1 /* Integrated Register Allocator (IRA) entry point.
2    Copyright (C) 2006-2020 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* The integrated register allocator (IRA) is a
22    regional register allocator performing graph coloring on a top-down
23    traversal of nested regions.  Graph coloring in a region is based
24    on Chaitin-Briggs algorithm.  It is called integrated because
25    register coalescing, register live range splitting, and choosing a
26    better hard register are done on-the-fly during coloring.  Register
27    coalescing and choosing a cheaper hard register is done by hard
28    register preferencing during hard register assigning.  The live
29    range splitting is a byproduct of the regional register allocation.
30 
31    Major IRA notions are:
32 
33      o *Region* is a part of CFG where graph coloring based on
34        Chaitin-Briggs algorithm is done.  IRA can work on any set of
35        nested CFG regions forming a tree.  Currently the regions are
36        the entire function for the root region and natural loops for
37        the other regions.  Therefore data structure representing a
38        region is called loop_tree_node.
39 
40      o *Allocno class* is a register class used for allocation of
41        given allocno.  It means that only hard register of given
42        register class can be assigned to given allocno.  In reality,
43        even smaller subset of (*profitable*) hard registers can be
44        assigned.  In rare cases, the subset can be even smaller
45        because our modification of Chaitin-Briggs algorithm requires
46        that sets of hard registers can be assigned to allocnos forms a
47        forest, i.e. the sets can be ordered in a way where any
48        previous set is not intersected with given set or is a superset
49        of given set.
50 
51      o *Pressure class* is a register class belonging to a set of
52        register classes containing all of the hard-registers available
53        for register allocation.  The set of all pressure classes for a
54        target is defined in the corresponding machine-description file
55        according some criteria.  Register pressure is calculated only
56        for pressure classes and it affects some IRA decisions as
57        forming allocation regions.
58 
59      o *Allocno* represents the live range of a pseudo-register in a
60        region.  Besides the obvious attributes like the corresponding
61        pseudo-register number, allocno class, conflicting allocnos and
62        conflicting hard-registers, there are a few allocno attributes
63        which are important for understanding the allocation algorithm:
64 
65        - *Live ranges*.  This is a list of ranges of *program points*
66          where the allocno lives.  Program points represent places
67          where a pseudo can be born or become dead (there are
68          approximately two times more program points than the insns)
69          and they are represented by integers starting with 0.  The
70          live ranges are used to find conflicts between allocnos.
71          They also play very important role for the transformation of
72          the IRA internal representation of several regions into a one
73          region representation.  The later is used during the reload
74          pass work because each allocno represents all of the
75          corresponding pseudo-registers.
76 
77        - *Hard-register costs*.  This is a vector of size equal to the
78          number of available hard-registers of the allocno class.  The
79          cost of a callee-clobbered hard-register for an allocno is
80          increased by the cost of save/restore code around the calls
81          through the given allocno's life.  If the allocno is a move
82          instruction operand and another operand is a hard-register of
83          the allocno class, the cost of the hard-register is decreased
84          by the move cost.
85 
86          When an allocno is assigned, the hard-register with minimal
87          full cost is used.  Initially, a hard-register's full cost is
88          the corresponding value from the hard-register's cost vector.
89          If the allocno is connected by a *copy* (see below) to
90          another allocno which has just received a hard-register, the
91          cost of the hard-register is decreased.  Before choosing a
92          hard-register for an allocno, the allocno's current costs of
93          the hard-registers are modified by the conflict hard-register
94          costs of all of the conflicting allocnos which are not
95          assigned yet.
96 
97        - *Conflict hard-register costs*.  This is a vector of the same
98          size as the hard-register costs vector.  To permit an
99          unassigned allocno to get a better hard-register, IRA uses
100          this vector to calculate the final full cost of the
101          available hard-registers.  Conflict hard-register costs of an
102          unassigned allocno are also changed with a change of the
103          hard-register cost of the allocno when a copy involving the
104          allocno is processed as described above.  This is done to
105          show other unassigned allocnos that a given allocno prefers
106          some hard-registers in order to remove the move instruction
107          corresponding to the copy.
108 
109      o *Cap*.  If a pseudo-register does not live in a region but
110        lives in a nested region, IRA creates a special allocno called
111        a cap in the outer region.  A region cap is also created for a
112        subregion cap.
113 
114      o *Copy*.  Allocnos can be connected by copies.  Copies are used
115        to modify hard-register costs for allocnos during coloring.
116        Such modifications reflects a preference to use the same
117        hard-register for the allocnos connected by copies.  Usually
118        copies are created for move insns (in this case it results in
119        register coalescing).  But IRA also creates copies for operands
120        of an insn which should be assigned to the same hard-register
121        due to constraints in the machine description (it usually
122        results in removing a move generated in reload to satisfy
123        the constraints) and copies referring to the allocno which is
124        the output operand of an instruction and the allocno which is
125        an input operand dying in the instruction (creation of such
126        copies results in less register shuffling).  IRA *does not*
127        create copies between the same register allocnos from different
128        regions because we use another technique for propagating
129        hard-register preference on the borders of regions.
130 
131    Allocnos (including caps) for the upper region in the region tree
132    *accumulate* information important for coloring from allocnos with
133    the same pseudo-register from nested regions.  This includes
134    hard-register and memory costs, conflicts with hard-registers,
135    allocno conflicts, allocno copies and more.  *Thus, attributes for
136    allocnos in a region have the same values as if the region had no
137    subregions*.  It means that attributes for allocnos in the
138    outermost region corresponding to the function have the same values
139    as though the allocation used only one region which is the entire
140    function.  It also means that we can look at IRA work as if the
141    first IRA did allocation for all function then it improved the
142    allocation for loops then their subloops and so on.
143 
144    IRA major passes are:
145 
146      o Building IRA internal representation which consists of the
147        following subpasses:
148 
149        * First, IRA builds regions and creates allocnos (file
150          ira-build.c) and initializes most of their attributes.
151 
152        * Then IRA finds an allocno class for each allocno and
153          calculates its initial (non-accumulated) cost of memory and
154          each hard-register of its allocno class (file ira-cost.c).
155 
156        * IRA creates live ranges of each allocno, calculates register
157          pressure for each pressure class in each region, sets up
158          conflict hard registers for each allocno and info about calls
159          the allocno lives through (file ira-lives.c).
160 
161        * IRA removes low register pressure loops from the regions
162          mostly to speed IRA up (file ira-build.c).
163 
164        * IRA propagates accumulated allocno info from lower region
165          allocnos to corresponding upper region allocnos (file
166          ira-build.c).
167 
168        * IRA creates all caps (file ira-build.c).
169 
170        * Having live-ranges of allocnos and their classes, IRA creates
171          conflicting allocnos for each allocno.  Conflicting allocnos
172          are stored as a bit vector or array of pointers to the
173          conflicting allocnos whatever is more profitable (file
174          ira-conflicts.c).  At this point IRA creates allocno copies.
175 
176      o Coloring.  Now IRA has all necessary info to start graph coloring
177        process.  It is done in each region on top-down traverse of the
178        region tree (file ira-color.c).  There are following subpasses:
179 
180        * Finding profitable hard registers of corresponding allocno
181          class for each allocno.  For example, only callee-saved hard
182          registers are frequently profitable for allocnos living
183          through colors.  If the profitable hard register set of
184          allocno does not form a tree based on subset relation, we use
185          some approximation to form the tree.  This approximation is
186          used to figure out trivial colorability of allocnos.  The
187          approximation is a pretty rare case.
188 
189        * Putting allocnos onto the coloring stack.  IRA uses Briggs
190          optimistic coloring which is a major improvement over
191          Chaitin's coloring.  Therefore IRA does not spill allocnos at
192          this point.  There is some freedom in the order of putting
193          allocnos on the stack which can affect the final result of
194          the allocation.  IRA uses some heuristics to improve the
195          order.  The major one is to form *threads* from colorable
196          allocnos and push them on the stack by threads.  Thread is a
197          set of non-conflicting colorable allocnos connected by
198          copies.  The thread contains allocnos from the colorable
199          bucket or colorable allocnos already pushed onto the coloring
200          stack.  Pushing thread allocnos one after another onto the
201          stack increases chances of removing copies when the allocnos
202          get the same hard reg.
203 
204 	 We also use a modification of Chaitin-Briggs algorithm which
205          works for intersected register classes of allocnos.  To
206          figure out trivial colorability of allocnos, the mentioned
207          above tree of hard register sets is used.  To get an idea how
208          the algorithm works in i386 example, let us consider an
209          allocno to which any general hard register can be assigned.
210          If the allocno conflicts with eight allocnos to which only
211          EAX register can be assigned, given allocno is still
212          trivially colorable because all conflicting allocnos might be
213          assigned only to EAX and all other general hard registers are
214          still free.
215 
216 	 To get an idea of the used trivial colorability criterion, it
217 	 is also useful to read article "Graph-Coloring Register
218 	 Allocation for Irregular Architectures" by Michael D. Smith
219 	 and Glen Holloway.  Major difference between the article
220 	 approach and approach used in IRA is that Smith's approach
221 	 takes register classes only from machine description and IRA
222 	 calculate register classes from intermediate code too
223 	 (e.g. an explicit usage of hard registers in RTL code for
224 	 parameter passing can result in creation of additional
225 	 register classes which contain or exclude the hard
226 	 registers).  That makes IRA approach useful for improving
227 	 coloring even for architectures with regular register files
228 	 and in fact some benchmarking shows the improvement for
229 	 regular class architectures is even bigger than for irregular
230 	 ones.  Another difference is that Smith's approach chooses
231 	 intersection of classes of all insn operands in which a given
232 	 pseudo occurs.  IRA can use bigger classes if it is still
233 	 more profitable than memory usage.
234 
235        * Popping the allocnos from the stack and assigning them hard
236          registers.  If IRA cannot assign a hard register to an
237          allocno and the allocno is coalesced, IRA undoes the
238          coalescing and puts the uncoalesced allocnos onto the stack in
239          the hope that some such allocnos will get a hard register
240          separately.  If IRA fails to assign hard register or memory
241          is more profitable for it, IRA spills the allocno.  IRA
242          assigns the allocno the hard-register with minimal full
243          allocation cost which reflects the cost of usage of the
244          hard-register for the allocno and cost of usage of the
245          hard-register for allocnos conflicting with given allocno.
246 
247        * Chaitin-Briggs coloring assigns as many pseudos as possible
248          to hard registers.  After coloring we try to improve
249          allocation with cost point of view.  We improve the
250          allocation by spilling some allocnos and assigning the freed
251          hard registers to other allocnos if it decreases the overall
252          allocation cost.
253 
254        * After allocno assigning in the region, IRA modifies the hard
255          register and memory costs for the corresponding allocnos in
256          the subregions to reflect the cost of possible loads, stores,
257          or moves on the border of the region and its subregions.
258          When default regional allocation algorithm is used
259          (-fira-algorithm=mixed), IRA just propagates the assignment
260          for allocnos if the register pressure in the region for the
261          corresponding pressure class is less than number of available
262          hard registers for given pressure class.
263 
264      o Spill/restore code moving.  When IRA performs an allocation
265        by traversing regions in top-down order, it does not know what
266        happens below in the region tree.  Therefore, sometimes IRA
267        misses opportunities to perform a better allocation.  A simple
268        optimization tries to improve allocation in a region having
269        subregions and containing in another region.  If the
270        corresponding allocnos in the subregion are spilled, it spills
271        the region allocno if it is profitable.  The optimization
272        implements a simple iterative algorithm performing profitable
273        transformations while they are still possible.  It is fast in
274        practice, so there is no real need for a better time complexity
275        algorithm.
276 
277      o Code change.  After coloring, two allocnos representing the
278        same pseudo-register outside and inside a region respectively
279        may be assigned to different locations (hard-registers or
280        memory).  In this case IRA creates and uses a new
281        pseudo-register inside the region and adds code to move allocno
282        values on the region's borders.  This is done during top-down
283        traversal of the regions (file ira-emit.c).  In some
284        complicated cases IRA can create a new allocno to move allocno
285        values (e.g. when a swap of values stored in two hard-registers
286        is needed).  At this stage, the new allocno is marked as
287        spilled.  IRA still creates the pseudo-register and the moves
288        on the region borders even when both allocnos were assigned to
289        the same hard-register.  If the reload pass spills a
290        pseudo-register for some reason, the effect will be smaller
291        because another allocno will still be in the hard-register.  In
292        most cases, this is better then spilling both allocnos.  If
293        reload does not change the allocation for the two
294        pseudo-registers, the trivial move will be removed by
295        post-reload optimizations.  IRA does not generate moves for
296        allocnos assigned to the same hard register when the default
297        regional allocation algorithm is used and the register pressure
298        in the region for the corresponding pressure class is less than
299        number of available hard registers for given pressure class.
300        IRA also does some optimizations to remove redundant stores and
301        to reduce code duplication on the region borders.
302 
303      o Flattening internal representation.  After changing code, IRA
304        transforms its internal representation for several regions into
305        one region representation (file ira-build.c).  This process is
306        called IR flattening.  Such process is more complicated than IR
307        rebuilding would be, but is much faster.
308 
309      o After IR flattening, IRA tries to assign hard registers to all
310        spilled allocnos.  This is implemented by a simple and fast
311        priority coloring algorithm (see function
312        ira_reassign_conflict_allocnos::ira-color.c).  Here new allocnos
313        created during the code change pass can be assigned to hard
314        registers.
315 
316      o At the end IRA calls the reload pass.  The reload pass
317        communicates with IRA through several functions in file
318        ira-color.c to improve its decisions in
319 
320        * sharing stack slots for the spilled pseudos based on IRA info
321          about pseudo-register conflicts.
322 
323        * reassigning hard-registers to all spilled pseudos at the end
324          of each reload iteration.
325 
326        * choosing a better hard-register to spill based on IRA info
327          about pseudo-register live ranges and the register pressure
328          in places where the pseudo-register lives.
329 
330    IRA uses a lot of data representing the target processors.  These
331    data are initialized in file ira.c.
332 
333    If function has no loops (or the loops are ignored when
334    -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335    coloring (only instead of separate pass of coalescing, we use hard
336    register preferencing).  In such case, IRA works much faster
337    because many things are not made (like IR flattening, the
338    spill/restore optimization, and the code change).
339 
340    Literature is worth to read for better understanding the code:
341 
342    o Preston Briggs, Keith D. Cooper, Linda Torczon.  Improvements to
343      Graph Coloring Register Allocation.
344 
345    o David Callahan, Brian Koblenz.  Register allocation via
346      hierarchical graph coloring.
347 
348    o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349      Coloring Register Allocation: A Study of the Chaitin-Briggs and
350      Callahan-Koblenz Algorithms.
351 
352    o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353      Register Allocation Based on Graph Fusion.
354 
355    o Michael D. Smith and Glenn Holloway.  Graph-Coloring Register
356      Allocation for Irregular Architectures
357 
358    o Vladimir Makarov. The Integrated Register Allocator for GCC.
359 
360    o Vladimir Makarov.  The top-down register allocator for irregular
361      register file architectures.
362 
363 */
364 
365 
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
395 
396 struct target_ira default_target_ira;
397 class target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 class target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
402 
403 /* A modified value of flag `-fira-verbose' used internally.  */
404 int internal_flag_ira_verbose;
405 
406 /* Dump file of the allocator if it is not NULL.  */
407 FILE *ira_dump_file;
408 
409 /* The number of elements in the following array.  */
410 int ira_spilled_reg_stack_slots_num;
411 
412 /* The following array contains info about spilled pseudo-registers
413    stack slots used in current function so far.  */
414 class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415 
416 /* Correspondingly overall cost of the allocation, overall cost before
417    reload, cost of the allocnos assigned to hard-registers, cost of
418    the allocnos assigned to memory, cost of loads, stores and register
419    move insns generated for pseudo-register live range splitting (see
420    ira-emit.c).  */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
425 
426 /* All registers that can be eliminated.  */
427 
428 HARD_REG_SET eliminable_regset;
429 
430 /* Value of max_reg_num () before IRA work start.  This value helps
431    us to recognize a situation when new pseudos were created during
432    IRA work.  */
433 static int max_regno_before_ira;
434 
435 /* Temporary hard reg set used for a different calculation.  */
436 static HARD_REG_SET temp_hard_regset;
437 
438 #define last_mode_for_init_move_cost \
439   (this_target_ira_int->x_last_mode_for_init_move_cost)
440 
441 
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET.  */
443 static void
setup_reg_mode_hard_regset(void)444 setup_reg_mode_hard_regset (void)
445 {
446   int i, m, hard_regno;
447 
448   for (m = 0; m < NUM_MACHINE_MODES; m++)
449     for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450       {
451 	CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 	for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 	     i >= 0; i--)
454 	  if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 	    SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 			      hard_regno + i);
457       }
458 }
459 
460 
461 #define no_unit_alloc_regs \
462   (this_target_ira_int->x_no_unit_alloc_regs)
463 
464 /* The function sets up the three arrays declared above.  */
465 static void
setup_class_hard_regs(void)466 setup_class_hard_regs (void)
467 {
468   int cl, i, hard_regno, n;
469   HARD_REG_SET processed_hard_reg_set;
470 
471   ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
472   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473     {
474       temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
475       CLEAR_HARD_REG_SET (processed_hard_reg_set);
476       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 	{
478 	  ira_non_ordered_class_hard_regs[cl][i] = -1;
479 	  ira_class_hard_reg_index[cl][i] = -1;
480 	}
481       for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 	{
483 #ifdef REG_ALLOC_ORDER
484 	  hard_regno = reg_alloc_order[i];
485 #else
486 	  hard_regno = i;
487 #endif
488 	  if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 	    continue;
490 	  SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491       	  if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 	    ira_class_hard_reg_index[cl][hard_regno] = -1;
493 	  else
494 	    {
495 	      ira_class_hard_reg_index[cl][hard_regno] = n;
496 	      ira_class_hard_regs[cl][n++] = hard_regno;
497 	    }
498 	}
499       ira_class_hard_regs_num[cl] = n;
500       for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 	if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 	  ira_non_ordered_class_hard_regs[cl][n++] = i;
503       ira_assert (ira_class_hard_regs_num[cl] == n);
504     }
505 }
506 
507 /* Set up global variables defining info about hard registers for the
508    allocation.  These depend on USE_HARD_FRAME_P whose TRUE value means
509    that we can use the hard frame pointer for the allocation.  */
510 static void
setup_alloc_regs(bool use_hard_frame_p)511 setup_alloc_regs (bool use_hard_frame_p)
512 {
513 #ifdef ADJUST_REG_ALLOC_ORDER
514   ADJUST_REG_ALLOC_ORDER;
515 #endif
516   no_unit_alloc_regs = fixed_nonglobal_reg_set;
517   if (! use_hard_frame_p)
518     add_to_hard_reg_set (&no_unit_alloc_regs, Pmode,
519 			 HARD_FRAME_POINTER_REGNUM);
520   setup_class_hard_regs ();
521 }
522 
523 
524 
525 #define alloc_reg_class_subclasses \
526   (this_target_ira_int->x_alloc_reg_class_subclasses)
527 
528 /* Initialize the table of subclasses of each reg class.  */
529 static void
setup_reg_subclasses(void)530 setup_reg_subclasses (void)
531 {
532   int i, j;
533   HARD_REG_SET temp_hard_regset2;
534 
535   for (i = 0; i < N_REG_CLASSES; i++)
536     for (j = 0; j < N_REG_CLASSES; j++)
537       alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538 
539   for (i = 0; i < N_REG_CLASSES; i++)
540     {
541       if (i == (int) NO_REGS)
542 	continue;
543 
544       temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
545       if (hard_reg_set_empty_p (temp_hard_regset))
546 	continue;
547       for (j = 0; j < N_REG_CLASSES; j++)
548 	if (i != j)
549 	  {
550 	    enum reg_class *p;
551 
552 	    temp_hard_regset2 = reg_class_contents[j] & ~no_unit_alloc_regs;
553 	    if (! hard_reg_set_subset_p (temp_hard_regset,
554 					 temp_hard_regset2))
555 	      continue;
556 	    p = &alloc_reg_class_subclasses[j][0];
557 	    while (*p != LIM_REG_CLASSES) p++;
558 	    *p = (enum reg_class) i;
559 	  }
560     }
561 }
562 
563 
564 
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST.  */
566 static void
setup_class_subset_and_memory_move_costs(void)567 setup_class_subset_and_memory_move_costs (void)
568 {
569   int cl, cl2, mode, cost;
570   HARD_REG_SET temp_hard_regset2;
571 
572   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573     ira_memory_move_cost[mode][NO_REGS][0]
574       = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
576     {
577       if (cl != (int) NO_REGS)
578 	for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
579 	  {
580 	    ira_max_memory_move_cost[mode][cl][0]
581 	      = ira_memory_move_cost[mode][cl][0]
582 	      = memory_move_cost ((machine_mode) mode,
583 				  (reg_class_t) cl, false);
584 	    ira_max_memory_move_cost[mode][cl][1]
585 	      = ira_memory_move_cost[mode][cl][1]
586 	      = memory_move_cost ((machine_mode) mode,
587 				  (reg_class_t) cl, true);
588 	    /* Costs for NO_REGS are used in cost calculation on the
589 	       1st pass when the preferred register classes are not
590 	       known yet.  In this case we take the best scenario.  */
591 	    if (ira_memory_move_cost[mode][NO_REGS][0]
592 		> ira_memory_move_cost[mode][cl][0])
593 	      ira_max_memory_move_cost[mode][NO_REGS][0]
594 		= ira_memory_move_cost[mode][NO_REGS][0]
595 		= ira_memory_move_cost[mode][cl][0];
596 	    if (ira_memory_move_cost[mode][NO_REGS][1]
597 		> ira_memory_move_cost[mode][cl][1])
598 	      ira_max_memory_move_cost[mode][NO_REGS][1]
599 		= ira_memory_move_cost[mode][NO_REGS][1]
600 		= ira_memory_move_cost[mode][cl][1];
601 	  }
602     }
603   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604     for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
605       {
606 	temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
607 	temp_hard_regset2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
608 	ira_class_subset_p[cl][cl2]
609 	  = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
610 	if (! hard_reg_set_empty_p (temp_hard_regset2)
611 	    && hard_reg_set_subset_p (reg_class_contents[cl2],
612 				      reg_class_contents[cl]))
613 	  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
614 	    {
615 	      cost = ira_memory_move_cost[mode][cl2][0];
616 	      if (cost > ira_max_memory_move_cost[mode][cl][0])
617 		ira_max_memory_move_cost[mode][cl][0] = cost;
618 	      cost = ira_memory_move_cost[mode][cl2][1];
619 	      if (cost > ira_max_memory_move_cost[mode][cl][1])
620 		ira_max_memory_move_cost[mode][cl][1] = cost;
621 	    }
622       }
623   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
624     for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
625       {
626 	ira_memory_move_cost[mode][cl][0]
627 	  = ira_max_memory_move_cost[mode][cl][0];
628 	ira_memory_move_cost[mode][cl][1]
629 	  = ira_max_memory_move_cost[mode][cl][1];
630       }
631   setup_reg_subclasses ();
632 }
633 
634 
635 
636 /* Define the following macro if allocation through malloc if
637    preferable.  */
638 #define IRA_NO_OBSTACK
639 
640 #ifndef IRA_NO_OBSTACK
641 /* Obstack used for storing all dynamic data (except bitmaps) of the
642    IRA.  */
643 static struct obstack ira_obstack;
644 #endif
645 
646 /* Obstack used for storing all bitmaps of the IRA.  */
647 static struct bitmap_obstack ira_bitmap_obstack;
648 
649 /* Allocate memory of size LEN for IRA data.  */
650 void *
ira_allocate(size_t len)651 ira_allocate (size_t len)
652 {
653   void *res;
654 
655 #ifndef IRA_NO_OBSTACK
656   res = obstack_alloc (&ira_obstack, len);
657 #else
658   res = xmalloc (len);
659 #endif
660   return res;
661 }
662 
663 /* Free memory ADDR allocated for IRA data.  */
664 void
ira_free(void * addr ATTRIBUTE_UNUSED)665 ira_free (void *addr ATTRIBUTE_UNUSED)
666 {
667 #ifndef IRA_NO_OBSTACK
668   /* do nothing */
669 #else
670   free (addr);
671 #endif
672 }
673 
674 
675 /* Allocate and returns bitmap for IRA.  */
676 bitmap
ira_allocate_bitmap(void)677 ira_allocate_bitmap (void)
678 {
679   return BITMAP_ALLOC (&ira_bitmap_obstack);
680 }
681 
682 /* Free bitmap B allocated for IRA.  */
683 void
ira_free_bitmap(bitmap b ATTRIBUTE_UNUSED)684 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
685 {
686   /* do nothing */
687 }
688 
689 
690 
691 /* Output information about allocation of all allocnos (except for
692    caps) into file F.  */
693 void
ira_print_disposition(FILE * f)694 ira_print_disposition (FILE *f)
695 {
696   int i, n, max_regno;
697   ira_allocno_t a;
698   basic_block bb;
699 
700   fprintf (f, "Disposition:");
701   max_regno = max_reg_num ();
702   for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
703     for (a = ira_regno_allocno_map[i];
704 	 a != NULL;
705 	 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
706       {
707 	if (n % 4 == 0)
708 	  fprintf (f, "\n");
709 	n++;
710 	fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
711 	if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
712 	  fprintf (f, "b%-3d", bb->index);
713 	else
714 	  fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
715 	if (ALLOCNO_HARD_REGNO (a) >= 0)
716 	  fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
717 	else
718 	  fprintf (f, " mem");
719       }
720   fprintf (f, "\n");
721 }
722 
723 /* Outputs information about allocation of all allocnos into
724    stderr.  */
725 void
ira_debug_disposition(void)726 ira_debug_disposition (void)
727 {
728   ira_print_disposition (stderr);
729 }
730 
731 
732 
733 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
734    register class containing stack registers or NO_REGS if there are
735    no stack registers.  To find this class, we iterate through all
736    register pressure classes and choose the first register pressure
737    class containing all the stack registers and having the biggest
738    size.  */
739 static void
setup_stack_reg_pressure_class(void)740 setup_stack_reg_pressure_class (void)
741 {
742   ira_stack_reg_pressure_class = NO_REGS;
743 #ifdef STACK_REGS
744   {
745     int i, best, size;
746     enum reg_class cl;
747     HARD_REG_SET temp_hard_regset2;
748 
749     CLEAR_HARD_REG_SET (temp_hard_regset);
750     for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
751       SET_HARD_REG_BIT (temp_hard_regset, i);
752     best = 0;
753     for (i = 0; i < ira_pressure_classes_num; i++)
754       {
755 	cl = ira_pressure_classes[i];
756 	temp_hard_regset2 = temp_hard_regset & reg_class_contents[cl];
757 	size = hard_reg_set_size (temp_hard_regset2);
758 	if (best < size)
759 	  {
760 	    best = size;
761 	    ira_stack_reg_pressure_class = cl;
762 	  }
763       }
764   }
765 #endif
766 }
767 
768 /* Find pressure classes which are register classes for which we
769    calculate register pressure in IRA, register pressure sensitive
770    insn scheduling, and register pressure sensitive loop invariant
771    motion.
772 
773    To make register pressure calculation easy, we always use
774    non-intersected register pressure classes.  A move of hard
775    registers from one register pressure class is not more expensive
776    than load and store of the hard registers.  Most likely an allocno
777    class will be a subset of a register pressure class and in many
778    cases a register pressure class.  That makes usage of register
779    pressure classes a good approximation to find a high register
780    pressure.  */
781 static void
setup_pressure_classes(void)782 setup_pressure_classes (void)
783 {
784   int cost, i, n, curr;
785   int cl, cl2;
786   enum reg_class pressure_classes[N_REG_CLASSES];
787   int m;
788   HARD_REG_SET temp_hard_regset2;
789   bool insert_p;
790 
791   if (targetm.compute_pressure_classes)
792     n = targetm.compute_pressure_classes (pressure_classes);
793   else
794     {
795       n = 0;
796       for (cl = 0; cl < N_REG_CLASSES; cl++)
797 	{
798 	  if (ira_class_hard_regs_num[cl] == 0)
799 	    continue;
800 	  if (ira_class_hard_regs_num[cl] != 1
801 	      /* A register class without subclasses may contain a few
802 		 hard registers and movement between them is costly
803 		 (e.g. SPARC FPCC registers).  We still should consider it
804 		 as a candidate for a pressure class.  */
805 	      && alloc_reg_class_subclasses[cl][0] < cl)
806 	    {
807 	      /* Check that the moves between any hard registers of the
808 		 current class are not more expensive for a legal mode
809 		 than load/store of the hard registers of the current
810 		 class.  Such class is a potential candidate to be a
811 		 register pressure class.  */
812 	      for (m = 0; m < NUM_MACHINE_MODES; m++)
813 		{
814 		  temp_hard_regset
815 		    = (reg_class_contents[cl]
816 		       & ~(no_unit_alloc_regs
817 			   | ira_prohibited_class_mode_regs[cl][m]));
818 		  if (hard_reg_set_empty_p (temp_hard_regset))
819 		    continue;
820 		  ira_init_register_move_cost_if_necessary ((machine_mode) m);
821 		  cost = ira_register_move_cost[m][cl][cl];
822 		  if (cost <= ira_max_memory_move_cost[m][cl][1]
823 		      || cost <= ira_max_memory_move_cost[m][cl][0])
824 		    break;
825 		}
826 	      if (m >= NUM_MACHINE_MODES)
827 		continue;
828 	    }
829 	  curr = 0;
830 	  insert_p = true;
831 	  temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
832 	  /* Remove so far added pressure classes which are subset of the
833 	     current candidate class.  Prefer GENERAL_REGS as a pressure
834 	     register class to another class containing the same
835 	     allocatable hard registers.  We do this because machine
836 	     dependent cost hooks might give wrong costs for the latter
837 	     class but always give the right cost for the former class
838 	     (GENERAL_REGS).  */
839 	  for (i = 0; i < n; i++)
840 	    {
841 	      cl2 = pressure_classes[i];
842 	      temp_hard_regset2 = (reg_class_contents[cl2]
843 				   & ~no_unit_alloc_regs);
844 	      if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 		  && (temp_hard_regset != temp_hard_regset2
846 		      || cl2 == (int) GENERAL_REGS))
847 		{
848 		  pressure_classes[curr++] = (enum reg_class) cl2;
849 		  insert_p = false;
850 		  continue;
851 		}
852 	      if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 		  && (temp_hard_regset2 != temp_hard_regset
854 		      || cl == (int) GENERAL_REGS))
855 		continue;
856 	      if (temp_hard_regset2 == temp_hard_regset)
857 		insert_p = false;
858 	      pressure_classes[curr++] = (enum reg_class) cl2;
859 	    }
860 	  /* If the current candidate is a subset of a so far added
861 	     pressure class, don't add it to the list of the pressure
862 	     classes.  */
863 	  if (insert_p)
864 	    pressure_classes[curr++] = (enum reg_class) cl;
865 	  n = curr;
866 	}
867     }
868 #ifdef ENABLE_IRA_CHECKING
869   {
870     HARD_REG_SET ignore_hard_regs;
871 
872     /* Check pressure classes correctness: here we check that hard
873        registers from all register pressure classes contains all hard
874        registers available for the allocation.  */
875     CLEAR_HARD_REG_SET (temp_hard_regset);
876     CLEAR_HARD_REG_SET (temp_hard_regset2);
877     ignore_hard_regs = no_unit_alloc_regs;
878     for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879       {
880 	/* For some targets (like MIPS with MD_REGS), there are some
881 	   classes with hard registers available for allocation but
882 	   not able to hold value of any mode.  */
883 	for (m = 0; m < NUM_MACHINE_MODES; m++)
884 	  if (contains_reg_of_mode[cl][m])
885 	    break;
886 	if (m >= NUM_MACHINE_MODES)
887 	  {
888 	    ignore_hard_regs |= reg_class_contents[cl];
889 	    continue;
890 	  }
891 	for (i = 0; i < n; i++)
892 	  if ((int) pressure_classes[i] == cl)
893 	    break;
894 	temp_hard_regset2 |= reg_class_contents[cl];
895 	if (i < n)
896 	  temp_hard_regset |= reg_class_contents[cl];
897       }
898     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
899       /* Some targets (like SPARC with ICC reg) have allocatable regs
900 	 for which no reg class is defined.  */
901       if (REGNO_REG_CLASS (i) == NO_REGS)
902 	SET_HARD_REG_BIT (ignore_hard_regs, i);
903     temp_hard_regset &= ~ignore_hard_regs;
904     temp_hard_regset2 &= ~ignore_hard_regs;
905     ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906   }
907 #endif
908   ira_pressure_classes_num = 0;
909   for (i = 0; i < n; i++)
910     {
911       cl = (int) pressure_classes[i];
912       ira_reg_pressure_class_p[cl] = true;
913       ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914     }
915   setup_stack_reg_pressure_class ();
916 }
917 
918 /* Set up IRA_UNIFORM_CLASS_P.  Uniform class is a register class
919    whose register move cost between any registers of the class is the
920    same as for all its subclasses.  We use the data to speed up the
921    2nd pass of calculations of allocno costs.  */
922 static void
setup_uniform_class_p(void)923 setup_uniform_class_p (void)
924 {
925   int i, cl, cl2, m;
926 
927   for (cl = 0; cl < N_REG_CLASSES; cl++)
928     {
929       ira_uniform_class_p[cl] = false;
930       if (ira_class_hard_regs_num[cl] == 0)
931 	continue;
932       /* We cannot use alloc_reg_class_subclasses here because move
933 	 cost hooks does not take into account that some registers are
934 	 unavailable for the subtarget.  E.g. for i686, INT_SSE_REGS
935 	 is element of alloc_reg_class_subclasses for GENERAL_REGS
936 	 because SSE regs are unavailable.  */
937       for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 	{
939 	  if (ira_class_hard_regs_num[cl2] == 0)
940 	    continue;
941       	  for (m = 0; m < NUM_MACHINE_MODES; m++)
942 	    if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 	      {
944 		ira_init_register_move_cost_if_necessary ((machine_mode) m);
945 		if (ira_register_move_cost[m][cl][cl]
946 		    != ira_register_move_cost[m][cl2][cl2])
947 		  break;
948 	      }
949 	  if (m < NUM_MACHINE_MODES)
950 	    break;
951 	}
952       if (cl2 == LIM_REG_CLASSES)
953 	ira_uniform_class_p[cl] = true;
954     }
955 }
956 
957 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
958    IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959 
960    Target may have many subtargets and not all target hard registers can
961    be used for allocation, e.g. x86 port in 32-bit mode cannot use
962    hard registers introduced in x86-64 like r8-r15).  Some classes
963    might have the same allocatable hard registers, e.g.  INDEX_REGS
964    and GENERAL_REGS in x86 port in 32-bit mode.  To decrease different
965    calculations efforts we introduce allocno classes which contain
966    unique non-empty sets of allocatable hard-registers.
967 
968    Pseudo class cost calculation in ira-costs.c is very expensive.
969    Therefore we are trying to decrease number of classes involved in
970    such calculation.  Register classes used in the cost calculation
971    are called important classes.  They are allocno classes and other
972    non-empty classes whose allocatable hard register sets are inside
973    of an allocno class hard register set.  From the first sight, it
974    looks like that they are just allocno classes.  It is not true.  In
975    example of x86-port in 32-bit mode, allocno classes will contain
976    GENERAL_REGS but not LEGACY_REGS (because allocatable hard
977    registers are the same for the both classes).  The important
978    classes will contain GENERAL_REGS and LEGACY_REGS.  It is done
979    because a machine description insn constraint may refers for
980    LEGACY_REGS and code in ira-costs.c is mostly base on investigation
981    of the insn constraints.  */
982 static void
setup_allocno_and_important_classes(void)983 setup_allocno_and_important_classes (void)
984 {
985   int i, j, n, cl;
986   bool set_p;
987   HARD_REG_SET temp_hard_regset2;
988   static enum reg_class classes[LIM_REG_CLASSES + 1];
989 
990   n = 0;
991   /* Collect classes which contain unique sets of allocatable hard
992      registers.  Prefer GENERAL_REGS to other classes containing the
993      same set of hard registers.  */
994   for (i = 0; i < LIM_REG_CLASSES; i++)
995     {
996       temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
997       for (j = 0; j < n; j++)
998 	{
999 	  cl = classes[j];
1000 	  temp_hard_regset2 = reg_class_contents[cl] & ~no_unit_alloc_regs;
1001 	  if (temp_hard_regset == temp_hard_regset2)
1002 	    break;
1003 	}
1004       if (j >= n || targetm.additional_allocno_class_p (i))
1005 	classes[n++] = (enum reg_class) i;
1006       else if (i == GENERAL_REGS)
1007 	/* Prefer general regs.  For i386 example, it means that
1008 	   we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1009 	   (all of them consists of the same available hard
1010 	   registers).  */
1011 	classes[j] = (enum reg_class) i;
1012     }
1013   classes[n] = LIM_REG_CLASSES;
1014 
1015   /* Set up classes which can be used for allocnos as classes
1016      containing non-empty unique sets of allocatable hard
1017      registers.  */
1018   ira_allocno_classes_num = 0;
1019   for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1020     if (ira_class_hard_regs_num[cl] > 0)
1021       ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1022   ira_important_classes_num = 0;
1023   /* Add non-allocno classes containing to non-empty set of
1024      allocatable hard regs.  */
1025   for (cl = 0; cl < N_REG_CLASSES; cl++)
1026     if (ira_class_hard_regs_num[cl] > 0)
1027       {
1028 	temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1029 	set_p = false;
1030 	for (j = 0; j < ira_allocno_classes_num; j++)
1031 	  {
1032 	    temp_hard_regset2 = (reg_class_contents[ira_allocno_classes[j]]
1033 				 & ~no_unit_alloc_regs);
1034 	    if ((enum reg_class) cl == ira_allocno_classes[j])
1035 	      break;
1036 	    else if (hard_reg_set_subset_p (temp_hard_regset,
1037 					    temp_hard_regset2))
1038 	      set_p = true;
1039 	  }
1040 	if (set_p && j >= ira_allocno_classes_num)
1041 	  ira_important_classes[ira_important_classes_num++]
1042 	    = (enum reg_class) cl;
1043       }
1044   /* Now add allocno classes to the important classes.  */
1045   for (j = 0; j < ira_allocno_classes_num; j++)
1046     ira_important_classes[ira_important_classes_num++]
1047       = ira_allocno_classes[j];
1048   for (cl = 0; cl < N_REG_CLASSES; cl++)
1049     {
1050       ira_reg_allocno_class_p[cl] = false;
1051       ira_reg_pressure_class_p[cl] = false;
1052     }
1053   for (j = 0; j < ira_allocno_classes_num; j++)
1054     ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1055   setup_pressure_classes ();
1056   setup_uniform_class_p ();
1057 }
1058 
1059 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1060    given by array CLASSES of length CLASSES_NUM.  The function is used
1061    make translation any reg class to an allocno class or to an
1062    pressure class.  This translation is necessary for some
1063    calculations when we can use only allocno or pressure classes and
1064    such translation represents an approximate representation of all
1065    classes.
1066 
1067    The translation in case when allocatable hard register set of a
1068    given class is subset of allocatable hard register set of a class
1069    in CLASSES is pretty simple.  We use smallest classes from CLASSES
1070    containing a given class.  If allocatable hard register set of a
1071    given class is not a subset of any corresponding set of a class
1072    from CLASSES, we use the cheapest (with load/store point of view)
1073    class from CLASSES whose set intersects with given class set.  */
1074 static void
setup_class_translate_array(enum reg_class * class_translate,int classes_num,enum reg_class * classes)1075 setup_class_translate_array (enum reg_class *class_translate,
1076 			     int classes_num, enum reg_class *classes)
1077 {
1078   int cl, mode;
1079   enum reg_class aclass, best_class, *cl_ptr;
1080   int i, cost, min_cost, best_cost;
1081 
1082   for (cl = 0; cl < N_REG_CLASSES; cl++)
1083     class_translate[cl] = NO_REGS;
1084 
1085   for (i = 0; i < classes_num; i++)
1086     {
1087       aclass = classes[i];
1088       for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1089 	   (cl = *cl_ptr) != LIM_REG_CLASSES;
1090 	   cl_ptr++)
1091 	if (class_translate[cl] == NO_REGS)
1092 	  class_translate[cl] = aclass;
1093       class_translate[aclass] = aclass;
1094     }
1095   /* For classes which are not fully covered by one of given classes
1096      (in other words covered by more one given class), use the
1097      cheapest class.  */
1098   for (cl = 0; cl < N_REG_CLASSES; cl++)
1099     {
1100       if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1101 	continue;
1102       best_class = NO_REGS;
1103       best_cost = INT_MAX;
1104       for (i = 0; i < classes_num; i++)
1105 	{
1106 	  aclass = classes[i];
1107 	  temp_hard_regset = (reg_class_contents[aclass]
1108 			      & reg_class_contents[cl]
1109 			      & ~no_unit_alloc_regs);
1110 	  if (! hard_reg_set_empty_p (temp_hard_regset))
1111 	    {
1112 	      min_cost = INT_MAX;
1113 	      for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1114 		{
1115 		  cost = (ira_memory_move_cost[mode][aclass][0]
1116 			  + ira_memory_move_cost[mode][aclass][1]);
1117 		  if (min_cost > cost)
1118 		    min_cost = cost;
1119 		}
1120 	      if (best_class == NO_REGS || best_cost > min_cost)
1121 		{
1122 		  best_class = aclass;
1123 		  best_cost = min_cost;
1124 		}
1125 	    }
1126 	}
1127       class_translate[cl] = best_class;
1128     }
1129 }
1130 
1131 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1132    IRA_PRESSURE_CLASS_TRANSLATE.  */
1133 static void
setup_class_translate(void)1134 setup_class_translate (void)
1135 {
1136   setup_class_translate_array (ira_allocno_class_translate,
1137 			       ira_allocno_classes_num, ira_allocno_classes);
1138   setup_class_translate_array (ira_pressure_class_translate,
1139 			       ira_pressure_classes_num, ira_pressure_classes);
1140 }
1141 
1142 /* Order numbers of allocno classes in original target allocno class
1143    array, -1 for non-allocno classes.  */
1144 static int allocno_class_order[N_REG_CLASSES];
1145 
1146 /* The function used to sort the important classes.  */
1147 static int
comp_reg_classes_func(const void * v1p,const void * v2p)1148 comp_reg_classes_func (const void *v1p, const void *v2p)
1149 {
1150   enum reg_class cl1 = *(const enum reg_class *) v1p;
1151   enum reg_class cl2 = *(const enum reg_class *) v2p;
1152   enum reg_class tcl1, tcl2;
1153   int diff;
1154 
1155   tcl1 = ira_allocno_class_translate[cl1];
1156   tcl2 = ira_allocno_class_translate[cl2];
1157   if (tcl1 != NO_REGS && tcl2 != NO_REGS
1158       && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1159     return diff;
1160   return (int) cl1 - (int) cl2;
1161 }
1162 
1163 /* For correct work of function setup_reg_class_relation we need to
1164    reorder important classes according to the order of their allocno
1165    classes.  It places important classes containing the same
1166    allocatable hard register set adjacent to each other and allocno
1167    class with the allocatable hard register set right after the other
1168    important classes with the same set.
1169 
1170    In example from comments of function
1171    setup_allocno_and_important_classes, it places LEGACY_REGS and
1172    GENERAL_REGS close to each other and GENERAL_REGS is after
1173    LEGACY_REGS.  */
1174 static void
reorder_important_classes(void)1175 reorder_important_classes (void)
1176 {
1177   int i;
1178 
1179   for (i = 0; i < N_REG_CLASSES; i++)
1180     allocno_class_order[i] = -1;
1181   for (i = 0; i < ira_allocno_classes_num; i++)
1182     allocno_class_order[ira_allocno_classes[i]] = i;
1183   qsort (ira_important_classes, ira_important_classes_num,
1184 	 sizeof (enum reg_class), comp_reg_classes_func);
1185   for (i = 0; i < ira_important_classes_num; i++)
1186     ira_important_class_nums[ira_important_classes[i]] = i;
1187 }
1188 
1189 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1190    IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1191    IRA_REG_CLASSES_INTERSECT_P.  For the meaning of the relations,
1192    please see corresponding comments in ira-int.h.  */
1193 static void
setup_reg_class_relations(void)1194 setup_reg_class_relations (void)
1195 {
1196   int i, cl1, cl2, cl3;
1197   HARD_REG_SET intersection_set, union_set, temp_set2;
1198   bool important_class_p[N_REG_CLASSES];
1199 
1200   memset (important_class_p, 0, sizeof (important_class_p));
1201   for (i = 0; i < ira_important_classes_num; i++)
1202     important_class_p[ira_important_classes[i]] = true;
1203   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1204     {
1205       ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1206       for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1207 	{
1208 	  ira_reg_classes_intersect_p[cl1][cl2] = false;
1209 	  ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1210 	  ira_reg_class_subset[cl1][cl2] = NO_REGS;
1211 	  temp_hard_regset = reg_class_contents[cl1] & ~no_unit_alloc_regs;
1212 	  temp_set2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
1213 	  if (hard_reg_set_empty_p (temp_hard_regset)
1214 	      && hard_reg_set_empty_p (temp_set2))
1215 	    {
1216 	      /* The both classes have no allocatable hard registers
1217 		 -- take all class hard registers into account and use
1218 		 reg_class_subunion and reg_class_superunion.  */
1219 	      for (i = 0;; i++)
1220 		{
1221 		  cl3 = reg_class_subclasses[cl1][i];
1222 		  if (cl3 == LIM_REG_CLASSES)
1223 		    break;
1224 		  if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1225 					  (enum reg_class) cl3))
1226 		    ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1227 		}
1228 	      ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1229 	      ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1230 	      continue;
1231 	    }
1232 	  ira_reg_classes_intersect_p[cl1][cl2]
1233 	    = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1234 	  if (important_class_p[cl1] && important_class_p[cl2]
1235 	      && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1236 	    {
1237 	      /* CL1 and CL2 are important classes and CL1 allocatable
1238 		 hard register set is inside of CL2 allocatable hard
1239 		 registers -- make CL1 a superset of CL2.  */
1240 	      enum reg_class *p;
1241 
1242 	      p = &ira_reg_class_super_classes[cl1][0];
1243 	      while (*p != LIM_REG_CLASSES)
1244 		p++;
1245 	      *p++ = (enum reg_class) cl2;
1246 	      *p = LIM_REG_CLASSES;
1247 	    }
1248 	  ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1249 	  ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1250 	  intersection_set = (reg_class_contents[cl1]
1251 			      & reg_class_contents[cl2]
1252 			      & ~no_unit_alloc_regs);
1253 	  union_set = ((reg_class_contents[cl1] | reg_class_contents[cl2])
1254 		       & ~no_unit_alloc_regs);
1255 	  for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1256 	    {
1257 	      temp_hard_regset = reg_class_contents[cl3] & ~no_unit_alloc_regs;
1258 	      if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1259 		{
1260 		  /* CL3 allocatable hard register set is inside of
1261 		     intersection of allocatable hard register sets
1262 		     of CL1 and CL2.  */
1263 		  if (important_class_p[cl3])
1264 		    {
1265 		      temp_set2
1266 			= (reg_class_contents
1267 			   [ira_reg_class_intersect[cl1][cl2]]);
1268 		      temp_set2 &= ~no_unit_alloc_regs;
1269 		      if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1270 			  /* If the allocatable hard register sets are
1271 			     the same, prefer GENERAL_REGS or the
1272 			     smallest class for debugging
1273 			     purposes.  */
1274 			  || (temp_hard_regset == temp_set2
1275 			      && (cl3 == GENERAL_REGS
1276 				  || ((ira_reg_class_intersect[cl1][cl2]
1277 				       != GENERAL_REGS)
1278 				      && hard_reg_set_subset_p
1279 				         (reg_class_contents[cl3],
1280 					  reg_class_contents
1281 					  [(int)
1282 					   ira_reg_class_intersect[cl1][cl2]])))))
1283 			ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1284 		    }
1285 		  temp_set2
1286 		    = (reg_class_contents[ira_reg_class_subset[cl1][cl2]]
1287 		       & ~no_unit_alloc_regs);
1288 		  if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1289 		      /* Ignore unavailable hard registers and prefer
1290 			 smallest class for debugging purposes.  */
1291 		      || (temp_hard_regset == temp_set2
1292 			  && hard_reg_set_subset_p
1293 			     (reg_class_contents[cl3],
1294 			      reg_class_contents
1295 			      [(int) ira_reg_class_subset[cl1][cl2]])))
1296 		    ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1297 		}
1298 	      if (important_class_p[cl3]
1299 		  && hard_reg_set_subset_p (temp_hard_regset, union_set))
1300 		{
1301 		  /* CL3 allocatable hard register set is inside of
1302 		     union of allocatable hard register sets of CL1
1303 		     and CL2.  */
1304 		  temp_set2
1305 		    = (reg_class_contents[ira_reg_class_subunion[cl1][cl2]]
1306 		       & ~no_unit_alloc_regs);
1307 	 	  if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1308 		      || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1309 
1310 			  && (temp_set2 != temp_hard_regset
1311 			      || cl3 == GENERAL_REGS
1312 			      /* If the allocatable hard register sets are the
1313 				 same, prefer GENERAL_REGS or the smallest
1314 				 class for debugging purposes.  */
1315 			      || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1316 				  && hard_reg_set_subset_p
1317 				     (reg_class_contents[cl3],
1318 				      reg_class_contents
1319 				      [(int) ira_reg_class_subunion[cl1][cl2]])))))
1320 		    ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1321 		}
1322 	      if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1323 		{
1324 		  /* CL3 allocatable hard register set contains union
1325 		     of allocatable hard register sets of CL1 and
1326 		     CL2.  */
1327 		  temp_set2
1328 		    = (reg_class_contents[ira_reg_class_superunion[cl1][cl2]]
1329 		       & ~no_unit_alloc_regs);
1330 	 	  if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1331 		      || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1332 
1333 			  && (temp_set2 != temp_hard_regset
1334 			      || cl3 == GENERAL_REGS
1335 			      /* If the allocatable hard register sets are the
1336 				 same, prefer GENERAL_REGS or the smallest
1337 				 class for debugging purposes.  */
1338 			      || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1339 				  && hard_reg_set_subset_p
1340 				     (reg_class_contents[cl3],
1341 				      reg_class_contents
1342 				      [(int) ira_reg_class_superunion[cl1][cl2]])))))
1343 		    ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1344 		}
1345 	    }
1346 	}
1347     }
1348 }
1349 
1350 /* Output all uniform and important classes into file F.  */
1351 static void
print_uniform_and_important_classes(FILE * f)1352 print_uniform_and_important_classes (FILE *f)
1353 {
1354   int i, cl;
1355 
1356   fprintf (f, "Uniform classes:\n");
1357   for (cl = 0; cl < N_REG_CLASSES; cl++)
1358     if (ira_uniform_class_p[cl])
1359       fprintf (f, " %s", reg_class_names[cl]);
1360   fprintf (f, "\nImportant classes:\n");
1361   for (i = 0; i < ira_important_classes_num; i++)
1362     fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1363   fprintf (f, "\n");
1364 }
1365 
1366 /* Output all possible allocno or pressure classes and their
1367    translation map into file F.  */
1368 static void
print_translated_classes(FILE * f,bool pressure_p)1369 print_translated_classes (FILE *f, bool pressure_p)
1370 {
1371   int classes_num = (pressure_p
1372 		     ? ira_pressure_classes_num : ira_allocno_classes_num);
1373   enum reg_class *classes = (pressure_p
1374 			     ? ira_pressure_classes : ira_allocno_classes);
1375   enum reg_class *class_translate = (pressure_p
1376 				     ? ira_pressure_class_translate
1377 				     : ira_allocno_class_translate);
1378   int i;
1379 
1380   fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1381   for (i = 0; i < classes_num; i++)
1382     fprintf (f, " %s", reg_class_names[classes[i]]);
1383   fprintf (f, "\nClass translation:\n");
1384   for (i = 0; i < N_REG_CLASSES; i++)
1385     fprintf (f, " %s -> %s\n", reg_class_names[i],
1386 	     reg_class_names[class_translate[i]]);
1387 }
1388 
1389 /* Output all possible allocno and translation classes and the
1390    translation maps into stderr.  */
1391 void
ira_debug_allocno_classes(void)1392 ira_debug_allocno_classes (void)
1393 {
1394   print_uniform_and_important_classes (stderr);
1395   print_translated_classes (stderr, false);
1396   print_translated_classes (stderr, true);
1397 }
1398 
1399 /* Set up different arrays concerning class subsets, allocno and
1400    important classes.  */
1401 static void
find_reg_classes(void)1402 find_reg_classes (void)
1403 {
1404   setup_allocno_and_important_classes ();
1405   setup_class_translate ();
1406   reorder_important_classes ();
1407   setup_reg_class_relations ();
1408 }
1409 
1410 
1411 
1412 /* Set up the array above.  */
1413 static void
setup_hard_regno_aclass(void)1414 setup_hard_regno_aclass (void)
1415 {
1416   int i;
1417 
1418   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1419     {
1420 #if 1
1421       ira_hard_regno_allocno_class[i]
1422 	= (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1423 	   ? NO_REGS
1424 	   : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1425 #else
1426       int j;
1427       enum reg_class cl;
1428       ira_hard_regno_allocno_class[i] = NO_REGS;
1429       for (j = 0; j < ira_allocno_classes_num; j++)
1430  	{
1431 	  cl = ira_allocno_classes[j];
1432  	  if (ira_class_hard_reg_index[cl][i] >= 0)
1433  	    {
1434 	      ira_hard_regno_allocno_class[i] = cl;
1435  	      break;
1436  	    }
1437  	}
1438 #endif
1439     }
1440 }
1441 
1442 
1443 
1444 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps.  */
1445 static void
setup_reg_class_nregs(void)1446 setup_reg_class_nregs (void)
1447 {
1448   int i, cl, cl2, m;
1449 
1450   for (m = 0; m < MAX_MACHINE_MODE; m++)
1451     {
1452       for (cl = 0; cl < N_REG_CLASSES; cl++)
1453 	ira_reg_class_max_nregs[cl][m]
1454 	  = ira_reg_class_min_nregs[cl][m]
1455 	  = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1456       for (cl = 0; cl < N_REG_CLASSES; cl++)
1457 	for (i = 0;
1458 	     (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1459 	     i++)
1460 	  if (ira_reg_class_min_nregs[cl2][m]
1461 	      < ira_reg_class_min_nregs[cl][m])
1462 	    ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1463     }
1464 }
1465 
1466 
1467 
1468 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1469    This function is called once IRA_CLASS_HARD_REGS has been initialized.  */
1470 static void
setup_prohibited_class_mode_regs(void)1471 setup_prohibited_class_mode_regs (void)
1472 {
1473   int j, k, hard_regno, cl, last_hard_regno, count;
1474 
1475   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1476     {
1477       temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1478       for (j = 0; j < NUM_MACHINE_MODES; j++)
1479 	{
1480 	  count = 0;
1481 	  last_hard_regno = -1;
1482 	  CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1483 	  for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1484 	    {
1485 	      hard_regno = ira_class_hard_regs[cl][k];
1486 	      if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1487 		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1488 				  hard_regno);
1489 	      else if (in_hard_reg_set_p (temp_hard_regset,
1490 					  (machine_mode) j, hard_regno))
1491 		{
1492 		  last_hard_regno = hard_regno;
1493 		  count++;
1494 		}
1495 	    }
1496 	  ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1497 	}
1498     }
1499 }
1500 
1501 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1502    spanning from one register pressure class to another one.  It is
1503    called after defining the pressure classes.  */
1504 static void
clarify_prohibited_class_mode_regs(void)1505 clarify_prohibited_class_mode_regs (void)
1506 {
1507   int j, k, hard_regno, cl, pclass, nregs;
1508 
1509   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1510     for (j = 0; j < NUM_MACHINE_MODES; j++)
1511       {
1512 	CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1513 	for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1514 	  {
1515 	    hard_regno = ira_class_hard_regs[cl][k];
1516 	    if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1517 	      continue;
1518 	    nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
1519 	    if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1520 	      {
1521 		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1522 				  hard_regno);
1523 		 continue;
1524 	      }
1525 	    pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1526 	    for (nregs-- ;nregs >= 0; nregs--)
1527 	      if (((enum reg_class) pclass
1528 		   != ira_pressure_class_translate[REGNO_REG_CLASS
1529 						   (hard_regno + nregs)]))
1530 		{
1531 		  SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1532 				    hard_regno);
1533 		  break;
1534 		}
1535 	    if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1536 				    hard_regno))
1537 	      add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1538 				   (machine_mode) j, hard_regno);
1539 	  }
1540       }
1541 }
1542 
1543 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1544    and IRA_MAY_MOVE_OUT_COST for MODE.  */
1545 void
ira_init_register_move_cost(machine_mode mode)1546 ira_init_register_move_cost (machine_mode mode)
1547 {
1548   static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1549   bool all_match = true;
1550   unsigned int i, cl1, cl2;
1551   HARD_REG_SET ok_regs;
1552 
1553   ira_assert (ira_register_move_cost[mode] == NULL
1554 	      && ira_may_move_in_cost[mode] == NULL
1555 	      && ira_may_move_out_cost[mode] == NULL);
1556   CLEAR_HARD_REG_SET (ok_regs);
1557   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1558     if (targetm.hard_regno_mode_ok (i, mode))
1559       SET_HARD_REG_BIT (ok_regs, i);
1560 
1561   /* Note that we might be asked about the move costs of modes that
1562      cannot be stored in any hard register, for example if an inline
1563      asm tries to create a register operand with an impossible mode.
1564      We therefore can't assert have_regs_of_mode[mode] here.  */
1565   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1566     for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1567       {
1568 	int cost;
1569 	if (!hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl1])
1570 	    || !hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl2]))
1571 	  {
1572 	    if ((ira_reg_class_max_nregs[cl1][mode]
1573 		 > ira_class_hard_regs_num[cl1])
1574 		|| (ira_reg_class_max_nregs[cl2][mode]
1575 		    > ira_class_hard_regs_num[cl2]))
1576 	      cost = 65535;
1577 	    else
1578 	      cost = (ira_memory_move_cost[mode][cl1][0]
1579 		      + ira_memory_move_cost[mode][cl2][1]) * 2;
1580 	  }
1581 	else
1582 	  {
1583 	    cost = register_move_cost (mode, (enum reg_class) cl1,
1584 				       (enum reg_class) cl2);
1585 	    ira_assert (cost < 65535);
1586 	  }
1587 	all_match &= (last_move_cost[cl1][cl2] == cost);
1588 	last_move_cost[cl1][cl2] = cost;
1589       }
1590   if (all_match && last_mode_for_init_move_cost != -1)
1591     {
1592       ira_register_move_cost[mode]
1593 	= ira_register_move_cost[last_mode_for_init_move_cost];
1594       ira_may_move_in_cost[mode]
1595 	= ira_may_move_in_cost[last_mode_for_init_move_cost];
1596       ira_may_move_out_cost[mode]
1597 	= ira_may_move_out_cost[last_mode_for_init_move_cost];
1598       return;
1599     }
1600   last_mode_for_init_move_cost = mode;
1601   ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1602   ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1603   ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1604   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1605     for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1606       {
1607 	int cost;
1608 	enum reg_class *p1, *p2;
1609 
1610 	if (last_move_cost[cl1][cl2] == 65535)
1611 	  {
1612 	    ira_register_move_cost[mode][cl1][cl2] = 65535;
1613 	    ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1614 	    ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1615 	  }
1616 	else
1617 	  {
1618 	    cost = last_move_cost[cl1][cl2];
1619 
1620 	    for (p2 = &reg_class_subclasses[cl2][0];
1621 		 *p2 != LIM_REG_CLASSES; p2++)
1622 	      if (ira_class_hard_regs_num[*p2] > 0
1623 		  && (ira_reg_class_max_nregs[*p2][mode]
1624 		      <= ira_class_hard_regs_num[*p2]))
1625 		cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1626 
1627 	    for (p1 = &reg_class_subclasses[cl1][0];
1628 		 *p1 != LIM_REG_CLASSES; p1++)
1629 	      if (ira_class_hard_regs_num[*p1] > 0
1630 		  && (ira_reg_class_max_nregs[*p1][mode]
1631 		      <= ira_class_hard_regs_num[*p1]))
1632 		cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1633 
1634 	    ira_assert (cost <= 65535);
1635 	    ira_register_move_cost[mode][cl1][cl2] = cost;
1636 
1637 	    if (ira_class_subset_p[cl1][cl2])
1638 	      ira_may_move_in_cost[mode][cl1][cl2] = 0;
1639 	    else
1640 	      ira_may_move_in_cost[mode][cl1][cl2] = cost;
1641 
1642 	    if (ira_class_subset_p[cl2][cl1])
1643 	      ira_may_move_out_cost[mode][cl1][cl2] = 0;
1644 	    else
1645 	      ira_may_move_out_cost[mode][cl1][cl2] = cost;
1646 	  }
1647       }
1648 }
1649 
1650 
1651 
1652 /* This is called once during compiler work.  It sets up
1653    different arrays whose values don't depend on the compiled
1654    function.  */
1655 void
ira_init_once(void)1656 ira_init_once (void)
1657 {
1658   ira_init_costs_once ();
1659   lra_init_once ();
1660 
1661   ira_use_lra_p = targetm.lra_p ();
1662 }
1663 
1664 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1665    ira_may_move_out_cost for each mode.  */
1666 void
free_register_move_costs(void)1667 target_ira_int::free_register_move_costs (void)
1668 {
1669   int mode, i;
1670 
1671   /* Reset move_cost and friends, making sure we only free shared
1672      table entries once.  */
1673   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1674     if (x_ira_register_move_cost[mode])
1675       {
1676 	for (i = 0;
1677 	     i < mode && (x_ira_register_move_cost[i]
1678 			  != x_ira_register_move_cost[mode]);
1679 	     i++)
1680 	  ;
1681 	if (i == mode)
1682 	  {
1683 	    free (x_ira_register_move_cost[mode]);
1684 	    free (x_ira_may_move_in_cost[mode]);
1685 	    free (x_ira_may_move_out_cost[mode]);
1686 	  }
1687       }
1688   memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1689   memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1690   memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1691   last_mode_for_init_move_cost = -1;
1692 }
1693 
~target_ira_int()1694 target_ira_int::~target_ira_int ()
1695 {
1696   free_ira_costs ();
1697   free_register_move_costs ();
1698 }
1699 
1700 /* This is called every time when register related information is
1701    changed.  */
1702 void
ira_init(void)1703 ira_init (void)
1704 {
1705   this_target_ira_int->free_register_move_costs ();
1706   setup_reg_mode_hard_regset ();
1707   setup_alloc_regs (flag_omit_frame_pointer != 0);
1708   setup_class_subset_and_memory_move_costs ();
1709   setup_reg_class_nregs ();
1710   setup_prohibited_class_mode_regs ();
1711   find_reg_classes ();
1712   clarify_prohibited_class_mode_regs ();
1713   setup_hard_regno_aclass ();
1714   ira_init_costs ();
1715 }
1716 
1717 
1718 #define ira_prohibited_mode_move_regs_initialized_p \
1719   (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1720 
1721 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS.  */
1722 static void
setup_prohibited_mode_move_regs(void)1723 setup_prohibited_mode_move_regs (void)
1724 {
1725   int i, j;
1726   rtx test_reg1, test_reg2, move_pat;
1727   rtx_insn *move_insn;
1728 
1729   if (ira_prohibited_mode_move_regs_initialized_p)
1730     return;
1731   ira_prohibited_mode_move_regs_initialized_p = true;
1732   test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1733   test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1734   move_pat = gen_rtx_SET (test_reg1, test_reg2);
1735   move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1736   for (i = 0; i < NUM_MACHINE_MODES; i++)
1737     {
1738       SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1739       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1740 	{
1741 	  if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
1742 	    continue;
1743 	  set_mode_and_regno (test_reg1, (machine_mode) i, j);
1744 	  set_mode_and_regno (test_reg2, (machine_mode) i, j);
1745 	  INSN_CODE (move_insn) = -1;
1746 	  recog_memoized (move_insn);
1747 	  if (INSN_CODE (move_insn) < 0)
1748 	    continue;
1749 	  extract_insn (move_insn);
1750 	  /* We don't know whether the move will be in code that is optimized
1751 	     for size or speed, so consider all enabled alternatives.  */
1752 	  if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1753 	    continue;
1754 	  CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1755 	}
1756     }
1757 }
1758 
1759 
1760 
1761 /* Extract INSN and return the set of alternatives that we should consider.
1762    This excludes any alternatives whose constraints are obviously impossible
1763    to meet (e.g. because the constraint requires a constant and the operand
1764    is nonconstant).  It also excludes alternatives that are bound to need
1765    a spill or reload, as long as we have other alternatives that match
1766    exactly.  */
1767 alternative_mask
ira_setup_alts(rtx_insn * insn)1768 ira_setup_alts (rtx_insn *insn)
1769 {
1770   int nop, nalt;
1771   bool curr_swapped;
1772   const char *p;
1773   int commutative = -1;
1774 
1775   extract_insn (insn);
1776   preprocess_constraints (insn);
1777   alternative_mask preferred = get_preferred_alternatives (insn);
1778   alternative_mask alts = 0;
1779   alternative_mask exact_alts = 0;
1780   /* Check that the hard reg set is enough for holding all
1781      alternatives.  It is hard to imagine the situation when the
1782      assertion is wrong.  */
1783   ira_assert (recog_data.n_alternatives
1784 	      <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1785 			    FIRST_PSEUDO_REGISTER));
1786   for (nop = 0; nop < recog_data.n_operands; nop++)
1787     if (recog_data.constraints[nop][0] == '%')
1788       {
1789 	commutative = nop;
1790 	break;
1791       }
1792   for (curr_swapped = false;; curr_swapped = true)
1793     {
1794       for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1795 	{
1796 	  if (!TEST_BIT (preferred, nalt) || TEST_BIT (exact_alts, nalt))
1797 	    continue;
1798 
1799 	  const operand_alternative *op_alt
1800 	    = &recog_op_alt[nalt * recog_data.n_operands];
1801 	  int this_reject = 0;
1802 	  for (nop = 0; nop < recog_data.n_operands; nop++)
1803 	    {
1804 	      int c, len;
1805 
1806 	      this_reject += op_alt[nop].reject;
1807 
1808 	      rtx op = recog_data.operand[nop];
1809 	      p = op_alt[nop].constraint;
1810 	      if (*p == 0 || *p == ',')
1811 		continue;
1812 
1813 	      bool win_p = false;
1814 	      do
1815 		switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1816 		  {
1817 		  case '#':
1818 		  case ',':
1819 		    c = '\0';
1820 		    /* FALLTHRU */
1821 		  case '\0':
1822 		    len = 0;
1823 		    break;
1824 
1825 		  case '%':
1826 		    /* The commutative modifier is handled above.  */
1827 		    break;
1828 
1829 		  case '0':  case '1':  case '2':  case '3':  case '4':
1830 		  case '5':  case '6':  case '7':  case '8':  case '9':
1831 		    {
1832 		      rtx other = recog_data.operand[c - '0'];
1833 		      if (MEM_P (other)
1834 			  ? rtx_equal_p (other, op)
1835 			  : REG_P (op) || SUBREG_P (op))
1836 			goto op_success;
1837 		      win_p = true;
1838 		    }
1839 		    break;
1840 
1841 		  case 'g':
1842 		    goto op_success;
1843 		    break;
1844 
1845 		  default:
1846 		    {
1847 		      enum constraint_num cn = lookup_constraint (p);
1848 		      switch (get_constraint_type (cn))
1849 			{
1850 			case CT_REGISTER:
1851 			  if (reg_class_for_constraint (cn) != NO_REGS)
1852 			    {
1853 			      if (REG_P (op) || SUBREG_P (op))
1854 				goto op_success;
1855 			      win_p = true;
1856 			    }
1857 			  break;
1858 
1859 			case CT_CONST_INT:
1860 			  if (CONST_INT_P (op)
1861 			      && (insn_const_int_ok_for_constraint
1862 				  (INTVAL (op), cn)))
1863 			    goto op_success;
1864 			  break;
1865 
1866 			case CT_ADDRESS:
1867 			  goto op_success;
1868 
1869 			case CT_MEMORY:
1870 			case CT_SPECIAL_MEMORY:
1871 			  if (MEM_P (op))
1872 			    goto op_success;
1873 			  win_p = true;
1874 			  break;
1875 
1876 			case CT_FIXED_FORM:
1877 			  if (constraint_satisfied_p (op, cn))
1878 			    goto op_success;
1879 			  break;
1880 			}
1881 		      break;
1882 		    }
1883 		  }
1884 	      while (p += len, c);
1885 	      if (!win_p)
1886 		break;
1887 	      /* We can make the alternative match by spilling a register
1888 		 to memory or loading something into a register.  Count a
1889 		 cost of one reload (the equivalent of the '?' constraint).  */
1890 	      this_reject += 6;
1891 	    op_success:
1892 	      ;
1893 	    }
1894 
1895 	  if (nop >= recog_data.n_operands)
1896 	    {
1897 	      alts |= ALTERNATIVE_BIT (nalt);
1898 	      if (this_reject == 0)
1899 		exact_alts |= ALTERNATIVE_BIT (nalt);
1900 	    }
1901 	}
1902       if (commutative < 0)
1903 	break;
1904       /* Swap forth and back to avoid changing recog_data.  */
1905       std::swap (recog_data.operand[commutative],
1906 		 recog_data.operand[commutative + 1]);
1907       if (curr_swapped)
1908 	break;
1909     }
1910   return exact_alts ? exact_alts : alts;
1911 }
1912 
1913 /* Return the number of the output non-early clobber operand which
1914    should be the same in any case as operand with number OP_NUM (or
1915    negative value if there is no such operand).  ALTS is the mask
1916    of alternatives that we should consider.  */
1917 int
ira_get_dup_out_num(int op_num,alternative_mask alts)1918 ira_get_dup_out_num (int op_num, alternative_mask alts)
1919 {
1920   int curr_alt, c, original, dup;
1921   bool ignore_p, use_commut_op_p;
1922   const char *str;
1923 
1924   if (op_num < 0 || recog_data.n_alternatives == 0)
1925     return -1;
1926   /* We should find duplications only for input operands.  */
1927   if (recog_data.operand_type[op_num] != OP_IN)
1928     return -1;
1929   str = recog_data.constraints[op_num];
1930   use_commut_op_p = false;
1931   for (;;)
1932     {
1933       rtx op = recog_data.operand[op_num];
1934 
1935       for (curr_alt = 0, ignore_p = !TEST_BIT (alts, curr_alt),
1936 	   original = -1;;)
1937 	{
1938 	  c = *str;
1939 	  if (c == '\0')
1940 	    break;
1941 	  if (c == '#')
1942 	    ignore_p = true;
1943 	  else if (c == ',')
1944 	    {
1945 	      curr_alt++;
1946 	      ignore_p = !TEST_BIT (alts, curr_alt);
1947 	    }
1948 	  else if (! ignore_p)
1949 	    switch (c)
1950 	      {
1951 	      case 'g':
1952 		goto fail;
1953 	      default:
1954 		{
1955 		  enum constraint_num cn = lookup_constraint (str);
1956 		  enum reg_class cl = reg_class_for_constraint (cn);
1957 		  if (cl != NO_REGS
1958 		      && !targetm.class_likely_spilled_p (cl))
1959 		    goto fail;
1960 		  if (constraint_satisfied_p (op, cn))
1961 		    goto fail;
1962 		  break;
1963 		}
1964 
1965 	      case '0': case '1': case '2': case '3': case '4':
1966 	      case '5': case '6': case '7': case '8': case '9':
1967 		if (original != -1 && original != c)
1968 		  goto fail;
1969 		original = c;
1970 		break;
1971 	      }
1972 	  str += CONSTRAINT_LEN (c, str);
1973 	}
1974       if (original == -1)
1975 	goto fail;
1976       dup = original - '0';
1977       if (recog_data.operand_type[dup] == OP_OUT)
1978 	return dup;
1979     fail:
1980       if (use_commut_op_p)
1981 	break;
1982       use_commut_op_p = true;
1983       if (recog_data.constraints[op_num][0] == '%')
1984 	str = recog_data.constraints[op_num + 1];
1985       else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1986 	str = recog_data.constraints[op_num - 1];
1987       else
1988 	break;
1989     }
1990   return -1;
1991 }
1992 
1993 
1994 
1995 /* Search forward to see if the source register of a copy insn dies
1996    before either it or the destination register is modified, but don't
1997    scan past the end of the basic block.  If so, we can replace the
1998    source with the destination and let the source die in the copy
1999    insn.
2000 
2001    This will reduce the number of registers live in that range and may
2002    enable the destination and the source coalescing, thus often saving
2003    one register in addition to a register-register copy.  */
2004 
2005 static void
decrease_live_ranges_number(void)2006 decrease_live_ranges_number (void)
2007 {
2008   basic_block bb;
2009   rtx_insn *insn;
2010   rtx set, src, dest, dest_death, note;
2011   rtx_insn *p, *q;
2012   int sregno, dregno;
2013 
2014   if (! flag_expensive_optimizations)
2015     return;
2016 
2017   if (ira_dump_file)
2018     fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2019 
2020   FOR_EACH_BB_FN (bb, cfun)
2021     FOR_BB_INSNS (bb, insn)
2022       {
2023 	set = single_set (insn);
2024 	if (! set)
2025 	  continue;
2026 	src = SET_SRC (set);
2027 	dest = SET_DEST (set);
2028 	if (! REG_P (src) || ! REG_P (dest)
2029 	    || find_reg_note (insn, REG_DEAD, src))
2030 	  continue;
2031 	sregno = REGNO (src);
2032 	dregno = REGNO (dest);
2033 
2034 	/* We don't want to mess with hard regs if register classes
2035 	   are small.  */
2036 	if (sregno == dregno
2037 	    || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2038 		&& (sregno < FIRST_PSEUDO_REGISTER
2039 		    || dregno < FIRST_PSEUDO_REGISTER))
2040 	    /* We don't see all updates to SP if they are in an
2041 	       auto-inc memory reference, so we must disallow this
2042 	       optimization on them.  */
2043 	    || sregno == STACK_POINTER_REGNUM
2044 	    || dregno == STACK_POINTER_REGNUM)
2045 	  continue;
2046 
2047 	dest_death = NULL_RTX;
2048 
2049 	for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2050 	  {
2051 	    if (! INSN_P (p))
2052 	      continue;
2053 	    if (BLOCK_FOR_INSN (p) != bb)
2054 	      break;
2055 
2056 	    if (reg_set_p (src, p) || reg_set_p (dest, p)
2057 		/* If SRC is an asm-declared register, it must not be
2058 		   replaced in any asm.  Unfortunately, the REG_EXPR
2059 		   tree for the asm variable may be absent in the SRC
2060 		   rtx, so we can't check the actual register
2061 		   declaration easily (the asm operand will have it,
2062 		   though).  To avoid complicating the test for a rare
2063 		   case, we just don't perform register replacement
2064 		   for a hard reg mentioned in an asm.  */
2065 		|| (sregno < FIRST_PSEUDO_REGISTER
2066 		    && asm_noperands (PATTERN (p)) >= 0
2067 		    && reg_overlap_mentioned_p (src, PATTERN (p)))
2068 		/* Don't change hard registers used by a call.  */
2069 		|| (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2070 		    && find_reg_fusage (p, USE, src))
2071 		/* Don't change a USE of a register.  */
2072 		|| (GET_CODE (PATTERN (p)) == USE
2073 		    && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2074 	      break;
2075 
2076 	    /* See if all of SRC dies in P.  This test is slightly
2077 	       more conservative than it needs to be.  */
2078 	    if ((note = find_regno_note (p, REG_DEAD, sregno))
2079 		&& GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2080 	      {
2081 		int failed = 0;
2082 
2083 		/* We can do the optimization.  Scan forward from INSN
2084 		   again, replacing regs as we go.  Set FAILED if a
2085 		   replacement can't be done.  In that case, we can't
2086 		   move the death note for SRC.  This should be
2087 		   rare.  */
2088 
2089 		/* Set to stop at next insn.  */
2090 		for (q = next_real_insn (insn);
2091 		     q != next_real_insn (p);
2092 		     q = next_real_insn (q))
2093 		  {
2094 		    if (reg_overlap_mentioned_p (src, PATTERN (q)))
2095 		      {
2096 			/* If SRC is a hard register, we might miss
2097 			   some overlapping registers with
2098 			   validate_replace_rtx, so we would have to
2099 			   undo it.  We can't if DEST is present in
2100 			   the insn, so fail in that combination of
2101 			   cases.  */
2102 			if (sregno < FIRST_PSEUDO_REGISTER
2103 			    && reg_mentioned_p (dest, PATTERN (q)))
2104 			  failed = 1;
2105 
2106 			/* Attempt to replace all uses.  */
2107 			else if (!validate_replace_rtx (src, dest, q))
2108 			  failed = 1;
2109 
2110 			/* If this succeeded, but some part of the
2111 			   register is still present, undo the
2112 			   replacement.  */
2113 			else if (sregno < FIRST_PSEUDO_REGISTER
2114 				 && reg_overlap_mentioned_p (src, PATTERN (q)))
2115 			  {
2116 			    validate_replace_rtx (dest, src, q);
2117 			    failed = 1;
2118 			  }
2119 		      }
2120 
2121 		    /* If DEST dies here, remove the death note and
2122 		       save it for later.  Make sure ALL of DEST dies
2123 		       here; again, this is overly conservative.  */
2124 		    if (! dest_death
2125 			&& (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2126 		      {
2127 			if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2128 			  remove_note (q, dest_death);
2129 			else
2130 			  {
2131 			    failed = 1;
2132 			    dest_death = 0;
2133 			  }
2134 		      }
2135 		  }
2136 
2137 		if (! failed)
2138 		  {
2139 		    /* Move death note of SRC from P to INSN.  */
2140 		    remove_note (p, note);
2141 		    XEXP (note, 1) = REG_NOTES (insn);
2142 		    REG_NOTES (insn) = note;
2143 		  }
2144 
2145 		/* DEST is also dead if INSN has a REG_UNUSED note for
2146 		   DEST.  */
2147 		if (! dest_death
2148 		    && (dest_death
2149 			= find_regno_note (insn, REG_UNUSED, dregno)))
2150 		  {
2151 		    PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2152 		    remove_note (insn, dest_death);
2153 		  }
2154 
2155 		/* Put death note of DEST on P if we saw it die.  */
2156 		if (dest_death)
2157 		  {
2158 		    XEXP (dest_death, 1) = REG_NOTES (p);
2159 		    REG_NOTES (p) = dest_death;
2160 		  }
2161 		break;
2162 	      }
2163 
2164 	    /* If SRC is a hard register which is set or killed in
2165 	       some other way, we can't do this optimization.  */
2166 	    else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2167 	      break;
2168 	  }
2169       }
2170 }
2171 
2172 
2173 
2174 /* Return nonzero if REGNO is a particularly bad choice for reloading X.  */
2175 static bool
ira_bad_reload_regno_1(int regno,rtx x)2176 ira_bad_reload_regno_1 (int regno, rtx x)
2177 {
2178   int x_regno, n, i;
2179   ira_allocno_t a;
2180   enum reg_class pref;
2181 
2182   /* We only deal with pseudo regs.  */
2183   if (! x || GET_CODE (x) != REG)
2184     return false;
2185 
2186   x_regno = REGNO (x);
2187   if (x_regno < FIRST_PSEUDO_REGISTER)
2188     return false;
2189 
2190   /* If the pseudo prefers REGNO explicitly, then do not consider
2191      REGNO a bad spill choice.  */
2192   pref = reg_preferred_class (x_regno);
2193   if (reg_class_size[pref] == 1)
2194     return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2195 
2196   /* If the pseudo conflicts with REGNO, then we consider REGNO a
2197      poor choice for a reload regno.  */
2198   a = ira_regno_allocno_map[x_regno];
2199   n = ALLOCNO_NUM_OBJECTS (a);
2200   for (i = 0; i < n; i++)
2201     {
2202       ira_object_t obj = ALLOCNO_OBJECT (a, i);
2203       if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2204 	return true;
2205     }
2206   return false;
2207 }
2208 
2209 /* Return nonzero if REGNO is a particularly bad choice for reloading
2210    IN or OUT.  */
2211 bool
ira_bad_reload_regno(int regno,rtx in,rtx out)2212 ira_bad_reload_regno (int regno, rtx in, rtx out)
2213 {
2214   return (ira_bad_reload_regno_1 (regno, in)
2215 	  || ira_bad_reload_regno_1 (regno, out));
2216 }
2217 
2218 /* Add register clobbers from asm statements.  */
2219 static void
compute_regs_asm_clobbered(void)2220 compute_regs_asm_clobbered (void)
2221 {
2222   basic_block bb;
2223 
2224   FOR_EACH_BB_FN (bb, cfun)
2225     {
2226       rtx_insn *insn;
2227       FOR_BB_INSNS_REVERSE (bb, insn)
2228 	{
2229 	  df_ref def;
2230 
2231 	  if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2232 	    FOR_EACH_INSN_DEF (def, insn)
2233 	      {
2234 		unsigned int dregno = DF_REF_REGNO (def);
2235 		if (HARD_REGISTER_NUM_P (dregno))
2236 		  add_to_hard_reg_set (&crtl->asm_clobbers,
2237 				       GET_MODE (DF_REF_REAL_REG (def)),
2238 				       dregno);
2239 	      }
2240 	}
2241     }
2242 }
2243 
2244 
2245 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2246    REGS_EVER_LIVE.  */
2247 void
ira_setup_eliminable_regset(void)2248 ira_setup_eliminable_regset (void)
2249 {
2250   int i;
2251   static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2252   int fp_reg_count = hard_regno_nregs (HARD_FRAME_POINTER_REGNUM, Pmode);
2253 
2254   /* Setup is_leaf as frame_pointer_required may use it.  This function
2255      is called by sched_init before ira if scheduling is enabled.  */
2256   crtl->is_leaf = leaf_function_p ();
2257 
2258   /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2259      sp for alloca.  So we can't eliminate the frame pointer in that
2260      case.  At some point, we should improve this by emitting the
2261      sp-adjusting insns for this case.  */
2262   frame_pointer_needed
2263     = (! flag_omit_frame_pointer
2264        || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2265        /* We need the frame pointer to catch stack overflow exceptions if
2266 	  the stack pointer is moving (as for the alloca case just above).  */
2267        || (STACK_CHECK_MOVING_SP
2268 	   && flag_stack_check
2269 	   && flag_exceptions
2270 	   && cfun->can_throw_non_call_exceptions)
2271        || crtl->accesses_prior_frames
2272        || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2273        || targetm.frame_pointer_required ());
2274 
2275     /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2276        RTL is very small.  So if we use frame pointer for RA and RTL
2277        actually prevents this, we will spill pseudos assigned to the
2278        frame pointer in LRA.  */
2279 
2280   if (frame_pointer_needed)
2281     for (i = 0; i < fp_reg_count; i++)
2282       df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2283 
2284   ira_no_alloc_regs = no_unit_alloc_regs;
2285   CLEAR_HARD_REG_SET (eliminable_regset);
2286 
2287   compute_regs_asm_clobbered ();
2288 
2289   /* Build the regset of all eliminable registers and show we can't
2290      use those that we already know won't be eliminated.  */
2291   for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2292     {
2293       bool cannot_elim
2294 	= (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2295 	   || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2296 
2297       if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2298 	{
2299 	    SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2300 
2301 	    if (cannot_elim)
2302 	      SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2303 	}
2304       else if (cannot_elim)
2305 	error ("%s cannot be used in %<asm%> here",
2306 	       reg_names[eliminables[i].from]);
2307       else
2308 	df_set_regs_ever_live (eliminables[i].from, true);
2309     }
2310   if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2311     {
2312       for (i = 0; i < fp_reg_count; i++)
2313 	if (!TEST_HARD_REG_BIT (crtl->asm_clobbers,
2314 				HARD_FRAME_POINTER_REGNUM + i))
2315 	  {
2316 	    SET_HARD_REG_BIT (eliminable_regset,
2317 			      HARD_FRAME_POINTER_REGNUM + i);
2318 	    if (frame_pointer_needed)
2319 	      SET_HARD_REG_BIT (ira_no_alloc_regs,
2320 				HARD_FRAME_POINTER_REGNUM + i);
2321 	  }
2322 	else if (frame_pointer_needed)
2323 	  error ("%s cannot be used in %<asm%> here",
2324 		 reg_names[HARD_FRAME_POINTER_REGNUM + i]);
2325 	else
2326 	  df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2327     }
2328 }
2329 
2330 
2331 
2332 /* Vector of substitutions of register numbers,
2333    used to map pseudo regs into hardware regs.
2334    This is set up as a result of register allocation.
2335    Element N is the hard reg assigned to pseudo reg N,
2336    or is -1 if no hard reg was assigned.
2337    If N is a hard reg number, element N is N.  */
2338 short *reg_renumber;
2339 
2340 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2341    the allocation found by IRA.  */
2342 static void
setup_reg_renumber(void)2343 setup_reg_renumber (void)
2344 {
2345   int regno, hard_regno;
2346   ira_allocno_t a;
2347   ira_allocno_iterator ai;
2348 
2349   caller_save_needed = 0;
2350   FOR_EACH_ALLOCNO (a, ai)
2351     {
2352       if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2353 	continue;
2354       /* There are no caps at this point.  */
2355       ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2356       if (! ALLOCNO_ASSIGNED_P (a))
2357 	/* It can happen if A is not referenced but partially anticipated
2358 	   somewhere in a region.  */
2359 	ALLOCNO_ASSIGNED_P (a) = true;
2360       ira_free_allocno_updated_costs (a);
2361       hard_regno = ALLOCNO_HARD_REGNO (a);
2362       regno = ALLOCNO_REGNO (a);
2363       reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2364       if (hard_regno >= 0)
2365 	{
2366 	  int i, nwords;
2367 	  enum reg_class pclass;
2368 	  ira_object_t obj;
2369 
2370 	  pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2371 	  nwords = ALLOCNO_NUM_OBJECTS (a);
2372 	  for (i = 0; i < nwords; i++)
2373 	    {
2374 	      obj = ALLOCNO_OBJECT (a, i);
2375 	      OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
2376 		|= ~reg_class_contents[pclass];
2377 	    }
2378 	  if (ira_need_caller_save_p (a, hard_regno))
2379 	    {
2380 	      ira_assert (!optimize || flag_caller_saves
2381 			  || (ALLOCNO_CALLS_CROSSED_NUM (a)
2382 			      == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2383 			  || regno >= ira_reg_equiv_len
2384 			  || ira_equiv_no_lvalue_p (regno));
2385 	      caller_save_needed = 1;
2386 	    }
2387 	}
2388     }
2389 }
2390 
2391 /* Set up allocno assignment flags for further allocation
2392    improvements.  */
2393 static void
setup_allocno_assignment_flags(void)2394 setup_allocno_assignment_flags (void)
2395 {
2396   int hard_regno;
2397   ira_allocno_t a;
2398   ira_allocno_iterator ai;
2399 
2400   FOR_EACH_ALLOCNO (a, ai)
2401     {
2402       if (! ALLOCNO_ASSIGNED_P (a))
2403 	/* It can happen if A is not referenced but partially anticipated
2404 	   somewhere in a region.  */
2405 	ira_free_allocno_updated_costs (a);
2406       hard_regno = ALLOCNO_HARD_REGNO (a);
2407       /* Don't assign hard registers to allocnos which are destination
2408 	 of removed store at the end of loop.  It has no sense to keep
2409 	 the same value in different hard registers.  It is also
2410 	 impossible to assign hard registers correctly to such
2411 	 allocnos because the cost info and info about intersected
2412 	 calls are incorrect for them.  */
2413       ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2414 				|| ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2415 				|| (ALLOCNO_MEMORY_COST (a)
2416 				    - ALLOCNO_CLASS_COST (a)) < 0);
2417       ira_assert
2418 	(hard_regno < 0
2419 	 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2420 				   reg_class_contents[ALLOCNO_CLASS (a)]));
2421     }
2422 }
2423 
2424 /* Evaluate overall allocation cost and the costs for using hard
2425    registers and memory for allocnos.  */
2426 static void
calculate_allocation_cost(void)2427 calculate_allocation_cost (void)
2428 {
2429   int hard_regno, cost;
2430   ira_allocno_t a;
2431   ira_allocno_iterator ai;
2432 
2433   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2434   FOR_EACH_ALLOCNO (a, ai)
2435     {
2436       hard_regno = ALLOCNO_HARD_REGNO (a);
2437       ira_assert (hard_regno < 0
2438 		  || (ira_hard_reg_in_set_p
2439 		      (hard_regno, ALLOCNO_MODE (a),
2440 		       reg_class_contents[ALLOCNO_CLASS (a)])));
2441       if (hard_regno < 0)
2442 	{
2443 	  cost = ALLOCNO_MEMORY_COST (a);
2444 	  ira_mem_cost += cost;
2445 	}
2446       else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2447 	{
2448 	  cost = (ALLOCNO_HARD_REG_COSTS (a)
2449 		  [ira_class_hard_reg_index
2450 		   [ALLOCNO_CLASS (a)][hard_regno]]);
2451 	  ira_reg_cost += cost;
2452 	}
2453       else
2454 	{
2455 	  cost = ALLOCNO_CLASS_COST (a);
2456 	  ira_reg_cost += cost;
2457 	}
2458       ira_overall_cost += cost;
2459     }
2460 
2461   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2462     {
2463       fprintf (ira_dump_file,
2464 	       "+++Costs: overall %" PRId64
2465 	       ", reg %" PRId64
2466 	       ", mem %" PRId64
2467 	       ", ld %" PRId64
2468 	       ", st %" PRId64
2469 	       ", move %" PRId64,
2470 	       ira_overall_cost, ira_reg_cost, ira_mem_cost,
2471 	       ira_load_cost, ira_store_cost, ira_shuffle_cost);
2472       fprintf (ira_dump_file, "\n+++       move loops %d, new jumps %d\n",
2473 	       ira_move_loops_num, ira_additional_jumps_num);
2474     }
2475 
2476 }
2477 
2478 #ifdef ENABLE_IRA_CHECKING
2479 /* Check the correctness of the allocation.  We do need this because
2480    of complicated code to transform more one region internal
2481    representation into one region representation.  */
2482 static void
check_allocation(void)2483 check_allocation (void)
2484 {
2485   ira_allocno_t a;
2486   int hard_regno, nregs, conflict_nregs;
2487   ira_allocno_iterator ai;
2488 
2489   FOR_EACH_ALLOCNO (a, ai)
2490     {
2491       int n = ALLOCNO_NUM_OBJECTS (a);
2492       int i;
2493 
2494       if (ALLOCNO_CAP_MEMBER (a) != NULL
2495 	  || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2496 	continue;
2497       nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
2498       if (nregs == 1)
2499 	/* We allocated a single hard register.  */
2500 	n = 1;
2501       else if (n > 1)
2502 	/* We allocated multiple hard registers, and we will test
2503 	   conflicts in a granularity of single hard regs.  */
2504 	nregs = 1;
2505 
2506       for (i = 0; i < n; i++)
2507 	{
2508 	  ira_object_t obj = ALLOCNO_OBJECT (a, i);
2509 	  ira_object_t conflict_obj;
2510 	  ira_object_conflict_iterator oci;
2511 	  int this_regno = hard_regno;
2512 	  if (n > 1)
2513 	    {
2514 	      if (REG_WORDS_BIG_ENDIAN)
2515 		this_regno += n - i - 1;
2516 	      else
2517 		this_regno += i;
2518 	    }
2519 	  FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2520 	    {
2521 	      ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2522 	      int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2523 	      if (conflict_hard_regno < 0)
2524 		continue;
2525 
2526 	      conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2527 						 ALLOCNO_MODE (conflict_a));
2528 
2529 	      if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2530 		  && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2531 		{
2532 		  if (REG_WORDS_BIG_ENDIAN)
2533 		    conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2534 					    - OBJECT_SUBWORD (conflict_obj) - 1);
2535 		  else
2536 		    conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2537 		  conflict_nregs = 1;
2538 		}
2539 
2540 	      if ((conflict_hard_regno <= this_regno
2541 		 && this_regno < conflict_hard_regno + conflict_nregs)
2542 		|| (this_regno <= conflict_hard_regno
2543 		    && conflict_hard_regno < this_regno + nregs))
2544 		{
2545 		  fprintf (stderr, "bad allocation for %d and %d\n",
2546 			   ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2547 		  gcc_unreachable ();
2548 		}
2549 	    }
2550 	}
2551     }
2552 }
2553 #endif
2554 
2555 /* Allocate REG_EQUIV_INIT.  Set up it from IRA_REG_EQUIV which should
2556    be already calculated.  */
2557 static void
setup_reg_equiv_init(void)2558 setup_reg_equiv_init (void)
2559 {
2560   int i;
2561   int max_regno = max_reg_num ();
2562 
2563   for (i = 0; i < max_regno; i++)
2564     reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2565 }
2566 
2567 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO.  INSNS
2568    are insns which were generated for such movement.  It is assumed
2569    that FROM_REGNO and TO_REGNO always have the same value at the
2570    point of any move containing such registers. This function is used
2571    to update equiv info for register shuffles on the region borders
2572    and for caller save/restore insns.  */
2573 void
ira_update_equiv_info_by_shuffle_insn(int to_regno,int from_regno,rtx_insn * insns)2574 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2575 {
2576   rtx_insn *insn;
2577   rtx x, note;
2578 
2579   if (! ira_reg_equiv[from_regno].defined_p
2580       && (! ira_reg_equiv[to_regno].defined_p
2581 	  || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2582 	      && ! MEM_READONLY_P (x))))
2583     return;
2584   insn = insns;
2585   if (NEXT_INSN (insn) != NULL_RTX)
2586     {
2587       if (! ira_reg_equiv[to_regno].defined_p)
2588 	{
2589 	  ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2590 	  return;
2591 	}
2592       ira_reg_equiv[to_regno].defined_p = false;
2593       ira_reg_equiv[to_regno].memory
2594 	= ira_reg_equiv[to_regno].constant
2595 	= ira_reg_equiv[to_regno].invariant
2596 	= ira_reg_equiv[to_regno].init_insns = NULL;
2597       if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2598 	fprintf (ira_dump_file,
2599 		 "      Invalidating equiv info for reg %d\n", to_regno);
2600       return;
2601     }
2602   /* It is possible that FROM_REGNO still has no equivalence because
2603      in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2604      insn was not processed yet.  */
2605   if (ira_reg_equiv[from_regno].defined_p)
2606     {
2607       ira_reg_equiv[to_regno].defined_p = true;
2608       if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2609 	{
2610 	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2611 		      && ira_reg_equiv[from_regno].constant == NULL_RTX);
2612 	  ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2613 		      || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2614 	  ira_reg_equiv[to_regno].memory = x;
2615 	  if (! MEM_READONLY_P (x))
2616 	    /* We don't add the insn to insn init list because memory
2617 	       equivalence is just to say what memory is better to use
2618 	       when the pseudo is spilled.  */
2619 	    return;
2620 	}
2621       else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2622 	{
2623 	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2624 	  ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2625 		      || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2626 	  ira_reg_equiv[to_regno].constant = x;
2627 	}
2628       else
2629 	{
2630 	  x = ira_reg_equiv[from_regno].invariant;
2631 	  ira_assert (x != NULL_RTX);
2632 	  ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2633 		      || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2634 	  ira_reg_equiv[to_regno].invariant = x;
2635 	}
2636       if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2637 	{
2638 	  note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2639 	  gcc_assert (note != NULL_RTX);
2640 	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2641 	    {
2642 	      fprintf (ira_dump_file,
2643 		       "      Adding equiv note to insn %u for reg %d ",
2644 		       INSN_UID (insn), to_regno);
2645 	      dump_value_slim (ira_dump_file, x, 1);
2646 	      fprintf (ira_dump_file, "\n");
2647 	    }
2648 	}
2649     }
2650   ira_reg_equiv[to_regno].init_insns
2651     = gen_rtx_INSN_LIST (VOIDmode, insn,
2652 			 ira_reg_equiv[to_regno].init_insns);
2653   if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2654     fprintf (ira_dump_file,
2655 	     "      Adding equiv init move insn %u to reg %d\n",
2656 	     INSN_UID (insn), to_regno);
2657 }
2658 
2659 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2660    by IRA.  */
2661 static void
fix_reg_equiv_init(void)2662 fix_reg_equiv_init (void)
2663 {
2664   int max_regno = max_reg_num ();
2665   int i, new_regno, max;
2666   rtx set;
2667   rtx_insn_list *x, *next, *prev;
2668   rtx_insn *insn;
2669 
2670   if (max_regno_before_ira < max_regno)
2671     {
2672       max = vec_safe_length (reg_equivs);
2673       grow_reg_equivs ();
2674       for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2675 	for (prev = NULL, x = reg_equiv_init (i);
2676 	     x != NULL_RTX;
2677 	     x = next)
2678 	  {
2679 	    next = x->next ();
2680 	    insn = x->insn ();
2681 	    set = single_set (insn);
2682 	    ira_assert (set != NULL_RTX
2683 			&& (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2684 	    if (REG_P (SET_DEST (set))
2685 		&& ((int) REGNO (SET_DEST (set)) == i
2686 		    || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2687 	      new_regno = REGNO (SET_DEST (set));
2688 	    else if (REG_P (SET_SRC (set))
2689 		     && ((int) REGNO (SET_SRC (set)) == i
2690 			 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2691 	      new_regno = REGNO (SET_SRC (set));
2692 	    else
2693  	      gcc_unreachable ();
2694 	    if (new_regno == i)
2695 	      prev = x;
2696 	    else
2697 	      {
2698 		/* Remove the wrong list element.  */
2699 		if (prev == NULL_RTX)
2700 		  reg_equiv_init (i) = next;
2701 		else
2702 		  XEXP (prev, 1) = next;
2703 		XEXP (x, 1) = reg_equiv_init (new_regno);
2704 		reg_equiv_init (new_regno) = x;
2705 	      }
2706 	  }
2707     }
2708 }
2709 
2710 #ifdef ENABLE_IRA_CHECKING
2711 /* Print redundant memory-memory copies.  */
2712 static void
print_redundant_copies(void)2713 print_redundant_copies (void)
2714 {
2715   int hard_regno;
2716   ira_allocno_t a;
2717   ira_copy_t cp, next_cp;
2718   ira_allocno_iterator ai;
2719 
2720   FOR_EACH_ALLOCNO (a, ai)
2721     {
2722       if (ALLOCNO_CAP_MEMBER (a) != NULL)
2723 	/* It is a cap.  */
2724 	continue;
2725       hard_regno = ALLOCNO_HARD_REGNO (a);
2726       if (hard_regno >= 0)
2727 	continue;
2728       for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2729 	if (cp->first == a)
2730 	  next_cp = cp->next_first_allocno_copy;
2731 	else
2732 	  {
2733 	    next_cp = cp->next_second_allocno_copy;
2734 	    if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2735 		&& cp->insn != NULL_RTX
2736 		&& ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2737 	      fprintf (ira_dump_file,
2738 		       "        Redundant move from %d(freq %d):%d\n",
2739 		       INSN_UID (cp->insn), cp->freq, hard_regno);
2740 	  }
2741     }
2742 }
2743 #endif
2744 
2745 /* Setup preferred and alternative classes for new pseudo-registers
2746    created by IRA starting with START.  */
2747 static void
setup_preferred_alternate_classes_for_new_pseudos(int start)2748 setup_preferred_alternate_classes_for_new_pseudos (int start)
2749 {
2750   int i, old_regno;
2751   int max_regno = max_reg_num ();
2752 
2753   for (i = start; i < max_regno; i++)
2754     {
2755       old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2756       ira_assert (i != old_regno);
2757       setup_reg_classes (i, reg_preferred_class (old_regno),
2758 			 reg_alternate_class (old_regno),
2759 			 reg_allocno_class (old_regno));
2760       if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2761 	fprintf (ira_dump_file,
2762 		 "    New r%d: setting preferred %s, alternative %s\n",
2763 		 i, reg_class_names[reg_preferred_class (old_regno)],
2764 		 reg_class_names[reg_alternate_class (old_regno)]);
2765     }
2766 }
2767 
2768 
2769 /* The number of entries allocated in reg_info.  */
2770 static int allocated_reg_info_size;
2771 
2772 /* Regional allocation can create new pseudo-registers.  This function
2773    expands some arrays for pseudo-registers.  */
2774 static void
expand_reg_info(void)2775 expand_reg_info (void)
2776 {
2777   int i;
2778   int size = max_reg_num ();
2779 
2780   resize_reg_info ();
2781   for (i = allocated_reg_info_size; i < size; i++)
2782     setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2783   setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2784   allocated_reg_info_size = size;
2785 }
2786 
2787 /* Return TRUE if there is too high register pressure in the function.
2788    It is used to decide when stack slot sharing is worth to do.  */
2789 static bool
too_high_register_pressure_p(void)2790 too_high_register_pressure_p (void)
2791 {
2792   int i;
2793   enum reg_class pclass;
2794 
2795   for (i = 0; i < ira_pressure_classes_num; i++)
2796     {
2797       pclass = ira_pressure_classes[i];
2798       if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2799 	return true;
2800     }
2801   return false;
2802 }
2803 
2804 
2805 
2806 /* Indicate that hard register number FROM was eliminated and replaced with
2807    an offset from hard register number TO.  The status of hard registers live
2808    at the start of a basic block is updated by replacing a use of FROM with
2809    a use of TO.  */
2810 
2811 void
mark_elimination(int from,int to)2812 mark_elimination (int from, int to)
2813 {
2814   basic_block bb;
2815   bitmap r;
2816 
2817   FOR_EACH_BB_FN (bb, cfun)
2818     {
2819       r = DF_LR_IN (bb);
2820       if (bitmap_bit_p (r, from))
2821 	{
2822 	  bitmap_clear_bit (r, from);
2823 	  bitmap_set_bit (r, to);
2824 	}
2825       if (! df_live)
2826         continue;
2827       r = DF_LIVE_IN (bb);
2828       if (bitmap_bit_p (r, from))
2829 	{
2830 	  bitmap_clear_bit (r, from);
2831 	  bitmap_set_bit (r, to);
2832 	}
2833     }
2834 }
2835 
2836 
2837 
2838 /* The length of the following array.  */
2839 int ira_reg_equiv_len;
2840 
2841 /* Info about equiv. info for each register.  */
2842 struct ira_reg_equiv_s *ira_reg_equiv;
2843 
2844 /* Expand ira_reg_equiv if necessary.  */
2845 void
ira_expand_reg_equiv(void)2846 ira_expand_reg_equiv (void)
2847 {
2848   int old = ira_reg_equiv_len;
2849 
2850   if (ira_reg_equiv_len > max_reg_num ())
2851     return;
2852   ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2853   ira_reg_equiv
2854     = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2855 					 ira_reg_equiv_len
2856 					 * sizeof (struct ira_reg_equiv_s));
2857   gcc_assert (old < ira_reg_equiv_len);
2858   memset (ira_reg_equiv + old, 0,
2859 	  sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2860 }
2861 
2862 static void
init_reg_equiv(void)2863 init_reg_equiv (void)
2864 {
2865   ira_reg_equiv_len = 0;
2866   ira_reg_equiv = NULL;
2867   ira_expand_reg_equiv ();
2868 }
2869 
2870 static void
finish_reg_equiv(void)2871 finish_reg_equiv (void)
2872 {
2873   free (ira_reg_equiv);
2874 }
2875 
2876 
2877 
2878 struct equivalence
2879 {
2880   /* Set when a REG_EQUIV note is found or created.  Use to
2881      keep track of what memory accesses might be created later,
2882      e.g. by reload.  */
2883   rtx replacement;
2884   rtx *src_p;
2885 
2886   /* The list of each instruction which initializes this register.
2887 
2888      NULL indicates we know nothing about this register's equivalence
2889      properties.
2890 
2891      An INSN_LIST with a NULL insn indicates this pseudo is already
2892      known to not have a valid equivalence.  */
2893   rtx_insn_list *init_insns;
2894 
2895   /* Loop depth is used to recognize equivalences which appear
2896      to be present within the same loop (or in an inner loop).  */
2897   short loop_depth;
2898   /* Nonzero if this had a preexisting REG_EQUIV note.  */
2899   unsigned char is_arg_equivalence : 1;
2900   /* Set when an attempt should be made to replace a register
2901      with the associated src_p entry.  */
2902   unsigned char replace : 1;
2903   /* Set if this register has no known equivalence.  */
2904   unsigned char no_equiv : 1;
2905   /* Set if this register is mentioned in a paradoxical subreg.  */
2906   unsigned char pdx_subregs : 1;
2907 };
2908 
2909 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2910    structure for that register.  */
2911 static struct equivalence *reg_equiv;
2912 
2913 /* Used for communication between the following two functions.  */
2914 struct equiv_mem_data
2915 {
2916   /* A MEM that we wish to ensure remains unchanged.  */
2917   rtx equiv_mem;
2918 
2919   /* Set true if EQUIV_MEM is modified.  */
2920   bool equiv_mem_modified;
2921 };
2922 
2923 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2924    Called via note_stores.  */
2925 static void
validate_equiv_mem_from_store(rtx dest,const_rtx set ATTRIBUTE_UNUSED,void * data)2926 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2927 			       void *data)
2928 {
2929   struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2930 
2931   if ((REG_P (dest)
2932        && reg_overlap_mentioned_p (dest, info->equiv_mem))
2933       || (MEM_P (dest)
2934 	  && anti_dependence (info->equiv_mem, dest)))
2935     info->equiv_mem_modified = true;
2936 }
2937 
2938 enum valid_equiv { valid_none, valid_combine, valid_reload };
2939 
2940 /* Verify that no store between START and the death of REG invalidates
2941    MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
2942    by storing into an overlapping memory location, or with a non-const
2943    CALL_INSN.
2944 
2945    Return VALID_RELOAD if MEMREF remains valid for both reload and
2946    combine_and_move insns, VALID_COMBINE if only valid for
2947    combine_and_move_insns, and VALID_NONE otherwise.  */
2948 static enum valid_equiv
validate_equiv_mem(rtx_insn * start,rtx reg,rtx memref)2949 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2950 {
2951   rtx_insn *insn;
2952   rtx note;
2953   struct equiv_mem_data info = { memref, false };
2954   enum valid_equiv ret = valid_reload;
2955 
2956   /* If the memory reference has side effects or is volatile, it isn't a
2957      valid equivalence.  */
2958   if (side_effects_p (memref))
2959     return valid_none;
2960 
2961   for (insn = start; insn; insn = NEXT_INSN (insn))
2962     {
2963       if (!INSN_P (insn))
2964 	continue;
2965 
2966       if (find_reg_note (insn, REG_DEAD, reg))
2967 	return ret;
2968 
2969       if (CALL_P (insn))
2970 	{
2971 	  /* We can combine a reg def from one insn into a reg use in
2972 	     another over a call if the memory is readonly or the call
2973 	     const/pure.  However, we can't set reg_equiv notes up for
2974 	     reload over any call.  The problem is the equivalent form
2975 	     may reference a pseudo which gets assigned a call
2976 	     clobbered hard reg.  When we later replace REG with its
2977 	     equivalent form, the value in the call-clobbered reg has
2978 	     been changed and all hell breaks loose.  */
2979 	  ret = valid_combine;
2980 	  if (!MEM_READONLY_P (memref)
2981 	      && !RTL_CONST_OR_PURE_CALL_P (insn))
2982 	    return valid_none;
2983 	}
2984 
2985       note_stores (insn, validate_equiv_mem_from_store, &info);
2986       if (info.equiv_mem_modified)
2987 	return valid_none;
2988 
2989       /* If a register mentioned in MEMREF is modified via an
2990 	 auto-increment, we lose the equivalence.  Do the same if one
2991 	 dies; although we could extend the life, it doesn't seem worth
2992 	 the trouble.  */
2993 
2994       for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2995 	if ((REG_NOTE_KIND (note) == REG_INC
2996 	     || REG_NOTE_KIND (note) == REG_DEAD)
2997 	    && REG_P (XEXP (note, 0))
2998 	    && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2999 	  return valid_none;
3000     }
3001 
3002   return valid_none;
3003 }
3004 
3005 /* Returns zero if X is known to be invariant.  */
3006 static int
equiv_init_varies_p(rtx x)3007 equiv_init_varies_p (rtx x)
3008 {
3009   RTX_CODE code = GET_CODE (x);
3010   int i;
3011   const char *fmt;
3012 
3013   switch (code)
3014     {
3015     case MEM:
3016       return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3017 
3018     case CONST:
3019     CASE_CONST_ANY:
3020     case SYMBOL_REF:
3021     case LABEL_REF:
3022       return 0;
3023 
3024     case REG:
3025       return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3026 
3027     case ASM_OPERANDS:
3028       if (MEM_VOLATILE_P (x))
3029 	return 1;
3030 
3031       /* Fall through.  */
3032 
3033     default:
3034       break;
3035     }
3036 
3037   fmt = GET_RTX_FORMAT (code);
3038   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3039     if (fmt[i] == 'e')
3040       {
3041 	if (equiv_init_varies_p (XEXP (x, i)))
3042 	  return 1;
3043       }
3044     else if (fmt[i] == 'E')
3045       {
3046 	int j;
3047 	for (j = 0; j < XVECLEN (x, i); j++)
3048 	  if (equiv_init_varies_p (XVECEXP (x, i, j)))
3049 	    return 1;
3050       }
3051 
3052   return 0;
3053 }
3054 
3055 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3056    X is only movable if the registers it uses have equivalent initializations
3057    which appear to be within the same loop (or in an inner loop) and movable
3058    or if they are not candidates for local_alloc and don't vary.  */
3059 static int
equiv_init_movable_p(rtx x,int regno)3060 equiv_init_movable_p (rtx x, int regno)
3061 {
3062   int i, j;
3063   const char *fmt;
3064   enum rtx_code code = GET_CODE (x);
3065 
3066   switch (code)
3067     {
3068     case SET:
3069       return equiv_init_movable_p (SET_SRC (x), regno);
3070 
3071     case CC0:
3072     case CLOBBER:
3073       return 0;
3074 
3075     case PRE_INC:
3076     case PRE_DEC:
3077     case POST_INC:
3078     case POST_DEC:
3079     case PRE_MODIFY:
3080     case POST_MODIFY:
3081       return 0;
3082 
3083     case REG:
3084       return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3085 	       && reg_equiv[REGNO (x)].replace)
3086 	      || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3087 		  && ! rtx_varies_p (x, 0)));
3088 
3089     case UNSPEC_VOLATILE:
3090       return 0;
3091 
3092     case ASM_OPERANDS:
3093       if (MEM_VOLATILE_P (x))
3094 	return 0;
3095 
3096       /* Fall through.  */
3097 
3098     default:
3099       break;
3100     }
3101 
3102   fmt = GET_RTX_FORMAT (code);
3103   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3104     switch (fmt[i])
3105       {
3106       case 'e':
3107 	if (! equiv_init_movable_p (XEXP (x, i), regno))
3108 	  return 0;
3109 	break;
3110       case 'E':
3111 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3112 	  if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3113 	    return 0;
3114 	break;
3115       }
3116 
3117   return 1;
3118 }
3119 
3120 static bool memref_referenced_p (rtx memref, rtx x, bool read_p);
3121 
3122 /* Auxiliary function for memref_referenced_p.  Process setting X for
3123    MEMREF store.  */
3124 static bool
process_set_for_memref_referenced_p(rtx memref,rtx x)3125 process_set_for_memref_referenced_p (rtx memref, rtx x)
3126 {
3127   /* If we are setting a MEM, it doesn't count (its address does), but any
3128      other SET_DEST that has a MEM in it is referencing the MEM.  */
3129   if (MEM_P (x))
3130     {
3131       if (memref_referenced_p (memref, XEXP (x, 0), true))
3132 	return true;
3133     }
3134   else if (memref_referenced_p (memref, x, false))
3135     return true;
3136 
3137   return false;
3138 }
3139 
3140 /* TRUE if X references a memory location (as a read if READ_P) that
3141    would be affected by a store to MEMREF.  */
3142 static bool
memref_referenced_p(rtx memref,rtx x,bool read_p)3143 memref_referenced_p (rtx memref, rtx x, bool read_p)
3144 {
3145   int i, j;
3146   const char *fmt;
3147   enum rtx_code code = GET_CODE (x);
3148 
3149   switch (code)
3150     {
3151     case CONST:
3152     case LABEL_REF:
3153     case SYMBOL_REF:
3154     CASE_CONST_ANY:
3155     case PC:
3156     case CC0:
3157     case HIGH:
3158     case LO_SUM:
3159       return false;
3160 
3161     case REG:
3162       return (reg_equiv[REGNO (x)].replacement
3163 	      && memref_referenced_p (memref,
3164 				      reg_equiv[REGNO (x)].replacement, read_p));
3165 
3166     case MEM:
3167       /* Memory X might have another effective type than MEMREF.  */
3168       if (read_p || true_dependence (memref, VOIDmode, x))
3169 	return true;
3170       break;
3171 
3172     case SET:
3173       if (process_set_for_memref_referenced_p (memref, SET_DEST (x)))
3174 	return true;
3175 
3176       return memref_referenced_p (memref, SET_SRC (x), true);
3177 
3178     case CLOBBER:
3179       if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3180 	return true;
3181 
3182       return false;
3183 
3184     case PRE_DEC:
3185     case POST_DEC:
3186     case PRE_INC:
3187     case POST_INC:
3188       if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3189 	return true;
3190 
3191       return memref_referenced_p (memref, XEXP (x, 0), true);
3192 
3193     case POST_MODIFY:
3194     case PRE_MODIFY:
3195       /* op0 = op0 + op1 */
3196       if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3197 	return true;
3198 
3199       if (memref_referenced_p (memref, XEXP (x, 0), true))
3200 	return true;
3201 
3202       return memref_referenced_p (memref, XEXP (x, 1), true);
3203 
3204     default:
3205       break;
3206     }
3207 
3208   fmt = GET_RTX_FORMAT (code);
3209   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3210     switch (fmt[i])
3211       {
3212       case 'e':
3213 	if (memref_referenced_p (memref, XEXP (x, i), read_p))
3214 	  return true;
3215 	break;
3216       case 'E':
3217 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3218 	  if (memref_referenced_p (memref, XVECEXP (x, i, j), read_p))
3219 	    return true;
3220 	break;
3221       }
3222 
3223   return false;
3224 }
3225 
3226 /* TRUE if some insn in the range (START, END] references a memory location
3227    that would be affected by a store to MEMREF.
3228 
3229    Callers should not call this routine if START is after END in the
3230    RTL chain.  */
3231 
3232 static int
memref_used_between_p(rtx memref,rtx_insn * start,rtx_insn * end)3233 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3234 {
3235   rtx_insn *insn;
3236 
3237   for (insn = NEXT_INSN (start);
3238        insn && insn != NEXT_INSN (end);
3239        insn = NEXT_INSN (insn))
3240     {
3241       if (!NONDEBUG_INSN_P (insn))
3242 	continue;
3243 
3244       if (memref_referenced_p (memref, PATTERN (insn), false))
3245 	return 1;
3246 
3247       /* Nonconst functions may access memory.  */
3248       if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3249 	return 1;
3250     }
3251 
3252   gcc_assert (insn == NEXT_INSN (end));
3253   return 0;
3254 }
3255 
3256 /* Mark REG as having no known equivalence.
3257    Some instructions might have been processed before and furnished
3258    with REG_EQUIV notes for this register; these notes will have to be
3259    removed.
3260    STORE is the piece of RTL that does the non-constant / conflicting
3261    assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
3262    but needs to be there because this function is called from note_stores.  */
3263 static void
no_equiv(rtx reg,const_rtx store ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED)3264 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3265 	  void *data ATTRIBUTE_UNUSED)
3266 {
3267   int regno;
3268   rtx_insn_list *list;
3269 
3270   if (!REG_P (reg))
3271     return;
3272   regno = REGNO (reg);
3273   reg_equiv[regno].no_equiv = 1;
3274   list = reg_equiv[regno].init_insns;
3275   if (list && list->insn () == NULL)
3276     return;
3277   reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3278   reg_equiv[regno].replacement = NULL_RTX;
3279   /* This doesn't matter for equivalences made for argument registers, we
3280      should keep their initialization insns.  */
3281   if (reg_equiv[regno].is_arg_equivalence)
3282     return;
3283   ira_reg_equiv[regno].defined_p = false;
3284   ira_reg_equiv[regno].init_insns = NULL;
3285   for (; list; list = list->next ())
3286     {
3287       rtx_insn *insn = list->insn ();
3288       remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3289     }
3290 }
3291 
3292 /* Check whether the SUBREG is a paradoxical subreg and set the result
3293    in PDX_SUBREGS.  */
3294 
3295 static void
set_paradoxical_subreg(rtx_insn * insn)3296 set_paradoxical_subreg (rtx_insn *insn)
3297 {
3298   subrtx_iterator::array_type array;
3299   FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3300     {
3301       const_rtx subreg = *iter;
3302       if (GET_CODE (subreg) == SUBREG)
3303 	{
3304 	  const_rtx reg = SUBREG_REG (subreg);
3305 	  if (REG_P (reg) && paradoxical_subreg_p (subreg))
3306 	    reg_equiv[REGNO (reg)].pdx_subregs = true;
3307 	}
3308     }
3309 }
3310 
3311 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3312    equivalent replacement.  */
3313 
3314 static rtx
adjust_cleared_regs(rtx loc,const_rtx old_rtx ATTRIBUTE_UNUSED,void * data)3315 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3316 {
3317   if (REG_P (loc))
3318     {
3319       bitmap cleared_regs = (bitmap) data;
3320       if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3321 	return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3322 					NULL_RTX, adjust_cleared_regs, data);
3323     }
3324   return NULL_RTX;
3325 }
3326 
3327 /* Given register REGNO is set only once, return true if the defining
3328    insn dominates all uses.  */
3329 
3330 static bool
def_dominates_uses(int regno)3331 def_dominates_uses (int regno)
3332 {
3333   df_ref def = DF_REG_DEF_CHAIN (regno);
3334 
3335   struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3336   /* If this is an artificial def (eh handler regs, hard frame pointer
3337      for non-local goto, regs defined on function entry) then def_info
3338      is NULL and the reg is always live before any use.  We might
3339      reasonably return true in that case, but since the only call
3340      of this function is currently here in ira.c when we are looking
3341      at a defining insn we can't have an artificial def as that would
3342      bump DF_REG_DEF_COUNT.  */
3343   gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3344 
3345   rtx_insn *def_insn = DF_REF_INSN (def);
3346   basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3347 
3348   for (df_ref use = DF_REG_USE_CHAIN (regno);
3349        use;
3350        use = DF_REF_NEXT_REG (use))
3351     {
3352       struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3353       /* Only check real uses, not artificial ones.  */
3354       if (use_info)
3355 	{
3356 	  rtx_insn *use_insn = DF_REF_INSN (use);
3357 	  if (!DEBUG_INSN_P (use_insn))
3358 	    {
3359 	      basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3360 	      if (use_bb != def_bb
3361 		  ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3362 		  : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3363 		return false;
3364 	    }
3365 	}
3366     }
3367   return true;
3368 }
3369 
3370 /* Scan the instructions before update_equiv_regs.  Record which registers
3371    are referenced as paradoxical subregs.  Also check for cases in which
3372    the current function needs to save a register that one of its call
3373    instructions clobbers.
3374 
3375    These things are logically unrelated, but it's more efficient to do
3376    them together.  */
3377 
3378 static void
update_equiv_regs_prescan(void)3379 update_equiv_regs_prescan (void)
3380 {
3381   basic_block bb;
3382   rtx_insn *insn;
3383   function_abi_aggregator callee_abis;
3384 
3385   FOR_EACH_BB_FN (bb, cfun)
3386     FOR_BB_INSNS (bb, insn)
3387       if (NONDEBUG_INSN_P (insn))
3388 	{
3389 	  set_paradoxical_subreg (insn);
3390 	  if (CALL_P (insn))
3391 	    callee_abis.note_callee_abi (insn_callee_abi (insn));
3392 	}
3393 
3394   HARD_REG_SET extra_caller_saves = callee_abis.caller_save_regs (*crtl->abi);
3395   if (!hard_reg_set_empty_p (extra_caller_saves))
3396     for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
3397       if (TEST_HARD_REG_BIT (extra_caller_saves, regno))
3398 	df_set_regs_ever_live (regno, true);
3399 }
3400 
3401 /* Find registers that are equivalent to a single value throughout the
3402    compilation (either because they can be referenced in memory or are
3403    set once from a single constant).  Lower their priority for a
3404    register.
3405 
3406    If such a register is only referenced once, try substituting its
3407    value into the using insn.  If it succeeds, we can eliminate the
3408    register completely.
3409 
3410    Initialize init_insns in ira_reg_equiv array.  */
3411 static void
update_equiv_regs(void)3412 update_equiv_regs (void)
3413 {
3414   rtx_insn *insn;
3415   basic_block bb;
3416 
3417   /* Scan the insns and find which registers have equivalences.  Do this
3418      in a separate scan of the insns because (due to -fcse-follow-jumps)
3419      a register can be set below its use.  */
3420   bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3421   FOR_EACH_BB_FN (bb, cfun)
3422     {
3423       int loop_depth = bb_loop_depth (bb);
3424 
3425       for (insn = BB_HEAD (bb);
3426 	   insn != NEXT_INSN (BB_END (bb));
3427 	   insn = NEXT_INSN (insn))
3428 	{
3429 	  rtx note;
3430 	  rtx set;
3431 	  rtx dest, src;
3432 	  int regno;
3433 
3434 	  if (! INSN_P (insn))
3435 	    continue;
3436 
3437 	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3438 	    if (REG_NOTE_KIND (note) == REG_INC)
3439 	      no_equiv (XEXP (note, 0), note, NULL);
3440 
3441 	  set = single_set (insn);
3442 
3443 	  /* If this insn contains more (or less) than a single SET,
3444 	     only mark all destinations as having no known equivalence.  */
3445 	  if (set == NULL_RTX
3446 	      || side_effects_p (SET_SRC (set)))
3447 	    {
3448 	      note_pattern_stores (PATTERN (insn), no_equiv, NULL);
3449 	      continue;
3450 	    }
3451 	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3452 	    {
3453 	      int i;
3454 
3455 	      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3456 		{
3457 		  rtx part = XVECEXP (PATTERN (insn), 0, i);
3458 		  if (part != set)
3459 		    note_pattern_stores (part, no_equiv, NULL);
3460 		}
3461 	    }
3462 
3463 	  dest = SET_DEST (set);
3464 	  src = SET_SRC (set);
3465 
3466 	  /* See if this is setting up the equivalence between an argument
3467 	     register and its stack slot.  */
3468 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3469 	  if (note)
3470 	    {
3471 	      gcc_assert (REG_P (dest));
3472 	      regno = REGNO (dest);
3473 
3474 	      /* Note that we don't want to clear init_insns in
3475 		 ira_reg_equiv even if there are multiple sets of this
3476 		 register.  */
3477 	      reg_equiv[regno].is_arg_equivalence = 1;
3478 
3479 	      /* The insn result can have equivalence memory although
3480 		 the equivalence is not set up by the insn.  We add
3481 		 this insn to init insns as it is a flag for now that
3482 		 regno has an equivalence.  We will remove the insn
3483 		 from init insn list later.  */
3484 	      if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3485 		ira_reg_equiv[regno].init_insns
3486 		  = gen_rtx_INSN_LIST (VOIDmode, insn,
3487 				       ira_reg_equiv[regno].init_insns);
3488 
3489 	      /* Continue normally in case this is a candidate for
3490 		 replacements.  */
3491 	    }
3492 
3493 	  if (!optimize)
3494 	    continue;
3495 
3496 	  /* We only handle the case of a pseudo register being set
3497 	     once, or always to the same value.  */
3498 	  /* ??? The mn10200 port breaks if we add equivalences for
3499 	     values that need an ADDRESS_REGS register and set them equivalent
3500 	     to a MEM of a pseudo.  The actual problem is in the over-conservative
3501 	     handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3502 	     calculate_needs, but we traditionally work around this problem
3503 	     here by rejecting equivalences when the destination is in a register
3504 	     that's likely spilled.  This is fragile, of course, since the
3505 	     preferred class of a pseudo depends on all instructions that set
3506 	     or use it.  */
3507 
3508 	  if (!REG_P (dest)
3509 	      || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3510 	      || (reg_equiv[regno].init_insns
3511 		  && reg_equiv[regno].init_insns->insn () == NULL)
3512 	      || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3513 		  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3514 	    {
3515 	      /* This might be setting a SUBREG of a pseudo, a pseudo that is
3516 		 also set somewhere else to a constant.  */
3517 	      note_pattern_stores (set, no_equiv, NULL);
3518 	      continue;
3519 	    }
3520 
3521 	  /* Don't set reg mentioned in a paradoxical subreg
3522 	     equivalent to a mem.  */
3523 	  if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3524 	    {
3525 	      note_pattern_stores (set, no_equiv, NULL);
3526 	      continue;
3527 	    }
3528 
3529 	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3530 
3531 	  /* cse sometimes generates function invariants, but doesn't put a
3532 	     REG_EQUAL note on the insn.  Since this note would be redundant,
3533 	     there's no point creating it earlier than here.  */
3534 	  if (! note && ! rtx_varies_p (src, 0))
3535 	    note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3536 
3537 	  /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3538 	     since it represents a function call.  */
3539 	  if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3540 	    note = NULL_RTX;
3541 
3542 	  if (DF_REG_DEF_COUNT (regno) != 1)
3543 	    {
3544 	      bool equal_p = true;
3545 	      rtx_insn_list *list;
3546 
3547 	      /* If we have already processed this pseudo and determined it
3548 		 cannot have an equivalence, then honor that decision.  */
3549 	      if (reg_equiv[regno].no_equiv)
3550 		continue;
3551 
3552 	      if (! note
3553 		  || rtx_varies_p (XEXP (note, 0), 0)
3554 		  || (reg_equiv[regno].replacement
3555 		      && ! rtx_equal_p (XEXP (note, 0),
3556 					reg_equiv[regno].replacement)))
3557 		{
3558 		  no_equiv (dest, set, NULL);
3559 		  continue;
3560 		}
3561 
3562 	      list = reg_equiv[regno].init_insns;
3563 	      for (; list; list = list->next ())
3564 		{
3565 		  rtx note_tmp;
3566 		  rtx_insn *insn_tmp;
3567 
3568 		  insn_tmp = list->insn ();
3569 		  note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3570 		  gcc_assert (note_tmp);
3571 		  if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3572 		    {
3573 		      equal_p = false;
3574 		      break;
3575 		    }
3576 		}
3577 
3578 	      if (! equal_p)
3579 		{
3580 		  no_equiv (dest, set, NULL);
3581 		  continue;
3582 		}
3583 	    }
3584 
3585 	  /* Record this insn as initializing this register.  */
3586 	  reg_equiv[regno].init_insns
3587 	    = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3588 
3589 	  /* If this register is known to be equal to a constant, record that
3590 	     it is always equivalent to the constant.
3591 	     Note that it is possible to have a register use before
3592 	     the def in loops (see gcc.c-torture/execute/pr79286.c)
3593 	     where the reg is undefined on first use.  If the def insn
3594 	     won't trap we can use it as an equivalence, effectively
3595 	     choosing the "undefined" value for the reg to be the
3596 	     same as the value set by the def.  */
3597 	  if (DF_REG_DEF_COUNT (regno) == 1
3598 	      && note
3599 	      && !rtx_varies_p (XEXP (note, 0), 0)
3600 	      && (!may_trap_or_fault_p (XEXP (note, 0))
3601 		  || def_dominates_uses (regno)))
3602 	    {
3603 	      rtx note_value = XEXP (note, 0);
3604 	      remove_note (insn, note);
3605 	      set_unique_reg_note (insn, REG_EQUIV, note_value);
3606 	    }
3607 
3608 	  /* If this insn introduces a "constant" register, decrease the priority
3609 	     of that register.  Record this insn if the register is only used once
3610 	     more and the equivalence value is the same as our source.
3611 
3612 	     The latter condition is checked for two reasons:  First, it is an
3613 	     indication that it may be more efficient to actually emit the insn
3614 	     as written (if no registers are available, reload will substitute
3615 	     the equivalence).  Secondly, it avoids problems with any registers
3616 	     dying in this insn whose death notes would be missed.
3617 
3618 	     If we don't have a REG_EQUIV note, see if this insn is loading
3619 	     a register used only in one basic block from a MEM.  If so, and the
3620 	     MEM remains unchanged for the life of the register, add a REG_EQUIV
3621 	     note.  */
3622 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3623 
3624 	  rtx replacement = NULL_RTX;
3625 	  if (note)
3626 	    replacement = XEXP (note, 0);
3627 	  else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3628 		   && MEM_P (SET_SRC (set)))
3629 	    {
3630 	      enum valid_equiv validity;
3631 	      validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3632 	      if (validity != valid_none)
3633 		{
3634 		  replacement = copy_rtx (SET_SRC (set));
3635 		  if (validity == valid_reload)
3636 		    note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3637 		}
3638 	    }
3639 
3640 	  /* If we haven't done so, record for reload that this is an
3641 	     equivalencing insn.  */
3642 	  if (note && !reg_equiv[regno].is_arg_equivalence)
3643 	    ira_reg_equiv[regno].init_insns
3644 	      = gen_rtx_INSN_LIST (VOIDmode, insn,
3645 				   ira_reg_equiv[regno].init_insns);
3646 
3647 	  if (replacement)
3648 	    {
3649 	      reg_equiv[regno].replacement = replacement;
3650 	      reg_equiv[regno].src_p = &SET_SRC (set);
3651 	      reg_equiv[regno].loop_depth = (short) loop_depth;
3652 
3653 	      /* Don't mess with things live during setjmp.  */
3654 	      if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3655 		{
3656 		  /* If the register is referenced exactly twice, meaning it is
3657 		     set once and used once, indicate that the reference may be
3658 		     replaced by the equivalence we computed above.  Do this
3659 		     even if the register is only used in one block so that
3660 		     dependencies can be handled where the last register is
3661 		     used in a different block (i.e. HIGH / LO_SUM sequences)
3662 		     and to reduce the number of registers alive across
3663 		     calls.  */
3664 
3665 		  if (REG_N_REFS (regno) == 2
3666 		      && (rtx_equal_p (replacement, src)
3667 			  || ! equiv_init_varies_p (src))
3668 		      && NONJUMP_INSN_P (insn)
3669 		      && equiv_init_movable_p (PATTERN (insn), regno))
3670 		    reg_equiv[regno].replace = 1;
3671 		}
3672 	    }
3673 	}
3674     }
3675 }
3676 
3677 /* For insns that set a MEM to the contents of a REG that is only used
3678    in a single basic block, see if the register is always equivalent
3679    to that memory location and if moving the store from INSN to the
3680    insn that sets REG is safe.  If so, put a REG_EQUIV note on the
3681    initializing insn.  */
3682 static void
add_store_equivs(void)3683 add_store_equivs (void)
3684 {
3685   auto_bitmap seen_insns;
3686 
3687   for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3688     {
3689       rtx set, src, dest;
3690       unsigned regno;
3691       rtx_insn *init_insn;
3692 
3693       bitmap_set_bit (seen_insns, INSN_UID (insn));
3694 
3695       if (! INSN_P (insn))
3696 	continue;
3697 
3698       set = single_set (insn);
3699       if (! set)
3700 	continue;
3701 
3702       dest = SET_DEST (set);
3703       src = SET_SRC (set);
3704 
3705       /* Don't add a REG_EQUIV note if the insn already has one.  The existing
3706 	 REG_EQUIV is likely more useful than the one we are adding.  */
3707       if (MEM_P (dest) && REG_P (src)
3708 	  && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3709 	  && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3710 	  && DF_REG_DEF_COUNT (regno) == 1
3711 	  && ! reg_equiv[regno].pdx_subregs
3712 	  && reg_equiv[regno].init_insns != NULL
3713 	  && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3714 	  && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
3715 	  && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3716 	  && validate_equiv_mem (init_insn, src, dest) == valid_reload
3717 	  && ! memref_used_between_p (dest, init_insn, insn)
3718 	  /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3719 	     multiple sets.  */
3720 	  && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3721 	{
3722 	  /* This insn makes the equivalence, not the one initializing
3723 	     the register.  */
3724 	  ira_reg_equiv[regno].init_insns
3725 	    = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3726 	  df_notes_rescan (init_insn);
3727 	  if (dump_file)
3728 	    fprintf (dump_file,
3729 		     "Adding REG_EQUIV to insn %d for source of insn %d\n",
3730 		     INSN_UID (init_insn),
3731 		     INSN_UID (insn));
3732 	}
3733     }
3734 }
3735 
3736 /* Scan all regs killed in an insn to see if any of them are registers
3737    only used that once.  If so, see if we can replace the reference
3738    with the equivalent form.  If we can, delete the initializing
3739    reference and this register will go away.  If we can't replace the
3740    reference, and the initializing reference is within the same loop
3741    (or in an inner loop), then move the register initialization just
3742    before the use, so that they are in the same basic block.  */
3743 static void
combine_and_move_insns(void)3744 combine_and_move_insns (void)
3745 {
3746   auto_bitmap cleared_regs;
3747   int max = max_reg_num ();
3748 
3749   for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3750     {
3751       if (!reg_equiv[regno].replace)
3752 	continue;
3753 
3754       rtx_insn *use_insn = 0;
3755       for (df_ref use = DF_REG_USE_CHAIN (regno);
3756 	   use;
3757 	   use = DF_REF_NEXT_REG (use))
3758 	if (DF_REF_INSN_INFO (use))
3759 	  {
3760 	    if (DEBUG_INSN_P (DF_REF_INSN (use)))
3761 	      continue;
3762 	    gcc_assert (!use_insn);
3763 	    use_insn = DF_REF_INSN (use);
3764 	  }
3765       gcc_assert (use_insn);
3766 
3767       /* Don't substitute into jumps.  indirect_jump_optimize does
3768 	 this for anything we are prepared to handle.  */
3769       if (JUMP_P (use_insn))
3770 	continue;
3771 
3772       /* Also don't substitute into a conditional trap insn -- it can become
3773 	 an unconditional trap, and that is a flow control insn.  */
3774       if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3775 	continue;
3776 
3777       df_ref def = DF_REG_DEF_CHAIN (regno);
3778       gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3779       rtx_insn *def_insn = DF_REF_INSN (def);
3780 
3781       /* We may not move instructions that can throw, since that
3782 	 changes basic block boundaries and we are not prepared to
3783 	 adjust the CFG to match.  */
3784       if (can_throw_internal (def_insn))
3785 	continue;
3786 
3787       /* Instructions with multiple sets can only be moved if DF analysis is
3788 	 performed for all of the registers set.  See PR91052.  */
3789       if (multiple_sets (def_insn))
3790 	continue;
3791 
3792       basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3793       basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3794       if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3795 	continue;
3796 
3797       if (asm_noperands (PATTERN (def_insn)) < 0
3798 	  && validate_replace_rtx (regno_reg_rtx[regno],
3799 				   *reg_equiv[regno].src_p, use_insn))
3800 	{
3801 	  rtx link;
3802 	  /* Append the REG_DEAD notes from def_insn.  */
3803 	  for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3804 	    {
3805 	      if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3806 		{
3807 		  *p = XEXP (link, 1);
3808 		  XEXP (link, 1) = REG_NOTES (use_insn);
3809 		  REG_NOTES (use_insn) = link;
3810 		}
3811 	      else
3812 		p = &XEXP (link, 1);
3813 	    }
3814 
3815 	  remove_death (regno, use_insn);
3816 	  SET_REG_N_REFS (regno, 0);
3817 	  REG_FREQ (regno) = 0;
3818 	  df_ref use;
3819 	  FOR_EACH_INSN_USE (use, def_insn)
3820 	    {
3821 	      unsigned int use_regno = DF_REF_REGNO (use);
3822 	      if (!HARD_REGISTER_NUM_P (use_regno))
3823 		reg_equiv[use_regno].replace = 0;
3824 	    }
3825 
3826 	  delete_insn (def_insn);
3827 
3828 	  reg_equiv[regno].init_insns = NULL;
3829 	  ira_reg_equiv[regno].init_insns = NULL;
3830 	  bitmap_set_bit (cleared_regs, regno);
3831 	}
3832 
3833       /* Move the initialization of the register to just before
3834 	 USE_INSN.  Update the flow information.  */
3835       else if (prev_nondebug_insn (use_insn) != def_insn)
3836 	{
3837 	  rtx_insn *new_insn;
3838 
3839 	  new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3840 	  REG_NOTES (new_insn) = REG_NOTES (def_insn);
3841 	  REG_NOTES (def_insn) = 0;
3842 	  /* Rescan it to process the notes.  */
3843 	  df_insn_rescan (new_insn);
3844 
3845 	  /* Make sure this insn is recognized before reload begins,
3846 	     otherwise eliminate_regs_in_insn will die.  */
3847 	  INSN_CODE (new_insn) = INSN_CODE (def_insn);
3848 
3849 	  delete_insn (def_insn);
3850 
3851 	  XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3852 
3853 	  REG_BASIC_BLOCK (regno) = use_bb->index;
3854 	  REG_N_CALLS_CROSSED (regno) = 0;
3855 
3856 	  if (use_insn == BB_HEAD (use_bb))
3857 	    BB_HEAD (use_bb) = new_insn;
3858 
3859 	  /* We know regno dies in use_insn, but inside a loop
3860 	     REG_DEAD notes might be missing when def_insn was in
3861 	     another basic block.  However, when we move def_insn into
3862 	     this bb we'll definitely get a REG_DEAD note and reload
3863 	     will see the death.  It's possible that update_equiv_regs
3864 	     set up an equivalence referencing regno for a reg set by
3865 	     use_insn, when regno was seen as non-local.  Now that
3866 	     regno is local to this block, and dies, such an
3867 	     equivalence is invalid.  */
3868 	  if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
3869 	    {
3870 	      rtx set = single_set (use_insn);
3871 	      if (set && REG_P (SET_DEST (set)))
3872 		no_equiv (SET_DEST (set), set, NULL);
3873 	    }
3874 
3875 	  ira_reg_equiv[regno].init_insns
3876 	    = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3877 	  bitmap_set_bit (cleared_regs, regno);
3878 	}
3879     }
3880 
3881   if (!bitmap_empty_p (cleared_regs))
3882     {
3883       basic_block bb;
3884 
3885       FOR_EACH_BB_FN (bb, cfun)
3886 	{
3887 	  bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3888 	  bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3889 	  if (!df_live)
3890 	    continue;
3891 	  bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3892 	  bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3893 	}
3894 
3895       /* Last pass - adjust debug insns referencing cleared regs.  */
3896       if (MAY_HAVE_DEBUG_BIND_INSNS)
3897 	for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3898 	  if (DEBUG_BIND_INSN_P (insn))
3899 	    {
3900 	      rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3901 	      INSN_VAR_LOCATION_LOC (insn)
3902 		= simplify_replace_fn_rtx (old_loc, NULL_RTX,
3903 					   adjust_cleared_regs,
3904 					   (void *) cleared_regs);
3905 	      if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3906 		df_insn_rescan (insn);
3907 	    }
3908     }
3909 }
3910 
3911 /* A pass over indirect jumps, converting simple cases to direct jumps.
3912    Combine does this optimization too, but only within a basic block.  */
3913 static void
indirect_jump_optimize(void)3914 indirect_jump_optimize (void)
3915 {
3916   basic_block bb;
3917   bool rebuild_p = false;
3918 
3919   FOR_EACH_BB_REVERSE_FN (bb, cfun)
3920     {
3921       rtx_insn *insn = BB_END (bb);
3922       if (!JUMP_P (insn)
3923 	  || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3924 	continue;
3925 
3926       rtx x = pc_set (insn);
3927       if (!x || !REG_P (SET_SRC (x)))
3928 	continue;
3929 
3930       int regno = REGNO (SET_SRC (x));
3931       if (DF_REG_DEF_COUNT (regno) == 1)
3932 	{
3933 	  df_ref def = DF_REG_DEF_CHAIN (regno);
3934 	  if (!DF_REF_IS_ARTIFICIAL (def))
3935 	    {
3936 	      rtx_insn *def_insn = DF_REF_INSN (def);
3937 	      rtx lab = NULL_RTX;
3938 	      rtx set = single_set (def_insn);
3939 	      if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3940 		lab = SET_SRC (set);
3941 	      else
3942 		{
3943 		  rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3944 		  if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3945 		    lab = XEXP (eqnote, 0);
3946 		}
3947 	      if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3948 		rebuild_p = true;
3949 	    }
3950 	}
3951     }
3952 
3953   if (rebuild_p)
3954     {
3955       timevar_push (TV_JUMP);
3956       rebuild_jump_labels (get_insns ());
3957       if (purge_all_dead_edges ())
3958 	delete_unreachable_blocks ();
3959       timevar_pop (TV_JUMP);
3960     }
3961 }
3962 
3963 /* Set up fields memory, constant, and invariant from init_insns in
3964    the structures of array ira_reg_equiv.  */
3965 static void
setup_reg_equiv(void)3966 setup_reg_equiv (void)
3967 {
3968   int i;
3969   rtx_insn_list *elem, *prev_elem, *next_elem;
3970   rtx_insn *insn;
3971   rtx set, x;
3972 
3973   for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3974     for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3975 	 elem;
3976 	 prev_elem = elem, elem = next_elem)
3977       {
3978 	next_elem = elem->next ();
3979 	insn = elem->insn ();
3980 	set = single_set (insn);
3981 
3982 	/* Init insns can set up equivalence when the reg is a destination or
3983 	   a source (in this case the destination is memory).  */
3984 	if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3985 	  {
3986 	    if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3987 	      {
3988 		x = XEXP (x, 0);
3989 		if (REG_P (SET_DEST (set))
3990 		    && REGNO (SET_DEST (set)) == (unsigned int) i
3991 		    && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3992 		  {
3993 		    /* This insn reporting the equivalence but
3994 		       actually not setting it.  Remove it from the
3995 		       list.  */
3996 		    if (prev_elem == NULL)
3997 		      ira_reg_equiv[i].init_insns = next_elem;
3998 		    else
3999 		      XEXP (prev_elem, 1) = next_elem;
4000 		    elem = prev_elem;
4001 		  }
4002 	      }
4003 	    else if (REG_P (SET_DEST (set))
4004 		     && REGNO (SET_DEST (set)) == (unsigned int) i)
4005 	      x = SET_SRC (set);
4006 	    else
4007 	      {
4008 		gcc_assert (REG_P (SET_SRC (set))
4009 			    && REGNO (SET_SRC (set)) == (unsigned int) i);
4010 		x = SET_DEST (set);
4011 	      }
4012 	    if (! function_invariant_p (x)
4013 		|| ! flag_pic
4014 		/* A function invariant is often CONSTANT_P but may
4015 		   include a register.  We promise to only pass
4016 		   CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P.  */
4017 		|| (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
4018 	      {
4019 		/* It can happen that a REG_EQUIV note contains a MEM
4020 		   that is not a legitimate memory operand.  As later
4021 		   stages of reload assume that all addresses found in
4022 		   the lra_regno_equiv_* arrays were originally
4023 		   legitimate, we ignore such REG_EQUIV notes.  */
4024 		if (memory_operand (x, VOIDmode))
4025 		  {
4026 		    ira_reg_equiv[i].defined_p = true;
4027 		    ira_reg_equiv[i].memory = x;
4028 		    continue;
4029 		  }
4030 		else if (function_invariant_p (x))
4031 		  {
4032 		    machine_mode mode;
4033 
4034 		    mode = GET_MODE (SET_DEST (set));
4035 		    if (GET_CODE (x) == PLUS
4036 			|| x == frame_pointer_rtx || x == arg_pointer_rtx)
4037 		      /* This is PLUS of frame pointer and a constant,
4038 			 or fp, or argp.  */
4039 		      ira_reg_equiv[i].invariant = x;
4040 		    else if (targetm.legitimate_constant_p (mode, x))
4041 		      ira_reg_equiv[i].constant = x;
4042 		    else
4043 		      {
4044 			ira_reg_equiv[i].memory = force_const_mem (mode, x);
4045 			if (ira_reg_equiv[i].memory == NULL_RTX)
4046 			  {
4047 			    ira_reg_equiv[i].defined_p = false;
4048 			    ira_reg_equiv[i].init_insns = NULL;
4049 			    break;
4050 			  }
4051 		      }
4052 		    ira_reg_equiv[i].defined_p = true;
4053 		    continue;
4054 		  }
4055 	      }
4056 	  }
4057 	ira_reg_equiv[i].defined_p = false;
4058 	ira_reg_equiv[i].init_insns = NULL;
4059 	break;
4060       }
4061 }
4062 
4063 
4064 
4065 /* Print chain C to FILE.  */
4066 static void
print_insn_chain(FILE * file,class insn_chain * c)4067 print_insn_chain (FILE *file, class insn_chain *c)
4068 {
4069   fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4070   bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4071   bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4072 }
4073 
4074 
4075 /* Print all reload_insn_chains to FILE.  */
4076 static void
print_insn_chains(FILE * file)4077 print_insn_chains (FILE *file)
4078 {
4079   class insn_chain *c;
4080   for (c = reload_insn_chain; c ; c = c->next)
4081     print_insn_chain (file, c);
4082 }
4083 
4084 /* Return true if pseudo REGNO should be added to set live_throughout
4085    or dead_or_set of the insn chains for reload consideration.  */
4086 static bool
pseudo_for_reload_consideration_p(int regno)4087 pseudo_for_reload_consideration_p (int regno)
4088 {
4089   /* Consider spilled pseudos too for IRA because they still have a
4090      chance to get hard-registers in the reload when IRA is used.  */
4091   return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4092 }
4093 
4094 /* Return true if we can track the individual bytes of subreg X.
4095    When returning true, set *OUTER_SIZE to the number of bytes in
4096    X itself, *INNER_SIZE to the number of bytes in the inner register
4097    and *START to the offset of the first byte.  */
4098 static bool
get_subreg_tracking_sizes(rtx x,HOST_WIDE_INT * outer_size,HOST_WIDE_INT * inner_size,HOST_WIDE_INT * start)4099 get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4100 			   HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4101 {
4102   rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
4103   return (GET_MODE_SIZE (GET_MODE (x)).is_constant (outer_size)
4104 	  && GET_MODE_SIZE (GET_MODE (reg)).is_constant (inner_size)
4105 	  && SUBREG_BYTE (x).is_constant (start));
4106 }
4107 
4108 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4109    a register with SIZE bytes, making the register live if INIT_VALUE.  */
4110 static void
init_live_subregs(bool init_value,sbitmap * live_subregs,bitmap live_subregs_used,int allocnum,int size)4111 init_live_subregs (bool init_value, sbitmap *live_subregs,
4112 		   bitmap live_subregs_used, int allocnum, int size)
4113 {
4114   gcc_assert (size > 0);
4115 
4116   /* Been there, done that.  */
4117   if (bitmap_bit_p (live_subregs_used, allocnum))
4118     return;
4119 
4120   /* Create a new one.  */
4121   if (live_subregs[allocnum] == NULL)
4122     live_subregs[allocnum] = sbitmap_alloc (size);
4123 
4124   /* If the entire reg was live before blasting into subregs, we need
4125      to init all of the subregs to ones else init to 0.  */
4126   if (init_value)
4127     bitmap_ones (live_subregs[allocnum]);
4128   else
4129     bitmap_clear (live_subregs[allocnum]);
4130 
4131   bitmap_set_bit (live_subregs_used, allocnum);
4132 }
4133 
4134 /* Walk the insns of the current function and build reload_insn_chain,
4135    and record register life information.  */
4136 static void
build_insn_chain(void)4137 build_insn_chain (void)
4138 {
4139   unsigned int i;
4140   class insn_chain **p = &reload_insn_chain;
4141   basic_block bb;
4142   class insn_chain *c = NULL;
4143   class insn_chain *next = NULL;
4144   auto_bitmap live_relevant_regs;
4145   auto_bitmap elim_regset;
4146   /* live_subregs is a vector used to keep accurate information about
4147      which hardregs are live in multiword pseudos.  live_subregs and
4148      live_subregs_used are indexed by pseudo number.  The live_subreg
4149      entry for a particular pseudo is only used if the corresponding
4150      element is non zero in live_subregs_used.  The sbitmap size of
4151      live_subreg[allocno] is number of bytes that the pseudo can
4152      occupy.  */
4153   sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4154   auto_bitmap live_subregs_used;
4155 
4156   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4157     if (TEST_HARD_REG_BIT (eliminable_regset, i))
4158       bitmap_set_bit (elim_regset, i);
4159   FOR_EACH_BB_REVERSE_FN (bb, cfun)
4160     {
4161       bitmap_iterator bi;
4162       rtx_insn *insn;
4163 
4164       CLEAR_REG_SET (live_relevant_regs);
4165       bitmap_clear (live_subregs_used);
4166 
4167       EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4168 	{
4169 	  if (i >= FIRST_PSEUDO_REGISTER)
4170 	    break;
4171 	  bitmap_set_bit (live_relevant_regs, i);
4172 	}
4173 
4174       EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4175 				FIRST_PSEUDO_REGISTER, i, bi)
4176 	{
4177 	  if (pseudo_for_reload_consideration_p (i))
4178 	    bitmap_set_bit (live_relevant_regs, i);
4179 	}
4180 
4181       FOR_BB_INSNS_REVERSE (bb, insn)
4182 	{
4183 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
4184 	    {
4185 	      struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4186 	      df_ref def, use;
4187 
4188 	      c = new_insn_chain ();
4189 	      c->next = next;
4190 	      next = c;
4191 	      *p = c;
4192 	      p = &c->prev;
4193 
4194 	      c->insn = insn;
4195 	      c->block = bb->index;
4196 
4197 	      if (NONDEBUG_INSN_P (insn))
4198 		FOR_EACH_INSN_INFO_DEF (def, insn_info)
4199 		  {
4200 		    unsigned int regno = DF_REF_REGNO (def);
4201 
4202 		    /* Ignore may clobbers because these are generated
4203 		       from calls. However, every other kind of def is
4204 		       added to dead_or_set.  */
4205 		    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4206 		      {
4207 			if (regno < FIRST_PSEUDO_REGISTER)
4208 			  {
4209 			    if (!fixed_regs[regno])
4210 			      bitmap_set_bit (&c->dead_or_set, regno);
4211 			  }
4212 			else if (pseudo_for_reload_consideration_p (regno))
4213 			  bitmap_set_bit (&c->dead_or_set, regno);
4214 		      }
4215 
4216 		    if ((regno < FIRST_PSEUDO_REGISTER
4217 			 || reg_renumber[regno] >= 0
4218 			 || ira_conflicts_p)
4219 			&& (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4220 		      {
4221 			rtx reg = DF_REF_REG (def);
4222 			HOST_WIDE_INT outer_size, inner_size, start;
4223 
4224 			/* We can usually track the liveness of individual
4225 			   bytes within a subreg.  The only exceptions are
4226 			   subregs wrapped in ZERO_EXTRACTs and subregs whose
4227 			   size is not known; in those cases we need to be
4228 			   conservative and treat the definition as a partial
4229 			   definition of the full register rather than a full
4230 			   definition of a specific part of the register.  */
4231 			if (GET_CODE (reg) == SUBREG
4232 			    && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4233 			    && get_subreg_tracking_sizes (reg, &outer_size,
4234 							  &inner_size, &start))
4235 			  {
4236 			    HOST_WIDE_INT last = start + outer_size;
4237 
4238 			    init_live_subregs
4239 			      (bitmap_bit_p (live_relevant_regs, regno),
4240 			       live_subregs, live_subregs_used, regno,
4241 			       inner_size);
4242 
4243 			    if (!DF_REF_FLAGS_IS_SET
4244 				(def, DF_REF_STRICT_LOW_PART))
4245 			      {
4246 				/* Expand the range to cover entire words.
4247 				   Bytes added here are "don't care".  */
4248 				start
4249 				  = start / UNITS_PER_WORD * UNITS_PER_WORD;
4250 				last = ((last + UNITS_PER_WORD - 1)
4251 					/ UNITS_PER_WORD * UNITS_PER_WORD);
4252 			      }
4253 
4254 			    /* Ignore the paradoxical bits.  */
4255 			    if (last > SBITMAP_SIZE (live_subregs[regno]))
4256 			      last = SBITMAP_SIZE (live_subregs[regno]);
4257 
4258 			    while (start < last)
4259 			      {
4260 				bitmap_clear_bit (live_subregs[regno], start);
4261 				start++;
4262 			      }
4263 
4264 			    if (bitmap_empty_p (live_subregs[regno]))
4265 			      {
4266 				bitmap_clear_bit (live_subregs_used, regno);
4267 				bitmap_clear_bit (live_relevant_regs, regno);
4268 			      }
4269 			    else
4270 			      /* Set live_relevant_regs here because
4271 				 that bit has to be true to get us to
4272 				 look at the live_subregs fields.  */
4273 			      bitmap_set_bit (live_relevant_regs, regno);
4274 			  }
4275 			else
4276 			  {
4277 			    /* DF_REF_PARTIAL is generated for
4278 			       subregs, STRICT_LOW_PART, and
4279 			       ZERO_EXTRACT.  We handle the subreg
4280 			       case above so here we have to keep from
4281 			       modeling the def as a killing def.  */
4282 			    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4283 			      {
4284 				bitmap_clear_bit (live_subregs_used, regno);
4285 				bitmap_clear_bit (live_relevant_regs, regno);
4286 			      }
4287 			  }
4288 		      }
4289 		  }
4290 
4291 	      bitmap_and_compl_into (live_relevant_regs, elim_regset);
4292 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
4293 
4294 	      if (NONDEBUG_INSN_P (insn))
4295 		FOR_EACH_INSN_INFO_USE (use, insn_info)
4296 		  {
4297 		    unsigned int regno = DF_REF_REGNO (use);
4298 		    rtx reg = DF_REF_REG (use);
4299 
4300 		    /* DF_REF_READ_WRITE on a use means that this use
4301 		       is fabricated from a def that is a partial set
4302 		       to a multiword reg.  Here, we only model the
4303 		       subreg case that is not wrapped in ZERO_EXTRACT
4304 		       precisely so we do not need to look at the
4305 		       fabricated use.  */
4306 		    if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4307 			&& !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4308 			&& DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4309 		      continue;
4310 
4311 		    /* Add the last use of each var to dead_or_set.  */
4312 		    if (!bitmap_bit_p (live_relevant_regs, regno))
4313 		      {
4314 			if (regno < FIRST_PSEUDO_REGISTER)
4315 			  {
4316 			    if (!fixed_regs[regno])
4317 			      bitmap_set_bit (&c->dead_or_set, regno);
4318 			  }
4319 			else if (pseudo_for_reload_consideration_p (regno))
4320 			  bitmap_set_bit (&c->dead_or_set, regno);
4321 		      }
4322 
4323 		    if (regno < FIRST_PSEUDO_REGISTER
4324 			|| pseudo_for_reload_consideration_p (regno))
4325 		      {
4326 			HOST_WIDE_INT outer_size, inner_size, start;
4327 			if (GET_CODE (reg) == SUBREG
4328 			    && !DF_REF_FLAGS_IS_SET (use,
4329 						     DF_REF_SIGN_EXTRACT
4330 						     | DF_REF_ZERO_EXTRACT)
4331 			    && get_subreg_tracking_sizes (reg, &outer_size,
4332 							  &inner_size, &start))
4333 			  {
4334 			    HOST_WIDE_INT last = start + outer_size;
4335 
4336 			    init_live_subregs
4337 			      (bitmap_bit_p (live_relevant_regs, regno),
4338 			       live_subregs, live_subregs_used, regno,
4339 			       inner_size);
4340 
4341 			    /* Ignore the paradoxical bits.  */
4342 			    if (last > SBITMAP_SIZE (live_subregs[regno]))
4343 			      last = SBITMAP_SIZE (live_subregs[regno]);
4344 
4345 			    while (start < last)
4346 			      {
4347 				bitmap_set_bit (live_subregs[regno], start);
4348 				start++;
4349 			      }
4350 			  }
4351 			else
4352 			  /* Resetting the live_subregs_used is
4353 			     effectively saying do not use the subregs
4354 			     because we are reading the whole
4355 			     pseudo.  */
4356 			  bitmap_clear_bit (live_subregs_used, regno);
4357 			bitmap_set_bit (live_relevant_regs, regno);
4358 		      }
4359 		  }
4360 	    }
4361 	}
4362 
4363       /* FIXME!! The following code is a disaster.  Reload needs to see the
4364 	 labels and jump tables that are just hanging out in between
4365 	 the basic blocks.  See pr33676.  */
4366       insn = BB_HEAD (bb);
4367 
4368       /* Skip over the barriers and cruft.  */
4369       while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4370 		      || BLOCK_FOR_INSN (insn) == bb))
4371 	insn = PREV_INSN (insn);
4372 
4373       /* While we add anything except barriers and notes, the focus is
4374 	 to get the labels and jump tables into the
4375 	 reload_insn_chain.  */
4376       while (insn)
4377 	{
4378 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
4379 	    {
4380 	      if (BLOCK_FOR_INSN (insn))
4381 		break;
4382 
4383 	      c = new_insn_chain ();
4384 	      c->next = next;
4385 	      next = c;
4386 	      *p = c;
4387 	      p = &c->prev;
4388 
4389 	      /* The block makes no sense here, but it is what the old
4390 		 code did.  */
4391 	      c->block = bb->index;
4392 	      c->insn = insn;
4393 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
4394 	    }
4395 	  insn = PREV_INSN (insn);
4396 	}
4397     }
4398 
4399   reload_insn_chain = c;
4400   *p = NULL;
4401 
4402   for (i = 0; i < (unsigned int) max_regno; i++)
4403     if (live_subregs[i] != NULL)
4404       sbitmap_free (live_subregs[i]);
4405   free (live_subregs);
4406 
4407   if (dump_file)
4408     print_insn_chains (dump_file);
4409 }
4410 
4411 /* Examine the rtx found in *LOC, which is read or written to as determined
4412    by TYPE.  Return false if we find a reason why an insn containing this
4413    rtx should not be moved (such as accesses to non-constant memory), true
4414    otherwise.  */
4415 static bool
rtx_moveable_p(rtx * loc,enum op_type type)4416 rtx_moveable_p (rtx *loc, enum op_type type)
4417 {
4418   const char *fmt;
4419   rtx x = *loc;
4420   int i, j;
4421 
4422   enum rtx_code code = GET_CODE (x);
4423   switch (code)
4424     {
4425     case CONST:
4426     CASE_CONST_ANY:
4427     case SYMBOL_REF:
4428     case LABEL_REF:
4429       return true;
4430 
4431     case PC:
4432       return type == OP_IN;
4433 
4434     case CC0:
4435       return false;
4436 
4437     case REG:
4438       if (x == frame_pointer_rtx)
4439 	return true;
4440       if (HARD_REGISTER_P (x))
4441 	return false;
4442 
4443       return true;
4444 
4445     case MEM:
4446       if (type == OP_IN && MEM_READONLY_P (x))
4447 	return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4448       return false;
4449 
4450     case SET:
4451       return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4452 	      && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4453 
4454     case STRICT_LOW_PART:
4455       return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4456 
4457     case ZERO_EXTRACT:
4458     case SIGN_EXTRACT:
4459       return (rtx_moveable_p (&XEXP (x, 0), type)
4460 	      && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4461 	      && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4462 
4463     case CLOBBER:
4464       return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4465 
4466     case UNSPEC_VOLATILE:
4467       /* It is a bad idea to consider insns with such rtl
4468 	 as moveable ones.  The insn scheduler also considers them as barrier
4469 	 for a reason.  */
4470       return false;
4471 
4472     case ASM_OPERANDS:
4473       /* The same is true for volatile asm: it has unknown side effects, it
4474          cannot be moved at will.  */
4475       if (MEM_VOLATILE_P (x))
4476 	return false;
4477 
4478     default:
4479       break;
4480     }
4481 
4482   fmt = GET_RTX_FORMAT (code);
4483   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4484     {
4485       if (fmt[i] == 'e')
4486 	{
4487 	  if (!rtx_moveable_p (&XEXP (x, i), type))
4488 	    return false;
4489 	}
4490       else if (fmt[i] == 'E')
4491 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4492 	  {
4493 	    if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4494 	      return false;
4495 	  }
4496     }
4497   return true;
4498 }
4499 
4500 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4501    to give dominance relationships between two insns I1 and I2.  */
4502 static bool
insn_dominated_by_p(rtx i1,rtx i2,int * uid_luid)4503 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4504 {
4505   basic_block bb1 = BLOCK_FOR_INSN (i1);
4506   basic_block bb2 = BLOCK_FOR_INSN (i2);
4507 
4508   if (bb1 == bb2)
4509     return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4510   return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4511 }
4512 
4513 /* Record the range of register numbers added by find_moveable_pseudos.  */
4514 int first_moveable_pseudo, last_moveable_pseudo;
4515 
4516 /* These two vectors hold data for every register added by
4517    find_movable_pseudos, with index 0 holding data for the
4518    first_moveable_pseudo.  */
4519 /* The original home register.  */
4520 static vec<rtx> pseudo_replaced_reg;
4521 
4522 /* Look for instances where we have an instruction that is known to increase
4523    register pressure, and whose result is not used immediately.  If it is
4524    possible to move the instruction downwards to just before its first use,
4525    split its lifetime into two ranges.  We create a new pseudo to compute the
4526    value, and emit a move instruction just before the first use.  If, after
4527    register allocation, the new pseudo remains unallocated, the function
4528    move_unallocated_pseudos then deletes the move instruction and places
4529    the computation just before the first use.
4530 
4531    Such a move is safe and profitable if all the input registers remain live
4532    and unchanged between the original computation and its first use.  In such
4533    a situation, the computation is known to increase register pressure, and
4534    moving it is known to at least not worsen it.
4535 
4536    We restrict moves to only those cases where a register remains unallocated,
4537    in order to avoid interfering too much with the instruction schedule.  As
4538    an exception, we may move insns which only modify their input register
4539    (typically induction variables), as this increases the freedom for our
4540    intended transformation, and does not limit the second instruction
4541    scheduler pass.  */
4542 
4543 static void
find_moveable_pseudos(void)4544 find_moveable_pseudos (void)
4545 {
4546   unsigned i;
4547   int max_regs = max_reg_num ();
4548   int max_uid = get_max_uid ();
4549   basic_block bb;
4550   int *uid_luid = XNEWVEC (int, max_uid);
4551   rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4552   /* A set of registers which are live but not modified throughout a block.  */
4553   bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4554 					 last_basic_block_for_fn (cfun));
4555   /* A set of registers which only exist in a given basic block.  */
4556   bitmap_head *bb_local = XNEWVEC (bitmap_head,
4557 				   last_basic_block_for_fn (cfun));
4558   /* A set of registers which are set once, in an instruction that can be
4559      moved freely downwards, but are otherwise transparent to a block.  */
4560   bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4561 					       last_basic_block_for_fn (cfun));
4562   auto_bitmap live, used, set, interesting, unusable_as_input;
4563   bitmap_iterator bi;
4564 
4565   first_moveable_pseudo = max_regs;
4566   pseudo_replaced_reg.release ();
4567   pseudo_replaced_reg.safe_grow_cleared (max_regs);
4568 
4569   df_analyze ();
4570   calculate_dominance_info (CDI_DOMINATORS);
4571 
4572   i = 0;
4573   FOR_EACH_BB_FN (bb, cfun)
4574     {
4575       rtx_insn *insn;
4576       bitmap transp = bb_transp_live + bb->index;
4577       bitmap moveable = bb_moveable_reg_sets + bb->index;
4578       bitmap local = bb_local + bb->index;
4579 
4580       bitmap_initialize (local, 0);
4581       bitmap_initialize (transp, 0);
4582       bitmap_initialize (moveable, 0);
4583       bitmap_copy (live, df_get_live_out (bb));
4584       bitmap_and_into (live, df_get_live_in (bb));
4585       bitmap_copy (transp, live);
4586       bitmap_clear (moveable);
4587       bitmap_clear (live);
4588       bitmap_clear (used);
4589       bitmap_clear (set);
4590       FOR_BB_INSNS (bb, insn)
4591 	if (NONDEBUG_INSN_P (insn))
4592 	  {
4593 	    df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4594 	    df_ref def, use;
4595 
4596 	    uid_luid[INSN_UID (insn)] = i++;
4597 
4598 	    def = df_single_def (insn_info);
4599 	    use = df_single_use (insn_info);
4600 	    if (use
4601 		&& def
4602 		&& DF_REF_REGNO (use) == DF_REF_REGNO (def)
4603 		&& !bitmap_bit_p (set, DF_REF_REGNO (use))
4604 		&& rtx_moveable_p (&PATTERN (insn), OP_IN))
4605 	      {
4606 		unsigned regno = DF_REF_REGNO (use);
4607 		bitmap_set_bit (moveable, regno);
4608 		bitmap_set_bit (set, regno);
4609 		bitmap_set_bit (used, regno);
4610 		bitmap_clear_bit (transp, regno);
4611 		continue;
4612 	      }
4613 	    FOR_EACH_INSN_INFO_USE (use, insn_info)
4614 	      {
4615 		unsigned regno = DF_REF_REGNO (use);
4616 		bitmap_set_bit (used, regno);
4617 		if (bitmap_clear_bit (moveable, regno))
4618 		  bitmap_clear_bit (transp, regno);
4619 	      }
4620 
4621 	    FOR_EACH_INSN_INFO_DEF (def, insn_info)
4622 	      {
4623 		unsigned regno = DF_REF_REGNO (def);
4624 		bitmap_set_bit (set, regno);
4625 		bitmap_clear_bit (transp, regno);
4626 		bitmap_clear_bit (moveable, regno);
4627 	      }
4628 	  }
4629     }
4630 
4631   FOR_EACH_BB_FN (bb, cfun)
4632     {
4633       bitmap local = bb_local + bb->index;
4634       rtx_insn *insn;
4635 
4636       FOR_BB_INSNS (bb, insn)
4637 	if (NONDEBUG_INSN_P (insn))
4638 	  {
4639 	    df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4640 	    rtx_insn *def_insn;
4641 	    rtx closest_use, note;
4642 	    df_ref def, use;
4643 	    unsigned regno;
4644 	    bool all_dominated, all_local;
4645 	    machine_mode mode;
4646 
4647 	    def = df_single_def (insn_info);
4648 	    /* There must be exactly one def in this insn.  */
4649 	    if (!def || !single_set (insn))
4650 	      continue;
4651 	    /* This must be the only definition of the reg.  We also limit
4652 	       which modes we deal with so that we can assume we can generate
4653 	       move instructions.  */
4654 	    regno = DF_REF_REGNO (def);
4655 	    mode = GET_MODE (DF_REF_REG (def));
4656 	    if (DF_REG_DEF_COUNT (regno) != 1
4657 		|| !DF_REF_INSN_INFO (def)
4658 		|| HARD_REGISTER_NUM_P (regno)
4659 		|| DF_REG_EQ_USE_COUNT (regno) > 0
4660 		|| (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4661 	      continue;
4662 	    def_insn = DF_REF_INSN (def);
4663 
4664 	    for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4665 	      if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4666 		break;
4667 
4668 	    if (note)
4669 	      {
4670 		if (dump_file)
4671 		  fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4672 			   regno);
4673 		bitmap_set_bit (unusable_as_input, regno);
4674 		continue;
4675 	      }
4676 
4677 	    use = DF_REG_USE_CHAIN (regno);
4678 	    all_dominated = true;
4679 	    all_local = true;
4680 	    closest_use = NULL_RTX;
4681 	    for (; use; use = DF_REF_NEXT_REG (use))
4682 	      {
4683 		rtx_insn *insn;
4684 		if (!DF_REF_INSN_INFO (use))
4685 		  {
4686 		    all_dominated = false;
4687 		    all_local = false;
4688 		    break;
4689 		  }
4690 		insn = DF_REF_INSN (use);
4691 		if (DEBUG_INSN_P (insn))
4692 		  continue;
4693 		if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4694 		  all_local = false;
4695 		if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4696 		  all_dominated = false;
4697 		if (closest_use != insn && closest_use != const0_rtx)
4698 		  {
4699 		    if (closest_use == NULL_RTX)
4700 		      closest_use = insn;
4701 		    else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4702 		      closest_use = insn;
4703 		    else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4704 		      closest_use = const0_rtx;
4705 		  }
4706 	      }
4707 	    if (!all_dominated)
4708 	      {
4709 		if (dump_file)
4710 		  fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4711 			   regno);
4712 		continue;
4713 	      }
4714 	    if (all_local)
4715 	      bitmap_set_bit (local, regno);
4716 	    if (closest_use == const0_rtx || closest_use == NULL
4717 		|| next_nonnote_nondebug_insn (def_insn) == closest_use)
4718 	      {
4719 		if (dump_file)
4720 		  fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4721 			   closest_use == const0_rtx || closest_use == NULL
4722 			   ? " (no unique first use)" : "");
4723 		continue;
4724 	      }
4725 	    if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4726 	      {
4727 		if (dump_file)
4728 		  fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4729 			   regno);
4730 		continue;
4731 	      }
4732 
4733 	    bitmap_set_bit (interesting, regno);
4734 	    /* If we get here, we know closest_use is a non-NULL insn
4735 	       (as opposed to const_0_rtx).  */
4736 	    closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4737 
4738 	    if (dump_file && (all_local || all_dominated))
4739 	      {
4740 		fprintf (dump_file, "Reg %u:", regno);
4741 		if (all_local)
4742 		  fprintf (dump_file, " local to bb %d", bb->index);
4743 		if (all_dominated)
4744 		  fprintf (dump_file, " def dominates all uses");
4745 		if (closest_use != const0_rtx)
4746 		  fprintf (dump_file, " has unique first use");
4747 		fputs ("\n", dump_file);
4748 	      }
4749 	  }
4750     }
4751 
4752   EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
4753     {
4754       df_ref def = DF_REG_DEF_CHAIN (i);
4755       rtx_insn *def_insn = DF_REF_INSN (def);
4756       basic_block def_block = BLOCK_FOR_INSN (def_insn);
4757       bitmap def_bb_local = bb_local + def_block->index;
4758       bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4759       bitmap def_bb_transp = bb_transp_live + def_block->index;
4760       bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4761       rtx_insn *use_insn = closest_uses[i];
4762       df_ref use;
4763       bool all_ok = true;
4764       bool all_transp = true;
4765 
4766       if (!REG_P (DF_REF_REG (def)))
4767 	continue;
4768 
4769       if (!local_to_bb_p)
4770 	{
4771 	  if (dump_file)
4772 	    fprintf (dump_file, "Reg %u not local to one basic block\n",
4773 		     i);
4774 	  continue;
4775 	}
4776       if (reg_equiv_init (i) != NULL_RTX)
4777 	{
4778 	  if (dump_file)
4779 	    fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4780 		     i);
4781 	  continue;
4782 	}
4783       if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4784 	{
4785 	  if (dump_file)
4786 	    fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4787 		     INSN_UID (def_insn), i);
4788 	  continue;
4789 	}
4790       if (dump_file)
4791 	fprintf (dump_file, "Examining insn %d, def for %d\n",
4792 		 INSN_UID (def_insn), i);
4793       FOR_EACH_INSN_USE (use, def_insn)
4794 	{
4795 	  unsigned regno = DF_REF_REGNO (use);
4796 	  if (bitmap_bit_p (unusable_as_input, regno))
4797 	    {
4798 	      all_ok = false;
4799 	      if (dump_file)
4800 		fprintf (dump_file, "  found unusable input reg %u.\n", regno);
4801 	      break;
4802 	    }
4803 	  if (!bitmap_bit_p (def_bb_transp, regno))
4804 	    {
4805 	      if (bitmap_bit_p (def_bb_moveable, regno)
4806 		  && !control_flow_insn_p (use_insn)
4807 		  && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4808 		{
4809 		  if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4810 		    {
4811 		      rtx_insn *x = NEXT_INSN (def_insn);
4812 		      while (!modified_in_p (DF_REF_REG (use), x))
4813 			{
4814 			  gcc_assert (x != use_insn);
4815 			  x = NEXT_INSN (x);
4816 			}
4817 		      if (dump_file)
4818 			fprintf (dump_file, "  input reg %u modified but insn %d moveable\n",
4819 				 regno, INSN_UID (x));
4820 		      emit_insn_after (PATTERN (x), use_insn);
4821 		      set_insn_deleted (x);
4822 		    }
4823 		  else
4824 		    {
4825 		      if (dump_file)
4826 			fprintf (dump_file, "  input reg %u modified between def and use\n",
4827 				 regno);
4828 		      all_transp = false;
4829 		    }
4830 		}
4831 	      else
4832 		all_transp = false;
4833 	    }
4834 	}
4835       if (!all_ok)
4836 	continue;
4837       if (!dbg_cnt (ira_move))
4838 	break;
4839       if (dump_file)
4840 	fprintf (dump_file, "  all ok%s\n", all_transp ? " and transp" : "");
4841 
4842       if (all_transp)
4843 	{
4844 	  rtx def_reg = DF_REF_REG (def);
4845 	  rtx newreg = ira_create_new_reg (def_reg);
4846 	  if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4847 	    {
4848 	      unsigned nregno = REGNO (newreg);
4849 	      emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4850 	      nregno -= max_regs;
4851 	      pseudo_replaced_reg[nregno] = def_reg;
4852 	    }
4853 	}
4854     }
4855 
4856   FOR_EACH_BB_FN (bb, cfun)
4857     {
4858       bitmap_clear (bb_local + bb->index);
4859       bitmap_clear (bb_transp_live + bb->index);
4860       bitmap_clear (bb_moveable_reg_sets + bb->index);
4861     }
4862   free (uid_luid);
4863   free (closest_uses);
4864   free (bb_local);
4865   free (bb_transp_live);
4866   free (bb_moveable_reg_sets);
4867 
4868   last_moveable_pseudo = max_reg_num ();
4869 
4870   fix_reg_equiv_init ();
4871   expand_reg_info ();
4872   regstat_free_n_sets_and_refs ();
4873   regstat_free_ri ();
4874   regstat_init_n_sets_and_refs ();
4875   regstat_compute_ri ();
4876   free_dominance_info (CDI_DOMINATORS);
4877 }
4878 
4879 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4880    is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4881    the destination.  Otherwise return NULL.  */
4882 
4883 static rtx
interesting_dest_for_shprep_1(rtx set,basic_block call_dom)4884 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4885 {
4886   rtx src = SET_SRC (set);
4887   rtx dest = SET_DEST (set);
4888   if (!REG_P (src) || !HARD_REGISTER_P (src)
4889       || !REG_P (dest) || HARD_REGISTER_P (dest)
4890       || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4891     return NULL;
4892   return dest;
4893 }
4894 
4895 /* If insn is interesting for parameter range-splitting shrink-wrapping
4896    preparation, i.e. it is a single set from a hard register to a pseudo, which
4897    is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4898    parallel statement with only one such statement, return the destination.
4899    Otherwise return NULL.  */
4900 
4901 static rtx
interesting_dest_for_shprep(rtx_insn * insn,basic_block call_dom)4902 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4903 {
4904   if (!INSN_P (insn))
4905     return NULL;
4906   rtx pat = PATTERN (insn);
4907   if (GET_CODE (pat) == SET)
4908     return interesting_dest_for_shprep_1 (pat, call_dom);
4909 
4910   if (GET_CODE (pat) != PARALLEL)
4911     return NULL;
4912   rtx ret = NULL;
4913   for (int i = 0; i < XVECLEN (pat, 0); i++)
4914     {
4915       rtx sub = XVECEXP (pat, 0, i);
4916       if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4917 	continue;
4918       if (GET_CODE (sub) != SET
4919 	  || side_effects_p (sub))
4920 	return NULL;
4921       rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4922       if (dest && ret)
4923 	return NULL;
4924       if (dest)
4925 	ret = dest;
4926     }
4927   return ret;
4928 }
4929 
4930 /* Split live ranges of pseudos that are loaded from hard registers in the
4931    first BB in a BB that dominates all non-sibling call if such a BB can be
4932    found and is not in a loop.  Return true if the function has made any
4933    changes.  */
4934 
4935 static bool
split_live_ranges_for_shrink_wrap(void)4936 split_live_ranges_for_shrink_wrap (void)
4937 {
4938   basic_block bb, call_dom = NULL;
4939   basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4940   rtx_insn *insn, *last_interesting_insn = NULL;
4941   auto_bitmap need_new, reachable;
4942   vec<basic_block> queue;
4943 
4944   if (!SHRINK_WRAPPING_ENABLED)
4945     return false;
4946 
4947   queue.create (n_basic_blocks_for_fn (cfun));
4948 
4949   FOR_EACH_BB_FN (bb, cfun)
4950     FOR_BB_INSNS (bb, insn)
4951       if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4952 	{
4953 	  if (bb == first)
4954 	    {
4955 	      queue.release ();
4956 	      return false;
4957 	    }
4958 
4959 	  bitmap_set_bit (need_new, bb->index);
4960 	  bitmap_set_bit (reachable, bb->index);
4961 	  queue.quick_push (bb);
4962 	  break;
4963 	}
4964 
4965   if (queue.is_empty ())
4966     {
4967       queue.release ();
4968       return false;
4969     }
4970 
4971   while (!queue.is_empty ())
4972     {
4973       edge e;
4974       edge_iterator ei;
4975 
4976       bb = queue.pop ();
4977       FOR_EACH_EDGE (e, ei, bb->succs)
4978 	if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4979 	    && bitmap_set_bit (reachable, e->dest->index))
4980 	  queue.quick_push (e->dest);
4981     }
4982   queue.release ();
4983 
4984   FOR_BB_INSNS (first, insn)
4985     {
4986       rtx dest = interesting_dest_for_shprep (insn, NULL);
4987       if (!dest)
4988 	continue;
4989 
4990       if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4991 	return false;
4992 
4993       for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4994 	   use;
4995 	   use = DF_REF_NEXT_REG (use))
4996 	{
4997 	  int ubbi = DF_REF_BB (use)->index;
4998 	  if (bitmap_bit_p (reachable, ubbi))
4999 	    bitmap_set_bit (need_new, ubbi);
5000 	}
5001       last_interesting_insn = insn;
5002     }
5003 
5004   if (!last_interesting_insn)
5005     return false;
5006 
5007   call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
5008   if (call_dom == first)
5009     return false;
5010 
5011   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5012   while (bb_loop_depth (call_dom) > 0)
5013     call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
5014   loop_optimizer_finalize ();
5015 
5016   if (call_dom == first)
5017     return false;
5018 
5019   calculate_dominance_info (CDI_POST_DOMINATORS);
5020   if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
5021     {
5022       free_dominance_info (CDI_POST_DOMINATORS);
5023       return false;
5024     }
5025   free_dominance_info (CDI_POST_DOMINATORS);
5026 
5027   if (dump_file)
5028     fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
5029 	     call_dom->index);
5030 
5031   bool ret = false;
5032   FOR_BB_INSNS (first, insn)
5033     {
5034       rtx dest = interesting_dest_for_shprep (insn, call_dom);
5035       if (!dest || dest == pic_offset_table_rtx)
5036 	continue;
5037 
5038       bool need_newreg = false;
5039       df_ref use, next;
5040       for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5041 	{
5042 	  rtx_insn *uin = DF_REF_INSN (use);
5043 	  next = DF_REF_NEXT_REG (use);
5044 
5045 	  if (DEBUG_INSN_P (uin))
5046 	    continue;
5047 
5048 	  basic_block ubb = BLOCK_FOR_INSN (uin);
5049 	  if (ubb == call_dom
5050 	      || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5051 	    {
5052 	      need_newreg = true;
5053 	      break;
5054 	    }
5055 	}
5056 
5057       if (need_newreg)
5058 	{
5059 	  rtx newreg = ira_create_new_reg (dest);
5060 
5061 	  for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5062 	    {
5063 	      rtx_insn *uin = DF_REF_INSN (use);
5064 	      next = DF_REF_NEXT_REG (use);
5065 
5066 	      basic_block ubb = BLOCK_FOR_INSN (uin);
5067 	      if (ubb == call_dom
5068 		  || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5069 		validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5070 	    }
5071 
5072 	  rtx_insn *new_move = gen_move_insn (newreg, dest);
5073 	  emit_insn_after (new_move, bb_note (call_dom));
5074 	  if (dump_file)
5075 	    {
5076 	      fprintf (dump_file, "Split live-range of register ");
5077 	      print_rtl_single (dump_file, dest);
5078 	    }
5079 	  ret = true;
5080 	}
5081 
5082       if (insn == last_interesting_insn)
5083 	break;
5084     }
5085   apply_change_group ();
5086   return ret;
5087 }
5088 
5089 /* Perform the second half of the transformation started in
5090    find_moveable_pseudos.  We look for instances where the newly introduced
5091    pseudo remains unallocated, and remove it by moving the definition to
5092    just before its use, replacing the move instruction generated by
5093    find_moveable_pseudos.  */
5094 static void
move_unallocated_pseudos(void)5095 move_unallocated_pseudos (void)
5096 {
5097   int i;
5098   for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5099     if (reg_renumber[i] < 0)
5100       {
5101 	int idx = i - first_moveable_pseudo;
5102 	rtx other_reg = pseudo_replaced_reg[idx];
5103 	rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5104 	/* The use must follow all definitions of OTHER_REG, so we can
5105 	   insert the new definition immediately after any of them.  */
5106 	df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5107 	rtx_insn *move_insn = DF_REF_INSN (other_def);
5108 	rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5109 	rtx set;
5110 	int success;
5111 
5112 	if (dump_file)
5113 	  fprintf (dump_file, "moving def of %d (insn %d now) ",
5114 		   REGNO (other_reg), INSN_UID (def_insn));
5115 
5116 	delete_insn (move_insn);
5117 	while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5118 	  delete_insn (DF_REF_INSN (other_def));
5119 	delete_insn (def_insn);
5120 
5121 	set = single_set (newinsn);
5122 	success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5123 	gcc_assert (success);
5124 	if (dump_file)
5125 	  fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5126 		   INSN_UID (newinsn), i);
5127 	SET_REG_N_REFS (i, 0);
5128       }
5129 }
5130 
5131 /* If the backend knows where to allocate pseudos for hard
5132    register initial values, register these allocations now.  */
5133 static void
allocate_initial_values(void)5134 allocate_initial_values (void)
5135 {
5136   if (targetm.allocate_initial_value)
5137     {
5138       rtx hreg, preg, x;
5139       int i, regno;
5140 
5141       for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5142 	{
5143 	  if (! initial_value_entry (i, &hreg, &preg))
5144 	    break;
5145 
5146 	  x = targetm.allocate_initial_value (hreg);
5147 	  regno = REGNO (preg);
5148 	  if (x && REG_N_SETS (regno) <= 1)
5149 	    {
5150 	      if (MEM_P (x))
5151 		reg_equiv_memory_loc (regno) = x;
5152 	      else
5153 		{
5154 		  basic_block bb;
5155 		  int new_regno;
5156 
5157 		  gcc_assert (REG_P (x));
5158 		  new_regno = REGNO (x);
5159 		  reg_renumber[regno] = new_regno;
5160 		  /* Poke the regno right into regno_reg_rtx so that even
5161 		     fixed regs are accepted.  */
5162 		  SET_REGNO (preg, new_regno);
5163 		  /* Update global register liveness information.  */
5164 		  FOR_EACH_BB_FN (bb, cfun)
5165 		    {
5166 		      if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5167 			SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5168 		      if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5169 			SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5170 		    }
5171 		}
5172 	    }
5173 	}
5174 
5175       gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5176 						  &hreg, &preg));
5177     }
5178 }
5179 
5180 
5181 /* True when we use LRA instead of reload pass for the current
5182    function.  */
5183 bool ira_use_lra_p;
5184 
5185 /* True if we have allocno conflicts.  It is false for non-optimized
5186    mode or when the conflict table is too big.  */
5187 bool ira_conflicts_p;
5188 
5189 /* Saved between IRA and reload.  */
5190 static int saved_flag_ira_share_spill_slots;
5191 
5192 /* This is the main entry of IRA.  */
5193 static void
ira(FILE * f)5194 ira (FILE *f)
5195 {
5196   bool loops_p;
5197   int ira_max_point_before_emit;
5198   bool saved_flag_caller_saves = flag_caller_saves;
5199   enum ira_region saved_flag_ira_region = flag_ira_region;
5200 
5201   clear_bb_flags ();
5202 
5203   /* Determine if the current function is a leaf before running IRA
5204      since this can impact optimizations done by the prologue and
5205      epilogue thus changing register elimination offsets.
5206      Other target callbacks may use crtl->is_leaf too, including
5207      SHRINK_WRAPPING_ENABLED, so initialize as early as possible.  */
5208   crtl->is_leaf = leaf_function_p ();
5209 
5210   /* Perform target specific PIC register initialization.  */
5211   targetm.init_pic_reg ();
5212 
5213   ira_conflicts_p = optimize > 0;
5214 
5215   /* Determine the number of pseudos actually requiring coloring.  */
5216   unsigned int num_used_regs = 0;
5217   for (unsigned int i = FIRST_PSEUDO_REGISTER; i < DF_REG_SIZE (df); i++)
5218     if (DF_REG_DEF_COUNT (i) || DF_REG_USE_COUNT (i))
5219       num_used_regs++;
5220 
5221   /* If there are too many pseudos and/or basic blocks (e.g. 10K
5222      pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5223      use simplified and faster algorithms in LRA.  */
5224   lra_simple_p
5225     = ira_use_lra_p
5226       && num_used_regs >= (1U << 26) / last_basic_block_for_fn (cfun);
5227 
5228   if (lra_simple_p)
5229     {
5230       /* It permits to skip live range splitting in LRA.  */
5231       flag_caller_saves = false;
5232       /* There is no sense to do regional allocation when we use
5233 	simplified LRA.  */
5234       flag_ira_region = IRA_REGION_ONE;
5235       ira_conflicts_p = false;
5236     }
5237 
5238 #ifndef IRA_NO_OBSTACK
5239   gcc_obstack_init (&ira_obstack);
5240 #endif
5241   bitmap_obstack_initialize (&ira_bitmap_obstack);
5242 
5243   /* LRA uses its own infrastructure to handle caller save registers.  */
5244   if (flag_caller_saves && !ira_use_lra_p)
5245     init_caller_save ();
5246 
5247   if (flag_ira_verbose < 10)
5248     {
5249       internal_flag_ira_verbose = flag_ira_verbose;
5250       ira_dump_file = f;
5251     }
5252   else
5253     {
5254       internal_flag_ira_verbose = flag_ira_verbose - 10;
5255       ira_dump_file = stderr;
5256     }
5257 
5258   setup_prohibited_mode_move_regs ();
5259   decrease_live_ranges_number ();
5260   df_note_add_problem ();
5261 
5262   /* DF_LIVE can't be used in the register allocator, too many other
5263      parts of the compiler depend on using the "classic" liveness
5264      interpretation of the DF_LR problem.  See PR38711.
5265      Remove the problem, so that we don't spend time updating it in
5266      any of the df_analyze() calls during IRA/LRA.  */
5267   if (optimize > 1)
5268     df_remove_problem (df_live);
5269   gcc_checking_assert (df_live == NULL);
5270 
5271   if (flag_checking)
5272     df->changeable_flags |= DF_VERIFY_SCHEDULED;
5273 
5274   df_analyze ();
5275 
5276   init_reg_equiv ();
5277   if (ira_conflicts_p)
5278     {
5279       calculate_dominance_info (CDI_DOMINATORS);
5280 
5281       if (split_live_ranges_for_shrink_wrap ())
5282 	df_analyze ();
5283 
5284       free_dominance_info (CDI_DOMINATORS);
5285     }
5286 
5287   df_clear_flags (DF_NO_INSN_RESCAN);
5288 
5289   indirect_jump_optimize ();
5290   if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5291     df_analyze ();
5292 
5293   regstat_init_n_sets_and_refs ();
5294   regstat_compute_ri ();
5295 
5296   /* If we are not optimizing, then this is the only place before
5297      register allocation where dataflow is done.  And that is needed
5298      to generate these warnings.  */
5299   if (warn_clobbered)
5300     generate_setjmp_warnings ();
5301 
5302   if (resize_reg_info () && flag_ira_loop_pressure)
5303     ira_set_pseudo_classes (true, ira_dump_file);
5304 
5305   init_alias_analysis ();
5306   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5307   reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5308   update_equiv_regs_prescan ();
5309   update_equiv_regs ();
5310 
5311   /* Don't move insns if live range shrinkage or register
5312      pressure-sensitive scheduling were done because it will not
5313      improve allocation but likely worsen insn scheduling.  */
5314   if (optimize
5315       && !flag_live_range_shrinkage
5316       && !(flag_sched_pressure && flag_schedule_insns))
5317     combine_and_move_insns ();
5318 
5319   /* Gather additional equivalences with memory.  */
5320   if (optimize)
5321     add_store_equivs ();
5322 
5323   loop_optimizer_finalize ();
5324   free_dominance_info (CDI_DOMINATORS);
5325   end_alias_analysis ();
5326   free (reg_equiv);
5327 
5328   setup_reg_equiv ();
5329   grow_reg_equivs ();
5330   setup_reg_equiv_init ();
5331 
5332   allocated_reg_info_size = max_reg_num ();
5333 
5334   /* It is not worth to do such improvement when we use a simple
5335      allocation because of -O0 usage or because the function is too
5336      big.  */
5337   if (ira_conflicts_p)
5338     find_moveable_pseudos ();
5339 
5340   max_regno_before_ira = max_reg_num ();
5341   ira_setup_eliminable_regset ();
5342 
5343   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5344   ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5345   ira_move_loops_num = ira_additional_jumps_num = 0;
5346 
5347   ira_assert (current_loops == NULL);
5348   if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5349     loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5350 
5351   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5352     fprintf (ira_dump_file, "Building IRA IR\n");
5353   loops_p = ira_build ();
5354 
5355   ira_assert (ira_conflicts_p || !loops_p);
5356 
5357   saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5358   if (too_high_register_pressure_p () || cfun->calls_setjmp)
5359     /* It is just wasting compiler's time to pack spilled pseudos into
5360        stack slots in this case -- prohibit it.  We also do this if
5361        there is setjmp call because a variable not modified between
5362        setjmp and longjmp the compiler is required to preserve its
5363        value and sharing slots does not guarantee it.  */
5364     flag_ira_share_spill_slots = FALSE;
5365 
5366   ira_color ();
5367 
5368   ira_max_point_before_emit = ira_max_point;
5369 
5370   ira_initiate_emit_data ();
5371 
5372   ira_emit (loops_p);
5373 
5374   max_regno = max_reg_num ();
5375   if (ira_conflicts_p)
5376     {
5377       if (! loops_p)
5378 	{
5379 	  if (! ira_use_lra_p)
5380 	    ira_initiate_assign ();
5381 	}
5382       else
5383 	{
5384 	  expand_reg_info ();
5385 
5386 	  if (ira_use_lra_p)
5387 	    {
5388 	      ira_allocno_t a;
5389 	      ira_allocno_iterator ai;
5390 
5391 	      FOR_EACH_ALLOCNO (a, ai)
5392                 {
5393                   int old_regno = ALLOCNO_REGNO (a);
5394                   int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5395 
5396                   ALLOCNO_REGNO (a) = new_regno;
5397 
5398                   if (old_regno != new_regno)
5399                     setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5400                                        reg_alternate_class (old_regno),
5401                                        reg_allocno_class (old_regno));
5402                 }
5403 	    }
5404 	  else
5405 	    {
5406 	      if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5407 		fprintf (ira_dump_file, "Flattening IR\n");
5408 	      ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5409 	    }
5410 	  /* New insns were generated: add notes and recalculate live
5411 	     info.  */
5412 	  df_analyze ();
5413 
5414 	  /* ??? Rebuild the loop tree, but why?  Does the loop tree
5415 	     change if new insns were generated?  Can that be handled
5416 	     by updating the loop tree incrementally?  */
5417 	  loop_optimizer_finalize ();
5418 	  free_dominance_info (CDI_DOMINATORS);
5419 	  loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5420 			       | LOOPS_HAVE_RECORDED_EXITS);
5421 
5422 	  if (! ira_use_lra_p)
5423 	    {
5424 	      setup_allocno_assignment_flags ();
5425 	      ira_initiate_assign ();
5426 	      ira_reassign_conflict_allocnos (max_regno);
5427 	    }
5428 	}
5429     }
5430 
5431   ira_finish_emit_data ();
5432 
5433   setup_reg_renumber ();
5434 
5435   calculate_allocation_cost ();
5436 
5437 #ifdef ENABLE_IRA_CHECKING
5438   if (ira_conflicts_p && ! ira_use_lra_p)
5439     /* Opposite to reload pass, LRA does not use any conflict info
5440        from IRA.  We don't rebuild conflict info for LRA (through
5441        ira_flattening call) and cannot use the check here.  We could
5442        rebuild this info for LRA in the check mode but there is a risk
5443        that code generated with the check and without it will be a bit
5444        different.  Calling ira_flattening in any mode would be a
5445        wasting CPU time.  So do not check the allocation for LRA.  */
5446     check_allocation ();
5447 #endif
5448 
5449   if (max_regno != max_regno_before_ira)
5450     {
5451       regstat_free_n_sets_and_refs ();
5452       regstat_free_ri ();
5453       regstat_init_n_sets_and_refs ();
5454       regstat_compute_ri ();
5455     }
5456 
5457   overall_cost_before = ira_overall_cost;
5458   if (! ira_conflicts_p)
5459     grow_reg_equivs ();
5460   else
5461     {
5462       fix_reg_equiv_init ();
5463 
5464 #ifdef ENABLE_IRA_CHECKING
5465       print_redundant_copies ();
5466 #endif
5467       if (! ira_use_lra_p)
5468 	{
5469 	  ira_spilled_reg_stack_slots_num = 0;
5470 	  ira_spilled_reg_stack_slots
5471 	    = ((class ira_spilled_reg_stack_slot *)
5472 	       ira_allocate (max_regno
5473 			     * sizeof (class ira_spilled_reg_stack_slot)));
5474 	  memset ((void *)ira_spilled_reg_stack_slots, 0,
5475 		  max_regno * sizeof (class ira_spilled_reg_stack_slot));
5476 	}
5477     }
5478   allocate_initial_values ();
5479 
5480   /* See comment for find_moveable_pseudos call.  */
5481   if (ira_conflicts_p)
5482     move_unallocated_pseudos ();
5483 
5484   /* Restore original values.  */
5485   if (lra_simple_p)
5486     {
5487       flag_caller_saves = saved_flag_caller_saves;
5488       flag_ira_region = saved_flag_ira_region;
5489     }
5490 }
5491 
5492 static void
do_reload(void)5493 do_reload (void)
5494 {
5495   basic_block bb;
5496   bool need_dce;
5497   unsigned pic_offset_table_regno = INVALID_REGNUM;
5498 
5499   if (flag_ira_verbose < 10)
5500     ira_dump_file = dump_file;
5501 
5502   /* If pic_offset_table_rtx is a pseudo register, then keep it so
5503      after reload to avoid possible wrong usages of hard reg assigned
5504      to it.  */
5505   if (pic_offset_table_rtx
5506       && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5507     pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5508 
5509   timevar_push (TV_RELOAD);
5510   if (ira_use_lra_p)
5511     {
5512       if (current_loops != NULL)
5513 	{
5514 	  loop_optimizer_finalize ();
5515 	  free_dominance_info (CDI_DOMINATORS);
5516 	}
5517       FOR_ALL_BB_FN (bb, cfun)
5518 	bb->loop_father = NULL;
5519       current_loops = NULL;
5520 
5521       ira_destroy ();
5522 
5523       lra (ira_dump_file);
5524       /* ???!!! Move it before lra () when we use ira_reg_equiv in
5525 	 LRA.  */
5526       vec_free (reg_equivs);
5527       reg_equivs = NULL;
5528       need_dce = false;
5529     }
5530   else
5531     {
5532       df_set_flags (DF_NO_INSN_RESCAN);
5533       build_insn_chain ();
5534 
5535       need_dce = reload (get_insns (), ira_conflicts_p);
5536     }
5537 
5538   timevar_pop (TV_RELOAD);
5539 
5540   timevar_push (TV_IRA);
5541 
5542   if (ira_conflicts_p && ! ira_use_lra_p)
5543     {
5544       ira_free (ira_spilled_reg_stack_slots);
5545       ira_finish_assign ();
5546     }
5547 
5548   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5549       && overall_cost_before != ira_overall_cost)
5550     fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5551 	     ira_overall_cost);
5552 
5553   flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5554 
5555   if (! ira_use_lra_p)
5556     {
5557       ira_destroy ();
5558       if (current_loops != NULL)
5559 	{
5560 	  loop_optimizer_finalize ();
5561 	  free_dominance_info (CDI_DOMINATORS);
5562 	}
5563       FOR_ALL_BB_FN (bb, cfun)
5564 	bb->loop_father = NULL;
5565       current_loops = NULL;
5566 
5567       regstat_free_ri ();
5568       regstat_free_n_sets_and_refs ();
5569     }
5570 
5571   if (optimize)
5572     cleanup_cfg (CLEANUP_EXPENSIVE);
5573 
5574   finish_reg_equiv ();
5575 
5576   bitmap_obstack_release (&ira_bitmap_obstack);
5577 #ifndef IRA_NO_OBSTACK
5578   obstack_free (&ira_obstack, NULL);
5579 #endif
5580 
5581   /* The code after the reload has changed so much that at this point
5582      we might as well just rescan everything.  Note that
5583      df_rescan_all_insns is not going to help here because it does not
5584      touch the artificial uses and defs.  */
5585   df_finish_pass (true);
5586   df_scan_alloc (NULL);
5587   df_scan_blocks ();
5588 
5589   if (optimize > 1)
5590     {
5591       df_live_add_problem ();
5592       df_live_set_all_dirty ();
5593     }
5594 
5595   if (optimize)
5596     df_analyze ();
5597 
5598   if (need_dce && optimize)
5599     run_fast_dce ();
5600 
5601   /* Diagnose uses of the hard frame pointer when it is used as a global
5602      register.  Often we can get away with letting the user appropriate
5603      the frame pointer, but we should let them know when code generation
5604      makes that impossible.  */
5605   if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5606     {
5607       tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5608       error_at (DECL_SOURCE_LOCATION (current_function_decl),
5609                 "frame pointer required, but reserved");
5610       inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5611     }
5612 
5613   /* If we are doing generic stack checking, give a warning if this
5614      function's frame size is larger than we expect.  */
5615   if (flag_stack_check == GENERIC_STACK_CHECK)
5616     {
5617       poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5618 
5619       for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5620 	if (df_regs_ever_live_p (i)
5621 	    && !fixed_regs[i]
5622 	    && !crtl->abi->clobbers_full_reg_p (i))
5623 	  size += UNITS_PER_WORD;
5624 
5625       if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
5626 	warning (0, "frame size too large for reliable stack checking");
5627     }
5628 
5629   if (pic_offset_table_regno != INVALID_REGNUM)
5630     pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5631 
5632   timevar_pop (TV_IRA);
5633 }
5634 
5635 /* Run the integrated register allocator.  */
5636 
5637 namespace {
5638 
5639 const pass_data pass_data_ira =
5640 {
5641   RTL_PASS, /* type */
5642   "ira", /* name */
5643   OPTGROUP_NONE, /* optinfo_flags */
5644   TV_IRA, /* tv_id */
5645   0, /* properties_required */
5646   0, /* properties_provided */
5647   0, /* properties_destroyed */
5648   0, /* todo_flags_start */
5649   TODO_do_not_ggc_collect, /* todo_flags_finish */
5650 };
5651 
5652 class pass_ira : public rtl_opt_pass
5653 {
5654 public:
pass_ira(gcc::context * ctxt)5655   pass_ira (gcc::context *ctxt)
5656     : rtl_opt_pass (pass_data_ira, ctxt)
5657   {}
5658 
5659   /* opt_pass methods: */
gate(function *)5660   virtual bool gate (function *)
5661     {
5662       return !targetm.no_register_allocation;
5663     }
execute(function *)5664   virtual unsigned int execute (function *)
5665     {
5666       ira (dump_file);
5667       return 0;
5668     }
5669 
5670 }; // class pass_ira
5671 
5672 } // anon namespace
5673 
5674 rtl_opt_pass *
make_pass_ira(gcc::context * ctxt)5675 make_pass_ira (gcc::context *ctxt)
5676 {
5677   return new pass_ira (ctxt);
5678 }
5679 
5680 namespace {
5681 
5682 const pass_data pass_data_reload =
5683 {
5684   RTL_PASS, /* type */
5685   "reload", /* name */
5686   OPTGROUP_NONE, /* optinfo_flags */
5687   TV_RELOAD, /* tv_id */
5688   0, /* properties_required */
5689   0, /* properties_provided */
5690   0, /* properties_destroyed */
5691   0, /* todo_flags_start */
5692   0, /* todo_flags_finish */
5693 };
5694 
5695 class pass_reload : public rtl_opt_pass
5696 {
5697 public:
pass_reload(gcc::context * ctxt)5698   pass_reload (gcc::context *ctxt)
5699     : rtl_opt_pass (pass_data_reload, ctxt)
5700   {}
5701 
5702   /* opt_pass methods: */
gate(function *)5703   virtual bool gate (function *)
5704     {
5705       return !targetm.no_register_allocation;
5706     }
execute(function *)5707   virtual unsigned int execute (function *)
5708     {
5709       do_reload ();
5710       return 0;
5711     }
5712 
5713 }; // class pass_reload
5714 
5715 } // anon namespace
5716 
5717 rtl_opt_pass *
make_pass_reload(gcc::context * ctxt)5718 make_pass_reload (gcc::context *ctxt)
5719 {
5720   return new pass_reload (ctxt);
5721 }
5722