1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "cgraph.h"
31 #include "diagnostic-core.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "except.h"
35 #include "cfganal.h"
36 #include "cfgcleanup.h"
37 #include "tree-eh.h"
38 #include "gimple-iterator.h"
39 #include "tree-cfg.h"
40 #include "tree-into-ssa.h"
41 #include "tree-ssa.h"
42 #include "tree-inline.h"
43 #include "langhooks.h"
44 #include "cfgloop.h"
45 #include "gimple-low.h"
46 #include "stringpool.h"
47 #include "attribs.h"
48 #include "asan.h"
49 #include "gimplify.h"
50
51 /* In some instances a tree and a gimple need to be stored in a same table,
52 i.e. in hash tables. This is a structure to do this. */
53 typedef union {tree *tp; tree t; gimple *g;} treemple;
54
55 /* Misc functions used in this file. */
56
57 /* Remember and lookup EH landing pad data for arbitrary statements.
58 Really this means any statement that could_throw_p. We could
59 stuff this information into the stmt_ann data structure, but:
60
61 (1) We absolutely rely on this information being kept until
62 we get to rtl. Once we're done with lowering here, if we lose
63 the information there's no way to recover it!
64
65 (2) There are many more statements that *cannot* throw as
66 compared to those that can. We should be saving some amount
67 of space by only allocating memory for those that can throw. */
68
69 /* Add statement T in function IFUN to landing pad NUM. */
70
71 static void
add_stmt_to_eh_lp_fn(struct function * ifun,gimple * t,int num)72 add_stmt_to_eh_lp_fn (struct function *ifun, gimple *t, int num)
73 {
74 gcc_assert (num != 0);
75
76 if (!get_eh_throw_stmt_table (ifun))
77 set_eh_throw_stmt_table (ifun, hash_map<gimple *, int>::create_ggc (31));
78
79 gcc_assert (!get_eh_throw_stmt_table (ifun)->put (t, num));
80 }
81
82 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
83
84 void
add_stmt_to_eh_lp(gimple * t,int num)85 add_stmt_to_eh_lp (gimple *t, int num)
86 {
87 add_stmt_to_eh_lp_fn (cfun, t, num);
88 }
89
90 /* Add statement T to the single EH landing pad in REGION. */
91
92 static void
record_stmt_eh_region(eh_region region,gimple * t)93 record_stmt_eh_region (eh_region region, gimple *t)
94 {
95 if (region == NULL)
96 return;
97 if (region->type == ERT_MUST_NOT_THROW)
98 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
99 else
100 {
101 eh_landing_pad lp = region->landing_pads;
102 if (lp == NULL)
103 lp = gen_eh_landing_pad (region);
104 else
105 gcc_assert (lp->next_lp == NULL);
106 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
107 }
108 }
109
110
111 /* Remove statement T in function IFUN from its EH landing pad. */
112
113 bool
remove_stmt_from_eh_lp_fn(struct function * ifun,gimple * t)114 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple *t)
115 {
116 if (!get_eh_throw_stmt_table (ifun))
117 return false;
118
119 if (!get_eh_throw_stmt_table (ifun)->get (t))
120 return false;
121
122 get_eh_throw_stmt_table (ifun)->remove (t);
123 return true;
124 }
125
126
127 /* Remove statement T in the current function (cfun) from its
128 EH landing pad. */
129
130 bool
remove_stmt_from_eh_lp(gimple * t)131 remove_stmt_from_eh_lp (gimple *t)
132 {
133 return remove_stmt_from_eh_lp_fn (cfun, t);
134 }
135
136 /* Determine if statement T is inside an EH region in function IFUN.
137 Positive numbers indicate a landing pad index; negative numbers
138 indicate a MUST_NOT_THROW region index; zero indicates that the
139 statement is not recorded in the region table. */
140
141 int
lookup_stmt_eh_lp_fn(struct function * ifun,const gimple * t)142 lookup_stmt_eh_lp_fn (struct function *ifun, const gimple *t)
143 {
144 if (ifun->eh->throw_stmt_table == NULL)
145 return 0;
146
147 int *lp_nr = ifun->eh->throw_stmt_table->get (const_cast <gimple *> (t));
148 return lp_nr ? *lp_nr : 0;
149 }
150
151 /* Likewise, but always use the current function. */
152
153 int
lookup_stmt_eh_lp(const gimple * t)154 lookup_stmt_eh_lp (const gimple *t)
155 {
156 /* We can get called from initialized data when -fnon-call-exceptions
157 is on; prevent crash. */
158 if (!cfun)
159 return 0;
160 return lookup_stmt_eh_lp_fn (cfun, t);
161 }
162
163 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
164 nodes and LABEL_DECL nodes. We will use this during the second phase to
165 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
166
167 struct finally_tree_node
168 {
169 /* When storing a GIMPLE_TRY, we have to record a gimple. However
170 when deciding whether a GOTO to a certain LABEL_DECL (which is a
171 tree) leaves the TRY block, its necessary to record a tree in
172 this field. Thus a treemple is used. */
173 treemple child;
174 gtry *parent;
175 };
176
177 /* Hashtable helpers. */
178
179 struct finally_tree_hasher : free_ptr_hash <finally_tree_node>
180 {
181 static inline hashval_t hash (const finally_tree_node *);
182 static inline bool equal (const finally_tree_node *,
183 const finally_tree_node *);
184 };
185
186 inline hashval_t
hash(const finally_tree_node * v)187 finally_tree_hasher::hash (const finally_tree_node *v)
188 {
189 return (intptr_t)v->child.t >> 4;
190 }
191
192 inline bool
equal(const finally_tree_node * v,const finally_tree_node * c)193 finally_tree_hasher::equal (const finally_tree_node *v,
194 const finally_tree_node *c)
195 {
196 return v->child.t == c->child.t;
197 }
198
199 /* Note that this table is *not* marked GTY. It is short-lived. */
200 static hash_table<finally_tree_hasher> *finally_tree;
201
202 static void
record_in_finally_tree(treemple child,gtry * parent)203 record_in_finally_tree (treemple child, gtry *parent)
204 {
205 struct finally_tree_node *n;
206 finally_tree_node **slot;
207
208 n = XNEW (struct finally_tree_node);
209 n->child = child;
210 n->parent = parent;
211
212 slot = finally_tree->find_slot (n, INSERT);
213 gcc_assert (!*slot);
214 *slot = n;
215 }
216
217 static void
218 collect_finally_tree (gimple *stmt, gtry *region);
219
220 /* Go through the gimple sequence. Works with collect_finally_tree to
221 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
222
223 static void
collect_finally_tree_1(gimple_seq seq,gtry * region)224 collect_finally_tree_1 (gimple_seq seq, gtry *region)
225 {
226 gimple_stmt_iterator gsi;
227
228 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
229 collect_finally_tree (gsi_stmt (gsi), region);
230 }
231
232 static void
collect_finally_tree(gimple * stmt,gtry * region)233 collect_finally_tree (gimple *stmt, gtry *region)
234 {
235 treemple temp;
236
237 switch (gimple_code (stmt))
238 {
239 case GIMPLE_LABEL:
240 temp.t = gimple_label_label (as_a <glabel *> (stmt));
241 record_in_finally_tree (temp, region);
242 break;
243
244 case GIMPLE_TRY:
245 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
246 {
247 temp.g = stmt;
248 record_in_finally_tree (temp, region);
249 collect_finally_tree_1 (gimple_try_eval (stmt),
250 as_a <gtry *> (stmt));
251 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
252 }
253 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
254 {
255 collect_finally_tree_1 (gimple_try_eval (stmt), region);
256 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
257 }
258 break;
259
260 case GIMPLE_CATCH:
261 collect_finally_tree_1 (gimple_catch_handler (
262 as_a <gcatch *> (stmt)),
263 region);
264 break;
265
266 case GIMPLE_EH_FILTER:
267 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
268 break;
269
270 case GIMPLE_EH_ELSE:
271 {
272 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
273 collect_finally_tree_1 (gimple_eh_else_n_body (eh_else_stmt), region);
274 collect_finally_tree_1 (gimple_eh_else_e_body (eh_else_stmt), region);
275 }
276 break;
277
278 default:
279 /* A type, a decl, or some kind of statement that we're not
280 interested in. Don't walk them. */
281 break;
282 }
283 }
284
285
286 /* Use the finally tree to determine if a jump from START to TARGET
287 would leave the try_finally node that START lives in. */
288
289 static bool
outside_finally_tree(treemple start,gimple * target)290 outside_finally_tree (treemple start, gimple *target)
291 {
292 struct finally_tree_node n, *p;
293
294 do
295 {
296 n.child = start;
297 p = finally_tree->find (&n);
298 if (!p)
299 return true;
300 start.g = p->parent;
301 }
302 while (start.g != target);
303
304 return false;
305 }
306
307 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
308 nodes into a set of gotos, magic labels, and eh regions.
309 The eh region creation is straight-forward, but frobbing all the gotos
310 and such into shape isn't. */
311
312 /* The sequence into which we record all EH stuff. This will be
313 placed at the end of the function when we're all done. */
314 static gimple_seq eh_seq;
315
316 /* Record whether an EH region contains something that can throw,
317 indexed by EH region number. */
318 static bitmap eh_region_may_contain_throw_map;
319
320 /* The GOTO_QUEUE is an array of GIMPLE_GOTO and GIMPLE_RETURN
321 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
322 The idea is to record a gimple statement for everything except for
323 the conditionals, which get their labels recorded. Since labels are
324 of type 'tree', we need this node to store both gimple and tree
325 objects. REPL_STMT is the sequence used to replace the goto/return
326 statement. CONT_STMT is used to store the statement that allows
327 the return/goto to jump to the original destination. */
328
329 struct goto_queue_node
330 {
331 treemple stmt;
332 location_t location;
333 gimple_seq repl_stmt;
334 gimple *cont_stmt;
335 int index;
336 /* This is used when index >= 0 to indicate that stmt is a label (as
337 opposed to a goto stmt). */
338 int is_label;
339 };
340
341 /* State of the world while lowering. */
342
343 struct leh_state
344 {
345 /* What's "current" while constructing the eh region tree. These
346 correspond to variables of the same name in cfun->eh, which we
347 don't have easy access to. */
348 eh_region cur_region;
349
350 /* What's "current" for the purposes of __builtin_eh_pointer. For
351 a CATCH, this is the associated TRY. For an EH_FILTER, this is
352 the associated ALLOWED_EXCEPTIONS, etc. */
353 eh_region ehp_region;
354
355 /* Processing of TRY_FINALLY requires a bit more state. This is
356 split out into a separate structure so that we don't have to
357 copy so much when processing other nodes. */
358 struct leh_tf_state *tf;
359
360 /* Outer non-clean up region. */
361 eh_region outer_non_cleanup;
362 };
363
364 struct leh_tf_state
365 {
366 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
367 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
368 this so that outside_finally_tree can reliably reference the tree used
369 in the collect_finally_tree data structures. */
370 gtry *try_finally_expr;
371 gtry *top_p;
372
373 /* While lowering a top_p usually it is expanded into multiple statements,
374 thus we need the following field to store them. */
375 gimple_seq top_p_seq;
376
377 /* The state outside this try_finally node. */
378 struct leh_state *outer;
379
380 /* The exception region created for it. */
381 eh_region region;
382
383 /* The goto queue. */
384 struct goto_queue_node *goto_queue;
385 size_t goto_queue_size;
386 size_t goto_queue_active;
387
388 /* Pointer map to help in searching goto_queue when it is large. */
389 hash_map<gimple *, goto_queue_node *> *goto_queue_map;
390
391 /* The set of unique labels seen as entries in the goto queue. */
392 vec<tree> dest_array;
393
394 /* A label to be added at the end of the completed transformed
395 sequence. It will be set if may_fallthru was true *at one time*,
396 though subsequent transformations may have cleared that flag. */
397 tree fallthru_label;
398
399 /* True if it is possible to fall out the bottom of the try block.
400 Cleared if the fallthru is converted to a goto. */
401 bool may_fallthru;
402
403 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
404 bool may_return;
405
406 /* True if the finally block can receive an exception edge.
407 Cleared if the exception case is handled by code duplication. */
408 bool may_throw;
409 };
410
411 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gtry *);
412
413 /* Search for STMT in the goto queue. Return the replacement,
414 or null if the statement isn't in the queue. */
415
416 #define LARGE_GOTO_QUEUE 20
417
418 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
419
420 static gimple_seq
find_goto_replacement(struct leh_tf_state * tf,treemple stmt)421 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
422 {
423 unsigned int i;
424
425 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
426 {
427 for (i = 0; i < tf->goto_queue_active; i++)
428 if ( tf->goto_queue[i].stmt.g == stmt.g)
429 return tf->goto_queue[i].repl_stmt;
430 return NULL;
431 }
432
433 /* If we have a large number of entries in the goto_queue, create a
434 pointer map and use that for searching. */
435
436 if (!tf->goto_queue_map)
437 {
438 tf->goto_queue_map = new hash_map<gimple *, goto_queue_node *>;
439 for (i = 0; i < tf->goto_queue_active; i++)
440 {
441 bool existed = tf->goto_queue_map->put (tf->goto_queue[i].stmt.g,
442 &tf->goto_queue[i]);
443 gcc_assert (!existed);
444 }
445 }
446
447 goto_queue_node **slot = tf->goto_queue_map->get (stmt.g);
448 if (slot != NULL)
449 return ((*slot)->repl_stmt);
450
451 return NULL;
452 }
453
454 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
455 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
456 then we can just splat it in, otherwise we add the new stmts immediately
457 after the GIMPLE_COND and redirect. */
458
459 static void
replace_goto_queue_cond_clause(tree * tp,struct leh_tf_state * tf,gimple_stmt_iterator * gsi)460 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
461 gimple_stmt_iterator *gsi)
462 {
463 tree label;
464 gimple_seq new_seq;
465 treemple temp;
466 location_t loc = gimple_location (gsi_stmt (*gsi));
467
468 temp.tp = tp;
469 new_seq = find_goto_replacement (tf, temp);
470 if (!new_seq)
471 return;
472
473 if (gimple_seq_singleton_p (new_seq)
474 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
475 {
476 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
477 return;
478 }
479
480 label = create_artificial_label (loc);
481 /* Set the new label for the GIMPLE_COND */
482 *tp = label;
483
484 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
485 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
486 }
487
488 /* The real work of replace_goto_queue. Returns with TSI updated to
489 point to the next statement. */
490
491 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
492
493 static void
replace_goto_queue_1(gimple * stmt,struct leh_tf_state * tf,gimple_stmt_iterator * gsi)494 replace_goto_queue_1 (gimple *stmt, struct leh_tf_state *tf,
495 gimple_stmt_iterator *gsi)
496 {
497 gimple_seq seq;
498 treemple temp;
499 temp.g = NULL;
500
501 switch (gimple_code (stmt))
502 {
503 case GIMPLE_GOTO:
504 case GIMPLE_RETURN:
505 temp.g = stmt;
506 seq = find_goto_replacement (tf, temp);
507 if (seq)
508 {
509 gimple_stmt_iterator i;
510 seq = gimple_seq_copy (seq);
511 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
512 gimple_set_location (gsi_stmt (i), gimple_location (stmt));
513 gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
514 gsi_remove (gsi, false);
515 return;
516 }
517 break;
518
519 case GIMPLE_COND:
520 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
521 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
522 break;
523
524 case GIMPLE_TRY:
525 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
526 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
527 break;
528 case GIMPLE_CATCH:
529 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (
530 as_a <gcatch *> (stmt)),
531 tf);
532 break;
533 case GIMPLE_EH_FILTER:
534 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
535 break;
536 case GIMPLE_EH_ELSE:
537 {
538 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
539 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (eh_else_stmt),
540 tf);
541 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (eh_else_stmt),
542 tf);
543 }
544 break;
545
546 default:
547 /* These won't have gotos in them. */
548 break;
549 }
550
551 gsi_next (gsi);
552 }
553
554 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
555
556 static void
replace_goto_queue_stmt_list(gimple_seq * seq,struct leh_tf_state * tf)557 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
558 {
559 gimple_stmt_iterator gsi = gsi_start (*seq);
560
561 while (!gsi_end_p (gsi))
562 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
563 }
564
565 /* Replace all goto queue members. */
566
567 static void
replace_goto_queue(struct leh_tf_state * tf)568 replace_goto_queue (struct leh_tf_state *tf)
569 {
570 if (tf->goto_queue_active == 0)
571 return;
572 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
573 replace_goto_queue_stmt_list (&eh_seq, tf);
574 }
575
576 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
577 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
578 a gimple return. */
579
580 static void
record_in_goto_queue(struct leh_tf_state * tf,treemple new_stmt,int index,bool is_label,location_t location)581 record_in_goto_queue (struct leh_tf_state *tf,
582 treemple new_stmt,
583 int index,
584 bool is_label,
585 location_t location)
586 {
587 size_t active, size;
588 struct goto_queue_node *q;
589
590 gcc_assert (!tf->goto_queue_map);
591
592 active = tf->goto_queue_active;
593 size = tf->goto_queue_size;
594 if (active >= size)
595 {
596 size = (size ? size * 2 : 32);
597 tf->goto_queue_size = size;
598 tf->goto_queue
599 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
600 }
601
602 q = &tf->goto_queue[active];
603 tf->goto_queue_active = active + 1;
604
605 memset (q, 0, sizeof (*q));
606 q->stmt = new_stmt;
607 q->index = index;
608 q->location = location;
609 q->is_label = is_label;
610 }
611
612 /* Record the LABEL label in the goto queue contained in TF.
613 TF is not null. */
614
615 static void
record_in_goto_queue_label(struct leh_tf_state * tf,treemple stmt,tree label,location_t location)616 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
617 location_t location)
618 {
619 int index;
620 treemple temp, new_stmt;
621
622 if (!label)
623 return;
624
625 /* Computed and non-local gotos do not get processed. Given
626 their nature we can neither tell whether we've escaped the
627 finally block nor redirect them if we knew. */
628 if (TREE_CODE (label) != LABEL_DECL)
629 return;
630
631 /* No need to record gotos that don't leave the try block. */
632 temp.t = label;
633 if (!outside_finally_tree (temp, tf->try_finally_expr))
634 return;
635
636 if (! tf->dest_array.exists ())
637 {
638 tf->dest_array.create (10);
639 tf->dest_array.quick_push (label);
640 index = 0;
641 }
642 else
643 {
644 int n = tf->dest_array.length ();
645 for (index = 0; index < n; ++index)
646 if (tf->dest_array[index] == label)
647 break;
648 if (index == n)
649 tf->dest_array.safe_push (label);
650 }
651
652 /* In the case of a GOTO we want to record the destination label,
653 since with a GIMPLE_COND we have an easy access to the then/else
654 labels. */
655 new_stmt = stmt;
656 record_in_goto_queue (tf, new_stmt, index, true, location);
657 }
658
659 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
660 node, and if so record that fact in the goto queue associated with that
661 try_finally node. */
662
663 static void
maybe_record_in_goto_queue(struct leh_state * state,gimple * stmt)664 maybe_record_in_goto_queue (struct leh_state *state, gimple *stmt)
665 {
666 struct leh_tf_state *tf = state->tf;
667 treemple new_stmt;
668
669 if (!tf)
670 return;
671
672 switch (gimple_code (stmt))
673 {
674 case GIMPLE_COND:
675 {
676 gcond *cond_stmt = as_a <gcond *> (stmt);
677 new_stmt.tp = gimple_op_ptr (cond_stmt, 2);
678 record_in_goto_queue_label (tf, new_stmt,
679 gimple_cond_true_label (cond_stmt),
680 EXPR_LOCATION (*new_stmt.tp));
681 new_stmt.tp = gimple_op_ptr (cond_stmt, 3);
682 record_in_goto_queue_label (tf, new_stmt,
683 gimple_cond_false_label (cond_stmt),
684 EXPR_LOCATION (*new_stmt.tp));
685 }
686 break;
687 case GIMPLE_GOTO:
688 new_stmt.g = stmt;
689 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
690 gimple_location (stmt));
691 break;
692
693 case GIMPLE_RETURN:
694 tf->may_return = true;
695 new_stmt.g = stmt;
696 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
697 break;
698
699 default:
700 gcc_unreachable ();
701 }
702 }
703
704
705 #if CHECKING_P
706 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
707 was in fact structured, and we've not yet done jump threading, then none
708 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
709
710 static void
verify_norecord_switch_expr(struct leh_state * state,gswitch * switch_expr)711 verify_norecord_switch_expr (struct leh_state *state,
712 gswitch *switch_expr)
713 {
714 struct leh_tf_state *tf = state->tf;
715 size_t i, n;
716
717 if (!tf)
718 return;
719
720 n = gimple_switch_num_labels (switch_expr);
721
722 for (i = 0; i < n; ++i)
723 {
724 treemple temp;
725 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
726 temp.t = lab;
727 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
728 }
729 }
730 #else
731 #define verify_norecord_switch_expr(state, switch_expr)
732 #endif
733
734 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
735 non-null, insert it before the new branch. */
736
737 static void
do_return_redirection(struct goto_queue_node * q,tree finlab,gimple_seq mod)738 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
739 {
740 gimple *x;
741
742 /* In the case of a return, the queue node must be a gimple statement. */
743 gcc_assert (!q->is_label);
744
745 /* Note that the return value may have already been computed, e.g.,
746
747 int x;
748 int foo (void)
749 {
750 x = 0;
751 try {
752 return x;
753 } finally {
754 x++;
755 }
756 }
757
758 should return 0, not 1. We don't have to do anything to make
759 this happens because the return value has been placed in the
760 RESULT_DECL already. */
761
762 q->cont_stmt = q->stmt.g;
763
764 if (mod)
765 gimple_seq_add_seq (&q->repl_stmt, mod);
766
767 x = gimple_build_goto (finlab);
768 gimple_set_location (x, q->location);
769 gimple_seq_add_stmt (&q->repl_stmt, x);
770 }
771
772 /* Similar, but easier, for GIMPLE_GOTO. */
773
774 static void
do_goto_redirection(struct goto_queue_node * q,tree finlab,gimple_seq mod,struct leh_tf_state * tf)775 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
776 struct leh_tf_state *tf)
777 {
778 ggoto *x;
779
780 gcc_assert (q->is_label);
781
782 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
783
784 if (mod)
785 gimple_seq_add_seq (&q->repl_stmt, mod);
786
787 x = gimple_build_goto (finlab);
788 gimple_set_location (x, q->location);
789 gimple_seq_add_stmt (&q->repl_stmt, x);
790 }
791
792 /* Emit a standard landing pad sequence into SEQ for REGION. */
793
794 static void
emit_post_landing_pad(gimple_seq * seq,eh_region region)795 emit_post_landing_pad (gimple_seq *seq, eh_region region)
796 {
797 eh_landing_pad lp = region->landing_pads;
798 glabel *x;
799
800 if (lp == NULL)
801 lp = gen_eh_landing_pad (region);
802
803 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
804 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
805
806 x = gimple_build_label (lp->post_landing_pad);
807 gimple_seq_add_stmt (seq, x);
808 }
809
810 /* Emit a RESX statement into SEQ for REGION. */
811
812 static void
emit_resx(gimple_seq * seq,eh_region region)813 emit_resx (gimple_seq *seq, eh_region region)
814 {
815 gresx *x = gimple_build_resx (region->index);
816 gimple_seq_add_stmt (seq, x);
817 if (region->outer)
818 record_stmt_eh_region (region->outer, x);
819 }
820
821 /* Note that the current EH region may contain a throw, or a
822 call to a function which itself may contain a throw. */
823
824 static void
note_eh_region_may_contain_throw(eh_region region)825 note_eh_region_may_contain_throw (eh_region region)
826 {
827 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
828 {
829 if (region->type == ERT_MUST_NOT_THROW)
830 break;
831 region = region->outer;
832 if (region == NULL)
833 break;
834 }
835 }
836
837 /* Check if REGION has been marked as containing a throw. If REGION is
838 NULL, this predicate is false. */
839
840 static inline bool
eh_region_may_contain_throw(eh_region r)841 eh_region_may_contain_throw (eh_region r)
842 {
843 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
844 }
845
846 /* We want to transform
847 try { body; } catch { stuff; }
848 to
849 normal_sequence:
850 body;
851 over:
852 eh_sequence:
853 landing_pad:
854 stuff;
855 goto over;
856
857 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
858 should be placed before the second operand, or NULL. OVER is
859 an existing label that should be put at the exit, or NULL. */
860
861 static gimple_seq
frob_into_branch_around(gtry * tp,eh_region region,tree over)862 frob_into_branch_around (gtry *tp, eh_region region, tree over)
863 {
864 gimple *x;
865 gimple_seq cleanup, result;
866 location_t loc = gimple_location (tp);
867
868 cleanup = gimple_try_cleanup (tp);
869 result = gimple_try_eval (tp);
870
871 if (region)
872 emit_post_landing_pad (&eh_seq, region);
873
874 if (gimple_seq_may_fallthru (cleanup))
875 {
876 if (!over)
877 over = create_artificial_label (loc);
878 x = gimple_build_goto (over);
879 gimple_set_location (x, loc);
880 gimple_seq_add_stmt (&cleanup, x);
881 }
882 gimple_seq_add_seq (&eh_seq, cleanup);
883
884 if (over)
885 {
886 x = gimple_build_label (over);
887 gimple_seq_add_stmt (&result, x);
888 }
889 return result;
890 }
891
892 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
893 Make sure to record all new labels found. */
894
895 static gimple_seq
lower_try_finally_dup_block(gimple_seq seq,struct leh_state * outer_state,location_t loc)896 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
897 location_t loc)
898 {
899 gtry *region = NULL;
900 gimple_seq new_seq;
901 gimple_stmt_iterator gsi;
902
903 new_seq = copy_gimple_seq_and_replace_locals (seq);
904
905 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
906 {
907 gimple *stmt = gsi_stmt (gsi);
908 /* We duplicate __builtin_stack_restore at -O0 in the hope of eliminating
909 it on the EH paths. When it is not eliminated, make it transparent in
910 the debug info. */
911 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
912 gimple_set_location (stmt, UNKNOWN_LOCATION);
913 else if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
914 {
915 tree block = gimple_block (stmt);
916 gimple_set_location (stmt, loc);
917 gimple_set_block (stmt, block);
918 }
919 }
920
921 if (outer_state->tf)
922 region = outer_state->tf->try_finally_expr;
923 collect_finally_tree_1 (new_seq, region);
924
925 return new_seq;
926 }
927
928 /* A subroutine of lower_try_finally. Create a fallthru label for
929 the given try_finally state. The only tricky bit here is that
930 we have to make sure to record the label in our outer context. */
931
932 static tree
lower_try_finally_fallthru_label(struct leh_tf_state * tf)933 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
934 {
935 tree label = tf->fallthru_label;
936 treemple temp;
937
938 if (!label)
939 {
940 label = create_artificial_label (gimple_location (tf->try_finally_expr));
941 tf->fallthru_label = label;
942 if (tf->outer->tf)
943 {
944 temp.t = label;
945 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
946 }
947 }
948 return label;
949 }
950
951 /* A subroutine of lower_try_finally. If FINALLY consits of a
952 GIMPLE_EH_ELSE node, return it. */
953
954 static inline geh_else *
get_eh_else(gimple_seq finally)955 get_eh_else (gimple_seq finally)
956 {
957 gimple *x = gimple_seq_first_stmt (finally);
958 if (gimple_code (x) == GIMPLE_EH_ELSE)
959 {
960 gcc_assert (gimple_seq_singleton_p (finally));
961 return as_a <geh_else *> (x);
962 }
963 return NULL;
964 }
965
966 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
967 langhook returns non-null, then the language requires that the exception
968 path out of a try_finally be treated specially. To wit: the code within
969 the finally block may not itself throw an exception. We have two choices
970 here. First we can duplicate the finally block and wrap it in a
971 must_not_throw region. Second, we can generate code like
972
973 try {
974 finally_block;
975 } catch {
976 if (fintmp == eh_edge)
977 protect_cleanup_actions;
978 }
979
980 where "fintmp" is the temporary used in the switch statement generation
981 alternative considered below. For the nonce, we always choose the first
982 option.
983
984 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
985
986 static void
honor_protect_cleanup_actions(struct leh_state * outer_state,struct leh_state * this_state,struct leh_tf_state * tf)987 honor_protect_cleanup_actions (struct leh_state *outer_state,
988 struct leh_state *this_state,
989 struct leh_tf_state *tf)
990 {
991 gimple_seq finally = gimple_try_cleanup (tf->top_p);
992
993 /* EH_ELSE doesn't come from user code; only compiler generated stuff.
994 It does need to be handled here, so as to separate the (different)
995 EH path from the normal path. But we should not attempt to wrap
996 it with a must-not-throw node (which indeed gets in the way). */
997 if (geh_else *eh_else = get_eh_else (finally))
998 {
999 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
1000 finally = gimple_eh_else_e_body (eh_else);
1001
1002 /* Let the ELSE see the exception that's being processed, but
1003 since the cleanup is outside the try block, process it with
1004 outer_state, otherwise it may be used as a cleanup for
1005 itself, and Bad Things (TM) ensue. */
1006 eh_region save_ehp = outer_state->ehp_region;
1007 outer_state->ehp_region = this_state->cur_region;
1008 lower_eh_constructs_1 (outer_state, &finally);
1009 outer_state->ehp_region = save_ehp;
1010 }
1011 else
1012 {
1013 /* First check for nothing to do. */
1014 if (lang_hooks.eh_protect_cleanup_actions == NULL)
1015 return;
1016 tree actions = lang_hooks.eh_protect_cleanup_actions ();
1017 if (actions == NULL)
1018 return;
1019
1020 if (this_state)
1021 finally = lower_try_finally_dup_block (finally, outer_state,
1022 gimple_location (tf->try_finally_expr));
1023
1024 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1025 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1026 to be in an enclosing scope, but needs to be implemented at this level
1027 to avoid a nesting violation (see wrap_temporary_cleanups in
1028 cp/decl.c). Since it's logically at an outer level, we should call
1029 terminate before we get to it, so strip it away before adding the
1030 MUST_NOT_THROW filter. */
1031 gimple_stmt_iterator gsi = gsi_start (finally);
1032 gimple *x = gsi_stmt (gsi);
1033 if (gimple_code (x) == GIMPLE_TRY
1034 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1035 && gimple_try_catch_is_cleanup (x))
1036 {
1037 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1038 gsi_remove (&gsi, false);
1039 }
1040
1041 /* Wrap the block with protect_cleanup_actions as the action. */
1042 geh_mnt *eh_mnt = gimple_build_eh_must_not_throw (actions);
1043 gtry *try_stmt = gimple_build_try (finally,
1044 gimple_seq_alloc_with_stmt (eh_mnt),
1045 GIMPLE_TRY_CATCH);
1046 finally = lower_eh_must_not_throw (outer_state, try_stmt);
1047 }
1048
1049 /* Drop all of this into the exception sequence. */
1050 emit_post_landing_pad (&eh_seq, tf->region);
1051 gimple_seq_add_seq (&eh_seq, finally);
1052 if (gimple_seq_may_fallthru (finally))
1053 emit_resx (&eh_seq, tf->region);
1054
1055 /* Having now been handled, EH isn't to be considered with
1056 the rest of the outgoing edges. */
1057 tf->may_throw = false;
1058 }
1059
1060 /* A subroutine of lower_try_finally. We have determined that there is
1061 no fallthru edge out of the finally block. This means that there is
1062 no outgoing edge corresponding to any incoming edge. Restructure the
1063 try_finally node for this special case. */
1064
1065 static void
lower_try_finally_nofallthru(struct leh_state * state,struct leh_tf_state * tf)1066 lower_try_finally_nofallthru (struct leh_state *state,
1067 struct leh_tf_state *tf)
1068 {
1069 tree lab;
1070 gimple *x;
1071 geh_else *eh_else;
1072 gimple_seq finally;
1073 struct goto_queue_node *q, *qe;
1074
1075 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1076
1077 /* We expect that tf->top_p is a GIMPLE_TRY. */
1078 finally = gimple_try_cleanup (tf->top_p);
1079 tf->top_p_seq = gimple_try_eval (tf->top_p);
1080
1081 x = gimple_build_label (lab);
1082 gimple_seq_add_stmt (&tf->top_p_seq, x);
1083
1084 q = tf->goto_queue;
1085 qe = q + tf->goto_queue_active;
1086 for (; q < qe; ++q)
1087 if (q->index < 0)
1088 do_return_redirection (q, lab, NULL);
1089 else
1090 do_goto_redirection (q, lab, NULL, tf);
1091
1092 replace_goto_queue (tf);
1093
1094 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1095 eh_else = get_eh_else (finally);
1096 if (eh_else)
1097 {
1098 finally = gimple_eh_else_n_body (eh_else);
1099 lower_eh_constructs_1 (state, &finally);
1100 gimple_seq_add_seq (&tf->top_p_seq, finally);
1101
1102 if (tf->may_throw)
1103 {
1104 finally = gimple_eh_else_e_body (eh_else);
1105 lower_eh_constructs_1 (state, &finally);
1106
1107 emit_post_landing_pad (&eh_seq, tf->region);
1108 gimple_seq_add_seq (&eh_seq, finally);
1109 }
1110 }
1111 else
1112 {
1113 lower_eh_constructs_1 (state, &finally);
1114 gimple_seq_add_seq (&tf->top_p_seq, finally);
1115
1116 if (tf->may_throw)
1117 {
1118 emit_post_landing_pad (&eh_seq, tf->region);
1119
1120 x = gimple_build_goto (lab);
1121 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1122 gimple_seq_add_stmt (&eh_seq, x);
1123 }
1124 }
1125 }
1126
1127 /* A subroutine of lower_try_finally. We have determined that there is
1128 exactly one destination of the finally block. Restructure the
1129 try_finally node for this special case. */
1130
1131 static void
lower_try_finally_onedest(struct leh_state * state,struct leh_tf_state * tf)1132 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1133 {
1134 struct goto_queue_node *q, *qe;
1135 geh_else *eh_else;
1136 glabel *label_stmt;
1137 gimple *x;
1138 gimple_seq finally;
1139 gimple_stmt_iterator gsi;
1140 tree finally_label;
1141 location_t loc = gimple_location (tf->try_finally_expr);
1142
1143 finally = gimple_try_cleanup (tf->top_p);
1144 tf->top_p_seq = gimple_try_eval (tf->top_p);
1145
1146 /* Since there's only one destination, and the destination edge can only
1147 either be EH or non-EH, that implies that all of our incoming edges
1148 are of the same type. Therefore we can lower EH_ELSE immediately. */
1149 eh_else = get_eh_else (finally);
1150 if (eh_else)
1151 {
1152 if (tf->may_throw)
1153 finally = gimple_eh_else_e_body (eh_else);
1154 else
1155 finally = gimple_eh_else_n_body (eh_else);
1156 }
1157
1158 lower_eh_constructs_1 (state, &finally);
1159
1160 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1161 {
1162 gimple *stmt = gsi_stmt (gsi);
1163 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1164 {
1165 tree block = gimple_block (stmt);
1166 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1167 gimple_set_block (stmt, block);
1168 }
1169 }
1170
1171 if (tf->may_throw)
1172 {
1173 /* Only reachable via the exception edge. Add the given label to
1174 the head of the FINALLY block. Append a RESX at the end. */
1175 emit_post_landing_pad (&eh_seq, tf->region);
1176 gimple_seq_add_seq (&eh_seq, finally);
1177 emit_resx (&eh_seq, tf->region);
1178 return;
1179 }
1180
1181 if (tf->may_fallthru)
1182 {
1183 /* Only reachable via the fallthru edge. Do nothing but let
1184 the two blocks run together; we'll fall out the bottom. */
1185 gimple_seq_add_seq (&tf->top_p_seq, finally);
1186 return;
1187 }
1188
1189 finally_label = create_artificial_label (loc);
1190 label_stmt = gimple_build_label (finally_label);
1191 gimple_seq_add_stmt (&tf->top_p_seq, label_stmt);
1192
1193 gimple_seq_add_seq (&tf->top_p_seq, finally);
1194
1195 q = tf->goto_queue;
1196 qe = q + tf->goto_queue_active;
1197
1198 if (tf->may_return)
1199 {
1200 /* Reachable by return expressions only. Redirect them. */
1201 for (; q < qe; ++q)
1202 do_return_redirection (q, finally_label, NULL);
1203 replace_goto_queue (tf);
1204 }
1205 else
1206 {
1207 /* Reachable by goto expressions only. Redirect them. */
1208 for (; q < qe; ++q)
1209 do_goto_redirection (q, finally_label, NULL, tf);
1210 replace_goto_queue (tf);
1211
1212 if (tf->dest_array[0] == tf->fallthru_label)
1213 {
1214 /* Reachable by goto to fallthru label only. Redirect it
1215 to the new label (already created, sadly), and do not
1216 emit the final branch out, or the fallthru label. */
1217 tf->fallthru_label = NULL;
1218 return;
1219 }
1220 }
1221
1222 /* Place the original return/goto to the original destination
1223 immediately after the finally block. */
1224 x = tf->goto_queue[0].cont_stmt;
1225 gimple_seq_add_stmt (&tf->top_p_seq, x);
1226 maybe_record_in_goto_queue (state, x);
1227 }
1228
1229 /* A subroutine of lower_try_finally. There are multiple edges incoming
1230 and outgoing from the finally block. Implement this by duplicating the
1231 finally block for every destination. */
1232
1233 static void
lower_try_finally_copy(struct leh_state * state,struct leh_tf_state * tf)1234 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1235 {
1236 gimple_seq finally;
1237 gimple_seq new_stmt;
1238 gimple_seq seq;
1239 gimple *x;
1240 geh_else *eh_else;
1241 tree tmp;
1242 location_t tf_loc = gimple_location (tf->try_finally_expr);
1243
1244 finally = gimple_try_cleanup (tf->top_p);
1245
1246 /* Notice EH_ELSE, and simplify some of the remaining code
1247 by considering FINALLY to be the normal return path only. */
1248 eh_else = get_eh_else (finally);
1249 if (eh_else)
1250 finally = gimple_eh_else_n_body (eh_else);
1251
1252 tf->top_p_seq = gimple_try_eval (tf->top_p);
1253 new_stmt = NULL;
1254
1255 if (tf->may_fallthru)
1256 {
1257 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1258 lower_eh_constructs_1 (state, &seq);
1259 gimple_seq_add_seq (&new_stmt, seq);
1260
1261 tmp = lower_try_finally_fallthru_label (tf);
1262 x = gimple_build_goto (tmp);
1263 gimple_set_location (x, tf_loc);
1264 gimple_seq_add_stmt (&new_stmt, x);
1265 }
1266
1267 if (tf->may_throw)
1268 {
1269 /* We don't need to copy the EH path of EH_ELSE,
1270 since it is only emitted once. */
1271 if (eh_else)
1272 seq = gimple_eh_else_e_body (eh_else);
1273 else
1274 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1275 lower_eh_constructs_1 (state, &seq);
1276
1277 emit_post_landing_pad (&eh_seq, tf->region);
1278 gimple_seq_add_seq (&eh_seq, seq);
1279 emit_resx (&eh_seq, tf->region);
1280 }
1281
1282 if (tf->goto_queue)
1283 {
1284 struct goto_queue_node *q, *qe;
1285 int return_index, index;
1286 struct labels_s
1287 {
1288 struct goto_queue_node *q;
1289 tree label;
1290 } *labels;
1291
1292 return_index = tf->dest_array.length ();
1293 labels = XCNEWVEC (struct labels_s, return_index + 1);
1294
1295 q = tf->goto_queue;
1296 qe = q + tf->goto_queue_active;
1297 for (; q < qe; q++)
1298 {
1299 index = q->index < 0 ? return_index : q->index;
1300
1301 if (!labels[index].q)
1302 labels[index].q = q;
1303 }
1304
1305 for (index = 0; index < return_index + 1; index++)
1306 {
1307 tree lab;
1308
1309 q = labels[index].q;
1310 if (! q)
1311 continue;
1312
1313 lab = labels[index].label
1314 = create_artificial_label (tf_loc);
1315
1316 if (index == return_index)
1317 do_return_redirection (q, lab, NULL);
1318 else
1319 do_goto_redirection (q, lab, NULL, tf);
1320
1321 x = gimple_build_label (lab);
1322 gimple_seq_add_stmt (&new_stmt, x);
1323
1324 seq = lower_try_finally_dup_block (finally, state, q->location);
1325 lower_eh_constructs_1 (state, &seq);
1326 gimple_seq_add_seq (&new_stmt, seq);
1327
1328 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1329 maybe_record_in_goto_queue (state, q->cont_stmt);
1330 }
1331
1332 for (q = tf->goto_queue; q < qe; q++)
1333 {
1334 tree lab;
1335
1336 index = q->index < 0 ? return_index : q->index;
1337
1338 if (labels[index].q == q)
1339 continue;
1340
1341 lab = labels[index].label;
1342
1343 if (index == return_index)
1344 do_return_redirection (q, lab, NULL);
1345 else
1346 do_goto_redirection (q, lab, NULL, tf);
1347 }
1348
1349 replace_goto_queue (tf);
1350 free (labels);
1351 }
1352
1353 /* Need to link new stmts after running replace_goto_queue due
1354 to not wanting to process the same goto stmts twice. */
1355 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1356 }
1357
1358 /* A subroutine of lower_try_finally. There are multiple edges incoming
1359 and outgoing from the finally block. Implement this by instrumenting
1360 each incoming edge and creating a switch statement at the end of the
1361 finally block that branches to the appropriate destination. */
1362
1363 static void
lower_try_finally_switch(struct leh_state * state,struct leh_tf_state * tf)1364 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1365 {
1366 struct goto_queue_node *q, *qe;
1367 tree finally_tmp, finally_label;
1368 int return_index, eh_index, fallthru_index;
1369 int nlabels, ndests, j, last_case_index;
1370 tree last_case;
1371 auto_vec<tree> case_label_vec;
1372 gimple_seq switch_body = NULL;
1373 gimple *x;
1374 geh_else *eh_else;
1375 tree tmp;
1376 gimple *switch_stmt;
1377 gimple_seq finally;
1378 hash_map<tree, gimple *> *cont_map = NULL;
1379 /* The location of the TRY_FINALLY stmt. */
1380 location_t tf_loc = gimple_location (tf->try_finally_expr);
1381 /* The location of the finally block. */
1382 location_t finally_loc;
1383
1384 finally = gimple_try_cleanup (tf->top_p);
1385 eh_else = get_eh_else (finally);
1386
1387 /* Mash the TRY block to the head of the chain. */
1388 tf->top_p_seq = gimple_try_eval (tf->top_p);
1389
1390 /* The location of the finally is either the last stmt in the finally
1391 block or the location of the TRY_FINALLY itself. */
1392 x = gimple_seq_last_stmt (finally);
1393 finally_loc = x ? gimple_location (x) : tf_loc;
1394
1395 /* Prepare for switch statement generation. */
1396 nlabels = tf->dest_array.length ();
1397 return_index = nlabels;
1398 eh_index = return_index + tf->may_return;
1399 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1400 ndests = fallthru_index + tf->may_fallthru;
1401
1402 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1403 finally_label = create_artificial_label (finally_loc);
1404
1405 /* We use vec::quick_push on case_label_vec throughout this function,
1406 since we know the size in advance and allocate precisely as muce
1407 space as needed. */
1408 case_label_vec.create (ndests);
1409 last_case = NULL;
1410 last_case_index = 0;
1411
1412 /* Begin inserting code for getting to the finally block. Things
1413 are done in this order to correspond to the sequence the code is
1414 laid out. */
1415
1416 if (tf->may_fallthru)
1417 {
1418 x = gimple_build_assign (finally_tmp,
1419 build_int_cst (integer_type_node,
1420 fallthru_index));
1421 gimple_set_location (x, finally_loc);
1422 gimple_seq_add_stmt (&tf->top_p_seq, x);
1423
1424 tmp = build_int_cst (integer_type_node, fallthru_index);
1425 last_case = build_case_label (tmp, NULL,
1426 create_artificial_label (finally_loc));
1427 case_label_vec.quick_push (last_case);
1428 last_case_index++;
1429
1430 x = gimple_build_label (CASE_LABEL (last_case));
1431 gimple_seq_add_stmt (&switch_body, x);
1432
1433 tmp = lower_try_finally_fallthru_label (tf);
1434 x = gimple_build_goto (tmp);
1435 gimple_set_location (x, finally_loc);
1436 gimple_seq_add_stmt (&switch_body, x);
1437 }
1438
1439 /* For EH_ELSE, emit the exception path (plus resx) now, then
1440 subsequently we only need consider the normal path. */
1441 if (eh_else)
1442 {
1443 if (tf->may_throw)
1444 {
1445 finally = gimple_eh_else_e_body (eh_else);
1446 lower_eh_constructs_1 (state, &finally);
1447
1448 emit_post_landing_pad (&eh_seq, tf->region);
1449 gimple_seq_add_seq (&eh_seq, finally);
1450 emit_resx (&eh_seq, tf->region);
1451 }
1452
1453 finally = gimple_eh_else_n_body (eh_else);
1454 }
1455 else if (tf->may_throw)
1456 {
1457 emit_post_landing_pad (&eh_seq, tf->region);
1458
1459 x = gimple_build_assign (finally_tmp,
1460 build_int_cst (integer_type_node, eh_index));
1461 gimple_seq_add_stmt (&eh_seq, x);
1462
1463 x = gimple_build_goto (finally_label);
1464 gimple_set_location (x, tf_loc);
1465 gimple_seq_add_stmt (&eh_seq, x);
1466
1467 tmp = build_int_cst (integer_type_node, eh_index);
1468 last_case = build_case_label (tmp, NULL,
1469 create_artificial_label (tf_loc));
1470 case_label_vec.quick_push (last_case);
1471 last_case_index++;
1472
1473 x = gimple_build_label (CASE_LABEL (last_case));
1474 gimple_seq_add_stmt (&eh_seq, x);
1475 emit_resx (&eh_seq, tf->region);
1476 }
1477
1478 x = gimple_build_label (finally_label);
1479 gimple_seq_add_stmt (&tf->top_p_seq, x);
1480
1481 lower_eh_constructs_1 (state, &finally);
1482 gimple_seq_add_seq (&tf->top_p_seq, finally);
1483
1484 /* Redirect each incoming goto edge. */
1485 q = tf->goto_queue;
1486 qe = q + tf->goto_queue_active;
1487 j = last_case_index + tf->may_return;
1488 /* Prepare the assignments to finally_tmp that are executed upon the
1489 entrance through a particular edge. */
1490 for (; q < qe; ++q)
1491 {
1492 gimple_seq mod = NULL;
1493 int switch_id;
1494 unsigned int case_index;
1495
1496 if (q->index < 0)
1497 {
1498 x = gimple_build_assign (finally_tmp,
1499 build_int_cst (integer_type_node,
1500 return_index));
1501 gimple_seq_add_stmt (&mod, x);
1502 do_return_redirection (q, finally_label, mod);
1503 switch_id = return_index;
1504 }
1505 else
1506 {
1507 x = gimple_build_assign (finally_tmp,
1508 build_int_cst (integer_type_node, q->index));
1509 gimple_seq_add_stmt (&mod, x);
1510 do_goto_redirection (q, finally_label, mod, tf);
1511 switch_id = q->index;
1512 }
1513
1514 case_index = j + q->index;
1515 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1516 {
1517 tree case_lab;
1518 tmp = build_int_cst (integer_type_node, switch_id);
1519 case_lab = build_case_label (tmp, NULL,
1520 create_artificial_label (tf_loc));
1521 /* We store the cont_stmt in the pointer map, so that we can recover
1522 it in the loop below. */
1523 if (!cont_map)
1524 cont_map = new hash_map<tree, gimple *>;
1525 cont_map->put (case_lab, q->cont_stmt);
1526 case_label_vec.quick_push (case_lab);
1527 }
1528 }
1529 for (j = last_case_index; j < last_case_index + nlabels; j++)
1530 {
1531 gimple *cont_stmt;
1532
1533 last_case = case_label_vec[j];
1534
1535 gcc_assert (last_case);
1536 gcc_assert (cont_map);
1537
1538 cont_stmt = *cont_map->get (last_case);
1539
1540 x = gimple_build_label (CASE_LABEL (last_case));
1541 gimple_seq_add_stmt (&switch_body, x);
1542 gimple_seq_add_stmt (&switch_body, cont_stmt);
1543 maybe_record_in_goto_queue (state, cont_stmt);
1544 }
1545 if (cont_map)
1546 delete cont_map;
1547
1548 replace_goto_queue (tf);
1549
1550 /* Make sure that the last case is the default label, as one is required.
1551 Then sort the labels, which is also required in GIMPLE. */
1552 CASE_LOW (last_case) = NULL;
1553 tree tem = case_label_vec.pop ();
1554 gcc_assert (tem == last_case);
1555 sort_case_labels (case_label_vec);
1556
1557 /* Build the switch statement, setting last_case to be the default
1558 label. */
1559 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1560 case_label_vec);
1561 gimple_set_location (switch_stmt, finally_loc);
1562
1563 /* Need to link SWITCH_STMT after running replace_goto_queue
1564 due to not wanting to process the same goto stmts twice. */
1565 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1566 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1567 }
1568
1569 /* Decide whether or not we are going to duplicate the finally block.
1570 There are several considerations.
1571
1572 Second, we'd like to prevent egregious code growth. One way to
1573 do this is to estimate the size of the finally block, multiply
1574 that by the number of copies we'd need to make, and compare against
1575 the estimate of the size of the switch machinery we'd have to add. */
1576
1577 static bool
decide_copy_try_finally(int ndests,bool may_throw,gimple_seq finally)1578 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1579 {
1580 int f_estimate, sw_estimate;
1581 geh_else *eh_else;
1582
1583 /* If there's an EH_ELSE involved, the exception path is separate
1584 and really doesn't come into play for this computation. */
1585 eh_else = get_eh_else (finally);
1586 if (eh_else)
1587 {
1588 ndests -= may_throw;
1589 finally = gimple_eh_else_n_body (eh_else);
1590 }
1591
1592 if (!optimize)
1593 {
1594 gimple_stmt_iterator gsi;
1595
1596 if (ndests == 1)
1597 return true;
1598
1599 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1600 {
1601 /* Duplicate __builtin_stack_restore in the hope of eliminating it
1602 on the EH paths and, consequently, useless cleanups. */
1603 gimple *stmt = gsi_stmt (gsi);
1604 if (!is_gimple_debug (stmt)
1605 && !gimple_clobber_p (stmt)
1606 && !gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1607 return false;
1608 }
1609 return true;
1610 }
1611
1612 /* Finally estimate N times, plus N gotos. */
1613 f_estimate = estimate_num_insns_seq (finally, &eni_size_weights);
1614 f_estimate = (f_estimate + 1) * ndests;
1615
1616 /* Switch statement (cost 10), N variable assignments, N gotos. */
1617 sw_estimate = 10 + 2 * ndests;
1618
1619 /* Optimize for size clearly wants our best guess. */
1620 if (optimize_function_for_size_p (cfun))
1621 return f_estimate < sw_estimate;
1622
1623 /* ??? These numbers are completely made up so far. */
1624 if (optimize > 1)
1625 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1626 else
1627 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1628 }
1629
1630 /* REG is current region of a LEH state.
1631 is the enclosing region for a possible cleanup region, or the region
1632 itself. Returns TRUE if such a region would be unreachable.
1633
1634 Cleanup regions within a must-not-throw region aren't actually reachable
1635 even if there are throwing stmts within them, because the personality
1636 routine will call terminate before unwinding. */
1637
1638 static bool
cleanup_is_dead_in(leh_state * state)1639 cleanup_is_dead_in (leh_state *state)
1640 {
1641 if (flag_checking)
1642 {
1643 eh_region reg = state->cur_region;
1644 while (reg && reg->type == ERT_CLEANUP)
1645 reg = reg->outer;
1646
1647 gcc_assert (reg == state->outer_non_cleanup);
1648 }
1649
1650 eh_region reg = state->outer_non_cleanup;
1651 return (reg && reg->type == ERT_MUST_NOT_THROW);
1652 }
1653
1654 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1655 to a sequence of labels and blocks, plus the exception region trees
1656 that record all the magic. This is complicated by the need to
1657 arrange for the FINALLY block to be executed on all exits. */
1658
1659 static gimple_seq
lower_try_finally(struct leh_state * state,gtry * tp)1660 lower_try_finally (struct leh_state *state, gtry *tp)
1661 {
1662 struct leh_tf_state this_tf;
1663 struct leh_state this_state;
1664 int ndests;
1665 gimple_seq old_eh_seq;
1666
1667 /* Process the try block. */
1668
1669 memset (&this_tf, 0, sizeof (this_tf));
1670 this_tf.try_finally_expr = tp;
1671 this_tf.top_p = tp;
1672 this_tf.outer = state;
1673 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state))
1674 {
1675 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1676 this_state.cur_region = this_tf.region;
1677 }
1678 else
1679 {
1680 this_tf.region = NULL;
1681 this_state.cur_region = state->cur_region;
1682 }
1683
1684 this_state.outer_non_cleanup = state->outer_non_cleanup;
1685 this_state.ehp_region = state->ehp_region;
1686 this_state.tf = &this_tf;
1687
1688 old_eh_seq = eh_seq;
1689 eh_seq = NULL;
1690
1691 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1692
1693 /* Determine if the try block is escaped through the bottom. */
1694 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1695
1696 /* Determine if any exceptions are possible within the try block. */
1697 if (this_tf.region)
1698 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1699 if (this_tf.may_throw)
1700 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1701
1702 /* Determine how many edges (still) reach the finally block. Or rather,
1703 how many destinations are reached by the finally block. Use this to
1704 determine how we process the finally block itself. */
1705
1706 ndests = this_tf.dest_array.length ();
1707 ndests += this_tf.may_fallthru;
1708 ndests += this_tf.may_return;
1709 ndests += this_tf.may_throw;
1710
1711 /* If the FINALLY block is not reachable, dike it out. */
1712 if (ndests == 0)
1713 {
1714 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1715 gimple_try_set_cleanup (tp, NULL);
1716 }
1717 /* If the finally block doesn't fall through, then any destination
1718 we might try to impose there isn't reached either. There may be
1719 some minor amount of cleanup and redirection still needed. */
1720 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1721 lower_try_finally_nofallthru (state, &this_tf);
1722
1723 /* We can easily special-case redirection to a single destination. */
1724 else if (ndests == 1)
1725 lower_try_finally_onedest (state, &this_tf);
1726 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1727 gimple_try_cleanup (tp)))
1728 lower_try_finally_copy (state, &this_tf);
1729 else
1730 lower_try_finally_switch (state, &this_tf);
1731
1732 /* If someone requested we add a label at the end of the transformed
1733 block, do so. */
1734 if (this_tf.fallthru_label)
1735 {
1736 /* This must be reached only if ndests == 0. */
1737 gimple *x = gimple_build_label (this_tf.fallthru_label);
1738 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1739 }
1740
1741 this_tf.dest_array.release ();
1742 free (this_tf.goto_queue);
1743 if (this_tf.goto_queue_map)
1744 delete this_tf.goto_queue_map;
1745
1746 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1747 If there was no old eh_seq, then the append is trivially already done. */
1748 if (old_eh_seq)
1749 {
1750 if (eh_seq == NULL)
1751 eh_seq = old_eh_seq;
1752 else
1753 {
1754 gimple_seq new_eh_seq = eh_seq;
1755 eh_seq = old_eh_seq;
1756 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1757 }
1758 }
1759
1760 return this_tf.top_p_seq;
1761 }
1762
1763 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1764 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1765 exception region trees that records all the magic. */
1766
1767 static gimple_seq
lower_catch(struct leh_state * state,gtry * tp)1768 lower_catch (struct leh_state *state, gtry *tp)
1769 {
1770 eh_region try_region = NULL;
1771 struct leh_state this_state = *state;
1772 gimple_stmt_iterator gsi;
1773 tree out_label;
1774 gimple_seq new_seq, cleanup;
1775 gimple *x;
1776 geh_dispatch *eh_dispatch;
1777 location_t try_catch_loc = gimple_location (tp);
1778 location_t catch_loc = UNKNOWN_LOCATION;
1779
1780 if (flag_exceptions)
1781 {
1782 try_region = gen_eh_region_try (state->cur_region);
1783 this_state.cur_region = try_region;
1784 this_state.outer_non_cleanup = this_state.cur_region;
1785 }
1786
1787 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1788
1789 if (!eh_region_may_contain_throw (try_region))
1790 return gimple_try_eval (tp);
1791
1792 new_seq = NULL;
1793 eh_dispatch = gimple_build_eh_dispatch (try_region->index);
1794 gimple_seq_add_stmt (&new_seq, eh_dispatch);
1795 emit_resx (&new_seq, try_region);
1796
1797 this_state.cur_region = state->cur_region;
1798 this_state.outer_non_cleanup = state->outer_non_cleanup;
1799 this_state.ehp_region = try_region;
1800
1801 /* Add eh_seq from lowering EH in the cleanup sequence after the cleanup
1802 itself, so that e.g. for coverage purposes the nested cleanups don't
1803 appear before the cleanup body. See PR64634 for details. */
1804 gimple_seq old_eh_seq = eh_seq;
1805 eh_seq = NULL;
1806
1807 out_label = NULL;
1808 cleanup = gimple_try_cleanup (tp);
1809 for (gsi = gsi_start (cleanup);
1810 !gsi_end_p (gsi);
1811 gsi_next (&gsi))
1812 {
1813 eh_catch c;
1814 gcatch *catch_stmt;
1815 gimple_seq handler;
1816
1817 catch_stmt = as_a <gcatch *> (gsi_stmt (gsi));
1818 if (catch_loc == UNKNOWN_LOCATION)
1819 catch_loc = gimple_location (catch_stmt);
1820 c = gen_eh_region_catch (try_region, gimple_catch_types (catch_stmt));
1821
1822 handler = gimple_catch_handler (catch_stmt);
1823 lower_eh_constructs_1 (&this_state, &handler);
1824
1825 c->label = create_artificial_label (UNKNOWN_LOCATION);
1826 x = gimple_build_label (c->label);
1827 gimple_seq_add_stmt (&new_seq, x);
1828
1829 gimple_seq_add_seq (&new_seq, handler);
1830
1831 if (gimple_seq_may_fallthru (new_seq))
1832 {
1833 if (!out_label)
1834 out_label = create_artificial_label (try_catch_loc);
1835
1836 x = gimple_build_goto (out_label);
1837 gimple_seq_add_stmt (&new_seq, x);
1838 }
1839 if (!c->type_list)
1840 break;
1841 }
1842
1843 /* Try to set a location on the dispatching construct to avoid inheriting
1844 the location of the previous statement. */
1845 gimple_set_location (eh_dispatch, catch_loc);
1846
1847 gimple_try_set_cleanup (tp, new_seq);
1848
1849 gimple_seq new_eh_seq = eh_seq;
1850 eh_seq = old_eh_seq;
1851 gimple_seq ret_seq = frob_into_branch_around (tp, try_region, out_label);
1852 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1853 return ret_seq;
1854 }
1855
1856 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1857 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1858 region trees that record all the magic. */
1859
1860 static gimple_seq
lower_eh_filter(struct leh_state * state,gtry * tp)1861 lower_eh_filter (struct leh_state *state, gtry *tp)
1862 {
1863 struct leh_state this_state = *state;
1864 eh_region this_region = NULL;
1865 gimple *inner, *x;
1866 gimple_seq new_seq;
1867
1868 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1869
1870 if (flag_exceptions)
1871 {
1872 this_region = gen_eh_region_allowed (state->cur_region,
1873 gimple_eh_filter_types (inner));
1874 this_state.cur_region = this_region;
1875 this_state.outer_non_cleanup = this_state.cur_region;
1876 }
1877
1878 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1879
1880 if (!eh_region_may_contain_throw (this_region))
1881 return gimple_try_eval (tp);
1882
1883 this_state.cur_region = state->cur_region;
1884 this_state.ehp_region = this_region;
1885
1886 new_seq = NULL;
1887 x = gimple_build_eh_dispatch (this_region->index);
1888 gimple_set_location (x, gimple_location (tp));
1889 gimple_seq_add_stmt (&new_seq, x);
1890 emit_resx (&new_seq, this_region);
1891
1892 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1893 x = gimple_build_label (this_region->u.allowed.label);
1894 gimple_seq_add_stmt (&new_seq, x);
1895
1896 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1897 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1898
1899 gimple_try_set_cleanup (tp, new_seq);
1900
1901 return frob_into_branch_around (tp, this_region, NULL);
1902 }
1903
1904 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1905 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1906 plus the exception region trees that record all the magic. */
1907
1908 static gimple_seq
lower_eh_must_not_throw(struct leh_state * state,gtry * tp)1909 lower_eh_must_not_throw (struct leh_state *state, gtry *tp)
1910 {
1911 struct leh_state this_state = *state;
1912
1913 if (flag_exceptions)
1914 {
1915 gimple *inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1916 eh_region this_region;
1917
1918 this_region = gen_eh_region_must_not_throw (state->cur_region);
1919 this_region->u.must_not_throw.failure_decl
1920 = gimple_eh_must_not_throw_fndecl (
1921 as_a <geh_mnt *> (inner));
1922 this_region->u.must_not_throw.failure_loc
1923 = LOCATION_LOCUS (gimple_location (tp));
1924
1925 /* In order to get mangling applied to this decl, we must mark it
1926 used now. Otherwise, pass_ipa_free_lang_data won't think it
1927 needs to happen. */
1928 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1929
1930 this_state.cur_region = this_region;
1931 this_state.outer_non_cleanup = this_state.cur_region;
1932 }
1933
1934 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1935
1936 return gimple_try_eval (tp);
1937 }
1938
1939 /* Implement a cleanup expression. This is similar to try-finally,
1940 except that we only execute the cleanup block for exception edges. */
1941
1942 static gimple_seq
lower_cleanup(struct leh_state * state,gtry * tp)1943 lower_cleanup (struct leh_state *state, gtry *tp)
1944 {
1945 struct leh_state this_state = *state;
1946 eh_region this_region = NULL;
1947 struct leh_tf_state fake_tf;
1948 gimple_seq result;
1949 bool cleanup_dead = cleanup_is_dead_in (state);
1950
1951 if (flag_exceptions && !cleanup_dead)
1952 {
1953 this_region = gen_eh_region_cleanup (state->cur_region);
1954 this_state.cur_region = this_region;
1955 this_state.outer_non_cleanup = state->outer_non_cleanup;
1956 }
1957
1958 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1959
1960 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1961 return gimple_try_eval (tp);
1962
1963 /* Build enough of a try-finally state so that we can reuse
1964 honor_protect_cleanup_actions. */
1965 memset (&fake_tf, 0, sizeof (fake_tf));
1966 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1967 fake_tf.outer = state;
1968 fake_tf.region = this_region;
1969 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1970 fake_tf.may_throw = true;
1971
1972 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1973
1974 if (fake_tf.may_throw)
1975 {
1976 /* In this case honor_protect_cleanup_actions had nothing to do,
1977 and we should process this normally. */
1978 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1979 result = frob_into_branch_around (tp, this_region,
1980 fake_tf.fallthru_label);
1981 }
1982 else
1983 {
1984 /* In this case honor_protect_cleanup_actions did nearly all of
1985 the work. All we have left is to append the fallthru_label. */
1986
1987 result = gimple_try_eval (tp);
1988 if (fake_tf.fallthru_label)
1989 {
1990 gimple *x = gimple_build_label (fake_tf.fallthru_label);
1991 gimple_seq_add_stmt (&result, x);
1992 }
1993 }
1994 return result;
1995 }
1996
1997 /* Main loop for lowering eh constructs. Also moves gsi to the next
1998 statement. */
1999
2000 static void
lower_eh_constructs_2(struct leh_state * state,gimple_stmt_iterator * gsi)2001 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
2002 {
2003 gimple_seq replace;
2004 gimple *x;
2005 gimple *stmt = gsi_stmt (*gsi);
2006
2007 switch (gimple_code (stmt))
2008 {
2009 case GIMPLE_CALL:
2010 {
2011 tree fndecl = gimple_call_fndecl (stmt);
2012 tree rhs, lhs;
2013
2014 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
2015 switch (DECL_FUNCTION_CODE (fndecl))
2016 {
2017 case BUILT_IN_EH_POINTER:
2018 /* The front end may have generated a call to
2019 __builtin_eh_pointer (0) within a catch region. Replace
2020 this zero argument with the current catch region number. */
2021 if (state->ehp_region)
2022 {
2023 tree nr = build_int_cst (integer_type_node,
2024 state->ehp_region->index);
2025 gimple_call_set_arg (stmt, 0, nr);
2026 }
2027 else
2028 {
2029 /* The user has dome something silly. Remove it. */
2030 rhs = null_pointer_node;
2031 goto do_replace;
2032 }
2033 break;
2034
2035 case BUILT_IN_EH_FILTER:
2036 /* ??? This should never appear, but since it's a builtin it
2037 is accessible to abuse by users. Just remove it and
2038 replace the use with the arbitrary value zero. */
2039 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
2040 do_replace:
2041 lhs = gimple_call_lhs (stmt);
2042 x = gimple_build_assign (lhs, rhs);
2043 gsi_insert_before (gsi, x, GSI_SAME_STMT);
2044 /* FALLTHRU */
2045
2046 case BUILT_IN_EH_COPY_VALUES:
2047 /* Likewise this should not appear. Remove it. */
2048 gsi_remove (gsi, true);
2049 return;
2050
2051 default:
2052 break;
2053 }
2054 }
2055 /* FALLTHRU */
2056
2057 case GIMPLE_ASSIGN:
2058 /* If the stmt can throw, use a new temporary for the assignment
2059 to a LHS. This makes sure the old value of the LHS is
2060 available on the EH edge. Only do so for statements that
2061 potentially fall through (no noreturn calls e.g.), otherwise
2062 this new assignment might create fake fallthru regions. */
2063 if (stmt_could_throw_p (cfun, stmt)
2064 && gimple_has_lhs (stmt)
2065 && gimple_stmt_may_fallthru (stmt)
2066 && !tree_could_throw_p (gimple_get_lhs (stmt))
2067 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2068 {
2069 tree lhs = gimple_get_lhs (stmt);
2070 tree tmp = create_tmp_var (TREE_TYPE (lhs));
2071 gimple *s = gimple_build_assign (lhs, tmp);
2072 gimple_set_location (s, gimple_location (stmt));
2073 gimple_set_block (s, gimple_block (stmt));
2074 gimple_set_lhs (stmt, tmp);
2075 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2076 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2077 DECL_GIMPLE_REG_P (tmp) = 1;
2078 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2079 }
2080 /* Look for things that can throw exceptions, and record them. */
2081 if (state->cur_region && stmt_could_throw_p (cfun, stmt))
2082 {
2083 record_stmt_eh_region (state->cur_region, stmt);
2084 note_eh_region_may_contain_throw (state->cur_region);
2085 }
2086 break;
2087
2088 case GIMPLE_COND:
2089 case GIMPLE_GOTO:
2090 case GIMPLE_RETURN:
2091 maybe_record_in_goto_queue (state, stmt);
2092 break;
2093
2094 case GIMPLE_SWITCH:
2095 verify_norecord_switch_expr (state, as_a <gswitch *> (stmt));
2096 break;
2097
2098 case GIMPLE_TRY:
2099 {
2100 gtry *try_stmt = as_a <gtry *> (stmt);
2101 if (gimple_try_kind (try_stmt) == GIMPLE_TRY_FINALLY)
2102 replace = lower_try_finally (state, try_stmt);
2103 else
2104 {
2105 x = gimple_seq_first_stmt (gimple_try_cleanup (try_stmt));
2106 if (!x)
2107 {
2108 replace = gimple_try_eval (try_stmt);
2109 lower_eh_constructs_1 (state, &replace);
2110 }
2111 else
2112 switch (gimple_code (x))
2113 {
2114 case GIMPLE_CATCH:
2115 replace = lower_catch (state, try_stmt);
2116 break;
2117 case GIMPLE_EH_FILTER:
2118 replace = lower_eh_filter (state, try_stmt);
2119 break;
2120 case GIMPLE_EH_MUST_NOT_THROW:
2121 replace = lower_eh_must_not_throw (state, try_stmt);
2122 break;
2123 case GIMPLE_EH_ELSE:
2124 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2125 gcc_unreachable ();
2126 default:
2127 replace = lower_cleanup (state, try_stmt);
2128 break;
2129 }
2130 }
2131 }
2132
2133 /* Remove the old stmt and insert the transformed sequence
2134 instead. */
2135 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2136 gsi_remove (gsi, true);
2137
2138 /* Return since we don't want gsi_next () */
2139 return;
2140
2141 case GIMPLE_EH_ELSE:
2142 /* We should be eliminating this in lower_try_finally et al. */
2143 gcc_unreachable ();
2144
2145 default:
2146 /* A type, a decl, or some kind of statement that we're not
2147 interested in. Don't walk them. */
2148 break;
2149 }
2150
2151 gsi_next (gsi);
2152 }
2153
2154 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2155
2156 static void
lower_eh_constructs_1(struct leh_state * state,gimple_seq * pseq)2157 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2158 {
2159 gimple_stmt_iterator gsi;
2160 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2161 lower_eh_constructs_2 (state, &gsi);
2162 }
2163
2164 namespace {
2165
2166 const pass_data pass_data_lower_eh =
2167 {
2168 GIMPLE_PASS, /* type */
2169 "eh", /* name */
2170 OPTGROUP_NONE, /* optinfo_flags */
2171 TV_TREE_EH, /* tv_id */
2172 PROP_gimple_lcf, /* properties_required */
2173 PROP_gimple_leh, /* properties_provided */
2174 0, /* properties_destroyed */
2175 0, /* todo_flags_start */
2176 0, /* todo_flags_finish */
2177 };
2178
2179 class pass_lower_eh : public gimple_opt_pass
2180 {
2181 public:
pass_lower_eh(gcc::context * ctxt)2182 pass_lower_eh (gcc::context *ctxt)
2183 : gimple_opt_pass (pass_data_lower_eh, ctxt)
2184 {}
2185
2186 /* opt_pass methods: */
2187 virtual unsigned int execute (function *);
2188
2189 }; // class pass_lower_eh
2190
2191 unsigned int
execute(function * fun)2192 pass_lower_eh::execute (function *fun)
2193 {
2194 struct leh_state null_state;
2195 gimple_seq bodyp;
2196
2197 bodyp = gimple_body (current_function_decl);
2198 if (bodyp == NULL)
2199 return 0;
2200
2201 finally_tree = new hash_table<finally_tree_hasher> (31);
2202 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2203 memset (&null_state, 0, sizeof (null_state));
2204
2205 collect_finally_tree_1 (bodyp, NULL);
2206 lower_eh_constructs_1 (&null_state, &bodyp);
2207 gimple_set_body (current_function_decl, bodyp);
2208
2209 /* We assume there's a return statement, or something, at the end of
2210 the function, and thus ploping the EH sequence afterward won't
2211 change anything. */
2212 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2213 gimple_seq_add_seq (&bodyp, eh_seq);
2214
2215 /* We assume that since BODYP already existed, adding EH_SEQ to it
2216 didn't change its value, and we don't have to re-set the function. */
2217 gcc_assert (bodyp == gimple_body (current_function_decl));
2218
2219 delete finally_tree;
2220 finally_tree = NULL;
2221 BITMAP_FREE (eh_region_may_contain_throw_map);
2222 eh_seq = NULL;
2223
2224 /* If this function needs a language specific EH personality routine
2225 and the frontend didn't already set one do so now. */
2226 if (function_needs_eh_personality (fun) == eh_personality_lang
2227 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2228 DECL_FUNCTION_PERSONALITY (current_function_decl)
2229 = lang_hooks.eh_personality ();
2230
2231 return 0;
2232 }
2233
2234 } // anon namespace
2235
2236 gimple_opt_pass *
make_pass_lower_eh(gcc::context * ctxt)2237 make_pass_lower_eh (gcc::context *ctxt)
2238 {
2239 return new pass_lower_eh (ctxt);
2240 }
2241
2242 /* Create the multiple edges from an EH_DISPATCH statement to all of
2243 the possible handlers for its EH region. Return true if there's
2244 no fallthru edge; false if there is. */
2245
2246 bool
make_eh_dispatch_edges(geh_dispatch * stmt)2247 make_eh_dispatch_edges (geh_dispatch *stmt)
2248 {
2249 eh_region r;
2250 eh_catch c;
2251 basic_block src, dst;
2252
2253 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2254 src = gimple_bb (stmt);
2255
2256 switch (r->type)
2257 {
2258 case ERT_TRY:
2259 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2260 {
2261 dst = label_to_block (cfun, c->label);
2262 make_edge (src, dst, 0);
2263
2264 /* A catch-all handler doesn't have a fallthru. */
2265 if (c->type_list == NULL)
2266 return false;
2267 }
2268 break;
2269
2270 case ERT_ALLOWED_EXCEPTIONS:
2271 dst = label_to_block (cfun, r->u.allowed.label);
2272 make_edge (src, dst, 0);
2273 break;
2274
2275 default:
2276 gcc_unreachable ();
2277 }
2278
2279 return true;
2280 }
2281
2282 /* Create the single EH edge from STMT to its nearest landing pad,
2283 if there is such a landing pad within the current function. */
2284
2285 void
make_eh_edges(gimple * stmt)2286 make_eh_edges (gimple *stmt)
2287 {
2288 basic_block src, dst;
2289 eh_landing_pad lp;
2290 int lp_nr;
2291
2292 lp_nr = lookup_stmt_eh_lp (stmt);
2293 if (lp_nr <= 0)
2294 return;
2295
2296 lp = get_eh_landing_pad_from_number (lp_nr);
2297 gcc_assert (lp != NULL);
2298
2299 src = gimple_bb (stmt);
2300 dst = label_to_block (cfun, lp->post_landing_pad);
2301 make_edge (src, dst, EDGE_EH);
2302 }
2303
2304 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2305 do not actually perform the final edge redirection.
2306
2307 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2308 we intend to change the destination EH region as well; this means
2309 EH_LANDING_PAD_NR must already be set on the destination block label.
2310 If false, we're being called from generic cfg manipulation code and we
2311 should preserve our place within the region tree. */
2312
2313 static void
redirect_eh_edge_1(edge edge_in,basic_block new_bb,bool change_region)2314 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2315 {
2316 eh_landing_pad old_lp, new_lp;
2317 basic_block old_bb;
2318 gimple *throw_stmt;
2319 int old_lp_nr, new_lp_nr;
2320 tree old_label, new_label;
2321 edge_iterator ei;
2322 edge e;
2323
2324 old_bb = edge_in->dest;
2325 old_label = gimple_block_label (old_bb);
2326 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2327 gcc_assert (old_lp_nr > 0);
2328 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2329
2330 throw_stmt = last_stmt (edge_in->src);
2331 gcc_checking_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2332
2333 new_label = gimple_block_label (new_bb);
2334
2335 /* Look for an existing region that might be using NEW_BB already. */
2336 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2337 if (new_lp_nr)
2338 {
2339 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2340 gcc_assert (new_lp);
2341
2342 /* Unless CHANGE_REGION is true, the new and old landing pad
2343 had better be associated with the same EH region. */
2344 gcc_assert (change_region || new_lp->region == old_lp->region);
2345 }
2346 else
2347 {
2348 new_lp = NULL;
2349 gcc_assert (!change_region);
2350 }
2351
2352 /* Notice when we redirect the last EH edge away from OLD_BB. */
2353 FOR_EACH_EDGE (e, ei, old_bb->preds)
2354 if (e != edge_in && (e->flags & EDGE_EH))
2355 break;
2356
2357 if (new_lp)
2358 {
2359 /* NEW_LP already exists. If there are still edges into OLD_LP,
2360 there's nothing to do with the EH tree. If there are no more
2361 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2362 If CHANGE_REGION is true, then our caller is expecting to remove
2363 the landing pad. */
2364 if (e == NULL && !change_region)
2365 remove_eh_landing_pad (old_lp);
2366 }
2367 else
2368 {
2369 /* No correct landing pad exists. If there are no more edges
2370 into OLD_LP, then we can simply re-use the existing landing pad.
2371 Otherwise, we have to create a new landing pad. */
2372 if (e == NULL)
2373 {
2374 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2375 new_lp = old_lp;
2376 }
2377 else
2378 new_lp = gen_eh_landing_pad (old_lp->region);
2379 new_lp->post_landing_pad = new_label;
2380 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2381 }
2382
2383 /* Maybe move the throwing statement to the new region. */
2384 if (old_lp != new_lp)
2385 {
2386 remove_stmt_from_eh_lp (throw_stmt);
2387 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2388 }
2389 }
2390
2391 /* Redirect EH edge E to NEW_BB. */
2392
2393 edge
redirect_eh_edge(edge edge_in,basic_block new_bb)2394 redirect_eh_edge (edge edge_in, basic_block new_bb)
2395 {
2396 redirect_eh_edge_1 (edge_in, new_bb, false);
2397 return ssa_redirect_edge (edge_in, new_bb);
2398 }
2399
2400 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2401 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2402 The actual edge update will happen in the caller. */
2403
2404 void
redirect_eh_dispatch_edge(geh_dispatch * stmt,edge e,basic_block new_bb)2405 redirect_eh_dispatch_edge (geh_dispatch *stmt, edge e, basic_block new_bb)
2406 {
2407 tree new_lab = gimple_block_label (new_bb);
2408 bool any_changed = false;
2409 basic_block old_bb;
2410 eh_region r;
2411 eh_catch c;
2412
2413 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2414 switch (r->type)
2415 {
2416 case ERT_TRY:
2417 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2418 {
2419 old_bb = label_to_block (cfun, c->label);
2420 if (old_bb == e->dest)
2421 {
2422 c->label = new_lab;
2423 any_changed = true;
2424 }
2425 }
2426 break;
2427
2428 case ERT_ALLOWED_EXCEPTIONS:
2429 old_bb = label_to_block (cfun, r->u.allowed.label);
2430 gcc_assert (old_bb == e->dest);
2431 r->u.allowed.label = new_lab;
2432 any_changed = true;
2433 break;
2434
2435 default:
2436 gcc_unreachable ();
2437 }
2438
2439 gcc_assert (any_changed);
2440 }
2441
2442 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2443
2444 bool
operation_could_trap_helper_p(enum tree_code op,bool fp_operation,bool honor_trapv,bool honor_nans,bool honor_snans,tree divisor,bool * handled)2445 operation_could_trap_helper_p (enum tree_code op,
2446 bool fp_operation,
2447 bool honor_trapv,
2448 bool honor_nans,
2449 bool honor_snans,
2450 tree divisor,
2451 bool *handled)
2452 {
2453 *handled = true;
2454 switch (op)
2455 {
2456 case TRUNC_DIV_EXPR:
2457 case CEIL_DIV_EXPR:
2458 case FLOOR_DIV_EXPR:
2459 case ROUND_DIV_EXPR:
2460 case EXACT_DIV_EXPR:
2461 case CEIL_MOD_EXPR:
2462 case FLOOR_MOD_EXPR:
2463 case ROUND_MOD_EXPR:
2464 case TRUNC_MOD_EXPR:
2465 case RDIV_EXPR:
2466 if (honor_snans)
2467 return true;
2468 if (fp_operation)
2469 return flag_trapping_math;
2470 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2471 return true;
2472 return false;
2473
2474 case LT_EXPR:
2475 case LE_EXPR:
2476 case GT_EXPR:
2477 case GE_EXPR:
2478 case LTGT_EXPR:
2479 /* Some floating point comparisons may trap. */
2480 return honor_nans;
2481
2482 case EQ_EXPR:
2483 case NE_EXPR:
2484 case UNORDERED_EXPR:
2485 case ORDERED_EXPR:
2486 case UNLT_EXPR:
2487 case UNLE_EXPR:
2488 case UNGT_EXPR:
2489 case UNGE_EXPR:
2490 case UNEQ_EXPR:
2491 return honor_snans;
2492
2493 case NEGATE_EXPR:
2494 case ABS_EXPR:
2495 case CONJ_EXPR:
2496 /* These operations don't trap with floating point. */
2497 if (honor_trapv)
2498 return true;
2499 return false;
2500
2501 case ABSU_EXPR:
2502 /* ABSU_EXPR never traps. */
2503 return false;
2504
2505 case PLUS_EXPR:
2506 case MINUS_EXPR:
2507 case MULT_EXPR:
2508 /* Any floating arithmetic may trap. */
2509 if (fp_operation && flag_trapping_math)
2510 return true;
2511 if (honor_trapv)
2512 return true;
2513 return false;
2514
2515 case COMPLEX_EXPR:
2516 case CONSTRUCTOR:
2517 /* Constructing an object cannot trap. */
2518 return false;
2519
2520 case COND_EXPR:
2521 case VEC_COND_EXPR:
2522 /* Whether *COND_EXPR can trap depends on whether the
2523 first argument can trap, so signal it as not handled.
2524 Whether lhs is floating or not doesn't matter. */
2525 *handled = false;
2526 return false;
2527
2528 default:
2529 /* Any floating arithmetic may trap. */
2530 if (fp_operation && flag_trapping_math)
2531 return true;
2532
2533 *handled = false;
2534 return false;
2535 }
2536 }
2537
2538 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2539 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2540 type operands that may trap. If OP is a division operator, DIVISOR contains
2541 the value of the divisor. */
2542
2543 bool
operation_could_trap_p(enum tree_code op,bool fp_operation,bool honor_trapv,tree divisor)2544 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2545 tree divisor)
2546 {
2547 bool honor_nans = (fp_operation && flag_trapping_math
2548 && !flag_finite_math_only);
2549 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2550 bool handled;
2551
2552 /* This function cannot tell whether or not COND_EXPR and VEC_COND_EXPR could
2553 trap, because that depends on the respective condition op. */
2554 gcc_assert (op != COND_EXPR && op != VEC_COND_EXPR);
2555
2556 if (TREE_CODE_CLASS (op) != tcc_comparison
2557 && TREE_CODE_CLASS (op) != tcc_unary
2558 && TREE_CODE_CLASS (op) != tcc_binary)
2559 return false;
2560
2561 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2562 honor_nans, honor_snans, divisor,
2563 &handled);
2564 }
2565
2566
2567 /* Returns true if it is possible to prove that the index of
2568 an array access REF (an ARRAY_REF expression) falls into the
2569 array bounds. */
2570
2571 static bool
in_array_bounds_p(tree ref)2572 in_array_bounds_p (tree ref)
2573 {
2574 tree idx = TREE_OPERAND (ref, 1);
2575 tree min, max;
2576
2577 if (TREE_CODE (idx) != INTEGER_CST)
2578 return false;
2579
2580 min = array_ref_low_bound (ref);
2581 max = array_ref_up_bound (ref);
2582 if (!min
2583 || !max
2584 || TREE_CODE (min) != INTEGER_CST
2585 || TREE_CODE (max) != INTEGER_CST)
2586 return false;
2587
2588 if (tree_int_cst_lt (idx, min)
2589 || tree_int_cst_lt (max, idx))
2590 return false;
2591
2592 return true;
2593 }
2594
2595 /* Returns true if it is possible to prove that the range of
2596 an array access REF (an ARRAY_RANGE_REF expression) falls
2597 into the array bounds. */
2598
2599 static bool
range_in_array_bounds_p(tree ref)2600 range_in_array_bounds_p (tree ref)
2601 {
2602 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
2603 tree range_min, range_max, min, max;
2604
2605 range_min = TYPE_MIN_VALUE (domain_type);
2606 range_max = TYPE_MAX_VALUE (domain_type);
2607 if (!range_min
2608 || !range_max
2609 || TREE_CODE (range_min) != INTEGER_CST
2610 || TREE_CODE (range_max) != INTEGER_CST)
2611 return false;
2612
2613 min = array_ref_low_bound (ref);
2614 max = array_ref_up_bound (ref);
2615 if (!min
2616 || !max
2617 || TREE_CODE (min) != INTEGER_CST
2618 || TREE_CODE (max) != INTEGER_CST)
2619 return false;
2620
2621 if (tree_int_cst_lt (range_min, min)
2622 || tree_int_cst_lt (max, range_max))
2623 return false;
2624
2625 return true;
2626 }
2627
2628 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2629 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2630 This routine expects only GIMPLE lhs or rhs input. */
2631
2632 bool
tree_could_trap_p(tree expr)2633 tree_could_trap_p (tree expr)
2634 {
2635 enum tree_code code;
2636 bool fp_operation = false;
2637 bool honor_trapv = false;
2638 tree t, base, div = NULL_TREE;
2639
2640 if (!expr)
2641 return false;
2642
2643 /* In COND_EXPR and VEC_COND_EXPR only the condition may trap, but
2644 they won't appear as operands in GIMPLE form, so this is just for the
2645 GENERIC uses where it needs to recurse on the operands and so
2646 *COND_EXPR itself doesn't trap. */
2647 if (TREE_CODE (expr) == COND_EXPR || TREE_CODE (expr) == VEC_COND_EXPR)
2648 return false;
2649
2650 code = TREE_CODE (expr);
2651 t = TREE_TYPE (expr);
2652
2653 if (t)
2654 {
2655 if (COMPARISON_CLASS_P (expr))
2656 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2657 else
2658 fp_operation = FLOAT_TYPE_P (t);
2659 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2660 }
2661
2662 if (TREE_CODE_CLASS (code) == tcc_binary)
2663 div = TREE_OPERAND (expr, 1);
2664 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2665 return true;
2666
2667 restart:
2668 switch (code)
2669 {
2670 case COMPONENT_REF:
2671 case REALPART_EXPR:
2672 case IMAGPART_EXPR:
2673 case BIT_FIELD_REF:
2674 case VIEW_CONVERT_EXPR:
2675 case WITH_SIZE_EXPR:
2676 expr = TREE_OPERAND (expr, 0);
2677 code = TREE_CODE (expr);
2678 goto restart;
2679
2680 case ARRAY_RANGE_REF:
2681 base = TREE_OPERAND (expr, 0);
2682 if (tree_could_trap_p (base))
2683 return true;
2684 if (TREE_THIS_NOTRAP (expr))
2685 return false;
2686 return !range_in_array_bounds_p (expr);
2687
2688 case ARRAY_REF:
2689 base = TREE_OPERAND (expr, 0);
2690 if (tree_could_trap_p (base))
2691 return true;
2692 if (TREE_THIS_NOTRAP (expr))
2693 return false;
2694 return !in_array_bounds_p (expr);
2695
2696 case TARGET_MEM_REF:
2697 case MEM_REF:
2698 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
2699 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
2700 return true;
2701 if (TREE_THIS_NOTRAP (expr))
2702 return false;
2703 /* We cannot prove that the access is in-bounds when we have
2704 variable-index TARGET_MEM_REFs. */
2705 if (code == TARGET_MEM_REF
2706 && (TMR_INDEX (expr) || TMR_INDEX2 (expr)))
2707 return true;
2708 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2709 {
2710 tree base = TREE_OPERAND (TREE_OPERAND (expr, 0), 0);
2711 poly_offset_int off = mem_ref_offset (expr);
2712 if (maybe_lt (off, 0))
2713 return true;
2714 if (TREE_CODE (base) == STRING_CST)
2715 return maybe_le (TREE_STRING_LENGTH (base), off);
2716 tree size = DECL_SIZE_UNIT (base);
2717 if (size == NULL_TREE
2718 || !poly_int_tree_p (size)
2719 || maybe_le (wi::to_poly_offset (size), off))
2720 return true;
2721 /* Now we are sure the first byte of the access is inside
2722 the object. */
2723 return false;
2724 }
2725 return true;
2726
2727 case INDIRECT_REF:
2728 return !TREE_THIS_NOTRAP (expr);
2729
2730 case ASM_EXPR:
2731 return TREE_THIS_VOLATILE (expr);
2732
2733 case CALL_EXPR:
2734 t = get_callee_fndecl (expr);
2735 /* Assume that calls to weak functions may trap. */
2736 if (!t || !DECL_P (t))
2737 return true;
2738 if (DECL_WEAK (t))
2739 return tree_could_trap_p (t);
2740 return false;
2741
2742 case FUNCTION_DECL:
2743 /* Assume that accesses to weak functions may trap, unless we know
2744 they are certainly defined in current TU or in some other
2745 LTO partition. */
2746 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2747 {
2748 cgraph_node *node = cgraph_node::get (expr);
2749 if (node)
2750 node = node->function_symbol ();
2751 return !(node && node->in_other_partition);
2752 }
2753 return false;
2754
2755 case VAR_DECL:
2756 /* Assume that accesses to weak vars may trap, unless we know
2757 they are certainly defined in current TU or in some other
2758 LTO partition. */
2759 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2760 {
2761 varpool_node *node = varpool_node::get (expr);
2762 if (node)
2763 node = node->ultimate_alias_target ();
2764 return !(node && node->in_other_partition);
2765 }
2766 return false;
2767
2768 default:
2769 return false;
2770 }
2771 }
2772
2773 /* Return non-NULL if there is an integer operation with trapping overflow
2774 we can rewrite into non-trapping. Called via walk_tree from
2775 rewrite_to_non_trapping_overflow. */
2776
2777 static tree
find_trapping_overflow(tree * tp,int * walk_subtrees,void * data)2778 find_trapping_overflow (tree *tp, int *walk_subtrees, void *data)
2779 {
2780 if (EXPR_P (*tp)
2781 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (*tp))
2782 && !operation_no_trapping_overflow (TREE_TYPE (*tp), TREE_CODE (*tp)))
2783 return *tp;
2784 if (IS_TYPE_OR_DECL_P (*tp)
2785 || (TREE_CODE (*tp) == SAVE_EXPR && data == NULL))
2786 *walk_subtrees = 0;
2787 return NULL_TREE;
2788 }
2789
2790 /* Rewrite selected operations into unsigned arithmetics, so that they
2791 don't trap on overflow. */
2792
2793 static tree
replace_trapping_overflow(tree * tp,int * walk_subtrees,void * data)2794 replace_trapping_overflow (tree *tp, int *walk_subtrees, void *data)
2795 {
2796 if (find_trapping_overflow (tp, walk_subtrees, data))
2797 {
2798 tree type = TREE_TYPE (*tp);
2799 tree utype = unsigned_type_for (type);
2800 *walk_subtrees = 0;
2801 int len = TREE_OPERAND_LENGTH (*tp);
2802 for (int i = 0; i < len; ++i)
2803 walk_tree (&TREE_OPERAND (*tp, i), replace_trapping_overflow,
2804 data, (hash_set<tree> *) data);
2805
2806 if (TREE_CODE (*tp) == ABS_EXPR)
2807 {
2808 TREE_SET_CODE (*tp, ABSU_EXPR);
2809 TREE_TYPE (*tp) = utype;
2810 *tp = fold_convert (type, *tp);
2811 }
2812 else
2813 {
2814 TREE_TYPE (*tp) = utype;
2815 len = TREE_OPERAND_LENGTH (*tp);
2816 for (int i = 0; i < len; ++i)
2817 TREE_OPERAND (*tp, i)
2818 = fold_convert (utype, TREE_OPERAND (*tp, i));
2819 *tp = fold_convert (type, *tp);
2820 }
2821 }
2822 return NULL_TREE;
2823 }
2824
2825 /* If any subexpression of EXPR can trap due to -ftrapv, rewrite it
2826 using unsigned arithmetics to avoid traps in it. */
2827
2828 tree
rewrite_to_non_trapping_overflow(tree expr)2829 rewrite_to_non_trapping_overflow (tree expr)
2830 {
2831 if (!flag_trapv)
2832 return expr;
2833 hash_set<tree> pset;
2834 if (!walk_tree (&expr, find_trapping_overflow, &pset, &pset))
2835 return expr;
2836 expr = unshare_expr (expr);
2837 pset.empty ();
2838 walk_tree (&expr, replace_trapping_overflow, &pset, &pset);
2839 return expr;
2840 }
2841
2842 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2843 an assignment or a conditional) may throw. */
2844
2845 static bool
stmt_could_throw_1_p(gassign * stmt)2846 stmt_could_throw_1_p (gassign *stmt)
2847 {
2848 enum tree_code code = gimple_assign_rhs_code (stmt);
2849 bool honor_nans = false;
2850 bool honor_snans = false;
2851 bool fp_operation = false;
2852 bool honor_trapv = false;
2853 tree t;
2854 size_t i;
2855 bool handled, ret;
2856
2857 if (TREE_CODE_CLASS (code) == tcc_comparison
2858 || TREE_CODE_CLASS (code) == tcc_unary
2859 || TREE_CODE_CLASS (code) == tcc_binary)
2860 {
2861 if (TREE_CODE_CLASS (code) == tcc_comparison)
2862 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2863 else
2864 t = gimple_expr_type (stmt);
2865 fp_operation = FLOAT_TYPE_P (t);
2866 if (fp_operation)
2867 {
2868 honor_nans = flag_trapping_math && !flag_finite_math_only;
2869 honor_snans = flag_signaling_nans != 0;
2870 }
2871 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2872 honor_trapv = true;
2873 }
2874
2875 /* First check the LHS. */
2876 if (tree_could_trap_p (gimple_assign_lhs (stmt)))
2877 return true;
2878
2879 /* Check if the main expression may trap. */
2880 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2881 honor_nans, honor_snans,
2882 gimple_assign_rhs2 (stmt),
2883 &handled);
2884 if (handled)
2885 return ret;
2886
2887 /* If the expression does not trap, see if any of the individual operands may
2888 trap. */
2889 for (i = 1; i < gimple_num_ops (stmt); i++)
2890 if (tree_could_trap_p (gimple_op (stmt, i)))
2891 return true;
2892
2893 return false;
2894 }
2895
2896
2897 /* Return true if statement STMT within FUN could throw an exception. */
2898
2899 bool
stmt_could_throw_p(function * fun,gimple * stmt)2900 stmt_could_throw_p (function *fun, gimple *stmt)
2901 {
2902 if (!flag_exceptions)
2903 return false;
2904
2905 /* The only statements that can throw an exception are assignments,
2906 conditionals, calls, resx, and asms. */
2907 switch (gimple_code (stmt))
2908 {
2909 case GIMPLE_RESX:
2910 return true;
2911
2912 case GIMPLE_CALL:
2913 return !gimple_call_nothrow_p (as_a <gcall *> (stmt));
2914
2915 case GIMPLE_COND:
2916 {
2917 if (fun && !fun->can_throw_non_call_exceptions)
2918 return false;
2919 gcond *cond = as_a <gcond *> (stmt);
2920 tree lhs = gimple_cond_lhs (cond);
2921 return operation_could_trap_p (gimple_cond_code (cond),
2922 FLOAT_TYPE_P (TREE_TYPE (lhs)),
2923 false, NULL_TREE);
2924 }
2925
2926 case GIMPLE_ASSIGN:
2927 if ((fun && !fun->can_throw_non_call_exceptions)
2928 || gimple_clobber_p (stmt))
2929 return false;
2930 return stmt_could_throw_1_p (as_a <gassign *> (stmt));
2931
2932 case GIMPLE_ASM:
2933 if (fun && !fun->can_throw_non_call_exceptions)
2934 return false;
2935 return gimple_asm_volatile_p (as_a <gasm *> (stmt));
2936
2937 default:
2938 return false;
2939 }
2940 }
2941
2942 /* Return true if STMT in function FUN must be assumed necessary because of
2943 non-call exceptions. */
2944
2945 bool
stmt_unremovable_because_of_non_call_eh_p(function * fun,gimple * stmt)2946 stmt_unremovable_because_of_non_call_eh_p (function *fun, gimple *stmt)
2947 {
2948 return (fun->can_throw_non_call_exceptions
2949 && !fun->can_delete_dead_exceptions
2950 && stmt_could_throw_p (fun, stmt));
2951 }
2952
2953 /* Return true if expression T could throw an exception. */
2954
2955 bool
tree_could_throw_p(tree t)2956 tree_could_throw_p (tree t)
2957 {
2958 if (!flag_exceptions)
2959 return false;
2960 if (TREE_CODE (t) == MODIFY_EXPR)
2961 {
2962 if (cfun->can_throw_non_call_exceptions
2963 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2964 return true;
2965 t = TREE_OPERAND (t, 1);
2966 }
2967
2968 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2969 t = TREE_OPERAND (t, 0);
2970 if (TREE_CODE (t) == CALL_EXPR)
2971 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2972 if (cfun->can_throw_non_call_exceptions)
2973 return tree_could_trap_p (t);
2974 return false;
2975 }
2976
2977 /* Return true if STMT can throw an exception that is not caught within its
2978 function FUN. FUN can be NULL but the function is extra conservative
2979 then. */
2980
2981 bool
stmt_can_throw_external(function * fun,gimple * stmt)2982 stmt_can_throw_external (function *fun, gimple *stmt)
2983 {
2984 int lp_nr;
2985
2986 if (!stmt_could_throw_p (fun, stmt))
2987 return false;
2988 if (!fun)
2989 return true;
2990
2991 lp_nr = lookup_stmt_eh_lp_fn (fun, stmt);
2992 return lp_nr == 0;
2993 }
2994
2995 /* Return true if STMT can throw an exception that is caught within its
2996 function FUN. */
2997
2998 bool
stmt_can_throw_internal(function * fun,gimple * stmt)2999 stmt_can_throw_internal (function *fun, gimple *stmt)
3000 {
3001 int lp_nr;
3002
3003 gcc_checking_assert (fun);
3004 if (!stmt_could_throw_p (fun, stmt))
3005 return false;
3006
3007 lp_nr = lookup_stmt_eh_lp_fn (fun, stmt);
3008 return lp_nr > 0;
3009 }
3010
3011 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
3012 remove any entry it might have from the EH table. Return true if
3013 any change was made. */
3014
3015 bool
maybe_clean_eh_stmt_fn(struct function * ifun,gimple * stmt)3016 maybe_clean_eh_stmt_fn (struct function *ifun, gimple *stmt)
3017 {
3018 if (stmt_could_throw_p (ifun, stmt))
3019 return false;
3020 return remove_stmt_from_eh_lp_fn (ifun, stmt);
3021 }
3022
3023 /* Likewise, but always use the current function. */
3024
3025 bool
maybe_clean_eh_stmt(gimple * stmt)3026 maybe_clean_eh_stmt (gimple *stmt)
3027 {
3028 return maybe_clean_eh_stmt_fn (cfun, stmt);
3029 }
3030
3031 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
3032 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
3033 in the table if it should be in there. Return TRUE if a replacement was
3034 done that my require an EH edge purge. */
3035
3036 bool
maybe_clean_or_replace_eh_stmt(gimple * old_stmt,gimple * new_stmt)3037 maybe_clean_or_replace_eh_stmt (gimple *old_stmt, gimple *new_stmt)
3038 {
3039 int lp_nr = lookup_stmt_eh_lp (old_stmt);
3040
3041 if (lp_nr != 0)
3042 {
3043 bool new_stmt_could_throw = stmt_could_throw_p (cfun, new_stmt);
3044
3045 if (new_stmt == old_stmt && new_stmt_could_throw)
3046 return false;
3047
3048 remove_stmt_from_eh_lp (old_stmt);
3049 if (new_stmt_could_throw)
3050 {
3051 add_stmt_to_eh_lp (new_stmt, lp_nr);
3052 return false;
3053 }
3054 else
3055 return true;
3056 }
3057
3058 return false;
3059 }
3060
3061 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
3062 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
3063 operand is the return value of duplicate_eh_regions. */
3064
3065 bool
maybe_duplicate_eh_stmt_fn(struct function * new_fun,gimple * new_stmt,struct function * old_fun,gimple * old_stmt,hash_map<void *,void * > * map,int default_lp_nr)3066 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple *new_stmt,
3067 struct function *old_fun, gimple *old_stmt,
3068 hash_map<void *, void *> *map,
3069 int default_lp_nr)
3070 {
3071 int old_lp_nr, new_lp_nr;
3072
3073 if (!stmt_could_throw_p (new_fun, new_stmt))
3074 return false;
3075
3076 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
3077 if (old_lp_nr == 0)
3078 {
3079 if (default_lp_nr == 0)
3080 return false;
3081 new_lp_nr = default_lp_nr;
3082 }
3083 else if (old_lp_nr > 0)
3084 {
3085 eh_landing_pad old_lp, new_lp;
3086
3087 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
3088 new_lp = static_cast<eh_landing_pad> (*map->get (old_lp));
3089 new_lp_nr = new_lp->index;
3090 }
3091 else
3092 {
3093 eh_region old_r, new_r;
3094
3095 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
3096 new_r = static_cast<eh_region> (*map->get (old_r));
3097 new_lp_nr = -new_r->index;
3098 }
3099
3100 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
3101 return true;
3102 }
3103
3104 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
3105 and thus no remapping is required. */
3106
3107 bool
maybe_duplicate_eh_stmt(gimple * new_stmt,gimple * old_stmt)3108 maybe_duplicate_eh_stmt (gimple *new_stmt, gimple *old_stmt)
3109 {
3110 int lp_nr;
3111
3112 if (!stmt_could_throw_p (cfun, new_stmt))
3113 return false;
3114
3115 lp_nr = lookup_stmt_eh_lp (old_stmt);
3116 if (lp_nr == 0)
3117 return false;
3118
3119 add_stmt_to_eh_lp (new_stmt, lp_nr);
3120 return true;
3121 }
3122
3123 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
3124 GIMPLE_TRY) that are similar enough to be considered the same. Currently
3125 this only handles handlers consisting of a single call, as that's the
3126 important case for C++: a destructor call for a particular object showing
3127 up in multiple handlers. */
3128
3129 static bool
same_handler_p(gimple_seq oneh,gimple_seq twoh)3130 same_handler_p (gimple_seq oneh, gimple_seq twoh)
3131 {
3132 gimple_stmt_iterator gsi;
3133 gimple *ones, *twos;
3134 unsigned int ai;
3135
3136 gsi = gsi_start (oneh);
3137 if (!gsi_one_before_end_p (gsi))
3138 return false;
3139 ones = gsi_stmt (gsi);
3140
3141 gsi = gsi_start (twoh);
3142 if (!gsi_one_before_end_p (gsi))
3143 return false;
3144 twos = gsi_stmt (gsi);
3145
3146 if (!is_gimple_call (ones)
3147 || !is_gimple_call (twos)
3148 || gimple_call_lhs (ones)
3149 || gimple_call_lhs (twos)
3150 || gimple_call_chain (ones)
3151 || gimple_call_chain (twos)
3152 || !gimple_call_same_target_p (ones, twos)
3153 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
3154 return false;
3155
3156 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
3157 if (!operand_equal_p (gimple_call_arg (ones, ai),
3158 gimple_call_arg (twos, ai), 0))
3159 return false;
3160
3161 return true;
3162 }
3163
3164 /* Optimize
3165 try { A() } finally { try { ~B() } catch { ~A() } }
3166 try { ... } finally { ~A() }
3167 into
3168 try { A() } catch { ~B() }
3169 try { ~B() ... } finally { ~A() }
3170
3171 This occurs frequently in C++, where A is a local variable and B is a
3172 temporary used in the initializer for A. */
3173
3174 static void
optimize_double_finally(gtry * one,gtry * two)3175 optimize_double_finally (gtry *one, gtry *two)
3176 {
3177 gimple *oneh;
3178 gimple_stmt_iterator gsi;
3179 gimple_seq cleanup;
3180
3181 cleanup = gimple_try_cleanup (one);
3182 gsi = gsi_start (cleanup);
3183 if (!gsi_one_before_end_p (gsi))
3184 return;
3185
3186 oneh = gsi_stmt (gsi);
3187 if (gimple_code (oneh) != GIMPLE_TRY
3188 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
3189 return;
3190
3191 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
3192 {
3193 gimple_seq seq = gimple_try_eval (oneh);
3194
3195 gimple_try_set_cleanup (one, seq);
3196 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
3197 seq = copy_gimple_seq_and_replace_locals (seq);
3198 gimple_seq_add_seq (&seq, gimple_try_eval (two));
3199 gimple_try_set_eval (two, seq);
3200 }
3201 }
3202
3203 /* Perform EH refactoring optimizations that are simpler to do when code
3204 flow has been lowered but EH structures haven't. */
3205
3206 static void
refactor_eh_r(gimple_seq seq)3207 refactor_eh_r (gimple_seq seq)
3208 {
3209 gimple_stmt_iterator gsi;
3210 gimple *one, *two;
3211
3212 one = NULL;
3213 two = NULL;
3214 gsi = gsi_start (seq);
3215 while (1)
3216 {
3217 one = two;
3218 if (gsi_end_p (gsi))
3219 two = NULL;
3220 else
3221 two = gsi_stmt (gsi);
3222 if (one && two)
3223 if (gtry *try_one = dyn_cast <gtry *> (one))
3224 if (gtry *try_two = dyn_cast <gtry *> (two))
3225 if (gimple_try_kind (try_one) == GIMPLE_TRY_FINALLY
3226 && gimple_try_kind (try_two) == GIMPLE_TRY_FINALLY)
3227 optimize_double_finally (try_one, try_two);
3228 if (one)
3229 switch (gimple_code (one))
3230 {
3231 case GIMPLE_TRY:
3232 refactor_eh_r (gimple_try_eval (one));
3233 refactor_eh_r (gimple_try_cleanup (one));
3234 break;
3235 case GIMPLE_CATCH:
3236 refactor_eh_r (gimple_catch_handler (as_a <gcatch *> (one)));
3237 break;
3238 case GIMPLE_EH_FILTER:
3239 refactor_eh_r (gimple_eh_filter_failure (one));
3240 break;
3241 case GIMPLE_EH_ELSE:
3242 {
3243 geh_else *eh_else_stmt = as_a <geh_else *> (one);
3244 refactor_eh_r (gimple_eh_else_n_body (eh_else_stmt));
3245 refactor_eh_r (gimple_eh_else_e_body (eh_else_stmt));
3246 }
3247 break;
3248 default:
3249 break;
3250 }
3251 if (two)
3252 gsi_next (&gsi);
3253 else
3254 break;
3255 }
3256 }
3257
3258 namespace {
3259
3260 const pass_data pass_data_refactor_eh =
3261 {
3262 GIMPLE_PASS, /* type */
3263 "ehopt", /* name */
3264 OPTGROUP_NONE, /* optinfo_flags */
3265 TV_TREE_EH, /* tv_id */
3266 PROP_gimple_lcf, /* properties_required */
3267 0, /* properties_provided */
3268 0, /* properties_destroyed */
3269 0, /* todo_flags_start */
3270 0, /* todo_flags_finish */
3271 };
3272
3273 class pass_refactor_eh : public gimple_opt_pass
3274 {
3275 public:
pass_refactor_eh(gcc::context * ctxt)3276 pass_refactor_eh (gcc::context *ctxt)
3277 : gimple_opt_pass (pass_data_refactor_eh, ctxt)
3278 {}
3279
3280 /* opt_pass methods: */
gate(function *)3281 virtual bool gate (function *) { return flag_exceptions != 0; }
execute(function *)3282 virtual unsigned int execute (function *)
3283 {
3284 refactor_eh_r (gimple_body (current_function_decl));
3285 return 0;
3286 }
3287
3288 }; // class pass_refactor_eh
3289
3290 } // anon namespace
3291
3292 gimple_opt_pass *
make_pass_refactor_eh(gcc::context * ctxt)3293 make_pass_refactor_eh (gcc::context *ctxt)
3294 {
3295 return new pass_refactor_eh (ctxt);
3296 }
3297
3298 /* At the end of gimple optimization, we can lower RESX. */
3299
3300 static bool
lower_resx(basic_block bb,gresx * stmt,hash_map<eh_region,tree> * mnt_map)3301 lower_resx (basic_block bb, gresx *stmt,
3302 hash_map<eh_region, tree> *mnt_map)
3303 {
3304 int lp_nr;
3305 eh_region src_r, dst_r;
3306 gimple_stmt_iterator gsi;
3307 gimple *x;
3308 tree fn, src_nr;
3309 bool ret = false;
3310
3311 lp_nr = lookup_stmt_eh_lp (stmt);
3312 if (lp_nr != 0)
3313 dst_r = get_eh_region_from_lp_number (lp_nr);
3314 else
3315 dst_r = NULL;
3316
3317 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3318 gsi = gsi_last_bb (bb);
3319
3320 if (src_r == NULL)
3321 {
3322 /* We can wind up with no source region when pass_cleanup_eh shows
3323 that there are no entries into an eh region and deletes it, but
3324 then the block that contains the resx isn't removed. This can
3325 happen without optimization when the switch statement created by
3326 lower_try_finally_switch isn't simplified to remove the eh case.
3327
3328 Resolve this by expanding the resx node to an abort. */
3329
3330 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3331 x = gimple_build_call (fn, 0);
3332 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3333
3334 while (EDGE_COUNT (bb->succs) > 0)
3335 remove_edge (EDGE_SUCC (bb, 0));
3336 }
3337 else if (dst_r)
3338 {
3339 /* When we have a destination region, we resolve this by copying
3340 the excptr and filter values into place, and changing the edge
3341 to immediately after the landing pad. */
3342 edge e;
3343
3344 if (lp_nr < 0)
3345 {
3346 basic_block new_bb;
3347 tree lab;
3348
3349 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3350 the failure decl into a new block, if needed. */
3351 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3352
3353 tree *slot = mnt_map->get (dst_r);
3354 if (slot == NULL)
3355 {
3356 gimple_stmt_iterator gsi2;
3357
3358 new_bb = create_empty_bb (bb);
3359 new_bb->count = bb->count;
3360 add_bb_to_loop (new_bb, bb->loop_father);
3361 lab = gimple_block_label (new_bb);
3362 gsi2 = gsi_start_bb (new_bb);
3363
3364 fn = dst_r->u.must_not_throw.failure_decl;
3365 x = gimple_build_call (fn, 0);
3366 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3367 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3368
3369 mnt_map->put (dst_r, lab);
3370 }
3371 else
3372 {
3373 lab = *slot;
3374 new_bb = label_to_block (cfun, lab);
3375 }
3376
3377 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3378 e = make_single_succ_edge (bb, new_bb, EDGE_FALLTHRU);
3379 }
3380 else
3381 {
3382 edge_iterator ei;
3383 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3384
3385 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3386 src_nr = build_int_cst (integer_type_node, src_r->index);
3387 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3388 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3389
3390 /* Update the flags for the outgoing edge. */
3391 e = single_succ_edge (bb);
3392 gcc_assert (e->flags & EDGE_EH);
3393 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3394 e->probability = profile_probability::always ();
3395
3396 /* If there are no more EH users of the landing pad, delete it. */
3397 FOR_EACH_EDGE (e, ei, e->dest->preds)
3398 if (e->flags & EDGE_EH)
3399 break;
3400 if (e == NULL)
3401 {
3402 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3403 remove_eh_landing_pad (lp);
3404 }
3405 }
3406
3407 ret = true;
3408 }
3409 else
3410 {
3411 tree var;
3412
3413 /* When we don't have a destination region, this exception escapes
3414 up the call chain. We resolve this by generating a call to the
3415 _Unwind_Resume library function. */
3416
3417 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3418 with no arguments for C++. Check for that. */
3419 if (src_r->use_cxa_end_cleanup)
3420 {
3421 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3422 x = gimple_build_call (fn, 0);
3423 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3424 }
3425 else
3426 {
3427 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3428 src_nr = build_int_cst (integer_type_node, src_r->index);
3429 x = gimple_build_call (fn, 1, src_nr);
3430 var = create_tmp_var (ptr_type_node);
3431 var = make_ssa_name (var, x);
3432 gimple_call_set_lhs (x, var);
3433 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3434
3435 /* When exception handling is delegated to a caller function, we
3436 have to guarantee that shadow memory variables living on stack
3437 will be cleaner before control is given to a parent function. */
3438 if (sanitize_flags_p (SANITIZE_ADDRESS))
3439 {
3440 tree decl
3441 = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
3442 gimple *g = gimple_build_call (decl, 0);
3443 gimple_set_location (g, gimple_location (stmt));
3444 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3445 }
3446
3447 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3448 x = gimple_build_call (fn, 1, var);
3449 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3450 }
3451
3452 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3453 }
3454
3455 gsi_remove (&gsi, true);
3456
3457 return ret;
3458 }
3459
3460 namespace {
3461
3462 const pass_data pass_data_lower_resx =
3463 {
3464 GIMPLE_PASS, /* type */
3465 "resx", /* name */
3466 OPTGROUP_NONE, /* optinfo_flags */
3467 TV_TREE_EH, /* tv_id */
3468 PROP_gimple_lcf, /* properties_required */
3469 0, /* properties_provided */
3470 0, /* properties_destroyed */
3471 0, /* todo_flags_start */
3472 0, /* todo_flags_finish */
3473 };
3474
3475 class pass_lower_resx : public gimple_opt_pass
3476 {
3477 public:
pass_lower_resx(gcc::context * ctxt)3478 pass_lower_resx (gcc::context *ctxt)
3479 : gimple_opt_pass (pass_data_lower_resx, ctxt)
3480 {}
3481
3482 /* opt_pass methods: */
gate(function *)3483 virtual bool gate (function *) { return flag_exceptions != 0; }
3484 virtual unsigned int execute (function *);
3485
3486 }; // class pass_lower_resx
3487
3488 unsigned
execute(function * fun)3489 pass_lower_resx::execute (function *fun)
3490 {
3491 basic_block bb;
3492 bool dominance_invalidated = false;
3493 bool any_rewritten = false;
3494
3495 hash_map<eh_region, tree> mnt_map;
3496
3497 FOR_EACH_BB_FN (bb, fun)
3498 {
3499 gimple *last = last_stmt (bb);
3500 if (last && is_gimple_resx (last))
3501 {
3502 dominance_invalidated |=
3503 lower_resx (bb, as_a <gresx *> (last), &mnt_map);
3504 any_rewritten = true;
3505 }
3506 }
3507
3508 if (dominance_invalidated)
3509 {
3510 free_dominance_info (CDI_DOMINATORS);
3511 free_dominance_info (CDI_POST_DOMINATORS);
3512 }
3513
3514 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3515 }
3516
3517 } // anon namespace
3518
3519 gimple_opt_pass *
make_pass_lower_resx(gcc::context * ctxt)3520 make_pass_lower_resx (gcc::context *ctxt)
3521 {
3522 return new pass_lower_resx (ctxt);
3523 }
3524
3525 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3526 external throw. */
3527
3528 static void
optimize_clobbers(basic_block bb)3529 optimize_clobbers (basic_block bb)
3530 {
3531 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3532 bool any_clobbers = false;
3533 bool seen_stack_restore = false;
3534 edge_iterator ei;
3535 edge e;
3536
3537 /* Only optimize anything if the bb contains at least one clobber,
3538 ends with resx (checked by caller), optionally contains some
3539 debug stmts or labels, or at most one __builtin_stack_restore
3540 call, and has an incoming EH edge. */
3541 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3542 {
3543 gimple *stmt = gsi_stmt (gsi);
3544 if (is_gimple_debug (stmt))
3545 continue;
3546 if (gimple_clobber_p (stmt))
3547 {
3548 any_clobbers = true;
3549 continue;
3550 }
3551 if (!seen_stack_restore
3552 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3553 {
3554 seen_stack_restore = true;
3555 continue;
3556 }
3557 if (gimple_code (stmt) == GIMPLE_LABEL)
3558 break;
3559 return;
3560 }
3561 if (!any_clobbers)
3562 return;
3563 FOR_EACH_EDGE (e, ei, bb->preds)
3564 if (e->flags & EDGE_EH)
3565 break;
3566 if (e == NULL)
3567 return;
3568 gsi = gsi_last_bb (bb);
3569 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3570 {
3571 gimple *stmt = gsi_stmt (gsi);
3572 if (!gimple_clobber_p (stmt))
3573 continue;
3574 unlink_stmt_vdef (stmt);
3575 gsi_remove (&gsi, true);
3576 release_defs (stmt);
3577 }
3578 }
3579
3580 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3581 internal throw to successor BB.
3582 SUNK, if not NULL, is an array of sequences indexed by basic-block
3583 index to sink to and to pick up sinking opportunities from.
3584 If FOUND_OPPORTUNITY is not NULL then do not perform the optimization
3585 but set *FOUND_OPPORTUNITY to true. */
3586
3587 static int
3588 sink_clobbers (basic_block bb,
3589 gimple_seq *sunk = NULL, bool *found_opportunity = NULL)
3590 {
3591 edge e;
3592 edge_iterator ei;
3593 gimple_stmt_iterator gsi, dgsi;
3594 basic_block succbb;
3595 bool any_clobbers = false;
3596 unsigned todo = 0;
3597
3598 /* Only optimize if BB has a single EH successor and
3599 all predecessor edges are EH too. */
3600 if (!single_succ_p (bb)
3601 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3602 return 0;
3603
3604 FOR_EACH_EDGE (e, ei, bb->preds)
3605 {
3606 if ((e->flags & EDGE_EH) == 0)
3607 return 0;
3608 }
3609
3610 /* And BB contains only CLOBBER stmts before the final
3611 RESX. */
3612 gsi = gsi_last_bb (bb);
3613 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3614 {
3615 gimple *stmt = gsi_stmt (gsi);
3616 if (is_gimple_debug (stmt))
3617 continue;
3618 if (gimple_code (stmt) == GIMPLE_LABEL)
3619 break;
3620 if (!gimple_clobber_p (stmt))
3621 return 0;
3622 any_clobbers = true;
3623 }
3624 if (!any_clobbers && (!sunk || gimple_seq_empty_p (sunk[bb->index])))
3625 return 0;
3626
3627 /* If this was a dry run, tell it we found clobbers to sink. */
3628 if (found_opportunity)
3629 {
3630 *found_opportunity = true;
3631 return 0;
3632 }
3633
3634 edge succe = single_succ_edge (bb);
3635 succbb = succe->dest;
3636
3637 /* See if there is a virtual PHI node to take an updated virtual
3638 operand from. */
3639 gphi *vphi = NULL;
3640 for (gphi_iterator gpi = gsi_start_phis (succbb);
3641 !gsi_end_p (gpi); gsi_next (&gpi))
3642 {
3643 tree res = gimple_phi_result (gpi.phi ());
3644 if (virtual_operand_p (res))
3645 {
3646 vphi = gpi.phi ();
3647 break;
3648 }
3649 }
3650
3651 gimple *first_sunk = NULL;
3652 gimple *last_sunk = NULL;
3653 if (sunk && !(succbb->flags & BB_VISITED))
3654 dgsi = gsi_start (sunk[succbb->index]);
3655 else
3656 dgsi = gsi_after_labels (succbb);
3657 gsi = gsi_last_bb (bb);
3658 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3659 {
3660 gimple *stmt = gsi_stmt (gsi);
3661 tree lhs;
3662 if (is_gimple_debug (stmt))
3663 continue;
3664 if (gimple_code (stmt) == GIMPLE_LABEL)
3665 break;
3666 lhs = gimple_assign_lhs (stmt);
3667 /* Unfortunately we don't have dominance info updated at this
3668 point, so checking if
3669 dominated_by_p (CDI_DOMINATORS, succbb,
3670 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3671 would be too costly. Thus, avoid sinking any clobbers that
3672 refer to non-(D) SSA_NAMEs. */
3673 if (TREE_CODE (lhs) == MEM_REF
3674 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3675 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3676 {
3677 unlink_stmt_vdef (stmt);
3678 gsi_remove (&gsi, true);
3679 release_defs (stmt);
3680 continue;
3681 }
3682
3683 /* As we do not change stmt order when sinking across a
3684 forwarder edge we can keep virtual operands in place. */
3685 gsi_remove (&gsi, false);
3686 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3687 if (!first_sunk)
3688 first_sunk = stmt;
3689 last_sunk = stmt;
3690 }
3691 if (sunk && !gimple_seq_empty_p (sunk[bb->index]))
3692 {
3693 if (!first_sunk)
3694 first_sunk = gsi_stmt (gsi_last (sunk[bb->index]));
3695 last_sunk = gsi_stmt (gsi_start (sunk[bb->index]));
3696 gsi_insert_seq_before_without_update (&dgsi,
3697 sunk[bb->index], GSI_NEW_STMT);
3698 sunk[bb->index] = NULL;
3699 }
3700 if (first_sunk)
3701 {
3702 /* Adjust virtual operands if we sunk across a virtual PHI. */
3703 if (vphi)
3704 {
3705 imm_use_iterator iter;
3706 use_operand_p use_p;
3707 gimple *use_stmt;
3708 tree phi_def = gimple_phi_result (vphi);
3709 FOR_EACH_IMM_USE_STMT (use_stmt, iter, phi_def)
3710 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3711 SET_USE (use_p, gimple_vdef (first_sunk));
3712 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (phi_def))
3713 {
3714 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (first_sunk)) = 1;
3715 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (phi_def) = 0;
3716 }
3717 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe),
3718 gimple_vuse (last_sunk));
3719 SET_USE (gimple_vuse_op (last_sunk), phi_def);
3720 }
3721 /* If there isn't a single predecessor but no virtual PHI node
3722 arrange for virtual operands to be renamed. */
3723 else if (!single_pred_p (succbb)
3724 && TREE_CODE (gimple_vuse (last_sunk)) == SSA_NAME)
3725 {
3726 mark_virtual_operand_for_renaming (gimple_vuse (last_sunk));
3727 todo |= TODO_update_ssa_only_virtuals;
3728 }
3729 }
3730
3731 return todo;
3732 }
3733
3734 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3735 we have found some duplicate labels and removed some edges. */
3736
3737 static bool
lower_eh_dispatch(basic_block src,geh_dispatch * stmt)3738 lower_eh_dispatch (basic_block src, geh_dispatch *stmt)
3739 {
3740 gimple_stmt_iterator gsi;
3741 int region_nr;
3742 eh_region r;
3743 tree filter, fn;
3744 gimple *x;
3745 bool redirected = false;
3746
3747 region_nr = gimple_eh_dispatch_region (stmt);
3748 r = get_eh_region_from_number (region_nr);
3749
3750 gsi = gsi_last_bb (src);
3751
3752 switch (r->type)
3753 {
3754 case ERT_TRY:
3755 {
3756 auto_vec<tree> labels;
3757 tree default_label = NULL;
3758 eh_catch c;
3759 edge_iterator ei;
3760 edge e;
3761 hash_set<tree> seen_values;
3762
3763 /* Collect the labels for a switch. Zero the post_landing_pad
3764 field becase we'll no longer have anything keeping these labels
3765 in existence and the optimizer will be free to merge these
3766 blocks at will. */
3767 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3768 {
3769 tree tp_node, flt_node, lab = c->label;
3770 bool have_label = false;
3771
3772 c->label = NULL;
3773 tp_node = c->type_list;
3774 flt_node = c->filter_list;
3775
3776 if (tp_node == NULL)
3777 {
3778 default_label = lab;
3779 break;
3780 }
3781 do
3782 {
3783 /* Filter out duplicate labels that arise when this handler
3784 is shadowed by an earlier one. When no labels are
3785 attached to the handler anymore, we remove
3786 the corresponding edge and then we delete unreachable
3787 blocks at the end of this pass. */
3788 if (! seen_values.contains (TREE_VALUE (flt_node)))
3789 {
3790 tree t = build_case_label (TREE_VALUE (flt_node),
3791 NULL, lab);
3792 labels.safe_push (t);
3793 seen_values.add (TREE_VALUE (flt_node));
3794 have_label = true;
3795 }
3796
3797 tp_node = TREE_CHAIN (tp_node);
3798 flt_node = TREE_CHAIN (flt_node);
3799 }
3800 while (tp_node);
3801 if (! have_label)
3802 {
3803 remove_edge (find_edge (src, label_to_block (cfun, lab)));
3804 redirected = true;
3805 }
3806 }
3807
3808 /* Clean up the edge flags. */
3809 FOR_EACH_EDGE (e, ei, src->succs)
3810 {
3811 if (e->flags & EDGE_FALLTHRU)
3812 {
3813 /* If there was no catch-all, use the fallthru edge. */
3814 if (default_label == NULL)
3815 default_label = gimple_block_label (e->dest);
3816 e->flags &= ~EDGE_FALLTHRU;
3817 }
3818 }
3819 gcc_assert (default_label != NULL);
3820
3821 /* Don't generate a switch if there's only a default case.
3822 This is common in the form of try { A; } catch (...) { B; }. */
3823 if (!labels.exists ())
3824 {
3825 e = single_succ_edge (src);
3826 e->flags |= EDGE_FALLTHRU;
3827 }
3828 else
3829 {
3830 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3831 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3832 region_nr));
3833 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3834 filter = make_ssa_name (filter, x);
3835 gimple_call_set_lhs (x, filter);
3836 gimple_set_location (x, gimple_location (stmt));
3837 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3838
3839 /* Turn the default label into a default case. */
3840 default_label = build_case_label (NULL, NULL, default_label);
3841 sort_case_labels (labels);
3842
3843 x = gimple_build_switch (filter, default_label, labels);
3844 gimple_set_location (x, gimple_location (stmt));
3845 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3846 }
3847 }
3848 break;
3849
3850 case ERT_ALLOWED_EXCEPTIONS:
3851 {
3852 edge b_e = BRANCH_EDGE (src);
3853 edge f_e = FALLTHRU_EDGE (src);
3854
3855 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3856 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3857 region_nr));
3858 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3859 filter = make_ssa_name (filter, x);
3860 gimple_call_set_lhs (x, filter);
3861 gimple_set_location (x, gimple_location (stmt));
3862 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3863
3864 r->u.allowed.label = NULL;
3865 x = gimple_build_cond (EQ_EXPR, filter,
3866 build_int_cst (TREE_TYPE (filter),
3867 r->u.allowed.filter),
3868 NULL_TREE, NULL_TREE);
3869 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3870
3871 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3872 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3873 }
3874 break;
3875
3876 default:
3877 gcc_unreachable ();
3878 }
3879
3880 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3881 gsi_remove (&gsi, true);
3882 return redirected;
3883 }
3884
3885 namespace {
3886
3887 const pass_data pass_data_lower_eh_dispatch =
3888 {
3889 GIMPLE_PASS, /* type */
3890 "ehdisp", /* name */
3891 OPTGROUP_NONE, /* optinfo_flags */
3892 TV_TREE_EH, /* tv_id */
3893 PROP_gimple_lcf, /* properties_required */
3894 0, /* properties_provided */
3895 0, /* properties_destroyed */
3896 0, /* todo_flags_start */
3897 0, /* todo_flags_finish */
3898 };
3899
3900 class pass_lower_eh_dispatch : public gimple_opt_pass
3901 {
3902 public:
pass_lower_eh_dispatch(gcc::context * ctxt)3903 pass_lower_eh_dispatch (gcc::context *ctxt)
3904 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
3905 {}
3906
3907 /* opt_pass methods: */
gate(function * fun)3908 virtual bool gate (function *fun) { return fun->eh->region_tree != NULL; }
3909 virtual unsigned int execute (function *);
3910
3911 }; // class pass_lower_eh_dispatch
3912
3913 unsigned
execute(function * fun)3914 pass_lower_eh_dispatch::execute (function *fun)
3915 {
3916 basic_block bb;
3917 int flags = 0;
3918 bool redirected = false;
3919 bool any_resx_to_process = false;
3920
3921 assign_filter_values ();
3922
3923 FOR_EACH_BB_FN (bb, fun)
3924 {
3925 gimple *last = last_stmt (bb);
3926 if (last == NULL)
3927 continue;
3928 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3929 {
3930 redirected |= lower_eh_dispatch (bb,
3931 as_a <geh_dispatch *> (last));
3932 flags |= TODO_update_ssa_only_virtuals;
3933 }
3934 else if (gimple_code (last) == GIMPLE_RESX)
3935 {
3936 if (stmt_can_throw_external (fun, last))
3937 optimize_clobbers (bb);
3938 else if (!any_resx_to_process)
3939 sink_clobbers (bb, NULL, &any_resx_to_process);
3940 }
3941 bb->flags &= ~BB_VISITED;
3942 }
3943 if (redirected)
3944 {
3945 free_dominance_info (CDI_DOMINATORS);
3946 delete_unreachable_blocks ();
3947 }
3948
3949 if (any_resx_to_process)
3950 {
3951 /* Make sure to catch all secondary sinking opportunities by processing
3952 blocks in RPO order and after all CFG modifications from lowering
3953 and unreachable block removal. */
3954 int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (fun));
3955 int rpo_n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
3956 gimple_seq *sunk = XCNEWVEC (gimple_seq, last_basic_block_for_fn (fun));
3957 for (int i = 0; i < rpo_n; ++i)
3958 {
3959 bb = BASIC_BLOCK_FOR_FN (fun, rpo[i]);
3960 gimple *last = last_stmt (bb);
3961 if (last
3962 && gimple_code (last) == GIMPLE_RESX
3963 && !stmt_can_throw_external (fun, last))
3964 flags |= sink_clobbers (bb, sunk);
3965 /* If there were any clobbers sunk into this BB, insert them now. */
3966 if (!gimple_seq_empty_p (sunk[bb->index]))
3967 {
3968 gimple_stmt_iterator gsi = gsi_after_labels (bb);
3969 gsi_insert_seq_before (&gsi, sunk[bb->index], GSI_NEW_STMT);
3970 sunk[bb->index] = NULL;
3971 }
3972 bb->flags |= BB_VISITED;
3973 }
3974 free (rpo);
3975 free (sunk);
3976 }
3977
3978 return flags;
3979 }
3980
3981 } // anon namespace
3982
3983 gimple_opt_pass *
make_pass_lower_eh_dispatch(gcc::context * ctxt)3984 make_pass_lower_eh_dispatch (gcc::context *ctxt)
3985 {
3986 return new pass_lower_eh_dispatch (ctxt);
3987 }
3988
3989 /* Walk statements, see what regions and, optionally, landing pads
3990 are really referenced.
3991
3992 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3993 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3994
3995 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3996 regions are marked.
3997
3998 The caller is responsible for freeing the returned sbitmaps. */
3999
4000 static void
mark_reachable_handlers(sbitmap * r_reachablep,sbitmap * lp_reachablep)4001 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
4002 {
4003 sbitmap r_reachable, lp_reachable;
4004 basic_block bb;
4005 bool mark_landing_pads = (lp_reachablep != NULL);
4006 gcc_checking_assert (r_reachablep != NULL);
4007
4008 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
4009 bitmap_clear (r_reachable);
4010 *r_reachablep = r_reachable;
4011
4012 if (mark_landing_pads)
4013 {
4014 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
4015 bitmap_clear (lp_reachable);
4016 *lp_reachablep = lp_reachable;
4017 }
4018 else
4019 lp_reachable = NULL;
4020
4021 FOR_EACH_BB_FN (bb, cfun)
4022 {
4023 gimple_stmt_iterator gsi;
4024
4025 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4026 {
4027 gimple *stmt = gsi_stmt (gsi);
4028
4029 if (mark_landing_pads)
4030 {
4031 int lp_nr = lookup_stmt_eh_lp (stmt);
4032
4033 /* Negative LP numbers are MUST_NOT_THROW regions which
4034 are not considered BB enders. */
4035 if (lp_nr < 0)
4036 bitmap_set_bit (r_reachable, -lp_nr);
4037
4038 /* Positive LP numbers are real landing pads, and BB enders. */
4039 else if (lp_nr > 0)
4040 {
4041 gcc_assert (gsi_one_before_end_p (gsi));
4042 eh_region region = get_eh_region_from_lp_number (lp_nr);
4043 bitmap_set_bit (r_reachable, region->index);
4044 bitmap_set_bit (lp_reachable, lp_nr);
4045 }
4046 }
4047
4048 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
4049 switch (gimple_code (stmt))
4050 {
4051 case GIMPLE_RESX:
4052 bitmap_set_bit (r_reachable,
4053 gimple_resx_region (as_a <gresx *> (stmt)));
4054 break;
4055 case GIMPLE_EH_DISPATCH:
4056 bitmap_set_bit (r_reachable,
4057 gimple_eh_dispatch_region (
4058 as_a <geh_dispatch *> (stmt)));
4059 break;
4060 case GIMPLE_CALL:
4061 if (gimple_call_builtin_p (stmt, BUILT_IN_EH_COPY_VALUES))
4062 for (int i = 0; i < 2; ++i)
4063 {
4064 tree rt = gimple_call_arg (stmt, i);
4065 HOST_WIDE_INT ri = tree_to_shwi (rt);
4066
4067 gcc_assert (ri == (int)ri);
4068 bitmap_set_bit (r_reachable, ri);
4069 }
4070 break;
4071 default:
4072 break;
4073 }
4074 }
4075 }
4076 }
4077
4078 /* Remove unreachable handlers and unreachable landing pads. */
4079
4080 static void
remove_unreachable_handlers(void)4081 remove_unreachable_handlers (void)
4082 {
4083 sbitmap r_reachable, lp_reachable;
4084 eh_region region;
4085 eh_landing_pad lp;
4086 unsigned i;
4087
4088 mark_reachable_handlers (&r_reachable, &lp_reachable);
4089
4090 if (dump_file)
4091 {
4092 fprintf (dump_file, "Before removal of unreachable regions:\n");
4093 dump_eh_tree (dump_file, cfun);
4094 fprintf (dump_file, "Reachable regions: ");
4095 dump_bitmap_file (dump_file, r_reachable);
4096 fprintf (dump_file, "Reachable landing pads: ");
4097 dump_bitmap_file (dump_file, lp_reachable);
4098 }
4099
4100 if (dump_file)
4101 {
4102 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
4103 if (region && !bitmap_bit_p (r_reachable, region->index))
4104 fprintf (dump_file,
4105 "Removing unreachable region %d\n",
4106 region->index);
4107 }
4108
4109 remove_unreachable_eh_regions (r_reachable);
4110
4111 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
4112 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
4113 {
4114 if (dump_file)
4115 fprintf (dump_file,
4116 "Removing unreachable landing pad %d\n",
4117 lp->index);
4118 remove_eh_landing_pad (lp);
4119 }
4120
4121 if (dump_file)
4122 {
4123 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
4124 dump_eh_tree (dump_file, cfun);
4125 fprintf (dump_file, "\n\n");
4126 }
4127
4128 sbitmap_free (r_reachable);
4129 sbitmap_free (lp_reachable);
4130
4131 if (flag_checking)
4132 verify_eh_tree (cfun);
4133 }
4134
4135 /* Remove unreachable handlers if any landing pads have been removed after
4136 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
4137
4138 void
maybe_remove_unreachable_handlers(void)4139 maybe_remove_unreachable_handlers (void)
4140 {
4141 eh_landing_pad lp;
4142 unsigned i;
4143
4144 if (cfun->eh == NULL)
4145 return;
4146
4147 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
4148 if (lp
4149 && (lp->post_landing_pad == NULL_TREE
4150 || label_to_block (cfun, lp->post_landing_pad) == NULL))
4151 {
4152 remove_unreachable_handlers ();
4153 return;
4154 }
4155 }
4156
4157 /* Remove regions that do not have landing pads. This assumes
4158 that remove_unreachable_handlers has already been run, and
4159 that we've just manipulated the landing pads since then.
4160
4161 Preserve regions with landing pads and regions that prevent
4162 exceptions from propagating further, even if these regions
4163 are not reachable. */
4164
4165 static void
remove_unreachable_handlers_no_lp(void)4166 remove_unreachable_handlers_no_lp (void)
4167 {
4168 eh_region region;
4169 sbitmap r_reachable;
4170 unsigned i;
4171
4172 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
4173
4174 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
4175 {
4176 if (! region)
4177 continue;
4178
4179 if (region->landing_pads != NULL
4180 || region->type == ERT_MUST_NOT_THROW)
4181 bitmap_set_bit (r_reachable, region->index);
4182
4183 if (dump_file
4184 && !bitmap_bit_p (r_reachable, region->index))
4185 fprintf (dump_file,
4186 "Removing unreachable region %d\n",
4187 region->index);
4188 }
4189
4190 remove_unreachable_eh_regions (r_reachable);
4191
4192 sbitmap_free (r_reachable);
4193 }
4194
4195 /* Undo critical edge splitting on an EH landing pad. Earlier, we
4196 optimisticaly split all sorts of edges, including EH edges. The
4197 optimization passes in between may not have needed them; if not,
4198 we should undo the split.
4199
4200 Recognize this case by having one EH edge incoming to the BB and
4201 one normal edge outgoing; BB should be empty apart from the
4202 post_landing_pad label.
4203
4204 Note that this is slightly different from the empty handler case
4205 handled by cleanup_empty_eh, in that the actual handler may yet
4206 have actual code but the landing pad has been separated from the
4207 handler. As such, cleanup_empty_eh relies on this transformation
4208 having been done first. */
4209
4210 static bool
unsplit_eh(eh_landing_pad lp)4211 unsplit_eh (eh_landing_pad lp)
4212 {
4213 basic_block bb = label_to_block (cfun, lp->post_landing_pad);
4214 gimple_stmt_iterator gsi;
4215 edge e_in, e_out;
4216
4217 /* Quickly check the edge counts on BB for singularity. */
4218 if (!single_pred_p (bb) || !single_succ_p (bb))
4219 return false;
4220 e_in = single_pred_edge (bb);
4221 e_out = single_succ_edge (bb);
4222
4223 /* Input edge must be EH and output edge must be normal. */
4224 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
4225 return false;
4226
4227 /* The block must be empty except for the labels and debug insns. */
4228 gsi = gsi_after_labels (bb);
4229 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4230 gsi_next_nondebug (&gsi);
4231 if (!gsi_end_p (gsi))
4232 return false;
4233
4234 /* The destination block must not already have a landing pad
4235 for a different region. */
4236 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4237 {
4238 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
4239 tree lab;
4240 int lp_nr;
4241
4242 if (!label_stmt)
4243 break;
4244 lab = gimple_label_label (label_stmt);
4245 lp_nr = EH_LANDING_PAD_NR (lab);
4246 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4247 return false;
4248 }
4249
4250 /* The new destination block must not already be a destination of
4251 the source block, lest we merge fallthru and eh edges and get
4252 all sorts of confused. */
4253 if (find_edge (e_in->src, e_out->dest))
4254 return false;
4255
4256 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4257 thought this should have been cleaned up by a phicprop pass, but
4258 that doesn't appear to handle virtuals. Propagate by hand. */
4259 if (!gimple_seq_empty_p (phi_nodes (bb)))
4260 {
4261 for (gphi_iterator gpi = gsi_start_phis (bb); !gsi_end_p (gpi); )
4262 {
4263 gimple *use_stmt;
4264 gphi *phi = gpi.phi ();
4265 tree lhs = gimple_phi_result (phi);
4266 tree rhs = gimple_phi_arg_def (phi, 0);
4267 use_operand_p use_p;
4268 imm_use_iterator iter;
4269
4270 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4271 {
4272 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4273 SET_USE (use_p, rhs);
4274 }
4275
4276 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
4277 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
4278
4279 remove_phi_node (&gpi, true);
4280 }
4281 }
4282
4283 if (dump_file && (dump_flags & TDF_DETAILS))
4284 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
4285 lp->index, e_out->dest->index);
4286
4287 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4288 a successor edge, humor it. But do the real CFG change with the
4289 predecessor of E_OUT in order to preserve the ordering of arguments
4290 to the PHI nodes in E_OUT->DEST. */
4291 redirect_eh_edge_1 (e_in, e_out->dest, false);
4292 redirect_edge_pred (e_out, e_in->src);
4293 e_out->flags = e_in->flags;
4294 e_out->probability = e_in->probability;
4295 remove_edge (e_in);
4296
4297 return true;
4298 }
4299
4300 /* Examine each landing pad block and see if it matches unsplit_eh. */
4301
4302 static bool
unsplit_all_eh(void)4303 unsplit_all_eh (void)
4304 {
4305 bool changed = false;
4306 eh_landing_pad lp;
4307 int i;
4308
4309 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4310 if (lp)
4311 changed |= unsplit_eh (lp);
4312
4313 return changed;
4314 }
4315
4316 /* Wrapper around unsplit_all_eh that makes it usable everywhere. */
4317
4318 void
unsplit_eh_edges(void)4319 unsplit_eh_edges (void)
4320 {
4321 bool changed;
4322
4323 /* unsplit_all_eh can die looking up unreachable landing pads. */
4324 maybe_remove_unreachable_handlers ();
4325
4326 changed = unsplit_all_eh ();
4327
4328 /* If EH edges have been unsplit, delete unreachable forwarder blocks. */
4329 if (changed)
4330 {
4331 free_dominance_info (CDI_DOMINATORS);
4332 free_dominance_info (CDI_POST_DOMINATORS);
4333 delete_unreachable_blocks ();
4334 }
4335 }
4336
4337 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4338 to OLD_BB to NEW_BB; return true on success, false on failure.
4339
4340 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4341 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4342 Virtual PHIs may be deleted and marked for renaming. */
4343
4344 static bool
cleanup_empty_eh_merge_phis(basic_block new_bb,basic_block old_bb,edge old_bb_out,bool change_region)4345 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
4346 edge old_bb_out, bool change_region)
4347 {
4348 gphi_iterator ngsi, ogsi;
4349 edge_iterator ei;
4350 edge e;
4351 bitmap ophi_handled;
4352
4353 /* The destination block must not be a regular successor for any
4354 of the preds of the landing pad. Thus, avoid turning
4355 <..>
4356 | \ EH
4357 | <..>
4358 | /
4359 <..>
4360 into
4361 <..>
4362 | | EH
4363 <..>
4364 which CFG verification would choke on. See PR45172 and PR51089. */
4365 if (!single_pred_p (new_bb))
4366 FOR_EACH_EDGE (e, ei, old_bb->preds)
4367 if (find_edge (e->src, new_bb))
4368 return false;
4369
4370 FOR_EACH_EDGE (e, ei, old_bb->preds)
4371 redirect_edge_var_map_clear (e);
4372
4373 ophi_handled = BITMAP_ALLOC (NULL);
4374
4375 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4376 for the edges we're going to move. */
4377 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
4378 {
4379 gphi *ophi, *nphi = ngsi.phi ();
4380 tree nresult, nop;
4381
4382 nresult = gimple_phi_result (nphi);
4383 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
4384
4385 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4386 the source ssa_name. */
4387 ophi = NULL;
4388 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4389 {
4390 ophi = ogsi.phi ();
4391 if (gimple_phi_result (ophi) == nop)
4392 break;
4393 ophi = NULL;
4394 }
4395
4396 /* If we did find the corresponding PHI, copy those inputs. */
4397 if (ophi)
4398 {
4399 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4400 if (!has_single_use (nop))
4401 {
4402 imm_use_iterator imm_iter;
4403 use_operand_p use_p;
4404
4405 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4406 {
4407 if (!gimple_debug_bind_p (USE_STMT (use_p))
4408 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4409 || gimple_bb (USE_STMT (use_p)) != new_bb))
4410 goto fail;
4411 }
4412 }
4413 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4414 FOR_EACH_EDGE (e, ei, old_bb->preds)
4415 {
4416 location_t oloc;
4417 tree oop;
4418
4419 if ((e->flags & EDGE_EH) == 0)
4420 continue;
4421 oop = gimple_phi_arg_def (ophi, e->dest_idx);
4422 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
4423 redirect_edge_var_map_add (e, nresult, oop, oloc);
4424 }
4425 }
4426 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4427 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4428 variable is unchanged from input to the block and we can simply
4429 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4430 else
4431 {
4432 location_t nloc
4433 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
4434 FOR_EACH_EDGE (e, ei, old_bb->preds)
4435 redirect_edge_var_map_add (e, nresult, nop, nloc);
4436 }
4437 }
4438
4439 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4440 we don't know what values from the other edges into NEW_BB to use. */
4441 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4442 {
4443 gphi *ophi = ogsi.phi ();
4444 tree oresult = gimple_phi_result (ophi);
4445 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4446 goto fail;
4447 }
4448
4449 /* Finally, move the edges and update the PHIs. */
4450 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4451 if (e->flags & EDGE_EH)
4452 {
4453 /* ??? CFG manipluation routines do not try to update loop
4454 form on edge redirection. Do so manually here for now. */
4455 /* If we redirect a loop entry or latch edge that will either create
4456 a multiple entry loop or rotate the loop. If the loops merge
4457 we may have created a loop with multiple latches.
4458 All of this isn't easily fixed thus cancel the affected loop
4459 and mark the other loop as possibly having multiple latches. */
4460 if (e->dest == e->dest->loop_father->header)
4461 {
4462 mark_loop_for_removal (e->dest->loop_father);
4463 new_bb->loop_father->latch = NULL;
4464 loops_state_set (LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4465 }
4466 redirect_eh_edge_1 (e, new_bb, change_region);
4467 redirect_edge_succ (e, new_bb);
4468 flush_pending_stmts (e);
4469 }
4470 else
4471 ei_next (&ei);
4472
4473 BITMAP_FREE (ophi_handled);
4474 return true;
4475
4476 fail:
4477 FOR_EACH_EDGE (e, ei, old_bb->preds)
4478 redirect_edge_var_map_clear (e);
4479 BITMAP_FREE (ophi_handled);
4480 return false;
4481 }
4482
4483 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4484 old region to NEW_REGION at BB. */
4485
4486 static void
cleanup_empty_eh_move_lp(basic_block bb,edge e_out,eh_landing_pad lp,eh_region new_region)4487 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4488 eh_landing_pad lp, eh_region new_region)
4489 {
4490 gimple_stmt_iterator gsi;
4491 eh_landing_pad *pp;
4492
4493 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4494 continue;
4495 *pp = lp->next_lp;
4496
4497 lp->region = new_region;
4498 lp->next_lp = new_region->landing_pads;
4499 new_region->landing_pads = lp;
4500
4501 /* Delete the RESX that was matched within the empty handler block. */
4502 gsi = gsi_last_bb (bb);
4503 unlink_stmt_vdef (gsi_stmt (gsi));
4504 gsi_remove (&gsi, true);
4505
4506 /* Clean up E_OUT for the fallthru. */
4507 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4508 e_out->probability = profile_probability::always ();
4509 }
4510
4511 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4512 unsplitting than unsplit_eh was prepared to handle, e.g. when
4513 multiple incoming edges and phis are involved. */
4514
4515 static bool
cleanup_empty_eh_unsplit(basic_block bb,edge e_out,eh_landing_pad lp)4516 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4517 {
4518 gimple_stmt_iterator gsi;
4519 tree lab;
4520
4521 /* We really ought not have totally lost everything following
4522 a landing pad label. Given that BB is empty, there had better
4523 be a successor. */
4524 gcc_assert (e_out != NULL);
4525
4526 /* The destination block must not already have a landing pad
4527 for a different region. */
4528 lab = NULL;
4529 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4530 {
4531 glabel *stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
4532 int lp_nr;
4533
4534 if (!stmt)
4535 break;
4536 lab = gimple_label_label (stmt);
4537 lp_nr = EH_LANDING_PAD_NR (lab);
4538 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4539 return false;
4540 }
4541
4542 /* Attempt to move the PHIs into the successor block. */
4543 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4544 {
4545 if (dump_file && (dump_flags & TDF_DETAILS))
4546 fprintf (dump_file,
4547 "Unsplit EH landing pad %d to block %i "
4548 "(via cleanup_empty_eh).\n",
4549 lp->index, e_out->dest->index);
4550 return true;
4551 }
4552
4553 return false;
4554 }
4555
4556 /* Return true if edge E_FIRST is part of an empty infinite loop
4557 or leads to such a loop through a series of single successor
4558 empty bbs. */
4559
4560 static bool
infinite_empty_loop_p(edge e_first)4561 infinite_empty_loop_p (edge e_first)
4562 {
4563 bool inf_loop = false;
4564 edge e;
4565
4566 if (e_first->dest == e_first->src)
4567 return true;
4568
4569 e_first->src->aux = (void *) 1;
4570 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4571 {
4572 gimple_stmt_iterator gsi;
4573 if (e->dest->aux)
4574 {
4575 inf_loop = true;
4576 break;
4577 }
4578 e->dest->aux = (void *) 1;
4579 gsi = gsi_after_labels (e->dest);
4580 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4581 gsi_next_nondebug (&gsi);
4582 if (!gsi_end_p (gsi))
4583 break;
4584 }
4585 e_first->src->aux = NULL;
4586 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4587 e->dest->aux = NULL;
4588
4589 return inf_loop;
4590 }
4591
4592 /* Examine the block associated with LP to determine if it's an empty
4593 handler for its EH region. If so, attempt to redirect EH edges to
4594 an outer region. Return true the CFG was updated in any way. This
4595 is similar to jump forwarding, just across EH edges. */
4596
4597 static bool
cleanup_empty_eh(eh_landing_pad lp)4598 cleanup_empty_eh (eh_landing_pad lp)
4599 {
4600 basic_block bb = label_to_block (cfun, lp->post_landing_pad);
4601 gimple_stmt_iterator gsi;
4602 gimple *resx;
4603 eh_region new_region;
4604 edge_iterator ei;
4605 edge e, e_out;
4606 bool has_non_eh_pred;
4607 bool ret = false;
4608 int new_lp_nr;
4609
4610 /* There can be zero or one edges out of BB. This is the quickest test. */
4611 switch (EDGE_COUNT (bb->succs))
4612 {
4613 case 0:
4614 e_out = NULL;
4615 break;
4616 case 1:
4617 e_out = single_succ_edge (bb);
4618 break;
4619 default:
4620 return false;
4621 }
4622
4623 gsi = gsi_last_nondebug_bb (bb);
4624 resx = gsi_stmt (gsi);
4625 if (resx && is_gimple_resx (resx))
4626 {
4627 if (stmt_can_throw_external (cfun, resx))
4628 optimize_clobbers (bb);
4629 else if (sink_clobbers (bb))
4630 ret = true;
4631 }
4632
4633 gsi = gsi_after_labels (bb);
4634
4635 /* Make sure to skip debug statements. */
4636 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4637 gsi_next_nondebug (&gsi);
4638
4639 /* If the block is totally empty, look for more unsplitting cases. */
4640 if (gsi_end_p (gsi))
4641 {
4642 /* For the degenerate case of an infinite loop bail out.
4643 If bb has no successors and is totally empty, which can happen e.g.
4644 because of incorrect noreturn attribute, bail out too. */
4645 if (e_out == NULL
4646 || infinite_empty_loop_p (e_out))
4647 return ret;
4648
4649 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4650 }
4651
4652 /* The block should consist only of a single RESX statement, modulo a
4653 preceding call to __builtin_stack_restore if there is no outgoing
4654 edge, since the call can be eliminated in this case. */
4655 resx = gsi_stmt (gsi);
4656 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4657 {
4658 gsi_next_nondebug (&gsi);
4659 resx = gsi_stmt (gsi);
4660 }
4661 if (!is_gimple_resx (resx))
4662 return ret;
4663 gcc_assert (gsi_one_nondebug_before_end_p (gsi));
4664
4665 /* Determine if there are non-EH edges, or resx edges into the handler. */
4666 has_non_eh_pred = false;
4667 FOR_EACH_EDGE (e, ei, bb->preds)
4668 if (!(e->flags & EDGE_EH))
4669 has_non_eh_pred = true;
4670
4671 /* Find the handler that's outer of the empty handler by looking at
4672 where the RESX instruction was vectored. */
4673 new_lp_nr = lookup_stmt_eh_lp (resx);
4674 new_region = get_eh_region_from_lp_number (new_lp_nr);
4675
4676 /* If there's no destination region within the current function,
4677 redirection is trivial via removing the throwing statements from
4678 the EH region, removing the EH edges, and allowing the block
4679 to go unreachable. */
4680 if (new_region == NULL)
4681 {
4682 gcc_assert (e_out == NULL);
4683 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4684 if (e->flags & EDGE_EH)
4685 {
4686 gimple *stmt = last_stmt (e->src);
4687 remove_stmt_from_eh_lp (stmt);
4688 remove_edge (e);
4689 }
4690 else
4691 ei_next (&ei);
4692 goto succeed;
4693 }
4694
4695 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4696 to handle the abort and allow the blocks to go unreachable. */
4697 if (new_region->type == ERT_MUST_NOT_THROW)
4698 {
4699 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4700 if (e->flags & EDGE_EH)
4701 {
4702 gimple *stmt = last_stmt (e->src);
4703 remove_stmt_from_eh_lp (stmt);
4704 add_stmt_to_eh_lp (stmt, new_lp_nr);
4705 remove_edge (e);
4706 }
4707 else
4708 ei_next (&ei);
4709 goto succeed;
4710 }
4711
4712 /* Try to redirect the EH edges and merge the PHIs into the destination
4713 landing pad block. If the merge succeeds, we'll already have redirected
4714 all the EH edges. The handler itself will go unreachable if there were
4715 no normal edges. */
4716 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4717 goto succeed;
4718
4719 /* Finally, if all input edges are EH edges, then we can (potentially)
4720 reduce the number of transfers from the runtime by moving the landing
4721 pad from the original region to the new region. This is a win when
4722 we remove the last CLEANUP region along a particular exception
4723 propagation path. Since nothing changes except for the region with
4724 which the landing pad is associated, the PHI nodes do not need to be
4725 adjusted at all. */
4726 if (!has_non_eh_pred)
4727 {
4728 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4729 if (dump_file && (dump_flags & TDF_DETAILS))
4730 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4731 lp->index, new_region->index);
4732
4733 /* ??? The CFG didn't change, but we may have rendered the
4734 old EH region unreachable. Trigger a cleanup there. */
4735 return true;
4736 }
4737
4738 return ret;
4739
4740 succeed:
4741 if (dump_file && (dump_flags & TDF_DETAILS))
4742 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4743 remove_eh_landing_pad (lp);
4744 return true;
4745 }
4746
4747 /* Do a post-order traversal of the EH region tree. Examine each
4748 post_landing_pad block and see if we can eliminate it as empty. */
4749
4750 static bool
cleanup_all_empty_eh(void)4751 cleanup_all_empty_eh (void)
4752 {
4753 bool changed = false;
4754 eh_landing_pad lp;
4755 int i;
4756
4757 /* Ideally we'd walk the region tree and process LPs inner to outer
4758 to avoid quadraticness in EH redirection. Walking the LP array
4759 in reverse seems to be an approximation of that. */
4760 for (i = vec_safe_length (cfun->eh->lp_array) - 1; i >= 1; --i)
4761 {
4762 lp = (*cfun->eh->lp_array)[i];
4763 if (lp)
4764 changed |= cleanup_empty_eh (lp);
4765 }
4766
4767 return changed;
4768 }
4769
4770 /* Perform cleanups and lowering of exception handling
4771 1) cleanups regions with handlers doing nothing are optimized out
4772 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4773 3) Info about regions that are containing instructions, and regions
4774 reachable via local EH edges is collected
4775 4) Eh tree is pruned for regions no longer necessary.
4776
4777 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4778 Unify those that have the same failure decl and locus.
4779 */
4780
4781 static unsigned int
execute_cleanup_eh_1(void)4782 execute_cleanup_eh_1 (void)
4783 {
4784 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4785 looking up unreachable landing pads. */
4786 remove_unreachable_handlers ();
4787
4788 /* Watch out for the region tree vanishing due to all unreachable. */
4789 if (cfun->eh->region_tree)
4790 {
4791 bool changed = false;
4792
4793 if (optimize)
4794 changed |= unsplit_all_eh ();
4795 changed |= cleanup_all_empty_eh ();
4796
4797 if (changed)
4798 {
4799 free_dominance_info (CDI_DOMINATORS);
4800 free_dominance_info (CDI_POST_DOMINATORS);
4801
4802 /* We delayed all basic block deletion, as we may have performed
4803 cleanups on EH edges while non-EH edges were still present. */
4804 delete_unreachable_blocks ();
4805
4806 /* We manipulated the landing pads. Remove any region that no
4807 longer has a landing pad. */
4808 remove_unreachable_handlers_no_lp ();
4809
4810 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4811 }
4812 }
4813
4814 return 0;
4815 }
4816
4817 namespace {
4818
4819 const pass_data pass_data_cleanup_eh =
4820 {
4821 GIMPLE_PASS, /* type */
4822 "ehcleanup", /* name */
4823 OPTGROUP_NONE, /* optinfo_flags */
4824 TV_TREE_EH, /* tv_id */
4825 PROP_gimple_lcf, /* properties_required */
4826 0, /* properties_provided */
4827 0, /* properties_destroyed */
4828 0, /* todo_flags_start */
4829 0, /* todo_flags_finish */
4830 };
4831
4832 class pass_cleanup_eh : public gimple_opt_pass
4833 {
4834 public:
pass_cleanup_eh(gcc::context * ctxt)4835 pass_cleanup_eh (gcc::context *ctxt)
4836 : gimple_opt_pass (pass_data_cleanup_eh, ctxt)
4837 {}
4838
4839 /* opt_pass methods: */
clone()4840 opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); }
gate(function * fun)4841 virtual bool gate (function *fun)
4842 {
4843 return fun->eh != NULL && fun->eh->region_tree != NULL;
4844 }
4845
4846 virtual unsigned int execute (function *);
4847
4848 }; // class pass_cleanup_eh
4849
4850 unsigned int
execute(function * fun)4851 pass_cleanup_eh::execute (function *fun)
4852 {
4853 int ret = execute_cleanup_eh_1 ();
4854
4855 /* If the function no longer needs an EH personality routine
4856 clear it. This exposes cross-language inlining opportunities
4857 and avoids references to a never defined personality routine. */
4858 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4859 && function_needs_eh_personality (fun) != eh_personality_lang)
4860 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4861
4862 return ret;
4863 }
4864
4865 } // anon namespace
4866
4867 gimple_opt_pass *
make_pass_cleanup_eh(gcc::context * ctxt)4868 make_pass_cleanup_eh (gcc::context *ctxt)
4869 {
4870 return new pass_cleanup_eh (ctxt);
4871 }
4872
4873 /* Disable warnings about missing quoting in GCC diagnostics for
4874 the verification errors. Their format strings don't follow GCC
4875 diagnostic conventions but are only used for debugging. */
4876 #if __GNUC__ >= 10
4877 # pragma GCC diagnostic push
4878 # pragma GCC diagnostic ignored "-Wformat-diag"
4879 #endif
4880
4881 /* Verify that BB containing STMT as the last statement, has precisely the
4882 edge that make_eh_edges would create. */
4883
4884 DEBUG_FUNCTION bool
verify_eh_edges(gimple * stmt)4885 verify_eh_edges (gimple *stmt)
4886 {
4887 basic_block bb = gimple_bb (stmt);
4888 eh_landing_pad lp = NULL;
4889 int lp_nr;
4890 edge_iterator ei;
4891 edge e, eh_edge;
4892
4893 lp_nr = lookup_stmt_eh_lp (stmt);
4894 if (lp_nr > 0)
4895 lp = get_eh_landing_pad_from_number (lp_nr);
4896
4897 eh_edge = NULL;
4898 FOR_EACH_EDGE (e, ei, bb->succs)
4899 {
4900 if (e->flags & EDGE_EH)
4901 {
4902 if (eh_edge)
4903 {
4904 error ("BB %i has multiple EH edges", bb->index);
4905 return true;
4906 }
4907 else
4908 eh_edge = e;
4909 }
4910 }
4911
4912 if (lp == NULL)
4913 {
4914 if (eh_edge)
4915 {
4916 error ("BB %i cannot throw but has an EH edge", bb->index);
4917 return true;
4918 }
4919 return false;
4920 }
4921
4922 if (!stmt_could_throw_p (cfun, stmt))
4923 {
4924 error ("BB %i last statement has incorrectly set lp", bb->index);
4925 return true;
4926 }
4927
4928 if (eh_edge == NULL)
4929 {
4930 error ("BB %i is missing an EH edge", bb->index);
4931 return true;
4932 }
4933
4934 if (eh_edge->dest != label_to_block (cfun, lp->post_landing_pad))
4935 {
4936 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4937 return true;
4938 }
4939
4940 return false;
4941 }
4942
4943 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4944
4945 DEBUG_FUNCTION bool
verify_eh_dispatch_edge(geh_dispatch * stmt)4946 verify_eh_dispatch_edge (geh_dispatch *stmt)
4947 {
4948 eh_region r;
4949 eh_catch c;
4950 basic_block src, dst;
4951 bool want_fallthru = true;
4952 edge_iterator ei;
4953 edge e, fall_edge;
4954
4955 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4956 src = gimple_bb (stmt);
4957
4958 FOR_EACH_EDGE (e, ei, src->succs)
4959 gcc_assert (e->aux == NULL);
4960
4961 switch (r->type)
4962 {
4963 case ERT_TRY:
4964 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4965 {
4966 dst = label_to_block (cfun, c->label);
4967 e = find_edge (src, dst);
4968 if (e == NULL)
4969 {
4970 error ("BB %i is missing an edge", src->index);
4971 return true;
4972 }
4973 e->aux = (void *)e;
4974
4975 /* A catch-all handler doesn't have a fallthru. */
4976 if (c->type_list == NULL)
4977 {
4978 want_fallthru = false;
4979 break;
4980 }
4981 }
4982 break;
4983
4984 case ERT_ALLOWED_EXCEPTIONS:
4985 dst = label_to_block (cfun, r->u.allowed.label);
4986 e = find_edge (src, dst);
4987 if (e == NULL)
4988 {
4989 error ("BB %i is missing an edge", src->index);
4990 return true;
4991 }
4992 e->aux = (void *)e;
4993 break;
4994
4995 default:
4996 gcc_unreachable ();
4997 }
4998
4999 fall_edge = NULL;
5000 FOR_EACH_EDGE (e, ei, src->succs)
5001 {
5002 if (e->flags & EDGE_FALLTHRU)
5003 {
5004 if (fall_edge != NULL)
5005 {
5006 error ("BB %i too many fallthru edges", src->index);
5007 return true;
5008 }
5009 fall_edge = e;
5010 }
5011 else if (e->aux)
5012 e->aux = NULL;
5013 else
5014 {
5015 error ("BB %i has incorrect edge", src->index);
5016 return true;
5017 }
5018 }
5019 if ((fall_edge != NULL) ^ want_fallthru)
5020 {
5021 error ("BB %i has incorrect fallthru edge", src->index);
5022 return true;
5023 }
5024
5025 return false;
5026 }
5027
5028 #if __GNUC__ >= 10
5029 # pragma GCC diagnostic pop
5030 #endif
5031