1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2   This file is consumed by genmatch which produces gimple-match.c
3   and generic-match.c from it.
4
5   Copyright (C) 2014-2020 Free Software Foundation, Inc.
6   Contributed by Richard Biener <rguenther@suse.de>
7   and Prathamesh Kulkarni  <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3.  If not see
23<http://www.gnu.org/licenses/>.  */
24
25
26/* Generic tree predicates we inherit.  */
27(define_predicates
28   integer_onep integer_zerop integer_all_onesp integer_minus_onep
29   integer_each_onep integer_truep integer_nonzerop
30   real_zerop real_onep real_minus_onep
31   zerop
32   initializer_each_zero_or_onep
33   CONSTANT_CLASS_P
34   tree_expr_nonnegative_p
35   tree_expr_nonzero_p
36   integer_valued_real_p
37   integer_pow2p
38   uniform_integer_cst_p
39   HONOR_NANS
40   uniform_vector_p)
41
42/* Operator lists.  */
43(define_operator_list tcc_comparison
44  lt   le   eq ne ge   gt   unordered ordered   unlt unle ungt unge uneq ltgt)
45(define_operator_list inverted_tcc_comparison
46  ge   gt   ne eq lt   le   ordered   unordered ge   gt   le   lt   ltgt uneq)
47(define_operator_list inverted_tcc_comparison_with_nans
48  unge ungt ne eq unlt unle ordered   unordered ge   gt   le   lt   ltgt uneq)
49(define_operator_list swapped_tcc_comparison
50  gt   ge   eq ne le   lt   unordered ordered   ungt unge unlt unle uneq ltgt)
51(define_operator_list simple_comparison         lt   le   eq ne ge   gt)
52(define_operator_list swapped_simple_comparison gt   ge   eq ne le   lt)
53
54#include "cfn-operators.pd"
55
56/* Define operand lists for math rounding functions {,i,l,ll}FN,
57   where the versions prefixed with "i" return an int, those prefixed with
58   "l" return a long and those prefixed with "ll" return a long long.
59
60   Also define operand lists:
61
62     X<FN>F for all float functions, in the order i, l, ll
63     X<FN> for all double functions, in the same order
64     X<FN>L for all long double functions, in the same order.  */
65#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
66  (define_operator_list X##FN##F BUILT_IN_I##FN##F \
67				 BUILT_IN_L##FN##F \
68				 BUILT_IN_LL##FN##F) \
69  (define_operator_list X##FN BUILT_IN_I##FN \
70			      BUILT_IN_L##FN \
71			      BUILT_IN_LL##FN) \
72  (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73				 BUILT_IN_L##FN##L \
74				 BUILT_IN_LL##FN##L)
75
76DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
77DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
78DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
79DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
80
81/* Binary operations and their associated IFN_COND_* function.  */
82(define_operator_list UNCOND_BINARY
83  plus minus
84  mult trunc_div trunc_mod rdiv
85  min max
86  bit_and bit_ior bit_xor
87  lshift rshift)
88(define_operator_list COND_BINARY
89  IFN_COND_ADD IFN_COND_SUB
90  IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
91  IFN_COND_MIN IFN_COND_MAX
92  IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
93  IFN_COND_SHL IFN_COND_SHR)
94
95/* Same for ternary operations.  */
96(define_operator_list UNCOND_TERNARY
97  IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
98(define_operator_list COND_TERNARY
99  IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
100
101/* With nop_convert? combine convert? and view_convert? in one pattern
102   plus conditionalize on tree_nop_conversion_p conversions.  */
103(match (nop_convert @0)
104 (convert @0)
105 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
106(match (nop_convert @0)
107 (view_convert @0)
108 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
109      && known_eq (TYPE_VECTOR_SUBPARTS (type),
110		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
111      && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
112
113/* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114   ABSU_EXPR returns unsigned absolute value of the operand and the operand
115   of the ABSU_EXPR will have the corresponding signed type.  */
116(simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118      && !TYPE_UNSIGNED (TREE_TYPE (@0))
119      && element_precision (type) > element_precision (TREE_TYPE (@0)))
120  (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121   (convert (absu:utype @0)))))
122
123
124/* Simplifications of operations with one constant operand and
125   simplifications to constants or single values.  */
126
127(for op (plus pointer_plus minus bit_ior bit_xor)
128  (simplify
129    (op @0 integer_zerop)
130    (non_lvalue @0)))
131
132/* 0 +p index -> (type)index */
133(simplify
134 (pointer_plus integer_zerop @1)
135 (non_lvalue (convert @1)))
136
137/* ptr - 0 -> (type)ptr */
138(simplify
139 (pointer_diff @0 integer_zerop)
140 (convert @0))
141
142/* See if ARG1 is zero and X + ARG1 reduces to X.
143   Likewise if the operands are reversed.  */
144(simplify
145 (plus:c @0 real_zerop@1)
146 (if (fold_real_zero_addition_p (type, @1, 0))
147  (non_lvalue @0)))
148
149/* See if ARG1 is zero and X - ARG1 reduces to X.  */
150(simplify
151 (minus @0 real_zerop@1)
152 (if (fold_real_zero_addition_p (type, @1, 1))
153  (non_lvalue @0)))
154
155/* Even if the fold_real_zero_addition_p can't simplify X + 0.0
156   into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
157   or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
158   if not -frounding-math.  For sNaNs the first operation would raise
159   exceptions but turn the result into qNan, so the second operation
160   would not raise it.   */
161(for inner_op (plus minus)
162 (for outer_op (plus minus)
163  (simplify
164   (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
165    (if (real_zerop (@1)
166	 && real_zerop (@2)
167	 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
168     (with { bool inner_plus = ((inner_op == PLUS_EXPR)
169				^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
170	     bool outer_plus
171	       = ((outer_op == PLUS_EXPR)
172		  ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
173      (if (outer_plus && !inner_plus)
174       (outer_op @0 @2)
175       @3))))))
176
177/* Simplify x - x.
178   This is unsafe for certain floats even in non-IEEE formats.
179   In IEEE, it is unsafe because it does wrong for NaNs.
180   Also note that operand_equal_p is always false if an operand
181   is volatile.  */
182(simplify
183 (minus @0 @0)
184 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
185  { build_zero_cst (type); }))
186(simplify
187 (pointer_diff @@0 @0)
188 { build_zero_cst (type); })
189
190(simplify
191 (mult @0 integer_zerop@1)
192 @1)
193
194/* Maybe fold x * 0 to 0.  The expressions aren't the same
195   when x is NaN, since x * 0 is also NaN.  Nor are they the
196   same in modes with signed zeros, since multiplying a
197   negative value by 0 gives -0, not +0.  */
198(simplify
199 (mult @0 real_zerop@1)
200 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
201  @1))
202
203/* In IEEE floating point, x*1 is not equivalent to x for snans.
204   Likewise for complex arithmetic with signed zeros.  */
205(simplify
206 (mult @0 real_onep)
207 (if (!HONOR_SNANS (type)
208      && (!HONOR_SIGNED_ZEROS (type)
209          || !COMPLEX_FLOAT_TYPE_P (type)))
210  (non_lvalue @0)))
211
212/* Transform x * -1.0 into -x.  */
213(simplify
214 (mult @0 real_minus_onep)
215  (if (!HONOR_SNANS (type)
216       && (!HONOR_SIGNED_ZEROS (type)
217           || !COMPLEX_FLOAT_TYPE_P (type)))
218   (negate @0)))
219
220/* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
221(simplify
222 (mult SSA_NAME@1 SSA_NAME@2)
223  (if (INTEGRAL_TYPE_P (type)
224       && get_nonzero_bits (@1) == 1
225       && get_nonzero_bits (@2) == 1)
226   (bit_and @1 @2)))
227
228/* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
229   unless the target has native support for the former but not the latter.  */
230(simplify
231 (mult @0 VECTOR_CST@1)
232 (if (initializer_each_zero_or_onep (@1)
233      && !HONOR_SNANS (type)
234      && !HONOR_SIGNED_ZEROS (type))
235  (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
236   (if (itype
237	&& (!VECTOR_MODE_P (TYPE_MODE (type))
238	    || (VECTOR_MODE_P (TYPE_MODE (itype))
239		&& optab_handler (and_optab,
240				  TYPE_MODE (itype)) != CODE_FOR_nothing)))
241    (view_convert (bit_and:itype (view_convert @0)
242				 (ne @1 { build_zero_cst (type); })))))))
243
244(for cmp (gt ge lt le)
245     outp (convert convert negate negate)
246     outn (negate negate convert convert)
247 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
248 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
249 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
250 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
251 (simplify
252  (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
253  (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
254       && types_match (type, TREE_TYPE (@0)))
255   (switch
256    (if (types_match (type, float_type_node))
257     (BUILT_IN_COPYSIGNF @1 (outp @0)))
258    (if (types_match (type, double_type_node))
259     (BUILT_IN_COPYSIGN @1 (outp @0)))
260    (if (types_match (type, long_double_type_node))
261     (BUILT_IN_COPYSIGNL @1 (outp @0))))))
262 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
263 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
264 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
265 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
266 (simplify
267  (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
268  (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
269       && types_match (type, TREE_TYPE (@0)))
270   (switch
271    (if (types_match (type, float_type_node))
272     (BUILT_IN_COPYSIGNF @1 (outn @0)))
273    (if (types_match (type, double_type_node))
274     (BUILT_IN_COPYSIGN @1 (outn @0)))
275    (if (types_match (type, long_double_type_node))
276     (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
277
278/* Transform X * copysign (1.0, X) into abs(X). */
279(simplify
280 (mult:c @0 (COPYSIGN_ALL real_onep @0))
281 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
282  (abs @0)))
283
284/* Transform X * copysign (1.0, -X) into -abs(X). */
285(simplify
286 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
287 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
288  (negate (abs @0))))
289
290/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
291(simplify
292 (COPYSIGN_ALL REAL_CST@0 @1)
293 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
294  (COPYSIGN_ALL (negate @0) @1)))
295
296/* X * 1, X / 1 -> X.  */
297(for op (mult trunc_div ceil_div floor_div round_div exact_div)
298  (simplify
299    (op @0 integer_onep)
300    (non_lvalue @0)))
301
302/* (A / (1 << B)) -> (A >> B).
303   Only for unsigned A.  For signed A, this would not preserve rounding
304   toward zero.
305   For example: (-1 / ( 1 << B)) !=  -1 >> B.
306   Also also widening conversions, like:
307   (A / (unsigned long long) (1U << B)) -> (A >> B)
308   or
309   (A / (unsigned long long) (1 << B)) -> (A >> B).
310   If the left shift is signed, it can be done only if the upper bits
311   of A starting from shift's type sign bit are zero, as
312   (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
313   so it is valid only if A >> 31 is zero.  */
314(simplify
315 (trunc_div @0 (convert? (lshift integer_onep@1 @2)))
316 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
317      && (!VECTOR_TYPE_P (type)
318	  || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
319	  || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
320      && (useless_type_conversion_p (type, TREE_TYPE (@1))
321	  || (element_precision (type) >= element_precision (TREE_TYPE (@1))
322	      && (TYPE_UNSIGNED (TREE_TYPE (@1))
323		  || (element_precision (type)
324		      == element_precision (TREE_TYPE (@1)))
325		  || (INTEGRAL_TYPE_P (type)
326		      && (tree_nonzero_bits (@0)
327			  & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
328				      true,
329				      element_precision (type))) == 0)))))
330  (rshift @0 @2)))
331
332/* Preserve explicit divisions by 0: the C++ front-end wants to detect
333   undefined behavior in constexpr evaluation, and assuming that the division
334   traps enables better optimizations than these anyway.  */
335(for div (trunc_div ceil_div floor_div round_div exact_div)
336 /* 0 / X is always zero.  */
337 (simplify
338  (div integer_zerop@0 @1)
339  /* But not for 0 / 0 so that we can get the proper warnings and errors.  */
340  (if (!integer_zerop (@1))
341   @0))
342  /* X / -1 is -X.  */
343 (simplify
344   (div @0 integer_minus_onep@1)
345   (if (!TYPE_UNSIGNED (type))
346    (negate @0)))
347 /* X / X is one.  */
348 (simplify
349  (div @0 @0)
350  /* But not for 0 / 0 so that we can get the proper warnings and errors.
351     And not for _Fract types where we can't build 1.  */
352  (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
353   { build_one_cst (type); }))
354 /* X / abs (X) is X < 0 ? -1 : 1.  */
355 (simplify
356   (div:C @0 (abs @0))
357   (if (INTEGRAL_TYPE_P (type)
358	&& TYPE_OVERFLOW_UNDEFINED (type))
359    (cond (lt @0 { build_zero_cst (type); })
360          { build_minus_one_cst (type); } { build_one_cst (type); })))
361 /* X / -X is -1.  */
362 (simplify
363   (div:C @0 (negate @0))
364   (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
365	&& TYPE_OVERFLOW_UNDEFINED (type))
366    { build_minus_one_cst (type); })))
367
368/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
369   TRUNC_DIV_EXPR.  Rewrite into the latter in this case.  */
370(simplify
371 (floor_div @0 @1)
372 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
373      && TYPE_UNSIGNED (type))
374  (trunc_div @0 @1)))
375
376/* Combine two successive divisions.  Note that combining ceil_div
377   and floor_div is trickier and combining round_div even more so.  */
378(for div (trunc_div exact_div)
379 (simplify
380  (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
381  (with {
382    wi::overflow_type overflow;
383    wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
384			    TYPE_SIGN (type), &overflow);
385   }
386   (if (div == EXACT_DIV_EXPR
387	|| optimize_successive_divisions_p (@2, @3))
388    (if (!overflow)
389     (div @0 { wide_int_to_tree (type, mul); })
390     (if (TYPE_UNSIGNED (type)
391	  || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
392      { build_zero_cst (type); }))))))
393
394/* Combine successive multiplications.  Similar to above, but handling
395   overflow is different.  */
396(simplify
397 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
398 (with {
399   wi::overflow_type overflow;
400   wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
401			   TYPE_SIGN (type), &overflow);
402  }
403  /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
404     otherwise undefined overflow implies that @0 must be zero.  */
405  (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
406   (mult @0 { wide_int_to_tree (type, mul); }))))
407
408/* Optimize A / A to 1.0 if we don't care about
409   NaNs or Infinities.  */
410(simplify
411 (rdiv @0 @0)
412 (if (FLOAT_TYPE_P (type)
413      && ! HONOR_NANS (type)
414      && ! HONOR_INFINITIES (type))
415  { build_one_cst (type); }))
416
417/* Optimize -A / A to -1.0 if we don't care about
418   NaNs or Infinities.  */
419(simplify
420 (rdiv:C @0 (negate @0))
421 (if (FLOAT_TYPE_P (type)
422      && ! HONOR_NANS (type)
423      && ! HONOR_INFINITIES (type))
424  { build_minus_one_cst (type); }))
425
426/* PR71078: x / abs(x) -> copysign (1.0, x) */
427(simplify
428 (rdiv:C (convert? @0) (convert? (abs @0)))
429  (if (SCALAR_FLOAT_TYPE_P (type)
430       && ! HONOR_NANS (type)
431       && ! HONOR_INFINITIES (type))
432   (switch
433    (if (types_match (type, float_type_node))
434     (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
435    (if (types_match (type, double_type_node))
436     (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
437    (if (types_match (type, long_double_type_node))
438     (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
439
440/* In IEEE floating point, x/1 is not equivalent to x for snans.  */
441(simplify
442 (rdiv @0 real_onep)
443 (if (!HONOR_SNANS (type))
444  (non_lvalue @0)))
445
446/* In IEEE floating point, x/-1 is not equivalent to -x for snans.  */
447(simplify
448 (rdiv @0 real_minus_onep)
449 (if (!HONOR_SNANS (type))
450  (negate @0)))
451
452(if (flag_reciprocal_math)
453 /* Convert (A/B)/C to A/(B*C). */
454 (simplify
455  (rdiv (rdiv:s @0 @1) @2)
456  (rdiv @0 (mult @1 @2)))
457
458 /* Canonicalize x / (C1 * y) to (x * C2) / y.  */
459 (simplify
460  (rdiv @0 (mult:s @1 REAL_CST@2))
461  (with
462   { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
463   (if (tem)
464    (rdiv (mult @0 { tem; } ) @1))))
465
466 /* Convert A/(B/C) to (A/B)*C  */
467 (simplify
468  (rdiv @0 (rdiv:s @1 @2))
469   (mult (rdiv @0 @1) @2)))
470
471/* Simplify x / (- y) to -x / y.  */
472(simplify
473 (rdiv @0 (negate @1))
474 (rdiv (negate @0) @1))
475
476(if (flag_unsafe_math_optimizations)
477 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
478    Since C / x may underflow to zero, do this only for unsafe math.  */
479 (for op (lt le gt ge)
480      neg_op (gt ge lt le)
481  (simplify
482   (op (rdiv REAL_CST@0 @1) real_zerop@2)
483   (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
484    (switch
485     (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
486      (op @1 @2))
487     /* For C < 0, use the inverted operator.  */
488     (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
489      (neg_op @1 @2)))))))
490
491/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
492(for div (trunc_div ceil_div floor_div round_div exact_div)
493 (simplify
494  (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
495  (if (integer_pow2p (@2)
496       && tree_int_cst_sgn (@2) > 0
497       && tree_nop_conversion_p (type, TREE_TYPE (@0))
498       && wi::to_wide (@2) + wi::to_wide (@1) == 0)
499   (rshift (convert @0)
500	   { build_int_cst (integer_type_node,
501			    wi::exact_log2 (wi::to_wide (@2))); }))))
502
503/* If ARG1 is a constant, we can convert this to a multiply by the
504   reciprocal.  This does not have the same rounding properties,
505   so only do this if -freciprocal-math.  We can actually
506   always safely do it if ARG1 is a power of two, but it's hard to
507   tell if it is or not in a portable manner.  */
508(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
509 (simplify
510  (rdiv @0 cst@1)
511  (if (optimize)
512   (if (flag_reciprocal_math
513	&& !real_zerop (@1))
514    (with
515     { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
516     (if (tem)
517      (mult @0 { tem; } )))
518    (if (cst != COMPLEX_CST)
519     (with { tree inverse = exact_inverse (type, @1); }
520      (if (inverse)
521       (mult @0 { inverse; } ))))))))
522
523(for mod (ceil_mod floor_mod round_mod trunc_mod)
524 /* 0 % X is always zero.  */
525 (simplify
526  (mod integer_zerop@0 @1)
527  /* But not for 0 % 0 so that we can get the proper warnings and errors.  */
528  (if (!integer_zerop (@1))
529   @0))
530 /* X % 1 is always zero.  */
531 (simplify
532  (mod @0 integer_onep)
533  { build_zero_cst (type); })
534 /* X % -1 is zero.  */
535 (simplify
536  (mod @0 integer_minus_onep@1)
537  (if (!TYPE_UNSIGNED (type))
538   { build_zero_cst (type); }))
539 /* X % X is zero.  */
540 (simplify
541  (mod @0 @0)
542  /* But not for 0 % 0 so that we can get the proper warnings and errors.  */
543  (if (!integer_zerop (@0))
544   { build_zero_cst (type); }))
545 /* (X % Y) % Y is just X % Y.  */
546 (simplify
547  (mod (mod@2 @0 @1) @1)
548  @2)
549 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2.  */
550 (simplify
551  (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
552  (if (ANY_INTEGRAL_TYPE_P (type)
553       && TYPE_OVERFLOW_UNDEFINED (type)
554       && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
555			     TYPE_SIGN (type)))
556   { build_zero_cst (type); }))
557 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
558    modulo and comparison, since it is simpler and equivalent.  */
559 (for cmp (eq ne)
560  (simplify
561   (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
562   (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
563    (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
564     (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
565
566/* X % -C is the same as X % C.  */
567(simplify
568 (trunc_mod @0 INTEGER_CST@1)
569  (if (TYPE_SIGN (type) == SIGNED
570       && !TREE_OVERFLOW (@1)
571       && wi::neg_p (wi::to_wide (@1))
572       && !TYPE_OVERFLOW_TRAPS (type)
573       /* Avoid this transformation if C is INT_MIN, i.e. C == -C.  */
574       && !sign_bit_p (@1, @1))
575   (trunc_mod @0 (negate @1))))
576
577/* X % -Y is the same as X % Y.  */
578(simplify
579 (trunc_mod @0 (convert? (negate @1)))
580 (if (INTEGRAL_TYPE_P (type)
581      && !TYPE_UNSIGNED (type)
582      && !TYPE_OVERFLOW_TRAPS (type)
583      && tree_nop_conversion_p (type, TREE_TYPE (@1))
584      /* Avoid this transformation if X might be INT_MIN or
585	 Y might be -1, because we would then change valid
586	 INT_MIN % -(-1) into invalid INT_MIN % -1.  */
587      && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
588	  || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
589							(TREE_TYPE (@1))))))
590  (trunc_mod @0 (convert @1))))
591
592/* X - (X / Y) * Y is the same as X % Y.  */
593(simplify
594 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
595 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
596  (convert (trunc_mod @0 @1))))
597
598/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
599   i.e. "X % C" into "X & (C - 1)", if X and C are positive.
600   Also optimize A % (C << N)  where C is a power of 2,
601   to A & ((C << N) - 1).  */
602(match (power_of_two_cand @1)
603 INTEGER_CST@1)
604(match (power_of_two_cand @1)
605 (lshift INTEGER_CST@1 @2))
606(for mod (trunc_mod floor_mod)
607 (simplify
608  (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
609  (if ((TYPE_UNSIGNED (type)
610	|| tree_expr_nonnegative_p (@0))
611	&& tree_nop_conversion_p (type, TREE_TYPE (@3))
612	&& integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
613   (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
614
615/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF.  */
616(simplify
617 (trunc_div (mult @0 integer_pow2p@1) @1)
618 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
619  (bit_and @0 { wide_int_to_tree
620		(type, wi::mask (TYPE_PRECISION (type)
621				 - wi::exact_log2 (wi::to_wide (@1)),
622				 false, TYPE_PRECISION (type))); })))
623
624/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1.  */
625(simplify
626 (mult (trunc_div @0 integer_pow2p@1) @1)
627 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
628  (bit_and @0 (negate @1))))
629
630/* Simplify (t * 2) / 2) -> t.  */
631(for div (trunc_div ceil_div floor_div round_div exact_div)
632 (simplify
633  (div (mult:c @0 @1) @1)
634  (if (ANY_INTEGRAL_TYPE_P (type)
635       && TYPE_OVERFLOW_UNDEFINED (type))
636   @0)))
637
638(for op (negate abs)
639 /* Simplify cos(-x) and cos(|x|) -> cos(x).  Similarly for cosh.  */
640 (for coss (COS COSH)
641  (simplify
642   (coss (op @0))
643    (coss @0)))
644 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer.  */
645 (for pows (POW)
646  (simplify
647   (pows (op @0) REAL_CST@1)
648   (with { HOST_WIDE_INT n; }
649    (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
650     (pows @0 @1)))))
651 /* Likewise for powi.  */
652 (for pows (POWI)
653  (simplify
654   (pows (op @0) INTEGER_CST@1)
655   (if ((wi::to_wide (@1) & 1) == 0)
656    (pows @0 @1))))
657 /* Strip negate and abs from both operands of hypot.  */
658 (for hypots (HYPOT)
659  (simplify
660   (hypots (op @0) @1)
661   (hypots @0 @1))
662  (simplify
663   (hypots @0 (op @1))
664   (hypots @0 @1)))
665 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y).  */
666 (for copysigns (COPYSIGN_ALL)
667  (simplify
668   (copysigns (op @0) @1)
669   (copysigns @0 @1))))
670
671/* abs(x)*abs(x) -> x*x.  Should be valid for all types.  */
672(simplify
673 (mult (abs@1 @0) @1)
674 (mult @0 @0))
675
676/* Convert absu(x)*absu(x) -> x*x.  */
677(simplify
678 (mult (absu@1 @0) @1)
679 (mult (convert@2 @0) @2))
680
681/* cos(copysign(x, y)) -> cos(x).  Similarly for cosh.  */
682(for coss (COS COSH)
683     copysigns (COPYSIGN)
684 (simplify
685  (coss (copysigns @0 @1))
686   (coss @0)))
687
688/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer.  */
689(for pows (POW)
690     copysigns (COPYSIGN)
691 (simplify
692  (pows (copysigns @0 @2) REAL_CST@1)
693  (with { HOST_WIDE_INT n; }
694   (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
695    (pows @0 @1)))))
696/* Likewise for powi.  */
697(for pows (POWI)
698     copysigns (COPYSIGN)
699 (simplify
700  (pows (copysigns @0 @2) INTEGER_CST@1)
701  (if ((wi::to_wide (@1) & 1) == 0)
702   (pows @0 @1))))
703
704(for hypots (HYPOT)
705     copysigns (COPYSIGN)
706 /* hypot(copysign(x, y), z) -> hypot(x, z).  */
707 (simplify
708  (hypots (copysigns @0 @1) @2)
709  (hypots @0 @2))
710 /* hypot(x, copysign(y, z)) -> hypot(x, y).  */
711 (simplify
712  (hypots @0 (copysigns @1 @2))
713  (hypots @0 @1)))
714
715/* copysign(x, CST) -> [-]abs (x).  */
716(for copysigns (COPYSIGN_ALL)
717 (simplify
718  (copysigns @0 REAL_CST@1)
719  (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
720   (negate (abs @0))
721   (abs @0))))
722
723/* copysign(copysign(x, y), z) -> copysign(x, z).  */
724(for copysigns (COPYSIGN_ALL)
725 (simplify
726  (copysigns (copysigns @0 @1) @2)
727  (copysigns @0 @2)))
728
729/* copysign(x,y)*copysign(x,y) -> x*x.  */
730(for copysigns (COPYSIGN_ALL)
731 (simplify
732  (mult (copysigns@2 @0 @1) @2)
733  (mult @0 @0)))
734
735/* ccos(-x) -> ccos(x).  Similarly for ccosh.  */
736(for ccoss (CCOS CCOSH)
737 (simplify
738  (ccoss (negate @0))
739   (ccoss @0)))
740
741/* cabs(-x) and cos(conj(x)) -> cabs(x).  */
742(for ops (conj negate)
743 (for cabss (CABS)
744  (simplify
745   (cabss (ops @0))
746   (cabss @0))))
747
748/* Fold (a * (1 << b)) into (a << b)  */
749(simplify
750 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
751  (if (! FLOAT_TYPE_P (type)
752       && tree_nop_conversion_p (type, TREE_TYPE (@1)))
753   (lshift @0 @2)))
754
755/* Fold (1 << (C - x)) where C = precision(type) - 1
756   into ((1 << C) >> x). */
757(simplify
758 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
759  (if (INTEGRAL_TYPE_P (type)
760       && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
761       && single_use (@1))
762   (if (TYPE_UNSIGNED (type))
763     (rshift (lshift @0 @2) @3)
764   (with
765    { tree utype = unsigned_type_for (type); }
766    (convert (rshift (lshift (convert:utype @0) @2) @3))))))
767
768/* Fold (C1/X)*C2 into (C1*C2)/X.  */
769(simplify
770 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
771  (if (flag_associative_math
772       && single_use (@3))
773   (with
774    { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
775    (if (tem)
776     (rdiv { tem; } @1)))))
777
778/* Simplify ~X & X as zero.  */
779(simplify
780 (bit_and:c (convert? @0) (convert? (bit_not @0)))
781  { build_zero_cst (type); })
782
783/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b);  */
784(simplify
785  (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
786  (if (TYPE_UNSIGNED (type))
787    (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
788
789(for bitop (bit_and bit_ior)
790     cmp (eq ne)
791 /* PR35691: Transform
792    (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
793    (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0.  */
794 (simplify
795  (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
796   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
797	&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
798	&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
799    (cmp (bit_ior @0 (convert @1)) @2)))
800 /* Transform:
801    (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
802    (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1.  */
803 (simplify
804  (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
805   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
806	&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
807	&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
808    (cmp (bit_and @0 (convert @1)) @2))))
809
810/* Fold (A & ~B) - (A & B) into (A ^ B) - B.  */
811(simplify
812 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
813  (minus (bit_xor @0 @1) @1))
814(simplify
815 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
816 (if (~wi::to_wide (@2) == wi::to_wide (@1))
817  (minus (bit_xor @0 @1) @1)))
818
819/* Fold (A & B) - (A & ~B) into B - (A ^ B).  */
820(simplify
821 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
822  (minus @1 (bit_xor @0 @1)))
823
824/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y.  */
825(for op (bit_ior bit_xor plus)
826 (simplify
827  (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
828   (bit_xor @0 @1))
829 (simplify
830  (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
831  (if (~wi::to_wide (@2) == wi::to_wide (@1))
832   (bit_xor @0 @1))))
833
834/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
835(simplify
836  (bit_ior:c (bit_xor:c @0 @1) @0)
837  (bit_ior @0 @1))
838
839/* (a & ~b) | (a ^ b)  -->  a ^ b  */
840(simplify
841 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
842 @2)
843
844/* (a & ~b) ^ ~a  -->  ~(a & b)  */
845(simplify
846 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
847 (bit_not (bit_and @0 @1)))
848
849/* (~a & b) ^ a  -->   (a | b)   */
850(simplify
851 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
852 (bit_ior @0 @1))
853
854/* (a | b) & ~(a ^ b)  -->  a & b  */
855(simplify
856 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
857 (bit_and @0 @1))
858
859/* a | ~(a ^ b)  -->  a | ~b  */
860(simplify
861 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
862 (bit_ior @0 (bit_not @1)))
863
864/* (a | b) | (a &^ b)  -->  a | b  */
865(for op (bit_and bit_xor)
866 (simplify
867  (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
868  @2))
869
870/* (a & b) | ~(a ^ b)  -->  ~(a ^ b)  */
871(simplify
872 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
873 @2)
874
875/* ~(~a & b)  -->  a | ~b  */
876(simplify
877 (bit_not (bit_and:cs (bit_not @0) @1))
878 (bit_ior @0 (bit_not @1)))
879
880/* ~(~a | b) --> a & ~b */
881(simplify
882 (bit_not (bit_ior:cs (bit_not @0) @1))
883 (bit_and @0 (bit_not @1)))
884
885/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0.  */
886#if GIMPLE
887(simplify
888 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
889 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
890      && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
891  (bit_xor @0 @1)))
892#endif
893
894/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
895   ((A & N) + B) & M -> (A + B) & M
896   Similarly if (N & M) == 0,
897   ((A | N) + B) & M -> (A + B) & M
898   and for - instead of + (or unary - instead of +)
899   and/or ^ instead of |.
900   If B is constant and (B & M) == 0, fold into A & M.  */
901(for op (plus minus)
902 (for bitop (bit_and bit_ior bit_xor)
903  (simplify
904   (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
905    (with
906     { tree pmop[2];
907       tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
908				       @3, @4, @1, ERROR_MARK, NULL_TREE,
909				       NULL_TREE, pmop); }
910     (if (utype)
911      (convert (bit_and (op (convert:utype { pmop[0]; })
912			    (convert:utype { pmop[1]; }))
913			(convert:utype @2))))))
914  (simplify
915   (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
916    (with
917     { tree pmop[2];
918       tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
919				       NULL_TREE, NULL_TREE, @1, bitop, @3,
920				       @4, pmop); }
921     (if (utype)
922      (convert (bit_and (op (convert:utype { pmop[0]; })
923			    (convert:utype { pmop[1]; }))
924			(convert:utype @2)))))))
925 (simplify
926  (bit_and (op:s @0 @1) INTEGER_CST@2)
927   (with
928    { tree pmop[2];
929      tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
930				      NULL_TREE, NULL_TREE, @1, ERROR_MARK,
931				      NULL_TREE, NULL_TREE, pmop); }
932    (if (utype)
933     (convert (bit_and (op (convert:utype { pmop[0]; })
934			   (convert:utype { pmop[1]; }))
935		       (convert:utype @2)))))))
936(for bitop (bit_and bit_ior bit_xor)
937 (simplify
938  (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
939   (with
940    { tree pmop[2];
941      tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
942				      bitop, @2, @3, NULL_TREE, ERROR_MARK,
943				      NULL_TREE, NULL_TREE, pmop); }
944    (if (utype)
945     (convert (bit_and (negate (convert:utype { pmop[0]; }))
946		       (convert:utype @1)))))))
947
948/* X % Y is smaller than Y.  */
949(for cmp (lt ge)
950 (simplify
951  (cmp (trunc_mod @0 @1) @1)
952  (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
953   { constant_boolean_node (cmp == LT_EXPR, type); })))
954(for cmp (gt le)
955 (simplify
956  (cmp @1 (trunc_mod @0 @1))
957  (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
958   { constant_boolean_node (cmp == GT_EXPR, type); })))
959
960/* x | ~0 -> ~0  */
961(simplify
962 (bit_ior @0 integer_all_onesp@1)
963 @1)
964
965/* x | 0 -> x  */
966(simplify
967 (bit_ior @0 integer_zerop)
968 @0)
969
970/* x & 0 -> 0  */
971(simplify
972 (bit_and @0 integer_zerop@1)
973 @1)
974
975/* ~x | x -> -1 */
976/* ~x ^ x -> -1 */
977/* ~x + x -> -1 */
978(for op (bit_ior bit_xor plus)
979 (simplify
980  (op:c (convert? @0) (convert? (bit_not @0)))
981  (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
982
983/* x ^ x -> 0 */
984(simplify
985  (bit_xor @0 @0)
986  { build_zero_cst (type); })
987
988/* Canonicalize X ^ ~0 to ~X.  */
989(simplify
990  (bit_xor @0 integer_all_onesp@1)
991  (bit_not @0))
992
993/* x & ~0 -> x  */
994(simplify
995 (bit_and @0 integer_all_onesp)
996  (non_lvalue @0))
997
998/* x & x -> x,  x | x -> x  */
999(for bitop (bit_and bit_ior)
1000 (simplify
1001  (bitop @0 @0)
1002  (non_lvalue @0)))
1003
1004/* x & C -> x if we know that x & ~C == 0.  */
1005#if GIMPLE
1006(simplify
1007 (bit_and SSA_NAME@0 INTEGER_CST@1)
1008 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1009      && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1010  @0))
1011#endif
1012
1013/* x + (x & 1) -> (x + 1) & ~1 */
1014(simplify
1015 (plus:c @0 (bit_and:s @0 integer_onep@1))
1016 (bit_and (plus @0 @1) (bit_not @1)))
1017
1018/* x & ~(x & y) -> x & ~y */
1019/* x | ~(x | y) -> x | ~y  */
1020(for bitop (bit_and bit_ior)
1021 (simplify
1022  (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1023  (bitop @0 (bit_not @1))))
1024
1025/* (~x & y) | ~(x | y) -> ~x */
1026(simplify
1027 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1028 @2)
1029
1030/* (x | y) ^ (x | ~y) -> ~x */
1031(simplify
1032 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1033 (bit_not @0))
1034
1035/* (x & y) | ~(x | y) -> ~(x ^ y) */
1036(simplify
1037 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1038 (bit_not (bit_xor @0 @1)))
1039
1040/* (~x | y) ^ (x ^ y) -> x | ~y */
1041(simplify
1042 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1043 (bit_ior @0 (bit_not @1)))
1044
1045/* (x ^ y) | ~(x | y) -> ~(x & y) */
1046(simplify
1047 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1048 (bit_not (bit_and @0 @1)))
1049
1050/* (x | y) & ~x -> y & ~x */
1051/* (x & y) | ~x -> y | ~x */
1052(for bitop (bit_and bit_ior)
1053     rbitop (bit_ior bit_and)
1054 (simplify
1055  (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1056  (bitop @1 @2)))
1057
1058/* (x & y) ^ (x | y) -> x ^ y */
1059(simplify
1060 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1061 (bit_xor @0 @1))
1062
1063/* (x ^ y) ^ (x | y) -> x & y */
1064(simplify
1065 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1066 (bit_and @0 @1))
1067
1068/* (x & y) + (x ^ y) -> x | y */
1069/* (x & y) | (x ^ y) -> x | y */
1070/* (x & y) ^ (x ^ y) -> x | y */
1071(for op (plus bit_ior bit_xor)
1072 (simplify
1073  (op:c (bit_and @0 @1) (bit_xor @0 @1))
1074  (bit_ior @0 @1)))
1075
1076/* (x & y) + (x | y) -> x + y */
1077(simplify
1078 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1079 (plus @0 @1))
1080
1081/* (x + y) - (x | y) -> x & y */
1082(simplify
1083 (minus (plus @0 @1) (bit_ior @0 @1))
1084 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1085      && !TYPE_SATURATING (type))
1086  (bit_and @0 @1)))
1087
1088/* (x + y) - (x & y) -> x | y */
1089(simplify
1090 (minus (plus @0 @1) (bit_and @0 @1))
1091 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1092      && !TYPE_SATURATING (type))
1093  (bit_ior @0 @1)))
1094
1095/* (x | y) - (x ^ y) -> x & y */
1096(simplify
1097 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1098 (bit_and @0 @1))
1099
1100/* (x | y) - (x & y) -> x ^ y */
1101(simplify
1102 (minus (bit_ior @0 @1) (bit_and @0 @1))
1103 (bit_xor @0 @1))
1104
1105/* (x | y) & ~(x & y) -> x ^ y */
1106(simplify
1107 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1108 (bit_xor @0 @1))
1109
1110/* (x | y) & (~x ^ y) -> x & y */
1111(simplify
1112 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1113 (bit_and @0 @1))
1114
1115/* (~x | y) & (x | ~y) -> ~(x ^ y) */
1116(simplify
1117 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1118 (bit_not (bit_xor @0 @1)))
1119
1120/* (~x | y) ^ (x | ~y) -> x ^ y */
1121(simplify
1122 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1123 (bit_xor @0 @1))
1124
1125/* ~x & ~y -> ~(x | y)
1126   ~x | ~y -> ~(x & y) */
1127(for op (bit_and bit_ior)
1128     rop (bit_ior bit_and)
1129 (simplify
1130  (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1131  (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1132       && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1133   (bit_not (rop (convert @0) (convert @1))))))
1134
1135/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1136   with a constant, and the two constants have no bits in common,
1137   we should treat this as a BIT_IOR_EXPR since this may produce more
1138   simplifications.  */
1139(for op (bit_xor plus)
1140 (simplify
1141  (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1142      (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1143  (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1144       && tree_nop_conversion_p (type, TREE_TYPE (@2))
1145       && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1146   (bit_ior (convert @4) (convert @5)))))
1147
1148/* (X | Y) ^ X -> Y & ~ X*/
1149(simplify
1150 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1151 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1152  (convert (bit_and @1 (bit_not @0)))))
1153
1154/* Convert ~X ^ ~Y to X ^ Y.  */
1155(simplify
1156 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1157 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1158      && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1159  (bit_xor (convert @0) (convert @1))))
1160
1161/* Convert ~X ^ C to X ^ ~C.  */
1162(simplify
1163 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1164 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1165  (bit_xor (convert @0) (bit_not @1))))
1166
1167/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y.  */
1168(for opo (bit_and bit_xor)
1169     opi (bit_xor bit_and)
1170 (simplify
1171  (opo:c (opi:cs @0 @1) @1)
1172  (bit_and (bit_not @0) @1)))
1173
1174/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1175   operands are another bit-wise operation with a common input.  If so,
1176   distribute the bit operations to save an operation and possibly two if
1177   constants are involved.  For example, convert
1178     (A | B) & (A | C) into A | (B & C)
1179   Further simplification will occur if B and C are constants.  */
1180(for op (bit_and bit_ior bit_xor)
1181     rop (bit_ior bit_and bit_and)
1182 (simplify
1183  (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1184  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1185       && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1186   (rop (convert @0) (op (convert @1) (convert @2))))))
1187
1188/* Some simple reassociation for bit operations, also handled in reassoc.  */
1189/* (X & Y) & Y -> X & Y
1190   (X | Y) | Y -> X | Y  */
1191(for op (bit_and bit_ior)
1192 (simplify
1193  (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1194  @2))
1195/* (X ^ Y) ^ Y -> X  */
1196(simplify
1197 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1198 (convert @0))
1199/* (X & Y) & (X & Z) -> (X & Y) & Z
1200   (X | Y) | (X | Z) -> (X | Y) | Z  */
1201(for op (bit_and bit_ior)
1202 (simplify
1203  (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1204  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1205       && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1206   (if (single_use (@5) && single_use (@6))
1207    (op @3 (convert @2))
1208    (if (single_use (@3) && single_use (@4))
1209     (op (convert @1) @5))))))
1210/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z  */
1211(simplify
1212 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1213 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1214      && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1215  (bit_xor (convert @1) (convert @2))))
1216
1217/* Convert abs (abs (X)) into abs (X).
1218   also absu (absu (X)) into absu (X).  */
1219(simplify
1220 (abs (abs@1 @0))
1221 @1)
1222
1223(simplify
1224 (absu (convert@2 (absu@1 @0)))
1225 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1226  @1))
1227
1228/* Convert abs[u] (-X) -> abs[u] (X).  */
1229(simplify
1230 (abs (negate @0))
1231 (abs @0))
1232
1233(simplify
1234 (absu (negate @0))
1235 (absu @0))
1236
1237/* Convert abs[u] (X)  where X is nonnegative -> (X).  */
1238(simplify
1239 (abs tree_expr_nonnegative_p@0)
1240 @0)
1241
1242(simplify
1243 (absu tree_expr_nonnegative_p@0)
1244 (convert @0))
1245
1246/* A few cases of fold-const.c negate_expr_p predicate.  */
1247(match negate_expr_p
1248 INTEGER_CST
1249 (if ((INTEGRAL_TYPE_P (type)
1250       && TYPE_UNSIGNED (type))
1251      || (!TYPE_OVERFLOW_SANITIZED (type)
1252	  && may_negate_without_overflow_p (t)))))
1253(match negate_expr_p
1254 FIXED_CST)
1255(match negate_expr_p
1256 (negate @0)
1257 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1258(match negate_expr_p
1259 REAL_CST
1260 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1261/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1262   ways.  */
1263(match negate_expr_p
1264 VECTOR_CST
1265 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1266(match negate_expr_p
1267 (minus @0 @1)
1268 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1269      || (FLOAT_TYPE_P (type)
1270	  && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1271	  && !HONOR_SIGNED_ZEROS (type)))))
1272
1273/* (-A) * (-B) -> A * B  */
1274(simplify
1275 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1276  (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1277       && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1278   (mult (convert @0) (convert (negate @1)))))
1279
1280/* -(A + B) -> (-B) - A.  */
1281(simplify
1282 (negate (plus:c @0 negate_expr_p@1))
1283 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1284      && !HONOR_SIGNED_ZEROS (element_mode (type)))
1285  (minus (negate @1) @0)))
1286
1287/* -(A - B) -> B - A.  */
1288(simplify
1289 (negate (minus @0 @1))
1290 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1291      || (FLOAT_TYPE_P (type)
1292	  && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1293	  && !HONOR_SIGNED_ZEROS (type)))
1294  (minus @1 @0)))
1295(simplify
1296 (negate (pointer_diff @0 @1))
1297 (if (TYPE_OVERFLOW_UNDEFINED (type))
1298  (pointer_diff @1 @0)))
1299
1300/* A - B -> A + (-B) if B is easily negatable.  */
1301(simplify
1302 (minus @0 negate_expr_p@1)
1303 (if (!FIXED_POINT_TYPE_P (type))
1304 (plus @0 (negate @1))))
1305
1306/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1307   when profitable.
1308   For bitwise binary operations apply operand conversions to the
1309   binary operation result instead of to the operands.  This allows
1310   to combine successive conversions and bitwise binary operations.
1311   We combine the above two cases by using a conditional convert.  */
1312(for bitop (bit_and bit_ior bit_xor)
1313 (simplify
1314  (bitop (convert @0) (convert? @1))
1315  (if (((TREE_CODE (@1) == INTEGER_CST
1316	 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1317	 && int_fits_type_p (@1, TREE_TYPE (@0)))
1318	|| types_match (@0, @1))
1319       /* ???  This transform conflicts with fold-const.c doing
1320	  Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1321	  constants (if x has signed type, the sign bit cannot be set
1322	  in c).  This folds extension into the BIT_AND_EXPR.
1323	  Restrict it to GIMPLE to avoid endless recursions.  */
1324       && (bitop != BIT_AND_EXPR || GIMPLE)
1325       && (/* That's a good idea if the conversion widens the operand, thus
1326	      after hoisting the conversion the operation will be narrower.  */
1327	   TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1328	   /* It's also a good idea if the conversion is to a non-integer
1329	      mode.  */
1330	   || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1331	   /* Or if the precision of TO is not the same as the precision
1332	      of its mode.  */
1333	   || !type_has_mode_precision_p (type)))
1334   (convert (bitop @0 (convert @1))))))
1335
1336(for bitop (bit_and bit_ior)
1337     rbitop (bit_ior bit_and)
1338  /* (x | y) & x -> x */
1339  /* (x & y) | x -> x */
1340 (simplify
1341  (bitop:c (rbitop:c @0 @1) @0)
1342  @0)
1343 /* (~x | y) & x -> x & y */
1344 /* (~x & y) | x -> x | y */
1345 (simplify
1346  (bitop:c (rbitop:c (bit_not @0) @1) @0)
1347  (bitop @0 @1)))
1348
1349/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1350(simplify
1351  (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1352  (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1353
1354/* Combine successive equal operations with constants.  */
1355(for bitop (bit_and bit_ior bit_xor)
1356 (simplify
1357  (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1358  (if (!CONSTANT_CLASS_P (@0))
1359   /* This is the canonical form regardless of whether (bitop @1 @2) can be
1360      folded to a constant.  */
1361   (bitop @0 (bitop @1 @2))
1362   /* In this case we have three constants and (bitop @0 @1) doesn't fold
1363      to a constant.  This can happen if @0 or @1 is a POLY_INT_CST and if
1364      the values involved are such that the operation can't be decided at
1365      compile time.  Try folding one of @0 or @1 with @2 to see whether
1366      that combination can be decided at compile time.
1367
1368      Keep the existing form if both folds fail, to avoid endless
1369      oscillation.  */
1370   (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1371    (if (cst1)
1372     (bitop @1 { cst1; })
1373     (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1374      (if (cst2)
1375       (bitop @0 { cst2; }))))))))
1376
1377/* Try simple folding for X op !X, and X op X with the help
1378   of the truth_valued_p and logical_inverted_value predicates.  */
1379(match truth_valued_p
1380 @0
1381 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1382(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1383 (match truth_valued_p
1384  (op @0 @1)))
1385(match truth_valued_p
1386  (truth_not @0))
1387
1388(match (logical_inverted_value @0)
1389 (truth_not @0))
1390(match (logical_inverted_value @0)
1391 (bit_not truth_valued_p@0))
1392(match (logical_inverted_value @0)
1393 (eq @0 integer_zerop))
1394(match (logical_inverted_value @0)
1395 (ne truth_valued_p@0 integer_truep))
1396(match (logical_inverted_value @0)
1397 (bit_xor truth_valued_p@0 integer_truep))
1398
1399/* X & !X -> 0.  */
1400(simplify
1401 (bit_and:c @0 (logical_inverted_value @0))
1402 { build_zero_cst (type); })
1403/* X | !X and X ^ !X -> 1, , if X is truth-valued.  */
1404(for op (bit_ior bit_xor)
1405 (simplify
1406  (op:c truth_valued_p@0 (logical_inverted_value @0))
1407  { constant_boolean_node (true, type); }))
1408/* X ==/!= !X is false/true.  */
1409(for op (eq ne)
1410 (simplify
1411  (op:c truth_valued_p@0 (logical_inverted_value @0))
1412  { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1413
1414/* ~~x -> x */
1415(simplify
1416  (bit_not (bit_not @0))
1417  @0)
1418
1419/* Convert ~ (-A) to A - 1.  */
1420(simplify
1421 (bit_not (convert? (negate @0)))
1422 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1423      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1424  (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1425
1426/* Convert - (~A) to A + 1.  */
1427(simplify
1428 (negate (nop_convert? (bit_not @0)))
1429 (plus (view_convert @0) { build_each_one_cst (type); }))
1430
1431/* Convert ~ (A - 1) or ~ (A + -1) to -A.  */
1432(simplify
1433 (bit_not (convert? (minus @0 integer_each_onep)))
1434 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1435      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1436  (convert (negate @0))))
1437(simplify
1438 (bit_not (convert? (plus @0 integer_all_onesp)))
1439 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1440      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1441  (convert (negate @0))))
1442
1443/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify.  */
1444(simplify
1445 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1446 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1447  (convert (bit_xor @0 (bit_not @1)))))
1448(simplify
1449 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1450 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1451  (convert (bit_xor @0 @1))))
1452
1453/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical.  */
1454(simplify
1455 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1456 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1457  (bit_not (bit_xor (view_convert @0) @1))))
1458
1459/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1460(simplify
1461 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1462 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1463
1464/* Fold A - (A & B) into ~B & A.  */
1465(simplify
1466 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1467 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1468      && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1469  (convert (bit_and (bit_not @1) @0))))
1470
1471/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0  */
1472(for cmp (gt lt ge le)
1473(simplify
1474 (mult (convert (cmp @0 @1)) @2)
1475  (if (GIMPLE || !TREE_SIDE_EFFECTS (@2))
1476   (cond (cmp @0 @1) @2 { build_zero_cst (type); }))))
1477
1478/* For integral types with undefined overflow and C != 0 fold
1479   x * C EQ/NE y * C into x EQ/NE y.  */
1480(for cmp (eq ne)
1481 (simplify
1482  (cmp (mult:c @0 @1) (mult:c @2 @1))
1483  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1484       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1485       && tree_expr_nonzero_p (@1))
1486   (cmp @0 @2))))
1487
1488/* For integral types with wrapping overflow and C odd fold
1489   x * C EQ/NE y * C into x EQ/NE y.  */
1490(for cmp (eq ne)
1491 (simplify
1492  (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1493  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1494       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1495       && (TREE_INT_CST_LOW (@1) & 1) != 0)
1496   (cmp @0 @2))))
1497
1498/* For integral types with undefined overflow and C != 0 fold
1499   x * C RELOP y * C into:
1500
1501   x RELOP y for nonnegative C
1502   y RELOP x for negative C  */
1503(for cmp (lt gt le ge)
1504 (simplify
1505  (cmp (mult:c @0 @1) (mult:c @2 @1))
1506  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1507       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1508   (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1509    (cmp @0 @2)
1510   (if (TREE_CODE (@1) == INTEGER_CST
1511	&& wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1512    (cmp @2 @0))))))
1513
1514/* (X - 1U) <= INT_MAX-1U into (int) X > 0.  */
1515(for cmp (le gt)
1516     icmp (gt le)
1517 (simplify
1518  (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1519   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1520	&& TYPE_UNSIGNED (TREE_TYPE (@0))
1521	&& TYPE_PRECISION (TREE_TYPE (@0)) > 1
1522	&& (wi::to_wide (@2)
1523	    == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1524    (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1525     (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1526
1527/* X / 4 < Y / 4 iff X < Y when the division is known to be exact.  */
1528(for cmp (simple_comparison)
1529 (simplify
1530  (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1531  (if (element_precision (@3) >= element_precision (@0)
1532       && types_match (@0, @1))
1533   (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1534    (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1535     (cmp @1 @0)
1536     (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1537      (with
1538       {
1539	tree utype = unsigned_type_for (TREE_TYPE (@0));
1540       }
1541       (cmp (convert:utype @1) (convert:utype @0)))))
1542    (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1543     (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1544      (cmp @0 @1)
1545      (with
1546       {
1547	tree utype = unsigned_type_for (TREE_TYPE (@0));
1548       }
1549       (cmp (convert:utype @0) (convert:utype @1)))))))))
1550
1551/* X / C1 op C2 into a simple range test.  */
1552(for cmp (simple_comparison)
1553 (simplify
1554  (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1555  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1556       && integer_nonzerop (@1)
1557       && !TREE_OVERFLOW (@1)
1558       && !TREE_OVERFLOW (@2))
1559   (with { tree lo, hi; bool neg_overflow;
1560	   enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1561						   &neg_overflow); }
1562    (switch
1563     (if (code == LT_EXPR || code == GE_EXPR)
1564       (if (TREE_OVERFLOW (lo))
1565	{ build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1566	(if (code == LT_EXPR)
1567	 (lt @0 { lo; })
1568	 (ge @0 { lo; }))))
1569     (if (code == LE_EXPR || code == GT_EXPR)
1570       (if (TREE_OVERFLOW (hi))
1571	{ build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1572	(if (code == LE_EXPR)
1573	 (le @0 { hi; })
1574	 (gt @0 { hi; }))))
1575     (if (!lo && !hi)
1576      { build_int_cst (type, code == NE_EXPR); })
1577     (if (code == EQ_EXPR && !hi)
1578      (ge @0 { lo; }))
1579     (if (code == EQ_EXPR && !lo)
1580      (le @0 { hi; }))
1581     (if (code == NE_EXPR && !hi)
1582      (lt @0 { lo; }))
1583     (if (code == NE_EXPR && !lo)
1584      (gt @0 { hi; }))
1585     (if (GENERIC)
1586      { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1587			   lo, hi); })
1588     (with
1589      {
1590	tree etype = range_check_type (TREE_TYPE (@0));
1591	if (etype)
1592	  {
1593	    hi = fold_convert (etype, hi);
1594	    lo = fold_convert (etype, lo);
1595	    hi = const_binop (MINUS_EXPR, etype, hi, lo);
1596	  }
1597      }
1598      (if (etype && hi && !TREE_OVERFLOW (hi))
1599       (if (code == EQ_EXPR)
1600	(le (minus (convert:etype @0) { lo; }) { hi; })
1601	(gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1602
1603/* X + Z < Y + Z is the same as X < Y when there is no overflow.  */
1604(for op (lt le ge gt)
1605 (simplify
1606  (op (plus:c @0 @2) (plus:c @1 @2))
1607  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1608       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1609   (op @0 @1))))
1610/* For equality and subtraction, this is also true with wrapping overflow.  */
1611(for op (eq ne minus)
1612 (simplify
1613  (op (plus:c @0 @2) (plus:c @1 @2))
1614  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1615       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1616	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1617   (op @0 @1))))
1618
1619/* X - Z < Y - Z is the same as X < Y when there is no overflow.  */
1620(for op (lt le ge gt)
1621 (simplify
1622  (op (minus @0 @2) (minus @1 @2))
1623  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1624       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1625   (op @0 @1))))
1626/* For equality and subtraction, this is also true with wrapping overflow.  */
1627(for op (eq ne minus)
1628 (simplify
1629  (op (minus @0 @2) (minus @1 @2))
1630  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1631       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1632	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1633   (op @0 @1))))
1634/* And for pointers...  */
1635(for op (simple_comparison)
1636 (simplify
1637  (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1638  (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1639   (op @0 @1))))
1640(simplify
1641 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1642 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1643      && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1644  (pointer_diff @0 @1)))
1645
1646/* Z - X < Z - Y is the same as Y < X when there is no overflow.  */
1647(for op (lt le ge gt)
1648 (simplify
1649  (op (minus @2 @0) (minus @2 @1))
1650  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1651       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1652   (op @1 @0))))
1653/* For equality and subtraction, this is also true with wrapping overflow.  */
1654(for op (eq ne minus)
1655 (simplify
1656  (op (minus @2 @0) (minus @2 @1))
1657  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1658       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1659	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1660   (op @1 @0))))
1661/* And for pointers...  */
1662(for op (simple_comparison)
1663 (simplify
1664  (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1665  (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1666   (op @1 @0))))
1667(simplify
1668 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1669 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1670      && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1671  (pointer_diff @1 @0)))
1672
1673/* X + Y < Y is the same as X < 0 when there is no overflow.  */
1674(for op (lt le gt ge)
1675 (simplify
1676  (op:c (plus:c@2 @0 @1) @1)
1677  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1678       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1679       && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1680       && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1681   (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1682/* For equality, this is also true with wrapping overflow.  */
1683(for op (eq ne)
1684 (simplify
1685  (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1686  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1687       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1688	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1689       && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1690       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1691       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1692   (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1693 (simplify
1694  (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1695  (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1696       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1697       && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1698   (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1699
1700/* X - Y < X is the same as Y > 0 when there is no overflow.
1701   For equality, this is also true with wrapping overflow.  */
1702(for op (simple_comparison)
1703 (simplify
1704  (op:c @0 (minus@2 @0 @1))
1705  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1706       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1707	   || ((op == EQ_EXPR || op == NE_EXPR)
1708	       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1709       && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1710   (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1711
1712/* Transform:
1713   (X / Y) == 0 -> X < Y if X, Y are unsigned.
1714   (X / Y) != 0 -> X >= Y, if X, Y are unsigned.  */
1715(for cmp (eq ne)
1716     ocmp (lt ge)
1717 (simplify
1718  (cmp (trunc_div @0 @1) integer_zerop)
1719  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1720       /* Complex ==/!= is allowed, but not </>=.  */
1721       && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1722       && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1723   (ocmp @0 @1))))
1724
1725/* X == C - X can never be true if C is odd.  */
1726(for cmp (eq ne)
1727 (simplify
1728  (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1729  (if (TREE_INT_CST_LOW (@1) & 1)
1730   { constant_boolean_node (cmp == NE_EXPR, type); })))
1731
1732/* Arguments on which one can call get_nonzero_bits to get the bits
1733   possibly set.  */
1734(match with_possible_nonzero_bits
1735 INTEGER_CST@0)
1736(match with_possible_nonzero_bits
1737 SSA_NAME@0
1738 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1739/* Slightly extended version, do not make it recursive to keep it cheap.  */
1740(match (with_possible_nonzero_bits2 @0)
1741 with_possible_nonzero_bits@0)
1742(match (with_possible_nonzero_bits2 @0)
1743 (bit_and:c with_possible_nonzero_bits@0 @2))
1744
1745/* Same for bits that are known to be set, but we do not have
1746   an equivalent to get_nonzero_bits yet.  */
1747(match (with_certain_nonzero_bits2 @0)
1748 INTEGER_CST@0)
1749(match (with_certain_nonzero_bits2 @0)
1750 (bit_ior @1 INTEGER_CST@0))
1751
1752/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0.  */
1753(for cmp (eq ne)
1754 (simplify
1755  (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1756  (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1757   { constant_boolean_node (cmp == NE_EXPR, type); })))
1758
1759/* ((X inner_op C0) outer_op C1)
1760   With X being a tree where value_range has reasoned certain bits to always be
1761   zero throughout its computed value range,
1762   inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1763   where zero_mask has 1's for all bits that are sure to be 0 in
1764   and 0's otherwise.
1765   if (inner_op == '^') C0 &= ~C1;
1766   if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1767   if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1768*/
1769(for inner_op (bit_ior bit_xor)
1770     outer_op (bit_xor bit_ior)
1771(simplify
1772 (outer_op
1773  (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1774 (with
1775  {
1776    bool fail = false;
1777    wide_int zero_mask_not;
1778    wide_int C0;
1779    wide_int cst_emit;
1780
1781    if (TREE_CODE (@2) == SSA_NAME)
1782      zero_mask_not = get_nonzero_bits (@2);
1783    else
1784      fail = true;
1785
1786    if (inner_op == BIT_XOR_EXPR)
1787      {
1788	C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1789	cst_emit = C0 | wi::to_wide (@1);
1790      }
1791    else
1792      {
1793	C0 = wi::to_wide (@0);
1794	cst_emit = C0 ^ wi::to_wide (@1);
1795      }
1796  }
1797  (if (!fail && (C0 & zero_mask_not) == 0)
1798   (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1799   (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1800    (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1801
1802/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)).  */
1803(simplify
1804  (pointer_plus (pointer_plus:s @0 @1) @3)
1805  (pointer_plus @0 (plus @1 @3)))
1806
1807/* Pattern match
1808     tem1 = (long) ptr1;
1809     tem2 = (long) ptr2;
1810     tem3 = tem2 - tem1;
1811     tem4 = (unsigned long) tem3;
1812     tem5 = ptr1 + tem4;
1813   and produce
1814     tem5 = ptr2;  */
1815(simplify
1816  (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1817  /* Conditionally look through a sign-changing conversion.  */
1818  (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1819       && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1820	    || (GENERIC && type == TREE_TYPE (@1))))
1821   @1))
1822(simplify
1823  (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1824  (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1825   (convert @1)))
1826
1827/* Pattern match
1828     tem = (sizetype) ptr;
1829     tem = tem & algn;
1830     tem = -tem;
1831     ... = ptr p+ tem;
1832   and produce the simpler and easier to analyze with respect to alignment
1833     ... = ptr & ~algn;  */
1834(simplify
1835  (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1836  (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1837   (bit_and @0 { algn; })))
1838
1839/* Try folding difference of addresses.  */
1840(simplify
1841 (minus (convert ADDR_EXPR@0) (convert @1))
1842 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1843  (with { poly_int64 diff; }
1844   (if (ptr_difference_const (@0, @1, &diff))
1845    { build_int_cst_type (type, diff); }))))
1846(simplify
1847 (minus (convert @0) (convert ADDR_EXPR@1))
1848 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1849  (with { poly_int64 diff; }
1850   (if (ptr_difference_const (@0, @1, &diff))
1851    { build_int_cst_type (type, diff); }))))
1852(simplify
1853 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1854 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1855      && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1856  (with { poly_int64 diff; }
1857   (if (ptr_difference_const (@0, @1, &diff))
1858    { build_int_cst_type (type, diff); }))))
1859(simplify
1860 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1861 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1862      && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1863  (with { poly_int64 diff; }
1864   (if (ptr_difference_const (@0, @1, &diff))
1865    { build_int_cst_type (type, diff); }))))
1866
1867/* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst].  */
1868(simplify
1869 (convert (pointer_diff @0 INTEGER_CST@1))
1870 (if (POINTER_TYPE_P (type))
1871  { build_fold_addr_expr_with_type
1872      (build2 (MEM_REF, char_type_node, @0,
1873	       wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
1874	       type); }))
1875
1876/* If arg0 is derived from the address of an object or function, we may
1877   be able to fold this expression using the object or function's
1878   alignment.  */
1879(simplify
1880 (bit_and (convert? @0) INTEGER_CST@1)
1881 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1882      && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1883  (with
1884   {
1885     unsigned int align;
1886     unsigned HOST_WIDE_INT bitpos;
1887     get_pointer_alignment_1 (@0, &align, &bitpos);
1888   }
1889   (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1890    { wide_int_to_tree (type, (wi::to_wide (@1)
1891			       & (bitpos / BITS_PER_UNIT))); }))))
1892
1893(match min_value
1894 INTEGER_CST
1895 (if (INTEGRAL_TYPE_P (type)
1896      && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
1897
1898(match max_value
1899 INTEGER_CST
1900 (if (INTEGRAL_TYPE_P (type)
1901      && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
1902
1903/* x >  y  &&  x != XXX_MIN  -->  x > y
1904   x >  y  &&  x == XXX_MIN  -->  false . */
1905(for eqne (eq ne)
1906 (simplify
1907  (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
1908   (switch
1909    (if (eqne == EQ_EXPR)
1910     { constant_boolean_node (false, type); })
1911    (if (eqne == NE_EXPR)
1912     @2)
1913    )))
1914
1915/* x <  y  &&  x != XXX_MAX  -->  x < y
1916   x <  y  &&  x == XXX_MAX  -->  false.  */
1917(for eqne (eq ne)
1918 (simplify
1919  (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
1920   (switch
1921    (if (eqne == EQ_EXPR)
1922     { constant_boolean_node (false, type); })
1923    (if (eqne == NE_EXPR)
1924     @2)
1925    )))
1926
1927/* x <=  y  &&  x == XXX_MIN  -->  x == XXX_MIN.  */
1928(simplify
1929 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
1930  @2)
1931
1932/* x >=  y  &&  x == XXX_MAX  -->  x == XXX_MAX.  */
1933(simplify
1934 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
1935  @2)
1936
1937/* x >  y  ||  x != XXX_MIN   -->  x != XXX_MIN.  */
1938(simplify
1939 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
1940  @2)
1941
1942/* x <=  y  ||  x != XXX_MIN   -->  true.  */
1943(simplify
1944 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
1945  { constant_boolean_node (true, type); })
1946
1947/* x <=  y  ||  x == XXX_MIN   -->  x <= y.  */
1948(simplify
1949 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
1950  @2)
1951
1952/* x <  y  ||  x != XXX_MAX   -->  x != XXX_MAX.  */
1953(simplify
1954 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
1955  @2)
1956
1957/* x >=  y  ||  x != XXX_MAX   -->  true
1958   x >=  y  ||  x == XXX_MAX   -->  x >= y.  */
1959(for eqne (eq ne)
1960 (simplify
1961  (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
1962   (switch
1963    (if (eqne == EQ_EXPR)
1964     @2)
1965    (if (eqne == NE_EXPR)
1966     { constant_boolean_node (true, type); }))))
1967
1968/* Convert (X == CST1) && (X OP2 CST2) to a known value
1969   based on CST1 OP2 CST2.  Similarly for (X != CST1).  */
1970
1971(for code1 (eq ne)
1972 (for code2 (eq ne lt gt le ge)
1973  (simplify
1974   (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
1975    (with
1976     {
1977      int cmp = tree_int_cst_compare (@1, @2);
1978      bool val;
1979      switch (code2)
1980	 {
1981	case EQ_EXPR: val = (cmp == 0); break;
1982	case NE_EXPR: val = (cmp != 0); break;
1983	case LT_EXPR: val = (cmp < 0); break;
1984	case GT_EXPR: val = (cmp > 0); break;
1985	case LE_EXPR: val = (cmp <= 0); break;
1986	case GE_EXPR: val = (cmp >= 0); break;
1987	default: gcc_unreachable ();
1988	}
1989     }
1990     (switch
1991      (if (code1 == EQ_EXPR && val) @3)
1992      (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
1993      (if (code1 == NE_EXPR && !val) @4))))))
1994
1995/* Convert (X OP1 CST1) && (X OP2 CST2).  */
1996
1997(for code1 (lt le gt ge)
1998 (for code2 (lt le gt ge)
1999  (simplify
2000  (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2001   (with
2002    {
2003     int cmp = tree_int_cst_compare (@1, @2);
2004    }
2005    (switch
2006     /* Choose the more restrictive of two < or <= comparisons.  */
2007     (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2008	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2009      (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2010       @3
2011       @4))
2012     /* Likewise chose the more restrictive of two > or >= comparisons.  */
2013     (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2014	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2015      (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2016       @3
2017       @4))
2018     /* Check for singleton ranges.  */
2019     (if (cmp == 0
2020	  && ((code1 == LE_EXPR && code2 == GE_EXPR)
2021	    || (code1 == GE_EXPR && code2 == LE_EXPR)))
2022      (eq @0 @1))
2023     /* Check for disjoint ranges.  */
2024     (if (cmp <= 0
2025	  && (code1 == LT_EXPR || code1 == LE_EXPR)
2026	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2027      { constant_boolean_node (false, type); })
2028     (if (cmp >= 0
2029	  && (code1 == GT_EXPR || code1 == GE_EXPR)
2030	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2031      { constant_boolean_node (false, type); })
2032     )))))
2033
2034/* Convert (X == CST1) || (X OP2 CST2) to a known value
2035   based on CST1 OP2 CST2.  Similarly for (X != CST1).  */
2036
2037(for code1 (eq ne)
2038 (for code2 (eq ne lt gt le ge)
2039  (simplify
2040   (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2041    (with
2042     {
2043      int cmp = tree_int_cst_compare (@1, @2);
2044      bool val;
2045      switch (code2)
2046	{
2047	case EQ_EXPR: val = (cmp == 0); break;
2048	case NE_EXPR: val = (cmp != 0); break;
2049	case LT_EXPR: val = (cmp < 0); break;
2050	case GT_EXPR: val = (cmp > 0); break;
2051	case LE_EXPR: val = (cmp <= 0); break;
2052	case GE_EXPR: val = (cmp >= 0); break;
2053	default: gcc_unreachable ();
2054	}
2055     }
2056     (switch
2057      (if (code1 == EQ_EXPR && val) @4)
2058      (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2059      (if (code1 == NE_EXPR && !val) @3))))))
2060
2061/* Convert (X OP1 CST1) || (X OP2 CST2).  */
2062
2063(for code1 (lt le gt ge)
2064 (for code2 (lt le gt ge)
2065  (simplify
2066  (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2067   (with
2068    {
2069     int cmp = tree_int_cst_compare (@1, @2);
2070    }
2071    (switch
2072     /* Choose the more restrictive of two < or <= comparisons.  */
2073     (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2074	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2075      (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2076       @4
2077       @3))
2078     /* Likewise chose the more restrictive of two > or >= comparisons.  */
2079     (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2080	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2081      (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2082       @4
2083       @3))
2084     /* Check for singleton ranges.  */
2085     (if (cmp == 0
2086	  && ((code1 == LT_EXPR && code2 == GT_EXPR)
2087	      || (code1 == GT_EXPR && code2 == LT_EXPR)))
2088      (ne @0 @2))
2089     /* Check for disjoint ranges.  */
2090     (if (cmp >= 0
2091	  && (code1 == LT_EXPR || code1 == LE_EXPR)
2092	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2093      { constant_boolean_node (true, type); })
2094     (if (cmp <= 0
2095	  && (code1 == GT_EXPR || code1 == GE_EXPR)
2096	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2097      { constant_boolean_node (true, type); })
2098     )))))
2099
2100/* We can't reassociate at all for saturating types.  */
2101(if (!TYPE_SATURATING (type))
2102
2103 /* Contract negates.  */
2104 /* A + (-B) -> A - B */
2105 (simplify
2106  (plus:c @0 (convert? (negate @1)))
2107  /* Apply STRIP_NOPS on the negate.  */
2108  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2109       && !TYPE_OVERFLOW_SANITIZED (type))
2110   (with
2111    {
2112     tree t1 = type;
2113     if (INTEGRAL_TYPE_P (type)
2114	 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2115       t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2116    }
2117    (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2118 /* A - (-B) -> A + B */
2119 (simplify
2120  (minus @0 (convert? (negate @1)))
2121  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2122       && !TYPE_OVERFLOW_SANITIZED (type))
2123   (with
2124    {
2125     tree t1 = type;
2126     if (INTEGRAL_TYPE_P (type)
2127	 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2128       t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2129    }
2130    (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2131 /* -(T)(-A) -> (T)A
2132    Sign-extension is ok except for INT_MIN, which thankfully cannot
2133    happen without overflow.  */
2134 (simplify
2135  (negate (convert (negate @1)))
2136  (if (INTEGRAL_TYPE_P (type)
2137       && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2138	   || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2139	       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2140       && !TYPE_OVERFLOW_SANITIZED (type)
2141       && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2142   (convert @1)))
2143 (simplify
2144  (negate (convert negate_expr_p@1))
2145  (if (SCALAR_FLOAT_TYPE_P (type)
2146       && ((DECIMAL_FLOAT_TYPE_P (type)
2147	    == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2148	    && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2149	   || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2150   (convert (negate @1))))
2151 (simplify
2152  (negate (nop_convert? (negate @1)))
2153  (if (!TYPE_OVERFLOW_SANITIZED (type)
2154       && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2155   (view_convert @1)))
2156
2157 /* We can't reassociate floating-point unless -fassociative-math
2158    or fixed-point plus or minus because of saturation to +-Inf.  */
2159 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2160      && !FIXED_POINT_TYPE_P (type))
2161
2162  /* Match patterns that allow contracting a plus-minus pair
2163     irrespective of overflow issues.  */
2164  /* (A +- B) - A       ->  +- B */
2165  /* (A +- B) -+ B      ->  A */
2166  /* A - (A +- B)       -> -+ B */
2167  /* A +- (B -+ A)      ->  +- B */
2168  (simplify
2169   (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2170   (view_convert @1))
2171  (simplify
2172   (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2173   (if (!ANY_INTEGRAL_TYPE_P (type)
2174	|| TYPE_OVERFLOW_WRAPS (type))
2175   (negate (view_convert @1))
2176   (view_convert (negate @1))))
2177  (simplify
2178   (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2179   (view_convert @0))
2180  (simplify
2181   (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2182    (if (!ANY_INTEGRAL_TYPE_P (type)
2183	 || TYPE_OVERFLOW_WRAPS (type))
2184     (negate (view_convert @1))
2185     (view_convert (negate @1))))
2186  (simplify
2187   (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2188   (view_convert @1))
2189  /* (A +- B) + (C - A)   -> C +- B */
2190  /* (A +  B) - (A - C)   -> B + C */
2191  /* More cases are handled with comparisons.  */
2192  (simplify
2193   (plus:c (plus:c @0 @1) (minus @2 @0))
2194   (plus @2 @1))
2195  (simplify
2196   (plus:c (minus @0 @1) (minus @2 @0))
2197   (minus @2 @1))
2198  (simplify
2199   (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2200   (if (TYPE_OVERFLOW_UNDEFINED (type)
2201	&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2202    (pointer_diff @2 @1)))
2203  (simplify
2204   (minus (plus:c @0 @1) (minus @0 @2))
2205   (plus @1 @2))
2206
2207  /* (A +- CST1) +- CST2 -> A + CST3
2208     Use view_convert because it is safe for vectors and equivalent for
2209     scalars.  */
2210  (for outer_op (plus minus)
2211   (for inner_op (plus minus)
2212	neg_inner_op (minus plus)
2213    (simplify
2214     (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2215	       CONSTANT_CLASS_P@2)
2216     /* If one of the types wraps, use that one.  */
2217     (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2218      /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2219	 forever if something doesn't simplify into a constant.  */
2220      (if (!CONSTANT_CLASS_P (@0))
2221       (if (outer_op == PLUS_EXPR)
2222	(plus (view_convert @0) (inner_op @2 (view_convert @1)))
2223	(minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2224      (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2225	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2226       (if (outer_op == PLUS_EXPR)
2227	(view_convert (plus @0 (inner_op (view_convert @2) @1)))
2228	(view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2229       /* If the constant operation overflows we cannot do the transform
2230	  directly as we would introduce undefined overflow, for example
2231	  with (a - 1) + INT_MIN.  */
2232       (if (types_match (type, @0))
2233	(with { tree cst = const_binop (outer_op == inner_op
2234					? PLUS_EXPR : MINUS_EXPR,
2235					type, @1, @2); }
2236	 (if (cst && !TREE_OVERFLOW (cst))
2237	  (inner_op @0 { cst; } )
2238	  /* X+INT_MAX+1 is X-INT_MIN.  */
2239	  (if (INTEGRAL_TYPE_P (type) && cst
2240	       && wi::to_wide (cst) == wi::min_value (type))
2241	   (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2242	   /* Last resort, use some unsigned type.  */
2243	   (with { tree utype = unsigned_type_for (type); }
2244	    (if (utype)
2245	     (view_convert (inner_op
2246			    (view_convert:utype @0)
2247			    (view_convert:utype
2248			     { drop_tree_overflow (cst); }))))))))))))))
2249
2250  /* (CST1 - A) +- CST2 -> CST3 - A  */
2251  (for outer_op (plus minus)
2252   (simplify
2253    (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2254    /* If one of the types wraps, use that one.  */
2255    (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2256     /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2257	forever if something doesn't simplify into a constant.  */
2258     (if (!CONSTANT_CLASS_P (@0))
2259      (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2260     (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2261	  || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2262      (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2263      (if (types_match (type, @0))
2264       (with { tree cst = const_binop (outer_op, type, @1, @2); }
2265	(if (cst && !TREE_OVERFLOW (cst))
2266	 (minus { cst; } @0))))))))
2267
2268  /* CST1 - (CST2 - A) -> CST3 + A
2269     Use view_convert because it is safe for vectors and equivalent for
2270     scalars.  */
2271  (simplify
2272   (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2273   /* If one of the types wraps, use that one.  */
2274   (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2275    /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2276      forever if something doesn't simplify into a constant.  */
2277    (if (!CONSTANT_CLASS_P (@0))
2278     (plus (view_convert @0) (minus @1 (view_convert @2))))
2279    (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2280	 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2281     (view_convert (plus @0 (minus (view_convert @1) @2)))
2282     (if (types_match (type, @0))
2283      (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2284       (if (cst && !TREE_OVERFLOW (cst))
2285	(plus { cst; } @0)))))))
2286
2287/* ((T)(A)) + CST -> (T)(A + CST)  */
2288#if GIMPLE
2289  (simplify
2290   (plus (convert SSA_NAME@0) INTEGER_CST@1)
2291    (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2292         && TREE_CODE (type) == INTEGER_TYPE
2293         && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2294         && int_fits_type_p (@1, TREE_TYPE (@0)))
2295     /* Perform binary operation inside the cast if the constant fits
2296        and (A + CST)'s range does not overflow.  */
2297     (with
2298      {
2299	wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2300			  max_ovf = wi::OVF_OVERFLOW;
2301        tree inner_type = TREE_TYPE (@0);
2302
2303	wide_int w1
2304	  = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2305			    TYPE_SIGN (inner_type));
2306
2307        wide_int wmin0, wmax0;
2308        if (get_range_info (@0, &wmin0, &wmax0) == VR_RANGE)
2309          {
2310            wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2311            wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2312          }
2313      }
2314     (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2315      (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2316     )))
2317#endif
2318
2319/* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2  */
2320#if GIMPLE
2321  (for op (plus minus)
2322   (simplify
2323    (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2324     (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2325	  && TREE_CODE (type) == INTEGER_TYPE
2326	  && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2327	  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2328	  && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2329	  && TYPE_OVERFLOW_WRAPS (type))
2330       (plus (convert @0) (op @2 (convert @1))))))
2331#endif
2332
2333  /* ~A + A -> -1 */
2334  (simplify
2335   (plus:c (bit_not @0) @0)
2336   (if (!TYPE_OVERFLOW_TRAPS (type))
2337    { build_all_ones_cst (type); }))
2338
2339  /* ~A + 1 -> -A */
2340  (simplify
2341   (plus (convert? (bit_not @0)) integer_each_onep)
2342   (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2343    (negate (convert @0))))
2344
2345  /* -A - 1 -> ~A */
2346  (simplify
2347   (minus (convert? (negate @0)) integer_each_onep)
2348   (if (!TYPE_OVERFLOW_TRAPS (type)
2349	&& tree_nop_conversion_p (type, TREE_TYPE (@0)))
2350    (bit_not (convert @0))))
2351
2352  /* -1 - A -> ~A */
2353  (simplify
2354   (minus integer_all_onesp @0)
2355   (bit_not @0))
2356
2357  /* (T)(P + A) - (T)P -> (T) A */
2358  (simplify
2359   (minus (convert (plus:c @@0 @1))
2360    (convert? @0))
2361   (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2362	/* For integer types, if A has a smaller type
2363	   than T the result depends on the possible
2364	   overflow in P + A.
2365	   E.g. T=size_t, A=(unsigned)429497295, P>0.
2366	   However, if an overflow in P + A would cause
2367	   undefined behavior, we can assume that there
2368	   is no overflow.  */
2369	|| (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2370	    && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2371    (convert @1)))
2372  (simplify
2373   (minus (convert (pointer_plus @@0 @1))
2374    (convert @0))
2375   (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2376	/* For pointer types, if the conversion of A to the
2377	   final type requires a sign- or zero-extension,
2378	   then we have to punt - it is not defined which
2379	   one is correct.  */
2380	|| (POINTER_TYPE_P (TREE_TYPE (@0))
2381	    && TREE_CODE (@1) == INTEGER_CST
2382	    && tree_int_cst_sign_bit (@1) == 0))
2383    (convert @1)))
2384   (simplify
2385    (pointer_diff (pointer_plus @@0 @1) @0)
2386    /* The second argument of pointer_plus must be interpreted as signed, and
2387       thus sign-extended if necessary.  */
2388    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2389     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2390	second arg is unsigned even when we need to consider it as signed,
2391	we don't want to diagnose overflow here.  */
2392     (convert (view_convert:stype @1))))
2393
2394  /* (T)P - (T)(P + A) -> -(T) A */
2395  (simplify
2396   (minus (convert? @0)
2397    (convert (plus:c @@0 @1)))
2398   (if (INTEGRAL_TYPE_P (type)
2399	&& TYPE_OVERFLOW_UNDEFINED (type)
2400	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
2401    (with { tree utype = unsigned_type_for (type); }
2402     (convert (negate (convert:utype @1))))
2403    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2404	 /* For integer types, if A has a smaller type
2405	    than T the result depends on the possible
2406	    overflow in P + A.
2407	    E.g. T=size_t, A=(unsigned)429497295, P>0.
2408	    However, if an overflow in P + A would cause
2409	    undefined behavior, we can assume that there
2410	    is no overflow.  */
2411	 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2412	     && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2413     (negate (convert @1)))))
2414  (simplify
2415   (minus (convert @0)
2416    (convert (pointer_plus @@0 @1)))
2417   (if (INTEGRAL_TYPE_P (type)
2418	&& TYPE_OVERFLOW_UNDEFINED (type)
2419	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
2420    (with { tree utype = unsigned_type_for (type); }
2421     (convert (negate (convert:utype @1))))
2422    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2423	 /* For pointer types, if the conversion of A to the
2424	    final type requires a sign- or zero-extension,
2425	    then we have to punt - it is not defined which
2426	    one is correct.  */
2427	 || (POINTER_TYPE_P (TREE_TYPE (@0))
2428	     && TREE_CODE (@1) == INTEGER_CST
2429	     && tree_int_cst_sign_bit (@1) == 0))
2430     (negate (convert @1)))))
2431   (simplify
2432    (pointer_diff @0 (pointer_plus @@0 @1))
2433    /* The second argument of pointer_plus must be interpreted as signed, and
2434       thus sign-extended if necessary.  */
2435    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2436     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2437	second arg is unsigned even when we need to consider it as signed,
2438	we don't want to diagnose overflow here.  */
2439     (negate (convert (view_convert:stype @1)))))
2440
2441  /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2442  (simplify
2443   (minus (convert (plus:c @@0 @1))
2444    (convert (plus:c @0 @2)))
2445   (if (INTEGRAL_TYPE_P (type)
2446	&& TYPE_OVERFLOW_UNDEFINED (type)
2447	&& element_precision (type) <= element_precision (TREE_TYPE (@1))
2448	&& element_precision (type) <= element_precision (TREE_TYPE (@2)))
2449    (with { tree utype = unsigned_type_for (type); }
2450     (convert (minus (convert:utype @1) (convert:utype @2))))
2451    (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2452	  == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2453	 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2454	     /* For integer types, if A has a smaller type
2455		than T the result depends on the possible
2456		overflow in P + A.
2457		E.g. T=size_t, A=(unsigned)429497295, P>0.
2458		However, if an overflow in P + A would cause
2459		undefined behavior, we can assume that there
2460		is no overflow.  */
2461	     || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2462		 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2463		 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2464		 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2465     (minus (convert @1) (convert @2)))))
2466  (simplify
2467   (minus (convert (pointer_plus @@0 @1))
2468    (convert (pointer_plus @0 @2)))
2469   (if (INTEGRAL_TYPE_P (type)
2470	&& TYPE_OVERFLOW_UNDEFINED (type)
2471	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
2472    (with { tree utype = unsigned_type_for (type); }
2473     (convert (minus (convert:utype @1) (convert:utype @2))))
2474    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2475	 /* For pointer types, if the conversion of A to the
2476	    final type requires a sign- or zero-extension,
2477	    then we have to punt - it is not defined which
2478	    one is correct.  */
2479	 || (POINTER_TYPE_P (TREE_TYPE (@0))
2480	     && TREE_CODE (@1) == INTEGER_CST
2481	     && tree_int_cst_sign_bit (@1) == 0
2482	     && TREE_CODE (@2) == INTEGER_CST
2483	     && tree_int_cst_sign_bit (@2) == 0))
2484     (minus (convert @1) (convert @2)))))
2485   (simplify
2486    (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2487    /* The second argument of pointer_plus must be interpreted as signed, and
2488       thus sign-extended if necessary.  */
2489    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2490     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2491	second arg is unsigned even when we need to consider it as signed,
2492	we don't want to diagnose overflow here.  */
2493     (minus (convert (view_convert:stype @1))
2494	    (convert (view_convert:stype @2)))))))
2495
2496/* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2497    Modeled after fold_plusminus_mult_expr.  */
2498(if (!TYPE_SATURATING (type)
2499     && (!FLOAT_TYPE_P (type) || flag_associative_math))
2500 (for plusminus (plus minus)
2501  (simplify
2502   (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2503   (if ((!ANY_INTEGRAL_TYPE_P (type)
2504	 || TYPE_OVERFLOW_WRAPS (type)
2505	 || (INTEGRAL_TYPE_P (type)
2506	     && tree_expr_nonzero_p (@0)
2507	     && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2508	/* If @1 +- @2 is constant require a hard single-use on either
2509	   original operand (but not on both).  */
2510	&& (single_use (@3) || single_use (@4)))
2511    (mult (plusminus @1 @2) @0)))
2512  /* We cannot generate constant 1 for fract.  */
2513  (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2514   (simplify
2515    (plusminus @0 (mult:c@3 @0 @2))
2516    (if ((!ANY_INTEGRAL_TYPE_P (type)
2517	  || TYPE_OVERFLOW_WRAPS (type)
2518	  /* For @0 + @0*@2 this transformation would introduce UB
2519	     (where there was none before) for @0 in [-1,0] and @2 max.
2520	     For @0 - @0*@2 this transformation would introduce UB
2521	     for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1.  */
2522	  || (INTEGRAL_TYPE_P (type)
2523	      && ((tree_expr_nonzero_p (@0)
2524		   && expr_not_equal_to (@0,
2525				wi::minus_one (TYPE_PRECISION (type))))
2526		  || (plusminus == PLUS_EXPR
2527		      ? expr_not_equal_to (@2,
2528			    wi::max_value (TYPE_PRECISION (type), SIGNED))
2529		      /* Let's ignore the @0 -1 and @2 min case.  */
2530		      : (expr_not_equal_to (@2,
2531			    wi::min_value (TYPE_PRECISION (type), SIGNED))
2532			 && expr_not_equal_to (@2,
2533				wi::min_value (TYPE_PRECISION (type), SIGNED)
2534				+ 1))))))
2535	 && single_use (@3))
2536     (mult (plusminus { build_one_cst (type); } @2) @0)))
2537   (simplify
2538    (plusminus (mult:c@3 @0 @2) @0)
2539    (if ((!ANY_INTEGRAL_TYPE_P (type)
2540	  || TYPE_OVERFLOW_WRAPS (type)
2541	  /* For @0*@2 + @0 this transformation would introduce UB
2542	     (where there was none before) for @0 in [-1,0] and @2 max.
2543	     For @0*@2 - @0 this transformation would introduce UB
2544	     for @0 0 and @2 min.  */
2545	  || (INTEGRAL_TYPE_P (type)
2546	      && ((tree_expr_nonzero_p (@0)
2547		   && (plusminus == MINUS_EXPR
2548		       || expr_not_equal_to (@0,
2549				wi::minus_one (TYPE_PRECISION (type)))))
2550		  || expr_not_equal_to (@2,
2551			(plusminus == PLUS_EXPR
2552			 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
2553			 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
2554	 && single_use (@3))
2555     (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2556
2557/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax().  */
2558
2559(for minmax (min max FMIN_ALL FMAX_ALL)
2560 (simplify
2561  (minmax @0 @0)
2562  @0))
2563/* min(max(x,y),y) -> y.  */
2564(simplify
2565 (min:c (max:c @0 @1) @1)
2566 @1)
2567/* max(min(x,y),y) -> y.  */
2568(simplify
2569 (max:c (min:c @0 @1) @1)
2570 @1)
2571/* max(a,-a) -> abs(a).  */
2572(simplify
2573 (max:c @0 (negate @0))
2574 (if (TREE_CODE (type) != COMPLEX_TYPE
2575      && (! ANY_INTEGRAL_TYPE_P (type)
2576	  || TYPE_OVERFLOW_UNDEFINED (type)))
2577  (abs @0)))
2578/* min(a,-a) -> -abs(a).  */
2579(simplify
2580 (min:c @0 (negate @0))
2581 (if (TREE_CODE (type) != COMPLEX_TYPE
2582      && (! ANY_INTEGRAL_TYPE_P (type)
2583	  || TYPE_OVERFLOW_UNDEFINED (type)))
2584  (negate (abs @0))))
2585(simplify
2586 (min @0 @1)
2587 (switch
2588  (if (INTEGRAL_TYPE_P (type)
2589       && TYPE_MIN_VALUE (type)
2590       && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2591   @1)
2592  (if (INTEGRAL_TYPE_P (type)
2593       && TYPE_MAX_VALUE (type)
2594       && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2595   @0)))
2596(simplify
2597 (max @0 @1)
2598 (switch
2599  (if (INTEGRAL_TYPE_P (type)
2600       && TYPE_MAX_VALUE (type)
2601       && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2602   @1)
2603  (if (INTEGRAL_TYPE_P (type)
2604       && TYPE_MIN_VALUE (type)
2605       && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2606   @0)))
2607
2608/* max (a, a + CST) -> a + CST where CST is positive.  */
2609/* max (a, a + CST) -> a where CST is negative.  */
2610(simplify
2611 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2612  (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2613   (if (tree_int_cst_sgn (@1) > 0)
2614    @2
2615    @0)))
2616
2617/* min (a, a + CST) -> a where CST is positive.  */
2618/* min (a, a + CST) -> a + CST where CST is negative. */
2619(simplify
2620 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2621  (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2622   (if (tree_int_cst_sgn (@1) > 0)
2623    @0
2624    @2)))
2625
2626/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2627   and the outer convert demotes the expression back to x's type.  */
2628(for minmax (min max)
2629 (simplify
2630  (convert (minmax@0 (convert @1) INTEGER_CST@2))
2631  (if (INTEGRAL_TYPE_P (type)
2632       && types_match (@1, type) && int_fits_type_p (@2, type)
2633       && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2634       && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2635   (minmax @1 (convert @2)))))
2636
2637(for minmax (FMIN_ALL FMAX_ALL)
2638 /* If either argument is NaN, return the other one.  Avoid the
2639    transformation if we get (and honor) a signalling NaN.  */
2640 (simplify
2641  (minmax:c @0 REAL_CST@1)
2642  (if (real_isnan (TREE_REAL_CST_PTR (@1))
2643       && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2644   @0)))
2645/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR.  C99 requires these
2646   functions to return the numeric arg if the other one is NaN.
2647   MIN and MAX don't honor that, so only transform if -ffinite-math-only
2648   is set.  C99 doesn't require -0.0 to be handled, so we don't have to
2649   worry about it either.  */
2650(if (flag_finite_math_only)
2651 (simplify
2652  (FMIN_ALL @0 @1)
2653  (min @0 @1))
2654 (simplify
2655  (FMAX_ALL @0 @1)
2656  (max @0 @1)))
2657/* min (-A, -B) -> -max (A, B)  */
2658(for minmax (min max FMIN_ALL FMAX_ALL)
2659     maxmin (max min FMAX_ALL FMIN_ALL)
2660 (simplify
2661  (minmax (negate:s@2 @0) (negate:s@3 @1))
2662  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2663       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2664           && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2665   (negate (maxmin @0 @1)))))
2666/* MIN (~X, ~Y) -> ~MAX (X, Y)
2667   MAX (~X, ~Y) -> ~MIN (X, Y)  */
2668(for minmax (min max)
2669 maxmin (max min)
2670 (simplify
2671  (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2672  (bit_not (maxmin @0 @1))))
2673
2674/* MIN (X, Y) == X -> X <= Y  */
2675(for minmax (min min max max)
2676     cmp    (eq  ne  eq  ne )
2677     out    (le  gt  ge  lt )
2678 (simplify
2679  (cmp:c (minmax:c @0 @1) @0)
2680  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2681   (out @0 @1))))
2682/* MIN (X, 5) == 0 -> X == 0
2683   MIN (X, 5) == 7 -> false  */
2684(for cmp (eq ne)
2685 (simplify
2686  (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2687  (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2688		 TYPE_SIGN (TREE_TYPE (@0))))
2689   { constant_boolean_node (cmp == NE_EXPR, type); }
2690   (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2691		  TYPE_SIGN (TREE_TYPE (@0))))
2692    (cmp @0 @2)))))
2693(for cmp (eq ne)
2694 (simplify
2695  (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2696  (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2697		 TYPE_SIGN (TREE_TYPE (@0))))
2698   { constant_boolean_node (cmp == NE_EXPR, type); }
2699   (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2700		  TYPE_SIGN (TREE_TYPE (@0))))
2701    (cmp @0 @2)))))
2702/* MIN (X, C1) < C2 -> X < C2 || C1 < C2  */
2703(for minmax (min     min     max     max     min     min     max     max    )
2704     cmp    (lt      le      gt      ge      gt      ge      lt      le     )
2705     comb   (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2706 (simplify
2707  (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2708  (comb (cmp @0 @2) (cmp @1 @2))))
2709
2710/* Undo fancy way of writing max/min or other ?: expressions,
2711   like a - ((a - b) & -(a < b)), in this case into (a < b) ? b : a.
2712   People normally use ?: and that is what we actually try to optimize.  */
2713(for cmp (simple_comparison)
2714 (simplify
2715  (minus @0 (bit_and:c (minus @0 @1)
2716		       (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2717  (if (INTEGRAL_TYPE_P (type)
2718       && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2719       && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2720       && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2721       && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2722	   || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2723       && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2724   (cond (cmp @2 @3) @1 @0)))
2725 (simplify
2726  (plus:c @0 (bit_and:c (minus @1 @0)
2727			(convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2728  (if (INTEGRAL_TYPE_P (type)
2729       && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2730       && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2731       && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2732       && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2733	   || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2734       && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2735   (cond (cmp @2 @3) @1 @0))))
2736
2737/* Simplifications of shift and rotates.  */
2738
2739(for rotate (lrotate rrotate)
2740 (simplify
2741  (rotate integer_all_onesp@0 @1)
2742  @0))
2743
2744/* Optimize -1 >> x for arithmetic right shifts.  */
2745(simplify
2746 (rshift integer_all_onesp@0 @1)
2747 (if (!TYPE_UNSIGNED (type)
2748      && tree_expr_nonnegative_p (@1))
2749  @0))
2750
2751/* Optimize (x >> c) << c into x & (-1<<c).  */
2752(simplify
2753 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
2754 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2755  /* It doesn't matter if the right shift is arithmetic or logical.  */
2756  (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
2757
2758(simplify
2759 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
2760 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
2761      /* Allow intermediate conversion to integral type with whatever sign, as
2762	 long as the low TYPE_PRECISION (type)
2763	 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved.  */
2764      && INTEGRAL_TYPE_P (type)
2765      && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2766      && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2767      && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
2768      && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
2769	  || wi::geu_p (wi::to_wide (@1),
2770			TYPE_PRECISION (type)
2771			- TYPE_PRECISION (TREE_TYPE (@2)))))
2772  (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
2773
2774/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2775   types.  */
2776(simplify
2777 (rshift (lshift @0 INTEGER_CST@1) @1)
2778 (if (TYPE_UNSIGNED (type)
2779      && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2780  (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2781
2782(for shiftrotate (lrotate rrotate lshift rshift)
2783 (simplify
2784  (shiftrotate @0 integer_zerop)
2785  (non_lvalue @0))
2786 (simplify
2787  (shiftrotate integer_zerop@0 @1)
2788  @0)
2789 /* Prefer vector1 << scalar to vector1 << vector2
2790    if vector2 is uniform.  */
2791 (for vec (VECTOR_CST CONSTRUCTOR)
2792  (simplify
2793   (shiftrotate @0 vec@1)
2794   (with { tree tem = uniform_vector_p (@1); }
2795    (if (tem)
2796     (shiftrotate @0 { tem; }))))))
2797
2798/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2799   Y is 0.  Similarly for X >> Y.  */
2800#if GIMPLE
2801(for shift (lshift rshift)
2802 (simplify
2803  (shift @0 SSA_NAME@1)
2804   (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2805    (with {
2806      int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2807      int prec = TYPE_PRECISION (TREE_TYPE (@1));
2808     }
2809     (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2810      @0)))))
2811#endif
2812
2813/* Rewrite an LROTATE_EXPR by a constant into an
2814   RROTATE_EXPR by a new constant.  */
2815(simplify
2816 (lrotate @0 INTEGER_CST@1)
2817 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2818			    build_int_cst (TREE_TYPE (@1),
2819					   element_precision (type)), @1); }))
2820
2821/* Turn (a OP c1) OP c2 into a OP (c1+c2).  */
2822(for op (lrotate rrotate rshift lshift)
2823 (simplify
2824  (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2825  (with { unsigned int prec = element_precision (type); }
2826   (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2827        && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2828        && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2829	&& wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2830    (with { unsigned int low = (tree_to_uhwi (@1)
2831				+ tree_to_uhwi (@2)); }
2832     /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2833        being well defined.  */
2834     (if (low >= prec)
2835      (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2836       (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2837       (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2838        { build_zero_cst (type); }
2839        (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2840      (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2841
2842
2843/* ((1 << A) & 1) != 0 -> A == 0
2844   ((1 << A) & 1) == 0 -> A != 0 */
2845(for cmp (ne eq)
2846     icmp (eq ne)
2847 (simplify
2848  (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2849  (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2850
2851/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2852   (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2853   if CST2 != 0.  */
2854(for cmp (ne eq)
2855 (simplify
2856  (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2857  (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2858   (if (cand < 0
2859	|| (!integer_zerop (@2)
2860	    && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2861    { constant_boolean_node (cmp == NE_EXPR, type); }
2862    (if (!integer_zerop (@2)
2863	 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2864     (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2865
2866/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2867        (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2868   if the new mask might be further optimized.  */
2869(for shift (lshift rshift)
2870 (simplify
2871  (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2872           INTEGER_CST@2)
2873   (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2874	&& TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2875	&& tree_fits_uhwi_p (@1)
2876	&& tree_to_uhwi (@1) > 0
2877	&& tree_to_uhwi (@1) < TYPE_PRECISION (type))
2878    (with
2879     {
2880       unsigned int shiftc = tree_to_uhwi (@1);
2881       unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2882       unsigned HOST_WIDE_INT newmask, zerobits = 0;
2883       tree shift_type = TREE_TYPE (@3);
2884       unsigned int prec;
2885
2886       if (shift == LSHIFT_EXPR)
2887	 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2888       else if (shift == RSHIFT_EXPR
2889		&& type_has_mode_precision_p (shift_type))
2890	 {
2891	   prec = TYPE_PRECISION (TREE_TYPE (@3));
2892	   tree arg00 = @0;
2893	   /* See if more bits can be proven as zero because of
2894	      zero extension.  */
2895	   if (@3 != @0
2896	       && TYPE_UNSIGNED (TREE_TYPE (@0)))
2897	     {
2898	       tree inner_type = TREE_TYPE (@0);
2899	       if (type_has_mode_precision_p (inner_type)
2900		   && TYPE_PRECISION (inner_type) < prec)
2901		 {
2902		   prec = TYPE_PRECISION (inner_type);
2903		   /* See if we can shorten the right shift.  */
2904		   if (shiftc < prec)
2905		     shift_type = inner_type;
2906		   /* Otherwise X >> C1 is all zeros, so we'll optimize
2907		      it into (X, 0) later on by making sure zerobits
2908		      is all ones.  */
2909		 }
2910	     }
2911	   zerobits = HOST_WIDE_INT_M1U;
2912	   if (shiftc < prec)
2913	     {
2914	       zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2915	       zerobits <<= prec - shiftc;
2916	     }
2917	   /* For arithmetic shift if sign bit could be set, zerobits
2918	      can contain actually sign bits, so no transformation is
2919	      possible, unless MASK masks them all away.  In that
2920	      case the shift needs to be converted into logical shift.  */
2921	   if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2922	       && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2923	     {
2924	       if ((mask & zerobits) == 0)
2925		 shift_type = unsigned_type_for (TREE_TYPE (@3));
2926	       else
2927		 zerobits = 0;
2928	     }
2929	 }
2930     }
2931     /* ((X << 16) & 0xff00) is (X, 0).  */
2932     (if ((mask & zerobits) == mask)
2933      { build_int_cst (type, 0); }
2934      (with { newmask = mask | zerobits; }
2935       (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2936        (with
2937	 {
2938	   /* Only do the transformation if NEWMASK is some integer
2939	      mode's mask.  */
2940	   for (prec = BITS_PER_UNIT;
2941	        prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2942	     if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2943	       break;
2944	 }
2945	 (if (prec < HOST_BITS_PER_WIDE_INT
2946	      || newmask == HOST_WIDE_INT_M1U)
2947	  (with
2948	   { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2949	   (if (!tree_int_cst_equal (newmaskt, @2))
2950	    (if (shift_type != TREE_TYPE (@3))
2951	     (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2952	     (bit_and @4 { newmaskt; })))))))))))))
2953
2954/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2955   (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1).  */
2956(for shift (lshift rshift)
2957 (for bit_op (bit_and bit_xor bit_ior)
2958  (simplify
2959   (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2960   (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2961    (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2962     (bit_op (shift (convert @0) @1) { mask; }))))))
2963
2964/* ~(~X >> Y) -> X >> Y (for arithmetic shift).  */
2965(simplify
2966 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2967  (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2968       && (element_precision (TREE_TYPE (@0))
2969	   <= element_precision (TREE_TYPE (@1))
2970	   || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2971   (with
2972    { tree shift_type = TREE_TYPE (@0); }
2973     (convert (rshift (convert:shift_type @1) @2)))))
2974
2975/* ~(~X >>r Y) -> X >>r Y
2976   ~(~X <<r Y) -> X <<r Y */
2977(for rotate (lrotate rrotate)
2978 (simplify
2979  (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2980   (if ((element_precision (TREE_TYPE (@0))
2981	 <= element_precision (TREE_TYPE (@1))
2982	 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2983        && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2984	    || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2985    (with
2986     { tree rotate_type = TREE_TYPE (@0); }
2987      (convert (rotate (convert:rotate_type @1) @2))))))
2988
2989/* Simplifications of conversions.  */
2990
2991/* Basic strip-useless-type-conversions / strip_nops.  */
2992(for cvt (convert view_convert float fix_trunc)
2993 (simplify
2994  (cvt @0)
2995  (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2996       || (GENERIC && type == TREE_TYPE (@0)))
2997   @0)))
2998
2999/* Contract view-conversions.  */
3000(simplify
3001  (view_convert (view_convert @0))
3002  (view_convert @0))
3003
3004/* For integral conversions with the same precision or pointer
3005   conversions use a NOP_EXPR instead.  */
3006(simplify
3007  (view_convert @0)
3008  (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
3009       && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3010       && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
3011   (convert @0)))
3012
3013/* Strip inner integral conversions that do not change precision or size, or
3014   zero-extend while keeping the same size (for bool-to-char).  */
3015(simplify
3016  (view_convert (convert@0 @1))
3017  (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3018       && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3019       && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3020       && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3021	   || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3022	       && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3023   (view_convert @1)))
3024
3025/* Simplify a view-converted empty constructor.  */
3026(simplify
3027  (view_convert CONSTRUCTOR@0)
3028  (if (TREE_CODE (@0) != SSA_NAME
3029       && CONSTRUCTOR_NELTS (@0) == 0)
3030   { build_zero_cst (type); }))
3031
3032/* Re-association barriers around constants and other re-association
3033   barriers can be removed.  */
3034(simplify
3035 (paren CONSTANT_CLASS_P@0)
3036 @0)
3037(simplify
3038 (paren (paren@1 @0))
3039 @1)
3040
3041/* Handle cases of two conversions in a row.  */
3042(for ocvt (convert float fix_trunc)
3043 (for icvt (convert float)
3044  (simplify
3045   (ocvt (icvt@1 @0))
3046   (with
3047    {
3048      tree inside_type = TREE_TYPE (@0);
3049      tree inter_type = TREE_TYPE (@1);
3050      int inside_int = INTEGRAL_TYPE_P (inside_type);
3051      int inside_ptr = POINTER_TYPE_P (inside_type);
3052      int inside_float = FLOAT_TYPE_P (inside_type);
3053      int inside_vec = VECTOR_TYPE_P (inside_type);
3054      unsigned int inside_prec = TYPE_PRECISION (inside_type);
3055      int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3056      int inter_int = INTEGRAL_TYPE_P (inter_type);
3057      int inter_ptr = POINTER_TYPE_P (inter_type);
3058      int inter_float = FLOAT_TYPE_P (inter_type);
3059      int inter_vec = VECTOR_TYPE_P (inter_type);
3060      unsigned int inter_prec = TYPE_PRECISION (inter_type);
3061      int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3062      int final_int = INTEGRAL_TYPE_P (type);
3063      int final_ptr = POINTER_TYPE_P (type);
3064      int final_float = FLOAT_TYPE_P (type);
3065      int final_vec = VECTOR_TYPE_P (type);
3066      unsigned int final_prec = TYPE_PRECISION (type);
3067      int final_unsignedp = TYPE_UNSIGNED (type);
3068    }
3069   (switch
3070    /* In addition to the cases of two conversions in a row
3071       handled below, if we are converting something to its own
3072       type via an object of identical or wider precision, neither
3073       conversion is needed.  */
3074    (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3075	  || (GENERIC
3076	      && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3077	 && (((inter_int || inter_ptr) && final_int)
3078	     || (inter_float && final_float))
3079	 && inter_prec >= final_prec)
3080     (ocvt @0))
3081
3082    /* Likewise, if the intermediate and initial types are either both
3083       float or both integer, we don't need the middle conversion if the
3084       former is wider than the latter and doesn't change the signedness
3085       (for integers).  Avoid this if the final type is a pointer since
3086       then we sometimes need the middle conversion.  */
3087    (if (((inter_int && inside_int) || (inter_float && inside_float))
3088	 && (final_int || final_float)
3089	 && inter_prec >= inside_prec
3090	 && (inter_float || inter_unsignedp == inside_unsignedp))
3091     (ocvt @0))
3092
3093    /* If we have a sign-extension of a zero-extended value, we can
3094       replace that by a single zero-extension.  Likewise if the
3095       final conversion does not change precision we can drop the
3096       intermediate conversion.  */
3097    (if (inside_int && inter_int && final_int
3098	 && ((inside_prec < inter_prec && inter_prec < final_prec
3099	      && inside_unsignedp && !inter_unsignedp)
3100	     || final_prec == inter_prec))
3101     (ocvt @0))
3102
3103    /* Two conversions in a row are not needed unless:
3104	- some conversion is floating-point (overstrict for now), or
3105	- some conversion is a vector (overstrict for now), or
3106	- the intermediate type is narrower than both initial and
3107	  final, or
3108	- the intermediate type and innermost type differ in signedness,
3109	  and the outermost type is wider than the intermediate, or
3110	- the initial type is a pointer type and the precisions of the
3111	  intermediate and final types differ, or
3112	- the final type is a pointer type and the precisions of the
3113	  initial and intermediate types differ.  */
3114    (if (! inside_float && ! inter_float && ! final_float
3115	 && ! inside_vec && ! inter_vec && ! final_vec
3116	 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3117	 && ! (inside_int && inter_int
3118	       && inter_unsignedp != inside_unsignedp
3119	       && inter_prec < final_prec)
3120	 && ((inter_unsignedp && inter_prec > inside_prec)
3121	     == (final_unsignedp && final_prec > inter_prec))
3122	 && ! (inside_ptr && inter_prec != final_prec)
3123	 && ! (final_ptr && inside_prec != inter_prec))
3124     (ocvt @0))
3125
3126    /* A truncation to an unsigned type (a zero-extension) should be
3127       canonicalized as bitwise and of a mask.  */
3128    (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion.  */
3129	 && final_int && inter_int && inside_int
3130	 && final_prec == inside_prec
3131	 && final_prec > inter_prec
3132	 && inter_unsignedp)
3133     (convert (bit_and @0 { wide_int_to_tree
3134	                      (inside_type,
3135			       wi::mask (inter_prec, false,
3136					 TYPE_PRECISION (inside_type))); })))
3137
3138    /* If we are converting an integer to a floating-point that can
3139       represent it exactly and back to an integer, we can skip the
3140       floating-point conversion.  */
3141    (if (GIMPLE /* PR66211 */
3142	 && inside_int && inter_float && final_int &&
3143	 (unsigned) significand_size (TYPE_MODE (inter_type))
3144	 >= inside_prec - !inside_unsignedp)
3145     (convert @0)))))))
3146
3147/* If we have a narrowing conversion to an integral type that is fed by a
3148   BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3149   masks off bits outside the final type (and nothing else).  */
3150(simplify
3151  (convert (bit_and @0 INTEGER_CST@1))
3152  (if (INTEGRAL_TYPE_P (type)
3153       && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3154       && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3155       && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3156						    TYPE_PRECISION (type)), 0))
3157   (convert @0)))
3158
3159
3160/* (X /[ex] A) * A -> X.  */
3161(simplify
3162  (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3163  (convert @0))
3164
3165/* Simplify (A / B) * B + (A % B) -> A.  */
3166(for div (trunc_div ceil_div floor_div round_div)
3167     mod (trunc_mod ceil_mod floor_mod round_mod)
3168  (simplify
3169   (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3170   @0))
3171
3172/* ((X /[ex] A) +- B) * A  -->  X +- A * B.  */
3173(for op (plus minus)
3174 (simplify
3175  (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3176  (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3177       && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3178   (with
3179     {
3180       wi::overflow_type overflow;
3181       wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3182			       TYPE_SIGN (type), &overflow);
3183     }
3184     (if (types_match (type, TREE_TYPE (@2))
3185 	 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3186      (op @0 { wide_int_to_tree (type, mul); })
3187      (with { tree utype = unsigned_type_for (type); }
3188       (convert (op (convert:utype @0)
3189		    (mult (convert:utype @1) (convert:utype @2))))))))))
3190
3191/* Canonicalization of binary operations.  */
3192
3193/* Convert X + -C into X - C.  */
3194(simplify
3195 (plus @0 REAL_CST@1)
3196 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3197  (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3198   (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3199    (minus @0 { tem; })))))
3200
3201/* Convert x+x into x*2.  */
3202(simplify
3203 (plus @0 @0)
3204 (if (SCALAR_FLOAT_TYPE_P (type))
3205  (mult @0 { build_real (type, dconst2); })
3206  (if (INTEGRAL_TYPE_P (type))
3207   (mult @0 { build_int_cst (type, 2); }))))
3208
3209/* 0 - X  ->  -X.  */
3210(simplify
3211 (minus integer_zerop @1)
3212 (negate @1))
3213(simplify
3214 (pointer_diff integer_zerop @1)
3215 (negate (convert @1)))
3216
3217/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0).  So check whether
3218   ARG0 is zero and X + ARG0 reduces to X, since that would mean
3219   (-ARG1 + ARG0) reduces to -ARG1.  */
3220(simplify
3221 (minus real_zerop@0 @1)
3222 (if (fold_real_zero_addition_p (type, @0, 0))
3223  (negate @1)))
3224
3225/* Transform x * -1 into -x.  */
3226(simplify
3227 (mult @0 integer_minus_onep)
3228 (negate @0))
3229
3230/* Reassociate (X * CST) * Y to (X * Y) * CST.  This does not introduce
3231   signed overflow for CST != 0 && CST != -1.  */
3232(simplify
3233 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3234 (if (TREE_CODE (@2) != INTEGER_CST
3235      && single_use (@3)
3236      && !integer_zerop (@1) && !integer_minus_onep (@1))
3237  (mult (mult @0 @2) @1)))
3238
3239/* True if we can easily extract the real and imaginary parts of a complex
3240   number.  */
3241(match compositional_complex
3242 (convert? (complex @0 @1)))
3243
3244/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations.  */
3245(simplify
3246 (complex (realpart @0) (imagpart @0))
3247 @0)
3248(simplify
3249 (realpart (complex @0 @1))
3250 @0)
3251(simplify
3252 (imagpart (complex @0 @1))
3253 @1)
3254
3255/* Sometimes we only care about half of a complex expression.  */
3256(simplify
3257 (realpart (convert?:s (conj:s @0)))
3258 (convert (realpart @0)))
3259(simplify
3260 (imagpart (convert?:s (conj:s @0)))
3261 (convert (negate (imagpart @0))))
3262(for part (realpart imagpart)
3263 (for op (plus minus)
3264  (simplify
3265   (part (convert?:s@2 (op:s @0 @1)))
3266   (convert (op (part @0) (part @1))))))
3267(simplify
3268 (realpart (convert?:s (CEXPI:s @0)))
3269 (convert (COS @0)))
3270(simplify
3271 (imagpart (convert?:s (CEXPI:s @0)))
3272 (convert (SIN @0)))
3273
3274/* conj(conj(x)) -> x  */
3275(simplify
3276 (conj (convert? (conj @0)))
3277 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3278  (convert @0)))
3279
3280/* conj({x,y}) -> {x,-y}  */
3281(simplify
3282 (conj (convert?:s (complex:s @0 @1)))
3283 (with { tree itype = TREE_TYPE (type); }
3284  (complex (convert:itype @0) (negate (convert:itype @1)))))
3285
3286/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c.  */
3287(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
3288 (simplify
3289  (bswap (bswap @0))
3290  @0)
3291 (simplify
3292  (bswap (bit_not (bswap @0)))
3293  (bit_not @0))
3294 (for bitop (bit_xor bit_ior bit_and)
3295  (simplify
3296   (bswap (bitop:c (bswap @0) @1))
3297   (bitop @0 (bswap @1)))))
3298
3299
3300/* Combine COND_EXPRs and VEC_COND_EXPRs.  */
3301
3302/* Simplify constant conditions.
3303   Only optimize constant conditions when the selected branch
3304   has the same type as the COND_EXPR.  This avoids optimizing
3305   away "c ? x : throw", where the throw has a void type.
3306   Note that we cannot throw away the fold-const.c variant nor
3307   this one as we depend on doing this transform before possibly
3308   A ? B : B -> B triggers and the fold-const.c one can optimize
3309   0 ? A : B to B even if A has side-effects.  Something
3310   genmatch cannot handle.  */
3311(simplify
3312 (cond INTEGER_CST@0 @1 @2)
3313 (if (integer_zerop (@0))
3314  (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
3315   @2)
3316  (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
3317   @1)))
3318(simplify
3319 (vec_cond VECTOR_CST@0 @1 @2)
3320 (if (integer_all_onesp (@0))
3321  @1
3322  (if (integer_zerop (@0))
3323   @2)))
3324
3325/* Sink unary operations to constant branches, but only if we do fold it to
3326   constants.  */
3327(for op (negate bit_not abs absu)
3328 (simplify
3329  (op (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2))
3330  (with
3331   {
3332     tree cst1, cst2;
3333     cst1 = const_unop (op, type, @1);
3334     if (cst1)
3335       cst2 = const_unop (op, type, @2);
3336   }
3337   (if (cst1 && cst2)
3338    (vec_cond @0 { cst1; } { cst2; })))))
3339
3340/* Simplification moved from fold_cond_expr_with_comparison.  It may also
3341   be extended.  */
3342/* This pattern implements two kinds simplification:
3343
3344   Case 1)
3345   (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
3346     1) Conversions are type widening from smaller type.
3347     2) Const c1 equals to c2 after canonicalizing comparison.
3348     3) Comparison has tree code LT, LE, GT or GE.
3349   This specific pattern is needed when (cmp (convert x) c) may not
3350   be simplified by comparison patterns because of multiple uses of
3351   x.  It also makes sense here because simplifying across multiple
3352   referred var is always benefitial for complicated cases.
3353
3354   Case 2)
3355   (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2).  */
3356(for cmp (lt le gt ge eq)
3357 (simplify
3358  (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
3359  (with
3360   {
3361     tree from_type = TREE_TYPE (@1);
3362     tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
3363     enum tree_code code = ERROR_MARK;
3364
3365     if (INTEGRAL_TYPE_P (from_type)
3366	 && int_fits_type_p (@2, from_type)
3367	 && (types_match (c1_type, from_type)
3368	     || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
3369		 && (TYPE_UNSIGNED (from_type)
3370		     || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
3371	 && (types_match (c2_type, from_type)
3372	     || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
3373		 && (TYPE_UNSIGNED (from_type)
3374		     || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
3375       {
3376	 if (cmp != EQ_EXPR)
3377	   {
3378	     if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
3379	       {
3380		 /* X <= Y - 1 equals to X < Y.  */
3381		 if (cmp == LE_EXPR)
3382		   code = LT_EXPR;
3383		 /* X > Y - 1 equals to X >= Y.  */
3384		 if (cmp == GT_EXPR)
3385		   code = GE_EXPR;
3386	       }
3387	     if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
3388	       {
3389		 /* X < Y + 1 equals to X <= Y.  */
3390		 if (cmp == LT_EXPR)
3391		   code = LE_EXPR;
3392		 /* X >= Y + 1 equals to X > Y.  */
3393		 if (cmp == GE_EXPR)
3394		   code = GT_EXPR;
3395	       }
3396	     if (code != ERROR_MARK
3397		 || wi::to_widest (@2) == wi::to_widest (@3))
3398	       {
3399		 if (cmp == LT_EXPR || cmp == LE_EXPR)
3400		   code = MIN_EXPR;
3401		 if (cmp == GT_EXPR || cmp == GE_EXPR)
3402		   code = MAX_EXPR;
3403	       }
3404	   }
3405	 /* Can do A == C1 ? A : C2  ->  A == C1 ? C1 : C2?  */
3406	 else if (int_fits_type_p (@3, from_type))
3407	   code = EQ_EXPR;
3408       }
3409   }
3410   (if (code == MAX_EXPR)
3411    (convert (max @1 (convert @2)))
3412    (if (code == MIN_EXPR)
3413     (convert (min @1 (convert @2)))
3414     (if (code == EQ_EXPR)
3415      (convert (cond (eq @1 (convert @3))
3416		     (convert:from_type @3) (convert:from_type @2)))))))))
3417
3418/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3419
3420     1) OP is PLUS or MINUS.
3421     2) CMP is LT, LE, GT or GE.
3422     3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3423
3424   This pattern also handles special cases like:
3425
3426     A) Operand x is a unsigned to signed type conversion and c1 is
3427	integer zero.  In this case,
3428	  (signed type)x  < 0  <=>  x  > MAX_VAL(signed type)
3429	  (signed type)x >= 0  <=>  x <= MAX_VAL(signed type)
3430     B) Const c1 may not equal to (C3 op' C2).  In this case we also
3431	check equality for (c1+1) and (c1-1) by adjusting comparison
3432	code.
3433
3434   TODO: Though signed type is handled by this pattern, it cannot be
3435   simplified at the moment because C standard requires additional
3436   type promotion.  In order to match&simplify it here, the IR needs
3437   to be cleaned up by other optimizers, i.e, VRP.  */
3438(for op (plus minus)
3439 (for cmp (lt le gt ge)
3440  (simplify
3441   (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3442   (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3443    (if (types_match (from_type, to_type)
3444	 /* Check if it is special case A).  */
3445	 || (TYPE_UNSIGNED (from_type)
3446	     && !TYPE_UNSIGNED (to_type)
3447	     && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3448	     && integer_zerop (@1)
3449	     && (cmp == LT_EXPR || cmp == GE_EXPR)))
3450     (with
3451      {
3452	wi::overflow_type overflow = wi::OVF_NONE;
3453	enum tree_code code, cmp_code = cmp;
3454	wide_int real_c1;
3455	wide_int c1 = wi::to_wide (@1);
3456	wide_int c2 = wi::to_wide (@2);
3457	wide_int c3 = wi::to_wide (@3);
3458	signop sgn = TYPE_SIGN (from_type);
3459
3460	/* Handle special case A), given x of unsigned type:
3461	    ((signed type)x  < 0) <=> (x  > MAX_VAL(signed type))
3462	    ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type))  */
3463	if (!types_match (from_type, to_type))
3464	  {
3465	    if (cmp_code == LT_EXPR)
3466	      cmp_code = GT_EXPR;
3467	    if (cmp_code == GE_EXPR)
3468	      cmp_code = LE_EXPR;
3469	    c1 = wi::max_value (to_type);
3470	  }
3471	/* To simplify this pattern, we require c3 = (c1 op c2).  Here we
3472	   compute (c3 op' c2) and check if it equals to c1 with op' being
3473	   the inverted operator of op.  Make sure overflow doesn't happen
3474	   if it is undefined.  */
3475	if (op == PLUS_EXPR)
3476	  real_c1 = wi::sub (c3, c2, sgn, &overflow);
3477	else
3478	  real_c1 = wi::add (c3, c2, sgn, &overflow);
3479
3480	code = cmp_code;
3481	if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3482	  {
3483	    /* Check if c1 equals to real_c1.  Boundary condition is handled
3484	       by adjusting comparison operation if necessary.  */
3485	    if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3486		&& !overflow)
3487	      {
3488		/* X <= Y - 1 equals to X < Y.  */
3489		if (cmp_code == LE_EXPR)
3490		  code = LT_EXPR;
3491		/* X > Y - 1 equals to X >= Y.  */
3492		if (cmp_code == GT_EXPR)
3493		  code = GE_EXPR;
3494	      }
3495	    if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3496		&& !overflow)
3497	      {
3498		/* X < Y + 1 equals to X <= Y.  */
3499		if (cmp_code == LT_EXPR)
3500		  code = LE_EXPR;
3501		/* X >= Y + 1 equals to X > Y.  */
3502		if (cmp_code == GE_EXPR)
3503		  code = GT_EXPR;
3504	      }
3505	    if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3506	      {
3507		if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3508		  code = MIN_EXPR;
3509		if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3510		  code = MAX_EXPR;
3511	      }
3512	  }
3513      }
3514      (if (code == MAX_EXPR)
3515       (op (max @X { wide_int_to_tree (from_type, real_c1); })
3516	   { wide_int_to_tree (from_type, c2); })
3517       (if (code == MIN_EXPR)
3518	(op (min @X { wide_int_to_tree (from_type, real_c1); })
3519	    { wide_int_to_tree (from_type, c2); })))))))))
3520
3521(for cnd (cond vec_cond)
3522 /* A ? B : (A ? X : C) -> A ? B : C.  */
3523 (simplify
3524  (cnd @0 (cnd @0 @1 @2) @3)
3525  (cnd @0 @1 @3))
3526 (simplify
3527  (cnd @0 @1 (cnd @0 @2 @3))
3528  (cnd @0 @1 @3))
3529 /* A ? B : (!A ? C : X) -> A ? B : C.  */
3530 /* ???  This matches embedded conditions open-coded because genmatch
3531    would generate matching code for conditions in separate stmts only.
3532    The following is still important to merge then and else arm cases
3533    from if-conversion.  */
3534 (simplify
3535  (cnd @0 @1 (cnd @2 @3 @4))
3536  (if (inverse_conditions_p (@0, @2))
3537   (cnd @0 @1 @3)))
3538 (simplify
3539  (cnd @0 (cnd @1 @2 @3) @4)
3540  (if (inverse_conditions_p (@0, @1))
3541   (cnd @0 @3 @4)))
3542
3543 /* A ? B : B -> B.  */
3544 (simplify
3545  (cnd @0 @1 @1)
3546  @1)
3547
3548 /* !A ? B : C -> A ? C : B.  */
3549 (simplify
3550  (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3551  (cnd @0 @2 @1)))
3552
3553/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3554   return all -1 or all 0 results.  */
3555/* ??? We could instead convert all instances of the vec_cond to negate,
3556   but that isn't necessarily a win on its own.  */
3557(simplify
3558 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3559 (if (VECTOR_TYPE_P (type)
3560      && known_eq (TYPE_VECTOR_SUBPARTS (type),
3561		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3562      && (TYPE_MODE (TREE_TYPE (type))
3563          == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3564  (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3565
3566/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0).  */
3567(simplify
3568 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3569 (if (VECTOR_TYPE_P (type)
3570      && known_eq (TYPE_VECTOR_SUBPARTS (type),
3571		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3572      && (TYPE_MODE (TREE_TYPE (type))
3573          == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3574  (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3575
3576
3577/* Simplifications of comparisons.  */
3578
3579/* See if we can reduce the magnitude of a constant involved in a
3580   comparison by changing the comparison code.  This is a canonicalization
3581   formerly done by maybe_canonicalize_comparison_1.  */
3582(for cmp  (le gt)
3583     acmp (lt ge)
3584 (simplify
3585  (cmp @0 uniform_integer_cst_p@1)
3586  (with { tree cst = uniform_integer_cst_p (@1); }
3587   (if (tree_int_cst_sgn (cst) == -1)
3588     (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3589				   wide_int_to_tree (TREE_TYPE (cst),
3590						     wi::to_wide (cst)
3591						     + 1)); })))))
3592(for cmp  (ge lt)
3593     acmp (gt le)
3594 (simplify
3595  (cmp @0 uniform_integer_cst_p@1)
3596  (with { tree cst = uniform_integer_cst_p (@1); }
3597   (if (tree_int_cst_sgn (cst) == 1)
3598    (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3599				  wide_int_to_tree (TREE_TYPE (cst),
3600				  wi::to_wide (cst) - 1)); })))))
3601
3602/* We can simplify a logical negation of a comparison to the
3603   inverted comparison.  As we cannot compute an expression
3604   operator using invert_tree_comparison we have to simulate
3605   that with expression code iteration.  */
3606(for cmp (tcc_comparison)
3607     icmp (inverted_tcc_comparison)
3608     ncmp (inverted_tcc_comparison_with_nans)
3609 /* Ideally we'd like to combine the following two patterns
3610    and handle some more cases by using
3611      (logical_inverted_value (cmp @0 @1))
3612    here but for that genmatch would need to "inline" that.
3613    For now implement what forward_propagate_comparison did.  */
3614 (simplify
3615  (bit_not (cmp @0 @1))
3616  (if (VECTOR_TYPE_P (type)
3617       || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3618   /* Comparison inversion may be impossible for trapping math,
3619      invert_tree_comparison will tell us.  But we can't use
3620      a computed operator in the replacement tree thus we have
3621      to play the trick below.  */
3622   (with { enum tree_code ic = invert_tree_comparison
3623             (cmp, HONOR_NANS (@0)); }
3624    (if (ic == icmp)
3625     (icmp @0 @1)
3626     (if (ic == ncmp)
3627      (ncmp @0 @1))))))
3628 (simplify
3629  (bit_xor (cmp @0 @1) integer_truep)
3630  (with { enum tree_code ic = invert_tree_comparison
3631            (cmp, HONOR_NANS (@0)); }
3632   (if (ic == icmp)
3633    (icmp @0 @1)
3634    (if (ic == ncmp)
3635     (ncmp @0 @1))))))
3636
3637/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3638   ??? The transformation is valid for the other operators if overflow
3639   is undefined for the type, but performing it here badly interacts
3640   with the transformation in fold_cond_expr_with_comparison which
3641   attempts to synthetize ABS_EXPR.  */
3642(for cmp (eq ne)
3643 (for sub (minus pointer_diff)
3644  (simplify
3645   (cmp (sub@2 @0 @1) integer_zerop)
3646   (if (single_use (@2))
3647    (cmp @0 @1)))))
3648
3649/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3650   signed arithmetic case.  That form is created by the compiler
3651   often enough for folding it to be of value.  One example is in
3652   computing loop trip counts after Operator Strength Reduction.  */
3653(for cmp (simple_comparison)
3654     scmp (swapped_simple_comparison)
3655 (simplify
3656  (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3657  /* Handle unfolded multiplication by zero.  */
3658  (if (integer_zerop (@1))
3659   (cmp @1 @2)
3660   (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3661	&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3662	&& single_use (@3))
3663    /* If @1 is negative we swap the sense of the comparison.  */
3664    (if (tree_int_cst_sgn (@1) < 0)
3665     (scmp @0 @2)
3666     (cmp @0 @2))))))
3667
3668/* Simplify comparison of something with itself.  For IEEE
3669   floating-point, we can only do some of these simplifications.  */
3670(for cmp (eq ge le)
3671 (simplify
3672  (cmp @0 @0)
3673  (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3674       || ! HONOR_NANS (@0))
3675   { constant_boolean_node (true, type); }
3676   (if (cmp != EQ_EXPR)
3677    (eq @0 @0)))))
3678(for cmp (ne gt lt)
3679 (simplify
3680  (cmp @0 @0)
3681  (if (cmp != NE_EXPR
3682       || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3683       || ! HONOR_NANS (@0))
3684   { constant_boolean_node (false, type); })))
3685(for cmp (unle unge uneq)
3686 (simplify
3687  (cmp @0 @0)
3688  { constant_boolean_node (true, type); }))
3689(for cmp (unlt ungt)
3690 (simplify
3691  (cmp @0 @0)
3692  (unordered @0 @0)))
3693(simplify
3694 (ltgt @0 @0)
3695 (if (!flag_trapping_math)
3696  { constant_boolean_node (false, type); }))
3697
3698/* Fold ~X op ~Y as Y op X.  */
3699(for cmp (simple_comparison)
3700 (simplify
3701  (cmp (bit_not@2 @0) (bit_not@3 @1))
3702  (if (single_use (@2) && single_use (@3))
3703   (cmp @1 @0))))
3704
3705/* Fold ~X op C as X op' ~C, where op' is the swapped comparison.  */
3706(for cmp (simple_comparison)
3707     scmp (swapped_simple_comparison)
3708 (simplify
3709  (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3710  (if (single_use (@2)
3711       && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3712   (scmp @0 (bit_not @1)))))
3713
3714(for cmp (simple_comparison)
3715 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2.  */
3716 (simplify
3717  (cmp (convert@2 @0) (convert? @1))
3718  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3719       && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3720	   == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3721       && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3722	   == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3723   (with
3724    {
3725      tree type1 = TREE_TYPE (@1);
3726      if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3727        {
3728	  REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3729	  if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3730	      && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3731	    type1 = float_type_node;
3732	  if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3733	      && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3734	    type1 = double_type_node;
3735        }
3736      tree newtype
3737        = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3738	   ? TREE_TYPE (@0) : type1);
3739    }
3740    (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3741     (cmp (convert:newtype @0) (convert:newtype @1))))))
3742
3743 (simplify
3744  (cmp @0 REAL_CST@1)
3745  /* IEEE doesn't distinguish +0 and -0 in comparisons.  */
3746  (switch
3747   /* a CMP (-0) -> a CMP 0  */
3748   (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3749    (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3750   /* x != NaN is always true, other ops are always false.  */
3751   (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3752	&& ! HONOR_SNANS (@1))
3753    { constant_boolean_node (cmp == NE_EXPR, type); })
3754   /* Fold comparisons against infinity.  */
3755   (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3756	&& MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3757    (with
3758     {
3759       REAL_VALUE_TYPE max;
3760       enum tree_code code = cmp;
3761       bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3762       if (neg)
3763         code = swap_tree_comparison (code);
3764     }
3765     (switch
3766      /* x > +Inf is always false, if we ignore NaNs or exceptions.  */
3767      (if (code == GT_EXPR
3768	   && !(HONOR_NANS (@0) && flag_trapping_math))
3769       { constant_boolean_node (false, type); })
3770      (if (code == LE_EXPR)
3771       /* x <= +Inf is always true, if we don't care about NaNs.  */
3772       (if (! HONOR_NANS (@0))
3773	{ constant_boolean_node (true, type); }
3774	/* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3775	   an "invalid" exception.  */
3776	(if (!flag_trapping_math)
3777	 (eq @0 @0))))
3778      /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3779	 for == this introduces an exception for x a NaN.  */
3780      (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3781	   || code == GE_EXPR)
3782       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3783	(if (neg)
3784	 (lt @0 { build_real (TREE_TYPE (@0), max); })
3785	 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3786      /* x < +Inf is always equal to x <= DBL_MAX.  */
3787      (if (code == LT_EXPR)
3788       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3789	(if (neg)
3790	 (ge @0 { build_real (TREE_TYPE (@0), max); })
3791	 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3792      /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3793	 an exception for x a NaN so use an unordered comparison.  */
3794      (if (code == NE_EXPR)
3795       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3796	(if (! HONOR_NANS (@0))
3797	 (if (neg)
3798	  (ge @0 { build_real (TREE_TYPE (@0), max); })
3799	  (le @0 { build_real (TREE_TYPE (@0), max); }))
3800	 (if (neg)
3801	  (unge @0 { build_real (TREE_TYPE (@0), max); })
3802	  (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3803
3804 /* If this is a comparison of a real constant with a PLUS_EXPR
3805    or a MINUS_EXPR of a real constant, we can convert it into a
3806    comparison with a revised real constant as long as no overflow
3807    occurs when unsafe_math_optimizations are enabled.  */
3808 (if (flag_unsafe_math_optimizations)
3809  (for op (plus minus)
3810   (simplify
3811    (cmp (op @0 REAL_CST@1) REAL_CST@2)
3812    (with
3813     {
3814       tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3815			       TREE_TYPE (@1), @2, @1);
3816     }
3817     (if (tem && !TREE_OVERFLOW (tem))
3818      (cmp @0 { tem; }))))))
3819
3820 /* Likewise, we can simplify a comparison of a real constant with
3821    a MINUS_EXPR whose first operand is also a real constant, i.e.
3822    (c1 - x) < c2 becomes x > c1-c2.  Reordering is allowed on
3823    floating-point types only if -fassociative-math is set.  */
3824 (if (flag_associative_math)
3825  (simplify
3826   (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3827   (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3828    (if (tem && !TREE_OVERFLOW (tem))
3829     (cmp { tem; } @1)))))
3830
3831 /* Fold comparisons against built-in math functions.  */
3832 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
3833  (for sq (SQRT)
3834   (simplify
3835    (cmp (sq @0) REAL_CST@1)
3836    (switch
3837     (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3838      (switch
3839       /* sqrt(x) < y is always false, if y is negative.  */
3840       (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3841	{ constant_boolean_node (false, type); })
3842       /* sqrt(x) > y is always true, if y is negative and we
3843	  don't care about NaNs, i.e. negative values of x.  */
3844       (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3845	{ constant_boolean_node (true, type); })
3846       /* sqrt(x) > y is the same as x >= 0, if y is negative.  */
3847       (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3848     (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3849      (switch
3850       /* sqrt(x) < 0 is always false.  */
3851       (if (cmp == LT_EXPR)
3852	{ constant_boolean_node (false, type); })
3853       /* sqrt(x) >= 0 is always true if we don't care about NaNs.  */
3854       (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3855	{ constant_boolean_node (true, type); })
3856       /* sqrt(x) <= 0 -> x == 0.  */
3857       (if (cmp == LE_EXPR)
3858	(eq @0 @1))
3859       /* Otherwise sqrt(x) cmp 0 -> x cmp 0.  Here cmp can be >=, >,
3860          == or !=.  In the last case:
3861
3862	    (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3863
3864	  if x is negative or NaN.  Due to -funsafe-math-optimizations,
3865	  the results for other x follow from natural arithmetic.  */
3866       (cmp @0 @1)))
3867     (if ((cmp == LT_EXPR
3868	   || cmp == LE_EXPR
3869	   || cmp == GT_EXPR
3870	   || cmp == GE_EXPR)
3871	  && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3872	  /* Give up for -frounding-math.  */
3873	  && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
3874      (with
3875       {
3876	 REAL_VALUE_TYPE c2;
3877	 enum tree_code ncmp = cmp;
3878	 const real_format *fmt
3879	   = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
3880	 real_arithmetic (&c2, MULT_EXPR,
3881			  &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3882	 real_convert (&c2, fmt, &c2);
3883	 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
3884	    then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR.  */
3885	 if (!REAL_VALUE_ISINF (c2))
3886	   {
3887	     tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3888					build_real (TREE_TYPE (@0), c2));
3889	     if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3890	       ncmp = ERROR_MARK;
3891	     else if ((cmp == LT_EXPR || cmp == GE_EXPR)
3892		      && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
3893	       ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
3894	     else if ((cmp == LE_EXPR || cmp == GT_EXPR)
3895		      && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
3896	       ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
3897	     else
3898	       {
3899		 /* With rounding to even, sqrt of up to 3 different values
3900		    gives the same normal result, so in some cases c2 needs
3901		    to be adjusted.  */
3902		 REAL_VALUE_TYPE c2alt, tow;
3903		 if (cmp == LT_EXPR || cmp == GE_EXPR)
3904		   tow = dconst0;
3905		 else
3906		   real_inf (&tow);
3907		 real_nextafter (&c2alt, fmt, &c2, &tow);
3908		 real_convert (&c2alt, fmt, &c2alt);
3909		 if (REAL_VALUE_ISINF (c2alt))
3910		   ncmp = ERROR_MARK;
3911		 else
3912		   {
3913		     c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3914					   build_real (TREE_TYPE (@0), c2alt));
3915		     if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3916		       ncmp = ERROR_MARK;
3917		     else if (real_equal (&TREE_REAL_CST (c3),
3918					  &TREE_REAL_CST (@1)))
3919		       c2 = c2alt;
3920		   }
3921	       }
3922	   }
3923       }
3924       (if (cmp == GT_EXPR || cmp == GE_EXPR)
3925	(if (REAL_VALUE_ISINF (c2))
3926	 /* sqrt(x) > y is x == +Inf, when y is very large.  */
3927	 (if (HONOR_INFINITIES (@0))
3928	  (eq @0 { build_real (TREE_TYPE (@0), c2); })
3929	  { constant_boolean_node (false, type); })
3930	 /* sqrt(x) > c is the same as x > c*c.  */
3931	 (if (ncmp != ERROR_MARK)
3932	  (if (ncmp == GE_EXPR)
3933	   (ge @0 { build_real (TREE_TYPE (@0), c2); })
3934	   (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
3935	/* else if (cmp == LT_EXPR || cmp == LE_EXPR)  */
3936	(if (REAL_VALUE_ISINF (c2))
3937	 (switch
3938	  /* sqrt(x) < y is always true, when y is a very large
3939	     value and we don't care about NaNs or Infinities.  */
3940	  (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3941	   { constant_boolean_node (true, type); })
3942	  /* sqrt(x) < y is x != +Inf when y is very large and we
3943	     don't care about NaNs.  */
3944	  (if (! HONOR_NANS (@0))
3945	   (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3946	  /* sqrt(x) < y is x >= 0 when y is very large and we
3947	     don't care about Infinities.  */
3948	  (if (! HONOR_INFINITIES (@0))
3949	   (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3950	  /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large.  */
3951	  (if (GENERIC)
3952	   (truth_andif
3953	    (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3954	    (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3955	 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs.  */
3956	 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
3957	  (if (ncmp == LT_EXPR)
3958	   (lt @0 { build_real (TREE_TYPE (@0), c2); })
3959	   (le @0 { build_real (TREE_TYPE (@0), c2); }))
3960	  /* sqrt(x) < c is the same as x >= 0 && x < c*c.  */
3961	  (if (ncmp != ERROR_MARK && GENERIC)
3962	   (if (ncmp == LT_EXPR)
3963	    (truth_andif
3964	     (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3965	     (lt @0 { build_real (TREE_TYPE (@0), c2); }))
3966	    (truth_andif
3967	     (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3968	     (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
3969   /* Transform sqrt(x) cmp sqrt(y) -> x cmp y.  */
3970   (simplify
3971    (cmp (sq @0) (sq @1))
3972      (if (! HONOR_NANS (@0))
3973	(cmp @0 @1))))))
3974
3975/* Optimize various special cases of (FTYPE) N CMP (FTYPE) M.  */
3976(for cmp  (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3977     icmp (lt le eq ne ge gt unordered ordered lt   le   gt   ge   eq   ne)
3978 (simplify
3979  (cmp (float@0 @1) (float @2))
3980   (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3981	&& ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3982    (with
3983     {
3984       format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3985       tree type1 = TREE_TYPE (@1);
3986       bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3987       tree type2 = TREE_TYPE (@2);
3988       bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3989     }
3990     (if (fmt.can_represent_integral_type_p (type1)
3991	  && fmt.can_represent_integral_type_p (type2))
3992      (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3993       { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3994       (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3995            && type1_signed_p >= type2_signed_p)
3996        (icmp @1 (convert @2))
3997        (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3998             && type1_signed_p <= type2_signed_p)
3999         (icmp (convert:type2 @1) @2)
4000         (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
4001              && type1_signed_p == type2_signed_p)
4002	  (icmp @1 @2))))))))))
4003
4004/* Optimize various special cases of (FTYPE) N CMP CST.  */
4005(for cmp  (lt le eq ne ge gt)
4006     icmp (le le eq ne ge ge)
4007 (simplify
4008  (cmp (float @0) REAL_CST@1)
4009   (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
4010	&& ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
4011    (with
4012     {
4013       tree itype = TREE_TYPE (@0);
4014       format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
4015       const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
4016       /* Be careful to preserve any potential exceptions due to
4017	  NaNs.  qNaNs are ok in == or != context.
4018	  TODO: relax under -fno-trapping-math or
4019	  -fno-signaling-nans.  */
4020       bool exception_p
4021         = real_isnan (cst) && (cst->signalling
4022				|| (cmp != EQ_EXPR && cmp != NE_EXPR));
4023     }
4024     /* TODO: allow non-fitting itype and SNaNs when
4025	-fno-trapping-math.  */
4026     (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
4027      (with
4028       {
4029	 signop isign = TYPE_SIGN (itype);
4030	 REAL_VALUE_TYPE imin, imax;
4031	 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
4032	 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
4033
4034	 REAL_VALUE_TYPE icst;
4035	 if (cmp == GT_EXPR || cmp == GE_EXPR)
4036	   real_ceil (&icst, fmt, cst);
4037	 else if (cmp == LT_EXPR || cmp == LE_EXPR)
4038	   real_floor (&icst, fmt, cst);
4039	 else
4040	   real_trunc (&icst, fmt, cst);
4041
4042	 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
4043
4044	 bool overflow_p = false;
4045	 wide_int icst_val
4046	   = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
4047       }
4048       (switch
4049	/* Optimize cases when CST is outside of ITYPE's range.  */
4050	(if (real_compare (LT_EXPR, cst, &imin))
4051	 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
4052				  type); })
4053	(if (real_compare (GT_EXPR, cst, &imax))
4054	 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
4055				  type); })
4056	/* Remove cast if CST is an integer representable by ITYPE.  */
4057	(if (cst_int_p)
4058	 (cmp @0 { gcc_assert (!overflow_p);
4059		   wide_int_to_tree (itype, icst_val); })
4060	)
4061	/* When CST is fractional, optimize
4062	    (FTYPE) N == CST -> 0
4063	    (FTYPE) N != CST -> 1.  */
4064	(if (cmp == EQ_EXPR || cmp == NE_EXPR)
4065	 { constant_boolean_node (cmp == NE_EXPR, type); })
4066	/* Otherwise replace with sensible integer constant.  */
4067	(with
4068	 {
4069	   gcc_checking_assert (!overflow_p);
4070	 }
4071	 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
4072
4073/* Fold A /[ex] B CMP C to A CMP B * C.  */
4074(for cmp (eq ne)
4075 (simplify
4076  (cmp (exact_div @0 @1) INTEGER_CST@2)
4077  (if (!integer_zerop (@1))
4078   (if (wi::to_wide (@2) == 0)
4079    (cmp @0 @2)
4080    (if (TREE_CODE (@1) == INTEGER_CST)
4081     (with
4082      {
4083	wi::overflow_type ovf;
4084	wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4085				 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4086      }
4087      (if (ovf)
4088       { constant_boolean_node (cmp == NE_EXPR, type); }
4089       (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
4090(for cmp (lt le gt ge)
4091 (simplify
4092  (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
4093  (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4094   (with
4095    {
4096      wi::overflow_type ovf;
4097      wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4098			       TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4099    }
4100    (if (ovf)
4101     { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
4102					TYPE_SIGN (TREE_TYPE (@2)))
4103			      != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
4104     (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
4105
4106/* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
4107
4108   For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
4109   For large C (more than min/B+2^size), this is also true, with the
4110   multiplication computed modulo 2^size.
4111   For intermediate C, this just tests the sign of A.  */
4112(for cmp  (lt le gt ge)
4113     cmp2 (ge ge lt lt)
4114 (simplify
4115  (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
4116  (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
4117       && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
4118       && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4119   (with
4120    {
4121      tree utype = TREE_TYPE (@2);
4122      wide_int denom = wi::to_wide (@1);
4123      wide_int right = wi::to_wide (@2);
4124      wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
4125      wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
4126      bool small = wi::leu_p (right, smax);
4127      bool large = wi::geu_p (right, smin);
4128    }
4129    (if (small || large)
4130     (cmp (convert:utype @0) (mult @2 (convert @1)))
4131     (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
4132
4133/* Unordered tests if either argument is a NaN.  */
4134(simplify
4135 (bit_ior (unordered @0 @0) (unordered @1 @1))
4136 (if (types_match (@0, @1))
4137  (unordered @0 @1)))
4138(simplify
4139 (bit_and (ordered @0 @0) (ordered @1 @1))
4140 (if (types_match (@0, @1))
4141  (ordered @0 @1)))
4142(simplify
4143 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
4144 @2)
4145(simplify
4146 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
4147 @2)
4148
4149/* Simple range test simplifications.  */
4150/* A < B || A >= B -> true.  */
4151(for test1 (lt le le le ne ge)
4152     test2 (ge gt ge ne eq ne)
4153 (simplify
4154  (bit_ior:c (test1 @0 @1) (test2 @0 @1))
4155  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4156       || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4157   { constant_boolean_node (true, type); })))
4158/* A < B && A >= B -> false.  */
4159(for test1 (lt lt lt le ne eq)
4160     test2 (ge gt eq gt eq gt)
4161 (simplify
4162  (bit_and:c (test1 @0 @1) (test2 @0 @1))
4163  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4164       || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4165   { constant_boolean_node (false, type); })))
4166
4167/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
4168   A & (2**N - 1) >  2**K - 1 -> A & (2**N - 2**K) != 0
4169
4170   Note that comparisons
4171     A & (2**N - 1) <  2**K   -> A & (2**N - 2**K) == 0
4172     A & (2**N - 1) >= 2**K   -> A & (2**N - 2**K) != 0
4173   will be canonicalized to above so there's no need to
4174   consider them here.
4175 */
4176
4177(for cmp (le gt)
4178     eqcmp (eq ne)
4179 (simplify
4180  (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
4181  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4182   (with
4183    {
4184     tree ty = TREE_TYPE (@0);
4185     unsigned prec = TYPE_PRECISION (ty);
4186     wide_int mask = wi::to_wide (@2, prec);
4187     wide_int rhs = wi::to_wide (@3, prec);
4188     signop sgn = TYPE_SIGN (ty);
4189    }
4190    (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
4191	 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
4192      (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
4193	     { build_zero_cst (ty); }))))))
4194
4195/* -A CMP -B -> B CMP A.  */
4196(for cmp (tcc_comparison)
4197     scmp (swapped_tcc_comparison)
4198 (simplify
4199  (cmp (negate @0) (negate @1))
4200  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4201       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4202	   && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4203   (scmp @0 @1)))
4204 (simplify
4205  (cmp (negate @0) CONSTANT_CLASS_P@1)
4206  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4207       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4208	   && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4209   (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
4210    (if (tem && !TREE_OVERFLOW (tem))
4211     (scmp @0 { tem; }))))))
4212
4213/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0.  */
4214(for op (eq ne)
4215 (simplify
4216  (op (abs @0) zerop@1)
4217  (op @0 @1)))
4218
4219/* From fold_sign_changed_comparison and fold_widened_comparison.
4220   FIXME: the lack of symmetry is disturbing.  */
4221(for cmp (simple_comparison)
4222 (simplify
4223  (cmp (convert@0 @00) (convert?@1 @10))
4224  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4225       /* Disable this optimization if we're casting a function pointer
4226	  type on targets that require function pointer canonicalization.  */
4227       && !(targetm.have_canonicalize_funcptr_for_compare ()
4228	    && ((POINTER_TYPE_P (TREE_TYPE (@00))
4229		 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
4230		|| (POINTER_TYPE_P (TREE_TYPE (@10))
4231		    && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
4232       && single_use (@0))
4233   (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
4234	&& (TREE_CODE (@10) == INTEGER_CST
4235	    || @1 != @10)
4236	&& (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
4237	    || cmp == NE_EXPR
4238	    || cmp == EQ_EXPR)
4239	&& !POINTER_TYPE_P (TREE_TYPE (@00)))
4240    /* ???  The special-casing of INTEGER_CST conversion was in the original
4241       code and here to avoid a spurious overflow flag on the resulting
4242       constant which fold_convert produces.  */
4243    (if (TREE_CODE (@1) == INTEGER_CST)
4244     (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
4245				TREE_OVERFLOW (@1)); })
4246     (cmp @00 (convert @1)))
4247
4248    (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
4249     /* If possible, express the comparison in the shorter mode.  */
4250     (if ((cmp == EQ_EXPR || cmp == NE_EXPR
4251	   || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
4252	   || (!TYPE_UNSIGNED (TREE_TYPE (@0))
4253	       && TYPE_UNSIGNED (TREE_TYPE (@00))))
4254	  && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
4255	      || ((TYPE_PRECISION (TREE_TYPE (@00))
4256		   >= TYPE_PRECISION (TREE_TYPE (@10)))
4257		  && (TYPE_UNSIGNED (TREE_TYPE (@00))
4258		      == TYPE_UNSIGNED (TREE_TYPE (@10))))
4259	      || (TREE_CODE (@10) == INTEGER_CST
4260		  && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4261		  && int_fits_type_p (@10, TREE_TYPE (@00)))))
4262      (cmp @00 (convert @10))
4263      (if (TREE_CODE (@10) == INTEGER_CST
4264	   && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4265	   && !int_fits_type_p (@10, TREE_TYPE (@00)))
4266       (with
4267	{
4268	  tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4269	  tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4270	  bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
4271	  bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
4272	}
4273	(if (above || below)
4274	 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4275	  { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
4276	  (if (cmp == LT_EXPR || cmp == LE_EXPR)
4277	   { constant_boolean_node (above ? true : false, type); }
4278	   (if (cmp == GT_EXPR || cmp == GE_EXPR)
4279	    { constant_boolean_node (above ? false : true, type); }))))))))))))
4280
4281(for cmp (eq ne)
4282 (simplify
4283  /* SSA names are canonicalized to 2nd place.  */
4284  (cmp addr@0 SSA_NAME@1)
4285  (with
4286   { poly_int64 off; tree base; }
4287   /* A local variable can never be pointed to by
4288      the default SSA name of an incoming parameter.  */
4289   (if (SSA_NAME_IS_DEFAULT_DEF (@1)
4290	&& TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
4291	&& (base = get_base_address (TREE_OPERAND (@0, 0)))
4292	&& TREE_CODE (base) == VAR_DECL
4293	&& auto_var_in_fn_p (base, current_function_decl))
4294    (if (cmp == NE_EXPR)
4295     { constant_boolean_node (true, type); }
4296     { constant_boolean_node (false, type); })
4297    /* If the address is based on @1 decide using the offset.  */
4298    (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off))
4299	 && TREE_CODE (base) == MEM_REF
4300	 && TREE_OPERAND (base, 0) == @1)
4301     (with { off += mem_ref_offset (base).force_shwi (); }
4302      (if (known_ne (off, 0))
4303       { constant_boolean_node (cmp == NE_EXPR, type); }
4304       (if (known_eq (off, 0))
4305        { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
4306
4307/* Equality compare simplifications from fold_binary  */
4308(for cmp (eq ne)
4309
4310 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
4311    Similarly for NE_EXPR.  */
4312 (simplify
4313  (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
4314  (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
4315       && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
4316   { constant_boolean_node (cmp == NE_EXPR, type); }))
4317
4318 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y.  */
4319 (simplify
4320  (cmp (bit_xor @0 @1) integer_zerop)
4321  (cmp @0 @1))
4322
4323 /* (X ^ Y) == Y becomes X == 0.
4324    Likewise (X ^ Y) == X becomes Y == 0.  */
4325 (simplify
4326  (cmp:c (bit_xor:c @0 @1) @0)
4327  (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
4328
4329 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2).  */
4330 (simplify
4331  (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
4332  (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
4333   (cmp @0 (bit_xor @1 (convert @2)))))
4334
4335 (simplify
4336  (cmp (convert? addr@0) integer_zerop)
4337  (if (tree_single_nonzero_warnv_p (@0, NULL))
4338   { constant_boolean_node (cmp == NE_EXPR, type); })))
4339
4340/* If we have (A & C) == C where C is a power of 2, convert this into
4341   (A & C) != 0.  Similarly for NE_EXPR.  */
4342(for cmp (eq ne)
4343     icmp (ne eq)
4344 (simplify
4345  (cmp (bit_and@2 @0 integer_pow2p@1) @1)
4346  (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
4347
4348/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
4349   convert this into a shift followed by ANDing with D.  */
4350(simplify
4351 (cond
4352  (ne (bit_and @0 integer_pow2p@1) integer_zerop)
4353  INTEGER_CST@2 integer_zerop)
4354 (if (integer_pow2p (@2))
4355  (with {
4356     int shift = (wi::exact_log2 (wi::to_wide (@2))
4357		  - wi::exact_log2 (wi::to_wide (@1)));
4358   }
4359   (if (shift > 0)
4360    (bit_and
4361     (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
4362    (bit_and
4363     (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
4364     @2)))))
4365
4366/* If we have (A & C) != 0 where C is the sign bit of A, convert
4367   this into A < 0.  Similarly for (A & C) == 0 into A >= 0.  */
4368(for cmp (eq ne)
4369     ncmp (ge lt)
4370 (simplify
4371  (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
4372  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4373       && type_has_mode_precision_p (TREE_TYPE (@0))
4374       && element_precision (@2) >= element_precision (@0)
4375       && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
4376   (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
4377    (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
4378
4379/* If we have A < 0 ? C : 0 where C is a power of 2, convert
4380   this into a right shift or sign extension followed by ANDing with C.  */
4381(simplify
4382 (cond
4383  (lt @0 integer_zerop)
4384  INTEGER_CST@1 integer_zerop)
4385 (if (integer_pow2p (@1)
4386      && !TYPE_UNSIGNED (TREE_TYPE (@0)))
4387  (with {
4388    int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
4389   }
4390   (if (shift >= 0)
4391    (bit_and
4392     (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
4393     @1)
4394    /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
4395       sign extension followed by AND with C will achieve the effect.  */
4396    (bit_and (convert @0) @1)))))
4397
4398/* When the addresses are not directly of decls compare base and offset.
4399   This implements some remaining parts of fold_comparison address
4400   comparisons but still no complete part of it.  Still it is good
4401   enough to make fold_stmt not regress when not dispatching to fold_binary.  */
4402(for cmp (simple_comparison)
4403 (simplify
4404  (cmp (convert1?@2 addr@0) (convert2? addr@1))
4405  (with
4406   {
4407     poly_int64 off0, off1;
4408     tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
4409     tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
4410     if (base0 && TREE_CODE (base0) == MEM_REF)
4411       {
4412	 off0 += mem_ref_offset (base0).force_shwi ();
4413         base0 = TREE_OPERAND (base0, 0);
4414       }
4415     if (base1 && TREE_CODE (base1) == MEM_REF)
4416       {
4417	 off1 += mem_ref_offset (base1).force_shwi ();
4418         base1 = TREE_OPERAND (base1, 0);
4419       }
4420   }
4421   (if (base0 && base1)
4422    (with
4423     {
4424       int equal = 2;
4425       /* Punt in GENERIC on variables with value expressions;
4426	  the value expressions might point to fields/elements
4427	  of other vars etc.  */
4428       if (GENERIC
4429	   && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
4430	       || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
4431	 ;
4432       else if (decl_in_symtab_p (base0)
4433		&& decl_in_symtab_p (base1))
4434         equal = symtab_node::get_create (base0)
4435	           ->equal_address_to (symtab_node::get_create (base1));
4436       else if ((DECL_P (base0)
4437		 || TREE_CODE (base0) == SSA_NAME
4438		 || TREE_CODE (base0) == STRING_CST)
4439		&& (DECL_P (base1)
4440		    || TREE_CODE (base1) == SSA_NAME
4441		    || TREE_CODE (base1) == STRING_CST))
4442         equal = (base0 == base1);
4443       if (equal == 0)
4444	 {
4445	   HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
4446	   off0.is_constant (&ioff0);
4447	   off1.is_constant (&ioff1);
4448	   if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
4449	       || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
4450	       || (TREE_CODE (base0) == STRING_CST
4451		   && TREE_CODE (base1) == STRING_CST
4452		   && ioff0 >= 0 && ioff1 >= 0
4453		   && ioff0 < TREE_STRING_LENGTH (base0)
4454		   && ioff1 < TREE_STRING_LENGTH (base1)
4455		   /* This is a too conservative test that the STRING_CSTs
4456		      will not end up being string-merged.  */
4457		   && strncmp (TREE_STRING_POINTER (base0) + ioff0,
4458			       TREE_STRING_POINTER (base1) + ioff1,
4459			       MIN (TREE_STRING_LENGTH (base0) - ioff0,
4460				    TREE_STRING_LENGTH (base1) - ioff1)) != 0))
4461	     ;
4462	   else if (!DECL_P (base0) || !DECL_P (base1))
4463	     equal = 2;
4464	   else if (cmp != EQ_EXPR && cmp != NE_EXPR)
4465	     equal = 2;
4466	   /* If this is a pointer comparison, ignore for now even
4467	      valid equalities where one pointer is the offset zero
4468	      of one object and the other to one past end of another one.  */
4469	   else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
4470	     ;
4471	   /* Assume that automatic variables can't be adjacent to global
4472	      variables.  */
4473	   else if (is_global_var (base0) != is_global_var (base1))
4474	     ;
4475	   else
4476	     {
4477	       tree sz0 = DECL_SIZE_UNIT (base0);
4478	       tree sz1 = DECL_SIZE_UNIT (base1);
4479	       /* If sizes are unknown, e.g. VLA or not representable,
4480		  punt.  */
4481	       if (!tree_fits_poly_int64_p (sz0)
4482		   || !tree_fits_poly_int64_p (sz1))
4483		 equal = 2;
4484	       else
4485		 {
4486		   poly_int64 size0 = tree_to_poly_int64 (sz0);
4487		   poly_int64 size1 = tree_to_poly_int64 (sz1);
4488		   /* If one offset is pointing (or could be) to the beginning
4489		      of one object and the other is pointing to one past the
4490		      last byte of the other object, punt.  */
4491		   if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
4492		     equal = 2;
4493		   else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
4494		     equal = 2;
4495		   /* If both offsets are the same, there are some cases
4496		      we know that are ok.  Either if we know they aren't
4497		      zero, or if we know both sizes are no zero.  */
4498		   if (equal == 2
4499		       && known_eq (off0, off1)
4500		       && (known_ne (off0, 0)
4501			   || (known_ne (size0, 0) && known_ne (size1, 0))))
4502		     equal = 0;
4503		 }
4504	     }
4505	 }
4506     }
4507     (if (equal == 1
4508	  && (cmp == EQ_EXPR || cmp == NE_EXPR
4509	      /* If the offsets are equal we can ignore overflow.  */
4510	      || known_eq (off0, off1)
4511	      || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4512		 /* Or if we compare using pointers to decls or strings.  */
4513	      || (POINTER_TYPE_P (TREE_TYPE (@2))
4514		  && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
4515      (switch
4516       (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4517	{ constant_boolean_node (known_eq (off0, off1), type); })
4518       (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4519	{ constant_boolean_node (known_ne (off0, off1), type); })
4520       (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4521	{ constant_boolean_node (known_lt (off0, off1), type); })
4522       (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4523	{ constant_boolean_node (known_le (off0, off1), type); })
4524       (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4525	{ constant_boolean_node (known_ge (off0, off1), type); })
4526       (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4527	{ constant_boolean_node (known_gt (off0, off1), type); }))
4528      (if (equal == 0)
4529	(switch
4530	 (if (cmp == EQ_EXPR)
4531	  { constant_boolean_node (false, type); })
4532	 (if (cmp == NE_EXPR)
4533	  { constant_boolean_node (true, type); })))))))))
4534
4535/* Simplify pointer equality compares using PTA.  */
4536(for neeq (ne eq)
4537 (simplify
4538  (neeq @0 @1)
4539  (if (POINTER_TYPE_P (TREE_TYPE (@0))
4540       && ptrs_compare_unequal (@0, @1))
4541   { constant_boolean_node (neeq != EQ_EXPR, type); })))
4542
4543/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4544   and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4545   Disable the transform if either operand is pointer to function.
4546   This broke pr22051-2.c for arm where function pointer
4547   canonicalizaion is not wanted.  */
4548
4549(for cmp (ne eq)
4550 (simplify
4551  (cmp (convert @0) INTEGER_CST@1)
4552  (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4553	 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4554	 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4555	|| (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4556	    && POINTER_TYPE_P (TREE_TYPE (@1))
4557	    && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4558       && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4559   (cmp @0 (convert @1)))))
4560
4561/* Non-equality compare simplifications from fold_binary  */
4562(for cmp (lt gt le ge)
4563 /* Comparisons with the highest or lowest possible integer of
4564    the specified precision will have known values.  */
4565 (simplify
4566  (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4567  (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4568	|| POINTER_TYPE_P (TREE_TYPE (@1))
4569	|| VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4570       && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4571   (with
4572    {
4573      tree cst = uniform_integer_cst_p (@1);
4574      tree arg1_type = TREE_TYPE (cst);
4575      unsigned int prec = TYPE_PRECISION (arg1_type);
4576      wide_int max = wi::max_value (arg1_type);
4577      wide_int signed_max = wi::max_value (prec, SIGNED);
4578      wide_int min = wi::min_value (arg1_type);
4579    }
4580    (switch
4581     (if (wi::to_wide (cst) == max)
4582      (switch
4583       (if (cmp == GT_EXPR)
4584	{ constant_boolean_node (false, type); })
4585       (if (cmp == GE_EXPR)
4586	(eq @2 @1))
4587       (if (cmp == LE_EXPR)
4588	{ constant_boolean_node (true, type); })
4589       (if (cmp == LT_EXPR)
4590	(ne @2 @1))))
4591     (if (wi::to_wide (cst) == min)
4592      (switch
4593       (if (cmp == LT_EXPR)
4594        { constant_boolean_node (false, type); })
4595       (if (cmp == LE_EXPR)
4596        (eq @2 @1))
4597       (if (cmp == GE_EXPR)
4598        { constant_boolean_node (true, type); })
4599       (if (cmp == GT_EXPR)
4600        (ne @2 @1))))
4601     (if (wi::to_wide (cst) == max - 1)
4602      (switch
4603       (if (cmp == GT_EXPR)
4604	(eq @2 { build_uniform_cst (TREE_TYPE (@1),
4605				    wide_int_to_tree (TREE_TYPE (cst),
4606						      wi::to_wide (cst)
4607						      + 1)); }))
4608       (if (cmp == LE_EXPR)
4609	(ne @2 { build_uniform_cst (TREE_TYPE (@1),
4610				    wide_int_to_tree (TREE_TYPE (cst),
4611						      wi::to_wide (cst)
4612						      + 1)); }))))
4613     (if (wi::to_wide (cst) == min + 1)
4614      (switch
4615       (if (cmp == GE_EXPR)
4616        (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4617				    wide_int_to_tree (TREE_TYPE (cst),
4618						      wi::to_wide (cst)
4619						      - 1)); }))
4620       (if (cmp == LT_EXPR)
4621        (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4622				    wide_int_to_tree (TREE_TYPE (cst),
4623						      wi::to_wide (cst)
4624						      - 1)); }))))
4625     (if (wi::to_wide (cst) == signed_max
4626	  && TYPE_UNSIGNED (arg1_type)
4627	  /* We will flip the signedness of the comparison operator
4628	     associated with the mode of @1, so the sign bit is
4629	     specified by this mode.  Check that @1 is the signed
4630	     max associated with this sign bit.  */
4631	  && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4632	  /* signed_type does not work on pointer types.  */
4633	  && INTEGRAL_TYPE_P (arg1_type))
4634      /* The following case also applies to X < signed_max+1
4635	 and X >= signed_max+1 because previous transformations.  */
4636      (if (cmp == LE_EXPR || cmp == GT_EXPR)
4637       (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4638       	(switch
4639	 (if (cst == @1 && cmp == LE_EXPR)
4640	  (ge (convert:st @0) { build_zero_cst (st); }))
4641	 (if (cst == @1 && cmp == GT_EXPR)
4642	  (lt (convert:st @0) { build_zero_cst (st); }))
4643	 (if (cmp == LE_EXPR)
4644	  (ge (view_convert:st @0) { build_zero_cst (st); }))
4645	 (if (cmp == GT_EXPR)
4646	  (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4647
4648(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4649 /* If the second operand is NaN, the result is constant.  */
4650 (simplify
4651  (cmp @0 REAL_CST@1)
4652  (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4653       && (cmp != LTGT_EXPR || ! flag_trapping_math))
4654   { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4655			    ? false : true, type); })))
4656
4657/* bool_var != 0 becomes bool_var.  */
4658(simplify
4659 (ne @0 integer_zerop)
4660 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4661      && types_match (type, TREE_TYPE (@0)))
4662  (non_lvalue @0)))
4663/* bool_var == 1 becomes bool_var.  */
4664(simplify
4665 (eq @0 integer_onep)
4666 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4667      && types_match (type, TREE_TYPE (@0)))
4668  (non_lvalue @0)))
4669/* Do not handle
4670   bool_var == 0 becomes !bool_var or
4671   bool_var != 1 becomes !bool_var
4672   here because that only is good in assignment context as long
4673   as we require a tcc_comparison in GIMPLE_CONDs where we'd
4674   replace if (x == 0) with tem = ~x; if (tem != 0) which is
4675   clearly less optimal and which we'll transform again in forwprop.  */
4676
4677/* When one argument is a constant, overflow detection can be simplified.
4678   Currently restricted to single use so as not to interfere too much with
4679   ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4680   A + CST CMP A  ->  A CMP' CST' */
4681(for cmp (lt le ge gt)
4682     out (gt gt le le)
4683 (simplify
4684  (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4685  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4686       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4687       && wi::to_wide (@1) != 0
4688       && single_use (@2))
4689   (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4690    (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4691			        wi::max_value (prec, UNSIGNED)
4692				- wi::to_wide (@1)); })))))
4693
4694/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4695   However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4696   expects the long form, so we restrict the transformation for now.  */
4697(for cmp (gt le)
4698 (simplify
4699  (cmp:c (minus@2 @0 @1) @0)
4700  (if (single_use (@2)
4701       && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4702       && TYPE_UNSIGNED (TREE_TYPE (@0))
4703       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4704   (cmp @1 @0))))
4705
4706/* Testing for overflow is unnecessary if we already know the result.  */
4707/* A - B > A  */
4708(for cmp (gt le)
4709     out (ne eq)
4710 (simplify
4711  (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4712  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4713       && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4714   (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4715/* A + B < A  */
4716(for cmp (lt ge)
4717     out (ne eq)
4718 (simplify
4719  (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4720  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4721       && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4722   (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4723
4724/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4725   Simplify it to __builtin_mul_overflow (A, B, <unused>).  */
4726(for cmp (lt ge)
4727     out (ne eq)
4728 (simplify
4729  (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4730  (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4731   (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4732    (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4733
4734/* Simplification of math builtins.  These rules must all be optimizations
4735   as well as IL simplifications.  If there is a possibility that the new
4736   form could be a pessimization, the rule should go in the canonicalization
4737   section that follows this one.
4738
4739   Rules can generally go in this section if they satisfy one of
4740   the following:
4741
4742   - the rule describes an identity
4743
4744   - the rule replaces calls with something as simple as addition or
4745     multiplication
4746
4747   - the rule contains unary calls only and simplifies the surrounding
4748     arithmetic.  (The idea here is to exclude non-unary calls in which
4749     one operand is constant and in which the call is known to be cheap
4750     when the operand has that value.)  */
4751
4752(if (flag_unsafe_math_optimizations)
4753 /* Simplify sqrt(x) * sqrt(x) -> x.  */
4754 (simplify
4755  (mult (SQRT_ALL@1 @0) @1)
4756  (if (!HONOR_SNANS (type))
4757   @0))
4758
4759 (for op (plus minus)
4760  /* Simplify (A / C) +- (B / C) -> (A +- B) / C.  */
4761  (simplify
4762   (op (rdiv @0 @1)
4763       (rdiv @2 @1))
4764   (rdiv (op @0 @2) @1)))
4765
4766 (for cmp (lt le gt ge)
4767      neg_cmp (gt ge lt le)
4768  /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0.  */
4769  (simplify
4770   (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4771   (with
4772    { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4773    (if (tem
4774	 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4775	      || (real_zerop (tem) && !real_zerop (@1))))
4776     (switch
4777      (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4778       (cmp @0 { tem; }))
4779      (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4780       (neg_cmp @0 { tem; })))))))
4781
4782 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y).  */
4783 (for root (SQRT CBRT)
4784  (simplify
4785   (mult (root:s @0) (root:s @1))
4786    (root (mult @0 @1))))
4787
4788 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4789 (for exps (EXP EXP2 EXP10 POW10)
4790  (simplify
4791   (mult (exps:s @0) (exps:s @1))
4792    (exps (plus @0 @1))))
4793
4794 /* Simplify a/root(b/c) into a*root(c/b).  */
4795 (for root (SQRT CBRT)
4796  (simplify
4797   (rdiv @0 (root:s (rdiv:s @1 @2)))
4798    (mult @0 (root (rdiv @2 @1)))))
4799
4800 /* Simplify x/expN(y) into x*expN(-y).  */
4801 (for exps (EXP EXP2 EXP10 POW10)
4802  (simplify
4803   (rdiv @0 (exps:s @1))
4804    (mult @0 (exps (negate @1)))))
4805
4806 (for logs (LOG LOG2 LOG10 LOG10)
4807      exps (EXP EXP2 EXP10 POW10)
4808  /* logN(expN(x)) -> x.  */
4809  (simplify
4810   (logs (exps @0))
4811   @0)
4812  /* expN(logN(x)) -> x.  */
4813  (simplify
4814   (exps (logs @0))
4815   @0))
4816
4817 /* Optimize logN(func()) for various exponential functions.  We
4818    want to determine the value "x" and the power "exponent" in
4819    order to transform logN(x**exponent) into exponent*logN(x).  */
4820 (for logs (LOG  LOG   LOG   LOG2 LOG2  LOG2  LOG10 LOG10)
4821      exps (EXP2 EXP10 POW10 EXP  EXP10 POW10 EXP   EXP2)
4822  (simplify
4823   (logs (exps @0))
4824   (if (SCALAR_FLOAT_TYPE_P (type))
4825    (with {
4826      tree x;
4827      switch (exps)
4828	{
4829	CASE_CFN_EXP:
4830	  /* Prepare to do logN(exp(exponent)) -> exponent*logN(e).  */
4831	  x = build_real_truncate (type, dconst_e ());
4832	  break;
4833	CASE_CFN_EXP2:
4834	  /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2).  */
4835	  x = build_real (type, dconst2);
4836	  break;
4837	CASE_CFN_EXP10:
4838	CASE_CFN_POW10:
4839	  /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10).  */
4840	  {
4841	    REAL_VALUE_TYPE dconst10;
4842	    real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4843	    x = build_real (type, dconst10);
4844	  }
4845	  break;
4846	default:
4847	  gcc_unreachable ();
4848	}
4849      }
4850     (mult (logs { x; }) @0)))))
4851
4852 (for logs (LOG LOG
4853            LOG2 LOG2
4854	    LOG10 LOG10)
4855      exps (SQRT CBRT)
4856  (simplify
4857   (logs (exps @0))
4858   (if (SCALAR_FLOAT_TYPE_P (type))
4859    (with {
4860      tree x;
4861      switch (exps)
4862	{
4863	CASE_CFN_SQRT:
4864	  /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x).  */
4865	  x = build_real (type, dconsthalf);
4866	  break;
4867	CASE_CFN_CBRT:
4868	  /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x).  */
4869	  x = build_real_truncate (type, dconst_third ());
4870	  break;
4871	default:
4872	  gcc_unreachable ();
4873	}
4874      }
4875     (mult { x; } (logs @0))))))
4876
4877 /* logN(pow(x,exponent)) -> exponent*logN(x).  */
4878 (for logs (LOG LOG2 LOG10)
4879      pows (POW)
4880  (simplify
4881   (logs (pows @0 @1))
4882   (mult @1 (logs @0))))
4883
4884 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4885    or if C is a positive power of 2,
4886    pow(C,x) -> exp2(log2(C)*x).  */
4887#if GIMPLE
4888 (for pows (POW)
4889      exps (EXP)
4890      logs (LOG)
4891      exp2s (EXP2)
4892      log2s (LOG2)
4893  (simplify
4894   (pows REAL_CST@0 @1)
4895   (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4896	&& real_isfinite (TREE_REAL_CST_PTR (@0))
4897	/* As libmvec doesn't have a vectorized exp2, defer optimizing
4898	   the use_exp2 case until after vectorization.  It seems actually
4899	   beneficial for all constants to postpone this until later,
4900	   because exp(log(C)*x), while faster, will have worse precision
4901	   and if x folds into a constant too, that is unnecessary
4902	   pessimization.  */
4903	&& canonicalize_math_after_vectorization_p ())
4904    (with {
4905       const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4906       bool use_exp2 = false;
4907       if (targetm.libc_has_function (function_c99_misc)
4908	   && value->cl == rvc_normal)
4909	 {
4910	   REAL_VALUE_TYPE frac_rvt = *value;
4911	   SET_REAL_EXP (&frac_rvt, 1);
4912	   if (real_equal (&frac_rvt, &dconst1))
4913	     use_exp2 = true;
4914	 }
4915     }
4916     (if (!use_exp2)
4917      (if (optimize_pow_to_exp (@0, @1))
4918       (exps (mult (logs @0) @1)))
4919      (exp2s (mult (log2s @0) @1)))))))
4920#endif
4921
4922 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0.  */
4923 (for pows (POW)
4924      exps (EXP EXP2 EXP10 POW10)
4925      logs (LOG LOG2 LOG10 LOG10)
4926  (simplify
4927   (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4928   (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4929	&& real_isfinite (TREE_REAL_CST_PTR (@0)))
4930    (exps (plus (mult (logs @0) @1) @2)))))
4931
4932 (for sqrts (SQRT)
4933      cbrts (CBRT)
4934      pows (POW)
4935      exps (EXP EXP2 EXP10 POW10)
4936  /* sqrt(expN(x)) -> expN(x*0.5).  */
4937  (simplify
4938   (sqrts (exps @0))
4939   (exps (mult @0 { build_real (type, dconsthalf); })))
4940  /* cbrt(expN(x)) -> expN(x/3).  */
4941  (simplify
4942   (cbrts (exps @0))
4943   (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4944  /* pow(expN(x), y) -> expN(x*y).  */
4945  (simplify
4946   (pows (exps @0) @1)
4947   (exps (mult @0 @1))))
4948
4949 /* tan(atan(x)) -> x.  */
4950 (for tans (TAN)
4951      atans (ATAN)
4952  (simplify
4953   (tans (atans @0))
4954   @0)))
4955
4956 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4957 (for sins (SIN)
4958      atans (ATAN)
4959      sqrts (SQRT)
4960      copysigns (COPYSIGN)
4961  (simplify
4962   (sins (atans:s @0))
4963   (with
4964     {
4965      REAL_VALUE_TYPE r_cst;
4966      build_sinatan_real (&r_cst, type);
4967      tree t_cst = build_real (type, r_cst);
4968      tree t_one = build_one_cst (type);
4969     }
4970    (if (SCALAR_FLOAT_TYPE_P (type))
4971     (cond (lt (abs @0) { t_cst; })
4972      (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4973      (copysigns { t_one; } @0))))))
4974
4975/* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4976 (for coss (COS)
4977      atans (ATAN)
4978      sqrts (SQRT)
4979      copysigns (COPYSIGN)
4980  (simplify
4981   (coss (atans:s @0))
4982   (with
4983     {
4984      REAL_VALUE_TYPE r_cst;
4985      build_sinatan_real (&r_cst, type);
4986      tree t_cst = build_real (type, r_cst);
4987      tree t_one = build_one_cst (type);
4988      tree t_zero = build_zero_cst (type);
4989     }
4990    (if (SCALAR_FLOAT_TYPE_P (type))
4991     (cond (lt (abs @0) { t_cst; })
4992      (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4993      (copysigns { t_zero; } @0))))))
4994
4995 (if (!flag_errno_math)
4996  /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
4997  (for sinhs (SINH)
4998       atanhs (ATANH)
4999       sqrts (SQRT)
5000   (simplify
5001    (sinhs (atanhs:s @0))
5002    (with { tree t_one = build_one_cst (type); }
5003    (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
5004
5005  /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
5006  (for coshs (COSH)
5007       atanhs (ATANH)
5008       sqrts (SQRT)
5009   (simplify
5010    (coshs (atanhs:s @0))
5011    (with { tree t_one = build_one_cst (type); }
5012    (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
5013
5014/* cabs(x+0i) or cabs(0+xi) -> abs(x).  */
5015(simplify
5016 (CABS (complex:C @0 real_zerop@1))
5017 (abs @0))
5018
5019/* trunc(trunc(x)) -> trunc(x), etc.  */
5020(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5021 (simplify
5022  (fns (fns @0))
5023  (fns @0)))
5024/* f(x) -> x if x is integer valued and f does nothing for such values.  */
5025(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5026 (simplify
5027  (fns integer_valued_real_p@0)
5028  @0))
5029
5030/* hypot(x,0) and hypot(0,x) -> abs(x).  */
5031(simplify
5032 (HYPOT:c @0 real_zerop@1)
5033 (abs @0))
5034
5035/* pow(1,x) -> 1.  */
5036(simplify
5037 (POW real_onep@0 @1)
5038 @0)
5039
5040(simplify
5041 /* copysign(x,x) -> x.  */
5042 (COPYSIGN_ALL @0 @0)
5043 @0)
5044
5045(simplify
5046 /* copysign(x,y) -> fabs(x) if y is nonnegative.  */
5047 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
5048 (abs @0))
5049
5050(for scale (LDEXP SCALBN SCALBLN)
5051 /* ldexp(0, x) -> 0.  */
5052 (simplify
5053  (scale real_zerop@0 @1)
5054  @0)
5055 /* ldexp(x, 0) -> x.  */
5056 (simplify
5057  (scale @0 integer_zerop@1)
5058  @0)
5059 /* ldexp(x, y) -> x if x is +-Inf or NaN.  */
5060 (simplify
5061  (scale REAL_CST@0 @1)
5062  (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
5063   @0)))
5064
5065/* Canonicalization of sequences of math builtins.  These rules represent
5066   IL simplifications but are not necessarily optimizations.
5067
5068   The sincos pass is responsible for picking "optimal" implementations
5069   of math builtins, which may be more complicated and can sometimes go
5070   the other way, e.g. converting pow into a sequence of sqrts.
5071   We only want to do these canonicalizations before the pass has run.  */
5072
5073(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
5074 /* Simplify tan(x) * cos(x) -> sin(x). */
5075 (simplify
5076  (mult:c (TAN:s @0) (COS:s @0))
5077   (SIN @0))
5078
5079 /* Simplify x * pow(x,c) -> pow(x,c+1). */
5080 (simplify
5081  (mult:c @0 (POW:s @0 REAL_CST@1))
5082  (if (!TREE_OVERFLOW (@1))
5083   (POW @0 (plus @1 { build_one_cst (type); }))))
5084
5085 /* Simplify sin(x) / cos(x) -> tan(x). */
5086 (simplify
5087  (rdiv (SIN:s @0) (COS:s @0))
5088   (TAN @0))
5089
5090 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
5091 (simplify
5092  (rdiv (SINH:s @0) (COSH:s @0))
5093   (TANH @0))
5094
5095 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
5096 (simplify
5097  (rdiv (COS:s @0) (SIN:s @0))
5098   (rdiv { build_one_cst (type); } (TAN @0)))
5099
5100 /* Simplify sin(x) / tan(x) -> cos(x). */
5101 (simplify
5102  (rdiv (SIN:s @0) (TAN:s @0))
5103  (if (! HONOR_NANS (@0)
5104       && ! HONOR_INFINITIES (@0))
5105   (COS @0)))
5106
5107 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
5108 (simplify
5109  (rdiv (TAN:s @0) (SIN:s @0))
5110  (if (! HONOR_NANS (@0)
5111       && ! HONOR_INFINITIES (@0))
5112   (rdiv { build_one_cst (type); } (COS @0))))
5113
5114 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
5115 (simplify
5116  (mult (POW:s @0 @1) (POW:s @0 @2))
5117   (POW @0 (plus @1 @2)))
5118
5119 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
5120 (simplify
5121  (mult (POW:s @0 @1) (POW:s @2 @1))
5122   (POW (mult @0 @2) @1))
5123
5124 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
5125 (simplify
5126  (mult (POWI:s @0 @1) (POWI:s @2 @1))
5127   (POWI (mult @0 @2) @1))
5128
5129 /* Simplify pow(x,c) / x -> pow(x,c-1). */
5130 (simplify
5131  (rdiv (POW:s @0 REAL_CST@1) @0)
5132  (if (!TREE_OVERFLOW (@1))
5133   (POW @0 (minus @1 { build_one_cst (type); }))))
5134
5135 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
5136 (simplify
5137  (rdiv @0 (POW:s @1 @2))
5138   (mult @0 (POW @1 (negate @2))))
5139
5140 (for sqrts (SQRT)
5141      cbrts (CBRT)
5142      pows (POW)
5143  /* sqrt(sqrt(x)) -> pow(x,1/4).  */
5144  (simplify
5145   (sqrts (sqrts @0))
5146   (pows @0 { build_real (type, dconst_quarter ()); }))
5147  /* sqrt(cbrt(x)) -> pow(x,1/6).  */
5148  (simplify
5149   (sqrts (cbrts @0))
5150   (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5151  /* cbrt(sqrt(x)) -> pow(x,1/6).  */
5152  (simplify
5153   (cbrts (sqrts @0))
5154   (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5155  /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative.  */
5156  (simplify
5157   (cbrts (cbrts tree_expr_nonnegative_p@0))
5158   (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
5159  /* sqrt(pow(x,y)) -> pow(|x|,y*0.5).  */
5160  (simplify
5161   (sqrts (pows @0 @1))
5162   (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
5163  /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative.  */
5164  (simplify
5165   (cbrts (pows tree_expr_nonnegative_p@0 @1))
5166   (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5167  /* pow(sqrt(x),y) -> pow(x,y*0.5).  */
5168  (simplify
5169   (pows (sqrts @0) @1)
5170   (pows @0 (mult @1 { build_real (type, dconsthalf); })))
5171  /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative.  */
5172  (simplify
5173   (pows (cbrts tree_expr_nonnegative_p@0) @1)
5174   (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5175  /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative.  */
5176  (simplify
5177   (pows (pows tree_expr_nonnegative_p@0 @1) @2)
5178   (pows @0 (mult @1 @2))))
5179
5180 /* cabs(x+xi) -> fabs(x)*sqrt(2).  */
5181 (simplify
5182  (CABS (complex @0 @0))
5183  (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5184
5185 /* hypot(x,x) -> fabs(x)*sqrt(2).  */
5186 (simplify
5187  (HYPOT @0 @0)
5188  (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5189
5190 /* cexp(x+yi) -> exp(x)*cexpi(y).  */
5191 (for cexps (CEXP)
5192      exps (EXP)
5193      cexpis (CEXPI)
5194  (simplify
5195   (cexps compositional_complex@0)
5196   (if (targetm.libc_has_function (function_c99_math_complex))
5197    (complex
5198     (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
5199     (mult @1 (imagpart @2)))))))
5200
5201(if (canonicalize_math_p ())
5202 /* floor(x) -> trunc(x) if x is nonnegative.  */
5203 (for floors (FLOOR_ALL)
5204      truncs (TRUNC_ALL)
5205  (simplify
5206   (floors tree_expr_nonnegative_p@0)
5207   (truncs @0))))
5208
5209(match double_value_p
5210 @0
5211 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
5212(for froms (BUILT_IN_TRUNCL
5213	    BUILT_IN_FLOORL
5214	    BUILT_IN_CEILL
5215	    BUILT_IN_ROUNDL
5216	    BUILT_IN_NEARBYINTL
5217	    BUILT_IN_RINTL)
5218     tos (BUILT_IN_TRUNC
5219	  BUILT_IN_FLOOR
5220	  BUILT_IN_CEIL
5221	  BUILT_IN_ROUND
5222	  BUILT_IN_NEARBYINT
5223	  BUILT_IN_RINT)
5224 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double.  */
5225 (if (optimize && canonicalize_math_p ())
5226  (simplify
5227   (froms (convert double_value_p@0))
5228   (convert (tos @0)))))
5229
5230(match float_value_p
5231 @0
5232 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
5233(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
5234	    BUILT_IN_FLOORL BUILT_IN_FLOOR
5235	    BUILT_IN_CEILL BUILT_IN_CEIL
5236	    BUILT_IN_ROUNDL BUILT_IN_ROUND
5237	    BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
5238	    BUILT_IN_RINTL BUILT_IN_RINT)
5239     tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
5240	  BUILT_IN_FLOORF BUILT_IN_FLOORF
5241	  BUILT_IN_CEILF BUILT_IN_CEILF
5242	  BUILT_IN_ROUNDF BUILT_IN_ROUNDF
5243	  BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
5244	  BUILT_IN_RINTF BUILT_IN_RINTF)
5245 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
5246    if x is a float.  */
5247 (if (optimize && canonicalize_math_p ()
5248      && targetm.libc_has_function (function_c99_misc))
5249  (simplify
5250   (froms (convert float_value_p@0))
5251   (convert (tos @0)))))
5252
5253(for froms (XFLOORL XCEILL XROUNDL XRINTL)
5254     tos (XFLOOR XCEIL XROUND XRINT)
5255 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double.  */
5256 (if (optimize && canonicalize_math_p ())
5257  (simplify
5258   (froms (convert double_value_p@0))
5259   (tos @0))))
5260
5261(for froms (XFLOORL XCEILL XROUNDL XRINTL
5262	    XFLOOR XCEIL XROUND XRINT)
5263     tos (XFLOORF XCEILF XROUNDF XRINTF)
5264 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
5265    if x is a float.  */
5266 (if (optimize && canonicalize_math_p ())
5267  (simplify
5268   (froms (convert float_value_p@0))
5269   (tos @0))))
5270
5271(if (canonicalize_math_p ())
5272 /* xfloor(x) -> fix_trunc(x) if x is nonnegative.  */
5273 (for floors (IFLOOR LFLOOR LLFLOOR)
5274  (simplify
5275   (floors tree_expr_nonnegative_p@0)
5276   (fix_trunc @0))))
5277
5278(if (canonicalize_math_p ())
5279 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued.  */
5280 (for fns (IFLOOR LFLOOR LLFLOOR
5281	   ICEIL LCEIL LLCEIL
5282	   IROUND LROUND LLROUND)
5283  (simplify
5284   (fns integer_valued_real_p@0)
5285   (fix_trunc @0)))
5286 (if (!flag_errno_math)
5287  /* xrint(x) -> fix_trunc(x), etc., if x is integer valued.  */
5288  (for rints (IRINT LRINT LLRINT)
5289   (simplify
5290    (rints integer_valued_real_p@0)
5291    (fix_trunc @0)))))
5292
5293(if (canonicalize_math_p ())
5294 (for ifn (IFLOOR ICEIL IROUND IRINT)
5295      lfn (LFLOOR LCEIL LROUND LRINT)
5296      llfn (LLFLOOR LLCEIL LLROUND LLRINT)
5297  /* Canonicalize iround (x) to lround (x) on ILP32 targets where
5298     sizeof (int) == sizeof (long).  */
5299  (if (TYPE_PRECISION (integer_type_node)
5300       == TYPE_PRECISION (long_integer_type_node))
5301   (simplify
5302    (ifn @0)
5303    (lfn:long_integer_type_node @0)))
5304  /* Canonicalize llround (x) to lround (x) on LP64 targets where
5305     sizeof (long long) == sizeof (long).  */
5306  (if (TYPE_PRECISION (long_long_integer_type_node)
5307       == TYPE_PRECISION (long_integer_type_node))
5308   (simplify
5309    (llfn @0)
5310    (lfn:long_integer_type_node @0)))))
5311
5312/* cproj(x) -> x if we're ignoring infinities.  */
5313(simplify
5314 (CPROJ @0)
5315 (if (!HONOR_INFINITIES (type))
5316   @0))
5317
5318/* If the real part is inf and the imag part is known to be
5319   nonnegative, return (inf + 0i).  */
5320(simplify
5321 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
5322 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
5323  { build_complex_inf (type, false); }))
5324
5325/* If the imag part is inf, return (inf+I*copysign(0,imag)).  */
5326(simplify
5327 (CPROJ (complex @0 REAL_CST@1))
5328 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
5329  { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
5330
5331(for pows (POW)
5332     sqrts (SQRT)
5333     cbrts (CBRT)
5334 (simplify
5335  (pows @0 REAL_CST@1)
5336  (with {
5337    const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
5338    REAL_VALUE_TYPE tmp;
5339   }
5340   (switch
5341    /* pow(x,0) -> 1.  */
5342    (if (real_equal (value, &dconst0))
5343     { build_real (type, dconst1); })
5344    /* pow(x,1) -> x.  */
5345    (if (real_equal (value, &dconst1))
5346     @0)
5347    /* pow(x,-1) -> 1/x.  */
5348    (if (real_equal (value, &dconstm1))
5349     (rdiv { build_real (type, dconst1); } @0))
5350    /* pow(x,0.5) -> sqrt(x).  */
5351    (if (flag_unsafe_math_optimizations
5352	 && canonicalize_math_p ()
5353	 && real_equal (value, &dconsthalf))
5354     (sqrts @0))
5355    /* pow(x,1/3) -> cbrt(x).  */
5356    (if (flag_unsafe_math_optimizations
5357	 && canonicalize_math_p ()
5358	 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
5359	     real_equal (value, &tmp)))
5360     (cbrts @0))))))
5361
5362/* powi(1,x) -> 1.  */
5363(simplify
5364 (POWI real_onep@0 @1)
5365 @0)
5366
5367(simplify
5368 (POWI @0 INTEGER_CST@1)
5369 (switch
5370  /* powi(x,0) -> 1.  */
5371  (if (wi::to_wide (@1) == 0)
5372   { build_real (type, dconst1); })
5373  /* powi(x,1) -> x.  */
5374  (if (wi::to_wide (@1) == 1)
5375   @0)
5376  /* powi(x,-1) -> 1/x.  */
5377  (if (wi::to_wide (@1) == -1)
5378   (rdiv { build_real (type, dconst1); } @0))))
5379
5380/* Narrowing of arithmetic and logical operations.
5381
5382   These are conceptually similar to the transformations performed for
5383   the C/C++ front-ends by shorten_binary_op and shorten_compare.  Long
5384   term we want to move all that code out of the front-ends into here.  */
5385
5386/* Convert (outertype)((innertype0)a+(innertype1)b)
5387   into ((newtype)a+(newtype)b) where newtype
5388   is the widest mode from all of these.  */
5389(for op (plus minus mult rdiv)
5390 (simplify
5391   (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
5392   /* If we have a narrowing conversion of an arithmetic operation where
5393      both operands are widening conversions from the same type as the outer
5394      narrowing conversion.  Then convert the innermost operands to a
5395      suitable unsigned type (to avoid introducing undefined behavior),
5396      perform the operation and convert the result to the desired type.  */
5397   (if (INTEGRAL_TYPE_P (type)
5398	&& op != MULT_EXPR
5399	&& op != RDIV_EXPR
5400	/* We check for type compatibility between @0 and @1 below,
5401	   so there's no need to check that @2/@4 are integral types.  */
5402	&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
5403	&& INTEGRAL_TYPE_P (TREE_TYPE (@3))
5404	/* The precision of the type of each operand must match the
5405	   precision of the mode of each operand, similarly for the
5406	   result.  */
5407	&& type_has_mode_precision_p (TREE_TYPE (@1))
5408	&& type_has_mode_precision_p (TREE_TYPE (@2))
5409	&& type_has_mode_precision_p (type)
5410	/* The inner conversion must be a widening conversion.  */
5411	&& TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
5412	&& types_match (@1, type)
5413	&& (types_match (@1, @2)
5414	    /* Or the second operand is const integer or converted const
5415	       integer from valueize.  */
5416	    || TREE_CODE (@2) == INTEGER_CST))
5417     (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
5418       (op @1 (convert @2))
5419       (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5420	(convert (op (convert:utype @1)
5421		     (convert:utype @2)))))
5422     (if (FLOAT_TYPE_P (type)
5423	  && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5424	       == DECIMAL_FLOAT_TYPE_P (type))
5425      (with { tree arg0 = strip_float_extensions (@1);
5426	      tree arg1 = strip_float_extensions (@2);
5427	      tree itype = TREE_TYPE (@0);
5428	      tree ty1 = TREE_TYPE (arg0);
5429	      tree ty2 = TREE_TYPE (arg1);
5430	      enum tree_code code = TREE_CODE (itype); }
5431	(if (FLOAT_TYPE_P (ty1)
5432	     && FLOAT_TYPE_P (ty2))
5433	 (with { tree newtype = type;
5434		 if (TYPE_MODE (ty1) == SDmode
5435		     || TYPE_MODE (ty2) == SDmode
5436		     || TYPE_MODE (type) == SDmode)
5437		   newtype = dfloat32_type_node;
5438		 if (TYPE_MODE (ty1) == DDmode
5439		     || TYPE_MODE (ty2) == DDmode
5440		     || TYPE_MODE (type) == DDmode)
5441		   newtype = dfloat64_type_node;
5442		 if (TYPE_MODE (ty1) == TDmode
5443		     || TYPE_MODE (ty2) == TDmode
5444		     || TYPE_MODE (type) == TDmode)
5445		   newtype = dfloat128_type_node; }
5446	  (if ((newtype == dfloat32_type_node
5447		|| newtype == dfloat64_type_node
5448		|| newtype == dfloat128_type_node)
5449	      && newtype == type
5450	      && types_match (newtype, type))
5451	    (op (convert:newtype @1) (convert:newtype @2))
5452	    (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
5453		      newtype = ty1;
5454		    if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
5455		      newtype = ty2; }
5456	       /* Sometimes this transformation is safe (cannot
5457		  change results through affecting double rounding
5458		  cases) and sometimes it is not.  If NEWTYPE is
5459		  wider than TYPE, e.g. (float)((long double)double
5460		  + (long double)double) converted to
5461		  (float)(double + double), the transformation is
5462		  unsafe regardless of the details of the types
5463		  involved; double rounding can arise if the result
5464		  of NEWTYPE arithmetic is a NEWTYPE value half way
5465		  between two representable TYPE values but the
5466		  exact value is sufficiently different (in the
5467		  right direction) for this difference to be
5468		  visible in ITYPE arithmetic.  If NEWTYPE is the
5469		  same as TYPE, however, the transformation may be
5470		  safe depending on the types involved: it is safe
5471		  if the ITYPE has strictly more than twice as many
5472		  mantissa bits as TYPE, can represent infinities
5473		  and NaNs if the TYPE can, and has sufficient
5474		  exponent range for the product or ratio of two
5475		  values representable in the TYPE to be within the
5476		  range of normal values of ITYPE.  */
5477	      (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
5478		   && (flag_unsafe_math_optimizations
5479		       || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
5480			   && real_can_shorten_arithmetic (TYPE_MODE (itype),
5481							   TYPE_MODE (type))
5482			   && !excess_precision_type (newtype)))
5483		   && !types_match (itype, newtype))
5484		 (convert:type (op (convert:newtype @1)
5485				   (convert:newtype @2)))
5486	 )))) )
5487   ))
5488)))
5489
5490/* This is another case of narrowing, specifically when there's an outer
5491   BIT_AND_EXPR which masks off bits outside the type of the innermost
5492   operands.   Like the previous case we have to convert the operands
5493   to unsigned types to avoid introducing undefined behavior for the
5494   arithmetic operation.  */
5495(for op (minus plus)
5496 (simplify
5497  (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
5498  (if (INTEGRAL_TYPE_P (type)
5499       /* We check for type compatibility between @0 and @1 below,
5500	  so there's no need to check that @1/@3 are integral types.  */
5501       && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5502       && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5503       /* The precision of the type of each operand must match the
5504	  precision of the mode of each operand, similarly for the
5505	  result.  */
5506       && type_has_mode_precision_p (TREE_TYPE (@0))
5507       && type_has_mode_precision_p (TREE_TYPE (@1))
5508       && type_has_mode_precision_p (type)
5509       /* The inner conversion must be a widening conversion.  */
5510       && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5511       && types_match (@0, @1)
5512       && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
5513	   <= TYPE_PRECISION (TREE_TYPE (@0)))
5514       && (wi::to_wide (@4)
5515	   & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
5516		       true, TYPE_PRECISION (type))) == 0)
5517   (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
5518    (with { tree ntype = TREE_TYPE (@0); }
5519     (convert (bit_and (op @0 @1) (convert:ntype @4))))
5520    (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
5521     (convert (bit_and (op (convert:utype @0) (convert:utype @1))
5522	       (convert:utype @4))))))))
5523
5524/* Transform (@0 < @1 and @0 < @2) to use min,
5525   (@0 > @1 and @0 > @2) to use max */
5526(for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
5527     op    (lt      le      gt      ge      lt      le      gt      ge     )
5528     ext   (min     min     max     max     max     max     min     min    )
5529 (simplify
5530  (logic (op:cs @0 @1) (op:cs @0 @2))
5531  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5532       && TREE_CODE (@0) != INTEGER_CST)
5533   (op @0 (ext @1 @2)))))
5534
5535(simplify
5536 /* signbit(x) -> 0 if x is nonnegative.  */
5537 (SIGNBIT tree_expr_nonnegative_p@0)
5538 { integer_zero_node; })
5539
5540(simplify
5541 /* signbit(x) -> x<0 if x doesn't have signed zeros.  */
5542 (SIGNBIT @0)
5543 (if (!HONOR_SIGNED_ZEROS (@0))
5544  (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
5545
5546/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1.  */
5547(for cmp (eq ne)
5548 (for op (plus minus)
5549      rop (minus plus)
5550  (simplify
5551   (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5552   (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5553	&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
5554	&& !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
5555	&& !TYPE_SATURATING (TREE_TYPE (@0)))
5556    (with { tree res = int_const_binop (rop, @2, @1); }
5557     (if (TREE_OVERFLOW (res)
5558	  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5559      { constant_boolean_node (cmp == NE_EXPR, type); }
5560      (if (single_use (@3))
5561       (cmp @0 { TREE_OVERFLOW (res)
5562		 ? drop_tree_overflow (res) : res; }))))))))
5563(for cmp (lt le gt ge)
5564 (for op (plus minus)
5565      rop (minus plus)
5566  (simplify
5567   (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5568   (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5569	&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5570    (with { tree res = int_const_binop (rop, @2, @1); }
5571     (if (TREE_OVERFLOW (res))
5572      {
5573	fold_overflow_warning (("assuming signed overflow does not occur "
5574				"when simplifying conditional to constant"),
5575			       WARN_STRICT_OVERFLOW_CONDITIONAL);
5576        bool less = cmp == LE_EXPR || cmp == LT_EXPR;
5577	/* wi::ges_p (@2, 0) should be sufficient for a signed type.  */
5578	bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
5579				  TYPE_SIGN (TREE_TYPE (@1)))
5580			!= (op == MINUS_EXPR);
5581	constant_boolean_node (less == ovf_high, type);
5582      }
5583      (if (single_use (@3))
5584       (with
5585	{
5586	  fold_overflow_warning (("assuming signed overflow does not occur "
5587				  "when changing X +- C1 cmp C2 to "
5588				  "X cmp C2 -+ C1"),
5589				 WARN_STRICT_OVERFLOW_COMPARISON);
5590	}
5591	(cmp @0 { res; })))))))))
5592
5593/* Canonicalizations of BIT_FIELD_REFs.  */
5594
5595(simplify
5596 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5597 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5598
5599(simplify
5600 (BIT_FIELD_REF (view_convert @0) @1 @2)
5601 (BIT_FIELD_REF @0 @1 @2))
5602
5603(simplify
5604 (BIT_FIELD_REF @0 @1 integer_zerop)
5605 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5606  (view_convert @0)))
5607
5608(simplify
5609 (BIT_FIELD_REF @0 @1 @2)
5610 (switch
5611  (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5612       && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5613   (switch
5614    (if (integer_zerop (@2))
5615     (view_convert (realpart @0)))
5616    (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5617     (view_convert (imagpart @0)))))
5618  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5619       && INTEGRAL_TYPE_P (type)
5620       /* On GIMPLE this should only apply to register arguments.  */
5621       && (! GIMPLE || is_gimple_reg (@0))
5622       /* A bit-field-ref that referenced the full argument can be stripped.  */
5623       && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5624	    && integer_zerop (@2))
5625	   /* Low-parts can be reduced to integral conversions.
5626	      ???  The following doesn't work for PDP endian.  */
5627	   || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5628	       /* Don't even think about BITS_BIG_ENDIAN.  */
5629	       && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5630	       && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5631	       && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5632					 ? (TYPE_PRECISION (TREE_TYPE (@0))
5633					    - TYPE_PRECISION (type))
5634					 : 0)) == 0)))
5635   (convert @0))))
5636
5637/* Simplify vector extracts.  */
5638
5639(simplify
5640 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5641 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5642      && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5643          || (VECTOR_TYPE_P (type)
5644	      && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5645  (with
5646   {
5647     tree ctor = (TREE_CODE (@0) == SSA_NAME
5648		  ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5649     tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5650     unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5651     unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5652     unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5653   }
5654   (if (n != 0
5655	&& (idx % width) == 0
5656	&& (n % width) == 0
5657	&& known_le ((idx + n) / width,
5658		     TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5659    (with
5660     {
5661       idx = idx / width;
5662       n = n / width;
5663       /* Constructor elements can be subvectors.  */
5664       poly_uint64 k = 1;
5665       if (CONSTRUCTOR_NELTS (ctor) != 0)
5666         {
5667           tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5668	   if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5669	     k = TYPE_VECTOR_SUBPARTS (cons_elem);
5670	 }
5671       unsigned HOST_WIDE_INT elt, count, const_k;
5672     }
5673     (switch
5674      /* We keep an exact subset of the constructor elements.  */
5675      (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5676       (if (CONSTRUCTOR_NELTS (ctor) == 0)
5677        { build_constructor (type, NULL); }
5678	(if (count == 1)
5679	 (if (elt < CONSTRUCTOR_NELTS (ctor))
5680	  (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5681	  { build_zero_cst (type); })
5682	 /* We don't want to emit new CTORs unless the old one goes away.
5683	    ???  Eventually allow this if the CTOR ends up constant or
5684	    uniform.  */
5685	 (if (single_use (@0))
5686	  {
5687	    vec<constructor_elt, va_gc> *vals;
5688	    vec_alloc (vals, count);
5689	    for (unsigned i = 0;
5690		 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5691	      CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5692				      CONSTRUCTOR_ELT (ctor, elt + i)->value);
5693	    build_constructor (type, vals);
5694	  }))))
5695      /* The bitfield references a single constructor element.  */
5696      (if (k.is_constant (&const_k)
5697	   && idx + n <= (idx / const_k + 1) * const_k)
5698       (switch
5699	(if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5700	 { build_zero_cst (type); })
5701	(if (n == const_k)
5702	 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5703	(BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5704		       @1 { bitsize_int ((idx % const_k) * width); })))))))))
5705
5706/* Simplify a bit extraction from a bit insertion for the cases with
5707   the inserted element fully covering the extraction or the insertion
5708   not touching the extraction.  */
5709(simplify
5710 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5711 (with
5712  {
5713    unsigned HOST_WIDE_INT isize;
5714    if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5715      isize = TYPE_PRECISION (TREE_TYPE (@1));
5716    else
5717      isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5718  }
5719  (switch
5720   (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5721	&& wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5722		      wi::to_wide (@ipos) + isize))
5723    (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5724                                                 wi::to_wide (@rpos)
5725						 - wi::to_wide (@ipos)); }))
5726   (if (wi::geu_p (wi::to_wide (@ipos),
5727		   wi::to_wide (@rpos) + wi::to_wide (@rsize))
5728	|| wi::geu_p (wi::to_wide (@rpos),
5729		      wi::to_wide (@ipos) + isize))
5730    (BIT_FIELD_REF @0 @rsize @rpos)))))
5731
5732(if (canonicalize_math_after_vectorization_p ())
5733 (for fmas (FMA)
5734  (simplify
5735   (fmas:c (negate @0) @1 @2)
5736   (IFN_FNMA @0 @1 @2))
5737  (simplify
5738   (fmas @0 @1 (negate @2))
5739   (IFN_FMS @0 @1 @2))
5740  (simplify
5741   (fmas:c (negate @0) @1 (negate @2))
5742   (IFN_FNMS @0 @1 @2))
5743  (simplify
5744   (negate (fmas@3 @0 @1 @2))
5745   (if (single_use (@3))
5746    (IFN_FNMS @0 @1 @2))))
5747
5748 (simplify
5749  (IFN_FMS:c (negate @0) @1 @2)
5750  (IFN_FNMS @0 @1 @2))
5751 (simplify
5752  (IFN_FMS @0 @1 (negate @2))
5753  (IFN_FMA @0 @1 @2))
5754 (simplify
5755  (IFN_FMS:c (negate @0) @1 (negate @2))
5756  (IFN_FNMA @0 @1 @2))
5757 (simplify
5758  (negate (IFN_FMS@3 @0 @1 @2))
5759   (if (single_use (@3))
5760    (IFN_FNMA @0 @1 @2)))
5761
5762 (simplify
5763  (IFN_FNMA:c (negate @0) @1 @2)
5764  (IFN_FMA @0 @1 @2))
5765 (simplify
5766  (IFN_FNMA @0 @1 (negate @2))
5767  (IFN_FNMS @0 @1 @2))
5768 (simplify
5769  (IFN_FNMA:c (negate @0) @1 (negate @2))
5770  (IFN_FMS @0 @1 @2))
5771 (simplify
5772  (negate (IFN_FNMA@3 @0 @1 @2))
5773  (if (single_use (@3))
5774   (IFN_FMS @0 @1 @2)))
5775
5776 (simplify
5777  (IFN_FNMS:c (negate @0) @1 @2)
5778  (IFN_FMS @0 @1 @2))
5779 (simplify
5780  (IFN_FNMS @0 @1 (negate @2))
5781  (IFN_FNMA @0 @1 @2))
5782 (simplify
5783  (IFN_FNMS:c (negate @0) @1 (negate @2))
5784  (IFN_FMA @0 @1 @2))
5785 (simplify
5786  (negate (IFN_FNMS@3 @0 @1 @2))
5787  (if (single_use (@3))
5788   (IFN_FMA @0 @1 @2))))
5789
5790/* POPCOUNT simplifications.  */
5791(for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5792	       BUILT_IN_POPCOUNTIMAX)
5793  /* popcount(X&1) is nop_expr(X&1).  */
5794  (simplify
5795    (popcount @0)
5796    (if (tree_nonzero_bits (@0) == 1)
5797      (convert @0)))
5798  /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero.  */
5799  (simplify
5800    (plus (popcount:s @0) (popcount:s @1))
5801    (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5802      (popcount (bit_ior @0 @1))))
5803  /* popcount(X) == 0 is X == 0, and related (in)equalities.  */
5804  (for cmp (le eq ne gt)
5805       rep (eq eq ne ne)
5806    (simplify
5807      (cmp (popcount @0) integer_zerop)
5808      (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5809
5810#if GIMPLE
5811/* 64- and 32-bits branchless implementations of popcount are detected:
5812
5813   int popcount64c (uint64_t x)
5814   {
5815     x -= (x >> 1) & 0x5555555555555555ULL;
5816     x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
5817     x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
5818     return (x * 0x0101010101010101ULL) >> 56;
5819   }
5820
5821   int popcount32c (uint32_t x)
5822   {
5823     x -= (x >> 1) & 0x55555555;
5824     x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
5825     x = (x + (x >> 4)) & 0x0f0f0f0f;
5826     return (x * 0x01010101) >> 24;
5827   }  */
5828(simplify
5829 (rshift
5830  (mult
5831   (bit_and
5832    (plus:c
5833     (rshift @8 INTEGER_CST@5)
5834      (plus:c@8
5835       (bit_and @6 INTEGER_CST@7)
5836	(bit_and
5837	 (rshift
5838	  (minus@6 @0
5839	   (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
5840	  INTEGER_CST@10)
5841	 INTEGER_CST@9)))
5842    INTEGER_CST@3)
5843   INTEGER_CST@2)
5844  INTEGER_CST@1)
5845  /* Check constants and optab.  */
5846  (with { unsigned prec = TYPE_PRECISION (type);
5847	  int shift = (64 - prec) & 63;
5848	  unsigned HOST_WIDE_INT c1
5849	    = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
5850	  unsigned HOST_WIDE_INT c2
5851	    = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
5852	  unsigned HOST_WIDE_INT c3
5853	    = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
5854	  unsigned HOST_WIDE_INT c4
5855	    = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
5856   }
5857   (if (prec >= 16
5858	&& prec <= 64
5859	&& pow2p_hwi (prec)
5860	&& TYPE_UNSIGNED (type)
5861	&& integer_onep (@4)
5862	&& wi::to_widest (@10) == 2
5863	&& wi::to_widest (@5) == 4
5864	&& wi::to_widest (@1) == prec - 8
5865	&& tree_to_uhwi (@2) == c1
5866	&& tree_to_uhwi (@3) == c2
5867	&& tree_to_uhwi (@9) == c3
5868	&& tree_to_uhwi (@7) == c3
5869	&& tree_to_uhwi (@11) == c4
5870	&& direct_internal_fn_supported_p (IFN_POPCOUNT, type,
5871					   OPTIMIZE_FOR_BOTH))
5872    (convert (IFN_POPCOUNT:type @0)))))
5873#endif
5874
5875/* Simplify:
5876
5877     a = a1 op a2
5878     r = c ? a : b;
5879
5880   to:
5881
5882     r = c ? a1 op a2 : b;
5883
5884   if the target can do it in one go.  This makes the operation conditional
5885   on c, so could drop potentially-trapping arithmetic, but that's a valid
5886   simplification if the result of the operation isn't needed.
5887
5888   Avoid speculatively generating a stand-alone vector comparison
5889   on targets that might not support them.  Any target implementing
5890   conditional internal functions must support the same comparisons
5891   inside and outside a VEC_COND_EXPR.  */
5892
5893#if GIMPLE
5894(for uncond_op (UNCOND_BINARY)
5895     cond_op (COND_BINARY)
5896 (simplify
5897  (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5898  (with { tree op_type = TREE_TYPE (@4); }
5899   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5900	&& element_precision (type) == element_precision (op_type))
5901    (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5902 (simplify
5903  (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5904  (with { tree op_type = TREE_TYPE (@4); }
5905   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5906	&& element_precision (type) == element_precision (op_type))
5907    (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5908
5909/* Same for ternary operations.  */
5910(for uncond_op (UNCOND_TERNARY)
5911     cond_op (COND_TERNARY)
5912 (simplify
5913  (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5914  (with { tree op_type = TREE_TYPE (@5); }
5915   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5916	&& element_precision (type) == element_precision (op_type))
5917    (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5918 (simplify
5919  (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5920  (with { tree op_type = TREE_TYPE (@5); }
5921   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5922	&& element_precision (type) == element_precision (op_type))
5923    (view_convert (cond_op (bit_not @0) @2 @3 @4
5924		  (view_convert:op_type @1)))))))
5925#endif
5926
5927/* Detect cases in which a VEC_COND_EXPR effectively replaces the
5928   "else" value of an IFN_COND_*.  */
5929(for cond_op (COND_BINARY)
5930 (simplify
5931  (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5932  (with { tree op_type = TREE_TYPE (@3); }
5933   (if (element_precision (type) == element_precision (op_type))
5934    (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5935 (simplify
5936  (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5937  (with { tree op_type = TREE_TYPE (@5); }
5938   (if (inverse_conditions_p (@0, @2)
5939        && element_precision (type) == element_precision (op_type))
5940    (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5941
5942/* Same for ternary operations.  */
5943(for cond_op (COND_TERNARY)
5944 (simplify
5945  (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5946  (with { tree op_type = TREE_TYPE (@4); }
5947   (if (element_precision (type) == element_precision (op_type))
5948    (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5949 (simplify
5950  (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5951  (with { tree op_type = TREE_TYPE (@6); }
5952   (if (inverse_conditions_p (@0, @2)
5953        && element_precision (type) == element_precision (op_type))
5954    (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5955
5956/* For pointers @0 and @2 and nonnegative constant offset @1, look for
5957   expressions like:
5958
5959   A: (@0 + @1 < @2) | (@2 + @1 < @0)
5960   B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5961
5962   If pointers are known not to wrap, B checks whether @1 bytes starting
5963   at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5964   bytes.  A is more efficiently tested as:
5965
5966   A: (sizetype) (@0 + @1 - @2) > @1 * 2
5967
5968   The equivalent expression for B is given by replacing @1 with @1 - 1:
5969
5970   B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5971
5972   @0 and @2 can be swapped in both expressions without changing the result.
5973
5974   The folds rely on sizetype's being unsigned (which is always true)
5975   and on its being the same width as the pointer (which we have to check).
5976
5977   The fold replaces two pointer_plus expressions, two comparisons and
5978   an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5979   the best case it's a saving of two operations.  The A fold retains one
5980   of the original pointer_pluses, so is a win even if both pointer_pluses
5981   are used elsewhere.  The B fold is a wash if both pointer_pluses are
5982   used elsewhere, since all we end up doing is replacing a comparison with
5983   a pointer_plus.  We do still apply the fold under those circumstances
5984   though, in case applying it to other conditions eventually makes one of the
5985   pointer_pluses dead.  */
5986(for ior (truth_orif truth_or bit_ior)
5987 (for cmp (le lt)
5988  (simplify
5989   (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5990	(cmp:cs (pointer_plus@4 @2 @1) @0))
5991   (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5992	&& TYPE_OVERFLOW_WRAPS (sizetype)
5993	&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5994    /* Calculate the rhs constant.  */
5995    (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5996	    offset_int rhs = off * 2; }
5997     /* Always fails for negative values.  */
5998     (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5999      /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
6000	 pick a canonical order.  This increases the chances of using the
6001	 same pointer_plus in multiple checks.  */
6002      (with { bool swap_p = tree_swap_operands_p (@0, @2);
6003	      tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
6004       (if (cmp == LT_EXPR)
6005	(gt (convert:sizetype
6006	     (pointer_diff:ssizetype { swap_p ? @4 : @3; }
6007				     { swap_p ? @0 : @2; }))
6008	    { rhs_tree; })
6009	(gt (convert:sizetype
6010	     (pointer_diff:ssizetype
6011	      (pointer_plus { swap_p ? @2 : @0; }
6012			    { wide_int_to_tree (sizetype, off); })
6013	      { swap_p ? @0 : @2; }))
6014	    { rhs_tree; })))))))))
6015
6016/* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
6017   element of @1.  */
6018(for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
6019 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
6020  (with { int i = single_nonzero_element (@1); }
6021   (if (i >= 0)
6022    (with { tree elt = vector_cst_elt (@1, i);
6023	    tree elt_type = TREE_TYPE (elt);
6024	    unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
6025	    tree size = bitsize_int (elt_bits);
6026	    tree pos = bitsize_int (elt_bits * i); }
6027     (view_convert
6028      (bit_and:elt_type
6029       (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
6030       { elt; })))))))
6031
6032(simplify
6033 (vec_perm @0 @1 VECTOR_CST@2)
6034 (with
6035  {
6036    tree op0 = @0, op1 = @1, op2 = @2;
6037
6038    /* Build a vector of integers from the tree mask.  */
6039    vec_perm_builder builder;
6040    if (!tree_to_vec_perm_builder (&builder, op2))
6041      return NULL_TREE;
6042
6043    /* Create a vec_perm_indices for the integer vector.  */
6044    poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
6045    bool single_arg = (op0 == op1);
6046    vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
6047  }
6048  (if (sel.series_p (0, 1, 0, 1))
6049   { op0; }
6050   (if (sel.series_p (0, 1, nelts, 1))
6051    { op1; }
6052    (with
6053     {
6054       if (!single_arg)
6055         {
6056	   if (sel.all_from_input_p (0))
6057	     op1 = op0;
6058	   else if (sel.all_from_input_p (1))
6059	     {
6060	       op0 = op1;
6061	       sel.rotate_inputs (1);
6062	     }
6063	   else if (known_ge (poly_uint64 (sel[0]), nelts))
6064	     {
6065	       std::swap (op0, op1);
6066	       sel.rotate_inputs (1);
6067	     }
6068         }
6069       gassign *def;
6070       tree cop0 = op0, cop1 = op1;
6071       if (TREE_CODE (op0) == SSA_NAME
6072           && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
6073	   && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6074	 cop0 = gimple_assign_rhs1 (def);
6075       if (TREE_CODE (op1) == SSA_NAME
6076           && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
6077	   && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6078	 cop1 = gimple_assign_rhs1 (def);
6079
6080       tree t;
6081    }
6082    (if ((TREE_CODE (cop0) == VECTOR_CST
6083	  || TREE_CODE (cop0) == CONSTRUCTOR)
6084	 && (TREE_CODE (cop1) == VECTOR_CST
6085	     || TREE_CODE (cop1) == CONSTRUCTOR)
6086	 && (t = fold_vec_perm (type, cop0, cop1, sel)))
6087     { t; }
6088     (with
6089      {
6090	bool changed = (op0 == op1 && !single_arg);
6091	tree ins = NULL_TREE;
6092	unsigned at = 0;
6093
6094	/* See if the permutation is performing a single element
6095	   insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
6096	   in that case.  But only if the vector mode is supported,
6097	   otherwise this is invalid GIMPLE.  */
6098        if (TYPE_MODE (type) != BLKmode
6099	    && (TREE_CODE (cop0) == VECTOR_CST
6100		|| TREE_CODE (cop0) == CONSTRUCTOR
6101		|| TREE_CODE (cop1) == VECTOR_CST
6102		|| TREE_CODE (cop1) == CONSTRUCTOR))
6103          {
6104	    bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
6105	    if (insert_first_p)
6106	      {
6107	        /* After canonicalizing the first elt to come from the
6108		   first vector we only can insert the first elt from
6109		   the first vector.  */
6110	        at = 0;
6111		if ((ins = fold_read_from_vector (cop0, sel[0])))
6112		  op0 = op1;
6113	      }
6114	    /* The above can fail for two-element vectors which always
6115	       appear to insert the first element, so try inserting
6116	       into the second lane as well.  For more than two
6117	       elements that's wasted time.  */
6118	    if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
6119	      {
6120	        unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
6121		for (at = 0; at < encoded_nelts; ++at)
6122		  if (maybe_ne (sel[at], at))
6123		    break;
6124		if (at < encoded_nelts
6125		    && (known_eq (at + 1, nelts)
6126			|| sel.series_p (at + 1, 1, at + 1, 1)))
6127		  {
6128		    if (known_lt (poly_uint64 (sel[at]), nelts))
6129		      ins = fold_read_from_vector (cop0, sel[at]);
6130		    else
6131		      ins = fold_read_from_vector (cop1, sel[at] - nelts);
6132		  }
6133	      }
6134	  }
6135
6136	/* Generate a canonical form of the selector.  */
6137	if (!ins && sel.encoding () != builder)
6138	  {
6139	    /* Some targets are deficient and fail to expand a single
6140	       argument permutation while still allowing an equivalent
6141	       2-argument version.  */
6142	    tree oldop2 = op2;
6143	    if (sel.ninputs () == 2
6144	       || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
6145	      op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6146	    else
6147	      {
6148	        vec_perm_indices sel2 (builder, 2, nelts);
6149	        if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
6150	          op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
6151	        else
6152	          /* Not directly supported with either encoding,
6153		     so use the preferred form.  */
6154		  op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6155	      }
6156	    if (!operand_equal_p (op2, oldop2, 0))
6157	      changed = true;
6158	  }
6159      }
6160      (if (ins)
6161       (bit_insert { op0; } { ins; }
6162         { bitsize_int (at * tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))); })
6163       (if (changed)
6164        (vec_perm { op0; } { op1; } { op2; }))))))))))
6165
6166/* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element.  */
6167
6168(match vec_same_elem_p
6169 @0
6170 (if (uniform_vector_p (@0))))
6171
6172(match vec_same_elem_p
6173 (vec_duplicate @0))
6174
6175(simplify
6176 (vec_perm vec_same_elem_p@0 @0 @1)
6177 @0)
6178
6179/* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
6180   The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
6181   constant which when multiplied by a power of 2 contains a unique value
6182   in the top 5 or 6 bits.  This is then indexed into a table which maps it
6183   to the number of trailing zeroes.  */
6184(match (ctz_table_index @1 @2 @3)
6185  (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))
6186