4296 var->set_init(init);
4297 }
4298 }
4299
4300 // Given an expression which uses a shortcut operator, return a
4301 // statement which implements it, and update *PSHORTCUT accordingly.
4302
4303 Statement*
convert_shortcut(Block * enclosing,Expression ** pshortcut)4304 Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
4305 {
4306 Binary_expression* shortcut = (*pshortcut)->binary_expression();
4307 Expression* left = shortcut->left();
4308 Expression* right = shortcut->right();
4309 Location loc = shortcut->location();
4310
4311 Block* retblock = new Block(enclosing, loc);
4312 retblock->set_end_location(loc);
4313
4314 Temporary_statement* ts = Statement::make_temporary(shortcut->type(),
4315 left, loc);
4316 retblock->add_statement(ts);
4317
4318 Block* block = new Block(retblock, loc);
4319 block->set_end_location(loc);
4320 Expression* tmpref = Expression::make_temporary_reference(ts, loc);
4321 Statement* assign = Statement::make_assignment(tmpref, right, loc);
4322 block->add_statement(assign);
4323
4324 Expression* cond = Expression::make_temporary_reference(ts, loc);
4325 if (shortcut->binary_expression()->op() == OPERATOR_OROR)
4326 cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
4327
4328 Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
4329 loc);
4330 retblock->add_statement(if_statement);
4331
4332 *pshortcut = Expression::make_temporary_reference(ts, loc);
4333
4334 delete shortcut;
4335
4336 // Now convert any shortcut operators in LEFT and RIGHT.
4337 // LEFT and RIGHT were skipped in the top level
4338 // Gogo::order_evaluations. We need to order their
4339 // components first.
4340 Order_eval order_eval(this->gogo_);
4341 retblock->traverse(&order_eval);
4342 Shortcuts shortcuts(this->gogo_);
4343 retblock->traverse(&shortcuts);
4344
4345 return Statement::make_block_statement(retblock, loc);
4346 }
4347
4348 // Turn shortcut operators into explicit if statements. Doing this
4349 // considerably simplifies the order of evaluation rules.
4350
4351 void
remove_shortcuts()4352 Gogo::remove_shortcuts()
4353 {
4354 Shortcuts shortcuts(this);
4355 this->traverse(&shortcuts);
4356 }
4357
4358 // Turn shortcut operators into explicit if statements in a block.
4359
4360 void
remove_shortcuts_in_block(Block * block)4361 Gogo::remove_shortcuts_in_block(Block* block)
4362 {
4363 Shortcuts shortcuts(this);
4364 block->traverse(&shortcuts);
4365 }
4366
4367 // Traversal to flatten parse tree after order of evaluation rules are applied.
4368
4369 class Flatten : public Traverse
4370 {
4371 public:
Flatten(Gogo * gogo,Named_object * function)4372 Flatten(Gogo* gogo, Named_object* function)
4373 : Traverse(traverse_variables
4374 | traverse_functions
4375 | traverse_statements
4376 | traverse_expressions),
4377 gogo_(gogo), function_(function), inserter_()
4378 { }
4379
4380 void
set_inserter(const Statement_inserter * inserter)4381 set_inserter(const Statement_inserter* inserter)
4382 { this->inserter_ = *inserter; }
4383
4384 int
4385 variable(Named_object*);
4386
4387 int
4388 function(Named_object*);
4389
4390 int
4391 statement(Block*, size_t* pindex, Statement*);
4392
4393 int
4394 expression(Expression**);
4395
4396 private:
4397 // General IR.
4398 Gogo* gogo_;
4399 // The function we are traversing.
4400 Named_object* function_;
4401 // Current statement inserter for use by expressions.
4402 Statement_inserter inserter_;
4403 };
4404
4405 // Flatten variables.
4406
4407 int
variable(Named_object * no)4408 Flatten::variable(Named_object* no)
4409 {
4410 if (!no->is_variable())
4411 return TRAVERSE_CONTINUE;
4412
4413 if (no->is_variable() && no->var_value()->is_global())
4414 {
4415 // Global variables can have loops in their initialization
4416 // expressions. This is handled in flatten_init_expression.
4417 no->var_value()->flatten_init_expression(this->gogo_, this->function_,
4418 &this->inserter_);
4419 return TRAVERSE_CONTINUE;
4420 }
4421
4422 if (!no->var_value()->is_parameter()
4423 && !no->var_value()->is_receiver()
4424 && !no->var_value()->is_closure()
4425 && no->var_value()->is_non_escaping_address_taken()
4426 && !no->var_value()->is_in_heap()
4427 && no->var_value()->toplevel_decl() == NULL)
4428 {
4429 // Local variable that has address taken but not escape.
4430 // It needs to be live beyond its lexical scope. So we
4431 // create a top-level declaration for it.
4432 // No need to do it if it is already in the top level.
4433 Block* top_block = function_->func_value()->block();
4434 if (top_block->bindings()->lookup_local(no->name()) != no)
4435 {
4436 Variable* var = no->var_value();
4437 Temporary_statement* ts =
4438 Statement::make_temporary(var->type(), NULL, var->location());
4439 ts->set_is_address_taken();
4440 top_block->add_statement_at_front(ts);
4441 var->set_toplevel_decl(ts);
4442 }
4443 }
4444
4445 go_assert(!no->var_value()->has_pre_init());
4446
4447 return TRAVERSE_SKIP_COMPONENTS;
4448 }
4449
4450 // Flatten the body of a function. Record the function while flattening it,
4451 // so that we can pass it down when flattening an expression.
4452
4453 int
function(Named_object * no)4454 Flatten::function(Named_object* no)
4455 {
4456 go_assert(this->function_ == NULL);
4457 this->function_ = no;
4458 int t = no->func_value()->traverse(this);
4459 this->function_ = NULL;
4460
4461 if (t == TRAVERSE_EXIT)
4462 return t;
4463 return TRAVERSE_SKIP_COMPONENTS;
4464 }
4465
4466 // Flatten statement parse trees.
4467
4468 int
statement(Block * block,size_t * pindex,Statement * sorig)4469 Flatten::statement(Block* block, size_t* pindex, Statement* sorig)
4470 {
4471 // Because we explicitly traverse the statement's contents
4472 // ourselves, we want to skip block statements here. There is
4473 // nothing to flatten in a block statement.
4474 if (sorig->is_block_statement())
4475 return TRAVERSE_CONTINUE;
4476
4477 Statement_inserter hold_inserter(this->inserter_);
4478 this->inserter_ = Statement_inserter(block, pindex);
4479
4480 // Flatten the expressions first.
4481 int t = sorig->traverse_contents(this);
4482 if (t == TRAVERSE_EXIT)
4483 {
4484 this->inserter_ = hold_inserter;
4485 return t;
4486 }
4487
4488 // Keep flattening until nothing changes.
4489 Statement* s = sorig;
4490 while (true)
4491 {
4492 Statement* snew = s->flatten(this->gogo_, this->function_, block,
4493 &this->inserter_);
4494 if (snew == s)
4495 break;
4496 s = snew;
4497 t = s->traverse_contents(this);
4498 if (t == TRAVERSE_EXIT)
4499 {
4500 this->inserter_ = hold_inserter;
4501 return t;
4502 }
4503 }
4504
4505 if (s != sorig)
4506 block->replace_statement(*pindex, s);
4507
4508 this->inserter_ = hold_inserter;
4509 return TRAVERSE_SKIP_COMPONENTS;
4510 }
4511
4512 // Flatten expression parse trees.
4513
4514 int
expression(Expression ** pexpr)4515 Flatten::expression(Expression** pexpr)
4516 {
4517 // Keep flattening until nothing changes.
4518 while (true)
4519 {
4520 Expression* e = *pexpr;
4521 if (e->traverse_subexpressions(this) == TRAVERSE_EXIT)
4522 return TRAVERSE_EXIT;
4523
4524 Expression* enew = e->flatten(this->gogo_, this->function_,
4525 &this->inserter_);
4526 if (enew == e)
4527 break;
4528 *pexpr = enew;
4529 }
4530 return TRAVERSE_SKIP_COMPONENTS;
4531 }
4532
4533 // Flatten a block.
4534
4535 void
flatten_block(Named_object * function,Block * block)4536 Gogo::flatten_block(Named_object* function, Block* block)
4537 {
4538 Flatten flatten(this, function);
4539 block->traverse(&flatten);
4540 }
4541
4542 // Flatten an expression. INSERTER may be NULL, in which case the
4543 // expression had better not need to create any temporaries.
4544
4545 void
flatten_expression(Named_object * function,Statement_inserter * inserter,Expression ** pexpr)4546 Gogo::flatten_expression(Named_object* function, Statement_inserter* inserter,
4547 Expression** pexpr)
4548 {
4549 Flatten flatten(this, function);
4550 if (inserter != NULL)
4551 flatten.set_inserter(inserter);
4552 flatten.expression(pexpr);
4553 }
4554
4555 void
flatten()4556 Gogo::flatten()
4557 {
4558 Flatten flatten(this, NULL);
4559 this->traverse(&flatten);
4560 }
4561
4562 // Traversal to convert calls to the predeclared recover function to
4563 // pass in an argument indicating whether it can recover from a panic
4564 // or not.
4565
4566 class Convert_recover : public Traverse
4567 {
4568 public:
Convert_recover(Named_object * arg)4569 Convert_recover(Named_object* arg)
4570 : Traverse(traverse_expressions),
4571 arg_(arg)
4572 { }
4573
4574 protected:
4575 int
4576 expression(Expression**);
4577
4578 private:
4579 // The argument to pass to the function.
4580 Named_object* arg_;
4581 };
4582
4583 // Convert calls to recover.
4584
4585 int
expression(Expression ** pp)4586 Convert_recover::expression(Expression** pp)
4587 {
4588 Call_expression* ce = (*pp)->call_expression();
4589 if (ce != NULL && ce->is_recover_call())
4590 ce->set_recover_arg(Expression::make_var_reference(this->arg_,
4591 ce->location()));
4592 return TRAVERSE_CONTINUE;
4593 }
4594
4595 // Traversal for build_recover_thunks.
4596
4597 class Build_recover_thunks : public Traverse
4598 {
4599 public:
Build_recover_thunks(Gogo * gogo)4600 Build_recover_thunks(Gogo* gogo)
4601 : Traverse(traverse_functions),
4602 gogo_(gogo)
4603 { }
4604
4605 int
4606 function(Named_object*);
4607
4608 private:
4609 Expression*
4610 can_recover_arg(Location);
4611
4612 // General IR.
4613 Gogo* gogo_;
4614 };
4615
4616 // If this function calls recover, turn it into a thunk.
4617
4618 int
function(Named_object * orig_no)4619 Build_recover_thunks::function(Named_object* orig_no)
4620 {
4621 Function* orig_func = orig_no->func_value();
4622 if (!orig_func->calls_recover()
4623 || orig_func->is_recover_thunk()
4624 || orig_func->has_recover_thunk())
4625 return TRAVERSE_CONTINUE;
4626
4627 Gogo* gogo = this->gogo_;
4628 Location location = orig_func->location();
4629
4630 static int count;
4631 char buf[50];
4632
4633 Function_type* orig_fntype = orig_func->type();
4634 Typed_identifier_list* new_params = new Typed_identifier_list();
4635 std::string receiver_name;
4636 if (orig_fntype->is_method())
4637 {
4638 const Typed_identifier* receiver = orig_fntype->receiver();
4639 snprintf(buf, sizeof buf, "rt.%u", count);
4640 ++count;
4641 receiver_name = buf;
4642 new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
4643 receiver->location()));
4644 }
4645 const Typed_identifier_list* orig_params = orig_fntype->parameters();
4646 if (orig_params != NULL && !orig_params->empty())
4647 {
4648 for (Typed_identifier_list::const_iterator p = orig_params->begin();
4649 p != orig_params->end();
4650 ++p)
4651 {
4652 snprintf(buf, sizeof buf, "pt.%u", count);
4653 ++count;
4654 new_params->push_back(Typed_identifier(buf, p->type(),
4655 p->location()));
4656 }
4657 }
4658 snprintf(buf, sizeof buf, "pr.%u", count);
4659 ++count;
4660 std::string can_recover_name = buf;
4661 new_params->push_back(Typed_identifier(can_recover_name,
4662 Type::lookup_bool_type(),
4663 orig_fntype->location()));
4664
4665 const Typed_identifier_list* orig_results = orig_fntype->results();
4666 Typed_identifier_list* new_results;
4667 if (orig_results == NULL || orig_results->empty())
4668 new_results = NULL;
4669 else
4670 {
4671 new_results = new Typed_identifier_list();
4672 for (Typed_identifier_list::const_iterator p = orig_results->begin();
4673 p != orig_results->end();
4674 ++p)
4675 new_results->push_back(Typed_identifier("", p->type(), p->location()));
4676 }
4677
4678 Function_type *new_fntype = Type::make_function_type(NULL, new_params,
4679 new_results,
4680 orig_fntype->location());
4681 if (orig_fntype->is_varargs())
4682 new_fntype->set_is_varargs();
4683
4684 Type* rtype = NULL;
4685 if (orig_fntype->is_method())
4686 rtype = orig_fntype->receiver()->type();
4687 std::string name(gogo->recover_thunk_name(orig_no->name(), rtype));
4688 Named_object *new_no = gogo->start_function(name, new_fntype, false,
4689 location);
4690 Function *new_func = new_no->func_value();
4691 if (orig_func->enclosing() != NULL)
4692 new_func->set_enclosing(orig_func->enclosing());
4693
4694 // We build the code for the original function attached to the new
4695 // function, and then swap the original and new function bodies.
4696 // This means that existing references to the original function will
4697 // then refer to the new function. That makes this code a little
4698 // confusing, in that the reference to NEW_NO really refers to the
4699 // other function, not the one we are building.
4700
4701 Expression* closure = NULL;
4702 if (orig_func->needs_closure())
4703 {
4704 // For the new function we are creating, declare a new parameter
4705 // variable NEW_CLOSURE_NO and set it to be the closure variable
4706 // of the function. This will be set to the closure value
4707 // passed in by the caller. Then pass a reference to this
4708 // variable as the closure value when calling the original
4709 // function. In other words, simply pass the closure value
4710 // through the thunk we are creating.
4711 Named_object* orig_closure_no = orig_func->closure_var();
4712 Variable* orig_closure_var = orig_closure_no->var_value();
4713 Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
4714 false, false, location);
4715 new_var->set_is_closure();
4716 snprintf(buf, sizeof buf, "closure.%u", count);
4717 ++count;
4718 Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
4719 new_var);
4720 new_func->set_closure_var(new_closure_no);
4721 closure = Expression::make_var_reference(new_closure_no, location);
4722 }
4723
4724 Expression* fn = Expression::make_func_reference(new_no, closure, location);
4725
4726 Expression_list* args = new Expression_list();
4727 if (new_params != NULL)
4728 {
4729 // Note that we skip the last parameter, which is the boolean
4730 // indicating whether recover can succed.
4731 for (Typed_identifier_list::const_iterator p = new_params->begin();
4732 p + 1 != new_params->end();
4733 ++p)
4734 {
4735 Named_object* p_no = gogo->lookup(p->name(), NULL);
4736 go_assert(p_no != NULL
4737 && p_no->is_variable()
4738 && p_no->var_value()->is_parameter());
4739 args->push_back(Expression::make_var_reference(p_no, location));
4740 }
4741 }
4742 args->push_back(this->can_recover_arg(location));
4743
4744 gogo->start_block(location);
4745
4746 Call_expression* call = Expression::make_call(fn, args, false, location);
4747
4748 // Any varargs call has already been lowered.
4749 call->set_varargs_are_lowered();
4750
4751 Statement* s = Statement::make_return_from_call(call, location);
4752 s->determine_types();
4753 gogo->add_statement(s);
4754
4755 Block* b = gogo->finish_block(location);
4756
4757 gogo->add_block(b, location);
4758
4759 // Lower the call in case it returns multiple results.
4760 gogo->lower_block(new_no, b);
4761
4762 gogo->finish_function(location);
4763
4764 // Swap the function bodies and types.
4765 new_func->swap_for_recover(orig_func);
4766 orig_func->set_is_recover_thunk();
4767 new_func->set_calls_recover();
4768 new_func->set_has_recover_thunk();
4769
4770 Bindings* orig_bindings = orig_func->block()->bindings();
4771 Bindings* new_bindings = new_func->block()->bindings();
4772 if (orig_fntype->is_method())
4773 {
4774 // We changed the receiver to be a regular parameter. We have
4775 // to update the binding accordingly in both functions.
4776 Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
4777 go_assert(orig_rec_no != NULL
4778 && orig_rec_no->is_variable()
4779 && !orig_rec_no->var_value()->is_receiver());
4780 orig_rec_no->var_value()->set_is_receiver();
4781
4782 std::string new_receiver_name(orig_fntype->receiver()->name());
4783 if (new_receiver_name.empty())
4784 {
4785 // Find the receiver. It was named "r.NNN" in
4786 // Gogo::start_function.
4787 for (Bindings::const_definitions_iterator p =
4788 new_bindings->begin_definitions();
4789 p != new_bindings->end_definitions();
4790 ++p)
4791 {
4792 const std::string& pname((*p)->name());
4793 if (pname[0] == 'r' && pname[1] == '.')
4794 {
4795 new_receiver_name = pname;
4796 break;
4797 }
4798 }
4799 go_assert(!new_receiver_name.empty());
4800 }
4801 Named_object* new_rec_no = new_bindings->lookup_local(new_receiver_name);
4802 if (new_rec_no == NULL)
4803 go_assert(saw_errors());
4804 else
4805 {
4806 go_assert(new_rec_no->is_variable()
4807 && new_rec_no->var_value()->is_receiver());
4808 new_rec_no->var_value()->set_is_not_receiver();
4809 }
4810 }
4811
4812 // Because we flipped blocks but not types, the can_recover
4813 // parameter appears in the (now) old bindings as a parameter.
4814 // Change it to a local variable, whereupon it will be discarded.
4815 Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
4816 go_assert(can_recover_no != NULL
4817 && can_recover_no->is_variable()
4818 && can_recover_no->var_value()->is_parameter());
4819 orig_bindings->remove_binding(can_recover_no);
4820
4821 // Add the can_recover argument to the (now) new bindings, and
4822 // attach it to any recover statements.
4823 Variable* can_recover_var = new Variable(Type::lookup_bool_type(), NULL,
4824 false, true, false, location);
4825 can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
4826 can_recover_var);
4827 Convert_recover convert_recover(can_recover_no);
4828 new_func->traverse(&convert_recover);
4829
4830 // Update the function pointers in any named results.
4831 new_func->update_result_variables();
4832 orig_func->update_result_variables();
4833
4834 return TRAVERSE_CONTINUE;
4835 }
4836
4837 // Return the expression to pass for the .can_recover parameter to the
4838 // new function. This indicates whether a call to recover may return
4839 // non-nil. The expression is runtime.canrecover(__builtin_return_address()).
4840
4841 Expression*
can_recover_arg(Location location)4842 Build_recover_thunks::can_recover_arg(Location location)
4843 {
4844 Type* uintptr_type = Type::lookup_integer_type("uintptr");
4845 static Named_object* can_recover;
4846 if (can_recover == NULL)
4847 {
4848 const Location bloc = Linemap::predeclared_location();
4849 Typed_identifier_list* param_types = new Typed_identifier_list();
4850 param_types->push_back(Typed_identifier("a", uintptr_type, bloc));
4851 Type* boolean_type = Type::lookup_bool_type();
4852 Typed_identifier_list* results = new Typed_identifier_list();
4853 results->push_back(Typed_identifier("", boolean_type, bloc));
4854 Function_type* fntype = Type::make_function_type(NULL, param_types,
4855 results, bloc);
4856 can_recover =
4857 Named_object::make_function_declaration("runtime_canrecover",
4858 NULL, fntype, bloc);
4859 can_recover->func_declaration_value()->set_asm_name("runtime.canrecover");
4860 }
4861
4862 Expression* zexpr = Expression::make_integer_ul(0, NULL, location);
4863 Expression* call = Runtime::make_call(Runtime::BUILTIN_RETURN_ADDRESS,
4864 location, 1, zexpr);
4865 call = Expression::make_unsafe_cast(uintptr_type, call, location);
4866
4867 Expression_list* args = new Expression_list();
4868 args->push_back(call);
4869
4870 Expression* fn = Expression::make_func_reference(can_recover, NULL, location);
4871 return Expression::make_call(fn, args, false, location);
4872 }
4873
4874 // Build thunks for functions which call recover. We build a new
4875 // function with an extra parameter, which is whether a call to
4876 // recover can succeed. We then move the body of this function to
4877 // that one. We then turn this function into a thunk which calls the
4878 // new one, passing the value of runtime.canrecover(__builtin_return_address()).
4879 // The function will be marked as not splitting the stack. This will
4880 // cooperate with the implementation of defer to make recover do the
4881 // right thing.
4882
4883 void
build_recover_thunks()4884 Gogo::build_recover_thunks()
4885 {
4886 Build_recover_thunks build_recover_thunks(this);
4887 this->traverse(&build_recover_thunks);
4888 }
4889
4890 // Look for named types to see whether we need to create an interface
4891 // method table.
4892
4893 class Build_method_tables : public Traverse
4894 {
4895 public:
Build_method_tables(Gogo * gogo,const std::vector<Interface_type * > & interfaces)4896 Build_method_tables(Gogo* gogo,
4897 const std::vector<Interface_type*>& interfaces)
4898 : Traverse(traverse_types),
4899 gogo_(gogo), interfaces_(interfaces)
4900 { }
4901
4902 int
4903 type(Type*);
4904
4905 private:
4906 // The IR.
4907 Gogo* gogo_;
4908 // A list of locally defined interfaces which have hidden methods.
4909 const std::vector<Interface_type*>& interfaces_;
4910 };
4911
4912 // Build all required interface method tables for types. We need to
4913 // ensure that we have an interface method table for every interface
4914 // which has a hidden method, for every named type which implements
4915 // that interface. Normally we can just build interface method tables
4916 // as we need them. However, in some cases we can require an
4917 // interface method table for an interface defined in a different
4918 // package for a type defined in that package. If that interface and
4919 // type both use a hidden method, that is OK. However, we will not be
4920 // able to build that interface method table when we need it, because
4921 // the type's hidden method will be static. So we have to build it
4922 // here, and just refer it from other packages as needed.
4923
4924 void
build_interface_method_tables()4925 Gogo::build_interface_method_tables()
4926 {
4927 if (saw_errors())
4928 return;
4929
4930 std::vector<Interface_type*> hidden_interfaces;
4931 hidden_interfaces.reserve(this->interface_types_.size());
4932 for (std::vector<Interface_type*>::const_iterator pi =
4933 this->interface_types_.begin();
4934 pi != this->interface_types_.end();
4935 ++pi)
4936 {
4937 const Typed_identifier_list* methods = (*pi)->methods();
4938 if (methods == NULL)
4939 continue;
4940 for (Typed_identifier_list::const_iterator pm = methods->begin();
4941 pm != methods->end();
4942 ++pm)
4943 {
4944 if (Gogo::is_hidden_name(pm->name()))
4945 {
4946 hidden_interfaces.push_back(*pi);
4947 break;
4948 }
4949 }
4950 }
4951
4952 if (!hidden_interfaces.empty())
4953 {
4954 // Now traverse the tree looking for all named types.
4955 Build_method_tables bmt(this, hidden_interfaces);
4956 this->traverse(&bmt);
4957 }
4958
4959 // We no longer need the list of interfaces.
4960
4961 this->interface_types_.clear();
4962 }
4963
4964 // This is called for each type. For a named type, for each of the
4965 // interfaces with hidden methods that it implements, create the
4966 // method table.
4967
4968 int
type(Type * type)4969 Build_method_tables::type(Type* type)
4970 {
4971 Named_type* nt = type->named_type();
4972 Struct_type* st = type->struct_type();
4973 if (nt != NULL || st != NULL)
4974 {
4975 Translate_context context(this->gogo_, NULL, NULL, NULL);
4976 for (std::vector<Interface_type*>::const_iterator p =
4977 this->interfaces_.begin();
4978 p != this->interfaces_.end();
4979 ++p)
4980 {
4981 // We ask whether a pointer to the named type implements the
4982 // interface, because a pointer can implement more methods
4983 // than a value.
4984 if (nt != NULL)
4985 {
4986 if ((*p)->implements_interface(Type::make_pointer_type(nt),
4987 NULL))
4988 {
4989 nt->interface_method_table(*p, false)->get_backend(&context);
4990 nt->interface_method_table(*p, true)->get_backend(&context);
4991 }
4992 }
4993 else
4994 {
4995 if ((*p)->implements_interface(Type::make_pointer_type(st),
4996 NULL))
4997 {
4998 st->interface_method_table(*p, false)->get_backend(&context);
4999 st->interface_method_table(*p, true)->get_backend(&context);
5000 }
5001 }
5002 }
5003 }
5004 return TRAVERSE_CONTINUE;
5005 }
5006
5007 // Return an expression which allocates memory to hold values of type TYPE.
5008
5009 Expression*
allocate_memory(Type * type,Location location)5010 Gogo::allocate_memory(Type* type, Location location)
5011 {
5012 Expression* td = Expression::make_type_descriptor(type, location);
5013 return Runtime::make_call(Runtime::NEW, location, 1, td);
5014 }
5015
5016 // Traversal class used to check for return statements.
5017
5018 class Check_return_statements_traverse : public Traverse
5019 {
5020 public:
Check_return_statements_traverse()5021 Check_return_statements_traverse()
5022 : Traverse(traverse_functions)
5023 { }
5024
5025 int
5026 function(Named_object*);
5027 };
5028
5029 // Check that a function has a return statement if it needs one.
5030
5031 int
function(Named_object * no)5032 Check_return_statements_traverse::function(Named_object* no)
5033 {
5034 Function* func = no->func_value();
5035 const Function_type* fntype = func->type();
5036 const Typed_identifier_list* results = fntype->results();
5037
5038 // We only need a return statement if there is a return value.
5039 if (results == NULL || results->empty())
5040 return TRAVERSE_CONTINUE;
5041
5042 if (func->block()->may_fall_through())
5043 go_error_at(func->block()->end_location(),
5044 "missing return at end of function");
5045
5046 return TRAVERSE_CONTINUE;
5047 }
5048
5049 // Check return statements.
5050
5051 void
check_return_statements()5052 Gogo::check_return_statements()
5053 {
5054 Check_return_statements_traverse traverse;
5055 this->traverse(&traverse);
5056 }
5057
5058 // Traversal class to decide whether a function body is less than the
5059 // inlining budget. This adjusts *available as it goes, and stops the
5060 // traversal if it goes negative.
5061
5062 class Inline_within_budget : public Traverse
5063 {
5064 public:
Inline_within_budget(int * available)5065 Inline_within_budget(int* available)
5066 : Traverse(traverse_statements
5067 | traverse_expressions),
5068 available_(available)
5069 { }
5070
5071 int
5072 statement(Block*, size_t*, Statement*);
5073
5074 int
5075 expression(Expression**);
5076
5077 private:
5078 // Pointer to remaining budget.
5079 int* available_;
5080 };
5081
5082 // Adjust the budget for the inlining cost of a statement.
5083
5084 int
statement(Block *,size_t *,Statement * s)5085 Inline_within_budget::statement(Block*, size_t*, Statement* s)
5086 {
5087 if (*this->available_ < 0)
5088 return TRAVERSE_EXIT;
5089 *this->available_ -= s->inlining_cost();
5090 return TRAVERSE_CONTINUE;
5091 }
5092
5093 // Adjust the budget for the inlining cost of an expression.
5094
5095 int
expression(Expression ** pexpr)5096 Inline_within_budget::expression(Expression** pexpr)
5097 {
5098 if (*this->available_ < 0)
5099 return TRAVERSE_EXIT;
5100 *this->available_ -= (*pexpr)->inlining_cost();
5101 return TRAVERSE_CONTINUE;
5102 }
5103
5104 // Traversal class to find functions whose body should be exported for
5105 // inlining by other packages.
5106
5107 class Mark_inline_candidates : public Traverse
5108 {
5109 public:
Mark_inline_candidates(Unordered_set (Named_object *)* marked)5110 Mark_inline_candidates(Unordered_set(Named_object*)* marked)
5111 : Traverse(traverse_functions
5112 | traverse_types),
5113 marked_functions_(marked)
5114 { }
5115
5116 int
5117 function(Named_object*);
5118
5119 int
5120 type(Type*);
5121
5122 private:
5123 // We traverse the function body trying to determine how expensive
5124 // it is for inlining. We start with a budget, and decrease that
5125 // budget for each statement and expression. If the budget goes
5126 // negative, we do not export the function body. The value of this
5127 // budget is a heuristic. In the usual GCC spirit, we could
5128 // consider setting this via a command line option.
5129 const int budget_heuristic = 80;
5130
5131 // Set of named objects that are marked as inline candidates.
5132 Unordered_set(Named_object*)* marked_functions_;
5133 };
5134
5135 // Mark a function if it is an inline candidate.
5136
5137 int
function(Named_object * no)5138 Mark_inline_candidates::function(Named_object* no)
5139 {
5140 Function* func = no->func_value();
5141 if ((func->pragmas() & GOPRAGMA_NOINLINE) != 0)
5142 return TRAVERSE_CONTINUE;
5143 int budget = budget_heuristic;
5144 Inline_within_budget iwb(&budget);
5145 func->block()->traverse(&iwb);
5146 if (budget >= 0)
5147 {
5148 func->set_export_for_inlining();
5149 this->marked_functions_->insert(no);
5150 }
5151 return TRAVERSE_CONTINUE;
5152 }
5153
5154 // Mark methods if they are inline candidates.
5155
5156 int
type(Type * t)5157 Mark_inline_candidates::type(Type* t)
5158 {
5159 Named_type* nt = t->named_type();
5160 if (nt == NULL || nt->is_alias())
5161 return TRAVERSE_CONTINUE;
5162 const Bindings* methods = nt->local_methods();
5163 if (methods == NULL)
5164 return TRAVERSE_CONTINUE;
5165 for (Bindings::const_definitions_iterator p = methods->begin_definitions();
5166 p != methods->end_definitions();
5167 ++p)
5168 {
5169 Named_object* no = *p;
5170 go_assert(no->is_function());
5171 Function *func = no->func_value();
5172 if ((func->pragmas() & GOPRAGMA_NOINLINE) != 0)
5173 continue;
5174 int budget = budget_heuristic;
5175 Inline_within_budget iwb(&budget);
5176 func->block()->traverse(&iwb);
5177 if (budget >= 0)
5178 {
5179 func->set_export_for_inlining();
5180 this->marked_functions_->insert(no);
5181 }
5182 }
5183 return TRAVERSE_CONTINUE;
5184 }
5185
5186 // Export identifiers as requested.
5187
5188 void
do_exports()5189 Gogo::do_exports()
5190 {
5191 if (saw_errors())
5192 return;
5193
5194 // Mark any functions whose body should be exported for inlining by
5195 // other packages.
5196 Unordered_set(Named_object*) marked_functions;
5197 Mark_inline_candidates mic(&marked_functions);
5198 this->traverse(&mic);
5199
5200 // For now we always stream to a section. Later we may want to
5201 // support streaming to a separate file.
5202 Stream_to_section stream(this->backend());
5203
5204 // Write out either the prefix or pkgpath depending on how we were
5205 // invoked.
5206 std::string prefix;
5207 std::string pkgpath;
5208 if (this->pkgpath_from_option_)
5209 pkgpath = this->pkgpath_;
5210 else if (this->prefix_from_option_)
5211 prefix = this->prefix_;
5212 else if (this->is_main_package())
5213 pkgpath = "main";
5214 else
5215 prefix = "go";
5216
5217 std::string init_fn_name;
5218 if (this->is_main_package())
5219 init_fn_name = "";
5220 else if (this->need_init_fn_)
5221 init_fn_name = this->get_init_fn_name();
5222 else
5223 init_fn_name = this->dummy_init_fn_name();
5224
5225 Export exp(&stream);
5226 exp.register_builtin_types(this);
5227 exp.export_globals(this->package_name(),
5228 prefix,
5229 pkgpath,
5230 this->packages_,
5231 this->imports_,
5232 init_fn_name,
5233 this->imported_init_fns_,
5234 this->package_->bindings(),
5235 &marked_functions);
5236
5237 if (!this->c_header_.empty() && !saw_errors())
5238 this->write_c_header();
5239 }
5240
5241 // Write the top level named struct types in C format to a C header
5242 // file. This is used when building the runtime package, to share
5243 // struct definitions between C and Go.
5244
5245 void
write_c_header()5246 Gogo::write_c_header()
5247 {
5248 std::ofstream out;
5249 out.open(this->c_header_.c_str());
5250 if (out.fail())
5251 {
5252 go_error_at(Linemap::unknown_location(),
5253 "cannot open %s: %m", this->c_header_.c_str());
5254 return;
5255 }
5256
5257 std::list<Named_object*> types;
5258 Bindings* top = this->package_->bindings();
5259 for (Bindings::const_definitions_iterator p = top->begin_definitions();
5260 p != top->end_definitions();
5261 ++p)
5262 {
5263 Named_object* no = *p;
5264
5265 // Skip names that start with underscore followed by something
5266 // other than an uppercase letter, as when compiling the runtime
5267 // package they are mostly types defined by mkrsysinfo.sh based
5268 // on the C system header files. We don't need to translate
5269 // types to C and back to Go. But do accept the special cases
5270 // _defer, _panic, and _type.
5271 std::string name = Gogo::unpack_hidden_name(no->name());
5272 if (name[0] == '_'
5273 && (name[1] < 'A' || name[1] > 'Z')
5274 && (name != "_defer" && name != "_panic" && name != "_type"))
5275 continue;
5276
5277 if (no->is_type() && no->type_value()->struct_type() != NULL)
5278 types.push_back(no);
5279 if (no->is_const()
5280 && no->const_value()->type()->integer_type() != NULL
5281 && !no->const_value()->is_sink())
5282 {
5283 Numeric_constant nc;
5284 unsigned long val;
5285 if (no->const_value()->expr()->numeric_constant_value(&nc)
5286 && nc.to_unsigned_long(&val) == Numeric_constant::NC_UL_VALID)
5287 {
5288 out << "#define " << no->message_name() << ' ' << val
5289 << std::endl;
5290 }
5291 }
5292 }
5293
5294 std::vector<const Named_object*> written;
5295 int loop = 0;
5296 while (!types.empty())
5297 {
5298 Named_object* no = types.front();
5299 types.pop_front();
5300
5301 std::vector<const Named_object*> requires;
5302 std::vector<const Named_object*> declare;
5303 if (!no->type_value()->struct_type()->can_write_to_c_header(&requires,
5304 &declare))
5305 continue;
5306
5307 bool ok = true;
5308 for (std::vector<const Named_object*>::const_iterator pr
5309 = requires.begin();
5310 pr != requires.end() && ok;
5311 ++pr)
5312 {
5313 for (std::list<Named_object*>::const_iterator pt = types.begin();
5314 pt != types.end() && ok;
5315 ++pt)
5316 if (*pr == *pt)
5317 ok = false;
5318 }
5319 if (!ok)
5320 {
5321 ++loop;
5322 if (loop > 10000)
5323 {
5324 // This should be impossible since the code parsed and
5325 // type checked.
5326 go_unreachable();
5327 }
5328
5329 types.push_back(no);
5330 continue;
5331 }
5332
5333 for (std::vector<const Named_object*>::const_iterator pd
5334 = declare.begin();
5335 pd != declare.end();
5336 ++pd)
5337 {
5338 if (*pd == no)
5339 continue;
5340
5341 std::vector<const Named_object*> drequires;
5342 std::vector<const Named_object*> ddeclare;
5343 if (!(*pd)->type_value()->struct_type()->
5344 can_write_to_c_header(&drequires, &ddeclare))
5345 continue;
5346
5347 bool done = false;
5348 for (std::vector<const Named_object*>::const_iterator pw
5349 = written.begin();
5350 pw != written.end();
5351 ++pw)
5352 {
5353 if (*pw == *pd)
5354 {
5355 done = true;
5356 break;
5357 }
5358 }
5359 if (!done)
5360 {
5361 out << std::endl;
5362 out << "struct " << (*pd)->message_name() << ";" << std::endl;
5363 written.push_back(*pd);
5364 }
5365 }
5366
5367 out << std::endl;
5368 out << "struct " << no->message_name() << " {" << std::endl;
5369 no->type_value()->struct_type()->write_to_c_header(out);
5370 out << "};" << std::endl;
5371 written.push_back(no);
5372 }
5373
5374 out.close();
5375 if (out.fail())
5376 go_error_at(Linemap::unknown_location(),
5377 "error writing to %s: %m", this->c_header_.c_str());
5378 }
5379
5380 // Find the blocks in order to convert named types defined in blocks.
5381
5382 class Convert_named_types : public Traverse
5383 {
5384 public:
Convert_named_types(Gogo * gogo)5385 Convert_named_types(Gogo* gogo)
5386 : Traverse(traverse_blocks),
5387 gogo_(gogo)
5388 { }
5389
5390 protected:
5391 int
5392 block(Block* block);
5393
5394 private:
5395 Gogo* gogo_;
5396 };
5397
5398 int
block(Block * block)5399 Convert_named_types::block(Block* block)
5400 {
5401 this->gogo_->convert_named_types_in_bindings(block->bindings());
5402 return TRAVERSE_CONTINUE;
5403 }
5404
5405 // Convert all named types to the backend representation. Since named
5406 // types can refer to other types, this needs to be done in the right
5407 // sequence, which is handled by Named_type::convert. Here we arrange
5408 // to call that for each named type.
5409
5410 void
convert_named_types()5411 Gogo::convert_named_types()
5412 {
5413 this->convert_named_types_in_bindings(this->globals_);
5414 for (Packages::iterator p = this->packages_.begin();
5415 p != this->packages_.end();
5416 ++p)
5417 {
5418 Package* package = p->second;
5419 this->convert_named_types_in_bindings(package->bindings());
5420 }
5421
5422 Convert_named_types cnt(this);
5423 this->traverse(&cnt);
5424
5425 // Make all the builtin named types used for type descriptors, and
5426 // then convert them. They will only be written out if they are
5427 // needed.
5428 Type::make_type_descriptor_type();
5429 Type::make_type_descriptor_ptr_type();
5430 Function_type::make_function_type_descriptor_type();
5431 Pointer_type::make_pointer_type_descriptor_type();
5432 Struct_type::make_struct_type_descriptor_type();
5433 Array_type::make_array_type_descriptor_type();
5434 Array_type::make_slice_type_descriptor_type();
5435 Map_type::make_map_type_descriptor_type();
5436 Channel_type::make_chan_type_descriptor_type();
5437 Interface_type::make_interface_type_descriptor_type();
5438 Expression::make_func_descriptor_type();
5439 Type::convert_builtin_named_types(this);
5440
5441 Runtime::convert_types(this);
5442
5443 this->named_types_are_converted_ = true;
5444
5445 Type::finish_pointer_types(this);
5446 }
5447
5448 // Convert all names types in a set of bindings.
5449
5450 void
convert_named_types_in_bindings(Bindings * bindings)5451 Gogo::convert_named_types_in_bindings(Bindings* bindings)
5452 {
5453 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
5454 p != bindings->end_definitions();
5455 ++p)
5456 {
5457 if ((*p)->is_type())
5458 (*p)->type_value()->convert(this);
5459 }
5460 }
5461
5462 void
debug_go_gogo(Gogo * gogo)5463 debug_go_gogo(Gogo* gogo)
5464 {
5465 if (gogo != NULL)
5466 gogo->debug_dump();
5467 }
5468
5469 void
debug_dump()5470 Gogo::debug_dump()
5471 {
5472 std::cerr << "Packages:\n";
5473 for (Packages::const_iterator p = this->packages_.begin();
5474 p != this->packages_.end();
5475 ++p)
5476 {
5477 const char *tag = " ";
5478 if (p->second == this->package_)
5479 tag = "* ";
5480 std::cerr << tag << "'" << p->first << "' "
5481 << p->second->pkgpath() << " " << ((void*)p->second) << "\n";
5482 }
5483 }
5484
5485 // Class Function.
5486
Function(Function_type * type,Named_object * enclosing,Block * block,Location location)5487 Function::Function(Function_type* type, Named_object* enclosing, Block* block,
5488 Location location)
5489 : type_(type), enclosing_(enclosing), results_(NULL),
5490 closure_var_(NULL), block_(block), location_(location), labels_(),
5491 local_type_count_(0), descriptor_(NULL), fndecl_(NULL), defer_stack_(NULL),
5492 pragmas_(0), nested_functions_(0), is_sink_(false),
5493 results_are_named_(false), is_unnamed_type_stub_method_(false),
5494 calls_recover_(false), is_recover_thunk_(false), has_recover_thunk_(false),
5495 calls_defer_retaddr_(false), is_type_specific_function_(false),
5496 in_unique_section_(false), export_for_inlining_(false),
5497 is_inline_only_(false), is_referenced_by_inline_(false),
5498 is_exported_by_linkname_(false)
5499 {
5500 }
5501
5502 // Create the named result variables.
5503
5504 void
create_result_variables(Gogo * gogo)5505 Function::create_result_variables(Gogo* gogo)
5506 {
5507 const Typed_identifier_list* results = this->type_->results();
5508 if (results == NULL || results->empty())
5509 return;
5510
5511 if (!results->front().name().empty())
5512 this->results_are_named_ = true;
5513
5514 this->results_ = new Results();
5515 this->results_->reserve(results->size());
5516
5517 Block* block = this->block_;
5518 int index = 0;
5519 for (Typed_identifier_list::const_iterator p = results->begin();
5520 p != results->end();
5521 ++p, ++index)
5522 {
5523 std::string name = p->name();
5524 if (name.empty() || Gogo::is_sink_name(name))
5525 {
5526 static int result_counter;
5527 char buf[100];
5528 snprintf(buf, sizeof buf, "$ret%d", result_counter);
5529 ++result_counter;
5530 name = gogo->pack_hidden_name(buf, false);
5531 }
5532 Result_variable* result = new Result_variable(p->type(), this, index,
5533 p->location());
5534 Named_object* no = block->bindings()->add_result_variable(name, result);
5535 if (no->is_result_variable())
5536 this->results_->push_back(no);
5537 else
5538 {
5539 static int dummy_result_count;
5540 char buf[100];
5541 snprintf(buf, sizeof buf, "$dret%d", dummy_result_count);
5542 ++dummy_result_count;
5543 name = gogo->pack_hidden_name(buf, false);
5544 no = block->bindings()->add_result_variable(name, result);
5545 go_assert(no->is_result_variable());
5546 this->results_->push_back(no);
5547 }
5548 }
5549 }
5550
5551 // Update the named result variables when cloning a function which
5552 // calls recover.
5553
5554 void
update_result_variables()5555 Function::update_result_variables()
5556 {
5557 if (this->results_ == NULL)
5558 return;
5559
5560 for (Results::iterator p = this->results_->begin();
5561 p != this->results_->end();
5562 ++p)
5563 (*p)->result_var_value()->set_function(this);
5564 }
5565
5566 // Whether this method should not be included in the type descriptor.
5567
5568 bool
nointerface() const5569 Function::nointerface() const
5570 {
5571 go_assert(this->is_method());
5572 return (this->pragmas_ & GOPRAGMA_NOINTERFACE) != 0;
5573 }
5574
5575 // Record that this method should not be included in the type
5576 // descriptor.
5577
5578 void
set_nointerface()5579 Function::set_nointerface()
5580 {
5581 this->pragmas_ |= GOPRAGMA_NOINTERFACE;
5582 }
5583
5584 // Return the closure variable, creating it if necessary.
5585
5586 Named_object*
closure_var()5587 Function::closure_var()
5588 {
5589 if (this->closure_var_ == NULL)
5590 {
5591 go_assert(this->descriptor_ == NULL);
5592 // We don't know the type of the variable yet. We add fields as
5593 // we find them.
5594 Location loc = this->type_->location();
5595 Struct_field_list* sfl = new Struct_field_list;
5596 Struct_type* struct_type = Type::make_struct_type(sfl, loc);
5597 struct_type->set_is_struct_incomparable();
5598 Variable* var = new Variable(Type::make_pointer_type(struct_type),
5599 NULL, false, false, false, loc);
5600 var->set_is_used();
5601 var->set_is_closure();
5602 this->closure_var_ = Named_object::make_variable("$closure", NULL, var);
5603 // Note that the new variable is not in any binding contour.
5604 }
5605 return this->closure_var_;
5606 }
5607
5608 // Set the type of the closure variable.
5609
5610 void
set_closure_type()5611 Function::set_closure_type()
5612 {
5613 if (this->closure_var_ == NULL)
5614 return;
5615 Named_object* closure = this->closure_var_;
5616 Struct_type* st = closure->var_value()->type()->deref()->struct_type();
5617
5618 // The first field of a closure is always a pointer to the function
5619 // code.
5620 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
5621 st->push_field(Struct_field(Typed_identifier(".f", voidptr_type,
5622 this->location_)));
5623
5624 unsigned int index = 1;
5625 for (Closure_fields::const_iterator p = this->closure_fields_.begin();
5626 p != this->closure_fields_.end();
5627 ++p, ++index)
5628 {
5629 Named_object* no = p->first;
5630 char buf[20];
5631 snprintf(buf, sizeof buf, "%u", index);
5632 std::string n = no->name() + buf;
5633 Type* var_type;
5634 if (no->is_variable())
5635 var_type = no->var_value()->type();
5636 else
5637 var_type = no->result_var_value()->type();
5638 Type* field_type = Type::make_pointer_type(var_type);
5639 st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
5640 }
5641 }
5642
5643 // Return whether this function is a method.
5644
5645 bool
is_method() const5646 Function::is_method() const
5647 {
5648 return this->type_->is_method();
5649 }
5650
5651 // Add a label definition.
5652
5653 Label*
add_label_definition(Gogo * gogo,const std::string & label_name,Location location)5654 Function::add_label_definition(Gogo* gogo, const std::string& label_name,
5655 Location location)
5656 {
5657 Label* lnull = NULL;
5658 std::pair<Labels::iterator, bool> ins =
5659 this->labels_.insert(std::make_pair(label_name, lnull));
5660 Label* label;
5661 if (label_name == "_")
5662 {
5663 label = Label::create_dummy_label();
5664 if (ins.second)
5665 ins.first->second = label;
5666 }
5667 else if (ins.second)
5668 {
5669 // This is a new label.
5670 label = new Label(label_name);
5671 ins.first->second = label;
5672 }
5673 else
5674 {
5675 // The label was already in the hash table.
5676 label = ins.first->second;
5677 if (label->is_defined())
5678 {
5679 go_error_at(location, "label %qs already defined",
5680 Gogo::message_name(label_name).c_str());
5681 go_inform(label->location(), "previous definition of %qs was here",
5682 Gogo::message_name(label_name).c_str());
5683 return new Label(label_name);
5684 }
5685 }
5686
5687 label->define(location, gogo->bindings_snapshot(location));
5688
5689 // Issue any errors appropriate for any previous goto's to this
5690 // label.
5691 const std::vector<Bindings_snapshot*>& refs(label->refs());
5692 for (std::vector<Bindings_snapshot*>::const_iterator p = refs.begin();
5693 p != refs.end();
5694 ++p)
5695 (*p)->check_goto_to(gogo->current_block());
5696 label->clear_refs();
5697
5698 return label;
5699 }
5700
5701 // Add a reference to a label.
5702
5703 Label*
add_label_reference(Gogo * gogo,const std::string & label_name,Location location,bool issue_goto_errors)5704 Function::add_label_reference(Gogo* gogo, const std::string& label_name,
5705 Location location, bool issue_goto_errors)
5706 {
5707 Label* lnull = NULL;
5708 std::pair<Labels::iterator, bool> ins =
5709 this->labels_.insert(std::make_pair(label_name, lnull));
5710 Label* label;
5711 if (!ins.second)
5712 {
5713 // The label was already in the hash table.
5714 label = ins.first->second;
5715 }
5716 else
5717 {
5718 go_assert(ins.first->second == NULL);
5719 label = new Label(label_name);
5720 ins.first->second = label;
5721 }
5722
5723 label->set_is_used();
5724
5725 if (issue_goto_errors)
5726 {
5727 Bindings_snapshot* snapshot = label->snapshot();
5728 if (snapshot != NULL)
5729 snapshot->check_goto_from(gogo->current_block(), location);
5730 else
5731 label->add_snapshot_ref(gogo->bindings_snapshot(location));
5732 }
5733
5734 return label;
5735 }
5736
5737 // Warn about labels that are defined but not used.
5738
5739 void
check_labels() const5740 Function::check_labels() const
5741 {
5742 for (Labels::const_iterator p = this->labels_.begin();
5743 p != this->labels_.end();
5744 p++)
5745 {
5746 Label* label = p->second;
5747 if (!label->is_used())
5748 go_error_at(label->location(), "label %qs defined and not used",
5749 Gogo::message_name(label->name()).c_str());
5750 }
5751 }
5752
5753 // Swap one function with another. This is used when building the
5754 // thunk we use to call a function which calls recover. It may not
5755 // work for any other case.
5756
5757 void
swap_for_recover(Function * x)5758 Function::swap_for_recover(Function *x)
5759 {
5760 go_assert(this->enclosing_ == x->enclosing_);
5761 std::swap(this->results_, x->results_);
5762 std::swap(this->closure_var_, x->closure_var_);
5763 std::swap(this->block_, x->block_);
5764 go_assert(this->location_ == x->location_);
5765 go_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
5766 go_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
5767 }
5768
5769 // Traverse the tree.
5770
5771 int
traverse(Traverse * traverse)5772 Function::traverse(Traverse* traverse)
5773 {
5774 unsigned int traverse_mask = traverse->traverse_mask();
5775
5776 if ((traverse_mask
5777 & (Traverse::traverse_types | Traverse::traverse_expressions))
5778 != 0)
5779 {
5780 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
5781 return TRAVERSE_EXIT;
5782 }
5783
5784 // FIXME: We should check traverse_functions here if nested
5785 // functions are stored in block bindings.
5786 if (this->block_ != NULL
5787 && (traverse_mask
5788 & (Traverse::traverse_variables
5789 | Traverse::traverse_constants
5790 | Traverse::traverse_blocks
5791 | Traverse::traverse_statements
5792 | Traverse::traverse_expressions
5793 | Traverse::traverse_types)) != 0)
5794 {
5795 if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
5796 return TRAVERSE_EXIT;
5797 }
5798
5799 return TRAVERSE_CONTINUE;
5800 }
5801
5802 // Work out types for unspecified variables and constants.
5803
5804 void
determine_types()5805 Function::determine_types()
5806 {
5807 if (this->block_ != NULL)
5808 this->block_->determine_types();
5809 }
5810
5811 // Return the function descriptor, the value you get when you refer to
5812 // the function in Go code without calling it.
5813
5814 Expression*
descriptor(Gogo *,Named_object * no)5815 Function::descriptor(Gogo*, Named_object* no)
5816 {
5817 go_assert(!this->is_method());
5818 go_assert(this->closure_var_ == NULL);
5819 if (this->descriptor_ == NULL)
5820 this->descriptor_ = Expression::make_func_descriptor(no);
5821 return this->descriptor_;
5822 }
5823
5824 // Get a pointer to the variable representing the defer stack for this
5825 // function, making it if necessary. The value of the variable is set
5826 // by the runtime routines to true if the function is returning,
5827 // rather than panicing through. A pointer to this variable is used
5828 // as a marker for the functions on the defer stack associated with
5829 // this function. A function-specific variable permits inlining a
5830 // function which uses defer.
5831
5832 Expression*
defer_stack(Location location)5833 Function::defer_stack(Location location)
5834 {
5835 if (this->defer_stack_ == NULL)
5836 {
5837 Type* t = Type::lookup_bool_type();
5838 Expression* n = Expression::make_boolean(false, location);
5839 this->defer_stack_ = Statement::make_temporary(t, n, location);
5840 this->defer_stack_->set_is_address_taken();
5841 }
5842 Expression* ref = Expression::make_temporary_reference(this->defer_stack_,
5843 location);
5844 return Expression::make_unary(OPERATOR_AND, ref, location);
5845 }
5846
5847 // Export the function.
5848
5849 void
export_func(Export * exp,const Named_object * no) const5850 Function::export_func(Export* exp, const Named_object* no) const
5851 {
5852 Block* block = NULL;
5853 if (this->export_for_inlining())
5854 block = this->block_;
5855 Function::export_func_with_type(exp, no, this->type_, this->results_,
5856 this->is_method() && this->nointerface(),
5857 this->asm_name(), block, this->location_);
5858 }
5859
5860 // Export a function with a type.
5861
5862 void
export_func_with_type(Export * exp,const Named_object * no,const Function_type * fntype,Function::Results * result_vars,bool nointerface,const std::string & asm_name,Block * block,Location loc)5863 Function::export_func_with_type(Export* exp, const Named_object* no,
5864 const Function_type* fntype,
5865 Function::Results* result_vars,
5866 bool nointerface, const std::string& asm_name,
5867 Block* block, Location loc)
5868 {
5869 exp->write_c_string("func ");
5870
5871 if (nointerface)
5872 {
5873 go_assert(fntype->is_method());
5874 exp->write_c_string("/*nointerface*/ ");
5875 }
5876
5877 if (!asm_name.empty())
5878 {
5879 exp->write_c_string("/*asm ");
5880 exp->write_string(asm_name);
5881 exp->write_c_string(" */ ");
5882 }
5883
5884 if (fntype->is_method())
5885 {
5886 exp->write_c_string("(");
5887 const Typed_identifier* receiver = fntype->receiver();
5888 exp->write_name(receiver->name());
5889 exp->write_escape(receiver->note());
5890 exp->write_c_string(" ");
5891 exp->write_type(receiver->type());
5892 exp->write_c_string(") ");
5893 }
5894
5895 if (no->package() != NULL && !fntype->is_method())
5896 {
5897 char buf[50];
5898 snprintf(buf, sizeof buf, "<p%d>", exp->package_index(no->package()));
5899 exp->write_c_string(buf);
5900 }
5901
5902 const std::string& name(no->name());
5903 if (!Gogo::is_hidden_name(name))
5904 exp->write_string(name);
5905 else
5906 {
5907 exp->write_c_string(".");
5908 exp->write_string(Gogo::unpack_hidden_name(name));
5909 }
5910
5911 exp->write_c_string(" (");
5912 const Typed_identifier_list* parameters = fntype->parameters();
5913 if (parameters != NULL)
5914 {
5915 size_t i = 0;
5916 bool is_varargs = fntype->is_varargs();
5917 bool first = true;
5918 for (Typed_identifier_list::const_iterator p = parameters->begin();
5919 p != parameters->end();
5920 ++p, ++i)
5921 {
5922 if (first)
5923 first = false;
5924 else
5925 exp->write_c_string(", ");
5926 exp->write_name(p->name());
5927 exp->write_escape(p->note());
5928 exp->write_c_string(" ");
5929 if (!is_varargs || p + 1 != parameters->end())
5930 exp->write_type(p->type());
5931 else
5932 {
5933 exp->write_c_string("...");
5934 exp->write_type(p->type()->array_type()->element_type());
5935 }
5936 }
5937 }
5938 exp->write_c_string(")");
5939
5940 const Typed_identifier_list* result_decls = fntype->results();
5941 if (result_decls != NULL)
5942 {
5943 if (result_decls->size() == 1
5944 && result_decls->begin()->name().empty()
5945 && block == NULL)
5946 {
5947 exp->write_c_string(" ");
5948 exp->write_type(result_decls->begin()->type());
5949 }
5950 else
5951 {
5952 exp->write_c_string(" (");
5953 bool first = true;
5954 Results::const_iterator pr;
5955 if (result_vars != NULL)
5956 pr = result_vars->begin();
5957 for (Typed_identifier_list::const_iterator pd = result_decls->begin();
5958 pd != result_decls->end();
5959 ++pd)
5960 {
5961 if (first)
5962 first = false;
5963 else
5964 exp->write_c_string(", ");
5965 // We only use pr->name, which may be artificial, if
5966 // need it for inlining.
5967 if (block == NULL || result_vars == NULL)
5968 exp->write_name(pd->name());
5969 else
5970 exp->write_name((*pr)->name());
5971 exp->write_escape(pd->note());
5972 exp->write_c_string(" ");
5973 exp->write_type(pd->type());
5974 if (result_vars != NULL)
5975 ++pr;
5976 }
5977 if (result_vars != NULL)
5978 go_assert(pr == result_vars->end());
5979 exp->write_c_string(")");
5980 }
5981 }
5982
5983 if (block == NULL)
5984 exp->write_c_string("\n");
5985 else
5986 {
5987 int indent = 1;
5988 if (fntype->is_method())
5989 indent++;
5990
5991 Export_function_body efb(exp, indent);
5992
5993 efb.indent();
5994 efb.write_c_string("// ");
5995 efb.write_string(Linemap::location_to_file(block->start_location()));
5996 efb.write_char(':');
5997 char buf[100];
5998 snprintf(buf, sizeof buf, "%d", Linemap::location_to_line(loc));
5999 efb.write_c_string(buf);
6000 efb.write_char('\n');
6001 block->export_block(&efb);
6002
6003 const std::string& body(efb.body());
6004
6005 snprintf(buf, sizeof buf, " <inl:%lu>\n",
6006 static_cast<unsigned long>(body.length()));
6007 exp->write_c_string(buf);
6008
6009 exp->write_string(body);
6010 }
6011 }
6012
6013 // Import a function.
6014
6015 bool
import_func(Import * imp,std::string * pname,Package ** ppkg,bool * pis_exported,Typed_identifier ** preceiver,Typed_identifier_list ** pparameters,Typed_identifier_list ** presults,bool * is_varargs,bool * nointerface,std::string * asm_name,std::string * body)6016 Function::import_func(Import* imp, std::string* pname,
6017 Package** ppkg, bool* pis_exported,
6018 Typed_identifier** preceiver,
6019 Typed_identifier_list** pparameters,
6020 Typed_identifier_list** presults,
6021 bool* is_varargs,
6022 bool* nointerface,
6023 std::string* asm_name,
6024 std::string* body)
6025 {
6026 imp->require_c_string("func ");
6027
6028 *nointerface = false;
6029 while (imp->match_c_string("/*"))
6030 {
6031 imp->advance(2);
6032 if (imp->match_c_string("nointerface"))
6033 {
6034 imp->require_c_string("nointerface*/ ");
6035 *nointerface = true;
6036 }
6037 else if (imp->match_c_string("asm"))
6038 {
6039 imp->require_c_string("asm ");
6040 *asm_name = imp->read_identifier();
6041 imp->require_c_string(" */ ");
6042 }
6043 else
6044 {
6045 go_error_at(imp->location(),
6046 "import error at %d: unrecognized function comment",
6047 imp->pos());
6048 return false;
6049 }
6050 }
6051
6052 if (*nointerface)
6053 {
6054 // Only a method can be nointerface.
6055 go_assert(imp->peek_char() == '(');
6056 }
6057
6058 *preceiver = NULL;
6059 if (imp->peek_char() == '(')
6060 {
6061 imp->require_c_string("(");
6062 std::string name = imp->read_name();
6063 std::string escape_note = imp->read_escape();
6064 imp->require_c_string(" ");
6065 Type* rtype = imp->read_type();
6066 *preceiver = new Typed_identifier(name, rtype, imp->location());
6067 (*preceiver)->set_note(escape_note);
6068 imp->require_c_string(") ");
6069 }
6070
6071 if (!Import::read_qualified_identifier(imp, pname, ppkg, pis_exported))
6072 {
6073 go_error_at(imp->location(),
6074 "import error at %d: bad function name in export data",
6075 imp->pos());
6076 return false;
6077 }
6078
6079 Typed_identifier_list* parameters;
6080 *is_varargs = false;
6081 imp->require_c_string(" (");
6082 if (imp->peek_char() == ')')
6083 parameters = NULL;
6084 else
6085 {
6086 parameters = new Typed_identifier_list();
6087 while (true)
6088 {
6089 std::string name = imp->read_name();
6090 std::string escape_note = imp->read_escape();
6091 imp->require_c_string(" ");
6092
6093 if (imp->match_c_string("..."))
6094 {
6095 imp->advance(3);
6096 *is_varargs = true;
6097 }
6098
6099 Type* ptype = imp->read_type();
6100 if (*is_varargs)
6101 ptype = Type::make_array_type(ptype, NULL);
6102 Typed_identifier t = Typed_identifier(name, ptype, imp->location());
6103 t.set_note(escape_note);
6104 parameters->push_back(t);
6105 if (imp->peek_char() != ',')
6106 break;
6107 go_assert(!*is_varargs);
6108 imp->require_c_string(", ");
6109 }
6110 }
6111 imp->require_c_string(")");
6112 *pparameters = parameters;
6113
6114 Typed_identifier_list* results;
6115 if (imp->peek_char() != ' ' || imp->match_c_string(" <inl"))
6116 results = NULL;
6117 else
6118 {
6119 results = new Typed_identifier_list();
6120 imp->require_c_string(" ");
6121 if (imp->peek_char() != '(')
6122 {
6123 Type* rtype = imp->read_type();
6124 results->push_back(Typed_identifier("", rtype, imp->location()));
6125 }
6126 else
6127 {
6128 imp->require_c_string("(");
6129 while (true)
6130 {
6131 std::string name = imp->read_name();
6132 std::string note = imp->read_escape();
6133 imp->require_c_string(" ");
6134 Type* rtype = imp->read_type();
6135 Typed_identifier t = Typed_identifier(name, rtype,
6136 imp->location());
6137 t.set_note(note);
6138 results->push_back(t);
6139 if (imp->peek_char() != ',')
6140 break;
6141 imp->require_c_string(", ");
6142 }
6143 imp->require_c_string(")");
6144 }
6145 }
6146 *presults = results;
6147
6148 if (!imp->match_c_string(" <inl:"))
6149 {
6150 imp->require_semicolon_if_old_version();
6151 imp->require_c_string("\n");
6152 body->clear();
6153 }
6154 else
6155 {
6156 imp->require_c_string(" <inl:");
6157 std::string lenstr;
6158 int c;
6159 while (true)
6160 {
6161 c = imp->peek_char();
6162 if (c < '0' || c > '9')
6163 break;
6164 lenstr += c;
6165 imp->get_char();
6166 }
6167 imp->require_c_string(">\n");
6168
6169 errno = 0;
6170 char* end;
6171 long llen = strtol(lenstr.c_str(), &end, 10);
6172 if (*end != '\0'
6173 || llen < 0
6174 || (llen == LONG_MAX && errno == ERANGE))
6175 {
6176 go_error_at(imp->location(), "invalid inline function length %s",
6177 lenstr.c_str());
6178 return false;
6179 }
6180
6181 *body = imp->read(static_cast<size_t>(llen));
6182 }
6183
6184 return true;
6185 }
6186
6187 // Get the backend representation.
6188
6189 Bfunction*
get_or_make_decl(Gogo * gogo,Named_object * no)6190 Function::get_or_make_decl(Gogo* gogo, Named_object* no)
6191 {
6192 if (this->fndecl_ == NULL)
6193 {
6194 unsigned int flags = 0;
6195 bool is_init_fn = false;
6196 if (no->package() != NULL)
6197 {
6198 // Functions defined in other packages must be visible.
6199 flags |= Backend::function_is_visible;
6200 }
6201 else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
6202 ;
6203 else if (Gogo::unpack_hidden_name(no->name()) == "init"
6204 && !this->type_->is_method())
6205 ;
6206 else if (no->name() == gogo->get_init_fn_name())
6207 {
6208 flags |= Backend::function_is_visible;
6209 is_init_fn = true;
6210 }
6211 else if (Gogo::unpack_hidden_name(no->name()) == "main"
6212 && gogo->is_main_package())
6213 flags |= Backend::function_is_visible;
6214 // Methods have to be public even if they are hidden because
6215 // they can be pulled into type descriptors when using
6216 // anonymous fields.
6217 else if (!Gogo::is_hidden_name(no->name())
6218 || this->type_->is_method())
6219 {
6220 if (!this->is_unnamed_type_stub_method_)
6221 flags |= Backend::function_is_visible;
6222 }
6223
6224 Type* rtype = NULL;
6225 if (this->type_->is_method())
6226 rtype = this->type_->receiver()->type();
6227
6228 std::string asm_name;
6229 if (!this->asm_name_.empty())
6230 {
6231 asm_name = this->asm_name_;
6232
6233 // If an assembler name is explicitly specified, there must
6234 // be some reason to refer to the symbol from a different
6235 // object file.
6236 flags |= Backend::function_is_visible;
6237 }
6238 else if (is_init_fn)
6239 {
6240 // These names appear in the export data and are used
6241 // directly in the assembler code. If we change this here
6242 // we need to change Gogo::init_imports.
6243 asm_name = no->name();
6244 }
6245 else
6246 asm_name = gogo->function_asm_name(no->name(), no->package(), rtype);
6247
6248 // If an inline body refers to this function, then it
6249 // needs to be visible in the symbol table.
6250 if (this->is_referenced_by_inline_)
6251 flags |= Backend::function_is_visible;
6252
6253 // A go:linkname directive can be used to force a function to be
6254 // visible.
6255 if (this->is_exported_by_linkname_)
6256 flags |= Backend::function_is_visible;
6257
6258 // If a function calls the predeclared recover function, we
6259 // can't inline it, because recover behaves differently in a
6260 // function passed directly to defer. If this is a recover
6261 // thunk that we built to test whether a function can be
6262 // recovered, we can't inline it, because that will mess up
6263 // our return address comparison.
6264 bool is_inlinable = !(this->calls_recover_ || this->is_recover_thunk_);
6265
6266 // If a function calls __go_set_defer_retaddr, then mark it as
6267 // uninlinable. This prevents the GCC backend from splitting
6268 // the function; splitting the function is a bad idea because we
6269 // want the return address label to be in the same function as
6270 // the call.
6271 if (this->calls_defer_retaddr_)
6272 is_inlinable = false;
6273
6274 // Check the //go:noinline compiler directive.
6275 if ((this->pragmas_ & GOPRAGMA_NOINLINE) != 0)
6276 is_inlinable = false;
6277
6278 if (is_inlinable)
6279 flags |= Backend::function_is_inlinable;
6280
6281 // If this is a thunk created to call a function which calls
6282 // the predeclared recover function, we need to disable
6283 // stack splitting for the thunk.
6284 bool disable_split_stack = this->is_recover_thunk_;
6285
6286 // Check the //go:nosplit compiler directive.
6287 if ((this->pragmas_ & GOPRAGMA_NOSPLIT) != 0)
6288 disable_split_stack = true;
6289
6290 if (disable_split_stack)
6291 flags |= Backend::function_no_split_stack;
6292
6293 // This should go into a unique section if that has been
6294 // requested elsewhere, or if this is a nointerface function.
6295 // We want to put a nointerface function into a unique section
6296 // because there is a good chance that the linker garbage
6297 // collection can discard it.
6298 if (this->in_unique_section_
6299 || (this->is_method() && this->nointerface()))
6300 flags |= Backend::function_in_unique_section;
6301
6302 if (this->is_inline_only_)
6303 flags |= Backend::function_only_inline;
6304
6305 Btype* functype = this->type_->get_backend_fntype(gogo);
6306 this->fndecl_ =
6307 gogo->backend()->function(functype, no->get_id(gogo), asm_name,
6308 flags, this->location());
6309 }
6310 return this->fndecl_;
6311 }
6312
6313 // Get the backend representation.
6314
6315 Bfunction*
get_or_make_decl(Gogo * gogo,Named_object * no)6316 Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no)
6317 {
6318 if (this->fndecl_ == NULL)
6319 {
6320 unsigned int flags =
6321 (Backend::function_is_visible
6322 | Backend::function_is_declaration
6323 | Backend::function_is_inlinable);
6324
6325 // Let Go code use an asm declaration to pick up a builtin
6326 // function.
6327 if (!this->asm_name_.empty())
6328 {
6329 Bfunction* builtin_decl =
6330 gogo->backend()->lookup_builtin(this->asm_name_);
6331 if (builtin_decl != NULL)
6332 {
6333 this->fndecl_ = builtin_decl;
6334 return this->fndecl_;
6335 }
6336
6337 if (this->asm_name_ == "runtime.gopanic"
6338 || this->asm_name_.compare(0, 13, "runtime.panic") == 0
6339 || this->asm_name_.compare(0, 15, "runtime.goPanic") == 0
6340 || this->asm_name_ == "runtime.block")
6341 flags |= Backend::function_does_not_return;
6342 }
6343
6344 std::string asm_name;
6345 if (this->asm_name_.empty())
6346 {
6347 Type* rtype = NULL;
6348 if (this->fntype_->is_method())
6349 rtype = this->fntype_->receiver()->type();
6350 asm_name = gogo->function_asm_name(no->name(), no->package(), rtype);
6351 }
6352 else if (go_id_needs_encoding(no->get_id(gogo)))
6353 asm_name = go_encode_id(no->get_id(gogo));
6354
6355 Btype* functype = this->fntype_->get_backend_fntype(gogo);
6356 this->fndecl_ =
6357 gogo->backend()->function(functype, no->get_id(gogo), asm_name,
6358 flags, this->location());
6359 }
6360
6361 return this->fndecl_;
6362 }
6363
6364 // Build the descriptor for a function declaration. This won't
6365 // necessarily happen if the package has just a declaration for the
6366 // function and no other reference to it, but we may still need the
6367 // descriptor for references from other packages.
6368 void
build_backend_descriptor(Gogo * gogo)6369 Function_declaration::build_backend_descriptor(Gogo* gogo)
6370 {
6371 if (this->descriptor_ != NULL)
6372 {
6373 Translate_context context(gogo, NULL, NULL, NULL);
6374 this->descriptor_->get_backend(&context);
6375 }
6376 }
6377
6378 // Check that the types used in this declaration's signature are defined.
6379 // Reports errors for any undefined type.
6380
6381 void
check_types() const6382 Function_declaration::check_types() const
6383 {
6384 // Calling Type::base will give errors for any undefined types.
6385 Function_type* fntype = this->type();
6386 if (fntype->receiver() != NULL)
6387 fntype->receiver()->type()->base();
6388 if (fntype->parameters() != NULL)
6389 {
6390 const Typed_identifier_list* params = fntype->parameters();
6391 for (Typed_identifier_list::const_iterator p = params->begin();
6392 p != params->end();
6393 ++p)
6394 p->type()->base();
6395 }
6396 }
6397
6398 // Return the function's decl after it has been built.
6399
6400 Bfunction*
get_decl() const6401 Function::get_decl() const
6402 {
6403 go_assert(this->fndecl_ != NULL);
6404 return this->fndecl_;
6405 }
6406
6407 // Build the backend representation for the function code.
6408
6409 void
build(Gogo * gogo,Named_object * named_function)6410 Function::build(Gogo* gogo, Named_object* named_function)
6411 {
6412 Translate_context context(gogo, named_function, NULL, NULL);
6413
6414 // A list of parameter variables for this function.
6415 std::vector<Bvariable*> param_vars;
6416
6417 // Variables that need to be declared for this function and their
6418 // initial values.
6419 std::vector<Bvariable*> vars;
6420 std::vector<Expression*> var_inits;
6421 std::vector<Statement*> var_decls_stmts;
6422 for (Bindings::const_definitions_iterator p =
6423 this->block_->bindings()->begin_definitions();
6424 p != this->block_->bindings()->end_definitions();
6425 ++p)
6426 {
6427 Location loc = (*p)->location();
6428 if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
6429 {
6430 Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
6431 Bvariable* parm_bvar = bvar;
6432
6433 // We always pass the receiver to a method as a pointer. If
6434 // the receiver is declared as a non-pointer type, then we
6435 // copy the value into a local variable. For direct interface
6436 // type we pack the pointer into the type.
6437 if ((*p)->var_value()->is_receiver()
6438 && (*p)->var_value()->type()->points_to() == NULL)
6439 {
6440 std::string name = (*p)->name() + ".pointer";
6441 Type* var_type = (*p)->var_value()->type();
6442 Variable* parm_var =
6443 new Variable(Type::make_pointer_type(var_type), NULL, false,
6444 true, false, loc);
6445 Named_object* parm_no =
6446 Named_object::make_variable(name, NULL, parm_var);
6447 parm_bvar = parm_no->get_backend_variable(gogo, named_function);
6448
6449 vars.push_back(bvar);
6450
6451 Expression* parm_ref =
6452 Expression::make_var_reference(parm_no, loc);
6453 Type* recv_type = (*p)->var_value()->type();
6454 if (recv_type->is_direct_iface_type())
6455 parm_ref = Expression::pack_direct_iface(recv_type, parm_ref, loc);
6456 else
6457 parm_ref =
6458 Expression::make_dereference(parm_ref,
6459 Expression::NIL_CHECK_NEEDED,
6460 loc);
6461 if ((*p)->var_value()->is_in_heap())
6462 parm_ref = Expression::make_heap_expression(parm_ref, loc);
6463 var_inits.push_back(parm_ref);
6464 }
6465 else if ((*p)->var_value()->is_in_heap())
6466 {
6467 // If we take the address of a parameter, then we need
6468 // to copy it into the heap.
6469 std::string parm_name = (*p)->name() + ".param";
6470 Variable* parm_var = new Variable((*p)->var_value()->type(), NULL,
6471 false, true, false, loc);
6472 Named_object* parm_no =
6473 Named_object::make_variable(parm_name, NULL, parm_var);
6474 parm_bvar = parm_no->get_backend_variable(gogo, named_function);
6475
6476 vars.push_back(bvar);
6477 Expression* var_ref =
6478 Expression::make_var_reference(parm_no, loc);
6479 var_ref = Expression::make_heap_expression(var_ref, loc);
6480 var_inits.push_back(var_ref);
6481 }
6482 param_vars.push_back(parm_bvar);
6483 }
6484 else if ((*p)->is_result_variable())
6485 {
6486 Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
6487
6488 Type* type = (*p)->result_var_value()->type();
6489 Expression* init;
6490 if (!(*p)->result_var_value()->is_in_heap())
6491 {
6492 Btype* btype = type->get_backend(gogo);
6493 Bexpression* binit = gogo->backend()->zero_expression(btype);
6494 init = Expression::make_backend(binit, type, loc);
6495 }
6496 else
6497 init = Expression::make_allocation(type, loc);
6498
6499 vars.push_back(bvar);
6500 var_inits.push_back(init);
6501 }
6502 else if (this->defer_stack_ != NULL
6503 && (*p)->is_variable()
6504 && (*p)->var_value()->is_non_escaping_address_taken()
6505 && !(*p)->var_value()->is_in_heap())
6506 {
6507 // Local variable captured by deferred closure needs to be live
6508 // until the end of the function. We create a top-level
6509 // declaration for it.
6510 // TODO: we don't need to do this if the variable is not captured
6511 // by the defer closure. There is no easy way to check it here,
6512 // so we do this for all address-taken variables for now.
6513 Variable* var = (*p)->var_value();
6514 Temporary_statement* ts =
6515 Statement::make_temporary(var->type(), NULL, var->location());
6516 ts->set_is_address_taken();
6517 var->set_toplevel_decl(ts);
6518 var_decls_stmts.push_back(ts);
6519 }
6520 }
6521 if (!gogo->backend()->function_set_parameters(this->fndecl_, param_vars))
6522 {
6523 go_assert(saw_errors());
6524 return;
6525 }
6526
6527 // If we need a closure variable, make sure to create it.
6528 // It gets installed in the function as a side effect of creation.
6529 if (this->closure_var_ != NULL)
6530 {
6531 go_assert(this->closure_var_->var_value()->is_closure());
6532 this->closure_var_->get_backend_variable(gogo, named_function);
6533 }
6534
6535 if (this->block_ != NULL)
6536 {
6537 // Declare variables if necessary.
6538 Bblock* var_decls = NULL;
6539 std::vector<Bstatement*> var_decls_bstmt_list;
6540 Bstatement* defer_init = NULL;
6541 if (!vars.empty() || this->defer_stack_ != NULL)
6542 {
6543 var_decls =
6544 gogo->backend()->block(this->fndecl_, NULL, vars,
6545 this->block_->start_location(),
6546 this->block_->end_location());
6547
6548 if (this->defer_stack_ != NULL)
6549 {
6550 Translate_context dcontext(gogo, named_function, this->block_,
6551 var_decls);
6552 defer_init = this->defer_stack_->get_backend(&dcontext);
6553 var_decls_bstmt_list.push_back(defer_init);
6554 for (std::vector<Statement*>::iterator p = var_decls_stmts.begin();
6555 p != var_decls_stmts.end();
6556 ++p)
6557 {
6558 Bstatement* bstmt = (*p)->get_backend(&dcontext);
6559 var_decls_bstmt_list.push_back(bstmt);
6560 }
6561 }
6562 }
6563
6564 // Build the backend representation for all the statements in the
6565 // function.
6566 Translate_context bcontext(gogo, named_function, NULL, NULL);
6567 Bblock* code_block = this->block_->get_backend(&bcontext);
6568
6569 // Initialize variables if necessary.
6570 Translate_context icontext(gogo, named_function, this->block_,
6571 var_decls);
6572 std::vector<Bstatement*> init;
6573 go_assert(vars.size() == var_inits.size());
6574 for (size_t i = 0; i < vars.size(); ++i)
6575 {
6576 Bexpression* binit = var_inits[i]->get_backend(&icontext);
6577 Bstatement* init_stmt =
6578 gogo->backend()->init_statement(this->fndecl_, vars[i],
6579 binit);
6580 init.push_back(init_stmt);
6581 }
6582 Bstatement* var_init = gogo->backend()->statement_list(init);
6583
6584 // Initialize all variables before executing this code block.
6585 Bstatement* code_stmt = gogo->backend()->block_statement(code_block);
6586 code_stmt = gogo->backend()->compound_statement(var_init, code_stmt);
6587
6588 // If we have a defer stack, initialize it at the start of a
6589 // function.
6590 Bstatement* except = NULL;
6591 Bstatement* fini = NULL;
6592 if (defer_init != NULL)
6593 {
6594 // Clean up the defer stack when we leave the function.
6595 this->build_defer_wrapper(gogo, named_function, &except, &fini);
6596
6597 // Wrap the code for this function in an exception handler to handle
6598 // defer calls.
6599 code_stmt =
6600 gogo->backend()->exception_handler_statement(code_stmt,
6601 except, fini,
6602 this->location_);
6603 }
6604
6605 // Stick the code into the block we built for the receiver, if
6606 // we built one.
6607 if (var_decls != NULL)
6608 {
6609 var_decls_bstmt_list.push_back(code_stmt);
6610 gogo->backend()->block_add_statements(var_decls, var_decls_bstmt_list);
6611 code_stmt = gogo->backend()->block_statement(var_decls);
6612 }
6613
6614 if (!gogo->backend()->function_set_body(this->fndecl_, code_stmt))
6615 {
6616 go_assert(saw_errors());
6617 return;
6618 }
6619 }
6620
6621 // If we created a descriptor for the function, make sure we emit it.
6622 if (this->descriptor_ != NULL)
6623 {
6624 Translate_context dcontext(gogo, NULL, NULL, NULL);
6625 this->descriptor_->get_backend(&dcontext);
6626 }
6627 }
6628
6629 // Build the wrappers around function code needed if the function has
6630 // any defer statements. This sets *EXCEPT to an exception handler
6631 // and *FINI to a finally handler.
6632
6633 void
build_defer_wrapper(Gogo * gogo,Named_object * named_function,Bstatement ** except,Bstatement ** fini)6634 Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
6635 Bstatement** except, Bstatement** fini)
6636 {
6637 Location end_loc = this->block_->end_location();
6638
6639 // Add an exception handler. This is used if a panic occurs. Its
6640 // purpose is to stop the stack unwinding if a deferred function
6641 // calls recover. There are more details in
6642 // libgo/runtime/go-unwind.c.
6643
6644 std::vector<Bstatement*> stmts;
6645 Expression* call = Runtime::make_call(Runtime::CHECKDEFER, end_loc, 1,
6646 this->defer_stack(end_loc));
6647 Translate_context context(gogo, named_function, NULL, NULL);
6648 Bexpression* defer = call->get_backend(&context);
6649 stmts.push_back(gogo->backend()->expression_statement(this->fndecl_, defer));
6650
6651 Bstatement* ret_bstmt = this->return_value(gogo, named_function, end_loc);
6652 if (ret_bstmt != NULL)
6653 stmts.push_back(ret_bstmt);
6654
6655 go_assert(*except == NULL);
6656 *except = gogo->backend()->statement_list(stmts);
6657
6658 call = Runtime::make_call(Runtime::CHECKDEFER, end_loc, 1,
6659 this->defer_stack(end_loc));
6660 defer = call->get_backend(&context);
6661
6662 call = Runtime::make_call(Runtime::DEFERRETURN, end_loc, 1,
6663 this->defer_stack(end_loc));
6664 Bexpression* undefer = call->get_backend(&context);
6665 Bstatement* function_defer =
6666 gogo->backend()->function_defer_statement(this->fndecl_, undefer, defer,
6667 end_loc);
6668 stmts = std::vector<Bstatement*>(1, function_defer);
6669 if (this->type_->results() != NULL
6670 && !this->type_->results()->empty()
6671 && !this->type_->results()->front().name().empty())
6672 {
6673 // If the result variables are named, and we are returning from
6674 // this function rather than panicing through it, we need to
6675 // return them again, because they might have been changed by a
6676 // defer function. The runtime routines set the defer_stack
6677 // variable to true if we are returning from this function.
6678
6679 ret_bstmt = this->return_value(gogo, named_function, end_loc);
6680 Bexpression* nil = Expression::make_nil(end_loc)->get_backend(&context);
6681 Bexpression* ret =
6682 gogo->backend()->compound_expression(ret_bstmt, nil, end_loc);
6683 Expression* ref =
6684 Expression::make_temporary_reference(this->defer_stack_, end_loc);
6685 Bexpression* bref = ref->get_backend(&context);
6686 ret = gogo->backend()->conditional_expression(this->fndecl_,
6687 NULL, bref, ret, NULL,
6688 end_loc);
6689 stmts.push_back(gogo->backend()->expression_statement(this->fndecl_, ret));
6690 }
6691
6692 go_assert(*fini == NULL);
6693 *fini = gogo->backend()->statement_list(stmts);
6694 }
6695
6696 // Return the statement that assigns values to this function's result struct.
6697
6698 Bstatement*
return_value(Gogo * gogo,Named_object * named_function,Location location) const6699 Function::return_value(Gogo* gogo, Named_object* named_function,
6700 Location location) const
6701 {
6702 const Typed_identifier_list* results = this->type_->results();
6703 if (results == NULL || results->empty())
6704 return NULL;
6705
6706 go_assert(this->results_ != NULL);
6707 if (this->results_->size() != results->size())
6708 {
6709 go_assert(saw_errors());
6710 return gogo->backend()->error_statement();
6711 }
6712
6713 std::vector<Bexpression*> vals(results->size());
6714 for (size_t i = 0; i < vals.size(); ++i)
6715 {
6716 Named_object* no = (*this->results_)[i];
6717 Bvariable* bvar = no->get_backend_variable(gogo, named_function);
6718 Bexpression* val = gogo->backend()->var_expression(bvar, location);
6719 if (no->result_var_value()->is_in_heap())
6720 {
6721 Btype* bt = no->result_var_value()->type()->get_backend(gogo);
6722 val = gogo->backend()->indirect_expression(bt, val, true, location);
6723 }
6724 vals[i] = val;
6725 }
6726 return gogo->backend()->return_statement(this->fndecl_, vals, location);
6727 }
6728
6729 // Class Block.
6730
Block(Block * enclosing,Location location)6731 Block::Block(Block* enclosing, Location location)
6732 : enclosing_(enclosing), statements_(),
6733 bindings_(new Bindings(enclosing == NULL
6734 ? NULL
6735 : enclosing->bindings())),
6736 start_location_(location),
6737 end_location_(Linemap::unknown_location())
6738 {
6739 }
6740
6741 // Add a statement to a block.
6742
6743 void
add_statement(Statement * statement)6744 Block::add_statement(Statement* statement)
6745 {
6746 this->statements_.push_back(statement);
6747 }
6748
6749 // Add a statement to the front of a block. This is slow but is only
6750 // used for reference counts of parameters.
6751
6752 void
add_statement_at_front(Statement * statement)6753 Block::add_statement_at_front(Statement* statement)
6754 {
6755 this->statements_.insert(this->statements_.begin(), statement);
6756 }
6757
6758 // Replace a statement in a block.
6759
6760 void
replace_statement(size_t index,Statement * s)6761 Block::replace_statement(size_t index, Statement* s)
6762 {
6763 go_assert(index < this->statements_.size());
6764 this->statements_[index] = s;
6765 }
6766
6767 // Add a statement before another statement.
6768
6769 void
insert_statement_before(size_t index,Statement * s)6770 Block::insert_statement_before(size_t index, Statement* s)
6771 {
6772 go_assert(index < this->statements_.size());
6773 this->statements_.insert(this->statements_.begin() + index, s);
6774 }
6775
6776 // Add a statement after another statement.
6777
6778 void
insert_statement_after(size_t index,Statement * s)6779 Block::insert_statement_after(size_t index, Statement* s)
6780 {
6781 go_assert(index < this->statements_.size());
6782 this->statements_.insert(this->statements_.begin() + index + 1, s);
6783 }
6784
6785 // Traverse the tree.
6786
6787 int
traverse(Traverse * traverse)6788 Block::traverse(Traverse* traverse)
6789 {
6790 unsigned int traverse_mask = traverse->traverse_mask();
6791
6792 if ((traverse_mask & Traverse::traverse_blocks) != 0)
6793 {
6794 int t = traverse->block(this);
6795 if (t == TRAVERSE_EXIT)
6796 return TRAVERSE_EXIT;
6797 else if (t == TRAVERSE_SKIP_COMPONENTS)
6798 return TRAVERSE_CONTINUE;
6799 }
6800
6801 if ((traverse_mask
6802 & (Traverse::traverse_variables
6803 | Traverse::traverse_constants
6804 | Traverse::traverse_expressions
6805 | Traverse::traverse_types)) != 0)
6806 {
6807 const unsigned int e_or_t = (Traverse::traverse_expressions
6808 | Traverse::traverse_types);
6809 const unsigned int e_or_t_or_s = (e_or_t
6810 | Traverse::traverse_statements);
6811 for (Bindings::const_definitions_iterator pb =
6812 this->bindings_->begin_definitions();
6813 pb != this->bindings_->end_definitions();
6814 ++pb)
6815 {
6816 int t = TRAVERSE_CONTINUE;
6817 switch ((*pb)->classification())
6818 {
6819 case Named_object::NAMED_OBJECT_CONST:
6820 if ((traverse_mask & Traverse::traverse_constants) != 0)
6821 t = traverse->constant(*pb, false);
6822 if (t == TRAVERSE_CONTINUE
6823 && (traverse_mask & e_or_t) != 0)
6824 {
6825 Type* tc = (*pb)->const_value()->type();
6826 if (tc != NULL
6827 && Type::traverse(tc, traverse) == TRAVERSE_EXIT)
6828 return TRAVERSE_EXIT;
6829 t = (*pb)->const_value()->traverse_expression(traverse);
6830 }
6831 break;
6832
6833 case Named_object::NAMED_OBJECT_VAR:
6834 case Named_object::NAMED_OBJECT_RESULT_VAR:
6835 if ((traverse_mask & Traverse::traverse_variables) != 0)
6836 t = traverse->variable(*pb);
6837 if (t == TRAVERSE_CONTINUE
6838 && (traverse_mask & e_or_t) != 0)
6839 {
6840 if ((*pb)->is_result_variable()
6841 || (*pb)->var_value()->has_type())
6842 {
6843 Type* tv = ((*pb)->is_variable()
6844 ? (*pb)->var_value()->type()
6845 : (*pb)->result_var_value()->type());
6846 if (tv != NULL
6847 && Type::traverse(tv, traverse) == TRAVERSE_EXIT)
6848 return TRAVERSE_EXIT;
6849 }
6850 }
6851 if (t == TRAVERSE_CONTINUE
6852 && (traverse_mask & e_or_t_or_s) != 0
6853 && (*pb)->is_variable())
6854 t = (*pb)->var_value()->traverse_expression(traverse,
6855 traverse_mask);
6856 break;
6857
6858 case Named_object::NAMED_OBJECT_FUNC:
6859 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
6860 go_unreachable();
6861
6862 case Named_object::NAMED_OBJECT_TYPE:
6863 if ((traverse_mask & e_or_t) != 0)
6864 t = Type::traverse((*pb)->type_value(), traverse);
6865 break;
6866
6867 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
6868 case Named_object::NAMED_OBJECT_UNKNOWN:
6869 case Named_object::NAMED_OBJECT_ERRONEOUS:
6870 break;
6871
6872 case Named_object::NAMED_OBJECT_PACKAGE:
6873 case Named_object::NAMED_OBJECT_SINK:
6874 go_unreachable();
6875
6876 default:
6877 go_unreachable();
6878 }
6879
6880 if (t == TRAVERSE_EXIT)
6881 return TRAVERSE_EXIT;
6882 }
6883 }
6884
6885 // No point in checking traverse_mask here--if we got here we always
6886 // want to walk the statements. The traversal can insert new
6887 // statements before or after the current statement. Inserting
6888 // statements before the current statement requires updating I via
6889 // the pointer; those statements will not be traversed. Any new
6890 // statements inserted after the current statement will be traversed
6891 // in their turn.
6892 for (size_t i = 0; i < this->statements_.size(); ++i)
6893 {
6894 if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
6895 return TRAVERSE_EXIT;
6896 }
6897
6898 return TRAVERSE_CONTINUE;
6899 }
6900
6901 // Work out types for unspecified variables and constants.
6902
6903 void
determine_types()6904 Block::determine_types()
6905 {
6906 for (Bindings::const_definitions_iterator pb =
6907 this->bindings_->begin_definitions();
6908 pb != this->bindings_->end_definitions();
6909 ++pb)
6910 {
6911 if ((*pb)->is_variable())
6912 (*pb)->var_value()->determine_type();
6913 else if ((*pb)->is_const())
6914 (*pb)->const_value()->determine_type();
6915 }
6916
6917 for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
6918 ps != this->statements_.end();
6919 ++ps)
6920 (*ps)->determine_types();
6921 }
6922
6923 // Return true if the statements in this block may fall through.
6924
6925 bool
may_fall_through() const6926 Block::may_fall_through() const
6927 {
6928 if (this->statements_.empty())
6929 return true;
6930 return this->statements_.back()->may_fall_through();
6931 }
6932
6933 // Write export data for a block.
6934
6935 void
export_block(Export_function_body * efb)6936 Block::export_block(Export_function_body* efb)
6937 {
6938 for (Block::iterator p = this->begin();
6939 p != this->end();
6940 ++p)
6941 {
6942 efb->indent();
6943
6944 efb->increment_indent();
6945 (*p)->export_statement(efb);
6946 efb->decrement_indent();
6947
6948 Location loc = (*p)->location();
6949 if ((*p)->is_block_statement())
6950 {
6951 // For a block we put the start location on the first brace
6952 // in Block_statement::do_export_statement. Here we put the
6953 // end location on the final brace.
6954 loc = (*p)->block_statement()->block()->end_location();
6955 }
6956 char buf[50];
6957 snprintf(buf, sizeof buf, " //%d\n", Linemap::location_to_line(loc));
6958 efb->write_c_string(buf);
6959 }
6960 }
6961
6962 // Add exported block data to SET, reading from BODY starting at OFF.
6963 // Returns whether the import succeeded.
6964
6965 bool
import_block(Block * set,Import_function_body * ifb,Location loc)6966 Block::import_block(Block* set, Import_function_body *ifb, Location loc)
6967 {
6968 Location eloc = ifb->location();
6969 Location sloc = loc;
6970 const std::string& body(ifb->body());
6971 size_t off = ifb->off();
6972 while (off < body.length())
6973 {
6974 int indent = ifb->indent();
6975 if (off + indent >= body.length())
6976 {
6977 go_error_at(eloc,
6978 "invalid export data for %qs: insufficient indentation",
6979 ifb->name().c_str());
6980 return false;
6981 }
6982 for (int i = 0; i < indent - 1; i++)
6983 {
6984 if (body[off + i] != ' ')
6985 {
6986 go_error_at(eloc,
6987 "invalid export data for %qs: bad indentation",
6988 ifb->name().c_str());
6989 return false;
6990 }
6991 }
6992
6993 bool at_end = false;
6994 if (body[off + indent - 1] == '}')
6995 at_end = true;
6996 else if (body[off + indent - 1] != ' ')
6997 {
6998 go_error_at(eloc,
6999 "invalid export data for %qs: bad indentation",
7000 ifb->name().c_str());
7001 return false;
7002 }
7003
7004 off += indent;
7005
7006 size_t nl = body.find('\n', off);
7007 if (nl == std::string::npos)
7008 {
7009 go_error_at(eloc, "invalid export data for %qs: missing newline",
7010 ifb->name().c_str());
7011 return false;
7012 }
7013
7014 size_t lineno_pos = body.find(" //", off);
7015 if (lineno_pos == std::string::npos || lineno_pos >= nl)
7016 {
7017 go_error_at(eloc, "invalid export data for %qs: missing line number",
7018 ifb->name().c_str());
7019 return false;
7020 }
7021
7022 unsigned int lineno = 0;
7023 for (size_t i = lineno_pos + 3; i < nl; ++i)
7024 {
7025 char c = body[i];
7026 if (c < '0' || c > '9')
7027 {
7028 go_error_at(loc,
7029 "invalid export data for %qs: invalid line number",
7030 ifb->name().c_str());
7031 return false;
7032 }
7033 lineno = lineno * 10 + c - '0';
7034 }
7035
7036 ifb->gogo()->linemap()->start_line(lineno, 1);
7037 sloc = ifb->gogo()->linemap()->get_location(0);
7038
7039 if (at_end)
7040 {
7041 // An if statement can have an "else" following the "}", in
7042 // which case we want to leave the offset where it is, just
7043 // after the "}". We don't get the block ending location
7044 // quite right for if statements.
7045 if (body.compare(off, 6, " else ") != 0)
7046 off = nl + 1;
7047 break;
7048 }
7049
7050 ifb->set_off(off);
7051 Statement* s = Statement::import_statement(ifb, sloc);
7052 if (s == NULL)
7053 return false;
7054
7055 set->add_statement(s);
7056
7057 size_t at = ifb->off();
7058 if (at < nl + 1)
7059 off = nl + 1;
7060 else
7061 off = at;
7062 }
7063
7064 ifb->set_off(off);
7065 set->set_end_location(sloc);
7066 return true;
7067 }
7068
7069 // Convert a block to the backend representation.
7070
7071 Bblock*
get_backend(Translate_context * context)7072 Block::get_backend(Translate_context* context)
7073 {
7074 Gogo* gogo = context->gogo();
7075 Named_object* function = context->function();
7076 std::vector<Bvariable*> vars;
7077 vars.reserve(this->bindings_->size_definitions());
7078 for (Bindings::const_definitions_iterator pv =
7079 this->bindings_->begin_definitions();
7080 pv != this->bindings_->end_definitions();
7081 ++pv)
7082 {
7083 if ((*pv)->is_variable() && !(*pv)->var_value()->is_parameter())
7084 vars.push_back((*pv)->get_backend_variable(gogo, function));
7085 }
7086
7087 go_assert(function != NULL);
7088 Bfunction* bfunction =
7089 function->func_value()->get_or_make_decl(gogo, function);
7090 Bblock* ret = context->backend()->block(bfunction, context->bblock(),
7091 vars, this->start_location_,
7092 this->end_location_);
7093
7094 Translate_context subcontext(gogo, function, this, ret);
7095 std::vector<Bstatement*> bstatements;
7096 bstatements.reserve(this->statements_.size());
7097 for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
7098 p != this->statements_.end();
7099 ++p)
7100 bstatements.push_back((*p)->get_backend(&subcontext));
7101
7102 context->backend()->block_add_statements(ret, bstatements);
7103
7104 return ret;
7105 }
7106
7107 // Class Bindings_snapshot.
7108
Bindings_snapshot(const Block * b,Location location)7109 Bindings_snapshot::Bindings_snapshot(const Block* b, Location location)
7110 : block_(b), counts_(), location_(location)
7111 {
7112 while (b != NULL)
7113 {
7114 this->counts_.push_back(b->bindings()->size_definitions());
7115 b = b->enclosing();
7116 }
7117 }
7118
7119 // Report errors appropriate for a goto from B to this.
7120
7121 void
check_goto_from(const Block * b,Location loc)7122 Bindings_snapshot::check_goto_from(const Block* b, Location loc)
7123 {
7124 size_t dummy;
7125 if (!this->check_goto_block(loc, b, this->block_, &dummy))
7126 return;
7127 this->check_goto_defs(loc, this->block_,
7128 this->block_->bindings()->size_definitions(),
7129 this->counts_[0]);
7130 }
7131
7132 // Report errors appropriate for a goto from this to B.
7133
7134 void
check_goto_to(const Block * b)7135 Bindings_snapshot::check_goto_to(const Block* b)
7136 {
7137 size_t index;
7138 if (!this->check_goto_block(this->location_, this->block_, b, &index))
7139 return;
7140 this->check_goto_defs(this->location_, b, this->counts_[index],
7141 b->bindings()->size_definitions());
7142 }
7143
7144 // Report errors appropriate for a goto at LOC from BFROM to BTO.
7145 // Return true if all is well, false if we reported an error. If this
7146 // returns true, it sets *PINDEX to the number of blocks BTO is above
7147 // BFROM.
7148
7149 bool
check_goto_block(Location loc,const Block * bfrom,const Block * bto,size_t * pindex)7150 Bindings_snapshot::check_goto_block(Location loc, const Block* bfrom,
7151 const Block* bto, size_t* pindex)
7152 {
7153 // It is an error if BTO is not either BFROM or above BFROM.
7154 size_t index = 0;
7155 for (const Block* pb = bfrom; pb != bto; pb = pb->enclosing(), ++index)
7156 {
7157 if (pb == NULL)
7158 {
7159 go_error_at(loc, "goto jumps into block");
7160 go_inform(bto->start_location(), "goto target block starts here");
7161 return false;
7162 }
7163 }
7164 *pindex = index;
7165 return true;
7166 }
7167
7168 // Report errors appropriate for a goto at LOC ending at BLOCK, where
7169 // CFROM is the number of names defined at the point of the goto and
7170 // CTO is the number of names defined at the point of the label.
7171
7172 void
check_goto_defs(Location loc,const Block * block,size_t cfrom,size_t cto)7173 Bindings_snapshot::check_goto_defs(Location loc, const Block* block,
7174 size_t cfrom, size_t cto)
7175 {
7176 if (cfrom < cto)
7177 {
7178 Bindings::const_definitions_iterator p =
7179 block->bindings()->begin_definitions();
7180 for (size_t i = 0; i < cfrom; ++i)
7181 {
7182 go_assert(p != block->bindings()->end_definitions());
7183 ++p;
7184 }
7185 go_assert(p != block->bindings()->end_definitions());
7186
7187 for (; p != block->bindings()->end_definitions(); ++p)
7188 {
7189 if ((*p)->is_variable())
7190 {
7191 std::string n = (*p)->message_name();
7192 go_error_at(loc, "goto jumps over declaration of %qs", n.c_str());
7193 go_inform((*p)->location(), "%qs defined here", n.c_str());
7194 }
7195 }
7196 }
7197 }
7198
7199 // Class Function_declaration.
7200
7201 // Whether this declares a method.
7202
7203 bool
is_method() const7204 Function_declaration::is_method() const
7205 {
7206 return this->fntype_->is_method();
7207 }
7208
7209 // Whether this method should not be included in the type descriptor.
7210
7211 bool
nointerface() const7212 Function_declaration::nointerface() const
7213 {
7214 go_assert(this->is_method());
7215 return (this->pragmas_ & GOPRAGMA_NOINTERFACE) != 0;
7216 }
7217
7218 // Record that this method should not be included in the type
7219 // descriptor.
7220
7221 void
set_nointerface()7222 Function_declaration::set_nointerface()
7223 {
7224 this->pragmas_ |= GOPRAGMA_NOINTERFACE;
7225 }
7226
7227 // Import an inlinable function. This is used for an inlinable
7228 // function whose body is recorded in the export data. Parse the
7229 // export data into a Block and create a regular function using that
7230 // Block as its body. Redeclare this function declaration as the
7231 // function.
7232
7233 void
import_function_body(Gogo * gogo,Named_object * no)7234 Function_declaration::import_function_body(Gogo* gogo, Named_object* no)
7235 {
7236 go_assert(no->func_declaration_value() == this);
7237 go_assert(no->package() != NULL);
7238 const std::string& body(this->imported_body_);
7239 go_assert(!body.empty());
7240
7241 // Read the "//FILE:LINE" comment starts the export data.
7242
7243 size_t indent = 1;
7244 if (this->is_method())
7245 indent = 2;
7246 size_t i = 0;
7247 for (; i < indent; i++)
7248 {
7249 if (body.at(i) != ' ')
7250 {
7251 go_error_at(this->location_,
7252 "invalid export body for %qs: bad initial indentation",
7253 no->message_name().c_str());
7254 return;
7255 }
7256 }
7257
7258 if (body.substr(i, 2) != "//")
7259 {
7260 go_error_at(this->location_,
7261 "invalid export body for %qs: missing file comment",
7262 no->message_name().c_str());
7263 return;
7264 }
7265
7266 size_t colon = body.find(':', i + 2);
7267 size_t nl = body.find('\n', i + 2);
7268 if (nl == std::string::npos)
7269 {
7270 go_error_at(this->location_,
7271 "invalid export body for %qs: missing file name",
7272 no->message_name().c_str());
7273 return;
7274 }
7275 if (colon == std::string::npos || nl < colon)
7276 {
7277 go_error_at(this->location_,
7278 "invalid export body for %qs: missing initial line number",
7279 no->message_name().c_str());
7280 return;
7281 }
7282
7283 std::string file = body.substr(i + 2, colon - (i + 2));
7284 std::string linestr = body.substr(colon + 1, nl - (colon + 1));
7285 char* end;
7286 long linenol = strtol(linestr.c_str(), &end, 10);
7287 if (*end != '\0')
7288 {
7289 go_error_at(this->location_,
7290 "invalid export body for %qs: invalid initial line number",
7291 no->message_name().c_str());
7292 return;
7293 }
7294 unsigned int lineno = static_cast<unsigned int>(linenol);
7295
7296 // Turn the file/line into a location.
7297
7298 char* alc = new char[file.length() + 1];
7299 memcpy(alc, file.data(), file.length());
7300 alc[file.length()] = '\0';
7301 gogo->linemap()->start_file(alc, lineno);
7302 gogo->linemap()->start_line(lineno, 1);
7303 Location start_loc = gogo->linemap()->get_location(0);
7304
7305 // Define the function with an outer block that declares the
7306 // parameters.
7307
7308 Function_type* fntype = this->fntype_;
7309
7310 Block* outer = new Block(NULL, start_loc);
7311
7312 Function* fn = new Function(fntype, NULL, outer, start_loc);
7313 fn->set_is_inline_only();
7314
7315 if (fntype->is_method())
7316 {
7317 if (this->nointerface())
7318 fn->set_nointerface();
7319 const Typed_identifier* receiver = fntype->receiver();
7320 Variable* recv_param = new Variable(receiver->type(), NULL, false,
7321 true, true, start_loc);
7322
7323 std::string rname = receiver->name();
7324 unsigned rcounter = 0;
7325
7326 // We need to give a nameless receiver a name to avoid having it
7327 // clash with some other nameless param. FIXME.
7328 Gogo::rename_if_empty(&rname, "r", &rcounter);
7329
7330 outer->bindings()->add_variable(rname, NULL, recv_param);
7331 }
7332
7333 const Typed_identifier_list* params = fntype->parameters();
7334 bool is_varargs = fntype->is_varargs();
7335 unsigned pcounter = 0;
7336 if (params != NULL)
7337 {
7338 for (Typed_identifier_list::const_iterator p = params->begin();
7339 p != params->end();
7340 ++p)
7341 {
7342 Variable* param = new Variable(p->type(), NULL, false, true, false,
7343 start_loc);
7344 if (is_varargs && p + 1 == params->end())
7345 param->set_is_varargs_parameter();
7346
7347 std::string pname = p->name();
7348
7349 // We need to give each nameless parameter a non-empty name to avoid
7350 // having it clash with some other nameless param. FIXME.
7351 Gogo::rename_if_empty(&pname, "p", &pcounter);
7352
7353 outer->bindings()->add_variable(pname, NULL, param);
7354 }
7355 }
7356
7357 fn->create_result_variables(gogo);
7358
7359 if (!fntype->is_method())
7360 {
7361 const Package* package = no->package();
7362 no = package->bindings()->add_function(no->name(), package, fn);
7363 }
7364 else
7365 {
7366 Named_type* rtype = fntype->receiver()->type()->deref()->named_type();
7367 go_assert(rtype != NULL);
7368 no = rtype->add_method(no->name(), fn);
7369 const Package* package = rtype->named_object()->package();
7370 package->bindings()->add_method(no);
7371 }
7372
7373 Import_function_body ifb(gogo, this->imp_, no, body, nl + 1, outer, indent);
7374
7375 if (!Block::import_block(outer, &ifb, start_loc))
7376 return;
7377
7378 gogo->lower_block(no, outer);
7379 outer->determine_types();
7380
7381 gogo->add_imported_inline_function(no);
7382 }
7383
7384 // Return the function descriptor.
7385
7386 Expression*
descriptor(Gogo *,Named_object * no)7387 Function_declaration::descriptor(Gogo*, Named_object* no)
7388 {
7389 go_assert(!this->fntype_->is_method());
7390 if (this->descriptor_ == NULL)
7391 this->descriptor_ = Expression::make_func_descriptor(no);
7392 return this->descriptor_;
7393 }
7394
7395 // Class Variable.
7396
Variable(Type * type,Expression * init,bool is_global,bool is_parameter,bool is_receiver,Location location)7397 Variable::Variable(Type* type, Expression* init, bool is_global,
7398 bool is_parameter, bool is_receiver,
7399 Location location)
7400 : type_(type), init_(init), preinit_(NULL), location_(location),
7401 backend_(NULL), is_global_(is_global), is_parameter_(is_parameter),
7402 is_closure_(false), is_receiver_(is_receiver),
7403 is_varargs_parameter_(false), is_used_(false),
7404 is_address_taken_(false), is_non_escaping_address_taken_(false),
7405 seen_(false), init_is_lowered_(false), init_is_flattened_(false),
7406 type_from_init_tuple_(false), type_from_range_index_(false),
7407 type_from_range_value_(false), type_from_chan_element_(false),
7408 is_type_switch_var_(false), determined_type_(false),
7409 in_unique_section_(false), is_referenced_by_inline_(false),
7410 toplevel_decl_(NULL)
7411 {
7412 go_assert(type != NULL || init != NULL);
7413 go_assert(!is_parameter || init == NULL);
7414 }
7415
7416 // Traverse the initializer expression.
7417
7418 int
traverse_expression(Traverse * traverse,unsigned int traverse_mask)7419 Variable::traverse_expression(Traverse* traverse, unsigned int traverse_mask)
7420 {
7421 if (this->preinit_ != NULL)
7422 {
7423 if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
7424 return TRAVERSE_EXIT;
7425 }
7426 if (this->init_ != NULL
7427 && ((traverse_mask
7428 & (Traverse::traverse_expressions | Traverse::traverse_types))
7429 != 0))
7430 {
7431 if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
7432 return TRAVERSE_EXIT;
7433 }
7434 return TRAVERSE_CONTINUE;
7435 }
7436
7437 // Lower the initialization expression after parsing is complete.
7438
7439 void
lower_init_expression(Gogo * gogo,Named_object * function,Statement_inserter * inserter)7440 Variable::lower_init_expression(Gogo* gogo, Named_object* function,
7441 Statement_inserter* inserter)
7442 {
7443 Named_object* dep = gogo->var_depends_on(this);
7444 if (dep != NULL && dep->is_variable())
7445 dep->var_value()->lower_init_expression(gogo, function, inserter);
7446
7447 if (this->init_ != NULL && !this->init_is_lowered_)
7448 {
7449 if (this->seen_)
7450 {
7451 // We will give an error elsewhere, this is just to prevent
7452 // an infinite loop.
7453 return;
7454 }
7455 this->seen_ = true;
7456
7457 Statement_inserter global_inserter;
7458 if (this->is_global_)
7459 {
7460 global_inserter = Statement_inserter(gogo, this);
7461 inserter = &global_inserter;
7462 }
7463
7464 gogo->lower_expression(function, inserter, &this->init_);
7465
7466 this->seen_ = false;
7467
7468 this->init_is_lowered_ = true;
7469 }
7470 }
7471
7472 // Flatten the initialization expression after ordering evaluations.
7473
7474 void
flatten_init_expression(Gogo * gogo,Named_object * function,Statement_inserter * inserter)7475 Variable::flatten_init_expression(Gogo* gogo, Named_object* function,
7476 Statement_inserter* inserter)
7477 {
7478 Named_object* dep = gogo->var_depends_on(this);
7479 if (dep != NULL && dep->is_variable())
7480 dep->var_value()->flatten_init_expression(gogo, function, inserter);
7481
7482 if (this->init_ != NULL && !this->init_is_flattened_)
7483 {
7484 if (this->seen_)
7485 {
7486 // We will give an error elsewhere, this is just to prevent
7487 // an infinite loop.
7488 return;
7489 }
7490 this->seen_ = true;
7491
7492 Statement_inserter global_inserter;
7493 if (this->is_global_)
7494 {
7495 global_inserter = Statement_inserter(gogo, this);
7496 inserter = &global_inserter;
7497 }
7498
7499 gogo->flatten_expression(function, inserter, &this->init_);
7500
7501 // If an interface conversion is needed, we need a temporary
7502 // variable.
7503 if (this->type_ != NULL
7504 && !Type::are_identical(this->type_, this->init_->type(),
7505 Type::COMPARE_ERRORS | Type::COMPARE_TAGS,
7506 NULL)
7507 && this->init_->type()->interface_type() != NULL
7508 && !this->init_->is_variable())
7509 {
7510 Temporary_statement* temp =
7511 Statement::make_temporary(NULL, this->init_, this->location_);
7512 inserter->insert(temp);
7513 this->init_ = Expression::make_temporary_reference(temp,
7514 this->location_);
7515 }
7516
7517 this->seen_ = false;
7518 this->init_is_flattened_ = true;
7519 }
7520 }
7521
7522 // Get the preinit block.
7523
7524 Block*
preinit_block(Gogo * gogo)7525 Variable::preinit_block(Gogo* gogo)
7526 {
7527 go_assert(this->is_global_);
7528 if (this->preinit_ == NULL)
7529 this->preinit_ = new Block(NULL, this->location());
7530
7531 // If a global variable has a preinitialization statement, then we
7532 // need to have an initialization function.
7533 gogo->set_need_init_fn();
7534
7535 return this->preinit_;
7536 }
7537
7538 // Add a statement to be run before the initialization expression.
7539
7540 void
add_preinit_statement(Gogo * gogo,Statement * s)7541 Variable::add_preinit_statement(Gogo* gogo, Statement* s)
7542 {
7543 Block* b = this->preinit_block(gogo);
7544 b->add_statement(s);
7545 b->set_end_location(s->location());
7546 }
7547
7548 // Whether this variable has a type.
7549
7550 bool
has_type() const7551 Variable::has_type() const
7552 {
7553 if (this->type_ == NULL)
7554 return false;
7555
7556 // A variable created in a type switch case nil does not actually
7557 // have a type yet. It will be changed to use the initializer's
7558 // type in determine_type.
7559 if (this->is_type_switch_var_
7560 && this->type_->is_nil_constant_as_type())
7561 return false;
7562
7563 return true;
7564 }
7565
7566 // In an assignment which sets a variable to a tuple of EXPR, return
7567 // the type of the first element of the tuple.
7568
7569 Type*
type_from_tuple(Expression * expr,bool report_error) const7570 Variable::type_from_tuple(Expression* expr, bool report_error) const
7571 {
7572 if (expr->map_index_expression() != NULL)
7573 {
7574 Map_type* mt = expr->map_index_expression()->get_map_type();
7575 if (mt == NULL)
7576 return Type::make_error_type();
7577 return mt->val_type();
7578 }
7579 else if (expr->receive_expression() != NULL)
7580 {
7581 Expression* channel = expr->receive_expression()->channel();
7582 Type* channel_type = channel->type();
7583 if (channel_type->channel_type() == NULL)
7584 return Type::make_error_type();
7585 return channel_type->channel_type()->element_type();
7586 }
7587 else
7588 {
7589 if (report_error)
7590 go_error_at(this->location(), "invalid tuple definition");
7591 return Type::make_error_type();
7592 }
7593 }
7594
7595 // Given EXPR used in a range clause, return either the index type or
7596 // the value type of the range, depending upon GET_INDEX_TYPE.
7597
7598 Type*
type_from_range(Expression * expr,bool get_index_type,bool report_error) const7599 Variable::type_from_range(Expression* expr, bool get_index_type,
7600 bool report_error) const
7601 {
7602 Type* t = expr->type();
7603 if (t->array_type() != NULL
7604 || (t->points_to() != NULL
7605 && t->points_to()->array_type() != NULL
7606 && !t->points_to()->is_slice_type()))
7607 {
7608 if (get_index_type)
7609 return Type::lookup_integer_type("int");
7610 else
7611 return t->deref()->array_type()->element_type();
7612 }
7613 else if (t->is_string_type())
7614 {
7615 if (get_index_type)
7616 return Type::lookup_integer_type("int");
7617 else
7618 return Type::lookup_integer_type("int32");
7619 }
7620 else if (t->map_type() != NULL)
7621 {
7622 if (get_index_type)
7623 return t->map_type()->key_type();
7624 else
7625 return t->map_type()->val_type();
7626 }
7627 else if (t->channel_type() != NULL)
7628 {
7629 if (get_index_type)
7630 return t->channel_type()->element_type();
7631 else
7632 {
7633 if (report_error)
7634 go_error_at(this->location(),
7635 ("invalid definition of value variable "
7636 "for channel range"));
7637 return Type::make_error_type();
7638 }
7639 }
7640 else
7641 {
7642 if (report_error)
7643 go_error_at(this->location(), "invalid type for range clause");
7644 return Type::make_error_type();
7645 }
7646 }
7647
7648 // EXPR should be a channel. Return the channel's element type.
7649
7650 Type*
type_from_chan_element(Expression * expr,bool report_error) const7651 Variable::type_from_chan_element(Expression* expr, bool report_error) const
7652 {
7653 Type* t = expr->type();
7654 if (t->channel_type() != NULL)
7655 return t->channel_type()->element_type();
7656 else
7657 {
7658 if (report_error)
7659 go_error_at(this->location(), "expected channel");
7660 return Type::make_error_type();
7661 }
7662 }
7663
7664 // Return the type of the Variable. This may be called before
7665 // Variable::determine_type is called, which means that we may need to
7666 // get the type from the initializer. FIXME: If we combine lowering
7667 // with type determination, then this should be unnecessary.
7668
7669 Type*
type()7670 Variable::type()
7671 {
7672 // A variable in a type switch with a nil case will have the wrong
7673 // type here. This gets fixed up in determine_type, below.
7674 Type* type = this->type_;
7675 Expression* init = this->init_;
7676 if (this->is_type_switch_var_
7677 && type != NULL
7678 && this->type_->is_nil_constant_as_type())
7679 {
7680 Type_guard_expression* tge = this->init_->type_guard_expression();
7681 go_assert(tge != NULL);
7682 init = tge->expr();
7683 type = NULL;
7684 }
7685
7686 if (this->seen_)
7687 {
7688 if (this->type_ == NULL || !this->type_->is_error_type())
7689 {
7690 go_error_at(this->location_, "variable initializer refers to itself");
7691 this->type_ = Type::make_error_type();
7692 }
7693 return this->type_;
7694 }
7695
7696 this->seen_ = true;
7697
7698 if (type != NULL)
7699 ;
7700 else if (this->type_from_init_tuple_)
7701 type = this->type_from_tuple(init, false);
7702 else if (this->type_from_range_index_ || this->type_from_range_value_)
7703 type = this->type_from_range(init, this->type_from_range_index_, false);
7704 else if (this->type_from_chan_element_)
7705 type = this->type_from_chan_element(init, false);
7706 else
7707 {
7708 go_assert(init != NULL);
7709 type = init->type();
7710 go_assert(type != NULL);
7711
7712 // Variables should not have abstract types.
7713 if (type->is_abstract())
7714 type = type->make_non_abstract_type();
7715
7716 if (type->is_void_type())
7717 type = Type::make_error_type();
7718 }
7719
7720 this->seen_ = false;
7721
7722 return type;
7723 }
7724
7725 // Fetch the type from a const pointer, in which case it should have
7726 // been set already.
7727
7728 Type*
type() const7729 Variable::type() const
7730 {
7731 go_assert(this->type_ != NULL);
7732 return this->type_;
7733 }
7734
7735 // Set the type if necessary.
7736
7737 void
determine_type()7738 Variable::determine_type()
7739 {
7740 if (this->determined_type_)
7741 return;
7742 this->determined_type_ = true;
7743
7744 if (this->preinit_ != NULL)
7745 this->preinit_->determine_types();
7746
7747 // A variable in a type switch with a nil case will have the wrong
7748 // type here. It will have an initializer which is a type guard.
7749 // We want to initialize it to the value without the type guard, and
7750 // use the type of that value as well.
7751 if (this->is_type_switch_var_
7752 && this->type_ != NULL
7753 && this->type_->is_nil_constant_as_type())
7754 {
7755 Type_guard_expression* tge = this->init_->type_guard_expression();
7756 go_assert(tge != NULL);
7757 this->type_ = NULL;
7758 this->init_ = tge->expr();
7759 }
7760
7761 if (this->init_ == NULL)
7762 go_assert(this->type_ != NULL && !this->type_->is_abstract());
7763 else if (this->type_from_init_tuple_)
7764 {
7765 Expression *init = this->init_;
7766 init->determine_type_no_context();
7767 this->type_ = this->type_from_tuple(init, true);
7768 this->init_ = NULL;
7769 }
7770 else if (this->type_from_range_index_ || this->type_from_range_value_)
7771 {
7772 Expression* init = this->init_;
7773 init->determine_type_no_context();
7774 this->type_ = this->type_from_range(init, this->type_from_range_index_,
7775 true);
7776 this->init_ = NULL;
7777 }
7778 else if (this->type_from_chan_element_)
7779 {
7780 Expression* init = this->init_;
7781 init->determine_type_no_context();
7782 this->type_ = this->type_from_chan_element(init, true);
7783 this->init_ = NULL;
7784 }
7785 else
7786 {
7787 Type_context context(this->type_, false);
7788 this->init_->determine_type(&context);
7789 if (this->type_ == NULL)
7790 {
7791 Type* type = this->init_->type();
7792 go_assert(type != NULL);
7793 if (type->is_abstract())
7794 type = type->make_non_abstract_type();
7795
7796 if (type->is_void_type())
7797 {
7798 go_error_at(this->location_, "variable has no type");
7799 type = Type::make_error_type();
7800 }
7801 else if (type->is_nil_type())
7802 {
7803 go_error_at(this->location_, "variable defined to nil type");
7804 type = Type::make_error_type();
7805 }
7806 else if (type->is_call_multiple_result_type())
7807 {
7808 go_error_at(this->location_,
7809 "single variable set to multiple-value function call");
7810 type = Type::make_error_type();
7811 }
7812
7813 this->type_ = type;
7814 }
7815 }
7816 }
7817
7818 // Get the initial value of a variable. This does not
7819 // consider whether the variable is in the heap--it returns the
7820 // initial value as though it were always stored in the stack.
7821
7822 Bexpression*
get_init(Gogo * gogo,Named_object * function)7823 Variable::get_init(Gogo* gogo, Named_object* function)
7824 {
7825 go_assert(this->preinit_ == NULL);
7826 Location loc = this->location();
7827 if (this->init_ == NULL)
7828 {
7829 go_assert(!this->is_parameter_);
7830 if (this->is_global_ || this->is_in_heap())
7831 return NULL;
7832 Btype* btype = this->type()->get_backend(gogo);
7833 return gogo->backend()->zero_expression(btype);
7834 }
7835 else
7836 {
7837 Translate_context context(gogo, function, NULL, NULL);
7838 Expression* init = Expression::make_cast(this->type(), this->init_, loc);
7839 return init->get_backend(&context);
7840 }
7841 }
7842
7843 // Get the initial value of a variable when a block is required.
7844 // VAR_DECL is the decl to set; it may be NULL for a sink variable.
7845
7846 Bstatement*
get_init_block(Gogo * gogo,Named_object * function,Bvariable * var_decl)7847 Variable::get_init_block(Gogo* gogo, Named_object* function,
7848 Bvariable* var_decl)
7849 {
7850 go_assert(this->preinit_ != NULL);
7851
7852 // We want to add the variable assignment to the end of the preinit
7853 // block.
7854
7855 Translate_context context(gogo, function, NULL, NULL);
7856 Bblock* bblock = this->preinit_->get_backend(&context);
7857 Bfunction* bfunction =
7858 function->func_value()->get_or_make_decl(gogo, function);
7859
7860 // It's possible to have pre-init statements without an initializer
7861 // if the pre-init statements set the variable.
7862 Bstatement* decl_init = NULL;
7863 if (this->init_ != NULL)
7864 {
7865 if (var_decl == NULL)
7866 {
7867 Bexpression* init_bexpr = this->init_->get_backend(&context);
7868 decl_init = gogo->backend()->expression_statement(bfunction,
7869 init_bexpr);
7870 }
7871 else
7872 {
7873 Location loc = this->location();
7874 Expression* val_expr =
7875 Expression::make_cast(this->type(), this->init_, loc);
7876 Bexpression* val = val_expr->get_backend(&context);
7877 Bexpression* var_ref =
7878 gogo->backend()->var_expression(var_decl, loc);
7879 decl_init = gogo->backend()->assignment_statement(bfunction, var_ref,
7880 val, loc);
7881 }
7882 }
7883 Bstatement* block_stmt = gogo->backend()->block_statement(bblock);
7884 if (decl_init != NULL)
7885 block_stmt = gogo->backend()->compound_statement(block_stmt, decl_init);
7886 return block_stmt;
7887 }
7888
7889 // Export the variable
7890
7891 void
export_var(Export * exp,const Named_object * no) const7892 Variable::export_var(Export* exp, const Named_object* no) const
7893 {
7894 go_assert(this->is_global_);
7895 exp->write_c_string("var ");
7896 if (no->package() != NULL)
7897 {
7898 char buf[50];
7899 snprintf(buf, sizeof buf, "<p%d>", exp->package_index(no->package()));
7900 exp->write_c_string(buf);
7901 }
7902
7903 if (!Gogo::is_hidden_name(no->name()))
7904 exp->write_string(no->name());
7905 else
7906 {
7907 exp->write_c_string(".");
7908 exp->write_string(Gogo::unpack_hidden_name(no->name()));
7909 }
7910
7911 exp->write_c_string(" ");
7912 exp->write_type(this->type());
7913 exp->write_c_string("\n");
7914 }
7915
7916 // Import a variable.
7917
7918 bool
import_var(Import * imp,std::string * pname,Package ** ppkg,bool * pis_exported,Type ** ptype)7919 Variable::import_var(Import* imp, std::string* pname, Package** ppkg,
7920 bool* pis_exported, Type** ptype)
7921 {
7922 imp->require_c_string("var ");
7923 if (!Import::read_qualified_identifier(imp, pname, ppkg, pis_exported))
7924 {
7925 go_error_at(imp->location(),
7926 "import error at %d: bad variable name in export data",
7927 imp->pos());
7928 return false;
7929 }
7930 imp->require_c_string(" ");
7931 *ptype = imp->read_type();
7932 imp->require_semicolon_if_old_version();
7933 imp->require_c_string("\n");
7934 return true;
7935 }
7936
7937 // Convert a variable to the backend representation.
7938
7939 Bvariable*
get_backend_variable(Gogo * gogo,Named_object * function,const Package * package,const std::string & name)7940 Variable::get_backend_variable(Gogo* gogo, Named_object* function,
7941 const Package* package, const std::string& name)
7942 {
7943 if (this->backend_ == NULL)
7944 {
7945 Backend* backend = gogo->backend();
7946 Type* type = this->type_;
7947 if (type->is_error_type()
7948 || (type->is_undefined()
7949 && (!this->is_global_ || package == NULL)))
7950 this->backend_ = backend->error_variable();
7951 else
7952 {
7953 bool is_parameter = this->is_parameter_;
7954 if (this->is_receiver_ && type->points_to() == NULL)
7955 is_parameter = false;
7956 if (this->is_in_heap())
7957 {
7958 is_parameter = false;
7959 type = Type::make_pointer_type(type);
7960 }
7961
7962 const std::string n = Gogo::unpack_hidden_name(name);
7963 Btype* btype = type->get_backend(gogo);
7964
7965 Bvariable* bvar;
7966 if (Map_type::is_zero_value(this))
7967 bvar = Map_type::backend_zero_value(gogo);
7968 else if (this->is_global_)
7969 {
7970 std::string var_name(package != NULL
7971 ? package->package_name()
7972 : gogo->package_name());
7973 var_name.push_back('.');
7974 var_name.append(n);
7975
7976 std::string asm_name(gogo->global_var_asm_name(name, package));
7977
7978 bool is_hidden = Gogo::is_hidden_name(name);
7979 // Hack to export runtime.writeBarrier. FIXME.
7980 // This is because go:linkname doesn't work on variables.
7981 if (gogo->compiling_runtime()
7982 && var_name == "runtime.writeBarrier")
7983 is_hidden = false;
7984
7985 // If an inline body refers to this variable, then it
7986 // needs to be visible in the symbol table.
7987 if (this->is_referenced_by_inline_)
7988 is_hidden = false;
7989
7990 // If this variable is in a different package, then it
7991 // can't be treated as a hidden symbol. This case can
7992 // arise when an inlined function refers to a
7993 // package-scope unexported variable.
7994 if (package != NULL)
7995 is_hidden = false;
7996
7997 bvar = backend->global_variable(var_name,
7998 asm_name,
7999 btype,
8000 package != NULL,
8001 is_hidden,
8002 this->in_unique_section_,
8003 this->location_);
8004 }
8005 else if (function == NULL)
8006 {
8007 go_assert(saw_errors());
8008 bvar = backend->error_variable();
8009 }
8010 else
8011 {
8012 Bfunction* bfunction = function->func_value()->get_decl();
8013 bool is_address_taken = (this->is_non_escaping_address_taken_
8014 && !this->is_in_heap());
8015 if (this->is_closure())
8016 bvar = backend->static_chain_variable(bfunction, n, btype,
8017 this->location_);
8018 else if (is_parameter)
8019 bvar = backend->parameter_variable(bfunction, n, btype,
8020 is_address_taken,
8021 this->location_);
8022 else
8023 {
8024 Bvariable* bvar_decl = NULL;
8025 if (this->toplevel_decl_ != NULL)
8026 {
8027 Translate_context context(gogo, NULL, NULL, NULL);
8028 bvar_decl = this->toplevel_decl_->temporary_statement()
8029 ->get_backend_variable(&context);
8030 }
8031 bvar = backend->local_variable(bfunction, n, btype,
8032 bvar_decl,
8033 is_address_taken,
8034 this->location_);
8035 }
8036 }
8037 this->backend_ = bvar;
8038 }
8039 }
8040 return this->backend_;
8041 }
8042
8043 // Class Result_variable.
8044
8045 // Convert a result variable to the backend representation.
8046
8047 Bvariable*
get_backend_variable(Gogo * gogo,Named_object * function,const std::string & name)8048 Result_variable::get_backend_variable(Gogo* gogo, Named_object* function,
8049 const std::string& name)
8050 {
8051 if (this->backend_ == NULL)
8052 {
8053 Backend* backend = gogo->backend();
8054 Type* type = this->type_;
8055 if (type->is_error())
8056 this->backend_ = backend->error_variable();
8057 else
8058 {
8059 if (this->is_in_heap())
8060 type = Type::make_pointer_type(type);
8061 Btype* btype = type->get_backend(gogo);
8062 Bfunction* bfunction = function->func_value()->get_decl();
8063 std::string n = Gogo::unpack_hidden_name(name);
8064 bool is_address_taken = (this->is_non_escaping_address_taken_
8065 && !this->is_in_heap());
8066 this->backend_ = backend->local_variable(bfunction, n, btype,
8067 NULL, is_address_taken,
8068 this->location_);
8069 }
8070 }
8071 return this->backend_;
8072 }
8073
8074 // Class Named_constant.
8075
8076 // Set the type of a named constant. This is only used to set the
8077 // type to an error type.
8078
8079 void
set_type(Type * t)8080 Named_constant::set_type(Type* t)
8081 {
8082 go_assert(this->type_ == NULL || t->is_error_type());
8083 this->type_ = t;
8084 }
8085
8086 // Traverse the initializer expression.
8087
8088 int
traverse_expression(Traverse * traverse)8089 Named_constant::traverse_expression(Traverse* traverse)
8090 {
8091 return Expression::traverse(&this->expr_, traverse);
8092 }
8093
8094 // Determine the type of the constant.
8095
8096 void
determine_type()8097 Named_constant::determine_type()
8098 {
8099 if (this->type_ != NULL)
8100 {
8101 Type_context context(this->type_, false);
8102 this->expr_->determine_type(&context);
8103 }
8104 else
8105 {
8106 // A constant may have an abstract type.
8107 Type_context context(NULL, true);
8108 this->expr_->determine_type(&context);
8109 this->type_ = this->expr_->type();
8110 go_assert(this->type_ != NULL);
8111 }
8112 }
8113
8114 // Indicate that we found and reported an error for this constant.
8115
8116 void
set_error()8117 Named_constant::set_error()
8118 {
8119 this->type_ = Type::make_error_type();
8120 this->expr_ = Expression::make_error(this->location_);
8121 }
8122
8123 // Export a constant.
8124
8125 void
export_const(Export * exp,const std::string & name) const8126 Named_constant::export_const(Export* exp, const std::string& name) const
8127 {
8128 exp->write_c_string("const ");
8129 exp->write_string(name);
8130 exp->write_c_string(" ");
8131 if (!this->type_->is_abstract())
8132 {
8133 exp->write_type(this->type_);
8134 exp->write_c_string(" ");
8135 }
8136 exp->write_c_string("= ");
8137
8138 Export_function_body efb(exp, 0);
8139 if (!this->type_->is_abstract())
8140 efb.set_type_context(this->type_);
8141 this->expr()->export_expression(&efb);
8142 exp->write_string(efb.body());
8143
8144 exp->write_c_string("\n");
8145 }
8146
8147 // Import a constant.
8148
8149 void
import_const(Import * imp,std::string * pname,Type ** ptype,Expression ** pexpr)8150 Named_constant::import_const(Import* imp, std::string* pname, Type** ptype,
8151 Expression** pexpr)
8152 {
8153 imp->require_c_string("const ");
8154 *pname = imp->read_identifier();
8155 imp->require_c_string(" ");
8156 if (imp->peek_char() == '=')
8157 *ptype = NULL;
8158 else
8159 {
8160 *ptype = imp->read_type();
8161 imp->require_c_string(" ");
8162 }
8163 imp->require_c_string("= ");
8164 *pexpr = Expression::import_expression(imp, imp->location());
8165 imp->require_semicolon_if_old_version();
8166 imp->require_c_string("\n");
8167 }
8168
8169 // Get the backend representation.
8170
8171 Bexpression*
get_backend(Gogo * gogo,Named_object * const_no)8172 Named_constant::get_backend(Gogo* gogo, Named_object* const_no)
8173 {
8174 if (this->bconst_ == NULL)
8175 {
8176 Translate_context subcontext(gogo, NULL, NULL, NULL);
8177 Type* type = this->type();
8178 Location loc = this->location();
8179
8180 Expression* const_ref = Expression::make_const_reference(const_no, loc);
8181 Bexpression* const_decl = const_ref->get_backend(&subcontext);
8182 if (type != NULL && type->is_numeric_type())
8183 {
8184 Btype* btype = type->get_backend(gogo);
8185 std::string name = const_no->get_id(gogo);
8186 const_decl =
8187 gogo->backend()->named_constant_expression(btype, name,
8188 const_decl, loc);
8189 }
8190 this->bconst_ = const_decl;
8191 }
8192 return this->bconst_;
8193 }
8194
8195 // Add a method.
8196
8197 Named_object*
add_method(const std::string & name,Function * function)8198 Type_declaration::add_method(const std::string& name, Function* function)
8199 {
8200 Named_object* ret = Named_object::make_function(name, NULL, function);
8201 this->methods_.push_back(ret);
8202 return ret;
8203 }
8204
8205 // Add a method declaration.
8206
8207 Named_object*
add_method_declaration(const std::string & name,Package * package,Function_type * type,Location location)8208 Type_declaration::add_method_declaration(const std::string& name,
8209 Package* package,
8210 Function_type* type,
8211 Location location)
8212 {
8213 Named_object* ret = Named_object::make_function_declaration(name, package,
8214 type, location);
8215 this->methods_.push_back(ret);
8216 return ret;
8217 }
8218
8219 // Return whether any methods are defined.
8220
8221 bool
has_methods() const8222 Type_declaration::has_methods() const
8223 {
8224 return !this->methods_.empty();
8225 }
8226
8227 // Define methods for the real type.
8228
8229 void
define_methods(Named_type * nt)8230 Type_declaration::define_methods(Named_type* nt)
8231 {
8232 if (this->methods_.empty())
8233 return;
8234
8235 while (nt->is_alias())
8236 {
8237 Type *t = nt->real_type()->forwarded();
8238 if (t->named_type() != NULL)
8239 nt = t->named_type();
8240 else if (t->forward_declaration_type() != NULL)
8241 {
8242 Named_object* no = t->forward_declaration_type()->named_object();
8243 Type_declaration* td = no->type_declaration_value();
8244 td->methods_.insert(td->methods_.end(), this->methods_.begin(),
8245 this->methods_.end());
8246 this->methods_.clear();
8247 return;
8248 }
8249 else
8250 {
8251 for (std::vector<Named_object*>::const_iterator p =
8252 this->methods_.begin();
8253 p != this->methods_.end();
8254 ++p)
8255 go_error_at((*p)->location(),
8256 ("invalid receiver type "
8257 "(receiver must be a named type)"));
8258 return;
8259 }
8260 }
8261
8262 for (std::vector<Named_object*>::const_iterator p = this->methods_.begin();
8263 p != this->methods_.end();
8264 ++p)
8265 {
8266 if ((*p)->is_function_declaration()
8267 || !(*p)->func_value()->is_sink())
8268 nt->add_existing_method(*p);
8269 }
8270 }
8271
8272 // We are using the type. Return true if we should issue a warning.
8273
8274 bool
using_type()8275 Type_declaration::using_type()
8276 {
8277 bool ret = !this->issued_warning_;
8278 this->issued_warning_ = true;
8279 return ret;
8280 }
8281
8282 // Class Unknown_name.
8283
8284 // Set the real named object.
8285
8286 void
set_real_named_object(Named_object * no)8287 Unknown_name::set_real_named_object(Named_object* no)
8288 {
8289 go_assert(this->real_named_object_ == NULL);
8290 go_assert(!no->is_unknown());
8291 this->real_named_object_ = no;
8292 }
8293
8294 // Class Named_object.
8295
Named_object(const std::string & name,const Package * package,Classification classification)8296 Named_object::Named_object(const std::string& name,
8297 const Package* package,
8298 Classification classification)
8299 : name_(name), package_(package), classification_(classification),
8300 is_redefinition_(false)
8301 {
8302 if (Gogo::is_sink_name(name))
8303 go_assert(classification == NAMED_OBJECT_SINK);
8304 }
8305
8306 // Make an unknown name. This is used by the parser. The name must
8307 // be resolved later. Unknown names are only added in the current
8308 // package.
8309
8310 Named_object*
make_unknown_name(const std::string & name,Location location)8311 Named_object::make_unknown_name(const std::string& name,
8312 Location location)
8313 {
8314 Named_object* named_object = new Named_object(name, NULL,
8315 NAMED_OBJECT_UNKNOWN);
8316 Unknown_name* value = new Unknown_name(location);
8317 named_object->u_.unknown_value = value;
8318 return named_object;
8319 }
8320
8321 // Make a constant.
8322
8323 Named_object*
make_constant(const Typed_identifier & tid,const Package * package,Expression * expr,int iota_value)8324 Named_object::make_constant(const Typed_identifier& tid,
8325 const Package* package, Expression* expr,
8326 int iota_value)
8327 {
8328 Named_object* named_object = new Named_object(tid.name(), package,
8329 NAMED_OBJECT_CONST);
8330 Named_constant* named_constant = new Named_constant(tid.type(), expr,
8331 iota_value,
8332 tid.location());
8333 named_object->u_.const_value = named_constant;
8334 return named_object;
8335 }
8336
8337 // Make a named type.
8338
8339 Named_object*
make_type(const std::string & name,const Package * package,Type * type,Location location)8340 Named_object::make_type(const std::string& name, const Package* package,
8341 Type* type, Location location)
8342 {
8343 Named_object* named_object = new Named_object(name, package,
8344 NAMED_OBJECT_TYPE);
8345 Named_type* named_type = Type::make_named_type(named_object, type, location);
8346 named_object->u_.type_value = named_type;
8347 return named_object;
8348 }
8349
8350 // Make a type declaration.
8351
8352 Named_object*
make_type_declaration(const std::string & name,const Package * package,Location location)8353 Named_object::make_type_declaration(const std::string& name,
8354 const Package* package,
8355 Location location)
8356 {
8357 Named_object* named_object = new Named_object(name, package,
8358 NAMED_OBJECT_TYPE_DECLARATION);
8359 Type_declaration* type_declaration = new Type_declaration(location);
8360 named_object->u_.type_declaration = type_declaration;
8361 return named_object;
8362 }
8363
8364 // Make a variable.
8365
8366 Named_object*
make_variable(const std::string & name,const Package * package,Variable * variable)8367 Named_object::make_variable(const std::string& name, const Package* package,
8368 Variable* variable)
8369 {
8370 Named_object* named_object = new Named_object(name, package,
8371 NAMED_OBJECT_VAR);
8372 named_object->u_.var_value = variable;
8373 return named_object;
8374 }
8375
8376 // Make a result variable.
8377
8378 Named_object*
make_result_variable(const std::string & name,Result_variable * result)8379 Named_object::make_result_variable(const std::string& name,
8380 Result_variable* result)
8381 {
8382 Named_object* named_object = new Named_object(name, NULL,
8383 NAMED_OBJECT_RESULT_VAR);
8384 named_object->u_.result_var_value = result;
8385 return named_object;
8386 }
8387
8388 // Make a sink. This is used for the special blank identifier _.
8389
8390 Named_object*
make_sink()8391 Named_object::make_sink()
8392 {
8393 return new Named_object("_", NULL, NAMED_OBJECT_SINK);
8394 }
8395
8396 // Make a named function.
8397
8398 Named_object*
make_function(const std::string & name,const Package * package,Function * function)8399 Named_object::make_function(const std::string& name, const Package* package,
8400 Function* function)
8401 {
8402 Named_object* named_object = new Named_object(name, package,
8403 NAMED_OBJECT_FUNC);
8404 named_object->u_.func_value = function;
8405 return named_object;
8406 }
8407
8408 // Make a function declaration.
8409
8410 Named_object*
make_function_declaration(const std::string & name,const Package * package,Function_type * fntype,Location location)8411 Named_object::make_function_declaration(const std::string& name,
8412 const Package* package,
8413 Function_type* fntype,
8414 Location location)
8415 {
8416 Named_object* named_object = new Named_object(name, package,
8417 NAMED_OBJECT_FUNC_DECLARATION);
8418 Function_declaration *func_decl = new Function_declaration(fntype, location);
8419 named_object->u_.func_declaration_value = func_decl;
8420 return named_object;
8421 }
8422
8423 // Make a package.
8424
8425 Named_object*
make_package(const std::string & alias,Package * package)8426 Named_object::make_package(const std::string& alias, Package* package)
8427 {
8428 Named_object* named_object = new Named_object(alias, NULL,
8429 NAMED_OBJECT_PACKAGE);
8430 named_object->u_.package_value = package;
8431 return named_object;
8432 }
8433
8434 // Return the name to use in an error message.
8435
8436 std::string
message_name() const8437 Named_object::message_name() const
8438 {
8439 if (this->package_ == NULL)
8440 return Gogo::message_name(this->name_);
8441 std::string ret;
8442 if (this->package_->has_package_name())
8443 ret = this->package_->package_name();
8444 else
8445 ret = this->package_->pkgpath();
8446 ret = Gogo::message_name(ret);
8447 ret += '.';
8448 ret += Gogo::message_name(this->name_);
8449 return ret;
8450 }
8451
8452 // Set the type when a declaration is defined.
8453
8454 void
set_type_value(Named_type * named_type)8455 Named_object::set_type_value(Named_type* named_type)
8456 {
8457 go_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
8458 Type_declaration* td = this->u_.type_declaration;
8459 td->define_methods(named_type);
8460 unsigned int index;
8461 Named_object* in_function = td->in_function(&index);
8462 if (in_function != NULL)
8463 named_type->set_in_function(in_function, index);
8464 delete td;
8465 this->classification_ = NAMED_OBJECT_TYPE;
8466 this->u_.type_value = named_type;
8467 }
8468
8469 // Define a function which was previously declared.
8470
8471 void
set_function_value(Function * function)8472 Named_object::set_function_value(Function* function)
8473 {
8474 go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
8475 if (this->func_declaration_value()->has_descriptor())
8476 {
8477 Expression* descriptor =
8478 this->func_declaration_value()->descriptor(NULL, NULL);
8479 function->set_descriptor(descriptor);
8480 }
8481 this->classification_ = NAMED_OBJECT_FUNC;
8482 // FIXME: We should free the old value.
8483 this->u_.func_value = function;
8484 }
8485
8486 // Declare an unknown object as a type declaration.
8487
8488 void
declare_as_type()8489 Named_object::declare_as_type()
8490 {
8491 go_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
8492 Unknown_name* unk = this->u_.unknown_value;
8493 this->classification_ = NAMED_OBJECT_TYPE_DECLARATION;
8494 this->u_.type_declaration = new Type_declaration(unk->location());
8495 delete unk;
8496 }
8497
8498 // Return the location of a named object.
8499
8500 Location
location() const8501 Named_object::location() const
8502 {
8503 switch (this->classification_)
8504 {
8505 default:
8506 case NAMED_OBJECT_UNINITIALIZED:
8507 go_unreachable();
8508
8509 case NAMED_OBJECT_ERRONEOUS:
8510 return Linemap::unknown_location();
8511
8512 case NAMED_OBJECT_UNKNOWN:
8513 return this->unknown_value()->location();
8514
8515 case NAMED_OBJECT_CONST:
8516 return this->const_value()->location();
8517
8518 case NAMED_OBJECT_TYPE:
8519 return this->type_value()->location();
8520
8521 case NAMED_OBJECT_TYPE_DECLARATION:
8522 return this->type_declaration_value()->location();
8523
8524 case NAMED_OBJECT_VAR:
8525 return this->var_value()->location();
8526
8527 case NAMED_OBJECT_RESULT_VAR:
8528 return this->result_var_value()->location();
8529
8530 case NAMED_OBJECT_SINK:
8531 go_unreachable();
8532
8533 case NAMED_OBJECT_FUNC:
8534 return this->func_value()->location();
8535
8536 case NAMED_OBJECT_FUNC_DECLARATION:
8537 return this->func_declaration_value()->location();
8538
8539 case NAMED_OBJECT_PACKAGE:
8540 return this->package_value()->location();
8541 }
8542 }
8543
8544 // Export a named object.
8545
8546 void
export_named_object(Export * exp) const8547 Named_object::export_named_object(Export* exp) const
8548 {
8549 switch (this->classification_)
8550 {
8551 default:
8552 case NAMED_OBJECT_UNINITIALIZED:
8553 case NAMED_OBJECT_UNKNOWN:
8554 go_unreachable();
8555
8556 case NAMED_OBJECT_ERRONEOUS:
8557 break;
8558
8559 case NAMED_OBJECT_CONST:
8560 this->const_value()->export_const(exp, this->name_);
8561 break;
8562
8563 case NAMED_OBJECT_TYPE:
8564 // Types are handled by export::write_types.
8565 go_unreachable();
8566
8567 case NAMED_OBJECT_TYPE_DECLARATION:
8568 go_error_at(this->type_declaration_value()->location(),
8569 "attempt to export %<%s%> which was declared but not defined",
8570 this->message_name().c_str());
8571 break;
8572
8573 case NAMED_OBJECT_FUNC_DECLARATION:
8574 this->func_declaration_value()->export_func(exp, this);
8575 break;
8576
8577 case NAMED_OBJECT_VAR:
8578 this->var_value()->export_var(exp, this);
8579 break;
8580
8581 case NAMED_OBJECT_RESULT_VAR:
8582 case NAMED_OBJECT_SINK:
8583 go_unreachable();
8584
8585 case NAMED_OBJECT_FUNC:
8586 this->func_value()->export_func(exp, this);
8587 break;
8588 }
8589 }
8590
8591 // Convert a variable to the backend representation.
8592
8593 Bvariable*
get_backend_variable(Gogo * gogo,Named_object * function)8594 Named_object::get_backend_variable(Gogo* gogo, Named_object* function)
8595 {
8596 if (this->classification_ == NAMED_OBJECT_VAR)
8597 return this->var_value()->get_backend_variable(gogo, function,
8598 this->package_, this->name_);
8599 else if (this->classification_ == NAMED_OBJECT_RESULT_VAR)
8600 return this->result_var_value()->get_backend_variable(gogo, function,
8601 this->name_);
8602 else
8603 go_unreachable();
8604 }
8605
8606 // Return the external identifier for this object.
8607
8608 std::string
get_id(Gogo * gogo)8609 Named_object::get_id(Gogo* gogo)
8610 {
8611 go_assert(!this->is_variable()
8612 && !this->is_result_variable()
8613 && !this->is_type());
8614 std::string decl_name;
8615 if (this->is_function_declaration()
8616 && !this->func_declaration_value()->asm_name().empty())
8617 decl_name = this->func_declaration_value()->asm_name();
8618 else
8619 {
8620 std::string package_name;
8621 if (this->package_ == NULL)
8622 package_name = gogo->package_name();
8623 else
8624 package_name = this->package_->package_name();
8625
8626 // Note that this will be misleading if this is an unexported
8627 // method generated for an embedded imported type. In that case
8628 // the unexported method should have the package name of the
8629 // package from which it is imported, but we are going to give
8630 // it our package name. Fixing this would require knowing the
8631 // package name, but we only know the package path. It might be
8632 // better to use package paths here anyhow. This doesn't affect
8633 // the assembler code, because we always set that name in
8634 // Function::get_or_make_decl anyhow. FIXME.
8635
8636 decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
8637
8638 Function_type* fntype;
8639 if (this->is_function())
8640 fntype = this->func_value()->type();
8641 else if (this->is_function_declaration())
8642 fntype = this->func_declaration_value()->type();
8643 else
8644 fntype = NULL;
8645 if (fntype != NULL && fntype->is_method())
8646 {
8647 decl_name.push_back('.');
8648 decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
8649 }
8650 }
8651 return decl_name;
8652 }
8653
8654 void
debug_go_named_object(Named_object * no)8655 debug_go_named_object(Named_object* no)
8656 {
8657 if (no == NULL)
8658 {
8659 std::cerr << "<null>";
8660 return;
8661 }
8662 std::cerr << "'" << no->name() << "': ";
8663 const char *tag;
8664 switch (no->classification())
8665 {
8666 case Named_object::NAMED_OBJECT_UNINITIALIZED:
8667 tag = "uninitialized";
8668 break;
8669 case Named_object::NAMED_OBJECT_ERRONEOUS:
8670 tag = "<error>";
8671 break;
8672 case Named_object::NAMED_OBJECT_UNKNOWN:
8673 tag = "<unknown>";
8674 break;
8675 case Named_object::NAMED_OBJECT_CONST:
8676 tag = "constant";
8677 break;
8678 case Named_object::NAMED_OBJECT_TYPE:
8679 tag = "type";
8680 break;
8681 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
8682 tag = "type_decl";
8683 break;
8684 case Named_object::NAMED_OBJECT_VAR:
8685 tag = "var";
8686 break;
8687 case Named_object::NAMED_OBJECT_RESULT_VAR:
8688 tag = "result_var";
8689 break;
8690 case Named_object::NAMED_OBJECT_SINK:
8691 tag = "<sink>";
8692 break;
8693 case Named_object::NAMED_OBJECT_FUNC:
8694 tag = "func";
8695 break;
8696 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
8697 tag = "func_decl";
8698 break;
8699 case Named_object::NAMED_OBJECT_PACKAGE:
8700 tag = "package";
8701 break;
8702 default:
8703 tag = "<unknown named object classification>";
8704 break;
8705 };
8706 std::cerr << tag << "\n";
8707 }
8708
8709 // Get the backend representation for this named object.
8710
8711 void
get_backend(Gogo * gogo,std::vector<Bexpression * > & const_decls,std::vector<Btype * > & type_decls,std::vector<Bfunction * > & func_decls)8712 Named_object::get_backend(Gogo* gogo, std::vector<Bexpression*>& const_decls,
8713 std::vector<Btype*>& type_decls,
8714 std::vector<Bfunction*>& func_decls)
8715 {
8716 // If this is a definition, avoid trying to get the backend
8717 // representation, as that can crash.
8718 if (this->is_redefinition_)
8719 {
8720 go_assert(saw_errors());
8721 return;
8722 }
8723
8724 switch (this->classification_)
8725 {
8726 case NAMED_OBJECT_CONST:
8727 if (!Gogo::is_erroneous_name(this->name_))
8728 const_decls.push_back(this->u_.const_value->get_backend(gogo, this));
8729 break;
8730
8731 case NAMED_OBJECT_TYPE:
8732 {
8733 Named_type* named_type = this->u_.type_value;
8734
8735 // No need to do anything for aliases-- whatever has to be done
8736 // can be done for the alias target.
8737 if (named_type->is_alias())
8738 break;
8739
8740 if (!Gogo::is_erroneous_name(this->name_))
8741 type_decls.push_back(named_type->get_backend(gogo));
8742
8743 // We need to produce a type descriptor for every named
8744 // type, and for a pointer to every named type, since
8745 // other files or packages might refer to them. We need
8746 // to do this even for hidden types, because they might
8747 // still be returned by some function. Simply calling the
8748 // type_descriptor method is enough to create the type
8749 // descriptor, even though we don't do anything with it.
8750 if (this->package_ == NULL && !saw_errors())
8751 {
8752 named_type->
8753 type_descriptor_pointer(gogo, Linemap::predeclared_location());
8754 named_type->gc_symbol_pointer(gogo);
8755 Type* pn = Type::make_pointer_type(named_type);
8756 pn->type_descriptor_pointer(gogo, Linemap::predeclared_location());
8757 pn->gc_symbol_pointer(gogo);
8758 }
8759 }
8760 break;
8761
8762 case NAMED_OBJECT_TYPE_DECLARATION:
8763 go_error_at(Linemap::unknown_location(),
8764 "reference to undefined type %qs",
8765 this->message_name().c_str());
8766 return;
8767
8768 case NAMED_OBJECT_VAR:
8769 case NAMED_OBJECT_RESULT_VAR:
8770 case NAMED_OBJECT_SINK:
8771 go_unreachable();
8772
8773 case NAMED_OBJECT_FUNC:
8774 {
8775 Function* func = this->u_.func_value;
8776 if (!Gogo::is_erroneous_name(this->name_))
8777 func_decls.push_back(func->get_or_make_decl(gogo, this));
8778
8779 if (func->block() != NULL)
8780 func->build(gogo, this);
8781 }
8782 break;
8783
8784 case NAMED_OBJECT_ERRONEOUS:
8785 break;
8786
8787 default:
8788 go_unreachable();
8789 }
8790 }
8791
8792 // Class Bindings.
8793
Bindings(Bindings * enclosing)8794 Bindings::Bindings(Bindings* enclosing)
8795 : enclosing_(enclosing), named_objects_(), bindings_()
8796 {
8797 }
8798
8799 // Clear imports.
8800
8801 void
clear_file_scope(Gogo * gogo)8802 Bindings::clear_file_scope(Gogo* gogo)
8803 {
8804 Contour::iterator p = this->bindings_.begin();
8805 while (p != this->bindings_.end())
8806 {
8807 bool keep;
8808 if (p->second->package() != NULL)
8809 keep = false;
8810 else if (p->second->is_package())
8811 keep = false;
8812 else if (p->second->is_function()
8813 && !p->second->func_value()->type()->is_method()
8814 && Gogo::unpack_hidden_name(p->second->name()) == "init")
8815 keep = false;
8816 else
8817 keep = true;
8818
8819 if (keep)
8820 ++p;
8821 else
8822 {
8823 gogo->add_file_block_name(p->second->name(), p->second->location());
8824 p = this->bindings_.erase(p);
8825 }
8826 }
8827 }
8828
8829 // Look up a symbol.
8830
8831 Named_object*
lookup(const std::string & name) const8832 Bindings::lookup(const std::string& name) const
8833 {
8834 Contour::const_iterator p = this->bindings_.find(name);
8835 if (p != this->bindings_.end())
8836 return p->second->resolve();
8837 else if (this->enclosing_ != NULL)
8838 return this->enclosing_->lookup(name);
8839 else
8840 return NULL;
8841 }
8842
8843 // Look up a symbol locally.
8844
8845 Named_object*
lookup_local(const std::string & name) const8846 Bindings::lookup_local(const std::string& name) const
8847 {
8848 Contour::const_iterator p = this->bindings_.find(name);
8849 if (p == this->bindings_.end())
8850 return NULL;
8851 return p->second;
8852 }
8853
8854 // Remove an object from a set of bindings. This is used for a
8855 // special case in thunks for functions which call recover.
8856
8857 void
remove_binding(Named_object * no)8858 Bindings::remove_binding(Named_object* no)
8859 {
8860 Contour::iterator pb = this->bindings_.find(no->name());
8861 go_assert(pb != this->bindings_.end());
8862 this->bindings_.erase(pb);
8863 for (std::vector<Named_object*>::iterator pn = this->named_objects_.begin();
8864 pn != this->named_objects_.end();
8865 ++pn)
8866 {
8867 if (*pn == no)
8868 {
8869 this->named_objects_.erase(pn);
8870 return;
8871 }
8872 }
8873 go_unreachable();
8874 }
8875
8876 // Add a method to the list of objects. This is not added to the
8877 // lookup table. This is so that we have a single list of objects
8878 // declared at the top level, which we walk through when it's time to
8879 // convert to trees.
8880
8881 void
add_method(Named_object * method)8882 Bindings::add_method(Named_object* method)
8883 {
8884 this->named_objects_.push_back(method);
8885 }
8886
8887 // Add a generic Named_object to a Contour.
8888
8889 Named_object*
add_named_object_to_contour(Contour * contour,Named_object * named_object)8890 Bindings::add_named_object_to_contour(Contour* contour,
8891 Named_object* named_object)
8892 {
8893 go_assert(named_object == named_object->resolve());
8894 const std::string& name(named_object->name());
8895 go_assert(!Gogo::is_sink_name(name));
8896
8897 std::pair<Contour::iterator, bool> ins =
8898 contour->insert(std::make_pair(name, named_object));
8899 if (!ins.second)
8900 {
8901 // The name was already there.
8902 if (named_object->package() != NULL
8903 && ins.first->second->package() == named_object->package()
8904 && (ins.first->second->classification()
8905 == named_object->classification()))
8906 {
8907 // This is a second import of the same object.
8908 return ins.first->second;
8909 }
8910 ins.first->second = this->new_definition(ins.first->second,
8911 named_object);
8912 return ins.first->second;
8913 }
8914 else
8915 {
8916 // Don't push declarations on the list. We push them on when
8917 // and if we find the definitions. That way we genericize the
8918 // functions in order.
8919 if (!named_object->is_type_declaration()
8920 && !named_object->is_function_declaration()
8921 && !named_object->is_unknown())
8922 this->named_objects_.push_back(named_object);
8923 return named_object;
8924 }
8925 }
8926
8927 // We had an existing named object OLD_OBJECT, and we've seen a new
8928 // one NEW_OBJECT with the same name. FIXME: This does not free the
8929 // new object when we don't need it.
8930
8931 Named_object*
new_definition(Named_object * old_object,Named_object * new_object)8932 Bindings::new_definition(Named_object* old_object, Named_object* new_object)
8933 {
8934 if (new_object->is_erroneous() && !old_object->is_erroneous())
8935 return new_object;
8936
8937 std::string reason;
8938 switch (old_object->classification())
8939 {
8940 default:
8941 case Named_object::NAMED_OBJECT_UNINITIALIZED:
8942 go_unreachable();
8943
8944 case Named_object::NAMED_OBJECT_ERRONEOUS:
8945 return old_object;
8946
8947 case Named_object::NAMED_OBJECT_UNKNOWN:
8948 {
8949 Named_object* real = old_object->unknown_value()->real_named_object();
8950 if (real != NULL)
8951 return this->new_definition(real, new_object);
8952 go_assert(!new_object->is_unknown());
8953 old_object->unknown_value()->set_real_named_object(new_object);
8954 if (!new_object->is_type_declaration()
8955 && !new_object->is_function_declaration())
8956 this->named_objects_.push_back(new_object);
8957 return new_object;
8958 }
8959
8960 case Named_object::NAMED_OBJECT_CONST:
8961 break;
8962
8963 case Named_object::NAMED_OBJECT_TYPE:
8964 if (new_object->is_type_declaration())
8965 return old_object;
8966 break;
8967
8968 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
8969 if (new_object->is_type_declaration())
8970 return old_object;
8971 if (new_object->is_type())
8972 {
8973 old_object->set_type_value(new_object->type_value());
8974 new_object->type_value()->set_named_object(old_object);
8975 this->named_objects_.push_back(old_object);
8976 return old_object;
8977 }
8978 break;
8979
8980 case Named_object::NAMED_OBJECT_VAR:
8981 case Named_object::NAMED_OBJECT_RESULT_VAR:
8982 // We have already given an error in the parser for cases where
8983 // one parameter or result variable redeclares another one.
8984 if ((new_object->is_variable()
8985 && new_object->var_value()->is_parameter())
8986 || new_object->is_result_variable())
8987 return old_object;
8988 break;
8989
8990 case Named_object::NAMED_OBJECT_SINK:
8991 go_unreachable();
8992
8993 case Named_object::NAMED_OBJECT_FUNC:
8994 break;
8995
8996 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
8997 {
8998 // We declare the hash and equality functions before defining
8999 // them, because we sometimes see that we need the declaration
9000 // while we are in the middle of a different function.
9001 //
9002 // We declare the main function before the user defines it, to
9003 // give better error messages.
9004 //
9005 // We declare inline functions before we define them, as we
9006 // only define them if we need them.
9007 if (new_object->is_function()
9008 && ((Linemap::is_predeclared_location(old_object->location())
9009 && Linemap::is_predeclared_location(new_object->location()))
9010 || (Gogo::unpack_hidden_name(old_object->name()) == "main"
9011 && Linemap::is_unknown_location(old_object->location()))
9012 || (new_object->package() != NULL
9013 && old_object->func_declaration_value()->has_imported_body()
9014 && new_object->func_value()->is_inline_only())))
9015 {
9016 Function_type* old_type =
9017 old_object->func_declaration_value()->type();
9018 Function_type* new_type = new_object->func_value()->type();
9019 if (old_type->is_valid_redeclaration(new_type, &reason))
9020 {
9021 Function_declaration* fd =
9022 old_object->func_declaration_value();
9023 go_assert(fd->asm_name().empty());
9024 old_object->set_function_value(new_object->func_value());
9025 this->named_objects_.push_back(old_object);
9026 return old_object;
9027 }
9028 }
9029 }
9030 break;
9031
9032 case Named_object::NAMED_OBJECT_PACKAGE:
9033 break;
9034 }
9035
9036 std::string n = old_object->message_name();
9037 if (reason.empty())
9038 go_error_at(new_object->location(), "redefinition of %qs", n.c_str());
9039 else
9040 go_error_at(new_object->location(), "redefinition of %qs: %s", n.c_str(),
9041 reason.c_str());
9042 old_object->set_is_redefinition();
9043 new_object->set_is_redefinition();
9044
9045 if (!Linemap::is_unknown_location(old_object->location())
9046 && !Linemap::is_predeclared_location(old_object->location()))
9047 go_inform(old_object->location(), "previous definition of %qs was here",
9048 n.c_str());
9049
9050 return old_object;
9051 }
9052
9053 // Add a named type.
9054
9055 Named_object*
add_named_type(Named_type * named_type)9056 Bindings::add_named_type(Named_type* named_type)
9057 {
9058 return this->add_named_object(named_type->named_object());
9059 }
9060
9061 // Add a function.
9062
9063 Named_object*
add_function(const std::string & name,const Package * package,Function * function)9064 Bindings::add_function(const std::string& name, const Package* package,
9065 Function* function)
9066 {
9067 return this->add_named_object(Named_object::make_function(name, package,
9068 function));
9069 }
9070
9071 // Add a function declaration.
9072
9073 Named_object*
add_function_declaration(const std::string & name,const Package * package,Function_type * type,Location location)9074 Bindings::add_function_declaration(const std::string& name,
9075 const Package* package,
9076 Function_type* type,
9077 Location location)
9078 {
9079 Named_object* no = Named_object::make_function_declaration(name, package,
9080 type, location);
9081 return this->add_named_object(no);
9082 }
9083
9084 // Define a type which was previously declared.
9085
9086 void
define_type(Named_object * no,Named_type * type)9087 Bindings::define_type(Named_object* no, Named_type* type)
9088 {
9089 no->set_type_value(type);
9090 this->named_objects_.push_back(no);
9091 }
9092
9093 // Mark all local variables as used. This is used for some types of
9094 // parse error.
9095
9096 void
mark_locals_used()9097 Bindings::mark_locals_used()
9098 {
9099 for (std::vector<Named_object*>::iterator p = this->named_objects_.begin();
9100 p != this->named_objects_.end();
9101 ++p)
9102 if ((*p)->is_variable())
9103 (*p)->var_value()->set_is_used();
9104 }
9105
9106 // Traverse bindings.
9107
9108 int
traverse(Traverse * traverse,bool is_global)9109 Bindings::traverse(Traverse* traverse, bool is_global)
9110 {
9111 unsigned int traverse_mask = traverse->traverse_mask();
9112
9113 // We don't use an iterator because we permit the traversal to add
9114 // new global objects.
9115 const unsigned int e_or_t = (Traverse::traverse_expressions
9116 | Traverse::traverse_types);
9117 const unsigned int e_or_t_or_s = (e_or_t
9118 | Traverse::traverse_statements);
9119 for (size_t i = 0; i < this->named_objects_.size(); ++i)
9120 {
9121 Named_object* p = this->named_objects_[i];
9122 int t = TRAVERSE_CONTINUE;
9123 switch (p->classification())
9124 {
9125 case Named_object::NAMED_OBJECT_CONST:
9126 if ((traverse_mask & Traverse::traverse_constants) != 0)
9127 t = traverse->constant(p, is_global);
9128 if (t == TRAVERSE_CONTINUE
9129 && (traverse_mask & e_or_t) != 0)
9130 {
9131 Type* tc = p->const_value()->type();
9132 if (tc != NULL
9133 && Type::traverse(tc, traverse) == TRAVERSE_EXIT)
9134 return TRAVERSE_EXIT;
9135 t = p->const_value()->traverse_expression(traverse);
9136 }
9137 break;
9138
9139 case Named_object::NAMED_OBJECT_VAR:
9140 case Named_object::NAMED_OBJECT_RESULT_VAR:
9141 if ((traverse_mask & Traverse::traverse_variables) != 0)
9142 t = traverse->variable(p);
9143 if (t == TRAVERSE_CONTINUE
9144 && (traverse_mask & e_or_t) != 0)
9145 {
9146 if (p->is_result_variable()
9147 || p->var_value()->has_type())
9148 {
9149 Type* tv = (p->is_variable()
9150 ? p->var_value()->type()
9151 : p->result_var_value()->type());
9152 if (tv != NULL
9153 && Type::traverse(tv, traverse) == TRAVERSE_EXIT)
9154 return TRAVERSE_EXIT;
9155 }
9156 }
9157 if (t == TRAVERSE_CONTINUE
9158 && (traverse_mask & e_or_t_or_s) != 0
9159 && p->is_variable())
9160 t = p->var_value()->traverse_expression(traverse, traverse_mask);
9161 break;
9162
9163 case Named_object::NAMED_OBJECT_FUNC:
9164 if ((traverse_mask & Traverse::traverse_functions) != 0)
9165 t = traverse->function(p);
9166
9167 if (t == TRAVERSE_CONTINUE
9168 && (traverse_mask
9169 & (Traverse::traverse_variables
9170 | Traverse::traverse_constants
9171 | Traverse::traverse_functions
9172 | Traverse::traverse_blocks
9173 | Traverse::traverse_statements
9174 | Traverse::traverse_expressions
9175 | Traverse::traverse_types)) != 0)
9176 t = p->func_value()->traverse(traverse);
9177 break;
9178
9179 case Named_object::NAMED_OBJECT_PACKAGE:
9180 // These are traversed in Gogo::traverse.
9181 go_assert(is_global);
9182 break;
9183
9184 case Named_object::NAMED_OBJECT_TYPE:
9185 if ((traverse_mask & e_or_t) != 0)
9186 t = Type::traverse(p->type_value(), traverse);
9187 break;
9188
9189 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
9190 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
9191 case Named_object::NAMED_OBJECT_UNKNOWN:
9192 case Named_object::NAMED_OBJECT_ERRONEOUS:
9193 break;
9194
9195 case Named_object::NAMED_OBJECT_SINK:
9196 default:
9197 go_unreachable();
9198 }
9199
9200 if (t == TRAVERSE_EXIT)
9201 return TRAVERSE_EXIT;
9202 }
9203
9204 // If we need to traverse types, check the function declarations,
9205 // which have types. Also check any methods of a type declaration.
9206 if ((traverse_mask & e_or_t) != 0)
9207 {
9208 for (Bindings::const_declarations_iterator p =
9209 this->begin_declarations();
9210 p != this->end_declarations();
9211 ++p)
9212 {
9213 if (p->second->is_function_declaration())
9214 {
9215 if (Type::traverse(p->second->func_declaration_value()->type(),
9216 traverse)
9217 == TRAVERSE_EXIT)
9218 return TRAVERSE_EXIT;
9219 }
9220 else if (p->second->is_type_declaration())
9221 {
9222 const std::vector<Named_object*>* methods =
9223 p->second->type_declaration_value()->methods();
9224 for (std::vector<Named_object*>::const_iterator pm =
9225 methods->begin();
9226 pm != methods->end();
9227 pm++)
9228 {
9229 Named_object* no = *pm;
9230 Type *t;
9231 if (no->is_function())
9232 t = no->func_value()->type();
9233 else if (no->is_function_declaration())
9234 t = no->func_declaration_value()->type();
9235 else
9236 continue;
9237 if (Type::traverse(t, traverse) == TRAVERSE_EXIT)
9238 return TRAVERSE_EXIT;
9239 }
9240 }
9241 }
9242 }
9243
9244 // Traverse function declarations when needed.
9245 if ((traverse_mask & Traverse::traverse_func_declarations) != 0)
9246 {
9247 for (Bindings::const_declarations_iterator p = this->begin_declarations();
9248 p != this->end_declarations();
9249 ++p)
9250 {
9251 if (p->second->is_function_declaration())
9252 {
9253 if (traverse->function_declaration(p->second) == TRAVERSE_EXIT)
9254 return TRAVERSE_EXIT;
9255 }
9256 }
9257 }
9258
9259 return TRAVERSE_CONTINUE;
9260 }
9261
9262 void
debug_dump()9263 Bindings::debug_dump()
9264 {
9265 std::set<Named_object*> defs;
9266 for (size_t i = 0; i < this->named_objects_.size(); ++i)
9267 defs.insert(this->named_objects_[i]);
9268 for (Contour::iterator p = this->bindings_.begin();
9269 p != this->bindings_.end();
9270 ++p)
9271 {
9272 const char* tag = " ";
9273 if (defs.find(p->second) != defs.end())
9274 tag = "* ";
9275 std::cerr << tag;
9276 debug_go_named_object(p->second);
9277 }
9278 }
9279
9280 void
debug_go_bindings(Bindings * bindings)9281 debug_go_bindings(Bindings* bindings)
9282 {
9283 if (bindings != NULL)
9284 bindings->debug_dump();
9285 }
9286
9287 // Class Label.
9288
9289 // Clear any references to this label.
9290
9291 void
clear_refs()9292 Label::clear_refs()
9293 {
9294 for (std::vector<Bindings_snapshot*>::iterator p = this->refs_.begin();
9295 p != this->refs_.end();
9296 ++p)
9297 delete *p;
9298 this->refs_.clear();
9299 }
9300
9301 // Get the backend representation for a label.
9302
9303 Blabel*
get_backend_label(Translate_context * context)9304 Label::get_backend_label(Translate_context* context)
9305 {
9306 if (this->blabel_ == NULL)
9307 {
9308 Function* function = context->function()->func_value();
9309 Bfunction* bfunction = function->get_decl();
9310 this->blabel_ = context->backend()->label(bfunction, this->name_,
9311 this->location_);
9312 }
9313 return this->blabel_;
9314 }
9315
9316 // Return an expression for the address of this label.
9317
9318 Bexpression*
get_addr(Translate_context * context,Location location)9319 Label::get_addr(Translate_context* context, Location location)
9320 {
9321 Blabel* label = this->get_backend_label(context);
9322 return context->backend()->label_address(label, location);
9323 }
9324
9325 // Return the dummy label that represents any instance of the blank label.
9326
9327 Label*
create_dummy_label()9328 Label::create_dummy_label()
9329 {
9330 static Label* dummy_label;
9331 if (dummy_label == NULL)
9332 {
9333 dummy_label = new Label("_");
9334 dummy_label->set_is_used();
9335 }
9336 return dummy_label;
9337 }
9338
9339 // Class Unnamed_label.
9340
9341 // Get the backend representation for an unnamed label.
9342
9343 Blabel*
get_blabel(Translate_context * context)9344 Unnamed_label::get_blabel(Translate_context* context)
9345 {
9346 if (this->blabel_ == NULL)
9347 {
9348 Function* function = context->function()->func_value();
9349 Bfunction* bfunction = function->get_decl();
9350 this->blabel_ = context->backend()->label(bfunction, "",
9351 this->location_);
9352 }
9353 return this->blabel_;
9354 }
9355
9356 // Return a statement which defines this unnamed label.
9357
9358 Bstatement*
get_definition(Translate_context * context)9359 Unnamed_label::get_definition(Translate_context* context)
9360 {
9361 Blabel* blabel = this->get_blabel(context);
9362 return context->backend()->label_definition_statement(blabel);
9363 }
9364
9365 // Return a goto statement to this unnamed label.
9366
9367 Bstatement*
get_goto(Translate_context * context,Location location)9368 Unnamed_label::get_goto(Translate_context* context, Location location)
9369 {
9370 Blabel* blabel = this->get_blabel(context);
9371 return context->backend()->goto_statement(blabel, location);
9372 }
9373
9374 // Class Package.
9375
Package(const std::string & pkgpath,const std::string & pkgpath_symbol,Location location)9376 Package::Package(const std::string& pkgpath,
9377 const std::string& pkgpath_symbol, Location location)
9378 : pkgpath_(pkgpath), pkgpath_symbol_(pkgpath_symbol),
9379 package_name_(), bindings_(new Bindings(NULL)),
9380 location_(location)
9381 {
9382 go_assert(!pkgpath.empty());
9383 }
9384
9385 // Set the package name.
9386
9387 void
set_package_name(const std::string & package_name,Location location)9388 Package::set_package_name(const std::string& package_name, Location location)
9389 {
9390 go_assert(!package_name.empty());
9391 if (this->package_name_.empty())
9392 this->package_name_ = package_name;
9393 else if (this->package_name_ != package_name)
9394 go_error_at(location,
9395 ("saw two different packages with "
9396 "the same package path %s: %s, %s"),
9397 this->pkgpath_.c_str(), this->package_name_.c_str(),
9398 package_name.c_str());
9399 }
9400
9401 // Return the pkgpath symbol, which is a prefix for symbols defined in
9402 // this package.
9403
9404 std::string
pkgpath_symbol() const9405 Package::pkgpath_symbol() const
9406 {
9407 if (this->pkgpath_symbol_.empty())
9408 return Gogo::pkgpath_for_symbol(this->pkgpath_);
9409 return this->pkgpath_symbol_;
9410 }
9411
9412 // Set the package path symbol.
9413
9414 void
set_pkgpath_symbol(const std::string & pkgpath_symbol)9415 Package::set_pkgpath_symbol(const std::string& pkgpath_symbol)
9416 {
9417 go_assert(!pkgpath_symbol.empty());
9418 if (this->pkgpath_symbol_.empty())
9419 this->pkgpath_symbol_ = pkgpath_symbol;
9420 else
9421 go_assert(this->pkgpath_symbol_ == pkgpath_symbol);
9422 }
9423
9424 // Note that symbol from this package was and qualified by ALIAS.
9425
9426 void
note_usage(const std::string & alias) const9427 Package::note_usage(const std::string& alias) const
9428 {
9429 Aliases::const_iterator p = this->aliases_.find(alias);
9430 go_assert(p != this->aliases_.end());
9431 p->second->note_usage();
9432 }
9433
9434 // Forget a given usage. If forgetting this usage means this package becomes
9435 // unused, report that error.
9436
9437 void
forget_usage(Expression * usage) const9438 Package::forget_usage(Expression* usage) const
9439 {
9440 if (this->fake_uses_.empty())
9441 return;
9442
9443 std::set<Expression*>::iterator p = this->fake_uses_.find(usage);
9444 go_assert(p != this->fake_uses_.end());
9445 this->fake_uses_.erase(p);
9446
9447 if (this->fake_uses_.empty())
9448 go_error_at(this->location(), "imported and not used: %s",
9449 Gogo::message_name(this->package_name()).c_str());
9450 }
9451
9452 // Clear the used field for the next file. If the only usages of this package
9453 // are possibly fake, keep the fake usages for lowering.
9454
9455 void
clear_used()9456 Package::clear_used()
9457 {
9458 std::string dot_alias = "." + this->package_name();
9459 Aliases::const_iterator p = this->aliases_.find(dot_alias);
9460 if (p != this->aliases_.end() && p->second->used() > this->fake_uses_.size())
9461 this->fake_uses_.clear();
9462
9463 this->aliases_.clear();
9464 }
9465
9466 Package_alias*
add_alias(const std::string & alias,Location location)9467 Package::add_alias(const std::string& alias, Location location)
9468 {
9469 Aliases::const_iterator p = this->aliases_.find(alias);
9470 if (p == this->aliases_.end())
9471 {
9472 std::pair<Aliases::iterator, bool> ret;
9473 ret = this->aliases_.insert(std::make_pair(alias,
9474 new Package_alias(location)));
9475 p = ret.first;
9476 }
9477 return p->second;
9478 }
9479
9480 // Determine types of constants. Everything else in a package
9481 // (variables, function declarations) should already have a fixed
9482 // type. Constants may have abstract types.
9483
9484 void
determine_types()9485 Package::determine_types()
9486 {
9487 Bindings* bindings = this->bindings_;
9488 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
9489 p != bindings->end_definitions();
9490 ++p)
9491 {
9492 if ((*p)->is_const())
9493 (*p)->const_value()->determine_type();
9494 }
9495 }
9496
9497 // Class Traverse.
9498
9499 // Destructor.
9500
~Traverse()9501 Traverse::~Traverse()
9502 {
9503 if (this->types_seen_ != NULL)
9504 delete this->types_seen_;
9505 if (this->expressions_seen_ != NULL)
9506 delete this->expressions_seen_;
9507 }
9508
9509 // Record that we are looking at a type, and return true if we have
9510 // already seen it.
9511
9512 bool
remember_type(const Type * type)9513 Traverse::remember_type(const Type* type)
9514 {
9515 if (type->is_error_type())
9516 return true;
9517 go_assert((this->traverse_mask() & traverse_types) != 0
9518 || (this->traverse_mask() & traverse_expressions) != 0);
9519 // We mostly only have to remember named types. But it turns out
9520 // that an interface type can refer to itself without using a name
9521 // by relying on interface inheritance, as in
9522 //
9523 // type I interface { F() interface{I} }
9524 //
9525 // Similarly it is possible for array types to refer to themselves
9526 // without a name, e.g.
9527 //
9528 // var x [uintptr(unsafe.Sizeof(&x))]byte
9529 //
9530 if (type->classification() != Type::TYPE_NAMED
9531 && type->classification() != Type::TYPE_ARRAY
9532 && type->classification() != Type::TYPE_INTERFACE)
9533 return false;
9534 if (this->types_seen_ == NULL)
9535 this->types_seen_ = new Types_seen();
9536 std::pair<Types_seen::iterator, bool> ins = this->types_seen_->insert(type);
9537 return !ins.second;
9538 }
9539
9540 // Record that we are looking at an expression, and return true if we
9541 // have already seen it. NB: this routine used to assert if the traverse
9542 // mask did not include expressions/types -- this is no longer the case,
9543 // since it can be useful to remember specific expressions during
9544 // walks that only cover statements.
9545
9546 bool
remember_expression(const Expression * expression)9547 Traverse::remember_expression(const Expression* expression)
9548 {
9549 if (this->expressions_seen_ == NULL)
9550 this->expressions_seen_ = new Expressions_seen();
9551 std::pair<Expressions_seen::iterator, bool> ins =
9552 this->expressions_seen_->insert(expression);
9553 return !ins.second;
9554 }
9555
9556 // The default versions of these functions should never be called: the
9557 // traversal mask indicates which functions may be called.
9558
9559 int
variable(Named_object *)9560 Traverse::variable(Named_object*)
9561 {
9562 go_unreachable();
9563 }
9564
9565 int
constant(Named_object *,bool)9566 Traverse::constant(Named_object*, bool)
9567 {
9568 go_unreachable();
9569 }
9570
9571 int
function(Named_object *)9572 Traverse::function(Named_object*)
9573 {
9574 go_unreachable();
9575 }
9576
9577 int
block(Block *)9578 Traverse::block(Block*)
9579 {
9580 go_unreachable();
9581 }
9582
9583 int
statement(Block *,size_t *,Statement *)9584 Traverse::statement(Block*, size_t*, Statement*)
9585 {
9586 go_unreachable();
9587 }
9588
9589 int
expression(Expression **)9590 Traverse::expression(Expression**)
9591 {
9592 go_unreachable();
9593 }
9594
9595 int
type(Type *)9596 Traverse::type(Type*)
9597 {
9598 go_unreachable();
9599 }
9600
9601 int
function_declaration(Named_object *)9602 Traverse::function_declaration(Named_object*)
9603 {
9604 go_unreachable();
9605 }
9606
9607 // Class Statement_inserter.
9608
9609 void
insert(Statement * s)9610 Statement_inserter::insert(Statement* s)
9611 {
9612 if (this->statements_added_ != NULL)
9613 this->statements_added_->insert(s);
9614
9615 if (this->block_ != NULL)
9616 {
9617 go_assert(this->pindex_ != NULL);
9618 this->block_->insert_statement_before(*this->pindex_, s);
9619 ++*this->pindex_;
9620 }
9621 else if (this->var_ != NULL)
9622 this->var_->add_preinit_statement(this->gogo_, s);
9623 else
9624 go_assert(saw_errors());
9625 }
9626