1 /* Store motion via Lazy Code Motion on the reverse CFG.
2    Copyright (C) 1997-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "predict.h"
27 #include "df.h"
28 #include "toplev.h"
29 
30 #include "cfgrtl.h"
31 #include "cfganal.h"
32 #include "lcm.h"
33 #include "cfgcleanup.h"
34 #include "expr.h"
35 #include "tree-pass.h"
36 #include "dbgcnt.h"
37 #include "rtl-iter.h"
38 #include "print-rtl.h"
39 
40 /* This pass implements downward store motion.
41    As of May 1, 2009, the pass is not enabled by default on any target,
42    but bootstrap completes on ia64 and x86_64 with the pass enabled.  */
43 
44 /* TODO:
45    - remove_reachable_equiv_notes is an incomprehensible pile of goo and
46      a compile time hog that needs a rewrite (maybe cache st_exprs to
47      invalidate REG_EQUAL/REG_EQUIV notes for?).
48    - pattern_regs in st_expr should be a regset (on its own obstack).
49    - store_motion_mems should be a vec instead of a list.
50    - there should be an alloc pool for struct st_expr objects.
51    - investigate whether it is helpful to make the address of an st_expr
52      a cselib VALUE.
53    - when GIMPLE alias information is exported, the effectiveness of this
54      pass should be re-evaluated.
55 */
56 
57 /* This is a list of store expressions (MEMs).  The structure is used
58    as an expression table to track stores which look interesting, and
59    might be moveable towards the exit block.  */
60 
61 struct st_expr
62 {
63   /* Pattern of this mem.  */
64   rtx pattern;
65   /* List of registers mentioned by the mem.  */
66   vec<rtx> pattern_regs;
67   /* INSN list of stores that are locally anticipatable.  */
68   vec<rtx_insn *> antic_stores;
69   /* INSN list of stores that are locally available.  */
70   vec<rtx_insn *> avail_stores;
71   /* Next in the list.  */
72   struct st_expr * next;
73   /* Store ID in the dataflow bitmaps.  */
74   int index;
75   /* Hash value for the hash table.  */
76   unsigned int hash_index;
77   /* Register holding the stored expression when a store is moved.
78      This field is also used as a cache in find_moveable_store, see
79      LAST_AVAIL_CHECK_FAILURE below.  */
80   rtx reaching_reg;
81 };
82 
83 /* Head of the list of load/store memory refs.  */
84 static struct st_expr * store_motion_mems = NULL;
85 
86 /* These bitmaps will hold the local dataflow properties per basic block.  */
87 static sbitmap *st_kill, *st_avloc, *st_antloc, *st_transp;
88 
89 /* Nonzero for expressions which should be inserted on a specific edge.  */
90 static sbitmap *st_insert_map;
91 
92 /* Nonzero for expressions which should be deleted in a specific block.  */
93 static sbitmap *st_delete_map;
94 
95 /* Global holding the number of store expressions we are dealing with.  */
96 static int num_stores;
97 
98 /* Contains the edge_list returned by pre_edge_lcm.  */
99 static struct edge_list *edge_list;
100 
101 /* Hashtable helpers.  */
102 
103 struct st_expr_hasher : nofree_ptr_hash <st_expr>
104 {
105   static inline hashval_t hash (const st_expr *);
106   static inline bool equal (const st_expr *, const st_expr *);
107 };
108 
109 inline hashval_t
hash(const st_expr * x)110 st_expr_hasher::hash (const st_expr *x)
111 {
112   int do_not_record_p = 0;
113   return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
114 }
115 
116 inline bool
equal(const st_expr * ptr1,const st_expr * ptr2)117 st_expr_hasher::equal (const st_expr *ptr1, const st_expr *ptr2)
118 {
119   return exp_equiv_p (ptr1->pattern, ptr2->pattern, 0, true);
120 }
121 
122 /* Hashtable for the load/store memory refs.  */
123 static hash_table<st_expr_hasher> *store_motion_mems_table;
124 
125 /* This will search the st_expr list for a matching expression. If it
126    doesn't find one, we create one and initialize it.  */
127 
128 static struct st_expr *
st_expr_entry(rtx x)129 st_expr_entry (rtx x)
130 {
131   int do_not_record_p = 0;
132   struct st_expr * ptr;
133   unsigned int hash;
134   st_expr **slot;
135   struct st_expr e;
136 
137   hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
138 		   NULL,  /*have_reg_qty=*/false);
139 
140   e.pattern = x;
141   slot = store_motion_mems_table->find_slot_with_hash (&e, hash, INSERT);
142   if (*slot)
143     return *slot;
144 
145   ptr = XNEW (struct st_expr);
146 
147   ptr->next         = store_motion_mems;
148   ptr->pattern      = x;
149   ptr->pattern_regs.create (0);
150   ptr->antic_stores.create (0);
151   ptr->avail_stores.create (0);
152   ptr->reaching_reg = NULL_RTX;
153   ptr->index        = 0;
154   ptr->hash_index   = hash;
155   store_motion_mems = ptr;
156   *slot = ptr;
157 
158   return ptr;
159 }
160 
161 /* Free up an individual st_expr entry.  */
162 
163 static void
free_st_expr_entry(struct st_expr * ptr)164 free_st_expr_entry (struct st_expr * ptr)
165 {
166   ptr->antic_stores.release ();
167   ptr->avail_stores.release ();
168   ptr->pattern_regs.release ();
169 
170   free (ptr);
171 }
172 
173 /* Free up all memory associated with the st_expr list.  */
174 
175 static void
free_store_motion_mems(void)176 free_store_motion_mems (void)
177 {
178   delete store_motion_mems_table;
179   store_motion_mems_table = NULL;
180 
181   while (store_motion_mems)
182     {
183       struct st_expr * tmp = store_motion_mems;
184       store_motion_mems = store_motion_mems->next;
185       free_st_expr_entry (tmp);
186     }
187   store_motion_mems = NULL;
188 }
189 
190 /* Assign each element of the list of mems a monotonically increasing value.  */
191 
192 static int
enumerate_store_motion_mems(void)193 enumerate_store_motion_mems (void)
194 {
195   struct st_expr * ptr;
196   int n = 0;
197 
198   for (ptr = store_motion_mems; ptr != NULL; ptr = ptr->next)
199     ptr->index = n++;
200 
201   return n;
202 }
203 
204 /* Return first item in the list.  */
205 
206 static inline struct st_expr *
first_st_expr(void)207 first_st_expr (void)
208 {
209   return store_motion_mems;
210 }
211 
212 /* Return the next item in the list after the specified one.  */
213 
214 static inline struct st_expr *
next_st_expr(struct st_expr * ptr)215 next_st_expr (struct st_expr * ptr)
216 {
217   return ptr->next;
218 }
219 
220 /* Dump debugging info about the store_motion_mems list.  */
221 
222 static void
print_store_motion_mems(FILE * file)223 print_store_motion_mems (FILE * file)
224 {
225   struct st_expr * ptr;
226 
227   fprintf (dump_file, "STORE_MOTION list of MEM exprs considered:\n");
228 
229   for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
230     {
231       fprintf (file, "  Pattern (%3d): ", ptr->index);
232 
233       print_rtl (file, ptr->pattern);
234 
235       fprintf (file, "\n	 ANTIC stores : ");
236       print_rtx_insn_vec (file, ptr->antic_stores);
237 
238       fprintf (file, "\n	 AVAIL stores : ");
239 
240 	print_rtx_insn_vec (file, ptr->avail_stores);
241 
242       fprintf (file, "\n\n");
243     }
244 
245   fprintf (file, "\n");
246 }
247 
248 /* Return zero if some of the registers in list X are killed
249    due to set of registers in bitmap REGS_SET.  */
250 
251 static bool
store_ops_ok(const vec<rtx> & x,int * regs_set)252 store_ops_ok (const vec<rtx> &x, int *regs_set)
253 {
254   unsigned int i;
255   rtx temp;
256   FOR_EACH_VEC_ELT (x, i, temp)
257     if (regs_set[REGNO (temp)])
258       return false;
259 
260   return true;
261 }
262 
263 /* Returns a list of registers mentioned in X.
264    FIXME: A regset would be prettier and less expensive.  */
265 
266 static void
extract_mentioned_regs(rtx x,vec<rtx> * mentioned_regs)267 extract_mentioned_regs (rtx x, vec<rtx> *mentioned_regs)
268 {
269   subrtx_var_iterator::array_type array;
270   FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
271     {
272       rtx x = *iter;
273       if (REG_P (x))
274 	mentioned_regs->safe_push (x);
275     }
276 }
277 
278 /* Check to see if the load X is aliased with STORE_PATTERN.
279    AFTER is true if we are checking the case when STORE_PATTERN occurs
280    after the X.  */
281 
282 static bool
load_kills_store(const_rtx x,const_rtx store_pattern,int after)283 load_kills_store (const_rtx x, const_rtx store_pattern, int after)
284 {
285   if (after)
286     return anti_dependence (x, store_pattern);
287   else
288     return true_dependence (store_pattern, GET_MODE (store_pattern), x);
289 }
290 
291 /* Go through the entire rtx X, looking for any loads which might alias
292    STORE_PATTERN.  Return true if found.
293    AFTER is true if we are checking the case when STORE_PATTERN occurs
294    after the insn X.  */
295 
296 static bool
find_loads(const_rtx x,const_rtx store_pattern,int after)297 find_loads (const_rtx x, const_rtx store_pattern, int after)
298 {
299   const char * fmt;
300   int i, j;
301   int ret = false;
302 
303   if (!x)
304     return false;
305 
306   if (GET_CODE (x) == SET)
307     x = SET_SRC (x);
308 
309   if (MEM_P (x))
310     {
311       if (load_kills_store (x, store_pattern, after))
312 	return true;
313     }
314 
315   /* Recursively process the insn.  */
316   fmt = GET_RTX_FORMAT (GET_CODE (x));
317 
318   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
319     {
320       if (fmt[i] == 'e')
321 	ret |= find_loads (XEXP (x, i), store_pattern, after);
322       else if (fmt[i] == 'E')
323 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
324 	  ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
325     }
326   return ret;
327 }
328 
329 /* Go through pattern PAT looking for any loads which might kill the
330    store in X.  Return true if found.
331    AFTER is true if we are checking the case when loads kill X occurs
332    after the insn for PAT.  */
333 
334 static inline bool
store_killed_in_pat(const_rtx x,const_rtx pat,int after)335 store_killed_in_pat (const_rtx x, const_rtx pat, int after)
336 {
337   if (GET_CODE (pat) == SET)
338     {
339       rtx dest = SET_DEST (pat);
340 
341       if (GET_CODE (dest) == ZERO_EXTRACT)
342 	dest = XEXP (dest, 0);
343 
344       /* Check for memory stores to aliased objects.  */
345       if (MEM_P (dest)
346 	  && !exp_equiv_p (dest, x, 0, true))
347 	{
348 	  if (after)
349 	    {
350 	      if (output_dependence (dest, x))
351 		return true;
352 	    }
353 	  else
354 	    {
355 	      if (output_dependence (x, dest))
356 		return true;
357 	    }
358 	}
359     }
360 
361   if (find_loads (pat, x, after))
362     return true;
363 
364   return false;
365 }
366 
367 /* Check if INSN kills the store pattern X (is aliased with it).
368    AFTER is true if we are checking the case when store X occurs
369    after the insn.  Return true if it does.  */
370 
371 static bool
store_killed_in_insn(const_rtx x,const vec<rtx> & x_regs,const rtx_insn * insn,int after)372 store_killed_in_insn (const_rtx x, const vec<rtx> &x_regs,
373 		      const rtx_insn *insn, int after)
374 {
375   const_rtx note, pat;
376 
377   if (! NONDEBUG_INSN_P (insn))
378     return false;
379 
380   if (CALL_P (insn))
381     {
382       /* A normal or pure call might read from pattern,
383 	 but a const call will not.  */
384       if (!RTL_CONST_CALL_P (insn))
385 	return true;
386 
387       /* But even a const call reads its parameters.  Check whether the
388 	 base of some of registers used in mem is stack pointer.  */
389       rtx temp;
390       unsigned int i;
391       FOR_EACH_VEC_ELT (x_regs, i, temp)
392 	if (may_be_sp_based_p (temp))
393 	  return true;
394 
395       return false;
396     }
397 
398   pat = PATTERN (insn);
399   if (GET_CODE (pat) == SET)
400     {
401       if (store_killed_in_pat (x, pat, after))
402 	return true;
403     }
404   else if (GET_CODE (pat) == PARALLEL)
405     {
406       int i;
407 
408       for (i = 0; i < XVECLEN (pat, 0); i++)
409 	if (store_killed_in_pat (x, XVECEXP (pat, 0, i), after))
410 	  return true;
411     }
412   else if (find_loads (PATTERN (insn), x, after))
413     return true;
414 
415   /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
416      location aliased with X, then this insn kills X.  */
417   note = find_reg_equal_equiv_note (insn);
418   if (! note)
419     return false;
420   note = XEXP (note, 0);
421 
422   /* However, if the note represents a must alias rather than a may
423      alias relationship, then it does not kill X.  */
424   if (exp_equiv_p (note, x, 0, true))
425     return false;
426 
427   /* See if there are any aliased loads in the note.  */
428   return find_loads (note, x, after);
429 }
430 
431 /* Returns true if the expression X is loaded or clobbered on or after INSN
432    within basic block BB.  REGS_SET_AFTER is bitmap of registers set in
433    or after the insn.  X_REGS is list of registers mentioned in X. If the store
434    is killed, return the last insn in that it occurs in FAIL_INSN.  */
435 
436 static bool
store_killed_after(const_rtx x,const vec<rtx> & x_regs,const rtx_insn * insn,const_basic_block bb,int * regs_set_after,rtx * fail_insn)437 store_killed_after (const_rtx x, const vec<rtx> &x_regs,
438 		    const rtx_insn *insn, const_basic_block bb,
439 		    int *regs_set_after, rtx *fail_insn)
440 {
441   rtx_insn *last = BB_END (bb), *act;
442 
443   if (!store_ops_ok (x_regs, regs_set_after))
444     {
445       /* We do not know where it will happen.  */
446       if (fail_insn)
447 	*fail_insn = NULL_RTX;
448       return true;
449     }
450 
451   /* Scan from the end, so that fail_insn is determined correctly.  */
452   for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
453     if (store_killed_in_insn (x, x_regs, act, false))
454       {
455 	if (fail_insn)
456 	  *fail_insn = act;
457 	return true;
458       }
459 
460   return false;
461 }
462 
463 /* Returns true if the expression X is loaded or clobbered on or before INSN
464    within basic block BB. X_REGS is list of registers mentioned in X.
465    REGS_SET_BEFORE is bitmap of registers set before or in this insn.  */
466 static bool
store_killed_before(const_rtx x,const vec<rtx> & x_regs,const rtx_insn * insn,const_basic_block bb,int * regs_set_before)467 store_killed_before (const_rtx x, const vec<rtx> &x_regs,
468 		     const rtx_insn *insn, const_basic_block bb,
469 		     int *regs_set_before)
470 {
471   rtx_insn *first = BB_HEAD (bb);
472 
473   if (!store_ops_ok (x_regs, regs_set_before))
474     return true;
475 
476   for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
477     if (store_killed_in_insn (x, x_regs, insn, true))
478       return true;
479 
480   return false;
481 }
482 
483 /* The last insn in the basic block that compute_store_table is processing,
484    where store_killed_after is true for X.
485    Since we go through the basic block from BB_END to BB_HEAD, this is
486    also the available store at the end of the basic block.  Therefore
487    this is in effect a cache, to avoid calling store_killed_after for
488    equivalent aliasing store expressions.
489    This value is only meaningful during the computation of the store
490    table.  We hi-jack the REACHING_REG field of struct st_expr to save
491    a bit of memory.  */
492 #define LAST_AVAIL_CHECK_FAILURE(x)	((x)->reaching_reg)
493 
494 /* Determine whether INSN is MEM store pattern that we will consider moving.
495    REGS_SET_BEFORE is bitmap of registers set before (and including) the
496    current insn, REGS_SET_AFTER is bitmap of registers set after (and
497    including) the insn in this basic block.  We must be passing through BB from
498    head to end, as we are using this fact to speed things up.
499 
500    The results are stored this way:
501 
502    -- the first anticipatable expression is added into ANTIC_STORES
503    -- if the processed expression is not anticipatable, NULL_RTX is added
504       there instead, so that we can use it as indicator that no further
505       expression of this type may be anticipatable
506    -- if the expression is available, it is added as head of AVAIL_STORES;
507       consequently, all of them but this head are dead and may be deleted.
508    -- if the expression is not available, the insn due to that it fails to be
509       available is stored in REACHING_REG (via LAST_AVAIL_CHECK_FAILURE).
510 
511    The things are complicated a bit by fact that there already may be stores
512    to the same MEM from other blocks; also caller must take care of the
513    necessary cleanup of the temporary markers after end of the basic block.
514    */
515 
516 static void
find_moveable_store(rtx_insn * insn,int * regs_set_before,int * regs_set_after)517 find_moveable_store (rtx_insn *insn, int *regs_set_before, int *regs_set_after)
518 {
519   struct st_expr * ptr;
520   rtx dest, set;
521   int check_anticipatable, check_available;
522   basic_block bb = BLOCK_FOR_INSN (insn);
523 
524   set = single_set (insn);
525   if (!set)
526     return;
527 
528   dest = SET_DEST (set);
529 
530   if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
531       || GET_MODE (dest) == BLKmode)
532     return;
533 
534   if (side_effects_p (dest))
535     return;
536 
537   /* If we are handling exceptions, we must be careful with memory references
538      that may trap.  If we are not, the behavior is undefined, so we may just
539      continue.  */
540   if (cfun->can_throw_non_call_exceptions && may_trap_p (dest))
541     return;
542 
543   /* Even if the destination cannot trap, the source may.  In this case we'd
544      need to handle updating the REG_EH_REGION note.  */
545   if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
546     return;
547 
548   /* Make sure that the SET_SRC of this store insns can be assigned to
549      a register, or we will fail later on in replace_store_insn, which
550      assumes that we can do this.  But sometimes the target machine has
551      oddities like MEM read-modify-write instruction.  See for example
552      PR24257.  */
553   if (!can_assign_to_reg_without_clobbers_p (SET_SRC (set),
554 					      GET_MODE (SET_SRC (set))))
555     return;
556 
557   ptr = st_expr_entry (dest);
558   if (ptr->pattern_regs.is_empty ())
559     extract_mentioned_regs (dest, &ptr->pattern_regs);
560 
561   /* Do not check for anticipatability if we either found one anticipatable
562      store already, or tested for one and found out that it was killed.  */
563   check_anticipatable = 0;
564   if (ptr->antic_stores.is_empty ())
565     check_anticipatable = 1;
566   else
567     {
568       rtx_insn *tmp = ptr->antic_stores.last ();
569       if (tmp != NULL_RTX
570 	  && BLOCK_FOR_INSN (tmp) != bb)
571 	check_anticipatable = 1;
572     }
573   if (check_anticipatable)
574     {
575       rtx_insn *tmp;
576       if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
577 	tmp = NULL;
578       else
579 	tmp = insn;
580       ptr->antic_stores.safe_push (tmp);
581     }
582 
583   /* It is not necessary to check whether store is available if we did
584      it successfully before; if we failed before, do not bother to check
585      until we reach the insn that caused us to fail.  */
586   check_available = 0;
587   if (ptr->avail_stores.is_empty ())
588     check_available = 1;
589   else
590     {
591       rtx_insn *tmp = ptr->avail_stores.last ();
592       if (BLOCK_FOR_INSN (tmp) != bb)
593 	check_available = 1;
594     }
595   if (check_available)
596     {
597       /* Check that we have already reached the insn at that the check
598 	 failed last time.  */
599       if (LAST_AVAIL_CHECK_FAILURE (ptr))
600 	{
601 	  rtx_insn *tmp;
602 	  for (tmp = BB_END (bb);
603 	       tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
604 	       tmp = PREV_INSN (tmp))
605 	    continue;
606 	  if (tmp == insn)
607 	    check_available = 0;
608 	}
609       else
610 	check_available = store_killed_after (dest, ptr->pattern_regs, insn,
611 					      bb, regs_set_after,
612 					      &LAST_AVAIL_CHECK_FAILURE (ptr));
613     }
614   if (!check_available)
615     ptr->avail_stores.safe_push (insn);
616 }
617 
618 /* Find available and anticipatable stores.  */
619 
620 static int
compute_store_table(void)621 compute_store_table (void)
622 {
623   int ret;
624   basic_block bb;
625   rtx_insn *insn;
626   rtx_insn *tmp;
627   df_ref def;
628   int *last_set_in, *already_set;
629   struct st_expr * ptr, **prev_next_ptr_ptr;
630   unsigned int max_gcse_regno = max_reg_num ();
631 
632   store_motion_mems = NULL;
633   store_motion_mems_table = new hash_table<st_expr_hasher> (13);
634   last_set_in = XCNEWVEC (int, max_gcse_regno);
635   already_set = XNEWVEC (int, max_gcse_regno);
636 
637   /* Find all the stores we care about.  */
638   FOR_EACH_BB_FN (bb, cfun)
639     {
640       /* First compute the registers set in this block.  */
641       FOR_BB_INSNS (bb, insn)
642 	{
643 
644 	  if (! NONDEBUG_INSN_P (insn))
645 	    continue;
646 
647 	  FOR_EACH_INSN_DEF (def, insn)
648 	    last_set_in[DF_REF_REGNO (def)] = INSN_UID (insn);
649 	}
650 
651       /* Now find the stores.  */
652       memset (already_set, 0, sizeof (int) * max_gcse_regno);
653       FOR_BB_INSNS (bb, insn)
654 	{
655 	  if (! NONDEBUG_INSN_P (insn))
656 	    continue;
657 
658 	  FOR_EACH_INSN_DEF (def, insn)
659 	    already_set[DF_REF_REGNO (def)] = INSN_UID (insn);
660 
661 	  /* Now that we've marked regs, look for stores.  */
662 	  find_moveable_store (insn, already_set, last_set_in);
663 
664 	  /* Unmark regs that are no longer set.  */
665 	  FOR_EACH_INSN_DEF (def, insn)
666 	    if (last_set_in[DF_REF_REGNO (def)] == INSN_UID (insn))
667 	      last_set_in[DF_REF_REGNO (def)] = 0;
668 	}
669 
670       if (flag_checking)
671 	{
672 	  /* last_set_in should now be all-zero.  */
673 	  for (unsigned regno = 0; regno < max_gcse_regno; regno++)
674 	    gcc_assert (!last_set_in[regno]);
675 	}
676 
677       /* Clear temporary marks.  */
678       for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
679 	{
680 	  LAST_AVAIL_CHECK_FAILURE (ptr) = NULL_RTX;
681 	  if (!ptr->antic_stores.is_empty ()
682 	      && (tmp = ptr->antic_stores.last ()) == NULL)
683 	    ptr->antic_stores.pop ();
684 	}
685     }
686 
687   /* Remove the stores that are not available anywhere, as there will
688      be no opportunity to optimize them.  */
689   for (ptr = store_motion_mems, prev_next_ptr_ptr = &store_motion_mems;
690        ptr != NULL;
691        ptr = *prev_next_ptr_ptr)
692     {
693       if (ptr->avail_stores.is_empty ())
694 	{
695 	  *prev_next_ptr_ptr = ptr->next;
696 	  store_motion_mems_table->remove_elt_with_hash (ptr, ptr->hash_index);
697 	  free_st_expr_entry (ptr);
698 	}
699       else
700 	prev_next_ptr_ptr = &ptr->next;
701     }
702 
703   ret = enumerate_store_motion_mems ();
704 
705   if (dump_file)
706     print_store_motion_mems (dump_file);
707 
708   free (last_set_in);
709   free (already_set);
710   return ret;
711 }
712 
713 /* In all code following after this, REACHING_REG has its original
714    meaning again.  Avoid confusion, and undef the accessor macro for
715    the temporary marks usage in compute_store_table.  */
716 #undef LAST_AVAIL_CHECK_FAILURE
717 
718 /* Insert an instruction at the beginning of a basic block, and update
719    the BB_HEAD if needed.  */
720 
721 static void
insert_insn_start_basic_block(rtx_insn * insn,basic_block bb)722 insert_insn_start_basic_block (rtx_insn *insn, basic_block bb)
723 {
724   /* Insert at start of successor block.  */
725   rtx_insn *prev = PREV_INSN (BB_HEAD (bb));
726   rtx_insn *before = BB_HEAD (bb);
727   while (before != 0)
728     {
729       if (! LABEL_P (before)
730 	  && !NOTE_INSN_BASIC_BLOCK_P (before))
731 	break;
732       prev = before;
733       if (prev == BB_END (bb))
734 	break;
735       before = NEXT_INSN (before);
736     }
737 
738   insn = emit_insn_after_noloc (insn, prev, bb);
739 
740   if (dump_file)
741     {
742       fprintf (dump_file, "STORE_MOTION  insert store at start of BB %d:\n",
743 	       bb->index);
744       print_inline_rtx (dump_file, insn, 6);
745       fprintf (dump_file, "\n");
746     }
747 }
748 
749 /* This routine will insert a store on an edge. EXPR is the st_expr entry for
750    the memory reference, and E is the edge to insert it on.  Returns nonzero
751    if an edge insertion was performed.  */
752 
753 static int
insert_store(struct st_expr * expr,edge e)754 insert_store (struct st_expr * expr, edge e)
755 {
756   rtx reg;
757   rtx_insn *insn;
758   basic_block bb;
759   edge tmp;
760   edge_iterator ei;
761 
762   /* We did all the deleted before this insert, so if we didn't delete a
763      store, then we haven't set the reaching reg yet either.  */
764   if (expr->reaching_reg == NULL_RTX)
765     return 0;
766 
767   if (e->flags & EDGE_FAKE)
768     return 0;
769 
770   reg = expr->reaching_reg;
771   insn = gen_move_insn (copy_rtx (expr->pattern), reg);
772 
773   /* If we are inserting this expression on ALL predecessor edges of a BB,
774      insert it at the start of the BB, and reset the insert bits on the other
775      edges so we don't try to insert it on the other edges.  */
776   bb = e->dest;
777   FOR_EACH_EDGE (tmp, ei, e->dest->preds)
778     if (!(tmp->flags & EDGE_FAKE))
779       {
780 	int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
781 
782 	gcc_assert (index != EDGE_INDEX_NO_EDGE);
783 	if (! bitmap_bit_p (st_insert_map[index], expr->index))
784 	  break;
785       }
786 
787   /* If tmp is NULL, we found an insertion on every edge, blank the
788      insertion vector for these edges, and insert at the start of the BB.  */
789   if (!tmp && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
790     {
791       FOR_EACH_EDGE (tmp, ei, e->dest->preds)
792 	{
793 	  int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
794 	  bitmap_clear_bit (st_insert_map[index], expr->index);
795 	}
796       insert_insn_start_basic_block (insn, bb);
797       return 0;
798     }
799 
800   /* We can't put stores in the front of blocks pointed to by abnormal
801      edges since that may put a store where one didn't used to be.  */
802   gcc_assert (!(e->flags & EDGE_ABNORMAL));
803 
804   insert_insn_on_edge (insn, e);
805 
806   if (dump_file)
807     {
808       fprintf (dump_file, "STORE_MOTION  insert insn on edge (%d, %d):\n",
809 	       e->src->index, e->dest->index);
810       print_inline_rtx (dump_file, insn, 6);
811       fprintf (dump_file, "\n");
812     }
813 
814   return 1;
815 }
816 
817 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
818    memory location in SMEXPR set in basic block BB.
819 
820    This could be rather expensive.  */
821 
822 static void
remove_reachable_equiv_notes(basic_block bb,struct st_expr * smexpr)823 remove_reachable_equiv_notes (basic_block bb, struct st_expr *smexpr)
824 {
825   edge_iterator *stack, ei;
826   int sp;
827   edge act;
828   auto_sbitmap visited (last_basic_block_for_fn (cfun));
829   rtx note;
830   rtx_insn *insn;
831   rtx mem = smexpr->pattern;
832 
833   stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun));
834   sp = 0;
835   ei = ei_start (bb->succs);
836 
837   bitmap_clear (visited);
838 
839   act = (EDGE_COUNT (ei_container (ei))
840 	 ? EDGE_I (ei_container (ei), 0)
841 	 : NULL);
842   for (;;)
843     {
844       if (!act)
845 	{
846 	  if (!sp)
847 	    {
848 	      free (stack);
849 	      return;
850 	    }
851 	  act = ei_edge (stack[--sp]);
852 	}
853       bb = act->dest;
854 
855       if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
856 	  || bitmap_bit_p (visited, bb->index))
857 	{
858 	  if (!ei_end_p (ei))
859 	      ei_next (&ei);
860 	  act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
861 	  continue;
862 	}
863       bitmap_set_bit (visited, bb->index);
864 
865       rtx_insn *last;
866       if (bitmap_bit_p (st_antloc[bb->index], smexpr->index))
867 	{
868 	  unsigned int i;
869 	  FOR_EACH_VEC_ELT_REVERSE (smexpr->antic_stores, i, last)
870 	    if (BLOCK_FOR_INSN (last) == bb)
871 	      break;
872 	}
873       else
874 	last = NEXT_INSN (BB_END (bb));
875 
876       for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
877 	if (NONDEBUG_INSN_P (insn))
878 	  {
879 	    note = find_reg_equal_equiv_note (insn);
880 	    if (!note || !exp_equiv_p (XEXP (note, 0), mem, 0, true))
881 	      continue;
882 
883 	    if (dump_file)
884 	      fprintf (dump_file,
885 		       "STORE_MOTION  drop REG_EQUAL note at insn %d:\n",
886 		       INSN_UID (insn));
887 	    remove_note (insn, note);
888 	  }
889 
890       if (!ei_end_p (ei))
891 	ei_next (&ei);
892       act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
893 
894       if (EDGE_COUNT (bb->succs) > 0)
895 	{
896 	  if (act)
897 	    stack[sp++] = ei;
898 	  ei = ei_start (bb->succs);
899 	  act = (EDGE_COUNT (ei_container (ei))
900 		 ? EDGE_I (ei_container (ei), 0)
901 		 : NULL);
902 	}
903     }
904 }
905 
906 /* This routine will replace a store with a SET to a specified register.  */
907 
908 static void
replace_store_insn(rtx reg,rtx_insn * del,basic_block bb,struct st_expr * smexpr)909 replace_store_insn (rtx reg, rtx_insn *del, basic_block bb,
910 		    struct st_expr *smexpr)
911 {
912   rtx_insn *insn;
913   rtx mem, note, set;
914 
915   insn = prepare_copy_insn (reg, SET_SRC (single_set (del)));
916 
917   unsigned int i;
918   rtx_insn *temp;
919   FOR_EACH_VEC_ELT_REVERSE (smexpr->antic_stores, i, temp)
920     if (temp == del)
921       {
922 	smexpr->antic_stores[i] = insn;
923 	break;
924       }
925 
926   /* Move the notes from the deleted insn to its replacement.  */
927   REG_NOTES (insn) = REG_NOTES (del);
928 
929   /* Emit the insn AFTER all the notes are transferred.
930      This is cheaper since we avoid df rescanning for the note change.  */
931   insn = emit_insn_after (insn, del);
932 
933   if (dump_file)
934     {
935       fprintf (dump_file,
936 	       "STORE_MOTION  delete insn in BB %d:\n      ", bb->index);
937       print_inline_rtx (dump_file, del, 6);
938       fprintf (dump_file, "\nSTORE_MOTION  replaced with insn:\n      ");
939       print_inline_rtx (dump_file, insn, 6);
940       fprintf (dump_file, "\n");
941     }
942 
943   delete_insn (del);
944 
945   /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
946      they are no longer accurate provided that they are reached by this
947      definition, so drop them.  */
948   mem = smexpr->pattern;
949   for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
950     if (NONDEBUG_INSN_P (insn))
951       {
952 	set = single_set (insn);
953 	if (!set)
954 	  continue;
955 	if (exp_equiv_p (SET_DEST (set), mem, 0, true))
956 	  return;
957 	note = find_reg_equal_equiv_note (insn);
958 	if (!note || !exp_equiv_p (XEXP (note, 0), mem, 0, true))
959 	  continue;
960 
961 	if (dump_file)
962 	  fprintf (dump_file, "STORE_MOTION  drop REG_EQUAL note at insn %d:\n",
963 		   INSN_UID (insn));
964 	remove_note (insn, note);
965       }
966   remove_reachable_equiv_notes (bb, smexpr);
967 }
968 
969 
970 /* Delete a store, but copy the value that would have been stored into
971    the reaching_reg for later storing.  */
972 
973 static void
delete_store(struct st_expr * expr,basic_block bb)974 delete_store (struct st_expr * expr, basic_block bb)
975 {
976   rtx reg;
977 
978   if (expr->reaching_reg == NULL_RTX)
979     expr->reaching_reg = gen_reg_rtx_and_attrs (expr->pattern);
980 
981   reg = expr->reaching_reg;
982 
983   unsigned int len = expr->avail_stores.length ();
984   for (unsigned int i = len - 1; i < len; i--)
985     {
986       rtx_insn *del = expr->avail_stores[i];
987       if (BLOCK_FOR_INSN (del) == bb)
988 	{
989 	  /* We know there is only one since we deleted redundant
990 	     ones during the available computation.  */
991 	  replace_store_insn (reg, del, bb, expr);
992 	  break;
993 	}
994     }
995 }
996 
997 /* Fill in available, anticipatable, transparent and kill vectors in
998    STORE_DATA, based on lists of available and anticipatable stores.  */
999 static void
build_store_vectors(void)1000 build_store_vectors (void)
1001 {
1002   basic_block bb;
1003   int *regs_set_in_block;
1004   rtx_insn *insn;
1005   struct st_expr * ptr;
1006   unsigned int max_gcse_regno = max_reg_num ();
1007 
1008   /* Build the gen_vector. This is any store in the table which is not killed
1009      by aliasing later in its block.  */
1010   st_avloc = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
1011 				   num_stores);
1012   bitmap_vector_clear (st_avloc, last_basic_block_for_fn (cfun));
1013 
1014   st_antloc = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
1015 				    num_stores);
1016   bitmap_vector_clear (st_antloc, last_basic_block_for_fn (cfun));
1017 
1018   for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
1019     {
1020       unsigned int len = ptr->avail_stores.length ();
1021       for (unsigned int i = len - 1; i < len; i--)
1022 	{
1023 	  insn = ptr->avail_stores[i];
1024 	  bb = BLOCK_FOR_INSN (insn);
1025 
1026 	  /* If we've already seen an available expression in this block,
1027 	     we can delete this one (It occurs earlier in the block). We'll
1028 	     copy the SRC expression to an unused register in case there
1029 	     are any side effects.  */
1030 	  if (bitmap_bit_p (st_avloc[bb->index], ptr->index))
1031 	    {
1032 	      rtx r = gen_reg_rtx_and_attrs (ptr->pattern);
1033 	      if (dump_file)
1034 		fprintf (dump_file, "Removing redundant store:\n");
1035 	      replace_store_insn (r, insn, bb, ptr);
1036 	      continue;
1037 	    }
1038 	  bitmap_set_bit (st_avloc[bb->index], ptr->index);
1039 	}
1040 
1041       unsigned int i;
1042       FOR_EACH_VEC_ELT_REVERSE (ptr->antic_stores, i, insn)
1043 	{
1044 	  bb = BLOCK_FOR_INSN (insn);
1045 	  bitmap_set_bit (st_antloc[bb->index], ptr->index);
1046 	}
1047     }
1048 
1049   st_kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), num_stores);
1050   bitmap_vector_clear (st_kill, last_basic_block_for_fn (cfun));
1051 
1052   st_transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), num_stores);
1053   bitmap_vector_clear (st_transp, last_basic_block_for_fn (cfun));
1054   regs_set_in_block = XNEWVEC (int, max_gcse_regno);
1055 
1056   FOR_EACH_BB_FN (bb, cfun)
1057     {
1058       memset (regs_set_in_block, 0, sizeof (int) * max_gcse_regno);
1059 
1060       FOR_BB_INSNS (bb, insn)
1061 	if (NONDEBUG_INSN_P (insn))
1062 	  {
1063 	    df_ref def;
1064 	    FOR_EACH_INSN_DEF (def, insn)
1065 	      {
1066 		unsigned int ref_regno = DF_REF_REGNO (def);
1067 		if (ref_regno < max_gcse_regno)
1068 		  regs_set_in_block[DF_REF_REGNO (def)] = 1;
1069 	      }
1070 	  }
1071 
1072       for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
1073 	{
1074 	  if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
1075 				  bb, regs_set_in_block, NULL))
1076 	    {
1077 	      /* It should not be necessary to consider the expression
1078 		 killed if it is both anticipatable and available.  */
1079 	      if (!bitmap_bit_p (st_antloc[bb->index], ptr->index)
1080 		  || !bitmap_bit_p (st_avloc[bb->index], ptr->index))
1081 		bitmap_set_bit (st_kill[bb->index], ptr->index);
1082 	    }
1083 	  else
1084 	    bitmap_set_bit (st_transp[bb->index], ptr->index);
1085 	}
1086     }
1087 
1088   free (regs_set_in_block);
1089 
1090   if (dump_file)
1091     {
1092       dump_bitmap_vector (dump_file, "st_antloc", "", st_antloc,
1093 			  last_basic_block_for_fn (cfun));
1094       dump_bitmap_vector (dump_file, "st_kill", "", st_kill,
1095 			  last_basic_block_for_fn (cfun));
1096       dump_bitmap_vector (dump_file, "st_transp", "", st_transp,
1097 			  last_basic_block_for_fn (cfun));
1098       dump_bitmap_vector (dump_file, "st_avloc", "", st_avloc,
1099 			  last_basic_block_for_fn (cfun));
1100     }
1101 }
1102 
1103 /* Free memory used by store motion.  */
1104 
1105 static void
free_store_memory(void)1106 free_store_memory (void)
1107 {
1108   free_store_motion_mems ();
1109 
1110   if (st_avloc)
1111     sbitmap_vector_free (st_avloc);
1112   if (st_kill)
1113     sbitmap_vector_free (st_kill);
1114   if (st_transp)
1115     sbitmap_vector_free (st_transp);
1116   if (st_antloc)
1117     sbitmap_vector_free (st_antloc);
1118   if (st_insert_map)
1119     sbitmap_vector_free (st_insert_map);
1120   if (st_delete_map)
1121     sbitmap_vector_free (st_delete_map);
1122 
1123   st_avloc = st_kill = st_transp = st_antloc = NULL;
1124   st_insert_map = st_delete_map = NULL;
1125 }
1126 
1127 /* Perform store motion. Much like gcse, except we move expressions the
1128    other way by looking at the flowgraph in reverse.
1129    Return non-zero if transformations are performed by the pass.  */
1130 
1131 static int
one_store_motion_pass(void)1132 one_store_motion_pass (void)
1133 {
1134   basic_block bb;
1135   int x;
1136   struct st_expr * ptr;
1137   int did_edge_inserts = 0;
1138   int n_stores_deleted = 0;
1139   int n_stores_created = 0;
1140 
1141   init_alias_analysis ();
1142 
1143   /* Find all the available and anticipatable stores.  */
1144   num_stores = compute_store_table ();
1145   if (num_stores == 0)
1146     {
1147       delete store_motion_mems_table;
1148       store_motion_mems_table = NULL;
1149       end_alias_analysis ();
1150       return 0;
1151     }
1152 
1153   /* Now compute kill & transp vectors.  */
1154   build_store_vectors ();
1155   add_noreturn_fake_exit_edges ();
1156   connect_infinite_loops_to_exit ();
1157 
1158   edge_list = pre_edge_rev_lcm (num_stores, st_transp, st_avloc,
1159 				st_antloc, st_kill, &st_insert_map,
1160 				&st_delete_map);
1161 
1162   /* Now we want to insert the new stores which are going to be needed.  */
1163   for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
1164     {
1165       /* If any of the edges we have above are abnormal, we can't move this
1166 	 store.  */
1167       for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
1168 	if (bitmap_bit_p (st_insert_map[x], ptr->index)
1169 	    && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
1170 	  break;
1171 
1172       if (x >= 0)
1173 	{
1174 	  if (dump_file != NULL)
1175 	    fprintf (dump_file,
1176 		     "Can't replace store %d: abnormal edge from %d to %d\n",
1177 		     ptr->index, INDEX_EDGE (edge_list, x)->src->index,
1178 		     INDEX_EDGE (edge_list, x)->dest->index);
1179 	  continue;
1180 	}
1181 
1182       /* Now we want to insert the new stores which are going to be needed.  */
1183 
1184       FOR_EACH_BB_FN (bb, cfun)
1185 	if (bitmap_bit_p (st_delete_map[bb->index], ptr->index))
1186 	  {
1187 	    delete_store (ptr, bb);
1188 	    n_stores_deleted++;
1189 	  }
1190 
1191       for (x = 0; x < NUM_EDGES (edge_list); x++)
1192 	if (bitmap_bit_p (st_insert_map[x], ptr->index))
1193 	  {
1194 	    did_edge_inserts |= insert_store (ptr, INDEX_EDGE (edge_list, x));
1195 	    n_stores_created++;
1196 	  }
1197     }
1198 
1199   if (did_edge_inserts)
1200     commit_edge_insertions ();
1201 
1202   free_store_memory ();
1203   free_edge_list (edge_list);
1204   remove_fake_exit_edges ();
1205   end_alias_analysis ();
1206 
1207   if (dump_file)
1208     {
1209       fprintf (dump_file, "STORE_MOTION of %s, %d basic blocks, ",
1210 	       current_function_name (), n_basic_blocks_for_fn (cfun));
1211       fprintf (dump_file, "%d insns deleted, %d insns created\n",
1212 	       n_stores_deleted, n_stores_created);
1213     }
1214 
1215   return (n_stores_deleted > 0 || n_stores_created > 0);
1216 }
1217 
1218 
1219 static unsigned int
execute_rtl_store_motion(void)1220 execute_rtl_store_motion (void)
1221 {
1222   delete_unreachable_blocks ();
1223   df_analyze ();
1224   flag_rerun_cse_after_global_opts |= one_store_motion_pass ();
1225   return 0;
1226 }
1227 
1228 namespace {
1229 
1230 const pass_data pass_data_rtl_store_motion =
1231 {
1232   RTL_PASS, /* type */
1233   "store_motion", /* name */
1234   OPTGROUP_NONE, /* optinfo_flags */
1235   TV_LSM, /* tv_id */
1236   PROP_cfglayout, /* properties_required */
1237   0, /* properties_provided */
1238   0, /* properties_destroyed */
1239   0, /* todo_flags_start */
1240   TODO_df_finish, /* todo_flags_finish */
1241 };
1242 
1243 class pass_rtl_store_motion : public rtl_opt_pass
1244 {
1245 public:
pass_rtl_store_motion(gcc::context * ctxt)1246   pass_rtl_store_motion (gcc::context *ctxt)
1247     : rtl_opt_pass (pass_data_rtl_store_motion, ctxt)
1248   {}
1249 
1250   /* opt_pass methods: */
1251   virtual bool gate (function *);
execute(function *)1252   virtual unsigned int execute (function *)
1253     {
1254       return execute_rtl_store_motion ();
1255     }
1256 
1257 }; // class pass_rtl_store_motion
1258 
1259 bool
gate(function * fun)1260 pass_rtl_store_motion::gate (function *fun)
1261 {
1262   return optimize > 0 && flag_gcse_sm
1263     && !fun->calls_setjmp
1264     && optimize_function_for_speed_p (fun)
1265     && dbg_cnt (store_motion);
1266 }
1267 
1268 } // anon namespace
1269 
1270 rtl_opt_pass *
make_pass_rtl_store_motion(gcc::context * ctxt)1271 make_pass_rtl_store_motion (gcc::context *ctxt)
1272 {
1273   return new pass_rtl_store_motion (ctxt);
1274 }
1275