1 /* Program and address space management, for GDB, the GNU debugger.
2 
3    Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "objfiles.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "gdbthread.h"
27 
28 /* The last program space number assigned.  */
29 int last_program_space_num = 0;
30 
31 /* The head of the program spaces list.  */
32 struct program_space *program_spaces;
33 
34 /* Pointer to the current program space.  */
35 struct program_space *current_program_space;
36 
37 /* The last address space number assigned.  */
38 static int highest_address_space_num;
39 
40 /* Prototypes for local functions */
41 
42 static void program_space_alloc_data (struct program_space *);
43 static void program_space_free_data (struct program_space *);
44 
45 
46 /* An address space.  Currently this is not used for much other than
47    for comparing if pspaces/inferior/threads see the same address
48    space.  */
49 
50 struct address_space
51 {
52   int num;
53 };
54 
55 /* Create a new address space object, and add it to the list.  */
56 
57 struct address_space *
new_address_space(void)58 new_address_space (void)
59 {
60   struct address_space *aspace;
61 
62   aspace = XZALLOC (struct address_space);
63   aspace->num = ++highest_address_space_num;
64 
65   return aspace;
66 }
67 
68 /* Maybe create a new address space object, and add it to the list, or
69    return a pointer to an existing address space, in case inferiors
70    share an address space on this target system.  */
71 
72 struct address_space *
maybe_new_address_space(void)73 maybe_new_address_space (void)
74 {
75   int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch);
76 
77   if (shared_aspace)
78     {
79       /* Just return the first in the list.  */
80       return program_spaces->aspace;
81     }
82 
83   return new_address_space ();
84 }
85 
86 static void
free_address_space(struct address_space * aspace)87 free_address_space (struct address_space *aspace)
88 {
89   xfree (aspace);
90 }
91 
92 int
address_space_num(struct address_space * aspace)93 address_space_num (struct address_space *aspace)
94 {
95   return aspace->num;
96 }
97 
98 /* Start counting over from scratch.  */
99 
100 static void
init_address_spaces(void)101 init_address_spaces (void)
102 {
103   highest_address_space_num = 0;
104 }
105 
106 
107 
108 /* Adds a new empty program space to the program space list, and binds
109    it to ASPACE.  Returns the pointer to the new object.  */
110 
111 struct program_space *
add_program_space(struct address_space * aspace)112 add_program_space (struct address_space *aspace)
113 {
114   struct program_space *pspace;
115 
116   pspace = XZALLOC (struct program_space);
117 
118   pspace->num = ++last_program_space_num;
119   pspace->aspace = aspace;
120 
121   program_space_alloc_data (pspace);
122 
123   pspace->next = program_spaces;
124   program_spaces = pspace;
125 
126   return pspace;
127 }
128 
129 /* Releases program space PSPACE, and all its contents (shared
130    libraries, objfiles, and any other references to the PSPACE in
131    other modules).  It is an internal error to call this when PSPACE
132    is the current program space, since there should always be a
133    program space.  */
134 
135 static void
release_program_space(struct program_space * pspace)136 release_program_space (struct program_space *pspace)
137 {
138   struct cleanup *old_chain = save_current_program_space ();
139 
140   gdb_assert (pspace != current_program_space);
141 
142   set_current_program_space (pspace);
143 
144   breakpoint_program_space_exit (pspace);
145   no_shared_libraries (NULL, 0);
146   exec_close ();
147   free_all_objfiles ();
148   if (!gdbarch_has_shared_address_space (target_gdbarch))
149     free_address_space (pspace->aspace);
150   resize_section_table (&pspace->target_sections,
151 			-resize_section_table (&pspace->target_sections, 0));
152     /* Discard any data modules have associated with the PSPACE.  */
153   program_space_free_data (pspace);
154   xfree (pspace);
155 
156   do_cleanups (old_chain);
157 }
158 
159 /* Unlinks PSPACE from the pspace list, and releases it.  */
160 
161 void
remove_program_space(struct program_space * pspace)162 remove_program_space (struct program_space *pspace)
163 {
164   struct program_space *ss, **ss_link;
165 
166   ss = program_spaces;
167   ss_link = &program_spaces;
168   while (ss)
169     {
170       if (ss != pspace)
171 	{
172 	  ss_link = &ss->next;
173 	  ss = *ss_link;
174 	  continue;
175 	}
176 
177       *ss_link = ss->next;
178       release_program_space (ss);
179       ss = *ss_link;
180     }
181 }
182 
183 /* Copies program space SRC to DEST.  Copies the main executable file,
184    and the main symbol file.  Returns DEST.  */
185 
186 struct program_space *
clone_program_space(struct program_space * dest,struct program_space * src)187 clone_program_space (struct program_space *dest, struct program_space *src)
188 {
189   struct cleanup *old_chain;
190 
191   old_chain = save_current_program_space ();
192 
193   set_current_program_space (dest);
194 
195   if (src->ebfd != NULL)
196     exec_file_attach (bfd_get_filename (src->ebfd), 0);
197 
198   if (src->symfile_object_file != NULL)
199     symbol_file_add_main (src->symfile_object_file->name, 0);
200 
201   do_cleanups (old_chain);
202   return dest;
203 }
204 
205 /* Sets PSPACE as the current program space.  It is the caller's
206    responsibility to make sure that the currently selected
207    inferior/thread matches the selected program space.  */
208 
209 void
set_current_program_space(struct program_space * pspace)210 set_current_program_space (struct program_space *pspace)
211 {
212   if (current_program_space == pspace)
213     return;
214 
215   gdb_assert (pspace != NULL);
216 
217   current_program_space = pspace;
218 
219   /* Different symbols change our view of the frame chain.  */
220   reinit_frame_cache ();
221 }
222 
223 /* A cleanups callback, helper for save_current_program_space
224    below.  */
225 
226 static void
restore_program_space(void * arg)227 restore_program_space (void *arg)
228 {
229   struct program_space *saved_pspace = arg;
230 
231   set_current_program_space (saved_pspace);
232 }
233 
234 /* Save the current program space so that it may be restored by a later
235    call to do_cleanups.  Returns the struct cleanup pointer needed for
236    later doing the cleanup.  */
237 
238 struct cleanup *
save_current_program_space(void)239 save_current_program_space (void)
240 {
241   struct cleanup *old_chain = make_cleanup (restore_program_space,
242 					    current_program_space);
243 
244   return old_chain;
245 }
246 
247 /* Returns true iff there's no inferior bound to PSPACE.  */
248 
249 static int
pspace_empty_p(struct program_space * pspace)250 pspace_empty_p (struct program_space *pspace)
251 {
252   if (find_inferior_for_program_space (pspace) != NULL)
253       return 0;
254 
255   return 1;
256 }
257 
258 /* Prune away automatically added program spaces that aren't required
259    anymore.  */
260 
261 void
prune_program_spaces(void)262 prune_program_spaces (void)
263 {
264   struct program_space *ss, **ss_link;
265   struct program_space *current = current_program_space;
266 
267   ss = program_spaces;
268   ss_link = &program_spaces;
269   while (ss)
270     {
271       if (ss == current || !pspace_empty_p (ss))
272 	{
273 	  ss_link = &ss->next;
274 	  ss = *ss_link;
275 	  continue;
276 	}
277 
278       *ss_link = ss->next;
279       release_program_space (ss);
280       ss = *ss_link;
281     }
282 }
283 
284 /* Prints the list of program spaces and their details on UIOUT.  If
285    REQUESTED is not -1, it's the ID of the pspace that should be
286    printed.  Otherwise, all spaces are printed.  */
287 
288 static void
print_program_space(struct ui_out * uiout,int requested)289 print_program_space (struct ui_out *uiout, int requested)
290 {
291   struct program_space *pspace;
292   int count = 0;
293   struct cleanup *old_chain;
294 
295   /* Might as well prune away unneeded ones, so the user doesn't even
296      seem them.  */
297   prune_program_spaces ();
298 
299   /* Compute number of pspaces we will print.  */
300   ALL_PSPACES (pspace)
301     {
302       if (requested != -1 && pspace->num != requested)
303 	continue;
304 
305       ++count;
306     }
307 
308   /* There should always be at least one.  */
309   gdb_assert (count > 0);
310 
311   old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
312   ui_out_table_header (uiout, 1, ui_left, "current", "");
313   ui_out_table_header (uiout, 4, ui_left, "id", "Id");
314   ui_out_table_header (uiout, 17, ui_left, "exec", "Executable");
315   ui_out_table_body (uiout);
316 
317   ALL_PSPACES (pspace)
318     {
319       struct cleanup *chain2;
320       struct inferior *inf;
321       int printed_header;
322 
323       if (requested != -1 && requested != pspace->num)
324 	continue;
325 
326       chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
327 
328       if (pspace == current_program_space)
329 	ui_out_field_string (uiout, "current", "*");
330       else
331 	ui_out_field_skip (uiout, "current");
332 
333       ui_out_field_int (uiout, "id", pspace->num);
334 
335       if (pspace->ebfd)
336 	ui_out_field_string (uiout, "exec",
337 			     bfd_get_filename (pspace->ebfd));
338       else
339 	ui_out_field_skip (uiout, "exec");
340 
341       /* Print extra info that doesn't really fit in tabular form.
342 	 Currently, we print the list of inferiors bound to a pspace.
343 	 There can be more than one inferior bound to the same pspace,
344 	 e.g., both parent/child inferiors in a vfork, or, on targets
345 	 that share pspaces between inferiors.  */
346       printed_header = 0;
347       for (inf = inferior_list; inf; inf = inf->next)
348 	if (inf->pspace == pspace)
349 	  {
350 	    if (!printed_header)
351 	      {
352 		printed_header = 1;
353 		printf_filtered ("\n\tBound inferiors: ID %d (%s)",
354 				 inf->num,
355 				 target_pid_to_str (pid_to_ptid (inf->pid)));
356 	      }
357 	    else
358 	      printf_filtered (", ID %d (%s)",
359 			       inf->num,
360 			       target_pid_to_str (pid_to_ptid (inf->pid)));
361 	  }
362 
363       ui_out_text (uiout, "\n");
364       do_cleanups (chain2);
365     }
366 
367   do_cleanups (old_chain);
368 }
369 
370 /* Boolean test for an already-known program space id.  */
371 
372 static int
valid_program_space_id(int num)373 valid_program_space_id (int num)
374 {
375   struct program_space *pspace;
376 
377   ALL_PSPACES (pspace)
378     if (pspace->num == num)
379       return 1;
380 
381   return 0;
382 }
383 
384 /* If ARGS is NULL or empty, print information about all program
385    spaces.  Otherwise, ARGS is a text representation of a LONG
386    indicating which the program space to print information about.  */
387 
388 static void
maintenance_info_program_spaces_command(char * args,int from_tty)389 maintenance_info_program_spaces_command (char *args, int from_tty)
390 {
391   int requested = -1;
392 
393   if (args && *args)
394     {
395       requested = parse_and_eval_long (args);
396       if (!valid_program_space_id (requested))
397 	error (_("program space ID %d not known."), requested);
398     }
399 
400   print_program_space (uiout, requested);
401 }
402 
403 /* Simply returns the count of program spaces.  */
404 
405 int
number_of_program_spaces(void)406 number_of_program_spaces (void)
407 {
408   struct program_space *pspace;
409   int count = 0;
410 
411   ALL_PSPACES (pspace)
412     count++;
413 
414   return count;
415 }
416 
417 /* Update all program spaces matching to address spaces.  The user may
418    have created several program spaces, and loaded executables into
419    them before connecting to the target interface that will create the
420    inferiors.  All that happens before GDB has a chance to know if the
421    inferiors will share an address space or not.  Call this after
422    having connected to the target interface and having fetched the
423    target description, to fixup the program/address spaces mappings.
424 
425    It is assumed that there are no bound inferiors yet, otherwise,
426    they'd be left with stale referenced to released aspaces.  */
427 
428 void
update_address_spaces(void)429 update_address_spaces (void)
430 {
431   int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch);
432   struct program_space *pspace;
433   struct inferior *inf;
434 
435   init_address_spaces ();
436 
437   if (shared_aspace)
438     {
439       struct address_space *aspace = new_address_space ();
440 
441       free_address_space (current_program_space->aspace);
442       ALL_PSPACES (pspace)
443 	pspace->aspace = aspace;
444     }
445   else
446     ALL_PSPACES (pspace)
447       {
448 	free_address_space (pspace->aspace);
449 	pspace->aspace = new_address_space ();
450       }
451 
452   for (inf = inferior_list; inf; inf = inf->next)
453     if (gdbarch_has_global_solist (target_gdbarch))
454       inf->aspace = maybe_new_address_space ();
455     else
456       inf->aspace = inf->pspace->aspace;
457 }
458 
459 /* Save the current program space so that it may be restored by a later
460    call to do_cleanups.  Returns the struct cleanup pointer needed for
461    later doing the cleanup.  */
462 
463 struct cleanup *
save_current_space_and_thread(void)464 save_current_space_and_thread (void)
465 {
466   struct cleanup *old_chain;
467 
468   /* If restoring to null thread, we need to restore the pspace as
469      well, hence, we need to save the current program space first.  */
470   old_chain = save_current_program_space ();
471   save_current_inferior ();
472   make_cleanup_restore_current_thread ();
473 
474   return old_chain;
475 }
476 
477 /* Switches full context to program space PSPACE.  Switches to the
478    first thread found bound to PSPACE.  */
479 
480 void
switch_to_program_space_and_thread(struct program_space * pspace)481 switch_to_program_space_and_thread (struct program_space *pspace)
482 {
483   struct inferior *inf;
484 
485   inf = find_inferior_for_program_space (pspace);
486   if (inf != NULL)
487     {
488       struct thread_info *tp;
489 
490       tp = any_live_thread_of_process (inf->pid);
491       if (tp != NULL)
492 	{
493 	  switch_to_thread (tp->ptid);
494 	  /* Switching thread switches pspace implicitly.  We're
495 	     done.  */
496 	  return;
497 	}
498     }
499 
500   switch_to_thread (null_ptid);
501   set_current_program_space (pspace);
502 }
503 
504 
505 
506 /* Keep a registry of per-program_space data-pointers required by other GDB
507    modules.  */
508 
509 struct program_space_data
510 {
511   unsigned index;
512   void (*cleanup) (struct program_space *, void *);
513 };
514 
515 struct program_space_data_registration
516 {
517   struct program_space_data *data;
518   struct program_space_data_registration *next;
519 };
520 
521 struct program_space_data_registry
522 {
523   struct program_space_data_registration *registrations;
524   unsigned num_registrations;
525 };
526 
527 static struct program_space_data_registry program_space_data_registry
528   = { NULL, 0 };
529 
530 const struct program_space_data *
register_program_space_data_with_cleanup(void (* cleanup)(struct program_space *,void *))531 register_program_space_data_with_cleanup
532   (void (*cleanup) (struct program_space *, void *))
533 {
534   struct program_space_data_registration **curr;
535 
536   /* Append new registration.  */
537   for (curr = &program_space_data_registry.registrations;
538        *curr != NULL; curr = &(*curr)->next);
539 
540   *curr = XMALLOC (struct program_space_data_registration);
541   (*curr)->next = NULL;
542   (*curr)->data = XMALLOC (struct program_space_data);
543   (*curr)->data->index = program_space_data_registry.num_registrations++;
544   (*curr)->data->cleanup = cleanup;
545 
546   return (*curr)->data;
547 }
548 
549 const struct program_space_data *
register_program_space_data(void)550 register_program_space_data (void)
551 {
552   return register_program_space_data_with_cleanup (NULL);
553 }
554 
555 static void
program_space_alloc_data(struct program_space * pspace)556 program_space_alloc_data (struct program_space *pspace)
557 {
558   gdb_assert (pspace->data == NULL);
559   pspace->num_data = program_space_data_registry.num_registrations;
560   pspace->data = XCALLOC (pspace->num_data, void *);
561 }
562 
563 static void
program_space_free_data(struct program_space * pspace)564 program_space_free_data (struct program_space *pspace)
565 {
566   gdb_assert (pspace->data != NULL);
567   clear_program_space_data (pspace);
568   xfree (pspace->data);
569   pspace->data = NULL;
570 }
571 
572 void
clear_program_space_data(struct program_space * pspace)573 clear_program_space_data (struct program_space *pspace)
574 {
575   struct program_space_data_registration *registration;
576   int i;
577 
578   gdb_assert (pspace->data != NULL);
579 
580   for (registration = program_space_data_registry.registrations, i = 0;
581        i < pspace->num_data;
582        registration = registration->next, i++)
583     if (pspace->data[i] != NULL && registration->data->cleanup)
584       registration->data->cleanup (pspace, pspace->data[i]);
585 
586   memset (pspace->data, 0, pspace->num_data * sizeof (void *));
587 }
588 
589 void
set_program_space_data(struct program_space * pspace,const struct program_space_data * data,void * value)590 set_program_space_data (struct program_space *pspace,
591 		       const struct program_space_data *data,
592 		       void *value)
593 {
594   gdb_assert (data->index < pspace->num_data);
595   pspace->data[data->index] = value;
596 }
597 
598 void *
program_space_data(struct program_space * pspace,const struct program_space_data * data)599 program_space_data (struct program_space *pspace,
600 		    const struct program_space_data *data)
601 {
602   gdb_assert (data->index < pspace->num_data);
603   return pspace->data[data->index];
604 }
605 
606 
607 
608 void
initialize_progspace(void)609 initialize_progspace (void)
610 {
611   add_cmd ("program-spaces", class_maintenance,
612 	   maintenance_info_program_spaces_command,
613 	   _("Info about currently known program spaces."),
614 	   &maintenanceinfolist);
615 
616   /* There's always one program space.  Note that this function isn't
617      an automatic _initialize_foo function, since other
618      _initialize_foo routines may need to install their per-pspace
619      data keys.  We can only allocate a progspace when all those
620      modules have done that.  Do this before
621      initialize_current_architecture, because that accesses exec_bfd,
622      which in turn dereferences current_program_space.  */
623   current_program_space = add_program_space (new_address_space ());
624 }
625