1 /* Simulator Floating-point support.
2 
3    Copyright 1997, 1998, 2002, 2003, 2007, 2008, 2009, 2010, 2011
4    Free Software Foundation, Inc.
5 
6    Contributed by Cygnus Support.
7 
8 This file is part of GDB, the GNU debugger.
9 
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14 
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 GNU General Public License for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 
24 
25 #ifndef SIM_FPU_H
26 #define SIM_FPU_H
27 
28 
29 
30 /* The FPU intermediate type - this object, passed by reference,
31    should be treated as opaque.
32 
33 
34    Pragmatics - pass struct by ref:
35 
36    The alternatives for this object/interface that were considered
37    were: a packed 64 bit value; an unpacked structure passed by value;
38    and an unpacked structure passed by reference.
39 
40    The packed 64 bit value was rejected because: it limited the
41    precision of intermediate values; reasonable performance would only
42    be achieved when the sim_fpu package was in-lined allowing repeated
43    unpacking operations to be eliminated.
44 
45    For unpacked structures (passed by value and reference), the code
46    quality of GCC-2.7 (on x86) for each alternative was compared.
47    Needless to say the results, while better than for a packed 64 bit
48    object, were still poor (GCC had only limited support for the
49    optimization of references to structure members).  Regardless, the
50    struct-by-ref alternative achieved better results when compiled
51    with (better speed) and without (better code density) in-lining.
52    Here's looking forward to an improved GCC optimizer.
53 
54 
55    Pragmatics - avoid host FP hardware:
56 
57    FP operations can be implemented by either: the host's floating
58    point hardware; or by emulating the FP operations using integer
59    only routines.  This is direct tradeoff between speed, portability
60    and correctness.
61 
62    The two principal reasons for selecting portability and correctness
63    over speed are:
64 
65    1 - Correctness.  The assumption that FP correctness wasn't an
66    issue for code being run on simulators was wrong.  Instead of
67    running FP tolerant (?) code, simulator users instead typically run
68    very aggressive FP code sequences.  The sole purpose of those
69    sequences being to test the target ISA's FP implementation.
70 
71    2 - Portability.  The host FP implementation is not predictable.  A
72    simulator modeling aggressive FP code sequences using the hosts FPU
73    relies heavily on the correctness of the hosts FP implementation.
74    It turns out that such trust can be misplaced.  The behavior of
75    host FP implementations when handling edge conditions such as SNaNs
76    and exceptions varied widely.
77 
78 
79    */
80 
81 
82 typedef enum
83 {
84   sim_fpu_class_zero,
85   sim_fpu_class_snan,
86   sim_fpu_class_qnan,
87   sim_fpu_class_number,
88   sim_fpu_class_denorm,
89   sim_fpu_class_infinity,
90 } sim_fpu_class;
91 
92 typedef struct _sim_fpu {
93   sim_fpu_class class;
94   int sign;
95   unsigned64 fraction;
96   int normal_exp;
97 } sim_fpu;
98 
99 
100 
101 /* Rounding options.
102 
103    The value zero (sim_fpu_round_default) for ALU operations indicates
104    that, when possible, rounding should be avoided. */
105 
106 typedef enum
107 {
108   sim_fpu_round_default = 0,
109   sim_fpu_round_near = 1,
110   sim_fpu_round_zero = 2,
111   sim_fpu_round_up = 3,
112   sim_fpu_round_down = 4,
113 } sim_fpu_round;
114 
115 
116 /* Options when handling denormalized numbers.  */
117 
118 typedef enum
119 {
120   sim_fpu_denorm_default = 0,
121   sim_fpu_denorm_underflow_inexact = 1,
122   sim_fpu_denorm_zero = 2,
123 } sim_fpu_denorm;
124 
125 
126 
127 /* Status values returned by FPU operators.
128 
129    When checking the result of an FP sequence (ex 32to, add, single,
130    to32) the caller may either: check the return value of each FP
131    operator; or form the union (OR) of the returned values and examine
132    them once at the end.
133 
134    FIXME: This facility is still being developed.  The choice of
135    status values returned and their exact meaning may changed in the
136    future.  */
137 
138 typedef enum
139 {
140   sim_fpu_status_invalid_snan = 1,
141   sim_fpu_status_invalid_qnan = 2,
142   sim_fpu_status_invalid_isi = 4, /* (inf - inf) */
143   sim_fpu_status_invalid_idi = 8, /* (inf / inf) */
144   sim_fpu_status_invalid_zdz = 16, /* (0 / 0) */
145   sim_fpu_status_invalid_imz = 32, /* (inf * 0) */
146   sim_fpu_status_invalid_cvi = 64, /* convert to integer */
147   sim_fpu_status_invalid_div0 = 128, /* (X / 0) */
148   sim_fpu_status_invalid_cmp = 256, /* compare */
149   sim_fpu_status_invalid_sqrt = 512,
150   sim_fpu_status_rounded = 1024,
151   sim_fpu_status_inexact = 2048,
152   sim_fpu_status_overflow = 4096,
153   sim_fpu_status_underflow = 8192,
154   sim_fpu_status_denorm = 16384,
155 } sim_fpu_status;
156 
157 
158 
159 
160 /* Directly map between a 32/64 bit register and the sim_fpu internal
161    type.
162 
163    When converting from the 32/64 bit packed format to the sim_fpu
164    internal type, the operation is exact.
165 
166    When converting from the sim_fpu internal type to 32/64 bit packed
167    format, the operation may result in a loss of precision. The
168    configuration macro WITH_FPU_CONVERSION controls this.  By default,
169    silent round to nearest is performed.  Alternatively, round up,
170    round down and round to zero can be performed.  In a simulator
171    emulating exact FPU behavior, sim_fpu_round_{32,64} should be
172    called before packing the sim_fpu value.  */
173 
174 INLINE_SIM_FPU (void) sim_fpu_32to (sim_fpu *f, unsigned32 s);
175 INLINE_SIM_FPU (void) sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l);
176 INLINE_SIM_FPU (void) sim_fpu_64to (sim_fpu *f, unsigned64 d);
177 
178 INLINE_SIM_FPU (void) sim_fpu_to32 (unsigned32 *s, const sim_fpu *f);
179 INLINE_SIM_FPU (void) sim_fpu_to232 (unsigned32 *h, unsigned32 *l, const sim_fpu *f);
180 INLINE_SIM_FPU (void) sim_fpu_to64 (unsigned64 *d, const sim_fpu *f);
181 
182 
183 /* Create a sim_fpu struct using raw information.  (FRACTION & LSMASK
184    (PRECISION-1, 0)) is assumed to contain the fraction part of the
185    floating-point number.  The leading bit LSBIT (PRECISION) is always
186    implied.  The number created can be represented by:
187 
188    (SIGN ? "-" : "+") "1." FRACTION{PRECISION-1,0} X 2 ^ NORMAL_EXP>
189 
190    You can not specify zero using this function. */
191 
192 INLINE_SIM_FPU (void) sim_fpu_fractionto (sim_fpu *f, int sign, int normal_exp, unsigned64 fraction, int precision);
193 
194 /* Reverse operation.  If S is a non-zero number, discards the implied
195    leading one and returns PRECISION fraction bits.  No rounding is
196    performed. */
197 INLINE_SIM_FPU (unsigned64) sim_fpu_tofraction (const sim_fpu *s, int precision);
198 
199 
200 
201 /* Rounding operators.
202 
203    Force an intermediate result to an exact 32/64 bit
204    representation. */
205 
206 INLINE_SIM_FPU (int) sim_fpu_round_32 (sim_fpu *f,
207 				       sim_fpu_round round,
208 				       sim_fpu_denorm denorm);
209 INLINE_SIM_FPU (int) sim_fpu_round_64 (sim_fpu *f,
210 				       sim_fpu_round round,
211 				       sim_fpu_denorm denorm);
212 
213 
214 
215 /* Arithmetic operators.
216 
217    FIXME: In the future, additional arguments ROUNDING and BITSIZE may
218    be added. */
219 
220 typedef int (sim_fpu_op1) (sim_fpu *f,
221 			   const sim_fpu *l);
222 typedef int (sim_fpu_op2) (sim_fpu *f,
223 			   const sim_fpu *l,
224 			   const sim_fpu *r);
225 
226 INLINE_SIM_FPU (int) sim_fpu_add (sim_fpu *f,
227 				  const sim_fpu *l, const sim_fpu *r);
228 INLINE_SIM_FPU (int) sim_fpu_sub (sim_fpu *f,
229 				  const sim_fpu *l, const sim_fpu *r);
230 INLINE_SIM_FPU (int) sim_fpu_mul (sim_fpu *f,
231 				  const sim_fpu *l, const sim_fpu *r);
232 INLINE_SIM_FPU (int) sim_fpu_div (sim_fpu *f,
233 				  const sim_fpu *l, const sim_fpu *r);
234 INLINE_SIM_FPU (int) sim_fpu_max (sim_fpu *f,
235 				  const sim_fpu *l, const sim_fpu *r);
236 INLINE_SIM_FPU (int) sim_fpu_min (sim_fpu *f,
237 				  const sim_fpu *l, const sim_fpu *r);
238 INLINE_SIM_FPU (int) sim_fpu_neg (sim_fpu *f,
239 				  const sim_fpu *a);
240 INLINE_SIM_FPU (int) sim_fpu_abs (sim_fpu *f,
241 				  const sim_fpu *a);
242 INLINE_SIM_FPU (int) sim_fpu_inv (sim_fpu *f,
243 				  const sim_fpu *a);
244 INLINE_SIM_FPU (int) sim_fpu_sqrt (sim_fpu *f,
245 				   const sim_fpu *sqr);
246 
247 
248 
249 /* Conversion of integer <-> floating point. */
250 
251 INLINE_SIM_FPU (int) sim_fpu_i32to (sim_fpu *f, signed32 i,
252 				    sim_fpu_round round);
253 INLINE_SIM_FPU (int) sim_fpu_u32to (sim_fpu *f, unsigned32 u,
254 				    sim_fpu_round round);
255 INLINE_SIM_FPU (int) sim_fpu_i64to (sim_fpu *f, signed64 i,
256 				    sim_fpu_round round);
257 INLINE_SIM_FPU (int) sim_fpu_u64to (sim_fpu *f, unsigned64 u,
258 				    sim_fpu_round round);
259 #if 0
260 INLINE_SIM_FPU (int) sim_fpu_i232to (sim_fpu *f, signed32 h, signed32 l,
261 				     sim_fpu_round round);
262 #endif
263 #if 0
264 INLINE_SIM_FPU (int) sim_fpu_u232to (sim_fpu *f, unsigned32 h, unsigned32 l,
265 				     sim_fpu_round round);
266 #endif
267 
268 INLINE_SIM_FPU (int) sim_fpu_to32i (signed32 *i, const sim_fpu *f,
269 				    sim_fpu_round round);
270 INLINE_SIM_FPU (int) sim_fpu_to32u (unsigned32 *u, const sim_fpu *f,
271 				    sim_fpu_round round);
272 INLINE_SIM_FPU (int) sim_fpu_to64i (signed64 *i, const sim_fpu *f,
273 				    sim_fpu_round round);
274 INLINE_SIM_FPU (int) sim_fpu_to64u (unsigned64 *u, const sim_fpu *f,
275 				    sim_fpu_round round);
276 #if 0
277 INLINE_SIM_FPU (int) sim_fpu_to232i (signed64 *h, signed64 *l, const sim_fpu *f,
278 				     sim_fpu_round round);
279 #endif
280 #if 0
281 INLINE_SIM_FPU (int) sim_fpu_to232u (unsigned64 *h, unsigned64 *l, const sim_fpu *f,
282 				     sim_fpu_round round);
283 #endif
284 
285 
286 /* Conversion of internal sim_fpu type to host double format.
287 
288    For debugging/tracing only.  A SNaN is never returned. */
289 
290 /* INLINE_SIM_FPU (float) sim_fpu_2f (const sim_fpu *f); */
291 INLINE_SIM_FPU (double) sim_fpu_2d (const sim_fpu *d);
292 
293 /* INLINE_SIM_FPU (void) sim_fpu_f2 (sim_fpu *f, float s); */
294 INLINE_SIM_FPU (void) sim_fpu_d2 (sim_fpu *f, double d);
295 
296 
297 
298 /* Specific number classes.
299 
300    NB: When either, a 32/64 bit floating points is converted to
301    internal format, or an internal format number is rounded to 32/64
302    bit precision, a special marker is retained that indicates that the
303    value was normalized.  For such numbers both is_number and
304    is_denorm return true. */
305 
306 INLINE_SIM_FPU (int) sim_fpu_is_nan (const sim_fpu *s); /* 1 => SNaN or QNaN */
307 INLINE_SIM_FPU (int) sim_fpu_is_snan (const sim_fpu *s); /* 1 => SNaN */
308 INLINE_SIM_FPU (int) sim_fpu_is_qnan (const sim_fpu *s); /* 1 => QNaN */
309 
310 INLINE_SIM_FPU (int) sim_fpu_is_zero (const sim_fpu *s);
311 INLINE_SIM_FPU (int) sim_fpu_is_infinity (const sim_fpu *s);
312 INLINE_SIM_FPU (int) sim_fpu_is_number (const sim_fpu *s); /* !zero */
313 INLINE_SIM_FPU (int) sim_fpu_is_denorm (const sim_fpu *s); /* !zero */
314 
315 
316 
317 /* Floating point fields */
318 
319 INLINE_SIM_FPU (int) sim_fpu_sign (const sim_fpu *s);
320 INLINE_SIM_FPU (int) sim_fpu_exp (const sim_fpu *s);
321 INLINE_SIM_FPU (unsigned64) sim_fpu_fraction (const sim_fpu *s);
322 INLINE_SIM_FPU (unsigned64) sim_fpu_guard (const sim_fpu *s, int is_double);
323 
324 
325 
326 /* Specific comparison operators
327 
328    For NaNs et al., the comparison operators will set IS to zero and
329    return a nonzero result. */
330 
331 INLINE_SIM_FPU (int) sim_fpu_lt (int *is, const sim_fpu *l, const sim_fpu *r);
332 INLINE_SIM_FPU (int) sim_fpu_le (int *is, const sim_fpu *l, const sim_fpu *r);
333 INLINE_SIM_FPU (int) sim_fpu_eq (int *is, const sim_fpu *l, const sim_fpu *r);
334 INLINE_SIM_FPU (int) sim_fpu_ne (int *is, const sim_fpu *l, const sim_fpu *r);
335 INLINE_SIM_FPU (int) sim_fpu_ge (int *is, const sim_fpu *l, const sim_fpu *r);
336 INLINE_SIM_FPU (int) sim_fpu_gt (int *is, const sim_fpu *l, const sim_fpu *r);
337 
338 INLINE_SIM_FPU (int) sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r);
339 INLINE_SIM_FPU (int) sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r);
340 INLINE_SIM_FPU (int) sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r);
341 INLINE_SIM_FPU (int) sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r);
342 INLINE_SIM_FPU (int) sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r);
343 INLINE_SIM_FPU (int) sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r);
344 
345 
346 
347 /* General number class and comparison operators.
348 
349    The result of the comparison is indicated by returning one of the
350    values below.  Efficient emulation of a target FP compare
351    instruction can be achieved by redefining the values below to match
352    corresponding target FP status bits.
353 
354    For instance.  SIM_FPU_QNAN may be redefined to be the bit
355    `INVALID' while SIM_FPU_NINF might be redefined as the bits
356    `NEGATIVE | INFINITY | VALID'. */
357 
358 #ifndef SIM_FPU_IS_SNAN
359 enum {
360   SIM_FPU_IS_SNAN = 1, /* Noisy not-a-number */
361   SIM_FPU_IS_QNAN = 2, /* Quiet not-a-number */
362   SIM_FPU_IS_NINF = 3, /* -infinity */
363   SIM_FPU_IS_PINF = 4, /* +infinity */
364   SIM_FPU_IS_NNUMBER = 5, /* -number - [ -MAX .. -MIN ] */
365   SIM_FPU_IS_PNUMBER = 6, /* +number - [ +MIN .. +MAX ] */
366   SIM_FPU_IS_NDENORM = 7, /* -denorm - ( MIN .. 0 ) */
367   SIM_FPU_IS_PDENORM = 8, /* +denorm - ( 0 .. MIN ) */
368   SIM_FPU_IS_NZERO = 9, /* -0 */
369   SIM_FPU_IS_PZERO = 10, /* +0 */
370 };
371 #endif
372 
373 INLINE_SIM_FPU (int) sim_fpu_is (const sim_fpu *l);
374 INLINE_SIM_FPU (int) sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r);
375 
376 
377 
378 /* A number of useful constants.  */
379 
380 extern const sim_fpu sim_fpu_zero;
381 extern const sim_fpu sim_fpu_one;
382 extern const sim_fpu sim_fpu_two;
383 extern const sim_fpu sim_fpu_qnan;
384 extern const sim_fpu sim_fpu_max32;
385 extern const sim_fpu sim_fpu_max64;
386 
387 
388 /* Select the applicable functions for the fp_word type */
389 
390 #if WITH_TARGET_FLOATING_POINT_BITSIZE == 32
391 #define sim_fpu_tofp sim_fpu_to32
392 #define sim_fpu_fpto sim_fpu_32to
393 #define sim_fpu_round_fp sim_fpu_round_32
394 #define sim_fpu_maxfp sim_fpu_max32
395 #endif
396 #if WITH_TARGET_FLOATING_POINT_BITSIZE == 64
397 #define sim_fpu_tofp sim_fpu_to64
398 #define sim_fpu_fpto sim_fpu_64to
399 #define sim_fpu_round_fp sim_fpu_round_64
400 #define sim_fpu_maxfp sim_fpu_max64
401 #endif
402 
403 
404 
405 /* For debugging */
406 
407 typedef void sim_fpu_print_func (void *, const char *, ...);
408 
409 /* Print a sim_fpu with full precision.  */
410 INLINE_SIM_FPU (void) sim_fpu_print_fpu (const sim_fpu *f,
411 					 sim_fpu_print_func *print,
412 					 void *arg);
413 
414 /* Print a sim_fpu with `n' trailing digits.  */
415 INLINE_SIM_FPU (void) sim_fpu_printn_fpu (const sim_fpu *f,
416 					  sim_fpu_print_func *print,
417 					  int digits,
418 					  void *arg);
419 
420 INLINE_SIM_FPU (void) sim_fpu_print_status (int status,
421 					    sim_fpu_print_func *print,
422 					    void *arg);
423 
424 #if H_REVEALS_MODULE_P (SIM_FPU_INLINE)
425 #include "sim-fpu.c"
426 #endif
427 
428 #endif
429